Factors Influencing the Chemical Stability of Carotenoid

Critical Reviews in Food Science and Nutrition 50, 515-532 DOI: 10.1080/10408390802565889

Citation Report

#	Article	IF	CITATIONS
1	In vitro approaches to estimate the effect of food processing on carotenoid bioavailability need thorough understanding of process induced microstructural changes. Trends in Food Science and Technology, 2010, 21, 607-618.	7.8	111
2	Light Wavelength Effects on a Lutein-Fortified Model Colloidal Beverage. Journal of Agricultural and Food Chemistry, 2011, 59, 7203-7210.	2.4	17
3	Direct Observation of the \hat{l}^2 -Carotene Reaction with Hydroxyl Radical. Journal of Physical Chemistry B, 2011, 115, 2082-2089.	1.2	46
4	Nutritional biomarkers and foodomic methodologies for qualitative and quantitative analysis of bioactive ingredients in dietary intervention studies. Journal of Chromatography A, 2011, 1218, 7399-7414.	1.8	50
5	Minor Components in Food Oils: A Critical Review of their Roles on Lipid Oxidation Chemistry in Bulk Oils and Emulsions. Critical Reviews in Food Science and Nutrition, 2011, 51, 901-916.	5.4	166
6	Effect of different antioxidants on lycopene degradation in oilâ€inâ€water emulsions. European Journal of Lipid Science and Technology, 2011, 113, 724-729.	1.0	46
7	Scientific Opinion on the reâ€evaluation of mixed carotenes (E 160a (i)) and beta arotene (E 160a (ii)) as a food additive. EFSA Journal, 2012, 10, 2593.	0.9	44
8	Nanoemulsion delivery systems: Influence of carrier oil on β-carotene bioaccessibility. Food Chemistry, 2012, 135, 1440-1447.	4.2	472
9	Stability of Carotenoids, Total Phenolics and In Vitro Antioxidant Capacity in the Thermal Processing of Orange-Fleshed Sweet Potato (Ipomoea batatas Lam.) Cultivars Grown in Brazil. Plant Foods for Human Nutrition, 2012, 67, 262-270.	1.4	58
10	Voltammetric determination of β-carotene in raw vegetables and berries in Triton X100 media. Talanta, 2012, 99, 1024-1029.	2.9	24
11	Comparative study of β-carotene and microencapsulated β-carotene: Evaluation of their genotoxic and antigenotoxic effects. Food and Chemical Toxicology, 2012, 50, 1418-1424.	1.8	28
12	Inhibition of Î ² -carotene degradation in oil-in-water nanoemulsions: Influence of oil-soluble and water-soluble antioxidants. Food Chemistry, 2012, 135, 1036-1043.	4.2	139
13	Reversed Phase HPLC Analysis of Stability and Microstructural Effects on Degradation Kinetics of β-Carotene Encapsulated in Freeze-Dried Maltodextrin–Emulsion Systems. Journal of Agricultural and Food Chemistry, 2012, 60, 9711-9718.	2.4	16
14	Carrot β-Carotene Degradation and Isomerization Kinetics during Thermal Processing in the Presence of Oil. Journal of Agricultural and Food Chemistry, 2012, 60, 10312-10319.	2.4	86
15	Effects of physicochemical properties of carotenoids on their bioaccessibility, intestinal cell uptake, and blood and tissue concentrations. Molecular Nutrition and Food Research, 2012, 56, 1385-1397.	1.5	124
16	Crystals and crystallization in oil-in-water emulsions: Implications for emulsion-based delivery systems. Advances in Colloid and Interface Science, 2012, 174, 1-30.	7.0	268
17	Effect of chitosan molecular weight on the stability and rheological properties of β-carotene emulsions stabilized by soybean soluble polysaccharides. Food Hydrocolloids, 2012, 26, 205-211.	5.6	81
19	Egg Yolk Carotenoids: Composition, Analysis, and Effects of Processing on Their Stability. ACS Symposium Series, 2013, , 219-225.	0.5	5

#	Article	IF	CITATIONS
20	Nanoemulsion-based oral delivery systems for lipophilic bioactive components: nutraceuticals and pharmaceuticals. Therapeutic Delivery, 2013, 4, 841-857.	1.2	94
21	Iron-induced oxidation of (all-E)-β-carotene under model gastric conditions: kinetics, products, and mechanism. Free Radical Biology and Medicine, 2013, 63, 195-206.	1.3	26
22	Modeling Lycopene Degradation and Isomerization in the Presence of Lipids. Food and Bioprocess Technology, 2013, 6, 909-918.	2.6	28
23	Influence of pH, metal chelator, free radical scavenger and interfacial characteristics on the oxidative stability of β-carotene in conjugated whey protein–pectin stabilised emulsion. Food Chemistry, 2013, 139, 1098-1104.	4.2	37
24	Effects of Storage Temperature, Atmosphere and Light on Chemical Stability of Astaxanthin Nanodispersions. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 1223-1227.	0.8	24
25	Nutraceutical nanoemulsions: influence of carrier oil composition (digestible <i>versus</i>) Tj ETQq1 1 0.784314 2013, 93, 3175-3183.	rgBT /Ove 1.7	rlock 10 Tf 105
26	Modulating \hat{l}^2 -carotene bioaccessibility by controlling oil composition and concentration in edible nanoemulsions. Food Chemistry, 2013, 139, 878-884.	4.2	197
27	Design of Foods with Bioactive Lipids for Improved Health. Annual Review of Food Science and Technology, 2013, 4, 35-56.	5.1	91
28	Influence of particle size on lipid digestion and \hat{l}^2 -carotene bioaccessibility in emulsions and nanoemulsions. Food Chemistry, 2013, 141, 1472-1480.	4.2	489
29	Effect of relative humidity on the store stability of spray-dried beta-carotene nanoemulsions. Food Hydrocolloids, 2013, 33, 225-233.	5.6	96
30	Chemical stability of astaxanthin nanodispersions in orange juice and skimmed milk as model food systems. Food Chemistry, 2013, 139, 527-531.	4.2	71
31	Future directions of <i>μ</i> SR—laser excitation. Physica Scripta, 2013, 88, 068511.	1.2	11
32	Production and stability of waterâ€dispersible astaxanthin oleoresin from <i>Phaffia rhodozyma</i> . International Journal of Food Science and Technology, 2013, 48, 1243-1251.	1.3	32
33	Characterization and shelf life of β-carotene loaded solid lipid microparticles produced with stearic acid and sunflower oil. Brazilian Archives of Biology and Technology, 2013, 56, 663-671.	0.5	28
34	Anticholinesterase and Antioxidant Activities of Fucoxanthin Purified from the Microalga <i>Phaeodactylum Tricornutum</i> . Natural Product Communications, 2013, 8, 1934578X1300801.	0.2	32
35	Effect of Vacuum Frying on Changes in Quality Attributes of Jackfruit (<i>Artocarpus) Tj ETQq1 1 0.784314 rgBT /</i>	Overlock	10 Tf 50 14
36	Fermentation of Plant Material – Effect on Sugar Content and Stability of Bioactive Compounds. Polish Journal of Food and Nutrition Sciences, 2014, 64, 235-241.	0.6	14
37	Concentrating Immunoprotective Phytoactive Compounds from Fruits and Vegetables into Shelf-stable Protein-rich Ingredients. Plant Foods for Human Nutrition, 2014, 69, 317-324.	1.4	12

#	Article	IF	CITATIONS
38	Stability of Carotenoids in <i>Russula alutacea </i> Fr. Extraction. Advanced Materials Research, 0, 962-965, 1239-1243.	0.3	3
39	Beverage emulsions: Recent developments in formulation, production, and applications. Food Hydrocolloids, 2014, 42, 5-41.	5.6	305
40	Development of water-soluble Î ² -carotene formulations by high-temperature, high-pressure emulsification and antisolvent precipitation. Food Hydrocolloids, 2014, 37, 14-24.	5.6	42
41	Heat and light colour stability of beverages coloured with a natural carotene emulsion: Effect of synthetic versus natural water soluble antioxidants. Food Research International, 2014, 65, 149-155.	2.9	19
42	Analysis of Palmitoyl Apo-astaxanthinals, Apo-astaxanthinones, and their Epoxides by UHPLC-PDA-ESI-MS. Journal of Agricultural and Food Chemistry, 2014, 62, 10254-10263.	2.4	15
43	Elaboration and characterization of barley protein nanoparticles as an oral delivery system for lipophilic bioactive compounds. Food and Function, 2014, 5, 92-101.	2.1	50
44	Structure–response relationship of carotenoid bioaccessibility and antioxidant activity as affected by the hydroxylation and cyclization of their terminal end groups. Food Research International, 2014, 66, 107-114.	2.9	8
45	Nanotechnology for increased micronutrient bioavailability. Trends in Food Science and Technology, 2014, 40, 168-182.	7.8	193
46	EDTA and αâ€ŧocopherol improve the chemical stability of astaxanthin loaded into nanostructured lipid carriers. European Journal of Lipid Science and Technology, 2014, 116, 968-977.	1.0	41
47	Cellular Uptake of β-Carotene from Protein Stabilized Solid Lipid Nanoparticles Prepared by Homogenization–Evaporation Method. Journal of Agricultural and Food Chemistry, 2014, 62, 1096-1104.	2.4	100
48	Design and characterization of astaxanthin-loaded nanostructured lipid carriers. Innovative Food Science and Emerging Technologies, 2014, 26, 366-374.	2.7	132
49	Effects of antioxidants on the stability of β-Carotene in O/W emulsions stabilized by Gum Arabic. Journal of Food Science and Technology, 2015, 52, 3300-11.	1.4	31
50	Investigation into the inÂvitro release properties of β-carotene in emulsions stabilized by different emulsifiers. LWT - Food Science and Technology, 2014, 59, 867-873.	2.5	44
51	Damage to intact fruit affects quality of slices from ripened tomatoes. LWT - Food Science and Technology, 2014, 59, 327-334.	2.5	16
52	Active Ingredients. , 2014, , 37-78.		0
53	Emulsion-Based Delivery Systems. , 2014, , 218-291.		0
54	Background and Context. , 2014, , 1-36.		0
55	Surfactant-Based Delivery Systems. , 2014, , 176-217.		0

#	ARTICLE	IF	CITATIONS
56	Stability, and Bioavailability. Journal of Food Science, 2015, 80, N1602-11.	1.5	239
57	Scientific Opinion on the reâ€evaluation of paprika extract (E 160c) as a food additive. EFSA Journal, 2015, 13, 4320.	0.9	12
59	The Effect of Various Antioxidants on the Degradation of O/W Microemulsions Containing Esterified Astaxanthins from <i>Haematococcus pluvialis</i> . Journal of Oleo Science, 2015, 64, 515-525.	0.6	22
60	Beta ryptoxanthin as a source of vitamin A. Journal of the Science of Food and Agriculture, 2015, 95, 1786-1794.	1.7	84
61	Influence of the moisture at harvest and drying process of the grains on the level of carotenoids in maize (Zea mays). Food Science and Technology, 2015, 35, 481-486.	0.8	7
62	α-Carotene and β-Carotene Content in Raw and Cooked Pulp of Three Mature Stage Winter Squash "Type Butternut― Foods, 2015, 4, 477-486.	1.9	15
63	Blue-Violet Light Irradiation Dose Dependently Decreases Carotenoids in Human Skin, Which Indicates the Generation of Free Radicals. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-7.	1.9	75
64	Effect of kumquat (<i>Fortunella crassifolia</i>) pericarp on natural killer cell activity <i>in vitro</i> and <i>in vivo</i> . Bioscience, Biotechnology and Biochemistry, 2015, 79, 1327-1336.	0.6	16
65	Chemistry, encapsulation, and health benefits of β-carotene - A review. Cogent Food and Agriculture, 2015, 1, 1018696.	0.6	147
66	Encapsulation and Stability Study of Monascus Fermented Rice Extract. Procedia Chemistry, 2015, 17, 189-193.	0.7	6
67	Beta-Carotene Chemical Stability in Nanoemulsions Was Improved by Stabilized with Beta-Lactoglobulin–Catechin Conjugates through Free Radical Method. Journal of Agricultural and Food Chemistry, 2015, 63, 297-303.	2.4	82
68	β-Carotene Ameliorates Arsenic-Induced Toxicity in Albino Mice. Biological Trace Element Research, 2015, 164, 226-233.	1.9	20
69	Evaluation of structural and functional properties of protein–EGCG complexes and their ability of stabilizing a model β-carotene emulsion. Food Hydrocolloids, 2015, 45, 337-350.	5.6	195
70	The Nutraceutical Bioavailability Classification Scheme: Classifying Nutraceuticals According to Factors Limiting their Oral Bioavailability. Annual Review of Food Science and Technology, 2015, 6, 299-327.	5.1	227
71	An industry perspective on natural food colour stability. , 2015, , 91-130.		34
72	Development, properties, and stability of antioxidant shrimp muscle protein films incorporating carotenoid-containing extracts from food by-products. LWT - Food Science and Technology, 2015, 64, 189-196.	2.5	34
73	Stability of bacterial carotenoids in the presence of iron in a model of the gastric compartment – Comparison with dietary reference carotenoids. Archives of Biochemistry and Biophysics, 2015, 572, 89-100.	1.4	19
74	Emulsões múltiplas: formação e aplicação em microencapsulamento de componentes bioativos. Ciencia Rural, 2015, 45, 155-162.	0.3	10

#	Article	IF	CITATIONS
75	Analytical tools for the analysis of Î ² -carotene and its degradation products. Free Radical Research, 2015, 49, 650-680.	1.5	41
76	Response surface methodology toward the optimization of high-energy carotenoid extraction from Aristeus antennatus shrimp. Analytica Chimica Acta, 2015, 877, 100-110.	2.6	47
77	Pigments for Aquaculture of Salmonids. A Comparative Model Study of Carophyll Pink and Panaferd AX in Cod Liver Oil. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 1321-1331.	0.8	2
78	Effects of blanching and drying on pigments and antioxidants of daraesoon (shoot of the Siberian) Tj ETQq1 1 0	.784314 r 1.2	gBŢ/Overloc
79	Influence of anionic alginate and cationic chitosan on physicochemical stability and carotenoids bioaccessibility of soy protein isolate-stabilized emulsions. Food Research International, 2015, 77, 419-425.	2.9	68
80	Physical Stability, Autoxidation, and Photosensitized Oxidation of ω-3 Oils in Nanoemulsions Prepared with Natural and Synthetic Surfactants. Journal of Agricultural and Food Chemistry, 2015, 63, 9333-9340.	2.4	98
81	Comparative Thermal Degradation Patterns of Natural Yellow Colorants Used in Foods. Plant Foods for Human Nutrition, 2015, 70, 380-387.	1.4	38
82	Intestine-Specific Delivery of Hydrophobic Bioactives from Oxidized Starch Microspheres with an Enhanced Stability. Journal of Agricultural and Food Chemistry, 2015, 63, 8669-8675.	2.4	57
83	An improved high performance liquid chromatography method for the separation of carotenoids extracted from Phaffia rhodozyma. Journal of Analytical Chemistry, 2015, 70, 1512-1520.	0.4	1
84	Carotenoid transfer to oil upon high pressure homogenisation of tomato and carrot based matrices. Journal of Functional Foods, 2015, 19, 775-785.	1.6	26
85	Retention of Provitamin A Carotenoids in Staple Crops Targeted for Biofortification in Africa: Cassava, Maize and Sweet Potato. Critical Reviews in Food Science and Nutrition, 2015, 55, 1246-1269.	5.4	127
86	Absorption of whey protein isolated (WPI)-stabilized β-Carotene emulsions by oppositely charged oxidized starch microgels. Food Research International, 2015, 67, 315-322.	2.9	38
87	Thermal and UV stability of β-carotene dissolved in peppermint oil microemulsified by sunflower lecithin and Tween 20 blend. Food Chemistry, 2015, 174, 630-636.	4.2	66
88	Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: analysis and stability—a review. Journal of Food Science and Technology, 2015, 52, 1258-1271.	1.4	162
89	Beta-carotene encapsulated in food protein nanoparticles reduces peroxyl radical oxidation in Caco-2 cells. Food Hydrocolloids, 2015, 43, 31-40.	5.6	215
90	Preliminary UHPLC–PDA–ESI-MS screening of light-accelerated autoxidation products of the tetrapyrrole biliverdin. Food Chemistry, 2015, 173, 624-628.	4.2	10
91	Spectroscopic studies of neutral and chemically oxidized species of \hat{l}^2 -carotene, lycopene and norbixin in CH2Cl2: Fluorescence from intermediate compounds. Journal of Luminescence, 2015, 158, 60-64.	1.5	15
92	Effect of layer (calcium phosphate–chitosan)-by-layer (mesquite gum) matrix on carotenoids-in-water-emulsion properties. Food Hydrocolloids, 2015, 43, 451-458.	5.6	19

#	Article	IF	CITATIONS
93	Bioaccessibility assessment methodologies and their consequences for the risk–benefit evaluation of food. Trends in Food Science and Technology, 2015, 41, 5-23.	7.8	144
94	Methods of Analysis (Extraction, Separation, Identification and Quantification) of Carotenoids from Natural Products. Journal of Ecosystem & Ecography, 2016, 6, .	0.2	78
95	The Effect of Lycopene Preexposure on UV-B-Irradiated Human Keratinocytes. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-15.	1.9	42
96	Food Color and Coloring Food. , 2016, , 3-27.		21
97	Nanoemulsions as potential delivery systems for bioactive compounds in food systems: preparation, characterization, and applications in food industry. , 2016, , 365-403.		21
98	Effect of extraction method and ripening stage on banana peel pigments. International Journal of Food Science and Technology, 2016, 51, 1449-1456.	1.3	26
99	Evolution of long-term coloration trends with biochemically unstable ingredients. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160403.	1.2	12
100	Carotenoid composition and antioxidant activity of tortillas elaborated from pigmented maize landrace by traditional nixtamalization or lime cooking extrusion process. Journal of Cereal Science, 2016, 69, 64-70.	1.8	27
101	Physicochemical properties of β-carotene emulsions stabilized by chitosan–chlorogenic acid complexes. LWT - Food Science and Technology, 2016, 71, 295-301.	2.5	37
102	Amorphous–amorphous phase separation in hydrophobically-modified starch–sucrose blends I. Phase behavior and thermodynamic characterization. Food Hydrocolloids, 2016, 58, 75-88.	5.6	21
103	Role of continuous phase protein, (â^')-epigallocatechin-3-gallate and carrier oil on β-carotene degradation in oil-in-water emulsions. Food Chemistry, 2016, 210, 242-248.	4.2	23
104	Natural emulsifiers — Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance. Advances in Colloid and Interface Science, 2016, 234, 3-26.	7.0	676
105	Irradiance and Temperature Influence the Bactericidal Effect of 460-Nanometer Light-Emitting Diodes on Salmonella in Orange Juice. Journal of Food Protection, 2016, 79, 553-560.	0.8	49
107	The "Carmine Problem―and Potential Alternatives. , 2016, , 385-428.		17
108	Concentration and purification of lycopene from watermelon juice by integrated microfiltration-based processes. Innovative Food Science and Emerging Technologies, 2016, 37, 153-160.	2.7	23
109	Effects of blanching, acidification, or addition of EDTA on vitamin C and <i>β </i> â€carotene stability during mango pur©e preparation. Food Science and Nutrition, 2016, 4, 706-715.	1.5	15
110	Effect of storage on oxidative quality and stability of extruded astaxanthin-coated fish feed pellets. Animal Feed Science and Technology, 2016, 221, 157-166.	1.1	11
111	Elevated vitamin E content improves all- <i>trans</i> β-carotene accumulation and stability in biofortified sorghum. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11040-11045.	3.3	92

#	Article	IF	CITATIONS
112	Physical and oxidation stability of self-emulsifying krill oil-in-water emulsions. Food and Function, 2016, 7, 3590-3598.	2.1	18
113	A fast and sensitive method for the separation of carotenoids using ultra-high performance supercritical fluid chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 5883-5894.	1.9	49
114	Development of polyphenol-protein-polysaccharide ternary complexes as emulsifiers for nutraceutical emulsions: Impact on formation, stability, and bioaccessibility of β-carotene emulsions. Food Hydrocolloids, 2016, 61, 578-588.	5.6	161
115	The potential of zein nanoparticles to protect entrapped β-carotene in the presence of milk under simulated gastrointestinal (GI) conditions. LWT - Food Science and Technology, 2016, 72, 302-309.	2.5	48
116	Development of multilayer corn starchâ€based food packaging structures containing βâ€carotene by means of the electroâ€hydrodynamic processing. Starch/Staerke, 2016, 68, 603-610.	1.1	19
117	Identification of lineâ€specific strategies for improving carotenoid production in synthetic maize through dataâ€driven mathematical modeling. Plant Journal, 2016, 87, 455-471.	2.8	9
118	Suitability of Different Food Grade Materials for the Encapsulation of Some Functional Foods Well Reported for Their Advantages and Susceptibility. Critical Reviews in Food Science and Nutrition, 2016, 56, 2431-2454.	5.4	66
119	Characterization of milk proteins–lutein complexes and the impact on lutein chemical stability. Food Chemistry, 2016, 200, 91-97.	4.2	80
120	Lutein-enriched emulsion-based delivery systems: Impact of Maillard conjugation on physicochemical stability and gastrointestinal fate. Food Hydrocolloids, 2016, 60, 38-49.	5.6	101
121	Intensified green production of astaxanthin from Haematococcus pluvialis. Food and Bioproducts Processing, 2016, 99, 1-11.	1.8	47
122	Thermal Degradation and Isomerization of β-Carotene in Oil-in-Water Nanoemulsions Supplemented with Natural Antioxidants. Journal of Agricultural and Food Chemistry, 2016, 64, 1970-1976.	2.4	38
123	Astaxanthin degradation and lipid oxidation of Pacific white shrimp oil: kinetics study and stability as affected by storage conditions. International Aquatic Research, 2016, 8, 15-27.	1.5	28
124	Near-Infrared (NIR) Spectroscopy for Rapid Measurement of Antioxidant Properties and Discrimination of Sudanese Honeys from Different Botanical Origin. Food Analytical Methods, 2016, 9, 2631-2641.	1.3	31
125	High carotenoid bioaccessibility through linseed oil nanoemulsions with enhanced physical and oxidative stability. Food Chemistry, 2016, 199, 463-470.	4.2	112
126	Absorption, metabolism, and functions of \hat{I}^2 -cryptoxanthin. Nutrition Reviews, 2016, 74, 69-82.	2.6	134
127	Physicochemical properties of β-carotene bilayer emulsions coated by milk proteins and chitosan–EGCG conjugates. Food Hydrocolloids, 2016, 52, 590-599.	5.6	79
128	Lutein-enriched emulsion-based delivery systems: Influence of pH and temperature on physical and chemical stability. Food Chemistry, 2016, 196, 821-827.	4.2	86
129	Fatty acids attached to all-trans-astaxanthin alter its cis–trans equilibrium, and consequently its stability, upon light-accelerated autoxidation. Food Chemistry, 2016, 194, 1108-1115.	4.2	31

#	Article	IF	CITATIONS
130	Characterization of binary and ternary mixtures of green, white and black tea extracts by electrospray ionization mass spectrometry and modeling of their inÂvitro antibacterial activity. LWT - Food Science and Technology, 2016, 65, 414-420.	2.5	23
131	Eugenol improves physical and chemical stabilities of nanoemulsions loaded with β-carotene. Food Chemistry, 2016, 194, 787-796.	4.2	67
132	Carotene Degradation and Isomerization during Thermal Processing: A Review on the Kinetic Aspects. Critical Reviews in Food Science and Nutrition, 2016, 56, 1844-1855.	5.4	40
133	Standardization of Nanoparticle Characterization: Methods for Testing Properties, Stability, and Functionality of Edible Nanoparticles. Critical Reviews in Food Science and Nutrition, 2016, 56, 1334-1362.	5.4	55
134	Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Critical Reviews in Food Science and Nutrition, 2017, 57, 3243-3259.	5.4	157
135	The Influence of Maltodextrin on the Physicochemical Properties and Stabilization of Beta-carotene Emulsions. AAPS PharmSciTech, 2017, 18, 821-828.	1.5	13
136	Optimization of Ultrasoundâ€Assisted Extraction of β arotene from <i>Chlorella</i> Biomass (MCC7) and its Use in Fortification of Apple Jam. Journal of Food Process Engineering, 2017, 40, e12321.	1.5	4
137	Hostâ€related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. Molecular Nutrition and Food Research, 2017, 61, 1600685.	1.5	180
138	Effects of pretreatments and air drying temperatures on the carotenoid composition and antioxidant capacity of dried gacÂpeel. Journal of Food Processing and Preservation, 2017, 41, e13226.	0.9	16
139	Does kappa-carrageenan thermoreversible gelation affect β-carotene oxidative degradation and bioaccessibility in o/w emulsions?. Carbohydrate Polymers, 2017, 167, 259-269.	5.1	9
140	Protection of β-carotene from chemical degradation in emulsion-based delivery systems using antioxidant interfacial complexes: Catechin-egg white protein conjugates. Food Research International, 2017, 96, 84-93.	2.9	83
141	Home cooking and ingredient synergism improve lycopene isomer production in Sofrito. Food Research International, 2017, 99, 851-861.	2.9	41
142	Encapsulation of Betaâ€carotene in Lipid Microparticles Stabilized with Hydrolyzed Soy Protein Isolate: Production Parameters, Alphaâ€tocopherol Coencapsulation and Stability Under Stress Conditions. Journal of Food Science, 2017, 82, 659-669.	1.5	30
143	Utilisation of spontaneous emulsification to fabricate luteinâ€loaded nanoemulsionâ€based delivery systems: factors influencing particle size and colour. International Journal of Food Science and Technology, 2017, 52, 1408-1416.	1.3	33
144	Hen egg carotenoids (lutein and zeaxanthin) and nutritional impacts on human health: a review. CYTA - Journal of Food, 2017, 15, 474-487.	0.9	45
145	Phytochemicals content and antioxidant properties of sea buckthorn (Hippophae rhamnoides L.) as affected by heat treatment – Quantitative spectroscopic and kinetic approaches. Food Chemistry, 2017, 233, 442-449.	4.2	49
146	Impact of storage on phytochemicals and milk proteins in peach yoghurt. Journal of Food Measurement and Characterization, 2017, 11, 1804-1814.	1.6	5
148	Influence of mandarin fiber addition on physico-chemical properties of nanoemulsions containing β-carotene under simulated gastrointestinal digestion conditions. LWT - Food Science and Technology, 2017, 84, 331-337.	2.5	25

#	Article	IF	CITATIONS
149	Nanoemulsions as edible coatings. Current Opinion in Food Science, 2017, 15, 43-49.	4.1	69
150	A novel spiral-filter press for tomato processing: process impact on phenolic compounds, carotenoids and ascorbic acid content. Journal of Food Engineering, 2017, 213, 27-37.	2.7	11
151	Effects of Vacuum Impregnation with Calcium Lactate and Pectin Methylesterase on Quality Attributes and Chelate-Soluble Pectin Morphology of Fresh-Cut Papayas. Food and Bioprocess Technology, 2017, 10, 901-913.	2.6	59
152	Lutein-loaded lipid-core nanocapsules: Physicochemical characterization and stability evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 477-484.	2.3	35
153	Chemical Stability and in vitro release properties of β-carotene in emulsions stabilized by Ulva fasciata polysaccharide. International Journal of Biological Macromolecules, 2017, 102, 225-231.	3.6	33
154	Carotenoids stability in spray dried high solids emulsions using layer-by-layer (LBL) interfacial structure and trehalose-high DE maltodextrin as glass former. Journal of Functional Foods, 2017, 33, 32-39.	1.6	20
155	The influence of flaxseed gum on the microrheological properties and physicochemical stability of whey protein stabilized Î ² -carotene emulsions. Food and Function, 2017, 8, 415-423.	2.1	50
156	In vitro studies to evaluate the wound healing properties of Calendula officinalis extracts. Journal of Ethnopharmacology, 2017, 196, 94-103.	2.0	98
157	Supercritical carbon dioxide extraction of β-carotene and α-tocopherol from pumpkin: a Box–Behnken design for extraction variables. Analytical Methods, 2017, 9, 294-303.	1.3	35
158	Applicability of in silico genotoxicity models on food and feed ingredients. Regulatory Toxicology and Pharmacology, 2017, 90, 277-288.	1.3	1
159	Towards Fingermark Dating: A Raman Spectroscopy Proofâ€ofâ€Concept Study. ChemistryOpen, 2017, 6, 706-709.	0.9	23
160	Stability and partitioning of β-carotene in whey protein emulsions during storage. Food and Function, 2017, 8, 3917-3925.	2.1	10
161	The effect of low-fat beef patties formulated with a low-energy fat analogue enriched in long-chain polyunsaturated fatty acids on lipid oxidation and sensory attributes. Meat Science, 2017, 134, 7-13.	2.7	47
162	Amylosucraseâ€mediated βâ€carotene encapsulation in amylose microparticles. Biotechnology Progress, 2017, 33, 1640-1646.	1.3	24
163	Natural antioxidants as stabilizers for polymers. Polymer Degradation and Stability, 2017, 145, 25-40.	2.7	135
164	Development of β-Carotene-Loaded Organogel-Based Nanoemulsion with Improved <i>In Vitro</i> and <i>In Vivo</i> Bioaccessibility. Journal of Agricultural and Food Chemistry, 2017, 65, 6188-6194.	2.4	48
165	Effect of 460Ânm light emitting diode illumination on survival of Salmonella spp. on fresh-cut pineapples at different irradiances and temperatures. Journal of Food Engineering, 2017, 196, 130-138.	2.7	63
166	Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 170, 234-241.	2.0	32

#	Article	IF	CITATIONS
167	Controlling the potential gastrointestinal fate of β-carotene emulsions using interfacial engineering: Impact of coating lipid droplets with polyphenol-protein-carbohydrate conjugate. Food Chemistry, 2017, 221, 395-403.	4.2	91
168	Fabrication of β-carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability. Journal of Colloid and Interface Science, 2017, 490, 328-335.	5.0	92
169	Applications of computational chemistry to the study of the antiradical activity of carotenoids: A review. Food Chemistry, 2017, 217, 37-44.	4.2	37
170	Modulation of chemical stability and in vitro bioaccessibility of beta-carotene loaded in kappa-carrageenan oil-in-gel emulsions. Food Chemistry, 2017, 220, 208-218.	4.2	51
171	Kinetic stability and cellular uptake of lutein in WPI-stabilised nanoemulsions and emulsions prepared by emulsification and solvent evaporation method. Food Chemistry, 2017, 221, 1269-1276.	4.2	60
172	Chemical stability of astaxanthin integrated into a food matrix: Effects of food processing and methods for preservation. Food Chemistry, 2017, 225, 23-30.	4.2	95
173	Antioxidants Against Environmental Factor-Induced Oxidative Stress. , 2017, , 189-215.		4
175	Stability of Commercially Available Macular Carotenoid Supplements in Oil and Powder Formulations. Nutrients, 2017, 9, 1133.	1.7	11
177	Photodamage and photoprotection: toward safety and sustainability through nanotechnology solutions. , 2017, , 527-565.		5
178	Formulations and challenges: a special emphasis on stability and safety evaluations. , 2017, , 149-159.		0
179	Enhanced Antioxidant Activity of Capsicum annuum L. and Moringa oleifera L. Extracts after Encapsulation in Microemulsions. ChemEngineering, 2017, 1, 15.	1.0	12
180	Effect of Air Cooling and Vacuum Cooling Storage on the Î ² -Carotene Content and Proximate Analysis (Water Content, pH, Total Protein and Content of Sugar) in Carrot. IOP Conference Series: Materials Science and Engineering, 2017, 193, 012045.	0.3	1
181	A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Critical Reviews in Food Science and Nutrition, 2018, 58, 1-36.	5.4	174
182	Physical Properties, Carotenoids and Antioxidant Capacity of Carrot (<i>Daucus carota</i> L.) Peel as Influenced by Different Drying Treatments. International Journal of Food Engineering, 2018, 14, .	0.7	5
183	Design of alternate solvent for recovery of residual palm oil: simultaneous optimization of process performance with environmental, health and safety aspects. Clean Technologies and Environmental Policy, 2018, 20, 949-968.	2.1	5
184	Effect of alginate coating on the physico-chemical and microbial quality of pansies (ViolaÂ×Awittrockiana) during storage. Food Science and Biotechnology, 2018, 27, 987-996.	1.2	15
185	Synthetic 9-cis-beta-carotene inhibits photoreceptor degeneration in cultures of eye cups from rpe65rd12 mouse model of retinoid cycle defect. Scientific Reports, 2018, 8, 6130.	1.6	17
186	Characterization of tocopherols, tocotrienols and total carotenoids in deep-fat fried French fries. Journal of Food Composition and Analysis, 2018, 69, 78-86.	1.9	15

#	Article	IF	CITATIONS
187	Storage stability of egg sticks fortified with omegaâ€3 fatty acids. Journal of the Science of Food and Agriculture, 2018, 98, 3452-3461.	1.7	10
188	Storage in Polyethylene Terephthalate Bottles. , 2018, , 621-635.		4
189	Astaxanthin from Phaffia rhodozyma: Microencapsulation with carboxymethyl cellulose sodium and microcrystalline cellulose and effects of microencapsulated astaxanthin on yogurt properties. LWT - Food Science and Technology, 2018, 96, 152-160.	2.5	39
190	Structure, physicochemical stability and inÂvitro simulated gastrointestinal digestion properties of β-carotene loaded zein-propylene glycol alginate composite nanoparticles fabricated by emulsification-evaporation method. Food Hydrocolloids, 2018, 81, 149-158.	5.6	158
191	Evaluation of the physicochemical stability and digestibility of microencapsulated esterified astaxanthins using in vitro and in vivo models. Food Chemistry, 2018, 260, 73-81.	4.2	45
192	Geographical discrimination of palm oils (<i>Elaeis guineensis</i>) using quality characteristics and <scp>UV</scp> â€visible spectroscopy. Food Science and Nutrition, 2018, 6, 773-782.	1.5	13
193	Characterisation of β-carotene partitioning in protein emulsions: Effects of pre-treatments, solid fat content and emulsifier type. Food Chemistry, 2018, 257, 361-367.	4.2	16
194	Emulsion design for the delivery of β-carotene in complex food systems. Critical Reviews in Food Science and Nutrition, 2018, 58, 770-784.	5.4	85
195	Astaxanthin as feed supplement in aquatic animals. Reviews in Aquaculture, 2018, 10, 738-773.	4.6	249
196	Encapsulation of carotenoids extracted from halophilic Archaea in oil-in-water (O/W) micro- and nano-emulsions. Colloids and Surfaces B: Biointerfaces, 2018, 161, 219-227.	2.5	62
197	Lutein-enriched emulsion-based delivery systems: Influence of emulsifiers and antioxidants on physical and chemical stability. Food Chemistry, 2018, 242, 395-403.	4.2	96
198	Encapsulation of β-carotene-loaded oil droplets in caseinate/alginate microparticles: Enhancement of carotenoid stability and bioaccessibility. Journal of Functional Foods, 2018, 40, 527-535.	1.6	111
199	Complexes of lutein with bovine and caprine caseins and their impact on lutein chemical stability in emulsion systems: Effect of arabinogalactan. Journal of Dairy Science, 2018, 101, 18-27.	1.4	38
200	Impact of Temperature Cycling and Isothermal Storage on the Quality of Acidic and Neutral Shelf-Stable Dairy Desserts Packaged in Flexible Pouches. Food and Bioprocess Technology, 2018, 11, 380-398.	2.6	3
201	Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MS. Food Chemistry, 2018, 245, 508-517.	4.2	77
202	Micro- and nano-scaled materials for strategy-based applications in innovative livestock products: A review. Trends in Food Science and Technology, 2018, 71, 25-35.	7.8	26
203	Delivery by Design (DbD): A Standardized Approach to the Development of Efficacious Nanoparticle―and Microparticleâ€Based Delivery Systems. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 200-219.	5.9	85
204	Physicochemical stability, antioxidant properties and bioaccessibility of β-carotene in orange oil-in-water beverage emulsions: influence of carrier oil types. Food and Function, 2018, 9, 320-330.	2.1	32

IF ARTICLE CITATIONS # Vegetable relishes, high in \hat{l}^2 -carotene, increase the iron, zinc and \hat{l}^2 -carotene nutritive values from 205 1.39 cereal porridges. International Journal of Food Sciences and Nutrition, 2018, 69, 291-297. The Effect of Substances of Plant Origin on the Thermal and Thermo-Oxidative Ageing of Aliphatic Polyesters (PLA, PHA). Polymers, 2018, 10, 1252. Stability application and research of astaxanthin integrated into food. IOP Conference Series: 207 0.3 12 Materials Science and Engineering, 2018, 394, 022007. Combination of alginate coating and repetitive pulsed light for shelf life extension of fresh-cut cantaloupe (<i>Cucumis melo</i>L. <i>reticulatus</i> cv. Glamour). Journal of Food Processing and Preservation, 2018, 42, e13786.

CITATION REPORT

209 Consumption of carotenoids not increased by bacterial infection in brown trout embryos (Salmo) Tj ETQq0 0 0 rgBI /Overlock 10 Tf 50

210	Comparing Characteristics of Root, Flour and Starch of Biofortified Yellow-Flesh and White-Flesh Cassava Variants, and Sustainability Considerations: A Review. Sustainability, 2018, 10, 3089.	1.6	59
211	Preparation optimisation and storage stability of nanoemulsion-based lutein delivery systems. Journal of Microencapsulation, 2018, 35, 570-583.	1.2	19
212	Encapsulation of β-carotene extracted from peach palm residues: a stability study using two spray-dried processes. DYNA (Colombia), 2018, 85, 128-134.	0.2	6
213	Encapsulation systems for lutein: A review. Trends in Food Science and Technology, 2018, 82, 71-81.	7.8	110
214	Entrapment of β-carotene and zinc in whey protein nanoparticles using the pH cycle method: Evidence of sustained release delivery in intestinal and gastric fluids. Food Bioscience, 2018, 26, 161-168.	2.0	29
215	Lutein-Enriched Emulsion-Based Delivery System: Impact of Casein-Phospholipid Emulsifiers on Chemical Stability. , 0, , .		3
216	Color analysis of saffron (<i>Crocus sativus L.</i>) as potential natural colorant. Pigment and Resin Technology, 2018, 47, 485-489.	0.5	4
217	Zeaxanthin nanoencapsulation with Opuntia monacantha mucilage as structuring material: Characterization and stability evaluation under different temperatures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 410-421.	2.3	39
218	The effects of different solvent extraction and pH on the stability of carotenoids and chlorophyll in <i>Cucumis melo</i> L. for potential coating technology. Pigment and Resin Technology, 2018, 47, 511-516.	0.5	3
219	Influence of Oxidants on the Stability of Tocopherol in Model Nanoemulsions: Role of Interfacial Membrane Organized by Nonionic Emulsifiers. Journal of Chemistry, 2018, 2018, 1-8.	0.9	4
220	Enhancement of the antioxidant activity and stability of β-carotene using amphiphilic chitosan/nucleic acid polyplexes. International Journal of Biological Macromolecules, 2018, 117, 773-780.	3.6	10
221	Significance of Genetic, Environmental, and Pre- and Postharvest Factors Affecting Carotenoid Contents in Crops: A Review. Journal of Agricultural and Food Chemistry, 2018, 66, 5310-5324.	2.4	57
222	Simultant encapsulation of vitamin C and beta-carotene in sesame (<i>Sesamum indicum l.)</i> liposomes. IOP Conference Series: Materials Science and Engineering, 2018, 349, 012014.	0.3	10

#	Article	IF	CITATIONS
223	Emulgels. , 2018, , 251-264.		5
224	Antioxidant and pro-oxidant activities of carotenoids and their oxidation products. Food and Chemical Toxicology, 2018, 120, 681-699.	1.8	152
225	Storage Stability of β-Carotene in Model Beverage Emulsions: Implication of Interfacial Thickness. European Journal of Lipid Science and Technology, 2018, 120, 1800127.	1.0	7
226	Microbial Biodiesel Production by Direct Transesterification of Rhodotorula glutinis Biomass. Energies, 2018, 11, 1036.	1.6	22
227	Exploring the Valuable Carotenoids for the Large-Scale Production by Marine Microorganisms. Marine Drugs, 2018, 16, 203.	2.2	105
228	Physicochemical Properties and Chemical Stability of β-Carotene Bilayer Emulsion Coated with Bovine Serum Albumin and Arabic Gum Compared to Monolayer Emulsions. Molecules, 2018, 23, 495.	1.7	21
229	Genetic effects of fatty acid composition in muscle of Atlantic salmon. Genetics Selection Evolution, 2018, 50, 23.	1.2	43
230	Determination of triterpenoids, carotenoids, chlorophylls, and antioxidant capacity in Allium ursinum L. at different times of harvesting and anatomical parts. European Food Research and Technology, 2018, 244, 1269-1280.	1.6	15
231	Using a Functional Carrot Powder Ingredient to Produce Sausages with High Levels of Nutraceuticals. Journal of Food Science, 2018, 83, 2351-2361.	1.5	23
232	Food-Grade Biopolymers as Efficient Delivery Systems for Nutrients: An Overview. , 2018, , 401-422.		4
233	Impact of Titanium Dioxide on the Bioaccessibility of β-Carotene in Emulsions with Different Particle Sizes. Journal of Agricultural and Food Chemistry, 2018, 66, 9318-9325.	2.4	14
234	Pro-vitamin A carotenoids stability and bioaccessibility from elite selection of biofortified cassava roots (<i>Manihot esculenta</i> , Crantz) processed to traditional flours and porridges. Food and Function, 2018, 9, 4822-4835.	2.1	17
235	Fabrication of Resveratrol-Loaded Whey Protein–Dextran Colloidal Complex for the Stabilization and Delivery of β-Carotene Emulsions. Journal of Agricultural and Food Chemistry, 2018, 66, 9481-9489.	2.4	58
236	Stability of lutein encapsulated whey protein nano-emulsion during storage. PLoS ONE, 2018, 13, e0192511.	1.1	52
237	Establishment of an Arabidopsis callus system to study the interrelations of biosynthesis, degradation and accumulation of carotenoids. PLoS ONE, 2018, 13, e0192158.	1.1	52
238	Nanoencapsulation by electrospinning to improve stability and water solubility of carotenoids extracted from tomato peels. Food Chemistry, 2018, 268, 86-93.	4.2	95
239	High pressure processing of food-grade emulsion systems: Antimicrobial activity, and effect on the physicochemical properties. Food Hydrocolloids, 2019, 87, 307-320.	5.6	45
241	Nanoencapsulation of carotenoids extracted from tomato peels into zein fibers by electrospinning. Journal of the Science of Food and Agriculture, 2019, 99, 759-766.	1.7	53

#	Article	IF	CITATIONS
242	Buriti (Mauritia flexuosa L. f.) fruit by-products flours: Evaluation as source of dietary fibers and natural antioxidants. Food Chemistry, 2019, 270, 53-60.	4.2	70
243	Encapsulation of Lutein in Nanoemulsions Stabilized by Resveratrol and Maillard Conjugates. Journal of Food Science, 2019, 84, 2421-2431.	1.5	23
244	Preparation and Characterization of Whey Protein Isolate–DIM Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 3917.	1.8	27
245	Highly Surface-Active Chaperonin Nanobarrels for Oil-in-Water Pickering Emulsions and Delivery of Lipophilic Compounds. Journal of Agricultural and Food Chemistry, 2019, 67, 10155-10164.	2.4	16
246	Drying Optimisation to Obtain Carotenoid-Enriched Extracts from Industrial Peach Processing Waste (Pomace). Beverages, 2019, 5, 43.	1.3	3
247	β-carotene improves oocyte development and maturation under oxidative stress in vitro. In Vitro Cellular and Developmental Biology - Animal, 2019, 55, 548-558.	0.7	19
248	One-Pot, Simultaneous Cell Wall Disruption and Complete Extraction of Astaxanthin from <i>Haematococcus pluvialis</i> at Room Temperature. ACS Sustainable Chemistry and Engineering, 2019, 7, 13898-13910.	3.2	30
249	Buriti oil microencapsulation in chickpea protein-pectin matrix as affected by spray drying parameters. Food and Bioproducts Processing, 2019, 117, 183-193.	1.8	32
250	Nutritional Importance of Carotenoids and Their Effect on Liver Health: A Review. Antioxidants, 2019, 8, 229.	2.2	127
251	Phytoremediation of anaerobically digested swine wastewater contaminated by oxytetracycline via Lemna aequinoctialis: Nutrient removal, growth characteristics and degradation pathways. Bioresource Technology, 2019, 291, 121853.	4.8	83
252	Stabilization of Crystalline Carotenoids in Carrot Concentrate Powders: Effects of Drying Technology, Carrier Material, and Antioxidants. Foods, 2019, 8, 285.	1.9	8
253	Preparation, optimization and characterization of foam from white-flesh and yellow-flesh cassava (Manihot esculenta) for powder production. Food Hydrocolloids, 2019, 97, 105205.	5.6	10
254	Influence of Oxygen-Containing Sulfur Flavor Molecules on the Stability of β-Carotene under UVA Irradiation. Molecules, 2019, 24, 318.	1.7	1
255	Supramolecular Carotenoid Complexes of Enhanced Solubility and Stability—The Way of Bioavailability Improvement. Molecules, 2019, 24, 3947.	1.7	51
256	Development and Characterization of Astaxanthin-Containing Whey Protein-Based Nanoparticles. Marine Drugs, 2019, 17, 627.	2.2	29
257	High internal phase emulsions stabilized with amyloid fibrils and their polysaccharide complexes for encapsulation and protection of β-carotene. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110459.	2.5	48
258	Microbial communities of the Mediterranean rocky shore: ecology and biotechnological potential of the seaâ€land transition. Microbial Biotechnology, 2019, 12, 1359-1370.	2.0	4
259	Protic Ionic Liquids as Cell-Disrupting Agents for the Recovery of Intracellular Carotenoids from Yeast <i>Rhodotorula glutinis</i> CCT-2186. ACS Sustainable Chemistry and Engineering, 2019, 7, 16765-16776.	3.2	53

#	Article	IF	CITATIONS
260	Gac (Momordica cochinchinensis Spreng) fruit: A functional food and medicinal resource. Journal of Functional Foods, 2019, 62, 103512.	1.6	11
261	Safe and Complete Extraction of Astaxanthin from <i>Haematococcus pluvialis</i> by Efficient Mechanical Disruption of Cyst Cell Wall. International Journal of Food Engineering, 2019, 15, .	0.7	10
262	β-Carotene, α-tocoferol and rosmarinic acid encapsulated within PLA/PLGA microcarriers by supercritical emulsion extraction: Encapsulation efficiency, drugs shelf-life and antioxidant activity. Journal of Supercritical Fluids, 2019, 146, 199-207.	1.6	36
263	Incorporation of microencapsulated hydrophilic and lipophilic nutrients into foods by using ultrasound as a pre-treatment for drying: A prospective study. Ultrasonics Sonochemistry, 2019, 54, 153-161.	3.8	21
264	High loading contents, distribution and stability of β-carotene encapsulated in high internal phase emulsions. Food Hydrocolloids, 2019, 96, 300-309.	5.6	60
265	Ultrasound-assisted preparation of different nanocarriers loaded with food bioactive ingredients. Advances in Colloid and Interface Science, 2019, 270, 123-146.	7.0	98
266	Effect of edible antioxidants on chemical stability of ß-carotene loaded nanostructured lipid carriers. LWT - Food Science and Technology, 2019, 113, 108272.	2.5	11
267	Quality Assurance of Herbal Drugs and Stability Testing. , 2019, , 685-705.		2
268	Antioxidant and Photoprotection Networking in the Coastal Diatom Skeletonema marinoi. Antioxidants, 2019, 8, 154.	2.2	56
269	Gastrointestinal fate and antioxidation of β-carotene emulsion prepared by oat protein isolate-Pleurotus ostreatus β-glucan conjugate. Carbohydrate Polymers, 2019, 221, 10-20.	5.1	57
270	Selenium in Germinated Chickpea (Cicer arietinum L.) Increases the Stability of Its Oil Fraction. Plants, 2019, 8, 113.	1.6	10
271	Drying of Phyla nodiflora Leaves: Antioxidant Activity, Volatile and Phytosterol Content, Energy Consumption, and Quality Studies. Processes, 2019, 7, 210.	1.3	18
272	Iron, Catechin, and Ferulic Acid Inhibit Cellular Uptake of β-Carotene by Reducing Micellization. Journal of Agricultural and Food Chemistry, 2019, 67, 5792-5800.	2.4	8
273	FTIR Spectroscopy and DFT Calculations to Probe the Kinetics of β-Carotene Thermal Degradation. Journal of Physical Chemistry A, 2019, 123, 5266-5273.	1.1	8
274	Stability of color, β arotene, and ascorbic acid in thermally pasteurized carrot puree to the storage temperature and gas barrier properties of selected packaging films. Journal of Food Process Engineering, 2019, 42, e13074.	1.5	18
275	INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 2019, 14, 991-1014.	5.5	1,873
276	FTIR-DRIFTS-based prediction of β-carotene, α-tocopherol and l-ascorbic acid in mango (Mangifera indica) Tj ETQ	9000 rgt	3T /Overlock :

277	Controlled Release of Peppermint Oil from Paraffinâ€Coated Activated Carbon Contained in Sachets to Inhibit Mold Growth During Long Term Storage of Brown Rice. Journal of Food Science, 2019, 84, 832-841.	1.5	8	
-----	---	-----	---	--

	CITATION REP	PORT	
#	Article	IF	CITATIONS
278	Anti-inflammatory Role of Carotenoids in Endothelial Cells Derived from Umbilical Cord of Women Affected by Gestational Diabetes Mellitus. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-11.	1.9	35
279	Influence of genotype, agro-climatic conditions, cooking method, and their interactions on individual carotenoids and hydroxycinnamic acids contents in tubers of diploid potatoes. Food Chemistry, 2019, 288, 127-138.	4.2	13
280	Kinetics of Phytochemicals Degradation During Thermal Processing of Fruits Beverages. , 2019, , 407-440.		4
281	Modelling of Moisture Content, β-Carotene and Deformation Variation during Drying of Carrot. International Journal of Food Engineering, 2019, 15, .	0.7	5
282	Nanoencapsulation of carotenoids within lipid-based nanocarriers. Journal of Controlled Release, 2019, 298, 38-67.	4.8	205
283	Influence of structural properties of emulsifiers on citral degradation in model emulsions. Food Science and Biotechnology, 2019, 28, 701-710.	1.2	6
284	Physicochemical and Microstructural Properties of Polymerized Whey Protein Encapsulated 3,3′-Diindolylmethane Nanoparticles. Molecules, 2019, 24, 702.	1.7	12
285	Steeping of Biofortified Orange Maize Genotypes for Ogi Production Modifies Pasting Properties and Carotenoid Stability. Agronomy, 2019, 9, 771.	1.3	4
286	Production of food bioactive-loaded nanostructures by ultrasonication. , 2019, , 391-448.		2
287	Green Chemistry Extractions of Carotenoids from Daucus carota L.—Supercritical Carbon Dioxide and Enzyme-Assisted Methods. Molecules, 2019, 24, 4339.	1.7	37
288	Carotenoids in Cereal Food Crops: Composition and Retention throughout Grain Storage and Food Processing. Plants, 2019, 8, 551.	1.6	49
289	Simultaneous LC/MS Analysis of Carotenoids and Fat-Soluble Vitamins in Costa Rican Avocados (Persea) Tj ETQq1	1.0.7843 1.7	914 rgBT /0 16
290	Nanotechnology Based Delivery of Nutraceuticals. Environmental Chemistry for A Sustainable World, 2019, , 63-107.	0.3	3
291	Lipid nanoparticles with fats or oils containing \hat{l}^2 -carotene: Storage stability and in vitro digestibility kinetics. Food Chemistry, 2019, 278, 396-405.	4.2	46
292	Study of Electrochemical Behaviour of Carotenoids in Aqueous Media. Electroanalysis, 2019, 31, 83-90.	1.5	9
293	Thermal stability and oral absorbability of astaxanthin esters from <scp> <i>Haematococcus pluvialis</i> </scp> in Balb/c mice. Journal of the Science of Food and Agriculture, 2019, 99, 3662-3671.	1.7	41
294	Encapsulation of β-carotene in wheat gluten nanoparticle-xanthan gum-stabilized Pickering emulsions: Enhancement of carotenoid stability and bioaccessibility. Food Hydrocolloids, 2019, 89, 80-89.	5.6	182
295	Increased dietary proteinâ€toâ€lipid ratio improves survival during naturally occurring pancreas disease in Atlantic salmon, <i>Salmo salar</i> L. Journal of Fish Diseases, 2019, 42, 21-34.	0.9	4

#	Article	IF	CITATIONS
296	Bioaccessibility of carotenoids from plant and animal foods. Journal of the Science of Food and Agriculture, 2019, 99, 3220-3239.	1.7	42
297	Effect of light, pH, metal ions and antioxidants on the colour stability of norbixin in aqueous solution. International Journal of Food Science and Technology, 2019, 54, 1625-1632.	1.3	8
298	Encapsulation of carotenoid-rich oil from Gac peel: Optimisation of the encapsulating process using a spray drier and the storage stability of encapsulated powder. Powder Technology, 2019, 344, 373-379.	2.1	58
299	The development and release of maize fortified with provitamin A carotenoids in developing countries. Critical Reviews in Food Science and Nutrition, 2019, 59, 1284-1293.	5.4	25
300	Thermal degradation kinetics of carotenoids, vitamin C and provitamin A in tree tomato juice. International Journal of Food Science and Technology, 2020, 55, 201-210.	1.3	34
301	Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnology Advances, 2020, 38, 107287.	6.0	163
302	One-step preparation of high internal phase emulsions using natural edible Pickering stabilizers: Gliadin nanoparticles/gum Arabic. Food Hydrocolloids, 2020, 100, 105381.	5.6	122
303	Enhanced physicochemical stability of lutein-enriched emulsions by polyphenol-protein-polysaccharide conjugates and fat-soluble antioxidant. Food Hydrocolloids, 2020, 101, 105447.	5.6	63
304	Enhancement of the stability of chlorophyll using chlorophyll-encapsulated polycaprolactone microparticles based on droplet microfluidics. Food Chemistry, 2020, 306, 125300.	4.2	52
305	Characterization and formation mechanism of lutein pickering emulsion gels stabilized by β-lactoglobulin-gum arabic composite colloidal nanoparticles. Food Hydrocolloids, 2020, 98, 105276.	5.6	48
306	Utilization of β-lactoglobulin- (â^')-Epigallocatechin- 3-gallate(EGCG) composite colloidal nanoparticles as stabilizers for lutein pickering emulsion. Food Hydrocolloids, 2020, 98, 105293.	5.6	49
307	Development, physical stability and bioaccessibility of β-carotene-enriched tertiary emulsions. Journal of Functional Foods, 2020, 64, 103615.	1.6	23
308	Electrochemistry as a screening method in determination of carotenoids in crustacean samples used in everyday diet. Food Chemistry, 2020, 309, 125706.	4.2	9
309	Effects of three cooking methods on content changes and absorption efficiencies of carotenoids in maize. Food and Function, 2020, 11, 944-954.	2.1	16
310	Chemical Stability of Lycopene in Processed Products: A Review of the Effects of Processing Methods and Modern Preservation Strategies. Journal of Agricultural and Food Chemistry, 2020, 68, 712-726.	2.4	36
311	Mechanism behind the degradation of aqueous norbixin upon storage in light and dark environment. Food Chemistry, 2020, 310, 125967.	4.2	7
312	The lipid type affects the in vitro digestibility and β-carotene bioaccessibility of liquid or solid lipid nanoparticles. Food Chemistry, 2020, 311, 126024.	4.2	36
313	Multiresponse Kinetic Modeling of Heat-Induced Equilibrium of β-Carotene cis–trans Isomerization in Medium-Chain Triglyceride Oil. Journal of Agricultural and Food Chemistry, 2020, 68, 845-855.	2.4	2

#	Article	IF	CITATIONS
314	Rheological behavior of concentrated emulsions containing carotenoids with different polarity. Journal of Food Engineering, 2020, 274, 109827.	2.7	11
315	Oil-in-water Pickering emulsions using a protein nano-ring as high-grade emulsifiers. Colloids and Surfaces B: Biointerfaces, 2020, 187, 110646.	2.5	12
316	Effect of perforation-mediated modified atmosphere packaging on the quality and bioactive compounds of soft kale (Brassica oleracea L. convar. acephala (DC) Alef. var. sabellica L.) during storage. Food Packaging and Shelf Life, 2020, 23, 100427.	3.3	16
317	Investigation of dynamic quality changes and optimization of drying parameters of carrots (Daucus) Tj ETQq1 1	0.784314 1.5	rgBT /Overlo
318	Application of Response Surface Methodology for the Optimization of β arotene‣oaded Nanostructured Lipid Carrier from Mixtures of Palm Stearin and Palm Olein. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 213-223.	0.8	7
319	Color, Carotenoids, and Peroxidase Degradation of Seed-Used Pumpkin Byproducts as Affected by Heat and Oxygen Content During Drying Process. Food and Bioprocess Technology, 2020, 13, 1929-1939.	2.6	13
320	Cliadin Nanoparticles Pickering Emulgels for β-Carotene Delivery: Effect of Particle Concentration on the Stability and Bioaccessibility. Molecules, 2020, 25, 4188.	1.7	21
321	Improvement of thermal and UV-light stability of β-carotene-loaded nanoemulsions by water-soluble chitosan coating. International Journal of Biological Macromolecules, 2020, 165, 1156-1163.	3.6	35
322	Recent development and challenges in extraction of phytonutrients from palm oil. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 4031-4061.	5.9	20
323	Novel Technologies Based on Supercritical Fluids for the Encapsulation of Food Grade Bioactive Compounds. Foods, 2020, 9, 1395.	1.9	31
324	Chlorella sorokiniana: A new alternative source of carotenoids and proteins for gluten-free bread. LWT - Food Science and Technology, 2020, 134, 109974.	2.5	37
325	Design and evaluation of bioenhanced oral tablets of Dunaliella salina microalgae for treatment of liver fibrosis. Journal of Drug Delivery Science and Technology, 2020, 59, 101845.	1.4	8
326	Towards a sustainable Dunaliella salina microalgal biorefinery for 9-cis β-carotene production. Algal Research, 2020, 50, 102002.	2.4	76
327	Nutritional and Physicochemical Quality of Vacuum-Fried Mango Chips Is Affected by Ripening Stage, Frying Temperature, and Time. Frontiers in Nutrition, 2020, 7, 95.	1.6	15
328	Evaluation of Quality and Acceptability of Snack (Kokoro) Produced From Synthetic Provitamin A Maize (Zea mays) Genotypes. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	1
329	Anti-Hepatocellular Carcinoma (HepG2) Activities of Monoterpene Hydroxy Lactones Isolated from the Marine Microalga Tisochrysis Lutea. Marine Drugs, 2020, 18, 567.	2.2	17
330	Neurogenesis From Neural Crest Cells: Molecular Mechanisms in the Formation of Cranial Nerves and Ganglia. Frontiers in Cell and Developmental Biology, 2020, 8, 635.	1.8	37
331	Improving the Stability of Lycopene from Chemical Degradation in Model Beverage Emulsions: Impact of Hydrophilic Group Size of Emulsifier and Antioxidant Polarity. Foods, 2020, 9, 971.	1.9	12

#	Article	IF	Citations
332	Encapsulation of β-carotene in oleogel-in-water Pickering emulsion with improved stability and bioaccessibility. International Journal of Biological Macromolecules, 2020, 164, 1432-1442.	3.6	46
333	Effects of different cooking techniques on bioactive contents of leafy vegetables. International Journal of Gastronomy and Food Science, 2020, 22, 100246.	1.3	24
334	Secondary raw materials of agricultural processing companies as a source of anthocyanin colorants. E3S Web of Conferences, 2020, 176, 03019.	0.2	0
335	Carotenoid Pigment Accumulation in Horticultural Plants. Horticultural Plant Journal, 2020, 6, 343-360.	2.3	60
336	Smart monitoring of gas/temperature changes within food packaging based on natural colorants. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2885-2931.	5.9	69
337	Sources, stability, encapsulation and application of natural pigments in foods. Food Reviews International, 2022, 38, 1735-1790.	4.3	57
338	The effect of polarity of environment on the antioxidant activity of carotenoids. Chemical Physics Letters, 2020, 761, 138098.	1.2	8
339	pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends in Food Science and Technology, 2020, 105, 93-144.	7.8	207
340	Phytochemicals toward Green (Bio)sensing. ACS Sensors, 2020, 5, 3770-3805.	4.0	30
341	<p>Comparative Encapsulation Efficiency of Lutein in Micelles Synthesized via Batch and High Throughput Methods</p> . International Journal of Nanomedicine, 2020, Volume 15, 8217-8230.	3.3	8
342	Fucoxanthin activities motivate its nano/micro-encapsulation for food or nutraceutical application: a review. Food and Function, 2020, 11, 9338-9358.	2.1	39
343	Challenging microalgal vitamins for human health. Microbial Cell Factories, 2020, 19, 201.	1.9	85
344	Assessment of carotenoid concentrations in red peppers (Capsicum annuum) under domestic refrigeration for three weeks as determined by HPLC-DAD. Food Chemistry: X, 2020, 6, 100092.	1.8	22
345	Purple phototrophic bacteria for resource recovery: Challenges and opportunities. Biotechnology Advances, 2020, 43, 107567.	6.0	103
346	Influence of Harvest Date and Postharvest Treatment on Carotenoid and Flavonoid Composition in French Marigold Flowers. Journal of Agricultural and Food Chemistry, 2020, 68, 7880-7889.	2.4	11
347	Influence of pH on property and lipolysis behavior of cinnamaldehyde conjugated chitosan-stabilized emulsions. International Journal of Biological Macromolecules, 2020, 161, 587-595.	3.6	16
348	Enhancement of beta-carotene stability by encapsulation in high internal phase emulsions stabilized by modified starch and tannic acid. Food Hydrocolloids, 2020, 109, 106083.	5.6	54
349	Enhancement of βâ€caroteneâ€rich carotenoid production by a mutant <i>Sporidiobolus pararoseus</i> and stabilization of its antioxidant activity by microencapsulation. Journal of Food Processing and Preservation, 2020, 44, e14596.	0.9	13

#	Article	IF	CITATIONS
350	Efficiency of milk proteins in eliminating practical limitations of β-carotene in hydrated polar solution. Food Chemistry, 2020, 330, 127218.	4.2	4
351	Twoâ€dimensional liquid chromatography analysis of allâ€ <i>transâ€</i> , 9â€ <i>cisâ€</i> , and 13â€ <i>cisâ€</i> astaxanthin in raw extracts from <i>Phaffia rhodozyma</i> . Journal of Separation Science, 2020, 43, 3206-3215.	1.3	7
352	Nanostructured Lipid-Based Delivery Systems as a Strategy to Increase Functionality of Bioactive Compounds. Foods, 2020, 9, 325.	1.9	24
353	Carotenoids degradation and precautions during processing. , 2020, , 223-258.		4
354	Carotenoids as potential biocolorants: A case study of astaxanthin recovered from shrimp waste. , 2020, , 289-325.		9
355	Impact of Different Pasteurization Techniques and Subsequent Ultrasonication on the In Vitro Bioaccessibility of Carotenoids in Valencia Orange (Citrus sinensis (L.) Osbeck) Juice. Antioxidants, 2020, 9, 534.	2.2	17
356	New β-Carotene-Chitooligosaccharides Complexes for Food Fortification: Stability Study. Foods, 2020, 9, 765.	1.9	5
357	Chitosan hydrochloride/carboxymethyl starch complex nanogels stabilized Pickering emulsions for oral delivery of β-carotene: Protection effect and in vitro digestion study. Food Chemistry, 2020, 315, 126288.	4.2	96
358	Mechanistic understanding of β-cryptoxanthin and lycopene in cancer prevention in animal models. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158652.	1.2	30
359	The effect of fucoxanthin as coloring agent on the quality of Shrimp Paste. IOP Conference Series: Earth and Environmental Science, 2020, 441, 012079.	0.2	2
360	Development of β arotene loaded nanoemulsion using the industrial waste of orange (<i>Citrus) Tj ETQq0 0 0 colorant. Journal of Food Processing and Preservation, 2020, 44, e14429.</i>	rgBT /Ove 0.9	erlock 10 Tf 5 14
361	Influence of Rosemary Extract Addition in Different Phases on the Oxidation of Lutein and WPI in WPI-Stabilized Lutein Emulsions. Journal of Food Quality, 2020, 2020, 1-10.	1.4	3
362	Mayonnaise as a model food for improving the bioaccessibility of carotenoids from Bactris gasipaes fruits. LWT - Food Science and Technology, 2020, 122, 109022.	2.5	22
363	Micro- and nano-encapsulation of β-carotene in zein protein: size-dependent release and absorption behavior. Food and Function, 2020, 11, 1647-1660.	2.1	77
364	The Influence of Osmotic Dehydration Conditions on Drying Kinetics and Total Carotenoid Content of Kiwiberry (Actinidia Arguta). International Journal of Food Engineering, 2020, 16, .	0.7	8
365	Nanoemulsions as delivery systems for lipophilic nutraceuticals: strategies for improving their formulation, stability, functionality and bioavailability. Food Science and Biotechnology, 2020, 29, 149-168.	1.2	131
366	Simultaneous Determination of Pigments in Tea by Ultra-Performance Convergence Chromatography (UPC ²). Analytical Letters, 2020, 53, 1654-1666.	1.0	6
367	Lutein as a functional food ingredient: Stability and bioavailability. Journal of Functional Foods, 2020, 66, 103771.	1.6	110

#	ARTICLE	IF	CITATIONS
368	Construction of octenyl succinic anhydride modified porous starch for improving bioaccessibility of β-carotene in emulsions. RSC Advances, 2020, 10, 8480-8489.	1.7	11
369	Effect of the co-existing and excipient oil on the bioaccessibility of β-carotene loaded oil-free nanoparticles. Food Hydrocolloids, 2020, 106, 105847.	5.6	26
370	Analysis of genetic variability for retention of kernel carotenoids in sub-tropically adapted biofortified maize under different storage conditions. Journal of Cereal Science, 2020, 93, 102987.	1.8	11
371	Analysis of tetraterpenes and tetraterpenoids (carotenoids). , 2020, , 427-456.		5
372	Citric acid cross-linked zein microcapsule as an efficient intestine-specific oral delivery system for lipophilic bioactive compound. Journal of Food Engineering, 2020, 281, 109993.	2.7	30
373	Protection and targeted delivery of β-carotene by starch-alginate-gelatin emulsion-filled hydrogels. Journal of Food Engineering, 2021, 290, 110205.	2.7	43
374	Low expression of carotenoids cleavage dioxygenase 1 (ccd1) gene improves the retention of provitamin-A in maize grains during storage. Molecular Genetics and Genomics, 2021, 296, 141-153.	1.0	9
375	Effect of steam sterilisation on lipophilic nutrient stability in a chloroplast-rich fraction (CRF) recovered from postharvest, pea vine field residue (haulm). Food Chemistry, 2021, 334, 127589.	4.2	1
376	Delivery of β-carotene to the in vitro intestinal barrier using nanoemulsions with lecithin or sodium caseinate as emulsifiers. LWT - Food Science and Technology, 2021, 135, 110059.	2.5	20
377	Phytochemical delivery through nanocarriers: a review. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111389.	2.5	90
378	Interactions of β-carotene with WPI/Tween 80 mixture and oil phase: Effect on the behavior of O/W emulsions during in vitro digestion. Food Chemistry, 2021, 341, 128155.	4.2	25
379	Pre-neutralized crude palm oil as natural colorant and bioactive ingredient in fish sausage prepared from tilapia (Oreochromis niloticus). LWT - Food Science and Technology, 2021, 135, 110289.	2.5	9
380	In vitro digestion and cellular antioxidant activity of β-carotene-loaded emulsion stabilized by soy protein isolate-Pleurotus eryngii polysaccharide conjugates. Food Hydrocolloids, 2021, 112, 106340.	5.6	66
381	Extraction optimization by using response surface methodology and purification of yellow pigment from <i>Gardenia jasminoides</i> var. <i>radicans</i> Makikno. Food Science and Nutrition, 2021, 9, 822-832.	1.5	12
382	Novel food colorants from tomatoes: Stability of carotenoid-containing chromoplasts under different storage conditions. LWT - Food Science and Technology, 2021, 140, 110725.	2.5	16
383	Chitosan-sodium alginate-fatty acid nanocarrier system: Lutein bioavailability, absorption pharmacokinetics in diabetic rat and protection of retinal cells against H2O2 induced oxidative stress in vitro. Carbohydrate Polymers, 2021, 254, 117409.	5.1	23
384	Effect of temperature and pH on the encapsulation and release of β-carotene from octenylsuccinated oat β-glucan micelles. Carbohydrate Polymers, 2021, 255, 117368.	5.1	15
385	Development of pea protein and high methoxyl pectin colloidal particles stabilized high internal phase pickering emulsions for Î ² -carotene protection and delivery. Food Hydrocolloids, 2021, 113, 106497.	5.6	124

#	Article	IF	CITATIONS
386	Role of antioxidants on physicochemical properties and in vitro bioaccessibility of β-carotene loaded nanoemulsion under thermal and cold plasma discharge accelerated tests. Food Chemistry, 2021, 339, 128157.	4.2	15
387	Formation of a novel coating material containing lutein and zeaxanthin via a Maillard reaction between bovine serum albumin and fucoidan. Food Chemistry, 2021, 343, 128437.	4.2	20
388	Influence of molecular structure of astaxanthin esters on their stability and bioavailability. Food Chemistry, 2021, 343, 128497.	4.2	45
389	Cashew apple (Anacardium occidentale L.) extract from a by-product of juice processing: assessment of its toxicity, antiproliferative and antimicrobial activities. Journal of Food Science and Technology, 2021, 58, 764-776.	1.4	10
390	Effect of storage period on provitaminâ€A carotenoids retention in biofortified maize hybrids. International Journal of Food Science and Technology, 2021, 56, 3148-3156.	1.3	5
391	Stability of astaxanthin during food processing and methods of preservation. , 2021, , 539-556.		1
392	Carotenoids as Food Products Components and Health Promoting Agents. Food Bioactive Ingredients, 2021, , 101-120.	0.3	0
393	Influence of lipid nanoparticle physical state on \hat{l}^2 -carotene stability kinetics under different environmental conditions. Food and Function, 2021, 12, 840-851.	2.1	5
394	Optimal Formulation of a Composite Flour from Biofortified Cassava, Pigeonpea, and Soybean for Complementary Feeding. , 2021, , 217-235.		0
395	Storage stability studies of astaxanthin, oleoresins and emulsions, in products developed for human consumption. , 2021, , 741-771.		0
396	Alterations of natural pigments. , 2021, , 265-327.		6
397	Design and formulation of nano/micro-encapsulated natural bioactive compounds for food applications. , 2021, , 1-41.		11
398	Phytochemical and Biological Evaluation of a Newly Designed Nutraceutical Self-Nanoemulsifying Self-Nanosuspension for Protection and Treatment of Cisplatin Induced Testicular Toxicity in Male Rats. Molecules, 2021, 26, 408.	1.7	8
399	Bioactive Compounds of Swahili [Cyphostemma adenocaule (Steud. ex A. Rich.) Desc. ex Wild and R.B. Drumm.]. Reference Series in Phytochemistry, 2021, , 211-224.	0.2	0
400	Utilization of Nanotechnology to Improve the Handling, Storage and Biocompatibility of Bioactive Lipids in Food Applications. Foods, 2021, 10, 365.	1.9	32
401	Influence of type of natural emulsifier and microfluidization conditions on Capsicum oleoresin nanoemulsions properties and stability. Journal of Food Process Engineering, 2021, 44, e13660.	1.5	11
402	β-carotene Rescues Busulfan Disrupted Spermatogenesis Through Elevation in Testicular Antioxidant Capability. Frontiers in Pharmacology, 2021, 12, 593953.	1.6	8
403	Carotenoids: Considerations for Their Use in Functional Foods, Nutraceuticals, Nutricosmetics, Supplements, Botanicals, and Novel Foods in the Context of Sustainability, Circular Economy, and Climate Change. Annual Review of Food <u>Science and Technology, 2021, 12, 433-460.</u>	5.1	72

#	Article	IF	CITATIONS
404	Fate of β-Carotene within Loaded Delivery Systems in Food: State of Knowledge. Antioxidants, 2021, 10, 426.	2.2	21
405	Food-Grade Nanoemulsions for the Effective Delivery of β-Carotene. Langmuir, 2021, 37, 3086-3092.	1.6	22
406	Influence of germ storage from different corn genotypes on technological properties and fatty acid, tocopherol, and carotenoid profiles of oil. European Food Research and Technology, 2021, 247, 1449-1460.	1.6	6
407	Recent Progress in Discovering the Role of Carotenoids and Their Metabolites in Prostatic Physiology and Pathology with a Focus on Prostate Cancer—A Review—Part I: Molecular Mechanisms of Carotenoid Action. Antioxidants, 2021, 10, 585.	2.2	16
408	The Incorporation of Carotenoids on Ready to Eat Foods Studied Through Their Stability During Extrusion Processing. Food Engineering Reviews, 2021, 13, 902.	3.1	0
409	Variability in Macro- and Micronutrients of 15 Commercially Available Microalgae Powders. Marine Drugs, 2021, 19, 310.	2.2	18
410	Utilization of high internal phase emulsion stabilized by egg yolk-modified starch complex for the delivery of lutein. LWT - Food Science and Technology, 2021, 142, 111024.	2.5	25
411	Drying kinetics and effect of drying conditions on selected physicochemical properties of foam from yellow-fleshed and white-fleshed cassava (Manihot esculenta) varieties. Food and Bioproducts Processing, 2021, 127, 454-464.	1.8	12
412	mPEG-carboxymethyl astaxanthin monoester: A novel hydrophilic astaxanthin with increased water solubility and bioavailability. LWT - Food Science and Technology, 2021, 143, 111134.	2.5	3
413	Natural Products in the Prevention of Metabolic Diseases: Lessons Learned from the 20th KAST Frontier Scientists Workshop. Nutrients, 2021, 13, 1881.	1.7	4
414	Investigations of βâ€carotene radical cation formation in infrared matrixâ€assisted laser desorption electrospray ionization (IRâ€MALDESI). Rapid Communications in Mass Spectrometry, 2021, 35, e9133.	0.7	2
415	Identification of a novel crustacyanin-like lipocalin in Penaeus monodon: Molecular cloning, tissue distribution and its functional studies in astaxanthin accumulation. Aquaculture, 2021, 539, 736615.	1.7	4
416	Rheological and Microstructural Properties of Xanthan Gum-Based Coating Solutions Enriched with Phenolic Mango (<i>Mangifera indica</i>) Peel Extracts. ACS Omega, 2021, 6, 16119-16128.	1.6	23
417	Study of the properties of carotenoids and key carotenoid biosynthesis genes from Deinococcus xibeiensis R13. Biotechnology and Applied Biochemistry, 2021, , .	1.4	3
418	Utilization of Nanotechnology to Improve the Application and Bioavailability of Phytochemicals Derived from Waste Streams. Journal of Agricultural and Food Chemistry, 2022, 70, 6884-6900.	2.4	28
419	Elaboration, characterization and color stability of an isotonic beverage based on whey permeate with carotenoid powder from pequi. Research, Society and Development, 2021, 10, e41810817233.	0.0	4
420	Solanum lycopersicum and Daucus carota: effective anticancer agents (a mini review). Journal of Physics: Conference Series, 2021, 1943, 012169.	0.3	2
421	Improvement of Bioactive Compound Levels, Antioxidant Activity, and Bioaccessibility of Carotenoids from <i>Pereskia aculeata</i> after Different Cooking Techniques. ACS Food Science & Technology, 2021, 1, 1285-1293.	1.3	7

#	Article	IF	CITATIONS
422	Apples (Malus Domestica Borkh) Minimally Processed Biofortified with Nanoencapsulated β-carotene. Journal of Culinary Science and Technology, 0, , 1-15.	0.6	1
423	Advanced biomaterials for sustainable applications in the food industry: Updates and challenges. Environmental Pollution, 2021, 283, 117071.	3.7	40
424	Beta-carotene/cyclodextrin-based inclusion complex: improved loading, solubility, stability, and cytotoxicity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2022, 102, 55-64.	0.9	26
425	Potential health benefits of carotenoid lutein: An updated review. Food and Chemical Toxicology, 2021, 154, 112328.	1.8	68
426	Tunisian <i>Pistacia atlantica</i> Desf. Extraction Process: Impact on Chemical and Nutritional Characteristics. European Journal of Lipid Science and Technology, 2021, 123, 2100013.	1.0	4
427	Improving the extraction efficiency and stability of β-carotene from carrot by enzyme-assisted green nanoemulsification. Innovative Food Science and Emerging Technologies, 2021, 74, 102836.	2.7	8
428	Lutein extraction by microemulsion technique: Evaluation of stability versus thermal processing and environmental stresses. LWT - Food Science and Technology, 2021, 149, 111839.	2.5	12
429	Reaction pathways and factors influencing nonenzymatic browning in shelfâ€stable fruit juices during storage. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5698-5721.	5.9	16
430	Effect of wall materials on the spray drying encapsulation of brown seaweed bioactive compounds obtained by subcritical water extraction. Algal Research, 2021, 58, 102381.	2.4	20
431	A novel glycoprotein emulsion using high-denatured peanut protein and sesbania gum via cold plasma for encapsulation of β-carotene. Innovative Food Science and Emerging Technologies, 2021, 74, 102840.	2.7	17
432	Optimization of spray drying parameters for custard apple (Annona squamosa L.) pulp powder development using response surface methodology (RSM) with improved physicochemical attributes and phytonutrients. LWT - Food Science and Technology, 2021, 151, 112091.	2.5	7
433	Valorizing okara waste into nutritionally rich polysaccharide/protein-extracts for co-encapsulation of β-carotene and ferrous sulphate as a potential approach to tackle micronutrient malnutrition. Journal of Functional Foods, 2021, 87, 104749.	1.6	8
434	Influence of interfacial characteristics and antioxidant polarity on the chemical stability of β-carotene in emulsions prepared using non-ionic surfactant blends. Food Chemistry, 2022, 369, 130945.	4.2	6
435	Lauric acid adsorbed cellulose nanocrystals retained the physical stability of oil-in-water Pickering emulsion during different dilutions, pH, and storage periods. Food Hydrocolloids, 2022, 124, 107139.	5.6	5
436	Photochemical (UV–vis/H2O2) degradation of carotenoids: Kinetics and molecular end products. Chemosphere, 2022, 286, 131697.	4.2	8
437	Impact of High-Pressure Homogenization on the Extractability and Stability of Phytochemicals. Frontiers in Sustainable Food Systems, 2021, 4, .	1.8	21
438	Food Composition Data: Edible Plants in Cerrado. Ethnobiology, 2021, , 179-224.	0.4	2
439	Pathways for Carotenoid Biosynthesis, Degradation, and Storage. Methods in Molecular Biology, 2020, 2083, 3-23.	0.4	25

#	Article	IF	CITATIONS
440	Nanoencapsulation of Food Carotenoids. Environmental Chemistry for A Sustainable World, 2020, , 203-242.	0.3	4
441	Carotenoids as Functional Bioactive Compounds. , 2020, , 415-444.		5
442	Effect of Drying on β-Carotene, α Carotene, Lutein and Zeaxanthin Content in Vegetables and Its Application for Vegetable Seasoning. E3S Web of Conferences, 2020, 141, 02007.	0.2	4
443	Enzyme Assisted Extraction of GAC Oil (<i>Momordica cochinchinensis Spreng</i>) from Dried Aril. Journal of Food and Nutrition Sciences, 2016, 4, 1.	0.2	5
445	Technological innovation in the protection of beta carotene on MOCAF production which is rich in beta carotene. Nusantara Bioscience, 2017, 9, 6-11.	0.2	4
446	Nonthermal Processing Technologies for Stabilization and Enhancement of Bioactive Compounds in Foods. Food Engineering Reviews, 2022, 14, 63-99.	3.1	14
447	Effects of vacuum frying on the quality of king orange peel in manufacture of chocolate candy fillings. Food Science and Applied Biotechnology, 2021, 4, 156.	0.2	1
448	The Potential Use of <i>Borassus flabellifer</i> Linn. Color Extract as a Natural Dye. Key Engineering Materials, 0, 901, 9-15.	0.4	0
449	Nanomaterials for the Delivery of Herbal Bioactive Compounds. Current Nanoscience, 2022, 18, 425-441.	0.7	8
450	Review: Mangrove hybrid of Rhizophora and its parentals pecies in Indo-Malayan region. Nusantara Bioscience, 2016, 6, .	0.2	2
451	Assessment of over time changes of moisture, cyanide and selected nutrients of stored dry leaves from cassava (Manihot esculenta Crantz). African Journal of Biotechnology, 2014, 13, 4112-4118.	0.3	0
453	The Bioavailability of Carotenoid Forms. , 2017, , 289-294.		1
454	Effect of Corn Oil as an Oil Phase on the Preparation and Characterization of Oil-in-Water Nanoemulsions Fabricated by Spontaneous Emulsification. Korean Journal of Food and Cookery Science, 2017, 33, 427-434.	0.2	1
455	Chapter 6: Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Topical Delivery Systems for Antioxidants. , 2017, , 217-264.		0
456	Microencapsulation of Kabocha Pumpkin Carotenoids. International Journal of Chemical Engineering and Applications (IJCEA), 2017, 8, 381-386.	0.3	2
459	Food Matrices That Improve the Oral Bioavailability of Pharmaceuticals and Nutraceuticals. , 2019, , 197-233.		0
460	Determination of Plant Volatile Apocarotenoids. Methods in Molecular Biology, 2020, 2083, 165-175.	0.4	1
461	Production and Characterization of Nutritious Peanut Butter Enhanced with Orange Fleshed Sweet Potato. Novel Techniques in Nutrition & Food Science, 2019, 4, .	0.1	0

#	Article	IF	CITATIONS
462	Effect of the emulsifier type on the physicochemical stability and in vitro digestibility of a lutein/zeaxanthin-enriched emulsion. Food Science and Biotechnology, 2021, 30, 1509-1518.	1.2	10
463	Estimating the distribution of carotenoid coloration in skin and integumentary structures of birds and extinct dinosaurs. Evolution; International Journal of Organic Evolution, 2022, 76, 42-57.	1.1	7
464	Encapsulation of extracted carotenoids of <i>Cucurbita maxima</i> through lyophilization. Pigment and Resin Technology, 2021, 50, 523-532.	0.5	2
465	Chitosan oligosaccharide/alginate nanoparticles as an effective carrier for astaxanthin with improving stability, in vitro oral bioaccessibility, and bioavailability. Food Hydrocolloids, 2022, 124, 107246.	5.6	51
466	HPP for improving preservation of vitamin and antioxidant contents in vegetable matrices. , 2020, , 15-70.		0
467	Bioactive Compounds of Swahili [Cyphostemma Adenocaule (Steud. ex A. Rich.) Desc. ex Wild and R.B. Drumm.]. Reference Series in Phytochemistry, 2020, , 1-14.	0.2	0
468	High-Energy Emulsification Methods for Encapsulation of Lipid-Soluble Antioxidants. Food Bioactive Ingredients, 2020, , 41-107.	0.3	1
469	Development of a microwaveâ€assisted solvent extraction process for the extraction of highâ€value carotenoids from Chlorella biomass. Biofuels, Bioproducts and Biorefining, 0, , .	1.9	2
470	Utilization of Regional Natural Brines for the Indoor Cultivation of Salicornia europaea. Sustainability, 2021, 13, 12105.	1.6	11
471	Effects of different drying methods on the chemical properties and antioxidant activity of edible algae Cystoseira barbata. Turkish Journal of Agricultural and Natural Sciences, 2020, 7, 848-854.	0.1	1
472	Antioxidant and Pro-oxidant Activities of Carotenoids. Reference Series in Phytochemistry, 2021, , 1-27.	0.2	1
473	The improvement of the physicochemical properties and bioaccessibility of lutein microparticles by electrostatic complexation. Food Hydrocolloids, 2022, 125, 107381.	5.6	17
474	Recent advances in nanocarriers for nutrient delivery. Drug Delivery and Translational Research, 2022, 12, 2359-2384.	3.0	19
475	Comparison of Lutein Bioaccessibility from Dietary Supplement-Excipient Nanoemulsions and Nanoemulsion-Based Delivery Systems. Journal of Agricultural and Food Chemistry, 2021, 69, 13925-13932.	2.4	17
476	Stability of zeaxanthin/lutein in yolk oil obtained from microalgae-supplemented egg under various storage conditions. LWT - Food Science and Technology, 2022, 155, 112899.	2.5	4
477	Impact of Ageing on Pea Protein Volatile Compounds and Correlation with Odor. Molecules, 2022, 27, 852.	1.7	5
478	Comparison of the Anti-Obesity Effect of Enriched Capsanthin and Capsaicin from Capsicum annuum L. Fruit in Obesity-Induced C57BL/6J Mouse Model. Food Technology and Biotechnology, 2022, 60, 202-212.	0.9	3
479	Stability of plant extracts. , 2022, , 89-126.		1

π	Article	IF	CITATIONS
480	Application of carotenoids in sustainable energy and green electronics. Materials Advances, 2022, 3, 1341-1358.	2.6	10
481	Role of dietary antioxidants and vitamins intake in semen quality parameters: A cross-sectional study. Clinical Nutrition ESPEN, 2022, 48, 434-440.	0.5	1
482	Kinetic Study of Encapsulated β-Carotene Degradation in Aqueous Environments: A Review. Foods, 2022, 11, 317.	1.9	8
483	Impact of Cultivar Selection and Thermal Processing by Air Drying, Air Frying, and Deep Frying on the Carotenoid Content and Stability and Antioxidant Capacity in Carrots (<i>Daucus carota</i> L.). Journal of Agricultural and Food Chemistry, 2022, 70, 1629-1639.	2.4	5
484	Physicochemical stability and in vitro bioaccessibility of β-carotene emulsions stabilized with arabinoxylan hydrolysates-soy protein isolate conjugates. LWT - Food Science and Technology, 2022, 157, 113120.	2.5	17
485	Color enhancement mechanisms analysis of freeze-dried carrots treated by ultrasound-assisted osmosis (ascorbic acid-CaCl2) dehydration. Food Chemistry, 2022, 381, 132255.	4.2	9
486	Heat and Light Stability of Pumpkin-Based Carotenoids in a Photosensitive Food: A Carotenoid-Coloured Beverage. Foods, 2022, 11, 485.	1.9	13
487	Opportunities for the marine carotenoid value chain from the perspective of fucoxanthin degradation. Food Chemistry, 2022, 383, 132394.	4.2	22
488	Bioaccessibility and antioxidant activity of β-carotene loaded nanostructured lipid carrier (NLC) from binary mixtures of palm stearin and palm olein. Heliyon, 2022, 8, e08913.	1.4	20
489	Kinetic Study of Encapsulated Î ² -Carotene Degradation in Dried Systems: A Review. Foods, 2022, 11, 437.	1.9	11
489 492	Kinetic Study of Encapsulated Î ² -Carotene Degradation in Dried Systems: A Review. Foods, 2022, 11, 437. Methods for extracting and analyzing carotenoids from bird feathers. Methods in Enzymology, 2022, ,	1.9 0.4	11
489 492 493	Kinetic Study of Encapsulated β-Carotene Degradation in Dried Systems: A Review. Foods, 2022, 11, 437. Methods for extracting and analyzing carotenoids from bird feathers. Methods in Enzymology, 2022, , . Biofortification of Maize for Nutritional Security. , 2022, , 147-174.	1.9 0.4	11 2 6
489 492 493 494	Kinetic Study of Encapsulated β-Carotene Degradation in Dried Systems: A Review. Foods, 2022, 11, 437. Methods for extracting and analyzing carotenoids from bird feathers. Methods in Enzymology, 2022, , . Biofortification of Maize for Nutritional Security. , 2022, , 147-174. Use of Gas Chromatography-Mass Spectrometry Techniques (GC-MS, GC-MS/MS and GC-QTOF) for the Characterization of Photooxidation and Autoxidation Products of Lipids of Autotrophic Organisms in Environmental Samples. Molecules, 2022, 27, 1629.	1.9 0.4 1.7	11 2 6 9
489 492 493 494 495	Kinetic Study of Encapsulated β-Carotene Degradation in Dried Systems: A Review. Foods, 2022, 11, 437. Methods for extracting and analyzing carotenoids from bird feathers. Methods in Enzymology, 2022, , . Biofortification of Maize for Nutritional Security. , 2022, , 147-174. Use of Cas Chromatography-Mass Spectrometry Techniques (GC-MS, GC-MS/MS and GC-QTOF) for the Characterization of Photooxidation and Autoxidation Products of Lipids of Autotrophic Organisms in Environmental Samples. Molecules, 2022, 27, 1629. Development of dendrimer-like glucan-stabilized Pickering emulsions incorporated with β-carotene. Food Chemistry, 2022, 385, 132626.	1.9 0.4 1.7 4.2	11 2 6 9 20
489 492 493 494 495 496	Kinetic Study of Encapsulated β-Carotene Degradation in Dried Systems: A Review. Foods, 2022, 11, 437. Methods for extracting and analyzing carotenoids from bird feathers. Methods in Enzymology, 2022, , . Biofortification of Maize for Nutritional Security. , 2022, , 147-174. Use of Gas Chromatography-Mass Spectrometry Techniques (GC-MS, GC-MS/MS and GC-QTOF) for the Characterization of Photooxidation and Autoxidation Products of Lipids of Autotrophic Organisms in Environmental Samples. Molecules, 2022, 27, 1629. Development of dendrimer-like glucan-stabilized Pickering emulsions incorporated with β-carotene. Food Chemistry, 2022, 385, 132626. Drying kinetics and physicochemical and technological properties of pumpkin purée flour dried by convective and foamâ€mat drying. Journal of Food Processing and Preservation, 2022, 46, .	1.9 0.4 1.7 4.2 0.9	 11 2 6 9 20 3
489 492 493 494 495 495	Kinetic Study of Encapsulated β-Carotene Degradation in Dried Systems: A Review. Foods, 2022, 11, 437. Methods for extracting and analyzing carotenoids from bird feathers. Methods in Enzymology, 2022, , . Biofortification of Maize for Nutritional Security. , 2022, , 147-174. Use of Cas Chromatography-Mass Spectrometry Techniques (GC-MS, GC-MS/MS and GC-QTOF) for the Characterization of Photooxidation and Autoxidation Products of Lipids of Autotrophic Organisms in Environmental Samples. Molecules, 2022, 27, 1629. Development of dendrimer-like glucan-stabilized Pickering emulsions incorporated with β-carotene. Food Chemistry, 2022, 385, 132626. Drying kinetics and physicochemical and technological properties of pumpkin purée flour dried by convective and foamâ€mat drying. Journal of Food Processing and Preservation, 2022, 46, . Oxidative stability of lutein on exposure to varied extrinsic factors. Journal of Food Science and Technology, 0, , 1.	1.9 0.4 1.7 4.2 0.9 1.4	 11 2 6 9 20 3 1
 489 492 493 494 495 496 498 499 	 Kinetic Study of Encapsulated ¹²-Carotene Degradation in Dried Systems: A Review. Foods, 2022, 11, 437. Methods for extracting and analyzing carotenoids from bird feathers. Methods in Enzymology, 2022, , . Biofortification of Maize for Nutritional Security. , 2022, , 147-174. Use of Gas Chromatography-Mass Spectrometry Techniques (GC-MS, GC-MS/MS and GC-QTOF) for the Characterization of Photooxidation and Autoxidation Products of Lipids of Autotrophic Organisms in Environmental Samples. Molecules, 2022, 27, 1629. Development of dendrimer-like glucan-stabilized Pickering emulsions incorporated with ¹²-carotene. Food Chemistry, 2022, 385, 132626. Drying kinetics and physicochemical and technological properties of pumpkin purée flour dried by convective and foamã€mat drying. Journal of Food Processing and Preservation, 2022, 46, . Oxidative stability of lutein on exposure to varied extrinsic factors. Journal of Food Science and Technology, 0, , 1. Microalgae carotenoids: An overview of biomedical applications. , 2022, , 409-425. 	1.9 0.4 1.7 4.2 0.9 1.4	 11 2 6 9 20 3 1 0

#	Article	IF	Citations
502	The stability of carotenoids from a marine photosynthetic bacterium <i>Ectothiorhodospira shaposhnikovii</i> <scp>P2</scp> . Journal of Food Processing and Preservation, 0, , .	0.9	0
503	Theoretical study on the mechanism and kinetics of the formation \hat{I}^2 -carotene epoxides from the oxidative degradation of \hat{I}^2 -carotene. Food Chemistry, 2022, 389, 133082.	4.2	5
504	Antioxidant and Pro-oxidant Activities of Carotenoids. Reference Series in Phytochemistry, 2022, , 123-148.	0.2	1
505	Enhanced Production of C ₃₀ Carotenoid 4,4'-Diaponeurosporene by Optimizing Culture Conditions of <i>Lactiplantibacillus plantarum</i> subsp. <i>plantarum</i> KCCP11226 ^T . Journal of Microbiology and Biotechnology, 2022, 32, 892-901.	0.9	2
506	Conception of an environmental friendly O/W cosmetic emulsion from microalgae. Environmental Science and Pollution Research, 2022, 29, 73896-73909.	2.7	2
507	Function toggle of tumor microenvironment responsive nanoagent for highly efficient free radical stress enhanced chemodynamic therapy. Nano Research, 2022, 15, 8228-8236.	5.8	5
508	High pressure processing and heat sterilization of kale: Impact on extractability, antioxidant capacity and storability of carotenoids and vitamin E. , 0, , .		2
509	Methods of protection and application of carotenoids in foods - A bibliographic review. Food Bioscience, 2022, 48, 101829.	2.0	11
511	Preparation of oil-in-water (O/W) clove essential oil nanoemulsion: Characterization and stability. , 2022, , 559-571.		0
512	Antioxidant and Antimicrobial Activity of Rosemary (Rosmarinus officinalis) and Garlic (Allium) Tj ETQq1 1 0.7843 2022, 11, 2018.	14 rgBT /(1.9	Overlock 10 11
513	Nanocarriers for β-Carotene Based on Milk Protein. Food and Bioprocess Technology, 2023, 16, 43-67.	2.6	2
514	Lentil-Based Yogurt Alternatives Fermented with Multifunctional Strains of Lactic Acid Bacteria—Techno-Functional, Microbiological, and Sensory Characteristics. Foods, 2022, 11, 2013.	1.9	7
515	Monitoring the quality of fortified cold-pressed rapeseed oil in different storage conditions. European Food Research and Technology, 2022, 248, 2695-2705.	1.6	2
516	Storage Stability and In Vitro Bioaccessibility of Microencapsulated Tomato (Solanum Lycopersicum) Tj ETQq1 1	0.784314 1.6	rgBT /Overlo
517	Multifunctional active ingredient-based delivery systems for skincare formulations: A review. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112676.	2.5	10
518	Advances of astaxanthin-based delivery systems for precision nutrition. Trends in Food Science and Technology, 2022, 127, 63-73.	7.8	20
519	Cosmetic Potential of Pigments Extracts from the Marine Cyanobacterium Cyanobium sp Marine Drugs, 2022, 20, 481.	2.2	8
520	Brown Algae as Functional Food Source of Fucoxanthin: A Review. Foods, 2022, 11, 2235.	1.9	39

#	ARTICLE	IF	CITATIONS
521	The Potential Function of SiLOX4 on Millet Discoloration during Storage in Foxtail Millet. Agriculture (Switzerland), 2022, 12, 1283.	1.4	2
522	Processing Technology of Gac PulpÂand Peel. , 2022, , 143-155.		0
523	Carotenoids in Gac Fruit Aril â \in " Structure and Bioaccessibility. , 2022, , 25-39.		0
524	β-Carotene - 2-hydroxypropyl-β-cyclodextrin complexes coated with pectin. Food Hydrocolloids, 2022, 133, 107990.	5.6	6
526	Carotenoid fates in plant foods: Chemical changes from farm to table and nutrition. Critical Reviews in Food Science and Nutrition, 2024, 64, 1237-1255.	5.4	4
527	In vitro digestibility of O/W emulsions co-ingested with complex meals: Influence of the food matrix. Food Hydrocolloids, 2023, 135, 108121.	5.6	2
528	A natural strategy for astaxanthin stabilization and color regulation: Interaction with proteins. Food Chemistry, 2023, 402, 134343.	4.2	11
529	Nanoencapsulation enhances the bioavailability of fucoxanthin in microalga Phaeodactylum tricornutum extract. Food Chemistry, 2023, 403, 134348.	4.2	14
530	Comparison between Quinoa and Quillaja saponins in the Formation, Stability and Digestibility of Astaxanthin-Canola Oil Emulsions. Colloids and Interfaces, 2022, 6, 43.	0.9	1
531	Improving the Bioaccessibility and Bioavailability of Carotenoids by Means of Nanostructured Delivery Systems: A Comprehensive Review. Antioxidants, 2022, 11, 1931.	2.2	15
532	Carotegenic Virgibacillus halodenitrificans from Wadi El-Natrun Salt Lakes: Isolation, Optimization, Characterization and Biological Activities of Carotenoids. Biology, 2022, 11, 1407.	1.3	3
533	A review of the nutritional properties of different varieties and byproducts of peach palm (<i>Bactris) Tj ETQq1 1 25, 2146-2165.</i>	0.784314 1.3	rgBT /Ove 1
534	Rhodotorula sp.–based biorefinery: a source of valuable biomolecules. Applied Microbiology and Biotechnology, 2022, 106, 7431-7447.	1.7	18
535	Sustainable production of lutein—an underexplored commercially relevant pigment from microalgae. Biomass Conversion and Biorefinery, 0, , .	2.9	4
536	The Comparative Pharmaco- and Histokinetics of the Therapeutic Dose of Estradiol Valerate and Bromocriptine in Common Quails. BioMed Research International, 2022, 2022, 1-9.	0.9	1
537	Influence of Type and Concentration of Biopolymer on \hat{l}^2 -Carotene Encapsulation Efficiency in Nanoemulsions Based on Linseed Oil. Polymers, 2022, 14, 4640.	2.0	2
538	Improved Light and In Vitro Digestive Stability of Lutein-Loaded Nanoparticles Based on Soy Protein Hydrolysates via Pepsin. Foods, 2022, 11, 3635.	1.9	1
539	Oxidation in Poultry Feed: Impact on the Bird and the Efficacy of Dietary Antioxidant Mitigation Strategies. Poultry, 2022, 1, 246-277.	0.5	3

#	Article	IF	CITATIONS
540	Effects of solvent extraction and drying methods of Malaysian seaweed, Sargassum polycystum on fucoxanthin content. AIP Conference Proceedings, 2022, , .	0.3	1
541	Investigation on the changes of carotenoids and capsaicinoids in chili oil at different frying temperature by using 1H NMR. Current Research in Food Science, 2023, 6, 100411.	2.7	8
542	Antioxidative capacity of microalgal carotenoids for stabilizing n-3 LC-PUFA rich oil: Initial quantity is key. Food Chemistry, 2023, 406, 135044.	4.2	3
543	Development of a novel functional yogurt rich in lycopene by Bacillus subtilis. Food Chemistry, 2023, 407, 135142.	4.2	10
544	Effect of osmotic dehydration with different osmosis agents on water status, texture properties, sugars, and total carotenoid of dehydrated yellow peach slices. Journal of Food Science, 2023, 88, 109-118.	1.5	3
545	Unconventional Extraction of Total Non-Polar Carotenoids from Pumpkin Pulp and Their Nanoencapsulation. Molecules, 2022, 27, 8240.	1.7	3
546	Lutein-Fortified Plant-Based Egg Analogs Designed to Improve Eye Health: Formation, Characterization, In Vitro Digestion, and Bioaccessibility. Foods, 2023, 12, 2.	1.9	4
547	Biocolorants in food: Sources, extraction, applications and future prospects. Critical Reviews in Food Science and Nutrition, 0, , 1-40.	5.4	9
548	Effect of sodium trimetaphosphate on the physicochemical properties of modified soy protein isolates and its luteinâ€loaded emulsion. Journal of Food Science, 0, , .	1.5	1
549	Enhancing in vivo retinol bioavailability by incorporating β-carotene from alga Dunaliella salina into nanoemulsions containing natural-based emulsifiers. Food Research International, 2023, 164, 112359.	2.9	5
550	The development and properties of nanoemulsions stabilized with glycated soybean protein for carrying Î ² -carotene. Journal of Food Engineering, 2023, 345, 111411.	2.7	8
551	Research advances of <i>in vivo</i> biological fate of food bioactives delivered by colloidal systems. Critical Reviews in Food Science and Nutrition, 0, , 1-19.	5.4	1
552	Cyanobacteria-Based Bioprocess for Cosmetic Products—Cyanobium sp. as a Novel Source of Bioactive Pigments. Phycology, 2023, 3, 47-64.	1.7	3
553	Bioprospection of marine microalgae for novel antioxidants in human health and medicine. , 2023, , 295-310.		0
554	Influence of different soaking and drying treatments on anti-nutritional composition and technological characteristics of red and green lentil (Lens culinaris Medik.) flour. Journal of Food Measurement and Characterization, 2023, 17, 3625-3643.	1.6	1
555	Application of micro/nano-fluidics for encapsulation of food bioactive compounds - principles, applications, and challenges. Trends in Food Science and Technology, 2023, 136, 64-75.	7.8	3
556	Comparative study of the properties of lutein nanoliposomes coated with chitosan/(â^')â€epigallocatechin―3â€gallate (<scp>EGCG</scp>) complexes. Journal of the Science of Food and Agriculture, 2023, 103, 3306-3314.	1.7	2
557	Evaluation of physical stability of whey protein-stabilized red palm oil emulsion by monitoring the changes of droplets characteristics. Journal of Dispersion Science and Technology, 2024, 45, 619-631.	1.3	0

#	Article	IF	CITATIONS
559	β-Carotene and β-apo-8′-carotenal contents in processed foods in Korea. Food Science and Biotechnology, 2023, 32, 1501-1513.	1.2	2
560	Microencapsulation of Carotenoid-Rich Extract from GuaranÃ; Peels and Study of Microparticle Functionality through Incorporation into an Oatmeal Paste. Foods, 2023, 12, 1170.	1.9	0
561	Xanthan gum-based nanocarriers for therapeutic delivery. , 2023, , 333-365.		0
562	Thermal Degradation of Carotenoids from Jambu Leaves (AcmellaÂoleracea) during Convective Drying. Foods, 2023, 12, 1452.	1.9	1
563	High-Purity Bioactive Ingredient—3S,3′S-Astaxanthin: A New Preparation from Genetically Modified Kluyveromyces marxianus without Column Chromatography and Gel Filtration. Antioxidants, 2023, 12, 875.	2.2	1
567	Aggregation profile of phospholipids with cholesterol and beta-carotene using coarse-grained molecular dynamics simulation. AIP Conference Proceedings, 2023, , .	0.3	0
574	Synthesis, Characterization, and Applications of Nanomaterials from Carotenoids. , 2023, , 67-90.		0
575	Fucoxanthin. , 2023, , 1-27.		0
577	Effect of Thermal Processing on Carotenoids in Fortified Bread. , 0, , .		1
585	Nanocarriers as a Novel Approach for Phytochemical Delivery in Food. , 2023, , 233-268.		0
586	Fucoxanthin. , 2023, , 729-755.		0
596	The "carmine problem―and potential alternatives. , 2024, , 465-506.		0
602	Food color and coloring food: quality, differentiation and regulatory requirements. , 2024, , 3-31.		0
603	Preliminary study on spectrophotometry analysis of chlorophylls and total carotenoids from Nepenthes gracilis fresh and dried leaves using various extracting solvents. AIP Conference Proceedings, 2023, , .	0.3	0