Mirid Bug Outbreaks in Multiple Crops Correlated with in China

Science 328, 1151-1154 DOI: 10.1126/science.1187881

Citation Report

#	Article	IF	CITATIONS
1	Review: Turkey in the Middle East: Oil, Islam, and Politicsâ€ Alon Liel. Journal of Islamic Studies, 2003, 14, 110-111.	0.0	4
3	Defining Environment Risk Assessment Criteria for Genetically Modified Insects to be placed on the EU Market. EFSA Supporting Publications, 2010, 7, 71E.	0.7	8
4	Bt crops and food security in developing countries: realised benefits, sustainable use and lowering barriers to adoption. Food Security, 2010, 2, 247-259.	5.3	44
6	Exploring the Resilience of Bt Cotton's â€~Proâ€Poor Success Story'. Development and Change, 2010, 41, 955-981.	3.3	42
7	Emergence of minor pests becoming major pests in GE cotton in China: What are the reasons? What are the alternatives practices to this change of status?. GM Crops, 2010, 1, 214-219.	1.9	34
8	Transcriptome analysis of Hpa1Xoo transformed cotton revealed constitutive expression of genes in multiple signalling pathways related to disease resistance. Journal of Experimental Botany, 2010, 61, 4263-4275.	4.8	38
9	Fourteen Years of <i>Bt</i> Cotton Advances IPM in Arizona. Southwestern Entomologist, 2010, 35, 437-444.	0.2	54
10	Comparing Conventional and Biotechnology-Based Pest Management. Journal of Agricultural and Food Chemistry, 2011, 59, 5793-5798.	5.2	53
	How agro-ecological research helps to address food security issues under new IPM and pesticide reduction systems, Journal of Experimental Botany, 2011, 62	4.9	178
11	3251-3261.	4.8	178
11	 Effect of Pyramiding Bt and CpTI Genes on Resistance of Cotton to Helicoverpa armigera (Lepidoptera:) Tj ETQq1 673-684. 	4.8 1 0.7843 1.8	178 14 rgBT /Ov 36
11 12 13	Effect of Pyramiding Bt and CpTI Genes on Resistance of Cotton to Helicoverpa armigera (Lepidoptera:) Tj ETQq1 673-684. Derivation and Interpretation of Hazard Quotients To Assess Ecological Risks from the Cultivation of Insect-Resistant Transgenic Crops. Journal of Agricultural and Food Chemistry, 2011, 59, 5877-5885.	4.8 1 0.7843 1.8 5.2	14 rgBT /Ov 36 28
11 12 13 14	 Effect of Pyramiding Bt and CpTI Genes on Resistance of Cotton to Helicoverpa armigera (Lepidoptera:) Tj ETQq1 673-684. Derivation and Interpretation of Hazard Quotients To Assess Ecological Risks from the Cultivation of Insect-Resistant Transgenic Crops. Journal of Agricultural and Food Chemistry, 2011, 59, 5877-5885. Chapter 3 Current and Potential Farm-Level Impacts of Genetically Modified Crops in Developing Countries. Frontiers of Economics and Globalization, 2011, , 55-82. 	4.8 1 0.7843 1.8 5.2 0.3	178 14 rgBT /Ov 36 28 5
11 12 13 14 15	 Effect of Pyramiding Bt and CpTI Genes on Resistance of Cotton to Helicoverpa armigera (Lepidoptera:) Tj ETQq1 673-684. Derivation and Interpretation of Hazard Quotients To Assess Ecological Risks from the Cultivation of Insect-Resistant Transgenic Crops. Journal of Agricultural and Food Chemistry, 2011, 59, 5877-5885. Chapter 3 Current and Potential Farm-Level Impacts of Genetically Modified Crops in Developing Countries. Frontiers of Economics and Globalization, 2011, , 55-82. Chapter 4 The Impact of Bt Cotton and the Potential Impact of Biotechnology on Other Crops in China and India. Frontiers of Economics and Globalization, 2011, , 83-114. 	4.8 1 0.7843 1.8 5.2 0.3 0.3	1/3 14 rgBT /O√ 28 5 12
11 12 13 14 15 16	Reduction poincies for global crop production systems, journal of Experimental Botally, 2011, 62, 3251-3261. Effect of Pyramiding Bt and CpTI Genes on Resistance of Cotton to Helicoverpa armigera (Lepidoptera:) Tj ETQq1 673-684. Derivation and Interpretation of Hazard Quotients To Assess Ecological Risks from the Cultivation of Insect-Resistant Transgenic Crops. Journal of Agricultural and Food Chemistry, 2011, 59, 5877-5885. Chapter 3 Current and Potential Farm-Level Impacts of Genetically Modified Crops in Developing Countries. Frontiers of Economics and Globalization, 2011, , 55-82. Chapter 4 The Impact of Bt Cotton and the Potential Impact of Biotechnology on Other Crops in China and India. Frontiers of Economics and Globalization, 2011, , 83-114. Chapter 7 The Environmental Benefits and Costs of Genetically Modified (GM) Crops. Frontiers of Economics and Globalization, 2011, , 173-199.	 4.8 1 0.7843 1.8 5.2 0.3 0.3 0.3 	1/3 14 rgBT /O√ 28 5 12 23
11 12 13 14 15 16 17	Induction potches for global crop production systems, journal of Experimental botality, 2011, 62, 3251-3261. Effect of Pyramiding Bt and CpTI Genes on Resistance of Cotton to Helicoverpa armigera (Lepidoptera:) Tj ETQq1 673-684. Derivation and Interpretation of Hazard Quotients To Assess Ecological Risks from the Cultivation of Insect-Resistant Transgenic Crops. Journal of Agricultural and Food Chemistry, 2011, 59, 5877-5885. Chapter 3 Current and Potential Farm-Level Impacts of Genetically Modified Crops in Developing Countries. Frontiers of Economics and Globalization, 2011, , 55-82. Chapter 4 The Impact of Bt Cotton and the Potential Impact of Biotechnology on Other Crops in China and India. Frontiers of Economics and Globalization, 2011, , 83-114. Chapter 7 The Environmental Benefits and Costs of Genetically Modified (GM) Crops. Frontiers of Economics and Globalization, 2011, , 173-199. Impacts of <i>Bt</i> Fransgenic Cotton on Integrated Pest Management. Journal of Agricultural and Food Chemistry, 2011, 59, 5842-5851.	 4.8 1 0.7843 1.8 5.2 0.3 0.3 0.3 5.2 	1/3 14 rgBT /Ov 28 5 12 23 153
11 12 13 14 15 16 17 18	Production policies for global crop production systems, journal of Experimental Bodahy, 2011, 02, 3251-3261. Effect of Pyramiding Bt and CpTI Genes on Resistance of Cotton to Helicoverpa armigera (Lepidoptera:) Tj ETQq1 673-684. Derivation and Interpretation of Hazard Quotients To Assess Ecological Risks from the Cultivation of Insect-Resistant Transgenic Crops. Journal of Agricultural and Food Chemistry, 2011, 59, 5877-5885. Chapter 3 Current and Potential Farm-Level Impacts of Cenetically Modified Crops in Developing Countries. Frontiers of Economics and Clobalization, 2011, , 55-82. Chapter 4 The Impact of Bt Cotton and the Potential Impact of Biotechnology on Other Crops in China and India. Frontiers of Economics and Clobalization, 2011, , 83-114. Chapter 7 The Environmental Benefits and Costs of Genetically Modified (GM) Crops. Frontiers of Economics and Globalization, 2011, , 173-199. Impacts of <i>>Bt Impacts of <i>>Cotton to Integrated Pest Management. Journal of Agricultural and Food Chemistry, 2011, 59, 5842-5851. Redirecting technology to support sustainable farm management practices. Agricultural Systems, 2011, 104, 365-370.</i></i>	 4.8 1 0.7843 1.8 5.2 0.3 0.3 0.3 5.2 6.1 	1/3 14 rgBT /Ov 28 5 12 23 153 22
11 12 13 14 15 16 17 18 18	Period components for global crop production systems, journal of Experimental Botality, 2011, 62, 3251-3261. Effect of Pyramiding Bt and CpTI Genes on Resistance of Cotton to Helicoverpa armigera (Lepidoptera:) Tj ETQq1 673-684. Derivation and Interpretation of Hazard Quotients To Assess Ecological Risks from the Cultivation of Insect-Resistant Transgenic Crops. Journal of Agricultural and Food Chemistry, 2011, 59, 5877-5885. Chapter 3 Current and Potential Farm-Level Impacts of Genetically Modified Crops in Developing Countries. Frontiers of Economics and Clobalization, 2011, , 55-82. Chapter 4 The Impact of Bt Cotton and the Potential Impact of Biotechnology on Other Crops in China and India. Frontiers of Economics and Clobalization, 2011, , 83-114. Chapter 7 The Environmental Benefits and Costs of Genetically Modified (GM) Crops. Frontiers of Economics and Clobalization, 2011, , 173-199. Impacts of <i>> Bt</i> > Transgenic Cotton on Integrated Pest Management. Journal of Agricultural and Food Chemistry, 2011, 59, 5842-5851. Redirecting technology to support sustainable farm management practices. Agricultural Systems, 2011, 104, 365-370. Why genetically modified crops?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 1807-1816.	 4.8 1.0.7843 1.8 5.2 0.3 0.3 0.3 5.2 6.1 3.4 	173 14 rgBT /Ov 28 5 12 23 153 22 17

#	Article	IF	CITATIONS
21	Early Warning of Cotton Bollworm Resistance Associated with Intensive Planting of Bt Cotton in China. PLoS ONE, 2011, 6, e22874.	2.5	135
22	Scientific Opinion updating the evaluation of the environmental risk assessment and risk management recommendations on insect resistant genetically modified maize 1507 for cultivation. EFSA Journal, 2011, 9, .	1.8	19
23	Statement supplementing the evaluation of the environmental risk assessment and risk management recommendations on insect resistant genetically modified maize Bt11 for cultivation. EFSA Journal, 2011, 9, 2478.	1.8	11
24	Review of the biology and control of <i>Creontiades dilutus</i> (Stål) (Hemiptera: Miridae). Australian Journal of Entomology, 2011, 50, 107-117.	1.1	12
25	The role of transgenic crops in sustainable development. Plant Biotechnology Journal, 2011, 9, 2-21.	8.3	84
26	<i>Bacillus thuringiensis</i> : a century of research, development and commercial applications. Plant Biotechnology Journal, 2011, 9, 283-300.	8.3	598
27	Sorghum Insect Problems and Management ^F . Journal of Integrative Plant Biology, 2011, 53, 178-192.	8.5	34
28	Risk Assessment and Ecological Effects of Transgenic <i>Bacillus thuringiensis</i> Crops on Nonâ€Target Organisms ^F . Journal of Integrative Plant Biology, 2011, 53, 520-538.	8.5	86
29	Colonization preference of Euschistus servus and Nezara viridula in transgenic cotton varieties, peanut, and soybean. Entomologia Experimentalis Et Applicata, 2011, 139, 161-169.	1.4	38
30	Competition between stink bug and heliothine caterpillar pests on cotton at within-plant spatial scales. Entomologia Experimentalis Et Applicata, 2011, 141, 59-70.	1.4	31
31	Field versus Farm in Warangal: Bt Cotton, Higher Yields, and Larger Questions. World Development, 2011, 39, 387-398.	4.9	105
32	Comparative overwintering host range of three Adelphocoris species (Hemiptera: Miridae) in northern China. Crop Protection, 2011, 30, 1455-1460.	2.1	27
33	Impacts of transgenic Bt cotton on a non-target pest, Apolygus lucorum (Meyer-Dür) (Hemiptera:) Tj ETQq0 0	0 rgBT /Ov 2.1	verlock 10 Tf
34	Impact of Bt cotton on pesticide poisoning in smallholder agriculture: A panel data analysis. Ecological Economics, 2011, 70, 2105-2113.	5.7	142
35	Global land-use change and the importance of zoophytophagous bugs in biological control: Coppicing willows as a timely example. Biological Control, 2011, 59, 6-12.	3.0	12
36	Identification of Semiochemicals Released by Cotton, Gossypium hirsutum, Upon Infestation by the Cotton Aphid, Aphis gossypii. Journal of Chemical Ecology, 2011, 37, 741-750.	1.8	56
37	Differential responses of leaf water-use efficiency and photosynthetic nitrogen-use efficiency to fertilization in Bt-introduced and conventional rice lines. Photosynthetica, 2011, 49, 507-514.	1.7	12

Non-target organism effects tests on Vip3A and their application to the ecological risk assessment for cultivation of MIR162 maize. Transgenic Research, 2011, 20, 599-611.

#	Article	IF	CITATIONS
39	Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Research, 2011, 20, 665-673.	2.4	221
40	Assessing unintended effects of GM plants on biological species. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2011, 6, 119-124.	1.4	1
41	Effect of relative humidity on population growth of Apolygus lucorum (Heteroptera: Miridae). Applied Entomology and Zoology, 2011, 46, 421-427.	1.2	27
42	<i>Bt</i> maize and integrated pest management ―a European perspective. Pest Management Science, 2011, 67, 1049-1058.	3.4	45
43	Functional characterization and immunolocalization of odorant binding protein 1 in the lucerne plant bug, <i>Adelphocoris lineolatus</i> (GOEZE). Archives of Insect Biochemistry and Physiology, 2011, 77, 81-99.	1.5	66
44	Evidence of Female-Produced Sex Pheromone of Adelphocoris suturalis (Hemiptera: Miridae): Effect of Age and Time of Day. Journal of Economic Entomology, 2011, 104, 1189-1194.	1.8	13
45	Science and Environmental Law: Collaboration across the Double Helix. Environmental Law Review, 2011, 13, 169-198.	0.4	12
46	Plant Genetics, Sustainable Agriculture and Global Food Security. Genetics, 2011, 188, 11-20.	2.9	157
47	Early Season Host Plants of <i>Apolygus lucorum</i> (Heteroptera: Miridae) in Northern China. Journal of Economic Entomology, 2012, 105, 1603-1611.	1.8	29
48	Bt Crops: Past and Future. , 2012, , 283-304.		16
49	Effect of temperature on the toxicity of several insecticides to <i>Apolygus lucorum</i> (Heteroptera: Miridae). Journal of Pesticide Sciences, 2012, 37, 135-139.	1.4	15
50	Scientific Opinion on a request from the European Commission related to the emergency measure notified by France on genetically modified maize MON 810 according to Article 34 of Regulation (EC) No 1829/2003. EFSA Journal, 2012, 10, 2705.	1.8	13
51	Bacterial Entomopathogens. , 2012, , 265-349.		76
52	Biotechnology in agriculture. Progress in Physical Geography, 2012, 36, 747-763.	3.2	39
53	Identification and Binding Characterization of Three Odorant Binding Proteins and One Chemosensory Protein from Apolygus lucorum (Meyer-Dur). Journal of Chemical Ecology, 2012, 38, 1163-1170.	1.8	46
54	Nymphal and adult performance of Apolygus lucorum (Hemiptera: Miridae) on a preferred host plant, mungbean Vigna radiata. Applied Entomology and Zoology, 2012, 47, 191-197.	1.2	15
55	Comparison of Cotton Square and Boll Damage and Resulting Lint and Seed Loss Caused by Verde Plant Bug, <i>Creontiades signatus</i> ¹ . Southwestern Entomologist, 2012, 37, 437-447.	0.2	6
56	Diapause Induction in <i>Apolygus lucorum</i> and <i>Adelphocoris suturalis</i> (Hemiptera: Miridae) in Northern China. Environmental Entomology, 2012, 41, 1606-1611.	1.4	17

#	Article	IF	CITATIONS
57	Assessment of physiological sublethal effects of imidacloprid on the mirid bug Apolygus lucorum (Meyer-Dür). Ecotoxicology, 2012, 21, 1989-1997.	2.4	98
58	Intra-species Mixture Alters Pest and Disease Severity in Cotton. Environmental Entomology, 2012, 41, 1029-1036.	1.4	11
59	Bt cotton and sustainability of pesticide reductions in India. Agricultural Systems, 2012, 107, 47-55.	6.1	80
60	Early detection of field-evolved resistance to Bt cotton in China: Cotton bollworm and pink bollworm. Journal of Invertebrate Pathology, 2012, 110, 301-306.	3.2	67
61	Inventing Makhathini: Creating a prototype for the dissemination of genetically modified crops into Africa. Geoforum, 2012, 43, 784-792.	2.5	28
64	Cotton Plants Expressing a Hemipteran-Active Bacillus thuringiensis Crystal Protein Impact the Development and Survival of Lygus hesperus (Hemiptera: Miridae) Nymphs. Journal of Economic Entomology, 2012, 105, 616-624.	1.8	66
65	Effects of Transgenic Bt+CpTI Cotton on Field Abundance of Non-Target Pests and Predators in Xinjiang, China. Journal of Integrative Agriculture, 2012, 11, 1493-1499.	3.5	10
66	Establishment of an Artificial Diet for Successive Rearing of <i>Apolygus lucorum</i> (Hemiptera: Miridae). Journal of Economic Entomology, 2012, 105, 1921-1928.	1.8	10
68	Molecular Characterization of Novel Serovars of Bacillus thuringiensis Isolates from India. Indian Journal of Microbiology, 2012, 52, 332-336.	2.7	2
69	Toxins for Transgenic Resistance to Hemipteran Pests. Toxins, 2012, 4, 405-429.	3.4	126
70	New Approaches to Agricultural Insect Pest Control Based on RNA Interference. Advances in Insect Physiology, 2012, , 73-117.	2.7	34
71	Improvement of Pest Resistance in Transgenic Tobacco Plants Expressing dsRNA of an Insect-Associated Gene EcR. PLoS ONE, 2012, 7, e38572.	2.5	125
72	A new gene from <i>Xenorhabdus bovienii</i> and its encoded protease inhibitor protein against <i>Acyrthosiphon pisum</i> . Pest Management Science, 2012, 68, 1345-1351.	3.4	9
73	Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature, 2012, 487, 362-365.	27.8	659
74	Molecular characterization of <i>Bacillus thuringiensis</i> isolated from diverse habitats of India. Journal of Basic Microbiology, 2012, 52, 437-445.	3.3	3
75	Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10275-10280.	7.1	158
76	Bt rice expressing Cry1Ab does not stimulate an outbreak of its non-target herbivore, Nilaparvata lugens. Transgenic Research, 2012, 21, 279-291.	2.4	38
77	Cysteine protease enhances plant-mediated bollworm RNA interference. Plant Molecular Biology, 2013, 83, 119-129.	3.9	49

#	Article	IF	CITATIONS
78	Resistance Mechanisms Against Arthropod Herbivores in Cotton and Their Interactions with Natural Enemies. Critical Reviews in Plant Sciences, 2013, 32, 458-482.	5.7	73
79	Bitrophic toxicity of Cry1Ac to <i><scp>C</scp>ycloneda sanguinea</i> , a predator in <scp>B</scp> razilian cotton. Entomologia Experimentalis Et Applicata, 2013, 148, 105-115.	1.4	7
80	Promise and issues of genetically modified crops. Current Opinion in Plant Biology, 2013, 16, 255-260.	7.1	53
81	Towards the elements of successful insect RNAi. Journal of Insect Physiology, 2013, 59, 1212-1221.	2.0	399
82	Pyrosequencing of the adult tarnished plant bug, <i><scp>L</scp>ygus lineolaris</i> , and characterization of messages important in metabolism and development. Entomologia Experimentalis Et Applicata, 2013, 146, 364-378.	1.4	11
83	Field Evaluation of Bt Cotton Crop Impact on Nontarget Pests: Cotton Aphid and Boll Weevil. Neotropical Entomology, 2013, 42, 102-111.	1.2	15
84	Combination of Plant and Insect Eggs as Food Sources Facilitates Ovarian Development in an Omnivorous Bug <i>Apolygus lucorum</i> (Hemiptera: Miridae). Journal of Economic Entomology, 2013, 106, 1200-1208.	1.8	18
85	Repellency of dimethyl disulfide to Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) under laboratory and field conditions. Crop Protection, 2013, 50, 40-45.	2.1	12
86	Risk preferences and pesticide use by cotton farmers in China. Journal of Development Economics, 2013, 103, 202-215.	4.5	202
87	Identification and characterization of (E)-β-caryophyllene synthase and α/β-pinene synthase potentially involved in constitutive and herbivore-induced terpene formation in cotton. Plant Physiology and Biochemistry, 2013, 73, 302-308.	5.8	68
88	Nymphal performance correlated with adult preference for flowering host plants in a polyphagous mirid bug, Apolygus lucorum (Heteroptera: Miridae). Arthropod-Plant Interactions, 2013, 7, 83-91.	1.1	31
89	Surface Plasmon Resonance Detection of Transgenic <i>Cry1Ac</i> Cotton (Gossypium spp.). Journal of Agricultural and Food Chemistry, 2013, 61, 2964-2969.	5.2	17
90	Current Status of Insecticide Resistance in <i>Helicoverpa armigera</i> After 15 Years of Bt Cotton Planting in China. Journal of Economic Entomology, 2013, 106, 375-381.	1.8	114
91	Depressed performance and detoxification enzyme activities of <i>Helicoverpa armigera</i> fed with conventional cotton foliage subjected to methyl jasmonate exposure. Entomologia Experimentalis Et Applicata, 2013, 147, 186-195.	1.4	21
92	Threshold-based interventions for cotton pest control in West Africa: What's up 10 years later?. Crop Protection, 2013, 43, 157-165.	2.1	22
93	Farmers' knowledge on pest management and pesticide use in Bt cotton production in china. China Economic Review, 2013, 27, 15-24.	4.4	72
94	The Preferential Binding of a Sensory Organ Specific Odorant Binding Protein of the Alfalfa Plant Bug Adelphocoris lineolatus AlinOBP10 to Biologically Active Host Plant Volatiles. Journal of Chemical Ecology, 2013, 39, 1221-1231.	1.8	38
95	Effects of Two Bt Rice Lines T2A-1 and T1C-19 on the Ecological Fitness and Detoxification Enzymes of <l>Nilaparvata lugens</l> (Hemiptera: Delphacidae) From Different Populations. Journal of Economic Entomology, 2013, 106, 1887-1893.	1.8	7

#	Article	IF	CITATIONS
96	Impact of Six Transgenic <i>Bacillus thuringiensis</i> Rice Lines on Four Nontarget Thrips Species Attacking Rice Panicles in the Paddy Field. Environmental Entomology, 2013, 42, 173-180.	1.4	8
97	Plant Growth Stage-Specific Injury and Economic Injury Level for Verde Plant Bug, <i>Creontiades signatus</i> (Hemiptera: Miridae), on Cotton: Effect of Bloom Period of Infestation. Journal of Economic Entomology, 2013, 106, 2077-2083.	1.8	15
98	Pest trade-offs in technology: reduced damage by caterpillars in Bt cotton benefits aphids. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130042.	2.6	49
99	Resolving multiple host use of an emergent pest of cotton with microsatellite data and chloroplast markers (<i>Creontiades dilutus</i> StA¥l; Hemiptera, Miridae). Bulletin of Entomological Research, 2013, 103, 611-618.	1.0	11
100	Differential effects of an exotic plant virus on its two closely related vectors. Scientific Reports, 2013, 3, 2230.	3.3	55
101	A method for field assessment of plant injury elicited by the salivary proteins of <i><scp>A</scp>polygus lucorum</i> . Entomologia Experimentalis Et Applicata, 2013, 149, 292-297.	1.4	14
102	Retargeting of the <i>Bacillus thuringiensis</i> toxin Cyt2Aa against hemipteran insect pests. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8465-8470.	7.1	90
103	Preference of a Polyphagous Mirid Bug, Apolygus lucorum (Meyer-Dür) for Flowering Host Plants. PLoS ONE, 2013, 8, e68980.	2.5	45
104	Ecoinformatics Can Reveal Yield Gaps Associated with Crop-Pest Interactions: A Proof-of-Concept. PLoS ONE, 2013, 8, e80518.	2.5	21
105	Silencing the <i>HaHR3</i> Gene by Transgenic Plant-mediated RNAi to Disrupt <i>Helicoverpa armigera</i> Development. International Journal of Biological Sciences, 2013, 9, 370-381.	6.4	116
106	Enhanced Whitefly Resistance in Transgenic Tobacco Plants Expressing Double Stranded RNA of v-ATPase A Gene. PLoS ONE, 2014, 9, e87235.	2.5	163
107	Identification of the Key Weather Factors Affecting Overwintering Success of Apolygus lucorum Eggs in Dead Host Tree Branches. PLoS ONE, 2014, 9, e94190.	2.5	10
108	Comparative Mitogenomics of Plant Bugs (Hemiptera: Miridae): Identifying the AGG Codon Reassignments between Serine and Lysine. PLoS ONE, 2014, 9, e101375.	2.5	26
109	Aphid Honeydew Quality as a Food Source for Parasitoids Is Maintained in Bt Cotton. PLoS ONE, 2014, 9, e107806.	2.5	16
110	Effects of Bt+CpTI transgenic cotton on the performance of Tetranychus turkestani (Acari:ATetranychidae). Systematic and Applied Acarology, 2014, 19, 236.	0.5	8
111	No impact of Bt soybean that express Cry1Ac protein on biological traits of Euschistus heros (Hemiptera, Pentatomidae) and its egg parasitoid Telenomus podisi (Hymenoptera, Platygastridae). Revista Brasileira De Entomologia, 2014, 58, 285-290.	0.4	8
112	Functional response and mutual interference of <i>Peristenus spretus</i> (Hymenoptera: Braconidae), a parasitoid of <i>Apolygus lucorum</i> (Heteroptera: Miridae). Biocontrol Science and Technology, 2014, 24, 247-256.	1.3	21
113	Risk management tools and the case study Brassica napus: Evaluating possible effects of genetically modified plants on soil microbial diversity. Science of the Total Environment, 2014, 493, 983-994.	8.0	4

#	Article	IF	CITATIONS
114	Lethal and sublethal effects of cycloxaprid, a novel cis-nitromethylene neonicotinoid insecticide, on the mirid bug Apolygus lucorum. Journal of Pest Science, 2014, 87, 731-738.	3.7	68
115	Arthropod Abundance and Diversity in Transgenic Bt Soybean. Environmental Entomology, 2014, 43, 1124-1134.	1.4	15
116	20â€hydroxyecdysone transcriptionally regulates humoral immunity in the fat body of <i><scp>H</scp>elicoverpa armigera</i> . Insect Molecular Biology, 2014, 23, 842-856.	2.0	35
117	Sustainability and innovation in staple crop production in the US Midwest. International Journal of Agricultural Sustainability, 2014, 12, 71-88.	3.5	67
118	Intraspecies mixture exerted contrasting effects on nontarget arthropods of <i>Bacillus thuringiensis</i> cotton in northern China. Agricultural and Forest Entomology, 2014, 16, 24-32.	1.3	5
119	Landscape Effects of a Non-Native Grass Facilitate Source Populations of a Native Generalist Bug,Stenotus rubrovittatus, in a Heterogeneous Agricultural Landscape. Journal of Insect Science, 2014, 14, 1-14.	1.5	8
120	The mitochondrial genome of the plant bug <i>Apolygus lucorum</i> (Hemiptera: Miridae): Presently known as the smallest in Heteroptera. Insect Science, 2014, 21, 159-173.	3.0	24
121	The antennaâ€specific odorantâ€binding protein <scp>AlinOBP13</scp> of the alfalfa plant bug <i><scp>A</scp>delphocoris lineolatus</i> is expressed specifically in basiconic sensilla and has high binding affinity to terpenoids. Insect Molecular Biology, 2014, 23, 417-434.	2.0	62
122	MOLECULAR CHARACTERIZATION OF SOLUBLE AND MEMBRANEâ€BOUND TREHALASES IN THE COTTON MIRID BUG, <i>Apolygus lucorum</i> . Archives of Insect Biochemistry and Physiology, 2014, 86, 107-121.	1.5	18
123	Single and fused transgenic <i>Bacillus thuringiensis</i> rice alter the speciesâ€specific responses of nonâ€target planthoppers to elevated carbon dioxide and temperature. Pest Management Science, 2014, 70, 734-742.	3.4	16
124	Transgenic cry1Ab/vip3H+epsps Rice with Insect and Herbicide Resistance Acted No Adverse Impacts on the Population Growth of a Non-Target Herbivore, the White-Backed Planthopper, Under Laboratory and Field Conditions. Journal of Integrative Agriculture, 2014, 13, 2678-2689.	3.5	10
125	Seasonal Migration of <l>Apolygus lucorum</l> (Hemiptera: Miridae) Over the Bohai Sea in Northern China. Journal of Economic Entomology, 2014, 107, 1399-1410.	1.8	28
126	Morphology and Chemical Analysis of the Metathoracic Scent Glands System in Adelphocoris suturalis (Hemiptera: Miridae). Journal of Insect Science, 2014, 14, .	1.5	7
127	GM Crops, Organic Agriculture and Breeding for Sustainability. Sustainability, 2014, 6, 4273-4286.	3.2	59
128	Role of Genetically Modified Insect-Resistant Crops in IPM. , 2014, , 371-399.		4
129	Delivery of intrahemocoelic peptides for insect pest management. Trends in Biotechnology, 2014, 32, 91-98.	9.3	30
130	Biological control of cotton pests in China. Biological Control, 2014, 68, 6-14.	3.0	59
131	Perception of potential sex pheromones and host-associated volatiles in the cotton plant bug, Adelphocoris fasciaticollis (Hemiptera: Miridae): morphology and electrophysiology. Applied Entomology and Zoology, 2014, 49, 43-57.	1.2	31

#	Article	IF	CITATIONS
132	Engineering yields and inequality? How institutions and agro-ecology shape Bt cotton outcomes in Burkina Faso. Geoforum, 2014, 53, 161-171.	2.5	55
133	Biosafety management and commercial use of genetically modified crops in China. Plant Cell Reports, 2014, 33, 565-573.	5.6	74
134	Intensive cotton farming technologies in China: Achievements, challenges and countermeasures. Field Crops Research, 2014, 155, 99-110.	5.1	224
135	Toxin delivery by the coat protein of an aphid-vectored plant virus provides plant resistance to aphids. Nature Biotechnology, 2014, 32, 102-105.	17.5	66
136	Comparative incidence of cotton spider mites on transgenic Bt versus conventional cotton in relation to contents of secondary metabolites. Arthropod-Plant Interactions, 2014, 8, 1-7.	1.1	15
137	Farmer and Market Interactions in using Biotech Cotton Varieties and Seed. A Case in Northern China. Journal of Development Studies, 2014, 50, 696-714.	2.1	2
138	De novo analysis of the Adelphocoris suturalis Jakovlev metathoracic scent glands transcriptome and expression patterns of pheromone biosynthesis-related genes. Gene, 2014, 551, 271-278.	2.2	14
139	Fifty Years Since <i>Silent Spring</i> . Annual Review of Phytopathology, 2014, 52, 377-402.	7.8	59
140	Influence of transgenic rice expressing a fused Cry1Ab/1Ac protein on frogs in paddy fields. Ecotoxicology, 2014, 23, 1619-1628.	2.4	12
141	Performance of Three Adelphocoris spp. (Hemiptera: Miridae) on Flowering and Non-flowering Cotton and Alfalfa. Journal of Integrative Agriculture, 2014, 13, 1727-1735.	3.5	5
142	Binding Site Concentration Explains the Differential Susceptibility of Chilo suppressalis and Sesamia inferens to Cry1A-Producing Rice. Applied and Environmental Microbiology, 2014, 80, 5134-5140.	3.1	17
143	Investment in plant research and development bears fruit in China. Plant Cell Reports, 2014, 33, 541-550.	5.6	7
144	Characterizing heat shock protein 90 gene of Apolygus lucorum (Meyer-Dür) and its expression in response to different temperature and pesticide stresses. Cell Stress and Chaperones, 2014, 19, 725-739.	2.9	47
145	From Integrated to System-Wide Pest Management: Challenges for Sustainable Agriculture. Outlooks on Pest Management, 2014, 25, 212-213.	0.2	8
146	The seesaw effect of winter temperature change on the recruitment of cotton bollworms H elicoverpa armigera through mismatched phenology. Ecology and Evolution, 2015, 5, 5652-5661.	1.9	14
147	Volatile fragrances associated with flowers mediate host plant alternation of a polyphagous mirid bug. Scientific Reports, 2015, 5, 14805.	3.3	49
148	Characterization of Adelphocoris suturalis (Hemiptera: Miridae) Transcriptome from Different Developmental Stages. Scientific Reports, 2015, 5, 11042.	3.3	17
149	Bt crops benefit natural enemies to control non-target pests. Scientific Reports, 2015, 5, 16636.	3.3	31

#	Article	IF	CITATIONS
150	Is the economic benefit of Bt cotton dying away in China. China Agricultural Economic Review, 2015, 7, 322-336.	3.7	8
151	First Record of <i>Heliothis virescens</i> (Lepidoptera: Noctuidae) Damaging Table Grape Bunches. Florida Entomologist, 2015, 98, 783-786.	0.5	5
152	Insecticide susceptibility of the green plant bug, Apolygus lucorum Meyer-Dür (Homoptera: Miridae) and two predatory arthropods. Journal of Plant Protection Research, 2015, 55, 362-370.	1.0	7
153	Ecdysone receptor isoformâ€B mediates soluble trehalase expression to regulate growth and development in the mirid bug, <scp><i>A</i></scp> <i>polygus lucorum</i> (<scp>M</scp> eyerâ€< scp>Dür). Insect Molecular Biology, 2015, 24, 611-623.	2.0	14
154	Sublethal effects of Bt toxin and chlorpyrifos on various <i><scp>S</scp>podoptera exigua</i> populations. Entomologia Experimentalis Et Applicata, 2015, 157, 214-219.	1.4	2
155	Crop dominance exerts specific effects on foliage-dwelling arthropods inBacillus thuringiensiscotton. Agricultural and Forest Entomology, 2015, 17, 225-238.	1.3	3
156	Relevance of Crop Biology for Environmental Risk Assessment of Genetically Modified Crops in Africa. Frontiers in Bioengineering and Biotechnology, 2015, 3, 150.	4.1	1
157	Specificity and Combinatorial Effects of Bacillus Thuringiensis Cry Toxins in the Context of GMO Environmental Risk Assessment. Frontiers in Environmental Science, 2015, 3, .	3.3	39
158	Seasonal Alterations in Host Range and Fidelity in the Polyphagous Mirid Bug, Apolygus lucorum (Heteroptera: Miridae). PLoS ONE, 2015, 10, e0117153.	2.5	22
159	Attitudes in China about Crops and Foods Developed by Biotechnology. PLoS ONE, 2015, 10, e0139114.	2.5	19
160	Effects of Transgenic cry1Ca Rice on the Development of Xenopus laevis. PLoS ONE, 2015, 10, e0145412.	2.5	8
161	GM trees with increased resistance to herbivores: trait efficiency and their potential to promote tree growth. Frontiers in Plant Science, 2015, 6, 279.	3.6	4
162	Cotton Insect Pest Management. Agronomy, 2015, , 509-546.	0.2	28
163	Biosafety Risk of Genetically Modified Crops Containing Cry Genes. Environmental Chemistry for A Sustainable World, 2015, , 307-334.	0.5	1
164	Characterization of competitive interactions in the coexistence of Bt-transgenic and conventional rice. BMC Biotechnology, 2015, 15, 27.	3.3	17
165	Inhibition of <i>Helicoverpa zea</i> (Lepidoptera: Noctuidae) Growth by Transgenic Corn Expressing Bt Toxins and Development of Resistance to Cry1Ab. Environmental Entomology, 2015, 44, 1275-1285.	1.4	48
166	Effect of temperature on the reproductive biology of <i>Peristenus spretus</i> (Hymenoptera:) Tj ETQq0 0 0 rgB Biocontrol Science and Technology, 2015, 25, 1410-1425.	[/Overlock 1.3	10 Tf 50 107 17
167	A Combination of Olfactory and Visual Cues Enhance the Behavioral Responses of Apolygus lucorum. Journal of Insect Behavior, 2015, 28, 525-534.	0.7	14

#	Article	IF	CITATIONS
168	Variation in P450-mediated fenvalerate resistance levels is not correlated with CYP337B3 genotype in Chinese populations of Helicoverpa armigera. Pesticide Biochemistry and Physiology, 2015, 121, 129-135.	3.6	28
169	No scientific consensus on GMO safety. Environmental Sciences Europe, 2015, 27, .	5.5	119
170	Approaches to Translational Plant Science. Advances in Agronomy, 2015, , 305-335.	5.2	1
171	A 3-year field investigation of impacts of Monsanto's transgenic Bt-cotton NC 33B on rhizosphere microbial communities in northern China. Applied Soil Ecology, 2015, 89, 18-24.	4.3	22
172	An olfactory receptor from Apolygus lucorum (Meyer-Dur) mainly tuned to volatiles from flowering host plants. Journal of Insect Physiology, 2015, 79, 36-41.	2.0	56
173	Deconstructing Indian cotton: weather, yields, and suicides. Environmental Sciences Europe, 2015, 27, .	5.5	45
174	Prescriptive and empirical principles of applied ecology. Environmental Reviews, 2015, 23, 170-176.	4.5	9
175	Participatory tomato breeding for organic conditions in Italy. Euphytica, 2015, 204, 179-197.	1.2	47
176	Field resistance monitoring of Apolygus lucorum (Hemiptera: Miridae) in Shandong, China to seven commonly used insecticides. Crop Protection, 2015, 76, 127-133.	2.1	19
177	Are nematodes a missing link in the confounded ecology of the entomopathogen Bacillus thuringiensis?. Trends in Microbiology, 2015, 23, 341-346.	7.7	52
178	Engineered chloroplast dsRNA silences <i>cytochrome p450 monooxygenase</i> , <i> V</i> â€ <i>ATPase</i> and <i>chitin synthase</i> genes in the insect gut and disrupts <i>Helicoverpa armigera</i> larval development and pupation. Plant Biotechnology Journal, 2015, 13, 435-446.	8.3	144
179	Transgenic <i>cry1C</i> or <i>cry2A</i> rice has no adverse impacts on the lifeâ€table parameters and population dynamics of the brown planthopper, <i>Nilaparvata lugens</i> (Hemiptera: Delphacidae). Pest Management Science, 2015, 71, 937-945.	3.4	13
180	Sex pheromone of the alfalfa plant bug, <i><scp>A</scp>delphocoris lineolatus</i> . Entomologia Experimentalis Et Applicata, 2015, 156, 263-270.	1.4	17
181	Molecular and functional characterization of the ecdysone receptor isoform-A from the cotton mirid bug, Apolygus lucorum (Meyer-Dür). Gene, 2015, 574, 88-94.	2.2	8
182	Chemosensillum immunolocalization and ligand specificity of chemosensory proteins in the alfalfa plant bug Adelphocoris lineolatus (Goeze). Scientific Reports, 2015, 5, 8073.	3.3	38
183	Potential of the bean αâ€amylase inhibitor α <scp>Al</scp> â€1 to inhibit αâ€amylase activity in true bugs (Hemiptera). Journal of Applied Entomology, 2015, 139, 192-200.	1.8	7
184	Identification of female sex pheromone of a plant bug, <i>Adelphocoris fasciaticollis</i> Reuter (Hemiptera: Miridae). Journal of Applied Entomology, 2015, 139, 87-93.	1.8	16
185	The impact of secondary pests on <i>Bacillus thuringiensis (Bt)</i> crops. Plant Biotechnology Journal, 2015, 13, 601-612.	8.3	62

#	Article	IF	CITATIONS
186	Nonparametric Estimation of Interspecific Spatio-Temporal Niche Separation Between Two Lady Beetles (Coleoptera: Coccinellidae) inBtCotton Fields. Annals of the Entomological Society of America, 2015, 108, 807-813.	2.5	3
187	Insecticide Toxicity to <i>Adelphocoris lineolatus</i> (Hemiptera: Miridae) and its Nymphal Parasitoid <i>Peristenus spretus</i> (Hymenoptera: Braconidae). Journal of Economic Entomology, 2015, 108, 1779-1785.	1.8	8
188	Larval development of Spodoptera eridania (Cramer) fed on leaves of Bt maize expressing Cry1F and Cry1F + Cry1A.105 + Cry2Ab2 proteins and its non-Bt isoline. Revista Brasileira De Entomologia, 2015, 59, 7-11.	0.4	2
189	Influence of genetically modified organisms on agro-ecosystem processes. Agriculture, Ecosystems and Environment, 2015, 214, 96-106.	5.3	25
190	Laboratory Evaluation of Acute Toxicity of the Essential Oil of <i>Allium tuberosum</i> Leaves and Its Selected Major Constituents Against <i>Apolygus lucorum</i> (Hemiptera: Miridae). Journal of Insect Science, 2015, 15, 117.	1.5	9
191	A point mutation in the acetylcholinesterase-1 gene is associated with chlorpyrifos resistance in the plant bug Apolygus lucorum. Insect Biochemistry and Molecular Biology, 2015, 65, 75-82.	2.7	24
192	Detection of Bacillus thuringiensis Cry1Ab protein based on surface plasmon resonance immunosensor. Analytical Biochemistry, 2015, 468, 59-65.	2.4	14
193	Information, trust and pesticide overuse: Interactions between retailers and cotton farmers in China. Njas - Wageningen Journal of Life Sciences, 2015, 72-73, 23-32.	7.7	83
194	The raison d'être of chemical ecology. Ecology, 2015, 96, 617-630.	3.2	83
195	Effect of Water on Survival and Development of Diapausing Eggs of Apolygus lucorum (Hemiptera:) Tj ETQq1 1	0.784314 2.5	∙rg₿T /Overloc
195 196	Effect of Water on Survival and Development of Diapausing Eggs of Apolygus lucorum (Hemiptera:) Tj ETQq1 1 Assessing Potential Impact of Bt Eggplants on Non-Target Arthropods in the Philippines. PLoS ONE, 2016, 11, e0165190.	0.784314 2.5 2.5	rgBT /Overloc
195 196 197	Effect of Water on Survival and Development of Diapausing Eggs of Apolygus lucorum (Hemiptera:) Tj ETQq1 1 Assessing Potential Impact of Bt Eggplants on Non-Target Arthropods in the Philippines. PLoS ONE, 2016, 11, e0165190. Central Projection of Antennal Sensory Neurons in the Central Nervous System of the Mirid Bug Apolygus lucorum (Meyer-Dür). PLoS ONE, 2016, 11, e0160161.	0.784314 2.5 2.5	rgBT /Overloc 19 8
195 196 197 198	Effect of Water on Survival and Development of Diapausing Eggs of Apolygus lucorum (Hemiptera:) Tj ETQq1 1 Assessing Potential Impact of Bt Eggplants on Non-Target Arthropods in the Philippines. PLoS ONE, 2016, 11, e0165190. Central Projection of Antennal Sensory Neurons in the Central Nervous System of the Mirid Bug Apolygus lucorum (Meyer-Dür). PLoS ONE, 2016, 11, e0160161. The Mouthparts Enriched Odorant Binding Protein 11 of the Alfalfa Plant Bug Adelphocoris lineolatus Displays a Preferential Binding Behavior to Host Plant Secondary Metabolites. Frontiers in Physiology, 2016, 7, 201.	0.784314 2.5 2.5 2.5 2.8	rg&T /Overloc 19 8 49
195 196 197 198	Effect of Water on Survival and Development of Diapausing Eggs of Apolygus lucorum (Hemiptera:) Tj ETQq1 1 Assessing Potential Impact of Bt Eggplants on Non-Target Arthropods in the Philippines. PLoS ONE, 2016, 11, e0165190. Central Projection of Antennal Sensory Neurons in the Central Nervous System of the Mirid Bug Apolygus lucorum (Meyer-DĂ1/4r). PLoS ONE, 2016, 11, e0160161. The Mouthparts Enriched Odorant Binding Protein 11 of the Alfalfa Plant Bug Adelphocoris lineolatus Displays a Preferential Binding Behavior to Host Plant Secondary Metabolites. Frontiers in Physiology, 2016, 7, 201. Conservation Biological Control of Pests in the Molecular Era: New Opportunities to Address Old Constraints. Frontiers in Plant Science, 2015, 6, 1255.	0.784314 2.5 2.5 2.8 3.6	• rg&T /Overloc 19 8 49 51
195 196 197 198 199	Effect of Water on Survival and Development of Diapausing Eggs of Apolygus lucorum (Hemiptera:) Tj ETQq1 1Assessing Potential Impact of Bt Eggplants on Non-Target Arthropods in the Philippines. PLoS ONE, 2016, 11, e0165190.Central Projection of Antennal Sensory Neurons in the Central Nervous System of the Mirid Bug Apolygus lucorum (Meyer-DÃJ/ar). PLoS ONE, 2016, 11, e0160161.The Mouthparts Enriched Odorant Binding Protein 11 of the Alfalfa Plant Bug Adelphocoris lineolatus Displays a Preferential Binding Behavior to Host Plant Secondary Metabolites. Frontiers in Physiology, 2016, 7, 201.Conservation Biological Control of Pests in the Molecular Era: New Opportunities to Address Old Constraints. Frontiers in Plant Science, 2015, 6, 1255.Enhancing Integrated Pest Management in GM Cotton Systems Using Host Plant Resistance. Frontiers in Plant Science, 2016, 7, 500.	0.784314 2.5 2.5 2.8 3.6 3.6	• rg&T /Overloc 19 8 49 51 49
 195 196 197 198 199 200 201 	Effect of Water on Survival and Development of Diapausing Eggs of Apolygus lucorum (Hemiptera:) Tj ETQq1 1 Assessing Potential Impact of Bt Eggplants on Non-Target Arthropods in the Philippines. PLoS ONE, 2016, 11, e0165190. Central Projection of Antennal Sensory Neurons in the Central Nervous System of the Mirid Bug Apolygus lucorum (Meyer-D¼r). PLoS ONE, 2016, 11, e0160161. The Mouthparts Enriched Odorant Binding Protein 11 of the Alfalfa Plant Bug Adelphocoris lineolatus Displays a Preferential Binding Behavior to Host Plant Secondary Metabolites. Frontiers in Physiology, 2016, 7, 201. Conservation Biological Control of Pests in the Molecular Era: New Opportunities to Address Old Constraints. Frontiers in Plant Science, 2015, 6, 1255. Enhancing Integrated Pest Management in GM Cotton Systems Using Host Plant Resistance. Frontiers in Plant Science, 2016, 7, 500. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities. Frontiers in Plant Science, 2016, 7, 1794.	0.7 <u>8</u> 4314 2.5 2.5 2.8 3.6 3.6 3.6	• rg & T /Overloc 19 & 49 51 49 74
 195 196 197 198 198 200 201 202 	Effect of Water on Survival and Development of Diapausing Eggs of Apolygus lucorum (Hemiptera:) Tj ETQq1 1 Assessing Potential Impact of Bt Eggplants on Non-Target Arthropods in the Philippines. PLoS ONE, 2016, 11, e0165190. Central Projection of Antennal Sensory Neurons in the Central Nervous System of the Mirid Bug Apolygus lucorum (Meyer-DAI/ar). PLoS ONE, 2016, 11, e0160161. The Mouthparts Enriched Odorant Binding Protein 11 of the Alfalfa Plant Bug Adelphocoris lineolatus Displays a Preferential Binding Behavior to Host Plant Secondary Metabolites. Frontiers in Physiology, 2016, 7, 201. Conservation Biological Control of Pests in the Molecular Era: New Opportunities to Address Old Constraints. Frontiers in Plant Science, 2015, 6, 1255. Enhancing Integrated Pest Management in GM Cotton Systems Using Host Plant Resistance. Frontiers in Plant Science, 2016, 7, 1794. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities. Frontiers in Plant Science, 2016, 7, 1794. Farming and Cultivation Technologies of Cotton in China., 0, , .	0.7 <u>8</u> 4314 2.5 2.5 2.8 3.6 3.6 3.6	• rg&T /Overloc 19 & 49 51 49 74 3

#	Article	IF	CITATIONS
204	Effects of Transgenic Bt Rice on Nontarget <i>Rhopalosiphum maidis</i> (Homoptera: Aphididae). Environmental Entomology, 2016, 45, 1090-1096.	1.4	6
205	RNAiâ€mediated plant protection against aphids. Pest Management Science, 2016, 72, 1090-1098.	3.4	117
206	Oviposition and feeding avoidance in <i>Helicoverpa armigera</i> (Hübner) against transgenic Bt cotton. Journal of Applied Entomology, 2016, 140, 715-724.	1.8	15
207	Identification and expression analysis of an olfactory receptor gene family in green plant bug Apolygus lucorum (Meyer-Dür). Scientific Reports, 2016, 6, 37870.	3.3	41
208	Nitenpyram, Dinotefuran, and Thiamethoxam Used as Seed Treatments Act as Efficient Controls against <i>Aphis gossypii</i> via High Residues in Cotton Leaves. Journal of Agricultural and Food Chemistry, 2016, 64, 9276-9285.	5.2	29
209	Resistance to dual-gene Bt maize in Spodoptera frugiperda: selection, inheritance and cross-resistance to other transgenic events. Scientific Reports, 2016, 5, 18243.	3.3	101
210	Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly). Plant Biotechnology Journal, 2016, 14, 1956-1975.	8.3	109
211	Weed and insect control affected by mixing insecticides with glyphosate in cotton. Journal of Integrative Agriculture, 2016, 15, 373-380.	3.5	11
212	The Joint Toxicity of Different Temperature Coefficient Insecticides on <i>Apolygus lucorum</i> (Hemiptera: Miridae). Journal of Economic Entomology, 2016, 109, 1846-1852.	1.8	8
213	Molecular Cloning and the Expression Profile of Vitellogenin in Relation to Tissue and Food Source in <i>Apolygus lucorum</i> (Hemiptera: Miridae). Annals of the Entomological Society of America, 2016, 109, 350-356.	2.5	7
214	Consumer acceptance of food crops developed by genome editing. Plant Cell Reports, 2016, 35, 1507-1518.	5.6	124
215	Does feeding behavior of a zoophytophagous mirid differ between host plant and insect prey items?. Arthropod-Plant Interactions, 2016, 10, 79-86.	1.1	9
216	Genetically Modified Crops and Agricultural Development. , 2016, , .		44
217	Phage-Mediated Immuno-PCR for Ultrasensitive Detection of Cry1Ac Protein Based on Nanobody. Journal of Agricultural and Food Chemistry, 2016, 64, 7882-7889.	5.2	19
218	Managing maize under pest species competition: Is <i>Bt (Bacillus thuringiensis)</i> maize the solution?. Ecosphere, 2016, 7, e01340.	2.2	6
219	Advances in Managing Pest Resistance to Bt Crops: Pyramids and Seed Mixtures. , 2016, , 263-286.		9
220	The Sustainability of the Farmâ€level Impact of Bt Cotton in China. Journal of Agricultural Economics, 2016, 67, 602-618.	3.5	11
221	Advances in Insect Control and Resistance Management. , 2016, , .		10

#	Article	IF	CITATIONS
222	Toward a Reduced Reliance on Conventional Pesticides in European Agriculture. Plant Disease, 2016, 100, 10-24.	1.4	289
223	Safeguarding pollinators and their values to human well-being. Nature, 2016, 540, 220-229.	27.8	1,204
224	A transgenic approach for controlling Lygus in cotton. Nature Communications, 2016, 7, 12213.	12.8	68
225	What you see is news. Outlook on Agriculture, 2016, 45, 206-214.	3.4	4
226	Biocontrol of the oriental armyworm, Mythimna separata, by the tachinid fly Exorista civilis is synergized by Cry1Ab protoxin. Scientific Reports, 2016, 6, 26873.	3.3	27
227	Difference in leaf water use efficiency/photosynthetic nitrogen use efficiency of Bt-cotton and its conventional peer. Scientific Reports, 2016, 6, 33539.	3.3	18
228	When natural habitat fails to enhance biological pest control – Five hypotheses. Biological Conservation, 2016, 204, 449-458.	4.1	388
229	Stability of Spatial Distributions of Stink Bugs, Boll Injury, and NDVI in Cotton. Environmental Entomology, 2016, 45, 1243-1254.	1.4	7
230	GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium) Tj ETQq0 0 0 r	gBJ_JOverl	ock 10 Tf 50 124
231	Molecular characterisation of the vitellogenin gene (<i>AlVg</i>) and its expression after <i>Apolygus lucorum</i> had fed on different hosts. Pest Management Science, 2016, 72, 1743-1751.	3.4	20
232	Flowers promote ovarian development and vitellogenin gene expression in Apolygus lucorum (Heteroptera: Miridae). Arthropod-Plant Interactions, 2016, 10, 113-119.	1.1	4
233	Identification of Genes Potentially Responsible for extra-Oral Digestion and Overcoming Plant Defense from Salivary Glands of the Tarnished Plant Bug (Hemiptera: Miridae) Using cDNA Sequencing. Journal of Insect Science, 2016, 16, 60.	1.5	31
234	Survey of organophosphate resistance and an Ala216Ser substitution of acetylcholinesterase-1 gene associated with chlorpyrifos resistance in Apolygus lucorum (Meyer-Dür) collected from the transgenic Bt cotton fields in China. Pesticide Biochemistry and Physiology, 2016, 132, 29-37.	3.6	18
235	Competitive release and outbreaks of nonâ€ŧarget pests associated with transgenic <i>Bt</i> cotton. Ecological Applications, 2016, 26, 1047-1054.	3.8	36
236	Identification and functional characterization of four transient receptor potential ankyrin 1 variants in <i>Apolygus lucorum</i> (Meyerâ€Đür). Insect Molecular Biology, 2016, 25, 370-384.	2.0	12
237	Effects of transgenic cry1le maize on non-lepidopteran pest abundance, diversity and community composition. Transgenic Research, 2016, 25, 761-772.	2.4	10
238	Identification of heat shock cognate protein 70 gene (<i>Alhsc</i> 70) of <i>Apolygus lucorum</i> and its expression in response to different temperature and pesticide stresses. Insect Science, 2016, 23, 37-49.	3.0	56
239	A <i>de novo</i> transcriptomic analysis to reveal functional genes in <i>Apolygus lucorum</i> . Insect Science, 2016, 23, 2-14.	3.0	15

#	Article	IF	CITATIONS
240	Transgenic plants expressing the AaIT/GNA fusion protein show increased resistance and toxicity to both chewing and sucking pests. Insect Science, 2016, 23, 265-276.	3.0	22
241	Transgenic Cotton-Fed Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Affects the Parasitoid Encarsia desantisi Viggiani (Hymenoptera: Aphelinidae) Development. Neotropical Entomology, 2016, 45, 102-106.	1.2	7
242	Identification and field verification of sex pheromone from the mirid bug, Adelphocoris suturalis. Chemoecology, 2016, 26, 25-31.	1.1	11
243	Organic management of apple flea weevil, a reemergent pest of commercial apples. Organic Agriculture, 2016, 6, 203-213.	2.4	2
244	Effects of insect-resistant transgenic cotton on ground-dwelling beetle assemblages (Coleoptera). Journal of Integrative Agriculture, 2016, 15, 381-390.	3.5	4
245	Targeting insect mitochondrial complex I for plant protection. Plant Biotechnology Journal, 2016, 14, 1925-1935.	8.3	22
246	Landscape diversity enhances parasitism of cotton bollworm (Helicoverpa armigera) eggs by Trichogramma chilonis in cotton. Biological Control, 2016, 93, 15-23.	3.0	31
247	The New Transgeniccry1Ab/vip3HRice Poses No Unexpected Ecological Risks to Arthropod Communities in Rice Agroecosystems. Environmental Entomology, 2016, 45, 518-525.	1.4	2
248	A point mutation (L1015F) of the voltage-sensitive sodium channel gene associated with lambda-cyhalothrin resistance in Apolygus lucorum (Meyer–Dür) population from the transgenic Bt cotton field of China. Pesticide Biochemistry and Physiology, 2016, 127, 82-89.	3.6	20
249	Odorant-binding and chemosensory proteins identified in the antennal transcriptome of Adelphocoris suturalis Jakovlev. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2017, 24, 139-145.	1.0	33
250	Silencing of odorant binding protein gene <i>AlinOBP4</i> by RNAi induces declining electrophysiological responses of <i>Adelphocoris lineolatus</i> to six semiochemicals. Insect Science, 2017, 24, 789-797.	3.0	52
251	Proteomic analysis of Cry2Aa-binding proteins and their receptor function in Spodoptera exigua. Scientific Reports, 2017, 7, 40222.	3.3	19
252	The genome sequence of a novel RNA virus in Adelphocoris suturalis. Archives of Virology, 2017, 162, 1397-1401.	2.1	12
253	Resistance monitoring of larvae treated with Bt cotton and pesticides in <i>Helicoverpa armigera</i> (Lepidoptera: Noctuidae). Oriental Insects, 2017, 51, 285-296.	0.3	5
254	Variation among conventional cultivars could be used as a criterion for environmental safety assessment of Bt rice on nontarget arthropods. Scientific Reports, 2017, 7, 41918.	3.3	7
255	Who Cares What Others Think (or Do)? Social Learning and Social Pressures in Cotton Farming in India. American Journal of Agricultural Economics, 2017, 99, 988-1007.	4.3	63
256	Knockdown of a metathoracic scent gland desaturase enhances the production of (E)â€4â€oxoâ€2â€hexenal and suppresses female sexual attractiveness in the plant bug <i>Adelphocoris suturalis</i> . Insect Molecular Biology, 2017, 26, 642-653.	2.0	10
257	Functional analysis of femaleâ€biased odorant binding protein 6 for volatile and nonvolatile host compounds in <i>Adelphocoris lineolatus</i>	2.0	38

#	Article	IF	CITATIONS
258	Better cold tolerance of Bt-resistant Spodoptera exigua strain and the corresponding cold-tolerant mechanism. Pesticide Biochemistry and Physiology, 2017, 140, 51-57.	3.6	6
259	A transgenic strategy for controlling plant bugs (<i>Adelphocoris suturalis</i>) through expression of doubleâ€stranded RNA homologous to fatty acylâ€coenzyme A reductase in cotton. New Phytologist, 2017, 215, 1173-1185.	7.3	53
260	Development and Survival of Spodoptera exigua (Lepidoptera: Noctuidae) on Alternate Crops in Cotton Cropping Pattern, With Implications to Integrated Pest Management. Environmental Entomology, 2017, 46, 595-601.	1.4	9
261	Functional analysis of two polygalacturonase genes in <i>Apolygus lucorum</i> associated with eliciting plant injury using RNA interference. Archives of Insect Biochemistry and Physiology, 2017, 94, e21382.	1.5	9
262	Interaction of transgenic and natural insect resistance mechanisms against Spodoptera littoralis in cotton. Pest Management Science, 2017, 73, 1670-1678.	3.4	10
263	Ecoinformatics (Big Data) for Agricultural Entomology: Pitfalls, Progress, and Promise. Annual Review of Entomology, 2017, 62, 399-417.	11.8	43
264	MNE led new market creation in Emerging Countries: The case of Bt cotton. International Business and Management, 2017, , 131-150.	0.1	1
265	The impact of Bt cotton adoption on the stability of pesticide use. Journal of Integrative Agriculture, 2017, 16, 2346-2356.	3.5	10
266	Sterol content in the artificial diet of <i>Mythimna separata</i> affects the metabolomics of <i>Arma chinensis</i> (Fallou) as determined by proton nuclear magnetic resonance spectroscopy. Archives of Insect Biochemistry and Physiology, 2017, 96, e21426.	1.5	4
267	Breeding for Insect Resistance in Sorghum and Millets. , 2017, , 231-264.		3
268	Seed Treatment Combined with a Spot Application of Clothianidin Granules Prolongs the Efficacy of Controlling Piercing–Sucking Insect Pests in Cotton Fields. Journal of Agricultural and Food Chemistry, 2017, 65, 8083-8092.	5.2	6
269	Multitrophic interactions mediate the effects of climate change on herbivore abundance. Oecologia, 2017, 185, 181-190.	2.0	18
270	Nitenpyram seed treatment effectively controls against the mirid bug Apolygus lucorum in cotton seedlings. Scientific Reports, 2017, 7, 8573.	3.3	15
271	Diversifying Food Systems in the Pursuit of Sustainable Food Production and Healthy Diets. Trends in Plant Science, 2017, 22, 842-856.	8.8	169
272	Transcriptome analysis of three cotton pests reveals features of gene expressions in the mesophyll feeder Apolygus lucorum. Science China Life Sciences, 2017, 60, 826-838.	4.9	9
273	Juvenile Hormone Epoxide Hydrolase: a Promising Target for Hemipteran Pest Management. Scientific Reports, 2017, 7, 789.	3.3	17
274	Effects of mating on ovarian development and oviposition of Apolygus lucorum. Journal of Asia-Pacific Entomology, 2017, 20, 1442-1446.	0.9	2
275	Activities of Digestive Enzymes in the Omnivorous Pest Apolygus lucorum (Hemiptera: Miridae). Journal of Economic Entomology, 2017, 110, 101-110.	1.8	17

#	Article	IF	CITATIONS
276	Ecological and physiological features of Bt-plants causing outbreaks of secondary pests. Russian Journal of Plant Physiology, 2017, 64, 457-463.	1.1	5
277	Transgenic Plants and Soil Microbes. , 2017, , 163-185.		3
278	Predation by generalist arthropod predators on <i>Apolygus lucorum</i> (Hemiptera: Miridae): molecular gutâ€content analysis and fieldâ€cage assessment. Pest Management Science, 2017, 73, 628-635.	3.4	17
279	No effect of <i>Btâ€</i> transgenic rice litter on the meiobenthos community in field ditches. Pest Management Science, 2017, 73, 1213-1219.	3.4	4
280	Identification and characterization of the distinct expression profiles of candidate chemosensory membrane proteins in the antennal transcriptome of <i>Adelphocoris lineolatus</i> (Goeze). Insect Molecular Biology, 2017, 26, 74-91.	2.0	36
282	Identification and Characterization of Odorant Binding Proteins in the Forelegs of Adelphocoris lineolatus (Goeze). Frontiers in Physiology, 2017, 8, 735.	2.8	55
283	Microbial Control of Insect and Mite Pests of Cotton. , 2017, , 185-197.		0
284	Complex Outcomes from Insect and Weed Control with Transgenic Plants: Ecological Surprises?. Frontiers in Environmental Science, 2017, 5, .	3.3	7
285	The specific host plant DNA detection suggests a potential migration of Apolygus lucorum from cotton to mungbean fields. PLoS ONE, 2017, 12, e0177789.	2.5	23
286	Methyl jasmonate induction of cotton: a field test of the â€~attract and reward' strategy of conservation biological control. AoB PLANTS, 2017, 9, plx032.	2.3	11
287	Commercial Use and Governance of Bt cotton in China. , 0, , 225-235.		4
288	<i>Bt</i> rice could provide ecological resistance against nontarget planthoppers. Plant Biotechnology Journal, 2018, 16, 1748-1755.	8.3	30
289	Cotton pest control awareness in farmers of the Punjab, Pakistan and its impact on whitefly resistance against available insecticides. Phytoparasitica, 2018, 46, 183-195.	1.2	7
290	Yield Losses in Transgenic Cry1Ab and Non-Bt Corn as Assessed Using a Crop-Life-Table Approach. Journal of Economic Entomology, 2018, 111, 218-226.	1.8	7
291	Transgenic Bt cotton expressing Cry1Ac/Cry2Ab or Cry1Ac/EPSPS does not affect the plant bug Adelphocoris suturalis or the pollinating beetle Haptoncus luteolus. Environmental Pollution, 2018, 234, 788-793.	7.5	13
292	Sublethal effects of sulfoxaflor on biological characteristics and vitellogenin gene (AlVg) expression in the mirid bug, Apolygus lucorum (Meyer-Dür). Pesticide Biochemistry and Physiology, 2018, 144, 57-63.	3.6	45
293	Coexistence of <i>Bacillus thuringiensis</i> (Bt)â€transgenic and conventional rice affects insect abundance and plant fitness in fields. Pest Management Science, 2018, 74, 1646-1653.	3.4	3
294	Field Trapping of Predaceous Insects With Synthetic Herbivore-Induced Plant Volatiles in Cotton Fields. Environmental Entomology, 2018, 47, 114-120.	1.4	16

#	Article	IF	CITATIONS
295	Potential dermal and inhalation exposure to imidacloprid and risk assessment among applicators during treatment in cotton field in China. Science of the Total Environment, 2018, 624, 1195-1201.	8.0	27
296	A PCR-based analysis of plant DNA reveals the feeding preferences of Apolygus lucorum (Heteroptera:) Tj ETQq1 1	9.784314 1.1	4 ggBT /Ove
297	Establishment of a dietary exposure assay for evaluating the toxicity of insecticidal compounds to Apolygus lucorum (Hemiptera: Miridae). Environmental Pollution, 2018, 237, 414-423.	7.5	2
298	The nuclear hormone receptor E75A regulates vitellogenin gene (<i>Alâ€Vg</i>) expression in the mirid bug <i>Apolygus lucorum</i> . Insect Molecular Biology, 2018, 27, 188-197.	2.0	8
299	Agriculture and degrowth: State of the art and assessment of organic and biotech-based agriculture from a degrowth perspective. Journal of Cleaner Production, 2018, 197, 1823-1839.	9.3	35
300	Managing pests after 15 years of Bt cotton: Farmers' practices, performance and opinions in northern China. Crop Protection, 2018, 110, 251-260.	2.1	4
301	Neighbourhood Effects in Pesticide Use: Evidence from the Rural Philippines. Journal of Agricultural Economics, 2018, 69, 163-181.	3.5	17
302	Interspecific competition between Peristenus spretus and Peristenus relictus (Hymenoptera:) Tj ETQq1 1 0.78431 117, 115-122.	4 rgBT /Ov 3.0	verlock 10 8
303	Strategies for Enhanced Crop Resistance to Insect Pests. Annual Review of Plant Biology, 2018, 69, 637-660.	18.7	134
304	A Systematic Review on the Effects of Plant-Feeding by Omnivorous Arthropods: Time to Catch-Up With the Mirid-Tomato Bias?. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	10
305	Genetically engineered (modified) crops (Bacillus thuringiensis crops) and the world controversy on their safety. Egyptian Journal of Biological Pest Control, 2018, 28, .	1.8	64
306	Assessment of suitable reference genes for qRT-PCR analysis in Adelphocoris suturalis. Journal of Integrative Agriculture, 2018, 17, 2745-2757.	3.5	14
307	Impacts of soil salinity on Bt protein concentration in square of transgenic Bt cotton. PLoS ONE, 2018, 13, e0207013.	2.5	5
308	Impact of Recombinant DNA Technology and Nanotechnology on Agriculture. Sustainable Agriculture Reviews, 2018, , 271-292.	1.1	3
309	Sustainable Agriculture Reviews 32. Sustainable Agriculture Reviews, 2018, , .	1.1	0
310	Spider mites of agricultural importance in China, with focus on species composition during the last decade (2008–2017)Â. Systematic and Applied Acarology, 2018, 23, 2087.	0.5	23
311	Farmers willingness to grow GM food and cash crops: empirical evidence from Pakistan. GM Crops and Food, 2018, 9, 199-210.	3.8	5
312	Defoliation of Soybean Expressing Cry1Ac by Lepidopteran Pests. Insects, 2018, 9, 93.	2.2	16

#	Article	IF	CITATIONS
313	The Complete Mitochondrial Genome of the Plant Bug Lygus pratensis Linnaeus (Hemiptera: Miridae). Journal of Insect Science, 2018, 18, .	1.5	6
314	Recording within-cotton distribution of plant bug injury using plant mapping computer-based tools. Crop Protection, 2018, 112, 220-226.	2.1	3
315	Overexpression of cytochrome P450s in a lambda-cyhalothrin resistant population of Apolygus lucorum (Meyer-Dür). PLoS ONE, 2018, 13, e0198671.	2.5	13
316	Evaluating Action Thresholds for Amrasca devastans (Hemiptera: Cicadellidae) Management on Transgenic and Conventional Cotton Across Multiple Planting Dates. Journal of Economic Entomology, 2018, 111, 2182-2191.	1.8	4
317	Characterization and Comparative Analysis of Olfactory Receptor Co-Receptor Orco Orthologs Among Five Mirid Bug Species. Frontiers in Physiology, 2018, 9, 158.	2.8	6
318	Long-Term Empirical and Observational Evidence of Practical Helicoverpa zea Resistance to Cotton With Pyramided Bt Toxins. Journal of Economic Entomology, 2018, 111, 1824-1833.	1.8	99
319	Multidecadal, county-level analysis of the effects of land use, Bt cotton, and weather on cotton pests in China. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7700-E7709.	7.1	45
320	New pests for old as GMOs bring on substitute pests. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8239-8240.	7.1	3
321	Molecular characterization and expression analysis of putative odorant carrier proteins in Adelphocoris lineolatus. Journal of Asia-Pacific Entomology, 2018, 21, 958-970.	0.9	9
322	Evaluation of the Impact of Genetically Modified Cotton After 20 Years of Cultivation in Mexico. Frontiers in Bioengineering and Biotechnology, 2018, 6, 82.	4.1	46
323	Impact of transgenic soybean expressing Cry1Ac and Cry1F proteins on the non-target arthropod community associated with soybean in Brazil. PLoS ONE, 2018, 13, e0191567.	2.5	22
324	Securing the †Rice Bowl'. , 2019, , .		24
325	Genetically Modified Organisms (GMOs) as the New Hope. , 2019, , 95-123.		2
326	Buckwheat strip crops increase parasitism of Apolygus lucorum in cotton. BioControl, 2019, 64, 645-654.	2.0	15
327	Cry2A rice did not affect the interspecific interactions between two rice planthoppers, Nilaparvata lugens, and Sogatella furcifera. GM Crops and Food, 2019, 10, 170-180.	3.8	5
328	Efficacy of Cry1Ac toxin from Bacillus thuringiensis against the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control, 2019, 29, .	1.8	4
329	Mouthparts enriched odorant binding protein AfasOBP11 plays a role in the gustatory perception of Adelphocoris fasciaticollis. Journal of Insect Physiology, 2019, 117, 103915.	2.0	13
330	Measuring What Matters: Actionable Information for Conservation Biocontrol in Multifunctional Landscapes. Frontiers in Sustainable Food Systems, 2019, 3, .	3.9	34

#	Article	IF	CITATIONS
331	Genetic Engineering-Based Modern Approaches to Enhance Crop Resistance to Pests. Russian Journal of Plant Physiology, 2019, 66, 1-9.	1.1	3
333	HostÂplant use of a polyphagous mirid, <i>Apolygus lucorum</i> : Molecular evidence from migratory individuals. Ecology and Evolution, 2019, 9, 11518-11528.	1.9	12

Risk and Toxicity Assessment of a Potential Natural Insecticide, Methyl Benzoate, in Honey Bees (Apis) Tj ETQq0 0 0 rgBT /Overlock 10 T

335	Genome-Wide Analysis of Cotton miRNAs During Whitefly Infestation Offers New Insights into Plant-Herbivore Interaction. International Journal of Molecular Sciences, 2019, 20, 5357.	4.1	12
336	First records of Leucania rawlinsi Adams and L. senescens Möschler (Lepidoptera: Noctuidae) in Brazil: redescription, potential association with Bt maize, larval parasitoids, and spatial and temporal distribution. Zootaxa, 2019, 4604, 441.	0.5	4
337	Perception of and Behavioral Responses to Host Plant Volatiles for Three Adelphocoris Species. Journal of Chemical Ecology, 2019, 45, 779-788.	1.8	28
338	Brain Organization of Apolygus lucorum: A Hemipteran Species With Prominent Antennal Lobes. Frontiers in Neuroanatomy, 2019, 13, 70.	1.7	3
339	Anatomy, Histology, and Ultrastructure of Salivary Glands of the Burrower Bug, <i>Scaptocoris castanea</i> (Hemiptera: Cydnidae). Microscopy and Microanalysis, 2019, 25, 1482-1490.	0.4	6
340	Neighbouring crop diversity mediates the effect of Bt cotton on insect community and leaf damage in fields. Transgenic Research, 2019, 28, 357-367.	2.4	2
341	Occurrence and Distribution of Apolygus lucorum on Weed Hosts and Tea Plants in Tea Plantation Ecosystems. Insects, 2019, 10, 167.	2.2	5
342	Herbivore-induced plant volatiles enhance field-level parasitism of the mirid bug Apolygus lucorum. Biological Control, 2019, 135, 41-47.	3.0	17
343	Transgenic Cry1Ac cotton does not affect the development and fecundity of Chrysoperla carnea. PLoS ONE, 2019, 14, e0214668.	2.5	3
344	Maize fields are a potential sink for an outbreaking mirid bug pest in Chinese Bt-cotton agricultural landscapes. Agriculture, Ecosystems and Environment, 2019, 279, 122-129.	5.3	10
345	Floral feeding increases diet breadth in a polyphagous mirid. Journal of Pest Science, 2019, 92, 1089-1100.	3.7	9
346	Key Amino Residues Determining Binding Activities of the Odorant Binding Protein AlucOBP22 to Two Host Plant Terpenoids of <i>Apolygus lucorum</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 5949-5956.	5.2	42
347	Genetically Engineered Crops: Importance of Diversified Integrated Pest Management for Agricultural Sustainability. Frontiers in Bioengineering and Biotechnology, 2019, 7, 24.	4.1	95
348	Reduced phytophagy in sugar-provisioned mirids. Journal of Pest Science, 2019, 92, 1139-1148.	3.7	23
349	Reduced caterpillar damage can benefit plant bugs in Bt cotton. Scientific Reports, 2019, 9, 2727.	3.3	9

	Сітат	ion Report	
#	Article	IF	CITATIONS
350	Recent progress on the interaction between insects and <i>Bacillus thuringiensis</i> crops. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180316.	4.0	94
352	Plant Response and Economic Injury Levels for a Boll-Feeding Sucking Bug Complex on Cotton. Journal of Economic Entomology, 2019, 112, 1227-1236.	1.8	7
353	Bt insecticidal efficacy variation and agronomic regulation in Bt cotton. Journal of Cotton Research, 2019, 2, .	2.5	9
354	Unraveling the Genetic Structure of the Coconut Scale Insect Pest (Aspidiotus rigidus Reyne) Outbreak Populations in the Philippines. Insects, 2019, 10, 374.	2.2	6
355	Effects of transgenic maize on arthropod diversity. Biodiversity Science, 2019, 27, 419-432.	0.6	1
356	How low can you go? Estimating impacts of reduced pesticide use. Pest Management Science, 2019, 75, 1223-1233.	3.4	26
357	Volatiles from aphid-infested plants attract adults of the multicolored Asian lady beetle Harmonia axyridis. Biological Control, 2019, 129, 1-11.	3.0	24
358	Duplication and expression of horizontally transferred polygalacturonase genes is associated with host range expansion of mirid bugs. BMC Evolutionary Biology, 2019, 19, 12.	3.2	9
359	Longâ€ŧerm risk assessment on noneffective and effective toxic doses of imidacloprid to honeybee workers. Journal of Applied Entomology, 2019, 143, 118-128.	1.8	9
360	First transgenic trait for control of plant bugs and thrips in cotton. Pest Management Science, 2019, 75, 867-877.	3.4	31
361	Genome Analysis of Cytochrome in Dinotefuran-Treated Apolygus lucorum (Meyer-Dür). Bulletin of Environmental Contamination and Toxicology, 2019, 103, 106-113.	2.7	4
362	Host-plant switching promotes the population growth of <i>Apolygus lucorum</i> : implications for laboratory rearing. Bulletin of Entomological Research, 2019, 109, 309-315.	1.0	11
363	Expression patterns and ligand binding characterization of Plus-C odorant-binding protein 14 from Adelphocoris lineolatus (Goeze). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2019, 227, 75-82.	1.6	20
364	Predation pressure in maize across Europe and in Argentina: an intercontinental comparison. Insect Science, 2019, 26, 545-554.	3.0	15
365	Plant stalks as oviposition traps for Apolygus lucorum (Hemiptera: Miridae) under field conditions. International Journal of Pest Management, 2019, 65, 79-85.	1.8	1
366	Insect-Resistant Genetically Engineered Crops in China: Development, Application, and Prospects for Use. Annual Review of Entomology, 2020, 65, 273-292.	11.8	56
367	The outbreaks of nontarget mirid bugs promote arthropod pest suppression in Bt cotton agroecosystems. Plant Biotechnology Journal, 2020, 18, 322-324.	8.3	18
368	Deorphanization of an odorant receptor revealed new bioactive components for green mirid bug <scp><i>Apolygus lucorum</i></scp> (Hemiptera: Miridae). Pest Management Science, 2020, 76, 1626-1638.	3.4	15

		CITATION R	CITATION REPORT		
#	ARTICLE		IF	Citations	
369	Sensilla localization and sex pheromone recognition of odorant binding protein OBP4 in plant bug Adelphocoris lineolatus (Goeze). Journal of Insect Physiology, 2020, 121, 104	n the mirid 1012.	2.0	19	
370	Genetic analysis and molecular detection of resistance to chlorpyrifos mediated by the substitution in acetylcholinesterase \hat{e} in the plant bug Apolygus lucorum. Insect Scier 1224-1232.	A216S hce, 2020, 27,	3.0	4	
371	Overexpression of the caryophyllene synthase gene <i>GhTPS1</i> in cotton negatively multiple pests while attracting parasitoids. Pest Management Science, 2020, 76, 1722-	/ affects 1730.	3.4	33	
372	Intercrops can mitigate pollen-mediated gene flow from transgenic cotton while simult reducing pest densities. Science of the Total Environment, 2020, 711, 134855.	aneously	8.0	17	
373	Identification and field evaluation of the sex pheromone of <i>Apolygus lucorum</i> (H	lemiptera:) Tj ETQq0 0 0 r	gB <u>T</u> /Over	lock 10 Tf 50	

374	Functional characterization of one sex pheromone receptor (AlucOR4) in Apolygus lucorum (Meyer-Dür). Journal of Insect Physiology, 2020, 120, 103986.	2.0	9
375	Three-way interactions between crop plants, phytopathogenic fungi, and mirid bugs. A review. Agronomy for Sustainable Development, 2020, 40, 1.	5.3	5
376	Effect of silicon on oviposition preference and biology of Bemisia tabaci (Gennadius) (Homoptera:) Tj ETQq1 1 0 2020, , 1-11.	.784314 rg 1.8	gBT /Overloc 10
377	Effect of age on insecticide susceptibility and enzymatic activities of three detoxification enzymes and one invertase in honey bee workers (Apis mellifera). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 238, 108844.	2.6	20
378	On application of the precautionary principle to ban GMVs: an evolutionary model of new seed technology integration. Journal of Evolutionary Economics, 2020, 30, 1243-1266.	1.7	0
379	Integrative Biological Control. Progress in Biological Control, 2020, , .	0.5	6
380	Field Edge and Field-to-Field Ecotone-Type Influences on Two Cotton Herbivores: Cotton Fleahopper, Pseudatomoscelis seriatus (Hemiptera: Miridae), and Verde Plant Bug, Creontiades signatus. Journal of Economic Entomology, 2020, 113, 2213-2222.	1.8	0
381	Broadly Tuned Odorant Receptor AlinOR59 Involved in Chemoreception of Floral Scent in <i>Adelphocoris lineolatus</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 13815-13823.	5.2	9
382	Biosafety Measures, Socio-Economic Impacts and Challenges of Bt-brinjal Cultivation in Bangladesh. Frontiers in Bioengineering and Biotechnology, 2020, 8, 337.	4.1	3
383	Sublethal and transgenerational effects of sulfoxaflor on the demography and feeding behaviour of the mirid bug Apolygus lucorum. PLoS ONE, 2020, 15, e0232812.	2.5	4
384	Transgenic insect-resistant Bt cotton expressing Cry1Ac/CpTI does not affect the mirid bug Apolygus lucorum. Environmental Pollution, 2020, 264, 114762.	7.5	9
385	Coding and Non-coding RNAs: Molecular Basis of Forest-Insect Outbreaks. Frontiers in Cell and Developmental Biology, 2020, 8, 369.	3.7	9
386	Seasonal Development of Plant Bugs (Heteroptera, Miridae): Subfamily Mirinae, Tribe Mirini. Entomological Review, 2020, 100, 135-156.	0.3	8

#	Article	IF	CITATIONS
387	Two classic mutations in the linkerâ€helix <scp>IIL45</scp> and segment <scp>IIS6</scp> of <i>Apolygus lucorum</i> sodium channel confer pyrethroid resistance. Pest Management Science, 2020, 76, 3954-3964.	3.4	3
388	Landscape Effects on the Abundance of Apolygus lucorum in Cotton Fields. Insects, 2020, 11, 185.	2.2	4
389	Genetically modified crops: current status and future prospects. Planta, 2020, 251, 91.	3.2	218
390	Effect of three insect-resistant maizes expressing Cry1le, Cry1Ab/Cry2Aj and Cry1Ab on the growth and development of armyworm Mythimna separata (Walker). Journal of Integrative Agriculture, 2020, 19, 1842-1849.	3.5	3
391	Does longâ€ŧerm Bt rice planting pose risks to spider communities and their capacity to control planthoppers?. Plant Biotechnology Journal, 2020, 18, 1851-1853.	8.3	7
392	Sublethal and transgenerational effects of dinotefuran on biological parameters and behavioural traits of the mirid bug Apolygus lucorum. Scientific Reports, 2020, 10, 226.	3.3	9
393	Analysis of Differentially Expressed Transcripts in Apolygus lucorum (Meyer-Dür) Exposed to Different Temperature Coefficient Insecticides. International Journal of Molecular Sciences, 2020, 21, 658.	4.1	9
394	Identification of Leg Chemosensory Genes and Sensilla in the Apolygus lucorum. Frontiers in Physiology, 2020, 11, 276.	2.8	18
395	Population expansion and genomic adaptation to agricultural environments of the soybean looper,Chrysodeixis includens. Evolutionary Applications, 2020, 13, 2071-2085.	3.1	30
396	Comparative Analysis of Chitin SynthaseA dsRNA Mediated RNA Interference for Management of Crop Pests of Different Families of Lepidoptera. Frontiers in Plant Science, 2020, 11, 427.	3.6	23
397	Challenges of small RNA technology. , 2020, , 545-565.		1
398	Phospholipase C gamma (PLCγ) regulates soluble trehalase in the 20Eâ€induced fecundity of <i>Apolygus lucorum</i> . Insect Science, 2021, 28, 430-444.	3.0	12
399	Geographical Classification of <i>Helicoverpa armigera</i> (Lepidoptera: Noctuidae) through Mineral Component Analysis. Analytical Letters, 2021, 54, 669-683.	1.8	4
400	Effects of mCry51Aa2-producing cotton on the non-target spider mite Tetranychus urticae and the predatory bug Orius majusculus. Journal of Pest Science, 2021, 94, 351-362.	3.7	1
401	Transcriptomic and proteomic responses to brown plant hopper (Nilaparvata lugens) in cultivated and Bt-transgenic rice (Oryza sativa) and wild rice (O. rufipogon). Journal of Proteomics, 2021, 232, 104051.	2.4	8
402	The olfactory responses of mirid bugs to six plant extracts and their volatiles. Journal of Applied Entomology, 2021, 145, 125-133.	1.8	4
403	Optimization and field demonstration of the <scp><i>Lygus pratensis</i></scp> (<scp>Hemiptera:) Tj ETQq0 0 (</scp>) rgBT /Ove	erlock 10 Tf 5

404	<i>Apolygus lucorum</i> genome provides insights into omnivorousness and mesophyll feeding. Molecular Ecology Resources, 2021, 21, 287-300.	4.8	31
-----	--	-----	----

#	Article	IF	CITATIONS
405	Plant Volatiles Modulate Seasonal Dynamics between Hosts of the Polyphagous Mirid Bug Apolygus lucorum. Journal of Chemical Ecology, 2021, 47, 87-98.	1.8	9
406	Contribution of Genetically Modified Crops in Agricultural Production: Success Stories. , 2021, , 111-142.		5
407	Abundance and diversity of arthropods in transgenic Bt and non-Bt cotton fields under Indian conditions. Phytoparasitica, 2021, 49, 61-72.	1.2	8
408	Laboratory Selection, Cross-Resistance, Risk Assessment to Lambda-Cyhalothrin Resistance, and Monitoring of Insecticide Resistance for Plant Bug <i>Lygus pratensis</i> (Hemiptera: Miridae) in Farming-Pastoral Ecotones of Northern China. Journal of Economic Entomology, 2021, 114, 891-902.	1.8	4
409	Toxic Bait as an Alternative Tool in the Management of Spodoptera frugiperda in Second Corn Crops. Journal of Agricultural Science, 2021, 13, 102.	0.2	1
410	Plant Resistance in Some Modern Soybean Varieties May Favor Population Growth and Modify the Stylet Penetration of <i>Bemisia tabaci</i> (Hemiptera: Aleyrodidae). Journal of Economic Entomology, 2021, 114, 970-978.	1.8	4
411	The global significance of biodiversity science in China: an overview. National Science Review, 2021, 8, nwab032.	9.5	68
413	Better outcomes for pest pressure, insecticide use, and yield in less intensive agricultural landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	26
414	Transcriptomic and metabolomic reprogramming in cotton after Apolygus lucorum feeding implicated in enhancing recruitment of the parasitoid Peristenus spretus. Journal of Pest Science, 2022, 95, 249-262.	3.7	8
415	Population dynamics, hunting nature on insect pests and existence of symbiotic bacterial microbes among leading transgenic cotton spiders. Journal of Asia-Pacific Entomology, 2021, 24, 297-307.	0.9	1
416	Growth and arthropod community characteristics of transgenic poplar 741 in an experimental forest. Industrial Crops and Products, 2021, 162, 113284.	5.2	2
417	The evolution of opsin genesÂin five species of mirid bugs: duplicationÂof long-wavelength opsins and lossÂof blue-sensitive opsins. Bmc Ecology and Evolution, 2021, 21, 66.	1.6	6
418	Sex Pheromone of the Alfalfa Plant Bug, Adelphocoris lineolatus: Pheromone Composition and Antagonistic Effect of 1-Hexanol (Hemiptera: Miridae). Journal of Chemical Ecology, 2021, 47, 525-533.	1.8	6
419	Biological nitrogen removal capability and pathways analysis of a novel low C/N ratio heterotrophic nitrifying and aerobic denitrifying bacterium (Bacillus thuringiensis strain WXN-23). Environmental Research, 2021, 195, 110797.	7.5	39
420	Functional characterization of knockdown resistance mutations in the plant bug, Apolygus lucorum Meyer-Dür. Pesticide Biochemistry and Physiology, 2021, 176, 104874.	3.6	1
421	Integrated pest management: good intentions, hard realities. A review. Agronomy for Sustainable Development, 2021, 41, 1.	5.3	189
422	OBP14 (Odorant-Binding Protein) Sensing in Adelphocoris lineolatus Based on Peptide Nucleic Acid and Graphene Oxide. Insects, 2021, 12, 422.	2.2	4
423	Functional Characterization of a Candidate Sex Pheromone Receptor AlinOR33 Involved in the Chemoreception of Adelphocoris lineolatus. Journal of Agricultural and Food Chemistry, 2021, 69, 6769-6778	5.2	3

#	Article	IF	CITATIONS
424	Variation of gut microbiota caused by an imbalance diet is detrimental to bugs' survival. Science of the Total Environment, 2021, 771, 144880.	8.0	35
425	Host plants transfer induced regulation of the chemosensory genes repertoire in the alfalfa plant bug Adelphocoris lineolatus (Goeze). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2021, 38, 100798.	1.0	1
426	Diversity of Phytophagous Insects with Potential to Become Key Pests in Genetically Modified Bt Cotton. Southwestern Entomologist, 2021, 46, .	0.2	1
427	Rapid spread of a densovirus in a major crop pest following wide-scale adoption of Bt-cotton in China. ELife, 2021, 10, .	6.0	6
428	Preliminary data on attractiveness of phenylacetaldehyde-based lures on economically important plant bug pests (Hemiptera: Miridae). International Journal of Horticultural Science, 0, 27, 87-94.	0.2	1
429	Large-scale assessment of lepidopteran soybean pests and efficacy of Cry1Ac soybean in Brazil. Scientific Reports, 2021, 11, 15956.	3.3	20
430	Life history and host plant assessment of the cacao mirid bug Helopeltis bakeri Poppius (Hemiptera:) Tj ETQq0 0 C) rgBT /Ovo 1:2	erjock 10 Tf
431	Transgenic <scp>Cry1Ac</scp> + <scp>CpTI</scp> cotton does not compromise parasitoidâ€mediated biological control: An eightâ€year case study. Pest Management Science, 2022, 78, 240-245.	3.4	1
432	Cloning and reproductive regulation of a trypsin precursor gene in Adelphocoris suturalis. International Journal of Biological Macromolecules, 2021, 192, 38-44.	7.5	4

433	The Effect of Mirid Density on Volatile-Mediated Foraging Behaviour of Apolygus lucorum and Peristenus spretus. Insects, 2021, 12, 870.	2.2	1
434	Identification and functional characterization of sex pheromone receptors in mirid bugs (Heteroptera: Miridae). Insect Biochemistry and Molecular Biology, 2021, 136, 103621.	2.7	6
435	Fructose and glucose in buckwheat nectar enhance Peristenus spretus (Hymenoptera: Braconidae) survival and parasitism of the mirid Apolygus lucorum. Biological Control, 2021, 161, 104710.	3.0	7
436	Soybeans as a non-Bt refuge for Helicoverpa zea in maize-cotton agroecosystems. Agriculture, Ecosystems and Environment, 2021, 322, 107642.	5.3	8
437	The Role of Green Biotechnology through Genetic Engineering for Climate Change Mitigation and Adaptation, and for Food Security: Current Challenges and Future Perspectives. Journal of Advances in Biology & Biotechnology, 0, , 1-11.	0.2	4
438	Relationships Among the Feeding Behaviors of a Mirid Bug on Cotton Leaves of Different Ages and Plant Biochemical Substances. Journal of Insect Science, 2021, 21, .	1.5	6
439	Modelling the combined effects of photoperiod and temperature on diapause induction in <i>Apolygus lucorum</i> (<scp>Meyerâ€Đür</scp>) across different latitudes. Pest Management Science, 2021, 77, 2231-2237.	3.4	1
440	Silencing of aÂ <i>LIM</i> gene in cotton exhibits enhanced resistance against <i>Apolygus lucorum</i> . Journal of Cellular Physiology, 2021, 236, 5921-5936.	4.1	8
441	Temporal variation and spatial distribution of the pest insect Edessa meditabunda in cotton (Gossypium hirsutum) as an alternative host plant. Revista Brasileira De Entomologia, 2021, 65, .	0.4	1

#	Article	IF	CITATIONS
442	Environmental Impacts. , 2014, , 81-95.		9
443	Health, Seeds, Diversity and Terraces. World Terraced Landscapes: History, Environment, Quality of Life Environmental History, 2019, , 211-224.	0.3	1
444	Insect Pests of Cotton. , 2018, , 361-411.		10
445	Pest Management for Agronomic Crops. , 2019, , 365-384.		29
446	GM crop use makes minor pests major problem. Nature, 0, , .	27.8	9
447	Chapter 11 Use of Vibratory Signals for Stink Bug Monitoring and Control. , 2017, , 226-245.		7
448	Functional Characterizations of Chemosensory Proteins of the Alfalfa Plant Bug Adelphocoris lineolatus Indicate Their Involvement in Host Recognition. PLoS ONE, 2012, 7, e42871.	2.5	129
449	Maize Benefits the Predatory Beetle, Propylea japonica (Thunberg), to Provide Potential to Enhance Biological Control for Aphids in Cotton. PLoS ONE, 2012, 7, e44379.	2.5	29
450	Early-Season Host Switching in Adelphocoris spp. (Hemiptera: Miridae) of Differing Host Breadth. PLoS ONE, 2013, 8, e59000.	2.5	14
451	Nutrigenomics in Arma chinensis: Transcriptome Analysis of Arma chinensis Fed on Artificial Diet and Chinese Oak Silk Moth Antheraea pernyi Pupae. PLoS ONE, 2013, 8, e60881.	2.5	36
452	Increased Long-Flight Activity Triggered in Beet Armyworm by Larval Feeding on Diet Containing Cry1Ac Protoxin. PLoS ONE, 2013, 8, e63554.	2.5	10
453	Uptake and Transfer of a Bt Toxin by a Lepidoptera to Its Eggs and Effects on Its Offspring. PLoS ONE, 2014, 9, e95422.	2.5	25
454	Plant Volatile Analogues Strengthen Attractiveness to Insect. PLoS ONE, 2014, 9, e99142.	2.5	10
455	The Cultivation of Bt Corn Producing Cry1Ac Toxins Does Not Adversely Affect Non-Target Arthropods. PLoS ONE, 2014, 9, e114228.	2.5	24
456	Life Table Parameters of Three Mirid Bug (Adelphocoris) Species (Hemiptera: Miridae) under Contrasted Relative Humidity Regimes. PLoS ONE, 2014, 9, e115878.	2.5	6
457	Molecular Characterization and Expression Profiles of Polygalacturonase Genes in Apolygus lucorum (Hemiptera: Miridae). PLoS ONE, 2015, 10, e0126391.	2.5	16
458	Molecular Characterization and Expression Profiling of Odorant-Binding Proteins in Apolygus lucorum. PLoS ONE, 2015, 10, e0140562.	2.5	64
459	RNA Interference based Approach to Down Regulate Osmoregulators of Whitefly (Bemisia tabaci): Potential Technology for the Control of Whitefly. PLoS ONE, 2016, 11, e0153883.	2.5	64

#	Article	IF	CITATIONS
460	A Landscape View of Agricultural Insecticide Use across the Conterminous US from 1997 through 2012. PLoS ONE, 2016, 11, e0166724.	2.5	31
461	Levels of Salivary Enzymes of Apolygus Lucorum (Hemiptera: Miridae), From 1st Instar Nymph to Adult, and Their Potential Relation to Bug Feeding. PLoS ONE, 2016, 11, e0168848.	2.5	9
462	Identification and selection of resistance to Bemisia tabaci among 550 cotton genotypes in the field and greenhouse experiments. Frontiers of Agricultural Science and Engineering, 2018, .	1.4	3
463	The role and use of genetically engineered insect-resistant crops in integrated pest management systems. Burleigh Dodds Series in Agricultural Science, 2019, , 283-340.	0.2	4
466	OGMÂ: de la traçabilité et de la coexistence des filières à l'aménagement du territoire. Territoire En Mouvement, 2012, , 56-80.	0.1	1
467	Safety, Security and Quality: Lessons from GMO Risk Assessments. , 0, , .		1
468	Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae) and evaluation of potential DNA barcoding markers. PeerJ, 2017, 5, e3661.	2.0	49
469	Tetraphenylethene Functionalized Polyhedral Oligomeric Silsesquioxane Fluorescent Probe for Rapid and Selective Trifluralin Sensing in Vegetables and Fruits. Chemistry - an Asian Journal, 2021, 16, 3970-3977.	3.3	4
470	Bt cotton area contraction drives regional pest resurgence, crop loss, and pesticide use. Plant Biotechnology Journal, 2022, 20, 390-398.	8.3	22
471	Comparison of broiler performance, carcass yields and intestinal microflora when fed diets containing transgenic (Mon-40-3-2) and conventional soybean meal. African Journal of Biotechnology, 2012, 11, .	0.6	2
474	Transgenic Bt-Plants and the Future of Crop Protection (An Overview). International Journal of Agricultural and Food Research, 2014, 3, .	0.1	3
475	Ecological interactions between herbivores and silver birch and aspen trees genetically modified for fungal disease resistance. Dissertationes Forestales, 2015, 2015, .	0.1	Ο
480	Environmental Risk Assessment of Insect Resistant Genetically Modified Maize MON810 for Cultivation, Seed Production, Import, Processing and Feed Uses under Directive 2001/18/EC (Notification C/F/95/12/02). European Journal of Nutrition & Food Safety, 0, , 64-67.	0.2	0
481	Preliminary Environmental Risk Assessment of Insect Resistant Genetically Modified Maize MON 89034 for Cultivation (EFSA/GMO/BE/2011/90). European Journal of Nutrition & Food Safety, 0, , 47-50.	0.2	Ο
482	GMOs $\hat{a} \in \hat{a}$ Impact on Non-target Arthropods. Topics in Biodiversity and Conservation, 2020, , 87-127.	1.0	2
483	Landscape-Level Drivers of Biocontrol and a Case Study from Local to Regional Scale in China. Progress in Biological Control, 2020, , 145-164.	0.5	Ο
484	: Resistance Development and. Topics in Biodiversity and Conservation, 2020, , 35-68.	1.0	2
485	Understanding the potential impact of continued seed treatment use for resistance management in Cry51Aa2.834_16 Bt cotton against Frankliniella fusca. PLoS ONE, 2020, 15, e0239910.	2.5	1

#	Article	IF	CITATIONS
487	Biopesticides. , 2022, , 107-116.		6
488	Identification and Expression Analysis of G Protein-Coupled Receptors in the Miridae Insect Apolygus lucorum. Frontiers in Endocrinology, 2021, 12, 773669.	3.5	10
490	Dynamic monitoring of the impact of insect-resistant transgenic poplar field stands on arthropod communities. Forest Ecology and Management, 2022, 505, 119921.	3.2	3
492	Parasitism efficiency and progeny fitness of Peristenus spretus Chen et van Achterberg vary with nymphal instar of host, Apolygus lucorum (Meyer-Dür). Biological Control, 2022, 167, 104839.	3.0	4
493	Application of polygene polymerization for insect-resistant poplar breeding. Forestry Research, 2022, 2, 0-0.	1.1	1
494	Association between Landscape Composition and the Abundance of Predator and Herbivore Arthropods in Bt and Non-Bt Soybean Crops. SSRN Electronic Journal, 0, , .	0.4	0
495	iTRAQ Proteomic Analysis of Interactions Between 20E and Phospholipase C in Apolygus lucorum (Meyer-Dür). Frontiers in Physiology, 2022, 13, 845087.	2.8	0
496	An odorant receptor of the green mirid bug, Apolygus lucorum, tuned to linalool. Insect Biochemistry and Molecular Biology, 2022, 144, 103764.	2.7	1
497	Assessment of the potential toxicity of insecticidal compounds to Peristenus spretus, a parasitoid of mirid bugs. Journal of Integrative Agriculture, 2022, 21, 1424-1435.	3.5	0
498	Effect of Cry Toxins on Xylotrechus arvicola (Coleoptera: Cerambycidae) Larvae. Insects, 2022, 13, 27.	2.2	1
499	Expressions of the trypsin-like-enzyme, AlSP4 and total trypsin-like-enzyme in <i>Apolygus lucorum</i> (Meyer-Dür) (Hemiptera: Miridae) feeding on different cotton varieties. International Journal of Pest Management, 0, , 1-11.	1.8	0
500	Plant volatile organic compounds attractive to <i>Lygus pratensis</i> . Open Life Sciences, 2022, 17, 362-371.	1.4	1
501	Diversification of the phytophagous lineages of true bugs (Insecta: Hemiptera: Heteroptera) shortly after that of the flowering plants. Cladistics, 2022, 38, 403-428.	3.3	19
502	Transcriptomic and Metabolomic Responses in Cotton Plant to Apolygus lucorum Infestation. Insects, 2022, 13, 391.	2.2	0
523	Safety of Bacillus Thuringiensis Cry1ah and Vip3aa Toxins for the Predatory Stink Bug Arma Custos (Hemiptera: Pentatomidae). SSRN Electronic Journal, 0, , .	0.4	0
524	Control of a sap-sucking insect pest by plastid-mediated RNA interference. Molecular Plant, 2022, 15, 1176-1191.	8.3	18
525	Association between landscape composition and the abundance of predator and herbivore arthropods in Bt and non-Bt soybean crops. Agriculture, Ecosystems and Environment, 2022, 336, 108027.	5.3	2
526	Silencing of multiple target genes via ingestion of dsRNA and PMRi affects development and survival in Helicoverpa armigera. Scientific Reports, 2022, 12, .	3.3	7

#	Article	IF	CITATIONS
527	Expression of Modified Snowdrop Lectin (Galanthus nivalis Agglutinin) Protein Confers Aphids and Plutella xylostella Resistance in Arabidopsis and Cotton. Genes, 2022, 13, 1169.	2.4	0
528	Jasmonic Acid-Treated Cotton Plant Leaves Impair Larvae Growth Performance, Activities of Detoxification Enzymes, and Insect Humoral Immunity of Cotton Bollworm. Neotropical Entomology, 2022, 51, 570-582.	1.2	7
529	<i>FAR</i> knockout significantly inhibits <i>Chilo suppressalis</i> survival and transgene expression of doubleâ€stranded <scp>FAR</scp> in rice exhibits strong pest resistance. Plant Biotechnology Journal, 2022, 20, 2272-2283.	8.3	5
530	Biosynthesis of artemisinic acid in engineered Saccharomyces cerevisiae and its attractiveness to the mirid bug Apolygus lucorum. Journal of Integrative Agriculture, 2022, 21, 2984-2994.	3.5	1
531	Safety of Bacillus thuringiensis Cry1Ah and Vip3Aa toxins for the predatory stink bug Arma custos (Hemiptera: Pentatomidae). Science of the Total Environment, 2022, , 158120.	8.0	1
532	The microRNAs in the antennae of Apolygus lucorum (Hemiptera: Miridae): Expression properties and targets prediction. Genomics, 2022, 114, 110447.	2.9	0
533	Bt protein hasten entomopathogenic fungi-induced death of nontarget pest whitefly by suppressing protective symbionts. Science of the Total Environment, 2022, 853, 158588.	8.0	2
534	Advances in Integrated Pest Management Technology Systems and Going beyond Convention. , 2022, , .		1
535	Impact of Transgenic Cry1Ab/2Aj Maize on Abundance of Non-Target Arthropods in the Field. Plants, 2022, 11, 2520.	3.5	5
536	Comparative transcriptional analysis and identification of hub genes associated with wing differentiation of male in Aphis gossypii. Journal of Cotton Research, 2022, 5, .	2.5	3
537	Transgenics and Crop Improvement. , 2022, , 131-347.		0
538	Effect of Transgenic Cotton Expressing Bt Cry1Ac or Cry1Ab/Ac Toxins on Lacewing Larvae Mediated by Herbivorous Insect Pests. Plants, 2022, 11, 2755.	3.5	3
540	Identification and functional analysis of odorant-binding proteins provide new control strategies for Apolygus lucorum. International Journal of Biological Macromolecules, 2023, 224, 1129-1141.	7.5	7
541	Preferences of <i>Lygus pratensis</i> (Hemiptera: Miridae) for Four Potential Trap Crop Plants. Journal of Entomological Science, 2022, 57, 548-560.	0.3	0
542	Intended and unintended consequences of genetically modified crops – myth, fact and/or manageable outcomes?. New Zealand Journal of Agricultural Research, 2023, 66, 519-619.	1.6	10
543	Preyâ€mediated effects of mCry51Aa2â€producing cotton on the predatory nonâ€ŧarget bug <i>Orius majusculus</i> (Reuter). Insect Science, 0, , .	3.0	1
544	Primary Biological Characteristics of an Emerging Major Boring Pest, Conogethes punctiferalis (Guenée) (Lepidoptera: Crambidae), on Juglans regia (Juglandales: Juglandaceae) in Taihang Mountains. Entomological News, 2022, 130, .	0.2	0
545	Refuge areas favor the presence of predators and herbivores in Bt soybean: a landscape perspective. Journal of Pest Science, 2023, 96, 1133-1147.	3.7	2

#	Article	IF	CITATIONS
546	The role of tetradecane in the identification of host plants by the mirid bugs Apolygus lucorum and Adelphocoris suturalis and potential application in pest management. Frontiers in Physiology, 0, 13, .	2.8	0
547	Dynamic changes in species richness and community diversity of symbiotic bacteria in five reproductive morphs of cotton aphid Aphis gossypii Glover (Hemiptera: Aphididae). Frontiers in Microbiology, 0, 13, .	3.5	2
548	Horizontally transferred genes as <scp>RNA</scp> interference targets for aphid and whitefly control. Plant Biotechnology Journal, 2023, 21, 754-768.	8.3	13
549	The Challenge of Green in a Pesticide-Dominant IPM (Integrated Pest Management) World. , 2011, , 300-338.		1
550	Cry51Aa Proteins Are Active against <i>Apolygus lucorum</i> and Show a Mechanism Similar to Pore Formation Model. Journal of Agricultural and Food Chemistry, 2023, 71, 2279-2289.	5.2	1
551	Dynamics and diversity of symbiotic bacteria in Apolygus lucorum at different developmental stages. Journal of Cotton Research, 2023, 6, .	2.5	1
552	Development and validation of pest management strategy against mirid bug, Creontiades biseratense in Bt cotton. , 2018, 88, 1248-1252.		1
553	The gut symbiont Sphingomonas mediates imidacloprid resistance in the important agricultural insect pest Aphis gossypii Glover. BMC Biology, 2023, 21, .	3.8	10
554	Impact of two neonicotinoid insecticides on the parasitoids of Apolygus lucorum: Peristenus spretus and Peristenus relictus. Crop Protection, 2023, 167, 106208.	2.1	0
555	Fiber Crops in Changing Climate. , 2022, , 267-282.		0
557	Life stage affects prey use with fitness consequences in a zoophytophagous mirid bug. Phytoparasitica, 2023, 51, 503-511.	1.2	0
558	Volatile Organic Compounds: A Review of Their Current Applications as Pest Biocontrol and Disease Management. Horticulturae, 2023, 9, 441.	2.8	7
559	Preparation of Cu-CS@IN@MIL-100 (Fe) for controlled indoxacarb release and reduced non-target organism risks. Journal of Environmental Chemical Engineering, 2023, 11, 109967.	6.7	3
560	Monitoring of insecticide resistance for Apolygus lucorum populations in the apple orchard in China. Crop Protection, 2023, 170, 106279.	2.1	2
561	Chloroplasts: The Future of Large-Scale Protein Production. Physiology, 0, , .	10.0	0
562	Gene cloning, protein expression, and enzymatic characterization of a doubleâ€stranded RNA degrading enzyme in <i>Apolygus lucorum</i> . Insect Science, 2024, 31, 119-133.	3.0	0
563	Ten years of Cry1Ac Bt soybean use in Argentina: Historical shifts in the community of target and non-target pest insects. Crop Protection, 2023, 170, 106265.	2.1	1
564	Adenosine Monophosphate-Activated Protein Kinase (AMPK) Phosphorylation Is Required for 20-Hydroxyecdysone Regulates Ecdysis in Apolygus lucorum. International Journal of Molecular Sciences, 2023, 24, 8587.	4.1	0

	CITATION	LPORT	
#	Article	IF	CITATIONS
565	Biosafety and Ecological Assessment of Genetically Engineered and Edited Crops. Plants, 2023, 12, 2551.	3.5	1
566	Identifying sustainability assessment parameters for genetically engineered agrifoods. Plants People Planet, 2024, 6, 29-43.	3.3	3
567	Incidence of non-target pest species and validation of IPM strategies in Bt cotton hybrids deployed with different events of cry genes. , 2015, 85, 1448-1454.		0
568	Transgenic cotton expressing Mpp51Aa2 does not adversely impact beneficial non-target hemiptera in the field. Crop Protection, 2023, 173, 106384.	2.1	2
569	The resistance of the jujube (Ziziphus jujuba) to the devastating insect pest Apolygus lucorum (Hemiptera, Insecta) involves the jasmonic acid signaling pathway. Pesticide Biochemistry and Physiology, 2023, , 105597.	3.6	0
570	Pest Status, Bio-Ecology, and Area-Wide Management of Mirids in East Asia. Annual Review of Entomology, 2024, 69, .	11.8	1
571	Resistance risk assessment of six pyrethroids and acephate toward the resistant adult tarnished plant bug, <i>Lygus lineolaris</i> . Insect Science, 0, , .	3.0	1
572	Greater wax moth control in apiaries can be improved by combining Bacillus thuringiensis and entrapments. Nature Communications, 2023, 14, .	12.8	0
573	Field Evaluation of Cotton Expressing Mpp51Aa2 as a Management Tool for Cotton Fleahoppers, Pseudatomoscelis seriatus (Reuter). Toxins, 2023, 15, 644.	3.4	2
574	The CsmiR1579-CsKr-h1 module mediates rice stem borer development and reproduction: An effective target for transgenic insect-resistant rice. International Journal of Biological Macromolecules, 2024, 254, 127752.	7.5	0
575	Biotechnology and Solutions: Insect-Pest-Resistance Management for Improvement and Development of Bt Cotton (Gossypium hirsutum L.). Plants, 2023, 12, 4071.	3.5	0
576	Choice and No-Choice Feeding Assays of Cotton Fleahoppers (Pseudatomoscelis seriatus) on Cotton Expressing the Mpp51Aa2 Protein. Agronomy, 2024, 14, 84.	3.0	0
577	Construction of Host Plant Insectâ€Resistance Mutant Library by Highâ€Throughput CRISPR/Cas9 System and Identification of A Broadâ€Spectrum Insect Resistance Gene. Advanced Science, 2024, 11, .	11.2	2
578	Revisiting the evolution of Family B1 GPCRs and ligands: Insights from mollusca. Molecular and Cellular Endocrinology, 2024, 586, 112192.	3.2	0
579	A theoretical framework to improve the adoption of green Integrated Pest Management tactics. Communications Biology, 2024, 7, .	4.4	0