Measurement of the Instantaneous Velocity of a Brown

Science 328, 1673-1675 DOI: 10.1126/science.1189403

Citation Report

#	Article	IF	CITATIONS
9	A Molecular Communication System in Blood Vessels for Tumor Detection. , 2014, , .		24
10	Short-Range Force Detection Using Optically Cooled Levitated Microspheres. Physical Review Letters, 2010, 105, 101101.	2.9	220
11	All-Optical Optomechanics: An Optical Spring Mirror. Physical Review Letters, 2010, 105, 213602.	2.9	46
12	Sum rule for response function in nonequilibrium Langevin systems. Physical Review E, 2010, 82, 051130.	0.8	10
13	Parameter exploration of optically trapped liquid aerosols. Physical Review E, 2010, 82, 051123.	0.8	16
14	Coherent control of the motion of complex molecules and the coupling to internal state dynamics. Faraday Discussions, 2011, 153, 237.	1.6	0
15	Harmonic oscillator in heat bath: Exact simulation of time-lapse-recorded data and exact analytical benchmark statistics. Physical Review E, 2011, 83, 041103.	0.8	46
16	Optically levitating dielectrics in the quantum regime: Theory and protocols. Physical Review A, 2011, 83, .	1.0	187
17	Fano-Doppler Laser Cooling of Hybrid Nanostructures. ACS Nano, 2011, 5, 7354-7361.	7.3	27
18	Nanoparticle Brownian motion and hydrodynamic interactions in the presence of flow fields. Physics of Fluids, 2011, 23, 73602-7360215.	1.6	60
19	On the molecular diffusion coefficients of dissolved , and and their dependence on isotopic mass. Geochimica Et Cosmochimica Acta, 2011, 75, 2483-2498.	1.6	218
20	Modeling of optical traps for aerosols. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 2856.	0.9	31
21	Brownian Motion Goes Ballistic. Science, 2011, 332, 802-803.	6.0	70
22	Revisit on dynamic radiation forces induced by pulsed Gaussian beams. Optics Express, 2011, 19, 14389.	1.7	26
23	Nanoscopic Volume Trapping and Transportation Using a PANDA Ring Resonator for Drug Delivery. IEEE Transactions on Nanobioscience, 2011, 10, 106-112.	2.2	11
24	Application of Monte Carlo Simulation in Optical Tweezers. , 2011, , .		3
25	A Key Experiment of Quantum Optics: The Transfer of Spin Angular Momentum from Photons to a Birefringent Particle. Journal of Physics: Conference Series, 2011, 274, 012147.	0.3	0
26	Plasmon nano-optical tweezers. Nature Photonics, 2011, 5, 349-356.	15.6	1,247

ATION RED

#	Article	IF	CITATIONS
27	Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Physics, 2011, 7, 527-530.	6.5	456
28	Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nature Physics, 2011, 7, 576-580.	6.5	316
29	Diffusive-to-ballistic transition in grain boundary motion studied by atomistic simulations. Physical Review B, 2011, 84, .	1.1	42
30	Path probability for a Brownian motion. Science Bulletin, 2011, 56, 3736-3740.	1.7	1
31	Role of dipole–dipole interaction on enhancing Brownian coagulation of charge-neutral nanoparticles in the free molecular regime. Journal of Chemical Physics, 2011, 134, 084501.	1.2	40
32	Room-temperature steady-state optomechanical entanglement on a chip. Physical Review A, 2011, 84, .	1.0	24
33	Three-dimensional cooling and detection of a nanosphere with a single cavity. Physical Review A, 2011, 83, .	1.0	55
34	Stochastic dynamics beyond the weak coupling limit: Thermalization. Physical Review E, 2011, 84, 061124.	0.8	3
35	Effects of error on fluctuations under feedback control. Physical Review E, 2011, 84, 021123.	0.8	27
36	Energy-transfer process in gas models of Lennard-Jones interactions. Physical Review E, 2011, 83, 052104.	0.8	5
37	Deterministic Brownian motion generated from differential delay equations. Physical Review E, 2011, 84, 041105.	0.8	22
38	Fluctuations of grains inside a discharging two-dimensional silo. Physical Review E, 2011, 84, 031309.	0.8	23
39	Lévy fluctuations and mixing in dilute suspensions of algae and bacteria. Journal of the Royal Society Interface, 2011, 8, 1314-1331.	1.5	56
40	Diffusion MR Imaging of the Brain in Patients with Cancer. International Journal of Molecular Imaging, 2011, 2011, 1-9.	1.3	7
41	Fractional dynamics in the light scattering intensity fluctuation in dusty plasma. Physics of Plasmas, 2011, 18, 013701.	0.7	20
42	Ultrahigh- <i>Q</i> mechanical oscillators through optical trapping. New Journal of Physics, 2012, 14, 045002.	1.2	49
43	Optical Tweezers-Assisted Cross-Correlation Analysis for a Non-intrusive Fluid Temperature Measurement in Microdomains. Japanese Journal of Applied Physics, 2012, 51, 067002.	0.8	2
44	Comment on "Classical Langevin dynamics of a charged particle moving on a sphere and diamagnetism: A surprise―by Kumar N. and Kumar K. Vijay. Europhysics Letters, 2012, 97, 17003.	0.7	1

#	Article	IF	CITATIONS
45	Classical orbital magnetic moment in a dissipative stochastic system. Physical Review E, 2012, 85, 011114.	0.8	11
46	Enhancement of Mechanical <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>Q</mml:mi></mml:math> Factors by Optical Trapping. Physical Review Letters, 2012, 108, 214302.	2.9	57
47	Treating inertia in passive microbead rheology. Physical Review E, 2012, 85, 021504.	0.8	69
48	Feedback Control of MEMS to Atoms. , 2012, , .		1
49	Modeling of Gas Thermal Effect Based on Energy Equipartition Principle. Tribology Transactions, 2012, 55, 752-761.	1.1	17
50	Optical trapping and cooling of glass microspheres. , 2012, , .		0
51	Non-monotonic crossover from single-file to regular diffusion in micro-channels. Scientific Reports, 2012, 2, 1015.	1.6	38
52	Far-from-equilibrium processes without net thermal exchange via energy sorting. Journal of Chemical Physics, 2012, 136, 064115.	1.2	1
53	The effect of a non-zero Lagrangian time scale on bounded shear dispersion. Journal of Fluid Mechanics, 2012, 691, 69-94.	1.4	8
54	Subkelvin Parametric Feedback Cooling of a Laser-Trapped Nanoparticle. Physical Review Letters, 2012, 109, 103603.	2.9	461
55	Cell-Free Transmission of Human Adenovirus by Passive Mass Transfer in Cell Culture Simulated in a Computer Model. Journal of Virology, 2012, 86, 10123-10137.	1.5	60
56	Extended Kramers-Moyal analysis applied to optical trapping. Physical Review E, 2012, 86, 026702.	0.8	8
57	Brownian transport in corrugated channels with inertia. Physical Review E, 2012, 86, 021112.	0.8	44
58	Towards an integrated optical single aerosol particle lab. Lab on A Chip, 2012, 12, 295-301.	3.1	13
59	Correlation functions for restricted Brownian motion from the ballistic through to the diffusive regimes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2319-2324.	0.9	17
60	Ultrafine Structure of the Hydroxyapatite Amorphous Phase in Noninfectious Phosphate Renal Calculi. Urology, 2012, 79, 968.e1-968.e6.	0.5	9
61	Thermophoresis of Brownian particles driven by coloured noise. Europhysics Letters, 2012, 99, 60002.	0.7	23
62	Optomechanical coupling between a moving dielectric sphere and radiation fields: A Lagrangian-Hamiltonian formalism. Physical Review A, 2012, 86, .	1.0	9

TION REC

#	Article	IF	CITATIONS
63	Measuring optical spatial coherence by using a programmable aperture. Journal of the Korean Physical Society, 2012, 60, 177-180.	0.3	2
64	The physical basis for anomalous diffusion in bed load transport. Journal of Geophysical Research, 2012, 117, .	3.3	71
65	Coiled to Diffuse: Brownian Motion of a Helical Bacterium. Langmuir, 2012, 28, 12941-12947.	1.6	39
66	Elimination of inertia from a Generalized Langevin Equation: Applications to microbead rheology modeling and data analysis. Journal of Rheology, 2012, 56, 185-212.	1.3	33
67	A hybrid formalism combining fluctuating hydrodynamics and generalized Langevin dynamics for the simulation of nanoparticle thermal motion in an incompressible fluid medium. Molecular Physics, 2012, 110, 1057-1067.	0.8	10
68	Persistence of a Brownian particle in a time-dependent potential. Physical Review E, 2012, 85, 051101.	0.8	10
69	Anomalous Thermodynamics at the Microscale. Physical Review Letters, 2012, 109, 260603.	2.9	95
70	Measuring the size and charge of single nanoscale objects in solution using an electrostatic fluidic trap. Nature Nanotechnology, 2012, 7, 448-452.	15.6	58
71	The dynamical-quantization approach to open quantum systems. Annals of Physics, 2012, 327, 705-732.	1.0	4
72	Emergence of multipartite optomechanical entanglement in microdisk cavities coupled to nanostring waveguide. Quantum Information Processing, 2013, 12, 3179-3190.	1.0	1
73	Brownian motion of dust particles in a weakly ionized plasma. JETP Letters, 2013, 97, 322-326.	0.4	21
74	Brownian Motion of Boomerang Colloidal Particles. Physical Review Letters, 2013, 111, 160603.	2.9	57
75	Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling. Physical Review A, 2013, 88, .	1.0	195
76	Numerical simulation of Brownian particles in optical force fields. , 2013, , .		0
77	OPTOMECHANICS OF LEVITATED DIELECTRIC PARTICLES. International Journal of Modern Physics B, 2013, 27, 1330018.	1.0	131
78	Macroscopic quantum mechanics: theory and experimental concepts of optomechanics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 104001.	0.6	195
79	Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond. Optics Letters, 2013, 38, 2976.	1.7	81
80	Determining the unique refractive index properties of solid polystyrene aerosol using broadband Mie scattering from optically trapped beads. Physical Chemistry Chemical Physics, 2013, 15, 20735.	1.3	62

# 81	ARTICLE Effective scheme for enhancing entanglement in distant optomechanical system by injecting the atomic medium. Canadian Journal of Physics, 2013, 91, 146-152.	IF 0.4	Citations 0
82	Millikelvin Cooling of an Optically Trapped Microsphere in Vacuum. Springer Theses, 2013, , 81-110.	0.0	10
83	Optical trapping and binding. Reports on Progress in Physics, 2013, 76, 026401.	8.1	242
84	Damped Rabi wavepacket oscillations and damping time in correlated random ladders. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 54, 157-161.	1.3	1
85	Effect of temperature on kinetic nanofriction of a Brownian adparticle. Chemical Physics Letters, 2013, 570, 70-74.	1.2	6
86	Fractal model of the transition from ballistic to diffusive motion of a Brownian particle. Journal of Aerosol Science, 2013, 57, 194-198.	1.8	9
87	Simultaneous trapping of low- and high-index microparticles by using highly focused elegant Hermite-cosh-Gaussian beams. Optics and Lasers in Engineering, 2013, 51, 761-767.	2.0	6
88	Simulation of a Brownian particle in an optical trap. American Journal of Physics, 2013, 81, 224-230.	0.3	201
89	Faxén's theorem for nonsteady motion of a sphere through a compressible linear viscoelastic fluid in arbitrary flow. Physical Review E, 2013, 87, .	0.8	2
90	Superdiffusive trajectories in Brownian motion. Physical Review E, 2013, 87, 020105.	0.8	23
91	Brownian motion at short time scales. Annalen Der Physik, 2013, 525, 281-295.	0.9	102
92	Calculation of Normal Contact Forces between Silica Nanospheres. Langmuir, 2013, 29, 7825-7837.	1.6	61
93	Brownian motion in inhomogeneous suspensions. Physical Review E, 2013, 87, 062110.	0.8	25
94	Pulsed laser manipulation of an optically trapped bead: Averaging thermal noise and measuring the pulsed force amplitude. Optics Express, 2013, 21, 1986.	1.7	8
95	Aerosol droplet optical trap loading using surface acoustic wave nebulization. Optics Express, 2013, 21, 30148.	1.7	14
97	The dynamics of mass transfer in equilibrium correlated systems. Physica Scripta, 2013, 88, 055502.	1.2	1
98	Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17744-17749.	3.3	166
99	Observing the rotational diffusion of nanodiamonds with arbitrary nitrogen vacancy center configurations. Physical Review B, 2013, 88, .	1.1	6

	CHATION R	_FORT	
#	Article	IF	CITATIONS
100	Quantum noise in optical tweezers. Journal of Physics: Conference Series, 2013, 467, 012007.	0.3	1
101	Dynamics of a levitated nanosphere by optomechanical coupling and Casimir interaction. Physical Review A, 2013, 88, .	1.0	23
102	Numerical Solution for a Non-Fickian Diffusion in a Periodic Potential. Communications in Computational Physics, 2013, 13, 502-525.	0.7	4
103	The Influence of Ceramic Far-Infrared Ray (cFIR) Irradiation on Water Hydrogen Bonding and its Related Chemo-physical Properties. Hydrology Current Research, 2014, 05, .	0.4	3
104	Regenerative light touch. Science-Business EXchange, 2014, 7, 756-756.	0.0	0
105	Motion analysis and removal in intensity variation based OCT angiography. Biomedical Optics Express, 2014, 5, 3833.	1.5	19
106	Measuring kinetic energy changes in the mesoscale with low acquisition rates. Applied Physics Letters, 2014, 104, 234103.	1.5	10
107	Brownian motion of tethered nanowires. Physical Review E, 2014, 89, 053010.	0.8	8
108	Ballistic and diffusive dynamics in a two-dimensional ideal gas of macroscopic chaotic Faraday waves. Physical Review E, 2014, 89, 042143.	0.8	2
109	Long-term influence of fluid inertia on the diffusion of a Brownian particle. Physical Review E, 2014, 90, 042309.	0.8	12
110	Brownian Motion of Arbitrarily Shaped Particles in Two Dimensions. Langmuir, 2014, 30, 13844-13853.	1.6	31
111	Time Correlation Functions of Brownian Motion and Evaluation of Friction Coefficient in the Near-Brownian-Limit Regime. Multiscale Modeling and Simulation, 2014, 12, 225-248.	0.6	2
112	Room-temperature ultrasensitive mass spectrometer via dynamical decoupling. Physical Review A, 2014, 90, .	1.0	33
113	Non-ponderomotive stability and random motion in micro-/nano-scale quadrupole dielectrophoretic traps. Journal Physics D: Applied Physics, 2014, 47, 435501.	1.3	1
114	Numerical simulation of optically trapped particles. , 2014, , .		1
115	Inhomogeneous and anisotropic particles in optical traps: Physical behaviour and applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 146, 81-99.	1.1	42
116	Global asymptotic stability and the ideal free distribution in a starvation driven diffusion. Journal of Mathematical Biology, 2014, 68, 1341-1370.	0.8	22
117	Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions. Science, 2014, 343, 1496-1499.	6.0	388

#	Article	IF	CITATIONS
118	Observation of Brownian Motion in Liquids at Short Times: Instantaneous Velocity and Memory Loss. Science, 2014, 343, 1493-1496.	6.0	188
119	Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nature Nanotechnology, 2014, 9, 425-429.	15.6	223
120	Optical trapping and Raman spectroscopy of solid particles. Physical Chemistry Chemical Physics, 2014, 16, 11426-11434.	1.3	68
121	Nano-optomechanics with optically levitated nanoparticles. Contemporary Physics, 2015, 56, 48-62.	0.8	39
122	Recovering position-dependent diffusion from biased molecular dynamics simulations. Journal of Chemical Physics, 2014, 140, 084109.	1.2	10
123	Self-Assembly of Nanorod Motors into Geometrically Regular Multimers and Their Propulsion by Ultrasound. ACS Nano, 2014, 8, 11053-11060.	7.3	101
124	Non-equilibrium nano-thermometry. Nature Nanotechnology, 2014, 9, 415-417.	15.6	11
125	Generating large steady-state optomechanical entanglement by the action of Casimir force. Science China: Physics, Mechanics and Astronomy, 2014, 57, 2276-2284.	2.0	27
126	Nonlinear Mode Coupling and Synchronization of a Vacuum-Trapped Nanoparticle. Physical Review Letters, 2014, 112, 103603.	2.9	53
127	It takes two to waver. Nature Nanotechnology, 2014, 9, 417-418.	15.6	3
127 128	It takes two to waver. Nature Nanotechnology, 2014, 9, 417-418. A new model for Brownian force and the application to simulating nanofluid flow. Microfluidics and Nanofluidics, 2014, 16, 131-139.	15.6 1.0	3
	A new model for Brownian force and the application to simulating nanofluid flow. Microfluidics and		
128	A new model for Brownian force and the application to simulating nanofluid flow. Microfluidics and Nanofluidics, 2014, 16, 131-139.		18
128 129	A new model for Brownian force and the application to simulating nanofluid flow. Microfluidics and Nanofluidics, 2014, 16, 131-139. Fluid Forces on Particles., 0,, 130-181. Transport performance of feedback-coupled Brownian ratchets with closed-loop control strategy.	1.0	18 2
128 129 130	A new model for Brownian force and the application to simulating nanofluid flow. Microfluidics and Nanofluidics, 2014, 16, 131-139. Fluid Forces on Particles., 0,, 130-181. Transport performance of feedback-coupled Brownian ratchets with closed-loop control strategy. International Journal of Modern Physics B, 2015, 29, 1550069.	1.0	18 2 0
128 129 130 131	A new model for Brownian force and the application to simulating nanofluid flow. Microfluidics and Nanofluidics, 2014, 16, 131-139. Fluid Forces on Particles., 0, , 130-181. Transport performance of feedback-coupled Brownian ratchets with closed-loop control strategy. International Journal of Modern Physics B, 2015, 29, 1550069. Enhanced optomechanical levitation of minimally supported dielectrics. Physical Review A, 2015, 91, .	1.0 1.0 1.0	18 2 0 10
128 129 130 131 132	A new model for Brownian force and the application to simulating nanofluid flow. Microfluidics and Nanofluidics, 2014, 16, 131-139. Fluid Forces on Particles. , 0, , 130-181. Transport performance of feedback-coupled Brownian ratchets with closed-loop control strategy. International Journal of Modern Physics B, 2015, 29, 1550069. Enhanced optomechanical levitation of minimally supported dielectrics. Physical Review A, 2015, 91, . Broadband boundary effects on Brownian motion. Physical Review E, 2015, 92, 062106.	1.0 1.0 1.0 0.8	18 2 0 10 17

#	Article	IF	CITATIONS
137	Approach to theoretical estimation of the activation energy of particle aggregation taking ionic nonclassic polarization into account. AIP Advances, 2015, 5, .	0.6	33
138	The stochastic thermodynamics of a rotating Brownian particle in a gradient flow. Scientific Reports, 2015, 5, 12266.	1.6	7
139	Femtosecond Optical Trap-Assisted Nanopatterning through Microspheres by a Single Ti:Sapphire Oscillator. Journal of Physical Chemistry C, 2015, 119, 12562-12571.	1.5	10
140	Rotation of two trapped microparticles in vacuum: observation of optically mediated parametric resonances. Optics Letters, 2015, 40, 4751.	1.7	24
141	Stochastic heating of a single Brownian particle by charge fluctuations in a radio-frequency produced plasma sheath. Physical Review E, 2015, 92, 043106.	0.8	20
142	Cavity Cooling a Single Charged Levitated Nanosphere. Physical Review Letters, 2015, 114, 123602.	2.9	228
143	Motional Averaging of Nuclear Resonance in a Field Gradient. Physical Review Letters, 2015, 114, 197601.	2.9	10
144	Progress in Optical Tweezers Technology. Zhongguo Jiguang/Chinese Journal of Lasers, 2015, 42, 0101001.	0.2	7
145	Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces. Journal of Chemical Physics, 2015, 142, 154506.	1.2	17
146	Testing the Maxwell-Boltzmann distribution using Brownian particles. Optics Express, 2015, 23, 1888.	1.7	23
147	Laser Trapping of Colloidal Metal Nanoparticles. ACS Nano, 2015, 9, 3453-3469.	7.3	193
148	Parametric Force Analysis for Measurement of Arbitrary Optical Forces on Particles Trapped in Air or Vacuum. ACS Photonics, 2015, 2, 1451-1459.	3.2	10
149	Pushing the limit: investigation of hydrodynamic forces on a trapped particle kicked by a laser pulse. Optics Express, 2015, 23, 13141.	1.7	3
150	Three-dimensional cooling of a single atom by a pair of counter-propagating tightly focused beams. Optics Express, 2015, 23, 23571.	1.7	1
151	Effect of interfaces on the nearby Brownian motion. Nature Communications, 2015, 6, 8558.	5.8	39
152	Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond. Nature Photonics, 2015, 9, 653-657.	15.6	119
153	Optical binding in white light. Optics Letters, 2015, 40, 1818.	1.7	5
154	Augmenting regional and targeted delivery in the pulmonary acinus using magnetic particles. International Journal of Nanomedicine, 2016, Volume 11, 3385-3395.	3.3	21

#	Article	IF	Citations
155	An Efficient Method to Study Nondiffusive Motion of Brownian Particles. EPJ Web of Conferences, 2016, 108, 02035.	0.1	0
156	Simultaneous measurement of mass and rotation of trapped absorbing particles in air. Optics Letters, 2016, 41, 4356.	1.7	19
157	Noise-to-signal transition of a Brownian particle in the cubic potential: I. general theory. Journal of Optics (United Kingdom), 2016, 18, 065401.	1.0	14
158	111 years of Brownian motion. Soft Matter, 2016, 12, 6331-6346.	1.2	129
159	Optical tracking of nanoscale particles in microscale environments. Applied Physics Reviews, 2016, 3, .	5.5	27
160	Electron spin control of optically levitated nanodiamonds in vacuum. Nature Communications, 2016, 7, 12250.	5.8	87
161	Contact Electrification of Individual Dielectric Microparticles Measured by Optical Tweezers in Air. ACS Applied Materials & Interfaces, 2016, 8, 34904-34913.	4.0	9
162	Temperature measurement of a dust particle in a RF plasma GEC reference cell. Journal of Plasma Physics, 2016, 82, .	0.7	11
163	Experimental study of the stochastic heating of a single Brownian particle by charge fluctuations. Physics of Plasmas, 2016, 23, 083704.	0.7	5
164	Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. Nature Communications, 2016, 7, 10941.	5.8	46
165	Kinetics study of the Al–water reaction promoted by an ultrasonically prepared Al(OH) ₃ suspension. RSC Advances, 2016, 6, 35305-35314.	1.7	16
166	Microscopic reversibility and macroscopic irreversibility: A lattice gas model. Physica A: Statistical Mechanics and Its Applications, 2016, 457, 82-92.	1.2	3
167	Regular oscillations and random motion of glass microspheres levitated by a single optical beam in air. Optics Express, 2016, 24, 2850.	1.7	8
168	Effect of solvent on directional drift in Brownian motion of particle/molecule with broken symmetry. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	2.0	1
169	Effects of translation–rotation coupling on the displacement probability distribution functions of boomerang colloidal particles. Soft Matter, 2016, 12, 4318-4323.	1.2	13
170	Parsing anomalous versus normal diffusive behavior of bedload sediment particles. Earth Surface Processes and Landforms, 2016, 41, 1797-1803.	1.2	39
171	Thermally induced passage and current of particles in a highly unstable optical potential. Physical Review E, 2016, 94, 042108.	0.8	12
172	Optically driven self-oscillations of a silica nanospike at low gas pressures. , 2016, , .		0

#	Article	IF	CITATIONS
173	Anomalous Dynamical Behavior of Freestanding Graphene Membranes. Physical Review Letters, 2016, 117, 126801.	2.9	59
174	Torsional Optomechanics of a Levitated Nonspherical Nanoparticle. Physical Review Letters, 2016, 117, 123604.	2.9	163
175	Extracting work from quantum states of radiation. Physical Review A, 2016, 93, .	1.0	3
176	Spectral decomposition of nonlinear systems with memory. Physical Review E, 2016, 93, 022211.	0.8	30
177	Nonisothermal fluctuating hydrodynamics and Brownian motion. Physical Review E, 2016, 93, 032150.	0.8	17
178	Hot microswimmers. European Physical Journal: Special Topics, 2016, 225, 2207-2225.	1.2	53
179	The evolution of the mass-transfer functions in liquid Yukawa systems. Journal of Experimental and Theoretical Physics, 2016, 123, 540-549.	0.2	1
180	Nonvibrating granular model for a glass-forming liquid: Equilibration and aging. Physical Review E, 2016, 94, 062902.	0.8	19
181	Brownian relaxation of an inelastic sphere in air. Physics of Fluids, 2016, 28, 062005.	1.6	0
182	Systematic approach of extracting sliding manifold in robust stabilizing of stochastic multi-input systems. Journal of the Franklin Institute, 2016, 353, 378-397.	1.9	2
183	Thermodynamics at the microscale: from effective heating to the Brownian Carnot engine. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016, 054003.	0.9	18
184	Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber. Optica, 2016, 3, 277.	4.8	39
185	Optical gradient force of linearly polarized sine-azimuthal Lorentz beam with one on-axis optical vortex. Optik, 2016, 127, 4193-4199.	1.4	1
186	Ultraviolet broadband light scattering for optically-trapped submicron-sized aerosol particles. Physical Chemistry Chemical Physics, 2016, 18, 5477-5485.	1.3	41
188	Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Science Bulletin, 2016, 61, 163-171.	4.3	109
189	Enhancing steady-state entanglement via vacuum-induced emitter–mirror coupling in a hybrid optomechanical system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 025501.	0.6	9
190	Imaging rotational dynamics of nanoparticles in liquid by 4D electron microscopy. Science, 2017, 355, 494-498.	6.0	74
191	Equivalent Discrete-Time Channel Modeling for Molecular Communication With Emphasize on an Absorbing Receiver. IEEE Transactions on Nanobioscience, 2017, 16, 60-68.	2.2	21

#	Article	IF	CITATIONS
192	Computational Models for Nanoscale Fluid Dynamics and Transport Inspired by Nonequilibrium Thermodynamics1. Journal of Heat Transfer, 2017, 139, 0330011-330019.	1.2	10
193	V-T theory for the self-intermediate scattering function in a monatomic liquid. Journal of Physics Condensed Matter, 2017, 29, 055101.	0.7	6
194	Optical levitation of nanodiamonds by doughnut beams in vacuum. Laser and Photonics Reviews, 2017, 11, 1600284.	4.4	29
195	Brownian diffusion of a particle at an air/liquid interface: the elastic (not viscous) response of the surface. Physical Chemistry Chemical Physics, 2017, 19, 9092-9095.	1.3	12
196	Dynamical and structural properties of a granular model for a magnetorheological fluid. Physical Review E, 2017, 95, 022601.	0.8	15
197	Rich stochastic dynamics of co-doped Er:Yb fluorescence upconversion nanoparticles in the presence of thermal, non-conservative, harmonic and optical forces. Methods and Applications in Fluorescence, 2017, 5, 014005.	1.1	4
198	Molecular Dynamics Study on Nanoparticle Collision and Coalescence. Springer Theses, 2017, , 77-144.	0.0	2
199	Brownian motion as a new probe of wettability. Journal of Chemical Physics, 2017, 146, 134707.	1.2	8
200	Conserved linear dynamics of single-molecule Brownian motion. Nature Communications, 2017, 8, 15675.	5.8	15
201	High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip. Lab on A Chip, 2017, 17, 2443-2450.	3.1	53
202	An improved model for thermal conductivity of nanofluids with effects of particle size and Brownian motion. Journal of Thermal Analysis and Calorimetry, 2017, 129, 1255-1263.	2.0	14
203	Theory and practice of simulation of optical tweezers. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 195, 66-75.	1.1	43
204	Inertial particle dynamics in large artery flows – Implications for modeling arterial embolisms. Journal of Biomechanics, 2017, 52, 155-164.	0.9	20
205	Direct measurement of Kramers turnover with a levitated nanoparticle. Nature Nanotechnology, 2017, 12, 1130-1133.	15.6	102
206	Nanoparticles jumping high. Nature Nanotechnology, 2017, 12, 1119-1120.	15.6	5
207	Collision Dynamics during the Electrooxidation of Individual Silver Nanoparticles. Journal of the American Chemical Society, 2017, 139, 16923-16931.	6.6	95
208	Rotation and Negative Torque in Electrodynamically Bound Nanoparticle Dimers. Nano Letters, 2017, 17, 6548-6556.	4.5	34
209	Brownian motion in non-equilibrium systems and the Ornstein-Uhlenbeck stochastic process. Scientific Reports, 2017, 7, 12614.	1.6	35

#	Article	IF	CITATIONS
210	Scale Relativistic signature in the Brownian motion of micro-spheres in optical traps. International Journal of Modern Physics A, 2017, 32, 1750156.	0.5	2
211	"Flying Plasmonsâ€; Fabry-Pérot Resonances in Levitated Silver Nanowires. ACS Photonics, 2017, 4, 2719-2725.	3.2	10
212	Detecting Casimir torque with an optically levitated nanorod. Physical Review A, 2017, 96, .	1.0	57
213	Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System. Scientific Reports, 2017, 7, 13168.	1.6	12
214	Noncommutative Brownian motion. International Journal of Modern Physics A, 2017, 32, 1750146.	0.5	5
215	Photoinduced nanobubble-driven superfast diffusion of nanoparticles imaged by 4D electron microscopy. Science Advances, 2017, 3, e1701160.	4.7	39
216	Microscopic flow around a diffusing particle. Journal of Chemical Physics, 2017, 147, 094502.	1.2	7
217	Ultrasensitive Inertial and Force Sensors with Diamagnetically Levitated Magnets. Physical Review Applied, 2017, 8, .	1.5	43
218	Preferential frequency and size effect of the Brownian force acting on a nanoparticle. Journal of Fluid Mechanics, 2017, 828, 648-660.	1.4	1
219	Bistability and squeezing of the librational mode of an optically trapped nanoparticle. Physical Review A, 2017, 96, .	1.0	11
220	Reply to comment on "Brownian diffusion of a particle at an air/liquid interface: elastic (not viscous) response of the surface― Physical Chemistry Chemical Physics, 2017, 19, 22594-22595.	1.3	0
221	Comment on "Brownian diffusion of a particle at an air/liquid interface: elastic (not viscous) response of the surface― Physical Chemistry Chemical Physics, 2017, 19, 22592-22593.	1.3	3
222	Modeling of optical binding of submicron aerosol particles in counterpropagating Bessel beams. Physical Review A, 2017, 95, .	1.0	4
223	Optical Trap Loading of Dielectric Microparticles In Air. Journal of Visualized Experiments, 2017, , .	0.2	2
224	Auxiliary-cavity-assisted ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime. Physical Review A, 2017, 96, .	1.0	22
225	Soft electrostatic trapping in nanofluidics. Microsystems and Nanoengineering, 2017, 3, 17051.	3.4	13
226	Macroscopic quantum coherence and mechanical squeezing of a graphene sheet. Physical Review A, 2017, 96, .	1.0	23
227	Universal and anomalous behavior in the thermalization of strongly interacting harmonically trapped gas mixtures. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 135005.	0.6	5

	Cı	CITATION REPORT	
# 228	ARTICLE DNA robots that sort cargoes. Nature Nanotechnology, 2017, 12, 1120-1120.	IF 15.6	Citations 9
			-
230	Individual Tracer Atoms in an Ultracold Dilute Gas. Physical Review Letters, 2017, 118, 263401.	2.9	33
231	Tunable optical gradient force of radially polarized Lorentz-Gauss vortex beam by sine-azimuthal variation wavefront. Optik, 2017, 130, 481-488.	1.4	6
232	Nonergodic diffusion of single atoms in a periodicÂpotential. Nature Physics, 2017, 13, 137-141.	6.5	46
233	The elements and richness of particle diffusion during sediment transport at small timescales. Earth Surface Processes and Landforms, 2017, 42, 214-237.	1.2	28
234	Osmotic Suppression of Positional Fluctuation of a Trapped Particle in a Near-Critical Binary Fluid Mixture in the Regime of the Gaussian Model. Journal of the Physical Society of Japan, 2017, 86, 1146	02. ^{0.7}	5
235	Cavity optomechanics in a levitated helium drop. Physical Review A, 2017, 96, .	1.0	35
236	Frequency-dependent hydrodynamic interaction between two solid spheres. Physics of Fluids, 2017, 2 126101.	9, 1.6	9
237	Observation of radiation pressure induced deformation of high-reflective reflector. Journal of Physics Communications, 2017, 1, 055031.	0.5	2
238	Full rotational control of levitated silicon nanorods. Optica, 2017, 4, 356.	4.8	105
239	Rotational synchronization of two noncontact nanoparticles. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 2514.	0.9	3
240	Dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: three-dimensional motion around a complex optical potential. Journal of the Optical Society of America B: Optical Physics, 2017, 34, C14.	0.9	34
241	Coherent control of a single nitrogen-vacancy center spin in optically levitated nanodiamond. Journal of the Optical Society of America B: Optical Physics, 2017, 34, C31.	0.9	27
242	Experimental Test of the Differential Fluctuation Theorem and a Generalized Jarzynski Equality for Arbitrary Initial States. Physical Review Letters, 2018, 120, 080602.	2.9	79
243	Determination of the interaction mechanism of 10â€ [−] µm oil-in-water emulsion droplets using optical tweezers. Chemical Engineering Science, 2018, 181, 341-347.	1.9	17
244	Noncontinuous Superâ€Diffusive Dynamics of a Lightâ€Activated Nanobottle Motor. Angewandte Ch International Edition, 2018, 57, 6838-6842.	emie - 7.2	95
245	An analytical model for the detection of levitated nanoparticles in optomechanics. Review of Scientific Instruments, 2018, 89, 023109.	0.6	12
246	Establishing the kinetics of ballistic-to-diffusive transition using directional statistics. Physical Review E, 2018, 97, 042102.	0.8	2

#	Article	IF	CITATIONS
247	Noncontinuous Superâ€Diffusive Dynamics of a Lightâ€Activated Nanobottle Motor. Angewandte Chemie, 2018, 130, 6954-6958.	1.6	15
248	Development of nanoemulsion CO2 absorbents for mass transfer performance enhancement. International Communications in Heat and Mass Transfer, 2018, 94, 24-31.	2.9	14
249	Approach to Estimation of Hamaker Constant as Taking Hofmeister Effects into Account. Journal of Physical Chemistry C, 2018, 122, 9432-9440.	1.5	22
250	Tracking fast cellular membrane dynamics with sub-nm accuracy in the normal direction. Nanoscale, 2018, 10, 5133-5139.	2.8	13
251	Hot Brownian Motion. , 2018, , 127-145.		3
252	Macroscopic equivalence for microscopic motion in a turbulence driven three-dimensional self-assembly reactor. Journal of Applied Physics, 2018, 123, .	1.1	8
253	Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Science Advances, 2018, 4, eaao0773.	4.7	161
254	Optical trapping and manipulation of single particles in air: Principles, technical details, and applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 214, 94-119.	1.1	98
255	Derivation of the Boltzmann Equation for Financial Brownian Motion: Direct Observation of the Collective Motion of High-Frequency Traders. Physical Review Letters, 2018, 120, 138301.	2.9	35
256	Calibration and energy measurement of optically levitated nanoparticle sensors. Review of Scientific Instruments, 2018, 89, 033111.	0.6	54
257	Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiber-optic trap. Optics Communications, 2018, 417, 103-109.	1.0	10
258	A microscopic experimental study of nanoparticle motion for the enhancement of oxygen absorption in nanofluids. Nanotechnology Reviews, 2018, 7, 529-539.	2.6	6
259	Single Particle Thermodynamics with Levitated Nanoparticles. Fundamental Theories of Physics, 2018, , 853-885.	0.1	5
260	Coarse Graining, Nonmaximal Entropy, and Power Laws. Entropy, 2018, 20, 737.	1.1	1
261	Nonmotile Single-Cell Migration as a Random Walk in Nonuniformity: The "Extreme Dumping Limit―for Cell-to-Cell Communications. Journal of Healthcare Engineering, 2018, 2018, 1-8.	1.1	1
262	Thermophoresis and Brownian Motion Effects on Nanoparticle Deposition Inside a 90° Square Bend Tube. Aerosol and Air Quality Research, 2018, 18, 1746-1755.	0.9	20
263	Temporal Dependence of Photophoretic Force Optically Induced on Absorbing Airborne Particles by a Power-Modulated Laser. Physical Review Applied, 2018, 10, .	1.5	7
264	Molecular dynamics of partially confined Lennard-Jones gases: Velocity autocorrelation function, mean squared displacement, and collective excitations. Physical Review E, 2018, 98, .	0.8	16

#	Article	IF	Citations
265	Nuclear recoil spectroscopy of levitated particles. Physical Review A, 2018, 98, .	1.0	1
266	Quantifying the validity and breakdown of the overdamped approximation in stochastic thermodynamics: Theory and experiment. Physical Review E, 2018, 98, .	0.8	12
267	Inertial delay of self-propelled particles. Nature Communications, 2018, 9, 5156.	5.8	113
268	Localized mode and nonergodicity of a harmonic oscillator chain. Physical Review E, 2018, 98, .	0.8	12
269	Precession Motion in Levitated Optomechanics. Physical Review Letters, 2018, 121, 253601.	2.9	53
270	Digital holography of optically-trapped aerosol particles. Communications Chemistry, 2018, 1, .	2.0	29
271	Fundamental Aspects of Enzyme-Powered Micro- and Nanoswimmers. Accounts of Chemical Research, 2018, 51, 2662-2671.	7.6	171
272	Detection of anisotropic particles in levitated optomechanics. Physical Review A, 2018, 98, .	1.0	8
273	New weight factor for Brownian force exerted on micro/nano-particles in air flow. Modern Physics Letters B, 2018, 32, 1840016.	1.0	1
274	Sensitivity of displacement detection for a particle levitated in the doughnut beam. Optics Letters, 2018, 43, 4582.	1.7	5
275	Bayesian analysis of single-particle tracking data using the nested-sampling algorithm: maximum-likelihood model selection applied to stochastic-diffusivity data. Physical Chemistry Chemical Physics, 2018, 20, 29018-29037.	1.3	99
276	Detection of Magnetic Field Gradient and Single Spin Using Optically Levitated Nano-Particle in Vacuum. Communications in Theoretical Physics, 2018, 70, 097.	1.1	2
277	A Single Large Assembly with Dynamically Fluctuating Swarms of Gold Nanoparticles Formed by Trapping Laser. Nano Letters, 2018, 18, 5846-5853.	4.5	39
278	Dynamic analysis and rotation experiment of an optical-trapped microsphere in air. Applied Optics, 2018, 57, 823.	0.9	22
279	Levitated Nanoparticles for Microscopic Thermodynamics—A Review. Entropy, 2018, 20, 326.	1.1	65
280	Gas-induced friction and diffusion of rigid rotors. Physical Review E, 2018, 97, 052112.	0.8	30
281	Diffusion in translucent media. Nature Communications, 2018, 9, 1862.	5.8	6
282	Optically levitated nanosphere with high trapping frequency. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	2.0	7

ARTICLE IF CITATIONS # Printed-circuit-board linear Paul trap for manipulating single nano- and microparticles. Review of 283 0.6 3 Scientific Instruments, 2018, 89, 083101. Description of colloidal particles aggregation in the presence of Hofmeister effects: on the relationship between ion adsorption energy and particle aggregation activation energy. Physical Chemistry Chemical Physics, 2018, 20, 22831-22840. 284 1.3 A discrete algebraic framework for stochastic systems which yield unique and exact solutions. 285 1.4 3 Heliyon, 2018, 4, e00691. Dust Particle Pair Correlation Functions and the Nonlinear Effect of Interaction Potentials. IEEE 286 0.6 Transactions on Plasma Science, 2019, 47, 3057-3062. Properties of gases., 2019, , 1-14. 287 0 288 Optical trapping <i>in vivo</i>: theory, practice, and applications. Nanophotonics, 2019, 8, 1023-1040. Dynamic Assembly of Small Parts in Vortex–Vortex Traps Established within a Rotating Fluid. 289 11.1 1 Advanced Materials, 2019, 31, e1902298. Specific ion effects of Cu2+, Ca2+ and Mg2+ on montmorillonite aggregation. Applied Clay Science, 290 2.6 2019, 179, 105154. 291 Quantum Brownian motion of a magnetic skyrmion. Physical Review B, 2019, 100, . 1.1 9 Electrospun nanofiber filters for highly efficient PM2.5 capture. Korean Journal of Chemical 1.2 Engineering, 2019, 36, 1565-1574 Cooling of a levitated nanoparticle with digital parametric feedback. Applied Physics Letters, 2019, 115, . 293 9 1.5 Online Identification Method of Induction Motor Parameters Based on Rotor Flux Linkage. Journal of 294 0.3 Physics: Conference Series, 2019, 1187, 022019. Change Detection Method based on Block Similarity Measure. Journal of Physics: Conference Series, 295 0.3 0 2019, 1237, 022047. Implicit-solvent coarse-grained modeling for polymer solutions <i>via</i> Mori-Zwanzig formalism. Soft Matter, 2019, 15, 7567-7582. 1.2 Self-Assembly of Ordered Microparticle Monolayers from Drying a Droplet on a Liquid Substrate. 297 2.1 12 Journal of Physical Chemistry Letters, 2019, 10, 6184-6188. Assessing relative humidity dependent photoacoustics to retrieve mass accommodation coefficients 298 of single optically trapped aerosol particles. Physical Chemistry Chemical Physics, 2019, 21, 4721-4731. Review of optical tweezers in vacuum. Frontiers of Information Technology and Electronic 299 1.514 Engineering, 2019, 20, 655-673. Position detection using differential signals of the coupling light in a tapered-lensed dual-beam 1.1 optical fiber trap. Applied Physics Express, 2019, 12, 062006.

#	Article	IF	CITATIONS
301	Optimal Feedback Cooling of a Charged Levitated Nanoparticle with Adaptive Control. Physical Review Letters, 2019, 122, 223602.	2.9	77
302	Modification of the sedimentation method for PMMA photonic crystal coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 194-201.	2.3	16
303	Molecular dynamics simulations of friction forces between silica nanospheres. Computational Materials Science, 2019, 162, 96-110.	1.4	3
304	Brownian motion of a lone dust particle in plasma of radio frequency discharge. Journal of Physics: Conference Series, 2019, 1147, 012113.	0.3	1
305	Dendritic Janus Nanomotors with Precisely Modulated Coverages and Their Effects on Propulsion. ACS Applied Materials & Interfaces, 2019, 11, 10426-10433.	4.0	42
306	Magneto-mechanical trapping of micro-diamonds at low pressures. Applied Physics Letters, 2019, 114, .	1.5	31
307	Biomolecule displacement by Brownian step. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568, 99-104.	2.3	1
308	Integrating ultrafast and stochastic dynamics studies of Brownian motion in molecular systems and colloidal particles. Current Opinion in Colloid and Interface Science, 2019, 44, 208-219.	3.4	1
309	Non-spherical particles in optical tweezers: A numerical solution. PLoS ONE, 2019, 14, e0225773.	1.1	6
310	Acceleration sensing with magnetically levitated oscillators above a superconductor. Applied Physics Letters, 2019, 115, .	1.5	48
311	Study of Brownian motion of magnetic nanoparticles in viscous media by Mössbauer spectroscopy. Journal of Magnetism and Magnetic Materials, 2019, 475, 146-151.	1.0	10
312	Highly Resolved Brownian Motion in Space and in Time. Annual Review of Fluid Mechanics, 2019, 51, 403-428.	10.8	22
313	Unraveling Dynamic Transitions in Time-Resolved Biomolecular Motions by A Dressed Diffusion Model. Journal of Physical Chemistry A, 2020, 124, 613-617.	1.1	5
314	Simulating the potential of trees to reduce particulate matter pollution in urban areas throughout the year. Environment, Development and Sustainability, 2020, 22, 4311-4321.	2.7	23
315	Ultrasensitive torque detection with an optically levitated nanorotor. Nature Nanotechnology, 2020, 15, 89-93.	15.6	148
316	Brownian Thermometry Beyond Equilibrium. ChemSystemsChem, 2020, 2, e1900041.	1.1	6
317	Optomechanics with levitated particles. Reports on Progress in Physics, 2020, 83, 026401.	8.1	155
318	Transition Path Dynamics of a Dielectric Particle in a Bistable Optical Trap. Physical Review Letters, 2020, 125, 146001.	2.9	20

#	Article	IF	CITATIONS
319	Weighing an Optically Trapped Microsphere in Thermal Equilibrium With Air. Physical Review Applied, 2020, 14, .	1.5	6
320	Electroviscous effect for a confined nanosphere in solution. Physical Review E, 2020, 102, 042607.	0.8	5
321	Escape Kinetics of an Underdamped Colloidal Particle from a Cavity through Narrow Pores. Journal of Physical Chemistry C, 2020, 124, 18747-18754.	1.5	4
322	Technique for Rapid Mass Determination of Airborne Microparticles Based on Release and Recapture from an Optical Dipole Force Trap. Physical Review Applied, 2020, 14, .	1.5	7
323	Optical radiation force on a dielectric sphere of arbitrary size illuminated by a linearly polarized Airy light-sheet. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 245, 106853.	1.1	16
324	Extending Vacuum Trapping to Absorbing Objects with Hybrid Paul-Optical Traps. Nano Letters, 2020, 20, 6018-6023.	4.5	20
325	Space-Time Inversion of Stochastic Dynamics. Symmetry, 2020, 12, 839.	1.1	0
326	Unified approach to stochastic thermodynamics: Application to a quantum heat engine. Physical Review E, 2020, 102, 042138.	0.8	1
327	Short-time dynamics of a tracer in an ideal gas. Physical Review E, 2020, 102, 032104.	0.8	2
328	Decoherence-Free Rotational Degrees of Freedom for Quantum Applications. Physical Review Letters, 2020, 125, 090501.	2.9	6
329	Role of Brownian Particle Velocity in Bioelectronic Emissions of DNA. Bioelectricity, 2020, 2, 399-404.	0.6	0
330	Classical and quantum time crystals in a levitated nanoparticle without drive. Physical Review A, 2020, 102, .	1.0	6
331	Vortices as Brownian particles in turbulent flows. Science Advances, 2020, 6, eaaz1110.	4.7	28
332	Weighing picogram aerosol droplets with an optical balance. Communications Physics, 2020, 3, .	2.0	11
333	Optical tweezers: theory and practice. European Physical Journal Plus, 2020, 135, 1.	1.2	57
334	The Longitudinal Superdiffusive Motion of Block Copolymer in a Tight Nanopore. Polymers, 2020, 12, 2931.	2.0	1
335	Statistical physics of flux-carrying Brownian particles. Annals of Physics, 2020, 421, 168300.	1.0	1
336	Overdamped dynamics of a Brownian particle levitated in a Paul trap. Physical Review A, 2020, 101, .	1.0	9

#	Article	IF	CITATIONS
337	Flagellar nanorobot with kinetic behavior investigation and 3D motion. Nanoscale, 2020, 12, 12154-12164.	2.8	10
338	Viscous-viscoelastic correspondence principle for Brownian motion. Physical Review E, 2020, 101, 052139.	0.8	7
339	Glass- and crystal-forming model based on a granular two-dimensional system. Physical Review E, 2020, 101, 052907.	0.8	6
340	Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling. Science Advances, 2020, 6, eaaz9858.	4.7	30
341	Study of the Brownian Broadening in the Mössbauer Spectra of Magnetic Nanoparticles in Colloids with Different Viscosities. Crystallography Reports, 2020, 65, 398-403.	0.1	5
342	Generalization of Langevin Dynamics from Spatio-Temporal Dressed Dynamics Perspective. Journal of Physical Chemistry A, 2020, 124, 3269-3275.	1.1	3
343	Optimization of nonlinear optical tweezers suitable to stretch DNA molecules without broken state. Optical and Quantum Electronics, 2020, 52, 1.	1.5	2
344	Effect of Viscosity on the Collision Dynamics and Oxidation of Individual Ag Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 9068-9076.	1.5	10
345	Motional Dynamical Decoupling for Interferometry with Macroscopic Particles. Physical Review Letters, 2020, 125, 023602.	2.9	51
346	Controlled in situ capacitance sensing of single cell via simultaneous optical tweezing. Sensors and Actuators B: Chemical, 2020, 321, 128512.	4.0	3
347	A PZT-assisted single particle loading method for dual-fiber optical trap in air. Optics and Laser Technology, 2020, 126, 106115.	2.2	5
348	Mass Accommodation Coefficients of Water on Organics from Complementary Photoacoustic and Light Scattering Measurements on Laser-Trapped Droplets. Journal of Physical Chemistry C, 2020, 124, 2481-2489.	1.5	16
349	Prethermalization and Nonreciprocal Phonon Transport in a Levitated Optomechanical Array. Advanced Quantum Technologies, 2020, 3, 1900099.	1.8	16
350	Monte Carlo Aggregation Code (MCAC) Part 1: Fundamentals. Journal of Colloid and Interface Science, 2020, 569, 184-194.	5.0	20
351	The merging mechanisms of poly(3-hexylthiophene) domains revealed through scanning tunneling microscopy and molecular dynamics simulations. Polymer, 2020, 191, 122266.	1.8	3
352	Assessment of hindered diffusion in arbitrary geometries using a multiphase DNS framework. Chemical Engineering Science, 2021, 230, 116074.	1.9	2
353	Near-infrared light-driven yolk@shell carbon@silica nanomotors for fuel-free triglyceride degradation. Nano Research, 2021, 14, 654-659.	5.8	20
354	Detection of sub-atomic movement in nanostructures. Nanoscale Advances, 2021, 3, 2213-2216.	2.2	0

		CITATION REPORT	
#	Article	IF	Citations
355	Impulse response function for Brownian motion. Soft Matter, 2021, 17, 5410-5426.	1.2	6
356	Self-Navigated 3D Acoustic Tweezers in Complex Media Based on Time Reversal. Research, 2021, 2021, 9781394.	2.8	28
357	Observation and Control of Unidirectional Ballistic Dynamics of Nanoparticles at a Liquid–Gas Interface by 4D Electron Microscopy. ACS Nano, 2021, 15, 6801-6810.	7.3	3
358	Inertial effects on the Brownian gyrator. Physical Review E, 2021, 103, 032148.	0.8	14
359	Shining New Light on the Kinetics of Water Uptake by Organic Aerosol Particles. Journal of Physical Chemistry A, 2021, 125, 3528-3548.	1.1	12
360	Testing the Stokes-Einstein relation with the hard-sphere fluid model. Physical Review E, 2021, 103, L030103.	0.8	10
361	Field effect control of translocation dynamics in surround-gate nanopores. Communications Materials, 2021, 2, .	2.9	14
362	Optical tweezers $\hat{a} \in $ from calibration to applications: a tutorial. Advances in Optics and Photonics, 2021, 13, 74.	12.1	127
363	Method to determine <scp>van der Waals</scp> potential energy of particle interactions for soil clay by dynamic light scattering. European Journal of Soil Science, 2021, 72, 2102-2114.	1.8	3
364	Optical-Trapping Laser Techniques for Characterizing Airborne Aerosol Particles and Its Application in Chemical Aerosol Study. Micromachines, 2021, 12, 466.	1.4	13
365	Quantum ground state cooling of translational and librational modes of an optically trapped nanoparticle coupling cavity. Quantum Engineering, 2021, 3, e62.	1.2	6
366	On a Generalization of One-Dimensional Kinetics. Mathematics, 2021, 9, 1264.	1.1	1
367	Optical trapping with structured light: a review. Advanced Photonics, 2021, 3, .	6.2	317
368	Direct measurement of thermophoretic and photophoretic force acting on hot micromotors with optical tweezers. Applied Surface Science, 2021, 549, 149319.	3.1	14
369	Evaluation of a Filtering Facepiece Respirator and a Pleated Particulate Respirator in Filtering Ultrafine Particles and Submicron Particles in Welding and Asphalt Plant Work Environments. International Journal of Environmental Research and Public Health, 2021, 18, 6437.	1.2	2
370	Towards Measuring the Maxwell–Boltzmann Distribution of a Single Heated Particle. Frontiers in Physics, 2021, 9, .	1.0	2
371	Quantum Information Processing and Precision Measurement Using a Levitated Nanodiamond. Advanced Quantum Technologies, 2021, 4, 2000154.	1.8	11
372	Quadratic optomechanical cooling of a cavity-levitated nanosphere. Physical Review Research, 2021, 3,	1.3	12

#	Article	IF	CITATIONS
373	The Effect of Sr-CoFe2O4 Nanoparticles with Different Particles Sized as Additives in CIP-Based Magnetorheological Fluid. Materials, 2021, 14, 3684.	1.3	7
374	6  GHz hyperfast rotation of an optically levitated nanoparticle in vacuum. Photonics Research, 2021, 9, 1344.	3.4	26
375	Brownian systems perturbed by mild shear: comparing response relations. Journal of Physics Condensed Matter, 2021, 33, 405101.	0.7	1
376	A Neglected Issue in Testing Particles in the Solution. Chemical Research in Chinese Universities, 2022, 38, 493-496.	1.3	1
377	Meissner Levitation of a Millimeter-Size Neodymium Magnet Within a Superconducting Radio Frequency Cavity. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-4.	1.1	7
378	Optical Trapping of Subâ ^{~,} Micrometer Particles with Fiber Tapers Fabricated by Fiber Pulling Assisted Chemical Etching. Photonics, 2021, 8, 367.	0.9	1
379	Visualization of Subatomic Movements in Nanostructures. Nano Letters, 2021, 21, 7746-7752.	4.5	3
380	Centrifugal motion of an optically levitated particle. Optics Letters, 2021, 46, 4635.	1.7	1
381	3D calibration of microsphere position in optical tweezers using the back-focal-plane interferometry method. Optics Express, 2021, 29, 32271.	1.7	2
382	Kovacs Memory Effect with an Optically Levitated Nanoparticle. Physical Review Letters, 2021, 127, 130603.	2.9	15
383	Vibrational modes in an optically levitated droplet. Optics Letters, 2021, 46, 4602.	1.7	3
384	Uncertainty-induced instantaneous speed and acceleration of a levitated particle. Scientific Reports, 2021, 11, 18185.	1.6	3
385	Feedback Control of Optically Trapped Particles. , 2012, , 141-177.		6
386	Agonist and Antagonist-Diverted Twisting Motions of a Single TRPV1 Channel. Journal of Physical Chemistry B, 2020, 124, 11617-11624.	1.2	13
387	Effect of hydrodynamic inter-particle interaction on the orbital motion of dielectric nanoparticles driven by an optical vortex. Nanoscale, 2020, 12, 6673-6690.	2.8	13
388	Fast equilibrium switch of a micro mechanical oscillator. Applied Physics Letters, 2016, 109, .	1.5	31
389	Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles. Advances in Physics: X, 2021, 6, 1838322.	1.5	15
390	Transition from fractional to classical Stokes–Einstein behaviour in simple fluids. Royal Society Open Science, 2017, 4, 170507.	1.1	23

#	Article	IF	CITATIONS
391	Long-time persistence of hydrodynamic memory boosts microparticle transport. Physical Review Research, 2019, 1, .	1.3	12
392	Stochastic action for tubes: Connecting path probabilities to measurement. Physical Review Research, 2020, 2, .	1.3	5
393	Field master equation theory of the self-excited Hawkes process. Physical Review Research, 2020, 2, .	1.3	14
394	Apparent superballistic dynamics in one-dimensional random walks with biased detachment. Physical Review Research, 2020, 2, .	1.3	10
395	Five-dimensional cooling and nonlinear dynamics of an optically levitated nanodumbbell. Physical Review Research, 2020, 2, .	1.3	39
396	All-fiber interferometer for displacement and velocity measurement of a levitated particle in fiber-optic traps. Applied Optics, 2019, 58, 2081.	0.9	6
397	Dual-laser-actuated operation of small size objects at a liquid interface. Applied Optics, 2019, 58, 5780.	0.9	3
398	Electron Spin Control of an Optically Levitated Nanodiamond in Vacuum. , 2016, , .		2
399	Polarization-dependent center-of-mass motion of an optically levitated nanosphere. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2369.	0.9	6
400	Fine features of optical potential well induced by nonlinearity. Optics Letters, 2020, 45, 6266.	1.7	4
401	Near-field coupling of a levitated nanoparticle to a photonic crystal cavity. Optica, 2018, 5, 1597.	4.8	37
402	Optical Tweezers-Assisted Cross-Correlation Analysis for a Non-intrusive Fluid Temperature Measurement in Microdomains. Japanese Journal of Applied Physics, 2012, 51, 067002.	0.8	1
403	Levitodynamics: Levitation and control of microscopic objects in vacuum. Science, 2021, 374, eabg3027.	6.0	142
404	Micromirror Total Internal Reflection Microscopy for High-Performance Single Particle Tracking at Interfaces. ACS Photonics, 2021, 8, 3111-3118.	3.2	9
405	Propulsion Mechanisms of Lightâ€Driven Plasmonic Colloidal Micromotors. Advanced Photonics Research, 2022, 3, 2100189.	1.7	10
406	Towards cooling of optically trapped aerosols. , 2011, , .		0
407	Optical trapping and cooling of glass microspheres. , 2011, , .		0
408	Towards Measurement of the Instantaneous Velocity of a Brownian Particle in Water. Springer Theses, 2013, , 59-79.	0.0	0

#	Article	IF	CITATIONS
409	Macroscopic anisotropic Brownian motion is related to the directional movement of a "Universe field― Natural Science, 2014, 06, 54-58.	0.2	0
411	Simple Fractional Operators. , 2015, , 91-120.		0
413	Effect of Aging, Disease Versus Health Conditions in the Design of Nano-communications in Blood Vessels. Modeling and Optimization in Science and Technologies, 2017, , 447-471.	0.7	1
414	Short-time Brownian motion. , 2017, , .		0
415	Optical trapping, pulling, and Raman spectroscopy of airborne absorbing particles based on negative photophoretic force. , 2017, , .		0
416	Demonstration of a Phonon Laser with a Nanosphere Levitated in an Optical Tweezer. , 2018, , .		0
417	Axial multi-particle trapping and real-time direct observation. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 138701.	0.2	0
418	Optically Levitated Torque Sensor and Ultrafast Nanomechanical Rotor. , 2018, , .		0
420	Crumpled particles of ethanol-wetted graphene oxide for medium-temperature nanofluidic solar-thermal energy harvesting. Carbon, 2022, 186, 492-500.	5.4	6
421	Higher order correlations in a levitated nanoparticle phonon laser. Optics Express, 2020, 28, 4234.	1.7	3
422	Weighing an Optically Trapped Microsphere in Thermal Equilibrium with Air. , 2020, , .		1
423	Magnetic-tip trap system. Physical Review Research, 2020, 2, .	1.3	2
425	Qualitative and quantitative approach to particle disorder. AIP Advances, 2021, 11, .	0.6	4
426	Probing modified gravity with magnetically levitated resonators. Physical Review D, 2021, 104, .	1.6	6
427	Facile Measurement of the Rotation of a Single Optically Trapped Nanoparticle Using the Diagonal Ratio of a Quadrant Photodiode. ACS Photonics, 2021, 8, 3162-3172.	3.2	2
428	Numerical Analysis of Optical Trapping Force Affected by Lens Misalignments. Photonics, 2021, 8, 548.	0.9	4
429	Random matrix description of dynamically backscattered coherent waves propagating in a wide-field-illuminated random medium. Applied Physics Letters, 2022, 120, .	1.5	6
430	Intensive Cavity-Magnomechanical Cooling of a Levitated Macromagnet. Physical Review Letters, 2022, 128, 013602.	2.9	20

#	Article	IF	CITATIONS
431	Optical trapping of nanoparticles in superfluid helium. Optica, 2022, 9, 139.	4.8	5
432	Negative rectification and anomalous diffusion in nonlinear substrate potentials: Dynamical relaxation and information entropy. Physical Review E, 2022, 105, 024204.	0.8	4
433	Nonequilibrium Control of Thermal and Mechanical Changes in a Levitated System. Physical Review Letters, 2022, 128, 070601.	2.9	14
434	Optomechanical force gradient sensing with levitated nanosphere pair. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	6
436	The Fractal Tapestry of Life: II Entailment of Fractional Oncology by Physiology Networks. Frontiers in Network Physiology, 2022, 2, .	0.8	3
437	A perfect probe: Resonance of underdamped scaled Brownian motion. Europhysics Letters, 2022, 137, 21002.	0.7	5
438	Experimental evolution of active Brownian grains driven by quantum effects in superfluid helium. Scientific Reports, 2022, 12, 6085.	1.6	12
439	Interference of the scattered vector light fields from two optically levitated nanoparticles. Optics Express, 0, , .	1.7	1
440	Silicone oil nanofluids dispersed with mesoporous crumpled graphene for medium-temperature direct absorption solar-thermal energy harvesting. Solar Energy Materials and Solar Cells, 2022, 243, 111794.	3.0	11
441	Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models. Physical Chemistry Chemical Physics, 2022, 24, 18482-18504.	1.3	23
442	Dissipation-range fluid turbulence and thermal noise. Physical Review E, 2022, 105, .	0.8	16
443	Ultrasensitive detection of local acoustic vibrations at room temperature by plasmon-enhanced single-molecule fluorescence. Nature Communications, 2022, 13, .	5.8	4
445	Manipulation force analysis of nanoparticles with ultra-high numerical aperture metalens. Optics Express, 2022, 30, 28479.	1.7	8
446	Differential displacement measurement of the levitated particle using D-shaped mirrors in the optical tweezers. Optics Express, 2022, 30, 30791.	1.7	5
447	An opto-thermal approach for rotating a trapped core–shell magnetic microparticle with patchy shell. Review of Scientific Instruments, 2022, 93, 084902.	0.6	3
448	Ballistic dynamics of flexural thermal movements in a nanomembrane revealed with subatomic resolution. Science Advances, 2022, 8, .	4.7	4
449	Casimir-force-assisted ground-state cooling and macroscopic quantum coherence. Results in Physics, 2022, 41, 105939.	2.0	0
450	Microparticle Brownian motion near an air-water interface governed by direction-dependent boundary conditions. Journal of Colloid and Interface Science, 2023, 629, 917-927.	5.0	2

#	Article	IF	Citations
451	Event-based imaging of levitated microparticles. Applied Physics Letters, 2022, 121, .	1.5	3
452	Human-Scale Brownian Ratchet: A Historical Thought Experiment. Physical Review Letters, 2022, 129, .	2.9	2
453	Magnetic-Field-Assisted Diffusion Motion of Magnetic Skyrmions. ACS Nano, 2022, 16, 15927-15934.	7.3	2
454	Challenges of Z-scheme photocatalytic mechanisms. Trends in Chemistry, 2022, 4, 973-983.	4.4	153
455	Detection Optimization of an Optically Trapped Microparticle in Vacuum with Kalman Filter. Photonics, 2022, 9, 700.	0.9	1
456	Hermitian and non-Hermitian normal-mode splitting in an optically-levitated nanoparticle. , 2022, 1, .		3
457	Estimation of the surface potential of clay mineral taking Na+/K+-specific ion effects into account. Frontiers in Materials, 0, 9, .	1.2	0
458	Long-time Tails in Quantum Brownian Motion of a charged particle in a magnetic field. Physica A: Statistical Mechanics and Its Applications, 2022, 608, 128266.	1.2	1
459	Controllable multi-trap optical tweezers based on low loss optical phase change and metalens. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 027801.	0.2	1
460	Ponderomotive force on an optically levitated sphere in an amplitude-modulated laser beam. Nonlinear Dynamics, 0, , .	2.7	0
461	MEMS Bessel Beam Acoustic Transducer (MEMS-BBAT) with Air-Cavity Lens Based on Spiral Diffraction Grating for Particle Trapping. , 2022, , .		2
462	Reducing Frost during Cryoimaging Using a Hygroscopic Ice Frame. ACS Omega, 2022, 7, 43421-43431.	1.6	0
463	Scalable optical levitation. Nature Nanotechnology, 2023, 18, 7-7.	15.6	1
464	Quantification of Intra Embryonic Motions Through Label Free and Fast Imaging Of Yolk Granules. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-8.	1.9	1
465	Geodesic path for the optimal nonequilibrium transition: Momentum-independent protocol. Physical Review E, 2023, 107, .	0.8	1
466	Rotational dynamics of indirect optical bound particle assembly under a single tightly focused laser. Optics Express, 2023, 31, 3804.	1.7	2
467	4D Ultrafast TEM. , 2023, , 327-371.		0
468	Nonlinear multi-frequency phonon lasers with active levitated optomechanics. Nature Physics, 2023, 19, 414-419.	6.5	15

#	Article	IF	CITATIONS
469	Near-infrared light-driven multifunctional metal ion (Cu2+)-loaded polydopamine nanomotors for therapeutic angiogenesis in critical limb ischemia. Nano Research, 2023, 16, 5108-5120.	5.8	3
470	Interpreting inverse correlation time: From blood flow to vascular network. Optics Communications, 2023, 534, 129334.	1.0	0
471	Brownian Motion in Optical Tweezers, a Comparison between MD Simulations and Experimental Data in the Ballistic Regime. Polymers, 2023, 15, 787.	2.0	1
472	Tunable phonon–atom interaction in a hybrid optomechanical system. Chinese Physics B, 2023, 32, 044213.	0.7	0
473	Hygroscopic growth of single atmospheric sea salt aerosol particles from mass measurement in an optical trap. Environmental Science Atmospheres, 2023, 3, 695-707.	0.9	0
474	Enhanced spin-mechanical interaction with levitated micromagnets. Physical Review A, 2023, 107, .	1.0	3
475	Flexible control of an ultrastable levitated orbital micro-gyroscope through orbital-translational coupling. Nanophotonics, 2023, 12, 1245-1253.	2.9	2
476	Mechanical analogue for cities. Royal Society Open Science, 2023, 10, .	1.1	2
477	Dynamics of prolate spheroids in the vicinity of an air–water interface. Soft Matter, 2023, 19, 2646-2653.	1.2	0
478	Optical tweezers: Theory and practice. , 2024, , 317-333.		0
480	Hot Brownian Motion. , 2023, , 133-151.		0
486	Noncontact Particle Manipulation on Water Surface with Ultrasonic Phased Array System and Microscopic Vision. , 2023, , .		0
498	Technical Background. Springer Theses, 2023, , 11-57.	0.0	0
505	Airborne particle monitoring. , 2024, , 199-218.		0