Fluorescent Proteins and Their Applications in Imaging

Physiological Reviews 90, 1103-1163

DOI: 10.1152/physrev.00038.2009

Citation Report

#	Article	IF	CITATIONS
1	Novel approaches to in vitro transgenesis. Journal of Endocrinology, 2010, 208, 193-206.	1.2	6
2	Very Bright Green Fluorescent Proteins from the Pontellid Copepod Pontella mimocerami. PLoS ONE, 2010, 5, e11517.	1.1	30
3	Toward the Second Generation of Optogenetic Tools. Journal of Neuroscience, 2010, 30, 14998-15004.	1.7	95
4	Proteomics of voltage-gated ion channels. Neuroscience Letters, 2010, 486, 51-52.	1.0	O
5	Multi-colored homologs of the green fluorescent protein from hydromedusa Obelia sp Photochemical and Photobiological Sciences, 2011, 10, 1303-1309.	1.6	14
6	Precise measurement of protein interacting fractions with fluorescence lifetime imaging microscopy. Molecular BioSystems, 2011, 7, 322.	2.9	43
7	Light-induced blockage of cell division with a chromatin-targeted phototoxic fluorescent protein. Biochemical Journal, 2011, 435, 65-71.	1.7	44
8	Histochemistry. Journal of Histochemistry and Cytochemistry, 2011, 59, 139-145.	1.3	21
9	Guide to Red Fluorescent Proteins and Biosensors for Flow Cytometry. Methods in Cell Biology, 2011, 102, 431-461.	0.5	68
10	RNA Mimics of Green Fluorescent Protein. Science, 2011, 333, 642-646.	6.0	1,091
11	Primary Photophysical Processes in Chromoproteins. Springer Series on Fluorescence, 2011, , 41-68.	0.8	O
12	Fluorescence Lifetime of Fluorescent Proteins. Springer Series on Fluorescence, 2011, , 69-97.	0.8	4
13	Two-Photon Microscopy for Chemical Neuroscience. ACS Chemical Neuroscience, 2011, 2, 185-197.	1.7	72
14	Fluorescent Genetically Encoded Calcium Indicators and Their In Vivo Application. Springer Series on Fluorescence, 2011, , 125-161.	0.8	4
15	Fluorescent proteins at a glance. Journal of Cell Science, 2011, 124, 2676-2676.	1.2	18
16	Fluorescent proteins at a glance. Journal of Cell Science, 2011, 124, 157-160.	1.2	227
17	Transposable Elements for Insect Transformation. , 2011, , 90-133.		1
18	Photoswitchable Water-Soluble Quantum Dots: pcFRET Based on Amphiphilic Photochromic Polymer Coating. ACS Nano, 2011, 5, 2795-2805.	7.3	116

#	Article	IF	Citations
19	Modeling transcriptional networks in Drosophila development at multiple scales. Current Opinion in Genetics and Development, 2011, 21, 711-718.	1.5	28
20	Shining light on Drosophila oogenesis: live imaging of egg development. Current Opinion in Genetics and Development, 2011, 21, 612-619.	1.5	51
21	Probing the structural determinants of yellow fluorescence of a protein from Phialidium sp Biochemical and Biophysical Research Communications, 2011, 407, 230-235.	1.0	13
22	Directed molecular evolution to design advanced red fluorescent proteins. Nature Methods, 2011, 8, 1019-1026.	9.0	72
23	Development of Probes for Cellular Functions Using Fluorescent Proteins and Fluorescence Resonance Energy Transfer. Annual Review of Biochemistry, 2011, 80, 357-373.	5.0	204
24	Stabilizing role of glutamic acid 222 in the structure of Enhanced Green Fluorescent Protein. Journal of Structural Biology, 2011, 174, 385-390.	1.3	113
25	How ClpX Unfolds GFP in Stages by Pulling. Journal of Molecular Biology, 2011, 413, 1-3.	2.0	0
26	Modern fluorescent proteins: from chromophore formation to novel intracellular applications. BioTechniques, 2011, 51, 313-327.	0.8	137
27	Plant Cell Biology: With Grand Challenges Come Great Possibilities. Frontiers in Plant Science, 2011, 2, 3.	1.7	3
28	Light without substrate amendment: the bacterial luciferase gene cassette as a mammalian bioreporter. Proceedings of SPIE, 2011, , .	0.8	5
29	Analysis of RNA localization and metabolism in single live bacterial cells: achievements and challenges. Molecular Microbiology, 2011, 80, 1137-1147.	1.2	24
30	Flavin mononucleotide (FMN)-based fluorescent protein (FbFP) as reporter for gene expression in the anaerobe Bacteroides fragilis. FEMS Microbiology Letters, 2011, 317, 67-74.	0.7	47
31	Two-photon absorption properties of fluorescent proteins. Nature Methods, 2011, 8, 393-399.	9.0	589
32	Proteins on the move: insights gained from fluorescent protein technologies. Nature Reviews Molecular Cell Biology, 2011, 12, 656-668.	16.1	122
33	Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 711, 87-99.	0.4	125
34	Mass spectrometry based approach for identification and characterisation of fluorescent proteins from marine organisms. Journal of Proteomics, 2011, 75, 44-55.	1.2	9
35	Synapse-to-nucleus signaling. Current Opinion in Neurobiology, 2011, 21, 345-352.	2.0	66
36	Modern fluorescent proteins and imaging technologies to study gene expression, nuclear localization, and dynamics. Current Opinion in Cell Biology, 2011, 23, 310-317.	2.6	124

3

#	Article	IF	CITATIONS
37	Green-Red Flashers to Accelerate Biology. Chemistry and Biology, 2011, 18, 1202-1204.	6.2	1
38	In Situ, Real-Time Identification of Biological Tissues by Ultraviolet and Infrared Laser Desorption Ionization Mass Spectrometry. Analytical Chemistry, 2011, 83, 1632-1640.	3.2	83
40	In Vivo Methods to Study Uptake of Nanoparticles into the Brain. Pharmaceutical Research, 2011, 28, 456-471.	1.7	110
41	Two-photon in vivo imaging of cells. Pediatric Nephrology, 2011, 26, 1483-1489.	0.9	16
42	Dynamic lineage analysis of embryonic morphogenesis using transgenic quail and 4D multispectral imaging. Genesis, 2011, 49, 619-643.	0.8	17
43	Probes for Nanoscopy: Fluorescent Proteins. Springer Series on Fluorescence, 2011, , 111-158.	0.8	3
45	Fluorescence of coral larvae predicts their settlement response to crustose coralline algae and reflects stress. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2691-2697.	1.2	53
46	Rapid Screening Method for Compounds That Affect the Growth and Germination of Candida albicans, Using a Real-Time PCR Thermocycler. Applied and Environmental Microbiology, 2011, 77, 8193-8196.	1.4	6
47	Functioning Nanomachines Seen in Real-Time in Living Bacteria Using Single-Molecule and Super-Resolution Fluorescence Imaging. International Journal of Molecular Sciences, 2011, 12, 2518-2542.	1.8	48
48	Terbium to Quantum Dot FRET Bioconjugates for Clinical Diagnostics: Influence of Human Plasma on Optical and Assembly Properties. Sensors, 2011, 11, 9667-9684.	2.1	36
49	Recombinant Marburg Virus Expressing EGFP Allows Rapid Screening of Virus Growth and Real-time Visualization of Virus Spread. Journal of Infectious Diseases, 2011, 204, S861-S870.	1.9	22
50	Carbon Nanotube-Metal Contact. , 2012, , 388-391.		1
52	Localization and Dynamics of Nuclear Speckles in Plants. Plant Physiology, 2012, 158, 67-77.	2.3	74
53	Intravital imaging of cell signaling in mice. Intravital, 2012, 1, 2-10.	2.0	30
54	Focal switching of photochromic fluorescent proteins enables multiphoton microscopy with superior image contrast. Biomedical Optics Express, 2012, 3, 1955.	1.5	14
55	Seeking the source of adipocytes in adult white adipose tissues. Adipocyte, 2012, 1, 230-236.	1.3	21
56	Cell-based and <i>in vivo </i> spectral analysis of fluorescent proteins for multiphoton microscopy. Journal of Biomedical Optics, 2012, 17, 0960011.	1.4	13
57	Establishment of Tetracycline-Inducible, Survivin-Expressing CHO Cell Lines by an Optimized Screening Method. Bioscience, Biotechnology and Biochemistry, 2012, 76, 1909-1912.	0.6	4

#	ARTICLE	IF	Citations
58	Fluorescence control in natural green fluorescent protein (GFP)-based photonic structures of reef corals., 2012,, 199-235e.		O
59	Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells. Autophagy, 2012, 8, 1215-1226.	4.3	231
60	Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor. Journal of Experimental Botany, 2012, 63, 3207-3218.	2.4	143
61	Bimolecular fluorescence complementation (BiFC): A 5-year update and future perspectives. BioTechniques, 2012, 53, 285-298.	0.8	245
62	Electrochemical DNA Biosensors at the Nanoscale. , 2012, , 78-100.		4
64	All-optical spin-wave control. Nature Photonics, 2012, 6, 643-645.	15.6	6
65	Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nature Communications, 2012, 3, 751.	5.8	626
66	Dimerization-Dependent Green and Yellow Fluorescent Proteins. ACS Synthetic Biology, 2012, 1, 569-575.	1.9	117
67	Methods for in vivo molecular imaging. Biochemistry (Moscow), 2012, 77, 1339-1353.	0.7	16
68	In vitro and in vivo investigations of upconversion and NIR emitting Gd2O3:Er3+,Yb3+ nanostructures for biomedical applications. Journal of Materials Science: Materials in Medicine, 2012, 23, 2399-2412.	1.7	34
69	A Simple Method for the Immunocytochemical Detection of Proteins Inside Nuclear Structures That Are Inaccessible to Specific Antibodies. Journal of Histochemistry and Cytochemistry, 2012, 60, 152-158.	1.3	24
70	In Vivo Imaging of Hematopoietic Stem Cells in the Bone Marrow Niche. Methods in Molecular Biology, 2012, 916, 231-242.	0.4	4
71	Flow cytometry of fluorescent proteins. Methods, 2012, 57, 318-330.	1.9	77
72	The influence of chromophore-protein interactions on spectroscopic properties of the yellow fluorescent protein. Doklady Biochemistry and Biophysics, 2012, 445, 207-209.	0.3	3
73	Progenitor Cells. Methods in Molecular Biology, 2012, , .	0.4	2
74	Bistable Isoelectric Point Photoswitching in Green Fluorescent Proteins Observed by Dynamic Immunoprobed Isoelectric Focusing. Journal of the American Chemical Society, 2012, 134, 17582-17591.	6.6	23
75	The overexpression of nuclear envelope protein Lap $2\hat{l}^2$ induces endoplasmic reticulum reorganisation via membrane stacking. Biology Open, 2012, 1, 802-805.	0.6	11
76	Ultrafast Studies of the Photophysics of Cis and Trans States of the Green Fluorescent Protein Chromophore. Journal of Physical Chemistry Letters, 2012, 3, 2298-2302.	2.1	28

#	ARTICLE	IF	CITATIONS
77	Molecular-Level Insight into the Spectral Tuning Mechanism of the DsRed Chromophore. Journal of Physical Chemistry Letters, 2012, 3, 3513-3521.	2.1	54
78	Molecular-Switch-Mediated Multiphoton Fluorescence Microscopy with High-Order Nonlinearity. Journal of Physical Chemistry Letters, 2012, 3, 2082-2086.	2.1	9
79	Expression, purification and some properties of fluorescent chimeras of human small heat shock proteins. Protein Expression and Purification, 2012, 82, 45-54.	0.6	10
80	Immunolabeling artifacts and the need for live-cell imaging. Nature Methods, 2012, 9, 152-158.	9.0	415
81	Spatiotemporal manipulation of retinoic acid activity in zebrafish hindbrain development via photo-isomerization. Development (Cambridge), 2012, 139, 3355-3362.	1.2	12
82	A potential water-soluble ytterbium-based porphyrin–cyclen dual bio-probe for Golgi apparatus imaging and photodynamic therapy. Chemical Communications, 2012, 48, 9646.	2.2	49
83	Energetic and regulatory role of proton potential in chloroplasts. Biochemistry (Moscow), 2012, 77, 956-974.	0.7	41
84	A toolkit for graded expression of green fluorescent protein fusion proteins in mammalian cells. Analytical Biochemistry, 2012, 428, 24-27.	1.1	11
85	Biosensor technology in aging research and age-related diseases. Ageing Research Reviews, 2012, 11, 1-9.	5.0	6
86	Bioluminescent system for dynamic imaging of cell and animal behavior. Biochemical and Biophysical Research Communications, 2012, 419, 188-193.	1.0	61
88	Genetic Incorporation of a Metalâ€Chelating Amino Acid as a Probe for Protein Electron Transfer. Angewandte Chemie - International Edition, 2012, 51, 10261-10265.	7.2	37
89	Using lanthanide-based resonance energy transfer for in vitro and in vivo studies of biological processes. Biochemistry (Moscow), 2012, 77, 1553-1574.	0.7	9
90	An Orange Fluorescent Protein with a Large Stokes Shift for Single-Excitation Multicolor FCCS and FRET Imaging. Journal of the American Chemical Society, 2012, 134, 7913-7923.	6.6	215
91	A Molecular Imaging Primer: Modalities, Imaging Agents, and Applications. Physiological Reviews, 2012, 92, 897-965.	13.1	928
92	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
93	Capacitive MEMS Switches., 2012,, 363-374.		0
94	Biochemistry and Biomedical Applications of Spherical Nucleic Acids (SNAs). ACS Symposium Series, 2012, , 1-20.	0.5	7
95	A comprehensive concept of optogenetics. Progress in Brain Research, 2012, 196, 1-28.	0.9	65

#	Article	IF	Citations
96	Structural basis for the influence of a single mutation K145N on the oligomerization and photoswitching rate of Dronpa. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1653-1659.	2.5	8
97	The molecular mechanism of apoptosis upon caspase-8 activation: Quantitative experimental validation of a mathematical model. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1825-1840.	1.9	47
98	Delayed Protein Synthesis Reduces the Correlation between mRNA and Protein Fluctuations. Biophysical Journal, 2012, 103, 377-385.	0.2	68
99	Counting protein molecules using quantitative fluorescence microscopy. Trends in Biochemical Sciences, 2012, 37, 499-506.	3.7	126
100	Red fluorescent proteins: chromophore formation and cellular applications. Current Opinion in Structural Biology, 2012, 22, 679-688.	2.6	80
101	The slow fade of cell fluorescence. Nature Photonics, 2012, 6, 641-643.	15.6	1
102	Live Imaging Fluorescent Proteins in Early Mouse Embryos. Methods in Enzymology, 2012, 506, 361-389.	0.4	10
103	Optogenetic reporters. Progress in Brain Research, 2012, 196, 235-263.	0.9	54
104	Chromophore Transformations in Red Fluorescent Proteins. Chemical Reviews, 2012, 112, 4308-4327.	23.0	173
105	Chitosan Nanoparticles. , 2012, , 427-433.		0
106	Teaching Single-Cell Digital Analysis Using Droplet-Based Microfluidics. Analytical Chemistry, 2012, 84, 1202-1209.	3.2	58
107	Tryptophan-based chromophore in fluorescent proteins can be anionic. Scientific Reports, 2012, 2, 608.	1.6	35
108	Optimization of flow cytometric detection and cell sorting of transgenic Plasmodium parasites using interchangeable optical filters. Malaria Journal, 2012, 11, 312.	0.8	20
109	Coiled-Coil Tag–Probe Labeling Methods for Live-Cell Imaging of Membrane Receptors. Methods in Enzymology, 2012, 504, 355-370.	0.4	16
110	Anti-Fading Media for Live Cell GFP Imaging. PLoS ONE, 2012, 7, e53004.	1.1	59
111	HcRed, a Genetically Encoded Fluorescent Binary Cross-Linking Agent for Cross-Linking of Mitochondrial ATP Synthase in Saccharomyces cerevisiae. PLoS ONE, 2012, 7, e35095.	1.1	1
112	Using GFP Video to Track 3D Movement and Conditional Gene Expression in Free-Moving Flies. PLoS ONE, 2012, 7, e40506.	1.1	13
113	Distinct Modulated Pupil Function System for Real-Time Imaging of Living Cells. PLoS ONE, 2012, 7, e44028.	1.1	0

#	Article	IF	Citations
114	A Green Fluorescent Protein Containing a QFG Tri-Peptide Chromophore: Optical Properties and X-Ray Crystal Structure. PLoS ONE, 2012, 7, e47331.	1.1	7
115	Distinct Effects of Guanidine Thiocyanate on the Structure of Superfolder GFP. PLoS ONE, 2012, 7, e48809.	1.1	19
116	The Single T65S Mutation Generates Brighter Cyan Fluorescent Proteins with Increased Photostability and pH Insensitivity. PLoS ONE, 2012, 7, e49149.	1.1	20
117	In Vivo Imaging of Hierarchical Spatiotemporal Activation of Caspase-8 during Apoptosis. PLoS ONE, 2012, 7, e50218.	1.1	22
118	Structural Perturbation of Superfolder GFP in the Presence of Guanidine Thiocyanate. Spectroscopy, 2012, 27, 381-386.	0.8	1
119	Microfluidics in Single Cell Analysis. , 0, , .		1
120	A conserved interaction with the chromophore of fluorescent proteins. Protein Science, 2012, 21, 171-177.	3.1	10
121	Toward Molecular-Level Characterization of Photoinduced Decarboxylation of the Green Fluorescent Protein: Accessibility of the Charge-Transfer States. Journal of Chemical Theory and Computation, 2012, 8, 1912-1920.	2.3	25
122	Conformationally Locked Chromophores as Models of Excited-State Proton Transfer in Fluorescent Proteins. Journal of the American Chemical Society, 2012, 134, 6025-6032.	6.6	164
123	Genetic approaches to study glial cells in the rodent brain. Glia, 2012, 60, 681-701.	2.5	40
125	Development of Proteinâ€Labeling Probes with a Redesigned Fluorogenic Switch Based on Intramolecular Association for Noâ€Wash Liveâ€Cell Imaging. Angewandte Chemie - International Edition, 2012, 51, 5611-5614.	7.2	62
126	Photodetachment Spectra of Deprotonated Fluorescent Protein Chromophore Anions. Journal of Physical Chemistry A, 2012, 116, 7943-7949.	1.1	45
127	Multi-domain GFP-like proteins from two species of marine hydrozoans. Photochemical and Photobiological Sciences, 2012, 11, 637-644.	1.6	18
128	In vivo imaging of Escherichia coli and Lactococcus lactis in murine intestines using a reporter luciferase gene. Food Science and Biotechnology, 2012, 21, 917-920.	1.2	5
129	Potential limitations in the use of KillerRed for fluorescence microscopy. Journal of Microscopy, 2012, 245, 229-235.	0.8	18
130	Water diffusion in and out of the \hat{l}^2 -barrel of GFP and the fast maturing fluorescent protein, TurboGFP. Chemical Physics, 2012, 392, 143-148.	0.9	9
131	Monitoring the intracellular pH of Zygosaccharomyces bailii by green fluorescent protein. International Journal of Food Microbiology, 2012, 156, 290-295.	2.1	11
132	Optical highlighter molecules in neurobiology. Current Opinion in Neurobiology, 2012, 22, 111-120.	2.0	3

#	Article	IF	Citations
133	Ratiometric fluorescence imaging of dual bio-molecular events in single living cells using a new FRET pair mVenus/mKOî²-based biosensor and a single fluorescent protein biosensor. Biosensors and Bioelectronics, 2012, 31, 292-298.	5.3	19
134	Key strongylid nematodes of animals — Impact of next-generation transcriptomics on systems biology and biotechnology. Biotechnology Advances, 2012, 30, 469-488.	6.0	37
135	Imaging proteins inside cells with fluorescent tags. Trends in Biotechnology, 2012, 30, 8-16.	4.9	254
136	Parameters that affect estimation of nucleolar proteins' mobility in living cells by the FRAP method with the example of protein fibrillarin. Cell and Tissue Biology, 2012, 6, 128-136.	0.2	1
137	Deepâ€Tissue Photoacoustic Tomography of a Genetically Encoded Nearâ€Infrared Fluorescent Probe. Angewandte Chemie - International Edition, 2012, 51, 1448-1451.	7.2	156
138	A time-dependent DFT/molecular dynamics study of the proton-wire responsible for the red fluorescence in the LSSmKate2 protein. Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	10
139	Optical control and study of biological processes at the single-cell level in a live organism. Reports on Progress in Physics, 2013, 76, 072601.	8.1	14
140	Comparative and Practical Aspects of Localizationâ€Based Superâ€Resolution Imaging. Current Protocols in Cytometry, 2013, 63, Unit2.20.	3.7	3
141	Chemical introduction of the green fluorescence: imaging of cysteine cathepsins by an irreversibly locked GFP fluorophore. Organic and Biomolecular Chemistry, 2013, 11, 5913.	1.5	31
142	Spectral and redox properties of the GFP synthetic chromophores as a function of pH in buffered media. Chemical Communications, 2013, 49, 7788.	2.2	31
146	Monitoring of dual bio-molecular events using FRET biosensors based on mTagBFP/sfGFP and mVenus/mKOÎ ⁹ fluorescent protein pairs. Biosensors and Bioelectronics, 2013, 46, 97-101.	5.3	25
147	Minimum set of mutations needed to optimize cyan fluorescent proteins for live cell imaging. Molecular BioSystems, 2013, 9, 258-267.	2.9	56
148	Time-lapse fluorescence imaging and quantitative single cell and endosomal analysis of peritoneal macrophages using fluorescent organosilica nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 274-283.	1.7	20
149	Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio. Nature Communications, 2013, 4, 2550.	5.8	364
150	Fluorescent Protein Applications in Microscopy. Methods in Cell Biology, 2013, 114, 99-123.	0.5	8
151	Photo-initiated Dynamics and Spectroscopy of the Deprotonated Green Fluorescent Protein Chromophore. Physical Chemistry in Action, 2013, , 67-103.	0.1	7
152	Photophysics of Ionic Biochromophores. Physical Chemistry in Action, 2013, , .	0.1	24
153	Optically Modulatable Blue Fluorescent Proteins. Journal of the American Chemical Society, 2013, 135, 16410-16417.	6.6	33

#	ARTICLE	IF	CITATIONS
154	Structural Evidence for a Two-Regime Photobleaching Mechanism in a Reversibly Switchable Fluorescent Protein. Journal of the American Chemical Society, 2013, 135, 15841-15850.	6.6	61
155	Imaging Morphogenesis: Technological Advances and Biological Insights. Science, 2013, 340, 1234168.	6.0	168
156	Enhancing the biophysical properties of mRFP1 through incorporation of fluoroproline. Biochemical and Biophysical Research Communications, 2013, 440, 509-514.	1.0	18
157	Experimental determination of organelle targeting-peptide cleavage sites using transient expression of green fluorescent protein translational fusions. Analytical Biochemistry, 2013, 434, 44-51.	1.1	20
158	Circumventing Photodamage in Live-Cell Microscopy. Methods in Cell Biology, 2013, 114, 545-560.	0.5	167
160	Protein–protein interactions among West Nile non-structural proteins and transmembrane complex formation in mammalian cells. Virology, 2013, 446, 365-377.	1.1	49
161	Femtosecond pumping of eGFP transfected human embryonic kidney cells. , 2013, , .		0
162	Expanding the chemistry of fluorescent protein biosensors through genetic incorporation of unnatural amino acids. Molecular BioSystems, 2013, 9, 2961.	2.9	62
163	Design of growthâ€dependent biosensors based on destabilized GFP for the detection of physiological behavior of <i>Escherichia coli</i> in heterogeneous bioreactors. Biotechnology Progress, 2013, 29, 553-563.	1.3	24
164	Fluorescence imaging in the last two decades. Microscopy (Oxford, England), 2013, 62, 63-68.	0.7	25
165	Chemical biology-based approaches on fluorescent labeling of proteins in live cells. Molecular BioSystems, 2013, 9, 862.	2.9	62
166	Fluorescent Sensors of Protein Kinases. Progress in Molecular Biology and Translational Science, 2013, 113, 217-274.	0.9	31
167	Ultrafast dual photoresponse of isolated biological chromophores: link to the photoinduced mode-specific non-adiabatic dynamics in proteins. Faraday Discussions, 2013, 163, 297.	1.6	59
168	Fluorescent Protein-Based Biosensors and Their Clinical Applications. Progress in Molecular Biology and Translational Science, 2013, 113, 313-348.	0.9	15
169	Determination of the membrane topology of lemur tyrosine kinase 2 (LMTK2) by fluorescence protease protection. American Journal of Physiology - Cell Physiology, 2013, 304, C164-C169.	2.1	28
170	Small-molecule fluorophores and fluorescent probes for bioimaging. Pflugers Archiv European Journal of Physiology, 2013, 465, 347-359.	1.3	240
171	Application of green fluorescent protein-labeled assay for the study of subcellular localization of Newcastle disease virus matrix protein. Journal of Virological Methods, 2013, 194, 118-122.	1.0	14
172	Subpopulation-proteomics in prokaryotic populations. Current Opinion in Biotechnology, 2013, 24, 79-87.	3.3	35

#	Article	IF	CITATIONS
173	Fusion of mApple and Venus fluorescent proteins to the Sindbis virus E2 protein leads to different cell-binding properties. Virus Research, 2013, 177, 138-146.	1.1	6
174	Utilization of fluorescent probes for the quantification and identification of subcellular proteomes and biological processes regulated by lipid peroxidation products. Free Radical Biology and Medicine, 2013, 59, 56-68.	1.3	20
175	Ku80 attentuates cytotoxicity induced by green fluorescent protein transduction independently of nonâ€homologous end joining. FEBS Open Bio, 2013, 3, 46-50.	1.0	7
176	Identification of the molecular mechanisms in cellular processes that elicit a surface plasmon resonance (SPR) response using simultaneous surface plasmon-enhanced fluorescence (SPEF) microscopy. Biosensors and Bioelectronics, 2013, 50, 125-131.	5. 3	22
177	Fluorescent Proteins: Shine on, You Crazy Diamond. Journal of the American Chemical Society, 2013, 135, 2387-2402.	6.6	163
178	Visualization of Membrane Fusion, One Particle at a Time. Biochemistry, 2013, 52, 1654-1668.	1.2	35
179	Transgenic <i><scp>X</scp>enopus laevis</i> for live imaging in cell and developmental biology. Development Growth and Differentiation, 2013, 55, 422-433.	0.6	33
180	Probing neuronal activities with genetically encoded optical indicators: from a historical to a forward-looking perspective. Pflugers Archiv European Journal of Physiology, 2013, 465, 361-371.	1.3	17
181	Design strategies for fluorescent biodegradable polymeric biomaterials. Journal of Materials Chemistry B, 2013, 1, 132-148.	2.9	82
182	Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals. Chemical Society Reviews, 2013, 42, 3441.	18.7	134
183	Single molecule methods with applications in living cells. Current Opinion in Biotechnology, 2013, 24, 737-744.	3.3	29
184	Ultrafast Proton Shuttling in <i>Psammocora</i> Cyan Fluorescent Protein. Journal of Physical Chemistry B, 2013, 117, 11134-11143.	1.2	13
185	Beta-Barrel Scaffold of Fluorescent Proteins. International Review of Cell and Molecular Biology, 2013, 302, 221-278.	1.6	75
186	Fluorescent Reporters and Methods to Analyze Fluorescent Signals. Methods in Molecular Biology, 2013, 983, 93-112.	0.4	29
187	Significant Expansion of the Fluorescent Protein Chromophore through the Genetic Incorporation of a Metal helating Unnatural Amino Acid. Angewandte Chemie - International Edition, 2013, 52, 4805-4809.	7.2	71
188	The 1.6â€Ã resolution structure of a FRET-optimized Cerulean fluorescent protein. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 767-773.	2.5	6
189	A Bilirubin-Inducible Fluorescent Protein from Eel Muscle. Cell, 2013, 153, 1602-1611.	13.5	269
190	Compartmentalizing Genetically Encoded Calcium Sensors. Methods in Molecular Biology, 2013, 937, 307-326.	0.4	3

#	Article	IF	CITATIONS
191	Yellow fluorescent protein phiYFPv (<i>Phialidium</i>): structure and structure-based mutagenesis. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1005-1012.	2.5	25
192	Photoswitchable Fluorophores for Single-Molecule Localization Microscopy. Methods in Molecular Biology, 2013, 950, 131-151.	0.4	15
193	Probing the Plasma Membrane Organization in Living Cells by Spot Variation Fluorescence Correlation Spectroscopy. Methods in Enzymology, 2013, 519, 277-302.	0.4	28
194	Structureâ€"function relationship of cerebral networks in experimental neuroscience: Contribution of magnetic resonance imaging. Experimental Neurology, 2013, 242, 65-73.	2.0	13
195	Fluorescent properties of an azacrown-containing styryl derivative of naphthopyran: ion-binding response and photochemical switching off. Photochemical and Photobiological Sciences, 2013, 12, 1803-1810.	1.6	6
196	Fluorescent optical fiber sensors for cell viability monitoring. Analyst, The, 2013, 138, 4066.	1.7	9
197	Optogenetics in primates: a shining future?. Trends in Genetics, 2013, 29, 403-411.	2.9	75
198	Advanced in vivo applications of blue light photoreceptors as alternative fluorescent proteins. Photochemical and Photobiological Sciences, 2013, 12, 1125-1134.	1.6	25
199	Background-Free In vivo Time Domain Optical Molecular Imaging Using Colloidal Quantum Dots. ACS Applied Materials & Domain Optical Molecular Imaging Using Colloidal Quantum Dots. ACS Applied Materials & Domain Optical Molecular Imaging Using Colloidal Quantum Dots. ACS Applied Materials & Domain Optical Molecular Imaging Using Colloidal Quantum Dots. ACS Applied Materials & Domain Optical Molecular Imaging Using Colloidal Quantum Dots. ACS Applied Materials & Domain Optical Molecular Imaging Using Colloidal Quantum Dots. ACS Applied Materials & Domain Optical Molecular Imaging Using Colloidal Quantum Dots. ACS Applied Materials & Domain Optical Molecular Imaging Using Colloidal Quantum Dots. ACS Applied Materials & Domain Optical Molecular Imaging Using Colloidal Quantum Dots. ACS Applied Materials & Domain Optical Molecular Imaging Using Colloidal Quantum Dots.	4.0	25
200	Smart fluorescent proteins: Innovation for barrierâ€free superresolution imaging in living cells. Development Growth and Differentiation, 2013, 55, 491-507.	0.6	25
201	New Imaging Tools to Study Synaptogenesis. , 2013, , 599-622.		2
202	Protein labeling with fluorogenic probes for no-wash live-cell imaging of proteins. Current Opinion in Chemical Biology, 2013, 17, 644-650.	2.8	54
203	Colored Fluorescent Silk Made by Transgenic Silkworms. Advanced Functional Materials, 2013, 23, 5232-5239.	7.8	82
204	Reporter Mouse Lines for Fluorescence Imaging. Development Growth and Differentiation, 2013, 55, 390-405.	0.6	104
205	Constitutive expression of fluorescent protein by Aspergillus var. niger and Aspergillus carbonarius to monitor fungal colonization in maize plants. Journal of Microbiological Methods, 2013, 94, 381-389.	0.7	2
206	Cell Markers. , 2013, , 483-487.		1
207	Simultaneous Imaging of an Enantiomer Pair by Electron Paramagnetic Resonance Using Isotopic Nitrogen Labeling. Analytical Chemistry, 2013, 85, 985-990.	3.2	5
208	Structure of the red fluorescent protein from a lancelet (<i>Branchiostoma lanceolatum</i>): a novel GYG chromophore covalently bound to a nearby tyrosine. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1850-1860.	2.5	15

#	ARTICLE	IF	CITATIONS
209	Fluorescent Macromolecular Sensors of Enzymatic Activity for In Vivo Imaging. Progress in Molecular Biology and Translational Science, 2013, 113, 349-387.	0.9	6
210	Perspectives for using genetically encoded fluorescent biosensors in plants. Frontiers in Plant Science, 2013, 4, 234.	1.7	23
212	Fusion of a Flavin-Based Fluorescent Protein to Hydroxynitrile Lyase from Arabidopsis thaliana Improves Enzyme Stability. Applied and Environmental Microbiology, 2013, 79, 4727-4733.	1.4	14
213	Towards physiological complexity with <i>in vitro</i> single-molecule biophysics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120271.	1.8	15
214	MoniTORing neuronal excitability at the synapse. Journal of Cell Biology, 2013, 202, 7-9.	2.3	1
215	Actin in Action: Imaging Approaches to Study Cytoskeleton Structure and Function. Cells, 2013, 2, 715-731.	1.8	29
216	Steric contribution of macromolecular crowding to the time and activation energy for preprotein translocation across the endoplasmic reticulum membrane. Physical Review E, 2013, 88, 012725.	0.8	2
217	Automatic Discovery of Bioluminescent Proteins from Large Protein Databases. , 2013, , .		0
218	Subcellular Localization of Transiently Expressed Fluorescent Fusion Proteins. Methods in Molecular Biology, 2013, 1069, 227-258.	0.4	22
219	Transgenesis and imaging in birds, and available transgenic reporter lines. Development Growth and Differentiation, 2013, 55, 406-421.	0.6	40
220	Fluorescence Fluctuation Approaches to the Study of Adhesion and Signaling. Methods in Enzymology, 2013, 519, 167-201.	0.4	5
221	Live-Cell Imaging Tool Optimization To Study Gene Expression Levels and Dynamics in Single Cells of Bacillus cereus. Applied and Environmental Microbiology, 2013, 79, 5643-5651.	1.4	16
222	STATs get their move on. Jak-stat, 2013, 2, e27080.	2.2	100
223	Development, Expansion, and In vivo Monitoring of Human NK Cells from Human Embryonic Stem Cells (hESCs) and Induced Pluripotent Stem Cells (iPSCs). Journal of Visualized Experiments, 2013, , e50337.	0.2	34
224	Effects of Orexin Gene Transfer in the Dorsolateral Pons in Orexin Knockout Mice. Sleep, 2013, 36, 31-40.	0.6	38
225	Using Coculture to Detect Chemically Mediated Interspecies Interactions. Journal of Visualized Experiments, 2013, , e50863.	0.2	5
226	Spectral phasor approach for fingerprinting of photo-activatable fluorescent proteins Dronpa, Kaede and KikGR. Methods and Applications in Fluorescence, 2013, 1, 035001.	1.1	27
228	"Stainomics― Identification of mitotracker labeled proteins in mammalian cells. Electrophoresis, 2013, 34, 1957-1964.	1.3	12

#	ARTICLE	IF	CITATIONS
230	Extended Stokes Shift in Fluorescent Proteins: Chromophore–Protein Interactions in a Near-Infrared TagRFP675 Variant. Scientific Reports, 2013, 3, 1847.	1.6	89
231	GFP-Based Biosensors., 2013,,.		3
232	Non-Invasive Imaging of Phosphoinositide-3-Kinase-Catalytic-Subunit-Alpha (PIK3CA) Promoter Modulation in Small Animal Models. PLoS ONE, 2013, 8, e55971.	1.1	21
233	Analysis of the Proteinaceous Components of the Organic Matrix of Calcitic Sclerites from the Soft Coral Sinularia sp PLoS ONE, 2013, 8, e58781.	1.1	12
234	PIN2 Turnover in Arabidopsis Root Epidermal Cells Explored by the Photoconvertible Protein Dendra2. PLoS ONE, 2013, 8, e61403.	1.1	37
235	Phanta: A Non-Fluorescent Photochromic Acceptor for pcFRET. PLoS ONE, 2013, 8, e75835.	1.1	14
236	Advanced Methods in Fluorescence Microscopy. Analytical Cellular Pathology, 2013, 36, 5-17.	0.7	12
237	Evaluation of royal jelly as an alternative to fetal bovine serum in cell culture using cell proliferation assays and live cell imaging. Tropical Journal of Obstetrics and Gynaecology, 2013, 11, .	0.3	4
239	Intravital Microscopy., 2014,, 3959-3972.		1
240	Adaptive Imaging Cytometry to Estimate Parameters of Gene Networks Models in Systems and Synthetic Biology. PLoS ONE, 2014, 9, e107087.	1.1	12
241	Measuring and Sorting Cell Populations Expressing Isospectral Fluorescent Proteins with Different Fluorescence Lifetimes. PLoS ONE, 2014, 9, e109940.	1.1	16
242	A review of novel optical imaging strategies of the stroke pathology and stem cell therapy in stroke. Frontiers in Cellular Neuroscience, 2014, 8, 226.	1.8	29
243	Twenty years of fluorescence imaging of intracellular chloride. Frontiers in Cellular Neuroscience, 2014, 8, 258.	1.8	83
244	Imaging Live Cells at the Nanometer-Scale with Single-Molecule Microscopy: Obstacles and Achievements in Experiment Optimization for Microbiology. Molecules, 2014, 19, 12116-12149.	1.7	43
246	iRFP is a sensitive marker for cell number and tumor growth in high-throughput systems. Cell Cycle, 2014, 13, 220-226.	1.3	34
247	Pulp Cell Tracking by Radionuclide Imaging for Dental Tissue Engineering. Tissue Engineering - Part C: Methods, 2014, 20, 188-197.	1.1	25
248	Methodologies in the Era of Cardiovascular "Omics― , 2014, , 15-55.		0
249	Quantification of osmotic water transport in vivo using fluorescent albumin. American Journal of Physiology - Renal Physiology, 2014, 307, F981-F989.	1.3	16

#	Article	IF	CITATIONS
250	A Digital Framework to Build, Visualize and Analyze a Gene Expression Atlas with Cellular Resolution in Zebrafish Early Embryogenesis. PLoS Computational Biology, 2014, 10, e1003670.	1.5	22
251	Superresolution Imaging Captures Carbohydrate Utilization Dynamics in Human Gut Symbionts. MBio, 2014, 5, e02172.	1.8	47
252	Counting Molecules Within Cells. Colloquium Series on Quantitative Cell Biology, 2014, 1, 1-74.	0.5	4
253	Modelling of diffraction grating based optical filters for fluorescence detection of biomolecules. Biomedical Optics Express, 2014, 5, 2285.	1.5	2
254	Hematopoietic Stem Cell Protocols. Methods in Molecular Biology, 2014, , .	0.4	2
255	Invited Review Article: Advanced light microscopy for biological space research. Review of Scientific Instruments, 2014, 85, 101101.	0.6	24
256	Measurement of Mitochondrial Turnover and Life Cycle Using MitoTimer. Methods in Enzymology, 2014, 547, 21-38.	0.4	16
258	Development of a Clickable Designer Monolignol for Interrogation of Lignification in Plant Cell Walls. Bioconjugate Chemistry, 2014, 25, 2189-2196.	1.8	33
260	Chemotactic signaling in mesenchymal cells compared to amoeboid cells. Genes and Diseases, 2014, 1, 162-173.	1.5	14
261	Editorial: Fluorescent biosensors. Biotechnology Journal, 2014, 9, 171-173.	1.8	6
262	GFPâ€SCFV: Expression and possible applications as a tool for experimental investigations of atherosclerosis. Biotechnology Progress, 2014, 30, 1206-1213.	1.3	3
263	Shining light on cell death processes – a novel biosensor for necroptosis, a newly described cell death program. Biotechnology Journal, 2014, 9, 224-240.	1.8	12
264	Fluorescent biosensors for high throughput screening of protein kinase inhibitors. Biotechnology Journal, 2014, 9, 253-265.	1.8	25
265	Application of Green Fluorescent Protein in Immunoassays. Advances in Bioscience and Biotechnology (Print), 2014, 05, 557-563.	0.3	2
266	A general approach for the development of fluorogenic probes suitable for no-wash imaging of kinases in live cells. Chemical Communications, 2014, 50, 15319-15322.	2.2	16
267	Highly specific hybrid protein DARPin-mCherry for fluorescent visualization of cells overexpressing tumor marker HER2/neu. Biochemistry (Moscow), 2014, 79, 1391-1396.	0.7	20
268	Red fluorescence increases with depth in reef fishes, supporting a visual function, not UV protection. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141211.	1.2	29
269	Optimized two-color super resolution imaging of Drp1 during mitochondrial fission with a slow-switching Dronpa variant. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13093-13098.	3.3	59

#	Article	IF	CITATIONS
270	8th Congress on Electronic Structure: Principles and Applications (ESPA 2012). Highlights in Theoretical Chemistry, 2014, , .	0.0	0
271	Visualization of Endoplasmic Reticulum Subdomains in Cultured Cells. Journal of Visualized Experiments, 2014, , e50985.	0.2	3
272	Fluorescent proteins for live-cell imaging with super-resolution. Chemical Society Reviews, 2014, 43, 1088-1106.	18.7	296
273	How to switch a fluorophore: from undesired blinking to controlled photoswitching. Chemical Society Reviews, 2014, 43, 1076-1087.	18.7	164
274	Towards 3D in silico modeling of the sea urchin embryonic development. Journal of Chemical Biology, 2014, 7, 17-28.	2.2	7
275	Structure and properties of chimeric small heat shock proteins containing yellow fluorescent protein attached to their C-terminal ends. Cell Stress and Chaperones, 2014, 19, 507-518.	1.2	9
276	Photoswitching Proteins. Methods in Molecular Biology, 2014, , .	0.4	7
278	FRET-FLIM applications in plant systems. Protoplasma, 2014, 251, 383-394.	1.0	48
279	Development of FRET biosensors for mammalian and plant systems. Protoplasma, 2014, 251, 333-347.	1.0	31
280	Newly engineered cyan fluorescent proteins with enhanced performances for live cell FRET imaging. Biotechnology Journal, 2014, 9, 180-191.	1.8	26
281	Whole-Brain Imaging with Single-Cell Resolution Using Chemical Cocktails and Computational Analysis. Cell, 2014, 157, 726-739.	13.5	1,097
282	Longitudinal in vivo twoâ€photon fluorescence imaging. Journal of Comparative Neurology, 2014, 522, 1708-1727.	0.9	22
283	Photoactivatable Fluorescent Proteins for Super-resolution Microscopy. Methods in Molecular Biology, 2014, 1148, 239-260.	0.4	8
284	An improved monomeric infrared fluorescent protein for neuronal and tumour brain imaging. Nature Communications, 2014, 5, 3626.	5.8	142
285	Single molecule techniques in DNA repair: A primer. DNA Repair, 2014, 20, 2-13.	1.3	9
286	Cellular Incorporation of Unnatural Amino Acids and Bioorthogonal Labeling of Proteins. Chemical Reviews, 2014, 114, 4764-4806.	23.0	861
287	Synthesized Blue Fluorescent Protein Analogue with Tunable Colors from Excited-State Intramolecular Proton Transfer through an N–H···N Hydrogen Bond. Journal of Physical Chemistry Letters, 2014, 5, 92-98.	2.1	32
288	Fluorescence Spectroscopy and Microscopy. Methods in Molecular Biology, 2014, , .	0.4	25

#	Article	IF	CITATIONS
289	Optimization of Fluorescent Proteins. Methods in Molecular Biology, 2014, 1076, 371-417.	0.4	11
290	Quantifying intracellular dynamics using fluorescence fluctuation spectroscopy. Protoplasma, 2014, 251, 307-316.	1.0	10
291	Green-to-Red Photoconvertible Dronpa Mutant for Multimodal Super-resolution Fluorescence Microscopy. ACS Nano, 2014, 8, 1664-1673.	7.3	87
292	DNA Cloning and Assembly Methods. Methods in Molecular Biology, 2014, , .	0.4	6
293	Whole-Body Imaging with Single-Cell Resolution by Tissue Decolorization. Cell, 2014, 159, 911-924.	13.5	404
294	Phenylenevinylene conjugated oligoelectrolytes as fluorescent dyes for mammalian cell imaging. Chemical Communications, 2014, 50, 14859-14861.	2.2	30
295	A photochromic and thermochromic fluorescent protein. RSC Advances, 2014, 4, 56762-56765.	1.7	8
296	Methods of Split Reporter Reconstitution for the Analysis of Biomolecules. Chemical Record, 2014, 14, 492-501.	2.9	9
297	Fluorescent fusion proteins derived from the tenth human fibronectin domain. Russian Journal of Bioorganic Chemistry, 2014, 40, 375-382.	0.3	3
299	Effect of fixation procedures on the fluorescence lifetimes of <i>Aequorea victoria</i> derived fluorescent proteins. Journal of Microscopy, 2014, 256, 166-176.	0.8	35
300	Synthesis and characterization of fluorescent oligo (3,4,5-triethoxycarbonyl-2-pyrazoline). Polymer Chemistry, 2014, 5, 4781.	1.9	12
301	More than add-on: chemoselective reactions for the synthesis of functional peptides and proteins. Current Opinion in Chemical Biology, 2014, 22, 62-69.	2.8	86
303	Significant Expansion of Fluorescent Protein Sensing Ability through the Genetic Incorporation of Superior Photo-Induced Electron-Transfer Quenchers. Journal of the American Chemical Society, 2014, 136, 13094-13097.	6.6	52
304	Temperature-induced fluorescence enhancement of GFP chromophore containing copolymers for detection of Bacillus thermophilus. Polymer Chemistry, 2014, 5, 2521.	1.9	33
305	Genetic Incorporation of Histidine Derivatives Using an Engineered Pyrrolysyl-tRNA Synthetase. ACS Chemical Biology, 2014, 9, 1092-1096.	1.6	65
306	Options for tracking GFP-Labeled transplanted myoblasts using in vivofluorescence imaging: implications for tracking stem cell fate. BMC Biotechnology, 2014, 14, 55.	1.7	14
307	Photoswitchable Red Fluorescent Protein with a Large Stokes Shift. Chemistry and Biology, 2014, 21, 1402-1414.	6.2	18
308	Biotechnological Exploitation of Marine Animals. , 2014, , 541-562.		3

#	Article	IF	CITATIONS
309	Molecular Machines Involved in Peroxisome Biogenesis and Maintenance., 2014,,.		2
310	A novel strategy for the purification of a recombinant protein using ceramic fluorapatite-binding peptides as affinity tags. Journal of Chromatography A, 2014, 1339, 26-33.	1.8	10
311	Artificial Riboswitch Selection: A FACS-Based Approach. Methods in Molecular Biology, 2014, 1111, 57-75.	0.4	4
312	Visualizing S1P-directed cellular egress by intravital imaging. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 738-744.	1.2	2
313	Fluorescent proteins for quantitative microscopy. Methods in Cell Biology, 2014, 123, 95-111.	0.5	28
314	Review of Bioluminescence for Engineers and Scientists in Biophotonics. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 232-241.	1.9	22
315	UV Excitedâ€State Photoresponse of Biochromophore Negative Ions. Angewandte Chemie - International Edition, 2014, 53, 9797-9801.	7.2	36
316	Establishment of a cell line with stable expression of mCherry-EGFP tandem fluorescent-tagged LC3B for studying the impact of HIV-1 infection on autophagic flux. Journal of Virological Methods, 2014, 209, 95-102.	1.0	0
317	Hydrogen Bond Flexibility Correlates with Stokes Shift in mPlum Variants. Journal of Physical Chemistry B, 2014, 118, 2940-2948.	1.2	26
318	Every laboratory with a fluorescence microscope should consider counting molecules. Molecular Biology of the Cell, 2014, 25, 1545-1548.	0.9	26
319	Steady-state and time-resolved spectroscopic studies of green-to-red photoconversion of fluorescent protein Dendra2. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 280, 5-13.	2.0	13
320	Structural consequences of chromophore formation and exploration of conserved lid residues amongst naturally occurring fluorescent proteins. Chemical Physics, 2014, 429, 5-11.	0.9	8
321	Photocontrollable Fluorescent Proteins for Superresolution Imaging. Annual Review of Biophysics, 2014, 43, 303-329.	4.5	211
322	Processive cytoskeletal motors studied with singleâ€molecule fluorescence techniques. FEBS Letters, 2014, 588, 3520-3525.	1.3	19
323	Genetically encoded fluorescent redox sensors. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 745-756.	1.1	165
325	Instrument Response Standard in Time-Resolved Fluorescence Spectroscopy at Visible Wavelength: Quenched Fluorescein Sodium. Applied Spectroscopy, 2014, 68, 577-583.	1.2	55
326	Live imaging of nervous system development and function using lightâ€sheet microscopy. Molecular Reproduction and Development, 2015, 82, 605-618.	1.0	11
327	Engineering of Optimized Fluorescent Proteins: An Overview from a Cyan and FRET Perspective. Series in Cellular and Clinical Imaging, 2015, , 3-32.	0.2	0

#	Article	IF	CITATIONS
328	Heterologous overexpression of sfCherry fluorescent protein in Nannochloropsis salina. Biotechnology Reports (Amsterdam, Netherlands), 2015, 8, 10-15.	2.1	28
329	Monomeric Garnet, a far-red fluorescent protein for live-cell STED imaging. Scientific Reports, 2015, 5, 18006.	1.6	35
330	Two-photon directed evolution of green fluorescent proteins. Scientific Reports, 2015, 5, 11968.	1.6	24
331	Green autofluorescence, a double edged monitoring tool for bacterial growth and activity in micro-plates. Physical Biology, 2015, 12, 066016.	0.8	29
332	Physico-chemical characterization of the interaction of red fluorescent protein $\hat{a} \in$ "DsRed with silica layers. , 2015, , .		0
333	Genetic diversity of fluorescent protein genes generated by gene duplication and alternative splicing in reef-building corals. Zoological Letters, 2015, 1, 23.	0.7	3
334	Bottomâ€Up Instructive Quality Control in the Biofabrication of Smart Protein Materials. Advanced Materials, 2015, 27, 7816-7822.	11.1	61
335	Imaging early stages of the female reproductive structure of arabidopsis by confocal laser scanning microscopy. Developmental Dynamics, 2015, 244, 1286-1290.	0.8	20
336	Bioinspired Hybrid White Lightâ€Emitting Diodes. Advanced Materials, 2015, 27, 5493-5498.	11,1	72
337	Bioinspired Fluorescent Dyes Based on a Conformationally Locked Chromophore of the Fluorescent Protein Kaede. European Journal of Organic Chemistry, 2015, 2015, 5716-5721.	1.2	36
338	DNA Replication Restart in Archaea., 0,,.		0
339	Shaped 3D Singular Spectrum Analysis for Quantifying Gene Expression, with Application to the Early Zebrafish Embryo. BioMed Research International, 2015, 2015, 1-18.	0.9	5
340	Bridging the Gap: A Roadmap to Breaking the Biological Design Barrier. Frontiers in Bioengineering and Biotechnology, 2015, 2, 87.	2.0	20
341	Fluorescent Reporters and Biosensors for Probing the Dynamic Behavior of Protein Kinases. Proteomes, 2015, 3, 369-410.	1.7	43
342	Cell biological mechanisms of activity-dependent synapse to nucleus translocation of CRTC1 in neurons. Frontiers in Molecular Neuroscience, 2015, 8, 48.	1.4	31
343	In planta comparative analysis of improved green fluorescent proteins with reference to fluorescence intensity and bimolecular fluorescence complementation ability. Plant Biotechnology, 2015, 32, 81-87.	0.5	24
344	KillerOrange, a Genetically Encoded Photosensitizer Activated by Blue and Green Light. PLoS ONE, 2015, 10, e0145287.	1.1	56
345	Spectral Diversity and Regulation of Coral Fluorescence in a Mesophotic Reef Habitat in the Red Sea. PLoS ONE, 2015, 10, e0128697.	1.1	67

#	Article	IF	CITATIONS
346	A Comparison of Red Fluorescent Proteins to Model DNA Vaccine Expression by Whole Animal In Vivo Imaging. PLoS ONE, 2015, 10, e0130375.	1.1	12
348	Influence of cell growth conditions and medium composition on EGFP photostability in live cells. BioTechniques, 2015, 58, 258-261.	0.8	12
349	The interaction of QDs with RAW264.7 cells: nanoparticle quantification, uptake kinetics and immune responses study. RSC Advances, 2015, 5, 42250-42258.	1.7	5
350	Multicolor Whole-Cell Bacterial Sensing Using a Synchronous Fluorescence Spectroscopy-Based Approach. PLoS ONE, 2015, 10, e0122848.	1.1	10
353	Novel uses of fluorescent proteins. Current Opinion in Chemical Biology, 2015, 27, 1-9.	2.8	96
354	Unraveling Ultrafast Photoinduced Proton Transfer Dynamics in a Fluorescent Protein Biosensor for Ca ²⁺ Imaging. Chemistry - A European Journal, 2015, 21, 6481-6490.	1.7	34
355	Arabidopsis Synaptotagmin 2 Participates in Pollen Germination and Tube Growth and Is Delivered to Plasma Membrane via Conventional Secretion. Molecular Plant, 2015, 8, 1737-1750.	3.9	23
356	Fluorogen-based reporters for fluorescence imaging: a review. Methods and Applications in Fluorescence, 2015, 3, 042007.	1.1	40
357	Combining Optical Reporter Proteins with Different Half-lives to Detect Temporal Evolution of Hypoxia and Reoxygenation in Tumors. Neoplasia, 2015, 17, 871-881.	2.3	29
358	Analysis of green fluorescent protein bioluminescence <i>in vivo</i> and <i>in vitro</i> using a glow discharge. Journal of Physics: Conference Series, 2015, 591, 012068.	0.3	0
359	Functional Expression of Aquaporin-2 Tagged with Photoconvertible Fluorescent Protein in mpkCCD Cells. Cellular Physiology and Biochemistry, 2015, 36, 670-682.	1.1	5
360	Photobleaching and phototoxicity of KillerRed in tumor spheroids induced by continuous wave and pulsed laser illumination. Journal of Biophotonics, 2015, 8, 952-960.	1.1	22
361	<i>In Vivo</i> Tomographic Imaging of Deep-Seated Cancer Using Fluorescence Lifetime Contrast. Cancer Research, 2015, 75, 1236-1243.	0.4	58
362	Far-Field Optical Nanoscopy. Springer Series on Fluorescence, 2015, , .	0.8	9
363	Engineering and Characterization of New LOV-Based Fluorescent Proteins from <i>Chlamydomonas reinhardtii</i> and <i>Vaucheria frigida</i> ACS Synthetic Biology, 2015, 4, 371-377.	1.9	51
364	Excited State Electronic Landscape of mPlum Revealed by Two-Dimensional Double Quantum Coherence Spectroscopy. Journal of Physical Chemistry B, 2015, 119, 3414-3422.	1.2	6
365	pH-Dependent Transient Conformational States Control Optical Properties in Cyan Fluorescent Protein. Journal of the American Chemical Society, 2015, 137, 2892-2900.	6.6	17
366	Exploring color tuning strategies in red fluorescent proteins. Photochemical and Photobiological Sciences, 2015, 14, 200-212.	1.6	15

#	Article	IF	CITATIONS
367	Application of GFP imaging in cancer. Laboratory Investigation, 2015, 95, 432-452.	1.7	80
368	Assessment of Transfection of AdCMV-EGFP to Rat Submandibular Gland Cells. Cell Biochemistry and Biophysics, 2015, 71, 147-153.	0.9	0
369	Structure of the green fluorescent protein NowGFP with an anionic tryptophan-based chromophore. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1699-1707.	2.5	9
370	Viral and Transgenic Reporters and Genetic Analysis of Adult Neurogenesis. Cold Spring Harbor Perspectives in Biology, 2015, 7, a018804.	2.3	44
371	Multicolor Fluorescent Polymers Inspired from Green Fluorescent Protein. Macromolecules, 2015, 48, 5969-5979.	2.2	28
372	Inference of Quantitative Models of Bacterial Promoters from Time-Series Reporter Gene Data. PLoS Computational Biology, 2015, 11, e1004028.	1.5	38
373	Concepts in bio-molecular spectroscopy: vibrational case studies on metalloenzymes. Physical Chemistry Chemical Physics, 2015, 17, 18222-18237.	1.3	14
374	Green Fluorescent Protein with Anionic Tryptophan-Based Chromophore and Long Fluorescence Lifetime. Biophysical Journal, 2015, 109, 380-389.	0.2	56
375	Non-enzymatic assay for glucose by using immobilized whole-cells of E. coli containing glucose binding protein fused to fluorescent proteins. Sensors and Actuators B: Chemical, 2015, 221, 236-241.	4.0	0
376	Assessing T lymphocyte function and differentiation by genetically encoded reporter systems. Trends in Immunology, 2015, 36, 392-400.	2.9	20
377	Structure and Mechanism of RNA Mimics of Green Fluorescent Protein. Annual Review of Biophysics, 2015, 44, 187-206.	4.5	108
378	Quantitative characterization of gene regulation by Rho dependent transcription termination. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 940-954.	0.9	7
379	Two-Photon Excitation Microscopy and Its Applications in Neuroscience. Methods in Molecular Biology, 2015, 1251, 25-42.	0.4	28
381	Labeling proteins on live mammalian cells using click chemistry. Nature Protocols, 2015, 10, 780-791.	5.5	127
382	Cell-Based Screening: Extracting Meaning from Complex Data. Neuron, 2015, 86, 160-174.	3.8	37
383	Bayesian Model Selection Applied to the Analysis of Fluorescence Correlation Spectroscopy Data of Fluorescent Proteins <i>in Vitro</i> and <i>in Vivo</i> Analytical Chemistry, 2015, 87, 4326-4333.	3.2	24
384	Temperature sensing using red fluorescent protein. Biotechnology and Bioprocess Engineering, 2015, 20, 67-72.	1.4	17
385	High-resolution in vivo optical imaging of stroke injury and repair. Brain Research, 2015, 1623, 174-192.	1.1	36

#	Article	IF	CITATIONS
386	Visualization and translocation of ternary Calcineurinâ€A/Calcineurinâ€B/Calmodulinâ€2 protein complexes by dualâ€color trimolecular fluorescence complementation. New Phytologist, 2015, 208, 269-279.	3.5	19
387	Explaining Level Inversion of the L _a and L _b States of Indole and Indole Derivatives in Polar Solvents. ChemPhysChem, 2015, 16, 1695-1702.	1.0	25
388	Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnology Advances, 2015, 33, 1024-1042.	6.0	151
389	FRET-based screening assay using small-molecule photoluminescent probes in lysate of cells overexpressing RFP-fused protein kinases. Analytical Biochemistry, 2015, 481, 10-17.	1.1	12
390	Tumor redox metabolism correlation with the expression level of red fluorescent protein. , 2015, , .		0
391	Development and application of fluorescent protein-based indicators for live cell imaging. Journal of Oral Biosciences, 2015, 57, 54-60.	0.8	7
392	Fluorescence lifetime imaging (FLIM): Basic concepts and some recent developments. Medical Photonics, 2015, 27, 3-40.	3.8	208
394	CT26 murine colon carcinoma expressing the red fluorescent protein KillerRed as a highly immunogenic tumor model. Journal of Biomedical Optics, 2015, 20, 088002.	1.4	9
395	Putting RNA to work: Translating RNA fundamentals into biotechnological engineering practice. Biotechnology Advances, 2015, 33, 1829-1844.	6.0	19
396	Physiology of Astroglia: Channels, Receptors, Transporters, Ion Signaling and Gliotransmission. Colloquium Series on Neuroglia in Biology and Medicine From Physiology To Disease, 2015, 2, 1-172.	0.5	4
397	The action of HIF-3α variants on HIF-2α–HIF-1β heterodimer formation is directly probed in live cells. Experimental Cell Research, 2015, 336, 329-337.	1.2	8
398	Molecular modelling of the pH influence in the geometry and the absorbance spectrum of near-infrared TagRFP675 fluorescent protein. Physical Chemistry Chemical Physics, 2015, 17, 29363-29373.	1.3	2
399	Molecular-Size Fluorescence Emitters. , 2015, , 133-202.		0
400	DNA replication restart and cellular dynamics of Hef helicase/nuclease protein in Haloferax volcanii. Biochimie, 2015, 118, 254-263.	1.3	9
401	Synthesis of fluorescent dipeptidomimetics and their ribosomal incorporation into green fluorescent protein. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4715-4718.	1.0	14
402	Live imaging of Tribolium castaneum embryonic development using light-sheet–based fluorescence microscopy. Nature Protocols, 2015, 10, 1486-1507.	5.5	22
403	Correction Approach for Delta Function Convolution Model Fitting of Fluorescence Decay Data in the Case of a Monoexponential Reference Fluorophore. Journal of Fluorescence, 2015, 25, 1169-1182.	1.3	13
404	Segmented GFP-like aptamer probes for functional imaging of viral genome trafficking. Virus Research, 2015, 210, 291-297.	1.1	5

#	Article	IF	CITATIONS
406	Robust reconstruction of gene expression profiles from reporter gene data using linear inversion. Bioinformatics, 2015, 31, i71-i79.	1.8	17
407	Mechanism Behind the Apparent Large Stokes Shift in LSSmOrange Investigated by Time-Resolved Spectroscopy. Journal of Physical Chemistry B, 2015, 119, 14880-14891.	1.2	11
408	Room temperature crystal structure of the fast switching M159T mutant of the fluorescent protein dronpa. Proteins: Structure, Function and Bioinformatics, 2015, 83, 397-402.	1.5	8
409	Easily fixed simple small ESIPT molecule with aggregation induced emission for fast and photostable "turn-on―bioimaging. RSC Advances, 2015, 5, 7789-7793.	1.7	15
410	Singlet oxygen photosensitisation by the fluorescent protein Pp2FbFP L30M, a novel derivative of Pseudomonas putida flavin-binding Pp2FbFP. Photochemical and Photobiological Sciences, 2015, 14, 280-287.	1.6	42
411	In Vivo Imaging of Transplanted Cells and Biomaterials. , 2015, , 841-851.		0
412	Flavin-based fluorescent proteins: emerging paradigms in biological imaging. Current Opinion in Biotechnology, 2015, 31, 16-23.	3.3	70
413	Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structureâ€guided surface engineering. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1225-1237.	1.5	18
414	Programming Controlled Adhesion of <i>E. coli</i> to Target Surfaces, Cells, and Tumors with Synthetic Adhesins. ACS Synthetic Biology, 2015, 4, 463-473.	1.9	133
415	Two-photon microscopy in pre-clinical and clinical cancer research. Frontiers of Optoelectronics, 2015, 8, 141-151.	1.9	12
416	Excited State Structural Events of a Dual-Emission Fluorescent Protein Biosensor for Ca2+ Imaging Studied by Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry B, 2015, 119, 2204-2218.	1.2	26
417	In Vivo Analysis of Protein–Protein Interactions with Bioluminescence Resonance Energy Transfer (BRET): Progress and Prospects. International Journal of Molecular Sciences, 2016, 17, 1704.	1.8	37
418	In Vivo Visualization of Single Axons and Synaptic Remodeling in Normal and Pathological Conditions. , 2016, , 221-243.		0
419	Fluorescent Proteins., 2016,,.		0
420	Live-cell imaging of neurofilament transport in cultured neurons. Methods in Cell Biology, 2016, 131, 21-90.	0.5	14
421	Fluorescent and Bioluminescent Reporter Myxoviruses. Viruses, 2016, 8, 214.	1.5	6
422	Peculiarities of the Super-Folder GFP Folding in a Crowded Milieu. International Journal of Molecular Sciences, 2016, 17, 1805.	1.8	12
423	Genetically encoded far-red fluorescent sensors for caspase-3 activity. BioTechniques, 2016, 60, 62-68.	0.8	37

#	Article	IF	CITATIONS
424	Intravital Fluorescence Excitation in Whole-Animal Optical Imaging. PLoS ONE, 2016, 11, e0149932.	1.1	18
425	Optimizing ultrafast illumination for multiphoton-excited fluorescence imaging. Biomedical Optics Express, 2016, 7, 1768.	1.5	6
426	Bacterial Surfaces: Front Lines in Host–Pathogen Interaction. Advances in Experimental Medicine and Biology, 2016, 915, 129-156.	0.8	12
427	Shaping Small Bioactive Molecules to Untangle Their Biological Function: A Focus on Fluorescent Plant Hormones. Molecular Plant, 2016, 9, 1099-1118.	3.9	34
428	Resolving Electronic Transitions in Synthetic Fluorescent Protein Chromophores by Magnetic Circular Dichroism. ChemPhysChem, 2016, 17, 2348-2354.	1.0	5
429	Bimolecular fluorescence complementation based on the red fluorescent protein FusionRed. Russian Journal of Bioorganic Chemistry, 2016, 42, 619-623.	0.3	2
430	Development of novel FP-based probes for live-cell imaging of nitric oxide dynamics. Nature Communications, 2016, 7, 10623.	5.8	84
431	Chemical Vapor Deposition (CVD). , 2016, , 518-524.		0
432	Three-dimensional structure of a pH-dependent fluorescent protein WasCFP with a tryptophan based deprotonated chromophore. Russian Journal of Bioorganic Chemistry, 2016, 42, 612-618.	0.3	1
433	Raman microscopy of bladder cancer cells expressing green fluorescent protein. Journal of Biomedical Optics, 2016, 21, 115001.	1.4	6
434	Fluorescent protein-scorpion toxin chimera is a convenient molecular tool for studies of potassium channels. Scientific Reports, 2016, 6, 33314.	1.6	28
435	On the application of surface enhanced Raman scattering to study the interaction of DsRed fluorescent proteins with silver nanoparticles embedded in thin silica layers. , 2016, , .		0
436	Non-invasive imaging using reporter genes altering cellular water permeability. Nature Communications, 2016, 7, 13891.	5.8	71
437	A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage. Nature Communications, 2016, 7, 8674.	5.8	64
438	Lentiviral transduction and subsequent loading with nanoparticles do not affect cell viability and proliferation in hairâ€follicleâ€bulgeâ€derived stem cells <i>in vitro</i> . Contrast Media and Molecular Imaging, 2016, 11, 550-560.	0.4	7
439	Chitosan. , 2016, , 524-524.		0
440	Defining Clonal Color in Fluorescent Multi-Clonal Tracking. Scientific Reports, 2016, 6, 24303.	1.6	10
441	Development and investigation of recombinant immunotoxin protein 4D5scFv-mCherry-PE(40). Doklady Biochemistry and Biophysics, 2016, 471, 450-453.	0.3	0

#	Article	IF	CITATIONS
442	Local electric fields and molecular properties in heterogeneous environments through polarizable embedding. Physical Chemistry Chemical Physics, 2016, 18, 10070-10080.	1.3	60
443	Self-Immolative Thiocarbamates Provide Access to Triggered H ₂ S Donors and Analyte Replacement Fluorescent Probes. Journal of the American Chemical Society, 2016, 138, 7256-7259.	6.6	156
444	Temporal variation of recombinant protein expression in Escherichia coli biofilms analysed at single-cell level. Process Biochemistry, 2016, 51, 1155-1161.	1.8	12
445	Organization of Inner Cellular Components as Reported by a Viscosity-Sensitive Fluorescent Bodipy Probe Suitable for Phasor Approach to Flim. Biophysical Journal, 2016, 110, 163a.	0.2	6
446	Biophysics of Infection. Advances in Experimental Medicine and Biology, 2016, , .	0.8	3
447	Far-Red Emission of mPlum Fluorescent Protein Results from Excited-State Interconversion between Chromophore Hydrogen-Bonding States. Journal of Physical Chemistry Letters, 2016, 7, 2170-2174.	2.1	18
448	Engineering fluorescent proteins towards ultimate performances: lessons from the newly developed cyan variants. Methods and Applications in Fluorescence, 2016, 4, 012001.	1.1	4
449	iSpinach: a fluorogenic RNA aptamer optimized for <i>in vitro</i> applications. Nucleic Acids Research, 2016, 44, 2491-2500.	6.5	126
450	Temperature and pressure effects on GFP mutants: explaining spectral changes by molecular dynamics simulations and TD-DFT calculations. Physical Chemistry Chemical Physics, 2016, 18, 12828-12838.	1.3	11
451	Noninvasive optical diagnostics of enhanced green fluorescent protein expression in skeletal muscle for comparison of electroporation and sonoporation efficiencies. Journal of Biomedical Optics, 2016, 21, 045003.	1.4	3
452	Design and development of genetically encoded fluorescent sensors to monitor intracellular chemical and physical parameters. Biophysical Reviews, 2016, 8, 121-138.	1.5	81
453	Molecular Beacon–Type RNA Imaging. , 2016, , 190-221.		0
454	Engineering of Optimized Fluorescent Proteins: An Overview from a Cyan and FRET Perspective. , 2016, , 26-55.		0
455	Characterizing the Structures, Spectra, and Energy Landscapes Involved in the Excited-State Proton Transfer Process of Red Fluorescent Protein LSSmKate1. Journal of Physical Chemistry B, 2016, 120, 9833-9842.	1.2	8
456	Cysteine Sulfoxidation Increases the Photostability of Red Fluorescent Proteins. ACS Chemical Biology, 2016, 11, 2679-2684.	1.6	16
457	Chromophore photophysics and dynamics in fluorescent proteins of the GFP family. Journal of Physics Condensed Matter, 2016, 28, 443001.	0.7	21
458	Magnetic polymer-silica composites as bioluminescent sensors for bilirubin detection. Materials Chemistry and Physics, 2016, 183, 422-429.	2.0	12
459	An efficient and concise method to synthesize locked GFP chromophore analogues. Tetrahedron Letters, 2016, 57, 5197-5200.	0.7	9

#	Article	IF	CITATIONS
460	Blue protein with red fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11513-11518.	3.3	30
461	Photoswitchable Fluorescent Proteins: Do Not Always Look on the Bright Side. ACS Nano, 2016, 10, 9104-9108.	7.3	20
462	Using measures of singleâ€cell physiology and physiological state to understand organismic aging. Aging Cell, 2016, 15, 4-13.	3.0	10
463	Single Fluorescent Protein-Based Indicators for Zinc Ion (Zn ²⁺). Analytical Chemistry, 2016, 88, 9029-9036.	3.2	45
464	A specific and biocompatible fluorescent sensor based on the hybrid of GFP chromophore and peptide for HSA detection. Biosensors and Bioelectronics, 2016, 86, 489-495.	5.3	40
465	Liposomes in Capillary Electromigration Techniques. , 2016, , 399-430.		0
466	Phenotypic Heterogeneity in <i>Mycobacterium tuberculosis</i> . Microbiology Spectrum, 2016, 4, .	1.2	55
467	Microbiota induces expression of tumor necrosis factor in postnatal mouse skin. Biochemistry (Moscow), 2016, 81, 1303-1308.	0.7	7
468	Enrichment and Interrogation of Cancer Stem Cells. , 2016, , 59-98.		7
469	From single molecules to life: microscopy at the nanoscale. Analytical and Bioanalytical Chemistry, 2016, 408, 6885-6911.	1.9	94
470	Light-Tissue Interactions. Graduate Texts in Physics, 2016, , 147-196.	0.1	8
471	Fluorescence from Multiple Chromophore Hydrogen-Bonding States in the Far-Red Protein TagRFP675. Journal of Physical Chemistry Letters, 2016, 7, 3046-3051.	2.1	14
473	Crystal structure of the fluorescent protein from <i>Dendronephthya </i> sp. in both green and photoconverted red forms. Acta Crystallographica Section D: Structural Biology, 2016, 72, 922-932.	1.1	11
474	The evolution of genes encoding for green fluorescent proteins: insights from cephalochordates (amphioxus). Scientific Reports, 2016, 6, 28350.	1.6	6
475	Non-excitable fluorescent protein orthologs found in ctenophores. BMC Evolutionary Biology, 2016, 16, 167.	3.2	7
476	Challenges in long-term imaging and quantification of single-cell dynamics. Nature Biotechnology, 2016, 34, 1137-1144.	9.4	178
477	Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells. Journal of the American Chemical Society, 2016, 138, 14423-14433.	6.6	95
478	Aus dem Werkzeugkasten der Hirnforscher. Nachrichten Aus Der Chemie, 2016, 64, 1054-1059.	0.0	0

#	Article	IF	Citations
479	Multiplexed imaging of intracellular protein networks. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 761-775.	1.1	21
480	Red fluorescence in coral larvae is associated with a diapauseâ€like state. Molecular Ecology, 2016, 25, 559-569.	2.0	28
481	Conformationally locked chromophores of CFP and Sirius protein. Tetrahedron Letters, 2016, 57, 3043-3045.	0.7	12
482	Physico-Chemical Characterization of the Interaction of Red Fluorescent Protein—DsRed With Thin Silica Layers. IEEE Transactions on Nanobioscience, 2016, 15, 412-417.	2.2	4
483	Live cell imaging to understand monocyte, macrophage, and dendritic cell function in atherosclerosis. Journal of Experimental Medicine, 2016, 213, 1117-1131.	4.2	44
484	Optical fiber based imaging of bioengineered tissue construct. Proceedings of SPIE, 2016, , .	0.8	0
485	Heterogeneity in GFP expression in isogenic populations of P. putida KT2440 investigated using flow cytometry and bacterial microarrays. RSC Advances, 2016, 6, 36198-36206.	1.7	3
486	Environmental Effects on Reactive Oxygen Species Detection—Learning from the Phagosome. Antioxidants and Redox Signaling, 2016, 25, 564-576.	2.5	14
487	Photophysics, Dynamics, and Energy Transfer in Rigid Mimics of GFP-based Systems. Inorganic Chemistry, 2016, 55, 7257-7264.	1.9	40
488	Selective amine labeling of cell surface proteins guided by coiledâ€coil assembly. Biopolymers, 2016, 106, 484-490.	1.2	14
489	Baculovirus and Insect Cell Expression Protocols. Methods in Molecular Biology, 2016, , .	0.4	8
490	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
491	Ratiometric mechanosensitive fluorescent dyes: design and applications. Journal of Materials Chemistry C, 2016, 4, 2707-2718.	2.7	114
492	One-pot synthesis of a photostable green fluorescent probe for biological imaging. Journal of Materials Science, 2016, 51, 2972-2979.	1.7	9
493	Evolution and characterization of a new reversibly photoswitching chromogenic protein, Dathail. Journal of Molecular Biology, 2016, 428, 1776-1789.	2.0	20
494	Turning On and Off Photoinduced Electron Transfer in Fluorescent Proteins by π-Stacking, Halide Binding, and Tyr145 Mutations. Journal of the American Chemical Society, 2016, 138, 4807-4817.	6.6	52
495	Caspase-1 Inflammasome Activation Mediates Homocysteine-Induced Pyrop-Apoptosis in Endothelial Cells. Circulation Research, 2016, 118, 1525-1539.	2.0	198
496	Probing phenotypic growth in expanding Bacillus subtilis biofilms. Applied Microbiology and Biotechnology, 2016, 100, 4607-4615.	1.7	40

#	Article	IF	CITATIONS
497	Fluorescence optical imaging in anticancer drug delivery. Journal of Controlled Release, 2016, 226, 168-181.	4.8	107
499	A Cyan Fluorescent Reporter Expressed from the Chloroplast Genome of <i>Marchantia polymorpha </i> . Plant and Cell Physiology, 2016, 57, 291-299.	1.5	22
500	Heat shock mediated labelling of Pseudomonas aeruginosa with quantum dots. Colloids and Surfaces B: Biointerfaces, 2016, 142, 259-265.	2.5	7
501	Brighter Red Fluorescent Proteins by Rational Design of Triple-Decker Motif. ACS Chemical Biology, 2016, 11, 508-517.	1.6	20
502	Photophysics of GFP-related chromophores imposed by a scaffold design. Dalton Transactions, 2016, 45, 9884-9891.	1.6	17
503	Emission shaping in fluorescent proteins: role of electrostatics and π-stacking. Physical Chemistry Chemical Physics, 2016, 18, 3944-3955.	1.3	24
504	Restricted access to a conical intersection to explain aggregation induced emission in dimethyl tetraphenylsilole. Journal of Materials Chemistry C, 2016, 4, 2802-2810.	2.7	144
505	Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 497-502.	3.3	186
506	Evolution and characterization of a benzylguanine-binding RNA aptamer. Chemical Communications, 2016, 52, 549-552.	2.2	14
507	Following the infection process of vibriosis in Manila clam (Ruditapes philippinarum) larvae through GFP-tagged pathogenic Vibrio species. Journal of Invertebrate Pathology, 2016, 133, 27-33.	1.5	38
508	Tracking the fate of her4 expressing cells in the regenerating retina using her4:Kaede zebrafish. Experimental Eye Research, 2016, 145, 75-87.	1.2	22
509	Sensitive Conjugated-Polymer-Based Fluorescent ATP Probes and Their Application in Cell Imaging. ACS Applied Materials & Description of the Applied Materials & Description of	4.0	47
510	Reconstructive Phase Transition in Ultrashort Peptide Nanostructures and Induced Visible Photoluminescence. Langmuir, 2016, 32, 2847-2862.	1.6	74
512	Unexpected fluorescence from maleimide-containing polyhedral oligomeric silsesquioxanes: nanoparticle and sequence distribution analyses of polystyrene-based alternating copolymers. Polymer Chemistry, 2016, 7, 135-145.	1.9	88
513	Genetically encoded fluorescent sensor for intracellular imaging of transition metals. Applied Spectroscopy Reviews, 2016, 51, 148-161.	3.4	0
514	Organization of inner cellular components as reported by a viscosity-sensitive fluorescent Bodipy probe suitable for phasor approach to FLIM. Biophysical Chemistry, 2016, 208, 17-25.	1.5	18
515	Fluorescent probes for nanoscopy: four categories and multiple possibilities. Journal of Biophotonics, 2017, 10, 11-23.	1.1	28
516	Validation of eGFP fluorescence intensity for testing <i>in vitro</i> cytotoxicity according to ISO 10993â€5. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 715-722.	1.6	19

#	Article	IF	CITATIONS
517	Individual cell heterogeneity in Predictive Food Microbiology: Challenges in predicting a "noisy― world. International Journal of Food Microbiology, 2017, 240, 3-10.	2.1	35
518	The Bright Fluorescent Protein mNeonGreen Facilitates Protein Expression Analysis <i>In Vivo</i> . G3: Genes, Genomes, Genetics, 2017, 7, 607-615.	0.8	62
519	Photostable and photoswitching fluorescent dyes for super-resolution imaging. Journal of Biological Inorganic Chemistry, 2017, 22, 639-652.	1.1	58
520	Facile Fabrication of AIE-Active Fluorescent Polymeric Nanoparticles with Ultra-Low Critical Micelle Concentration Based on Ce(IV) Redox Polymerization for Biological Imaging Applications. Macromolecular Rapid Communications, 2017, 38, 1600752.	2.0	17
521	Two-Photon Absorption of Cationic Conjugated Polyelectrolytes: Effects of Aggregation and Application to 2-Photon-Sensitized Fluorescence from Green Fluorescent Protein. Chemistry of Materials, 2017, 29, 3295-3303.	3.2	26
522	Two novel real time cell-based assays quantify beta-blocker and NSAID specific effects in effluents of municipal wastewater treatment plants. Water Research, 2017, 115, 74-83.	5.3	16
523	Aptamer functionalized silver clusters for STED microscopy. RSC Advances, 2017, 7, 11821-11826.	1.7	4
524	Förster Resonance Energy Transfer between Fluorescent Proteins: Efficient Transition Charge-Based Study. Journal of Physical Chemistry C, 2017, 121, 4220-4238.	1.5	11
525	Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chemical Society Reviews, 2017, 46, 2158-2198.	18.7	251
526	Optimizing ultrafast wide field-of-view illumination for high-throughput multi-photon imaging and screening of mutant fluorescent proteins. , 2017, , .		1
527	Analysis of Pelagia noctiluca proteome Reveals a Red Fluorescent Protein, a Zinc Metalloproteinase and a Peroxiredoxin. Protein Journal, 2017, 36, 77-97.	0.7	16
528	Limitations and challenges of genetic barcode quantification. Scientific Reports, 2017, 7, 43249.	1.6	43
529	Biomaterials in light amplification. Journal of Optics (United Kingdom), 2017, 19, 033003.	1.0	34
530	Mechanism of resonant electron emission from the deprotonated GFP chromophore and its biomimetics. Chemical Science, 2017, 8, 3154-3163.	3.7	38
533	Making Fluorescent Streptococci and Enterococci for Live Imaging. Methods in Molecular Biology, 2017, 1535, 141-159.	0.4	2
534	Novel Thermostable Flavinâ€binding Fluorescent Proteins from Thermophilic Organisms. Photochemistry and Photobiology, 2017, 93, 849-856.	1.3	22
535	Yellow and Orange Fluorescent Proteins with Tryptophan-based Chromophores. ACS Chemical Biology, 2017, 12, 1867-1873.	1.6	6
536	Comparison of the induction of c- fos -eGFP and Fos protein in the rat spinal cord and hypothalamus resulting from subcutaneous capsaicin or formalin injection. Neuroscience, 2017, 356, 64-77.	1.1	13

#	Article	IF	CITATIONS
537	The development of fluorescent protein tracing vectors for multicolor imaging of clinically isolated Staphylococcus aureus. Scientific Reports, 2017, 7, 2865.	1.6	11
538	Development of an Optogenetic Tool to Regulate Protein Stability In Vivo. , 0, , 118-131.		0
539	Rationally Designed Influenza Virus Vaccines That Are Antigenically Stable during Growth in Eggs. MBio, 2017, 8, .	1.8	38
540	SNAP-tag fluorogenic probes for wash free protein labeling. Chinese Chemical Letters, 2017, 28, 1911-1915.	4.8	35
541	Fluorescence Lifetime Imaging. , 2017, , 353-405.		3
542	Fluorescent Proteins for Flow Cytometry. Current Protocols in Cytometry, 2017, 80, 9.12.1-9.12.20.	3.7	5
543	Genetically encoded fluorescent tags. Molecular Biology of the Cell, 2017, 28, 848-857.	0.9	104
544	Recent Advances in Development of Genetically Encoded Fluorescent Sensors. Methods in Enzymology, 2017, 589, 1-49.	0.4	79
545	Development of <i>Lactococcus lactis </i> encoding fluorescent proteins, GFP, mCherry and iRFP regulated by the nisin-controlled gene expression system. Biotechnic and Histochemistry, 2017, 92, 167-174.	0.7	10
546	Enhanced green fluorescence protein/layered double hydroxide composite ultrathin films: bio-hybrid assembly and potential application as a fluorescent biosensor. Journal of Materials Chemistry B, 2017, 5, 160-166.	2.9	22
547	The use of stable and unstable green fluorescent proteins for studies in two bacterial models: Agrobacterium tumefaciens and Xanthomonas campestris pv. campestris. Archives of Microbiology, 2017, 199, 581-590.	1.0	2
548	Integrinâ€Targeting Fluorescent Proteins: Exploration of RGD Insertion Sites. ChemBioChem, 2017, 18, 441-443.	1.3	5
549	Structure-guided rational design of red fluorescent proteins: towards designer genetically-encoded fluorophores. Current Opinion in Structural Biology, 2017, 45, 91-99.	2.6	23
550	Correlative Super-Resolution Microscopy: New Dimensions and New Opportunities. Chemical Reviews, 2017, 117, 7428-7456.	23.0	141
551	Green fluorescent proteinâ€tagged apolipoprotein E: A useful marker for the study of hepatic lipoprotein egress. Traffic, 2017, 18, 192-204.	1.3	9
552	Mechanically switching single-molecule fluorescence of GFP by unfolding and refolding. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11052-11056.	3.3	48
553	A Lactococcus lactis expression vector set with multiple affinity tags to facilitate isolation and direct labeling of heterologous secreted proteins. Applied Microbiology and Biotechnology, 2017, 101, 8139-8149.	1.7	7
554	Fluorescent protein Dendra2 as a ratiometric genetically encoded pH-sensor. Biochemical and Biophysical Research Communications, 2017, 493, 1518-1521.	1.0	22

#	ARTICLE	IF	CITATIONS
555	Cloning, antibody production, expression and cellular localization of universal stress protein gene (USP1-GFP) in transgenic cotton. Journal of Plant Biochemistry and Biotechnology, 2018, 27, 175.	0.9	3
556	Aggregation-Induced Emission Luminogen with Deep-Red Emission for Through-Skull Three-Photon Fluorescence Imaging of Mouse. ACS Nano, 2017, 11, 10452-10461.	7.3	156
557	Imaging RNA polymerase III transcription using a photostable RNA–fluorophore complex. Nature Chemical Biology, 2017, 13, 1187-1194.	3.9	207
558	Diatrack particle tracking software: Review of applications and performance evaluation. Traffic, 2017, 18, 840-852.	1.3	42
559	Tissue Engineering of Vein Valves Based on Decellularized Natural Matrices. Cells Tissues Organs, 2017, 204, 199-209.	1.3	5
560	The Use of Electroporation in Developmental Biology. , 2017, , 1375-1409.		1
561	Four-Channel Super-Resolution Imaging by 3-D Structured Illumination. Methods in Molecular Biology, 2017, 1663, 79-94.	0.4	1
562	Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2. Scientific Reports, 2017, 7, 11999.	1.6	77
563	Fluorescence Enhancement of Unconstrained GFP Chromophore Analogues Based on the Push–Pull Substituent Effect. Journal of Organic Chemistry, 2017, 82, 8031-8039.	1.7	32
564	A set of enhanced green fluorescent protein concatemers for quantitative determination of nuclear localization signal strength. Analytical Biochemistry, 2017, 533, 48-55.	1.1	4
565	High-Throughput Screening for Identification of Novel Innate Immune Activators. Methods in Molecular Biology, 2017, 1656, 183-193.	0.4	0
567	Protein labeling for live cell fluorescence microscopy with a highly photostable renewable signal. Chemical Science, 2017, 8, 7138-7142.	3.7	62
569	Generation of photonic entanglement in green fluorescent proteins. Nature Communications, 2017, 8, 1934.	5.8	11
570	G-Protein-Coupled Receptors: Membrane Diffusion and Organization Matter. Springer Series in Biophysics, 2017, , 243-258.	0.4	2
571	Design and applications of a clamp for Green Fluorescent Protein with picomolar affinity. Scientific Reports, 2017, 7, 16292.	1.6	49
572	The Advantages of Using Fluorescent Proteins for In Vivo Imaging. Current Protocols in Essential Laboratory Techniques, 2017, 15, 9.6.1.	2.6	3
573	Molecular Modeling Clarifies the Mechanism of Chromophore Maturation in the Green Fluorescent Protein. Journal of the American Chemical Society, 2017, 139, 10239-10249.	6.6	39
574	Novel Fluorescence-Based Biosensors Incorporating Unnatural Amino Acids. Methods in Enzymology, 2017, 589, 191-219.	0.4	11

#	Article	IF	CITATIONS
575	Generation of photoactivatable fluorescent protein from photoconvertible ancestor. Russian Journal of Bioorganic Chemistry, 2017, 43, 340-343.	0.3	0
576	Green fluorescent protein with tryptophan-based chromophore stable at low pH. Russian Journal of Bioorganic Chemistry, 2017, 43, 220-222.	0.3	1
577	Proof-of-Concept Gene Editing for the Murine Model of Inducible Arginase-1 Deficiency. Scientific Reports, 2017, 7, 2585.	1.6	13
578	A Critical and Comparative Review of Fluorescent Tools for Live-Cell Imaging. Annual Review of Physiology, 2017, 79, 93-117.	5.6	336
579	Photoinduced Chemistry in Fluorescent Proteins: Curse or Blessing?. Chemical Reviews, 2017, 117, 758-795.	23.0	203
580	Method for In-Vivo Fluorescence Imaging Contrast Enhancement through Light Modulation. Journal of Fluorescence, 2017, 27, 13-20.	1.3	0
581	mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nature Methods, 2017, 14, 53-56.	9.0	838
582	Recent developments of genetically encoded optical sensors for cell biology. Biology of the Cell, 2017, 109, 1-23.	0.7	47
583	Struggle for photostability: Bleaching mechanisms of fluorescent proteins. Russian Journal of Bioorganic Chemistry, 2017, 43, 625-633.	0.3	9
584	Coupling optogenetics and light-sheet microscopy, a method to study Wnt signaling during embryogenesis. Scientific Reports, 2017, 7, 16636.	1.6	33
585	Two Distinct Fluorescence States of the Ligand-Induced Green Fluorescent Protein UnaG. Biophysical Journal, 2017, 113, 2805-2814.	0.2	13
586	Membrane Organization and Dynamics. Springer Series in Biophysics, 2017, , .	0.4	5
588	Fluorescence calibration method for single-particle aerosol fluorescence instruments. Atmospheric Measurement Techniques, 2017, 10, 1755-1768.	1.2	21
589	Phenotypic Heterogeneity in < i > Mycobacterium tuberculosis < /i > . , 0, , 671-697.		1
590	Functioning of Fluorescent Proteins in Aggregates in Anthozoa Species and in Recombinant Artificial Models. International Journal of Molecular Sciences, 2017, 18, 1503.	1.8	3
591	Calcium Dynamics Mediated by the Endoplasmic/Sarcoplasmic Reticulum and Related Diseases. International Journal of Molecular Sciences, 2017, 18, 1024.	1.8	59
592	Colorful Packages: Encapsulation of Fluorescent Proteins in Complex Coacervate Core Micelles. International Journal of Molecular Sciences, 2017, 18, 1557.	1.8	11
593	Tracing GFP-labeled WJMSCs in vivo using a chronic salpingitis model: an animal experiment. Stem Cell Research and Therapy, 2017, 8, 272.	2.4	5

#	Article	IF	CITATIONS
594	Nanosized drug delivery systems as radiopharmaceuticals., 2017,, 563-592.		1
596	In Situ Protein Labeling in Complex Environments. , 2017, , 409-437.		2
597	A user's guide for characterizing plasma membrane subdomains in living cells by spot variation fluorescence correlation spectroscopy. Methods in Cell Biology, 2017, 139, 1-22.	0.5	11
598	Transposable Elements for Insect Transformation $\hat{a}^{-}\uparrow$. , 2017, , .		0
599	Epigenetic Research, Computational Methods in. , 2018, , 347-353.		0
600	A novel orange-colored bimolecular fluorescence complementation (BiFC) assay using monomeric Kusabira-Orange protein. BioTechniques, 2018, 64, 153-161.	0.8	16
601	Redox biosensors in a context of multiparameter imaging. Free Radical Biology and Medicine, 2018, 128, 23-39.	1.3	29
602	Energy transfer-based biodetection using optical nanomaterials. Journal of Materials Chemistry B, 2018, 6, 2924-2944.	2.9	35
603	Genetically-encoded fluorescent probe for imaging of oxygenation gradients in living <i>Drosophila</i> . Development (Cambridge), 2018, 145, .	1.2	15
604	Image co-localization – co-occurrence versus correlation. Journal of Cell Science, 2018, 131, .	1.2	140
605	Electrophiles, Types of., 2018,, 321-322.		0
606	Quantum dots for biomedical applications. , 2018, , 411-436.		10
607	Studying GPCR Pharmacology in Membrane Microdomains: Fluorescence Correlation Spectroscopy Comes of Age. Trends in Pharmacological Sciences, 2018, 39, 158-174.	4.0	54
608	When Fluorescent Proteins Meet White Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2018, 57, 8826-8836.	7.2	49
609	Wenn fluoreszierende Proteine und WeiÄŸlicht emittierende Dioden aufeinandertreffen. Angewandte Chemie, 2018, 130, 8962-8973.	1.6	3
610	Live-cell Imaging with Genetically Encoded Protein Kinase Activity Reporters. Cell Structure and Function, 2018, 43, 61-74.	0.5	23
611	Bioluminescent and structural features of native folded Gaussia luciferase. Journal of Photochemistry and Photobiology B: Biology, 2018, 183, 309-317.	1.7	20
612	A novel whole-cell biosensor of Pseudomonas aeruginosa to monitor the expression of quorum sensing genes. Applied Microbiology and Biotechnology, 2018, 102, 6023-6038.	1.7	7

#	Article	IF	Citations
613	Photophysical Behavior of mNeonGreen, an Evolutionarily Distant Green Fluorescent Protein. Biophysical Journal, 2018, 114, 2419-2431.	0.2	25
614	Labeling for Quantitative Comparison of Imaging Measurementsin Vitroand in Cells. Biochemistry, 2018, 57, 1929-1938.	1.2	6
615	Liveâ€cell imaging of cell signaling using genetically encoded fluorescent reporters. FEBS Journal, 2018, 285, 203-219.	2.2	63
616	Photolabile coumarins with improved efficiency through azetidinyl substitution. Chemical Science, 2018, 9, 387-391.	3.7	41
617	Development of colloidally stable carbazole-based fluorescent nanoaggregates. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 352, 55-64.	2.0	5
618	Nanobodys: Strategien zur chemischen Funktionalisierung und intrazellulÃ r e Anwendungen. Angewandte Chemie, 2018, 130, 2336-2357.	1.6	23
619	Nanobodies: Chemical Functionalization Strategies and Intracellular Applications. Angewandte Chemie - International Edition, 2018, 57, 2314-2333.	7.2	170
620	Labelled animal toxins as selective molecular markers of ion channels: Applications in neurobiology and beyond. Neuroscience Letters, 2018, 679, 15-23.	1.0	17
621	Monochromophoric Design Strategy for Tetrazine-Based Colorful Bioorthogonal Probes with a Single Fluorescent Core Skeleton. Journal of the American Chemical Society, 2018, 140, 974-983.	6.6	97
622	Optimized fluorescent proteins for the rhizosphereâ€essociated bacterium <i>Bacillus mycoides</i> with endophytic and biocontrol agent potential. Environmental Microbiology Reports, 2018, 10, 57-74.	1.0	8
623	Overview of the reporter genes and reporter mouse models. Animal Models and Experimental Medicine, 2018, 1, 29-35.	1.3	28
624	The Current Status and Future Outlook of Quantum Dot-Based Biosensors for Plant Virus Detection. Plant Pathology Journal, 2018, 34, 85-92.	0.7	36
625	Crystal Structure of the pH-Dependent Green Fluorescent Protein WasCFP with a Tryptophan-Based Chromophore at an Extremely Low pH of 2.0. Russian Journal of Bioorganic Chemistry, 2018, 44, 640-644.	0.3	0
626	Sensors for Caspase Activities. Russian Journal of Bioorganic Chemistry, 2018, 44, 645-652.	0.3	2
627	Fluorescence enhancement of a ligand-activated fluorescent protein induced by collective noncovalent interactions. Chemical Science, 2018, 9, 8325-8336.	3.7	13
628	Genetically encodable bioluminescent system from fungi. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12728-12732.	3.3	130
629	Fluorescent Proteins, Promoters, and Selectable Markers for Applications in the Lyme Disease Spirochete Borrelia burgdorferi. Applied and Environmental Microbiology, 2018, 84, .	1.4	26
630	Detectors for Super-Resolution & Single-Molecule Fluorescence Microscopies. , 2018, , .		1

#	Article	IF	CITATIONS
631	Significant expansion and red-shifting of fluorescent protein chromophore determined through computational design and genetic code expansion. Biophysics Reports, 2018, 4, 273-285.	0.2	8
632	Macroscale fluorescence imaging against autofluorescence under ambient light. Light: Science and Applications, 2018, 7, 97.	7.7	14
633	Photoluminescent arginineâ€functionalized polycitrate with enhanced cell activity and hemocompatibility for live cell bioimaging. Journal of Biomedical Materials Research - Part A, 2018, 106, 3175-3184.	2.1	7
634	Engineering molecular imaging strategies for regenerative medicine. Bioengineering and Translational Medicine, 2018, 3, 232-255.	3.9	16
635	Orthopalladation of GFPâ€Like Fluorophores Through C–H Bond Activation: Scope and Photophysical Properties. European Journal of Organic Chemistry, 2018, 2018, 6158-6166.	1.2	11
636	Evaluation of GFP reporter utility for analysis of transcriptional slippage during gene expression. Microbial Cell Factories, 2018, 17, 150.	1.9	3
637	Seeing is believing: methods to monitor vertebrate autophagy <i>in vivo</i> . Open Biology, 2018, 8, .	1.5	32
638	Characterization of Electrical Activity in Post-myocardial Infarction Scar Tissue in Rat Hearts Using Multiphoton Microscopy. Frontiers in Physiology, 2018, 9, 1454.	1.3	6
639	Replacing Standard Reporters from Molecular Cloning Plasmids with Chromoproteins for Positive Clone Selection. Molecules, 2018, 23, 1328.	1.7	7
640	Light-induced intracellular hydrogen peroxide generation through genetically encoded photosensitizer KillerRed-SOD1. Free Radical Research, 2018, 52, 1170-1181.	1.5	7
641	A Nearâ€Infrared Photoswitchable Protein–Fluorophore Tag for Noâ€Wash Live Cell Imaging. Angewandte Chemie, 2018, 130, 16315-16319.	1.6	1
642	A Nearâ€Infrared Photoswitchable Protein–Fluorophore Tag for Noâ€Wash Live Cell Imaging. Angewandte Chemie - International Edition, 2018, 57, 16083-16087.	7.2	23
643	"Probe, Sample, and Instrument (PSI)― The Hat-Trick for Fluorescence Live Cell Imaging. Chemosensors, 2018, 6, 40.	1.8	21
644	Switchable Fluorophores for Single-Molecule Localization Microscopy. Chemical Reviews, 2018, 118, 9412-9454.	23.0	223
645	Bright GFP with subnanosecond fluorescence lifetime. Scientific Reports, 2018, 8, 13224.	1.6	31
646	Genetically encoded fluorescent indicators for live cell pH imaging. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2924-2939.	1.1	47
647	Features of Construction of the Fluorescent Microscope for the Study of Epithelial-Mesenchymal Transition of Cells in Vitro. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 137-143.	0.2	0
648	Infrared Spectroscopy as a Probe of Electronic Energy Transfer. Journal of Physical Chemistry Letters, 2018, 9, 3217-3223.	2.1	10

#	Article	IF	Citations
649	Imaging of oxygen and hypoxia in cell and tissue samples. Cellular and Molecular Life Sciences, 2018, 75, 2963-2980.	2.4	64
650	Multiple sequences orchestrate subcellular trafficking of neuronal PAS domain–containing protein 4 (NPAS4). Journal of Biological Chemistry, 2018, 293, 11255-11270.	1.6	10
651	Fluorescence time-resolved macroimaging. Optics Letters, 2018, 43, 3152.	1.7	41
652	Methods for Physical Characterization of Phase-Separated Bodies and Membrane-less Organelles. Journal of Molecular Biology, 2018, 430, 4773-4805.	2.0	124
653	Dissection of Protein Kinase Pathways in Live Cells Using Photoluminescent Probes: Surveillance or Interrogation?. Chemosensors, 2018, 6, 19.	1.8	2
654	Light-Up RNA Aptamers and Their Cognate Fluorogens: From Their Development to Their Applications. International Journal of Molecular Sciences, 2018, 19, 44.	1.8	85
655	Concepts in Light Microscopy of Viruses. Viruses, 2018, 10, 202.	1.5	44
656	DisruPPI: structure-based computational redesign algorithm for protein binding disruption. Bioinformatics, 2018, 34, i245-i253.	1.8	15
657	Liposomes and micelles as nanocarriers for diagnostic and imaging purposes. , 2018, , 305-340.		2
658	In Vivo Near-Infrared Fluorescence Imaging. , 2018, , 67-125.		1
659	In vivo selection of sfGFP variants with improved and reliable functionality in industrially important thermophilic bacteria. Biotechnology for Biofuels, 2018, 11, 8.	6.2	33
660	Plasmonic photocatalyst-like fluorescent proteins for generating reactive oxygen species. Nano Convergence, 2018, 5, 8.	6.3	9
661	A toolkit for DNA assembly, genome engineering and multicolor imaging for C. elegans. Translational Medicine of Aging, 2018, 2, 1-10.	0.6	17
662	Transgenic mice that accept Luciferase―or GFPâ€expressing syngeneic tumor cells at high efficiencies. Genes To Cells, 2018, 23, 580-589.	0.5	15
663	Fluorescent Probes and Live Imaging of Plant Cells. , 2018, , 241-251.		5
664	Boronic Acids as Bioorthogonal Probes for Siteâ€Selective Labeling of Proteins. Angewandte Chemie - International Edition, 2018, 57, 13028-13044.	7.2	85
665	Boronsären als bioorthogonale Sonden für zentrenselektives Protein‣abeling. Angewandte Chemie, 2018, 130, 13210-13228.	1.6	15
666	Genetically Encoding Quinoline Reverses Chromophore Charge and Enables Fluorescent Protein Brightening in Acidic Vesicles. Journal of the American Chemical Society, 2018, 140, 11058-11066.	6.6	20

#	ARTICLE	IF	CITATIONS
667	Role of Gln222 in Photoswitching of <i>Aequorea</i> Fluorescent Proteins: A Twisting and H-Bonding Affair?. ACS Chemical Biology, 2018, 13, 2082-2093.	1.6	14
668	Sequence Requirements of Intrinsically Fluorescent G-Quadruplexes. Biochemistry, 2018, 57, 4052-4062.	1.2	15
669	Biofluorescent Worlds – II. Biological fluorescence induced by stellar UV flares, a new temporal biosignature. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4530-4545.	1.6	9
670	Efficient fluorescence recovery using antifade reagents in correlative light and electron microscopy. Microscopy (Oxford, England), 2019, 68, 417-421.	0.7	6
671	Development and Applications of Superfolder and Split Fluorescent Protein Detection Systems in Biology. International Journal of Molecular Sciences, 2019, 20, 3479.	1.8	44
672	Optimized dual assay for the transgenes selection and screening in CHO cell line development for recombinant protein production. Biotechnology Letters, 2019, 41, 929-939.	1.1	3
673	A comparison of classifiers for predicting the class color of fluorescent proteins. Computational Biology and Chemistry, 2019, 83, 107089.	1.1	8
674	Design of small monomeric and highly bright near-infrared fluorescent proteins. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1608-1617.	1.9	10
675	Internal Hydrodynamics in the Cytoplasm of Normal and Cancer Cells; a Principle of Live Tissue Engineering from the Cells: Hypotheses, Physical and Mathematical Models; Approximate Calculation of the Frequency Characteristics of the Cell. Biophysics (Russian Federation), 2019, 64, 75-82.	0.2	1
676	Development of fluorescent protein-based biosensing strains: A new tool for the detection of aromatic hydrocarbon pollutants in the environment. Ecotoxicology and Environmental Safety, 2019, 182, 109450.	2.9	18
677	Quantitative Flow Cytometry to Understand Population Heterogeneity in Response to Changes in Substrate Availability in Escherichia coli and Saccharomyces cerevisiae Chemostats. Frontiers in Bioengineering and Biotechnology, 2019, 7, 187.	2.0	28
678	Highly Multiplexed, Quantitative Tissue Imaging at Cellular Resolution. Current Pathobiology Reports, 2019, 7, 109-118.	1.6	2
679	Rhenium (I) Complexes as Probes for Prokaryotic and Fungal Cells by Fluorescence Microscopy: Do Ligands Matter?. Frontiers in Chemistry, 2019, 7, 454.	1.8	24
680	Structure of Chromophores in GFP-Like Proteins: X-Ray Data. Russian Journal of Bioorganic Chemistry, 2019, 45, 187-194.	0.3	3
681	Simultaneous Visualization of Multiple Gene Expression in Single Cells Using an Engineered Multicolor Reporter Toolbox and Approach of Spectral Crosstalk Correction. ACS Synthetic Biology, 2019, 8, 2536-2546.	1.9	8
682	Influence of the First Chromophore-Forming Residue on Photobleaching and Oxidative Photoconversion of EGFP and EYFP. International Journal of Molecular Sciences, 2019, 20, 5229.	1.8	18
683	Characterization and repurposing of the endogenous Type I-F CRISPR–Cas system of Zymomonas mobilis for genome engineering. Nucleic Acids Research, 2019, 47, 11461-11475.	6.5	92
684	Flt3 inhibition alleviates chronic kidney disease by suppressing CD103+ dendritic cell-mediated T cell activation. Nephrology Dialysis Transplantation, 2019, 34, 1853-1863.	0.4	16

#	ARTICLE	IF	CITATIONS
685	Cryogenic Ion Spectroscopy of the Green Fluorescent Protein Chromophore in Vacuo. Journal of Physical Chemistry Letters, 2019, 10, 7817-7822.	2.1	24
686	Excitons in Carbonic Nanostructures. Journal of Carbon Research, 2019, 5, 71.	1.4	41
687	Spectroscopic fluorescent tracking of a single molecule in a live cell with a dual-objective fluorescent reflection microscope. Applied Physics Express, 2019, 12, 112007.	1.1	5
688	Micro―and Nanoscopic Imaging of Enzymatic Electrodes: A Review. ChemElectroChem, 2019, 6, 5524-5546.	1.7	15
689	Rapid Tagging of Human Proteins with Fluorescent Reporters by Genome Engineering using Doubleâ€Stranded DNA Donors. Current Protocols in Molecular Biology, 2019, 129, e102.	2.9	9
690	A toolkit for expression of Strep-tagged enhanced green fluorescent protein concatemers in mammalian cells. Analytical Biochemistry, 2019, 586, 113430.	1.1	1
691	Circularly Permuted Fluorescent Protein-Based Indicators: History, Principles, and Classification. International Journal of Molecular Sciences, 2019, 20, 4200.	1.8	83
692	Fluorescence Imaging as a Tool in Preclinical Evaluation of Polymer-Based Nano-DDS Systems Intended for Cancer Treatment. Pharmaceutics, 2019, 11, 471.	2.0	23
693	A new chemical approach for proximity labelling of chromatin-associated RNAs and proteins with visible light irradiation. Chemical Communications, 2019, 55, 12340-12343.	2.2	15
694	Establishment and application of a CRISPR–Cas12a assisted genome-editing system in Zymomonas mobilis. Microbial Cell Factories, 2019, 18, 162.	1.9	62
695	"Second-generation―fluorogenic RNA-based sensors. Methods, 2019, 161, 24-34.	1.9	25
696	Contrast-Enhancing Optical Probe for Near-Infrared Fluorescence Imaging Under Surgical Light Illumination. Journal of the Korean Physical Society, 2019, 74, 568-573.	0.3	0
697	Assessment of cytocompatibility and mechanical properties of detergent-decellularized ovine pericardial tissue. International Journal of Artificial Organs, 2019, 42, 628-635.	0.7	5
698	Development of an effective protein-labeling system based on smart fluorogenic probes. Journal of Biological Inorganic Chemistry, 2019, 24, 443-455.	1.1	3
699	Active fusions of Cas9 orthologs. Journal of Biotechnology, 2019, 301, 18-23.	1.9	12
700	Single Fluorescent Peptide Nanodots. ACS Photonics, 2019, 6, 1626-1631.	3.2	11
701	WellInverter: a web application for the analysis of fluorescent reporter gene data. BMC Bioinformatics, 2019, 20, 309.	1.2	6
702	Redâ€Shifted Substrates for FAST Fluorogenâ€Activating Protein Based on the GFPâ€Like Chromophores. Chemistry - A European Journal, 2019, 25, 9592-9596.	1.7	37

#	Article	IF	CITATIONS
703	R-phycoerythrin proteins@ZIF-8 composite thin films for mercury ion detection. Analyst, The, 2019, 144, 3892-3897.	1.7	11
704	Near-Infrared Fluorescent Proteins and Their Applications. Biochemistry (Moscow), 2019, 84, 32-50.	0.7	28
705	Fluorescent Probes for Nanoscopic Imaging of Mitochondria. CheM, 2019, 5, 1697-1726.	5.8	104
706	Fluorescence Recovery after Photobleaching of Yellow Fluorescent Protein Tagged p62 in Aggresome-like Induced Structures. Journal of Visualized Experiments, 2019, , .	0.2	3
707	Determination of Two-Photon-Absorption Cross Sections Using Time-Dependent Density Functional Theory Tight Binding: Application to Fluorescent Protein Chromophores. Journal of Chemical Theory and Computation, 2019, 15, 3153-3161.	2.3	6
708	Live-cell imaging of membrane proteins by a coiled-coil labeling methodâ€"Principles and applications. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1011-1017.	1.4	18
709	A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging. Methods and Applications in Fluorescence, 2019, 7, 022002.	1.1	57
710	Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnology Advances, 2019, 37, 708-729.	6.0	95
711	Cyclic-di-GMP regulation promotes survival of a slow-replicating subpopulation of intracellular <i>Salmonella</i> Typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6335-6340.	3.3	43
712	Fluorophores and Fluorescent Proteins. , 2019, , 405-423.		O
713	Identification of mNeonGreen as a pHâ€Dependent, Turnâ€On Fluorescent Protein Sensor for Chloride. ChemBioChem, 2019, 20, 1759-1765.	1.3	25
714	A rapid in situ fluorescence census for coral reef monitoring. Regional Studies in Marine Science, 2019, 28, 100575.	0.4	5
715	Prediction and characterization of promoters and ribosomal binding sites of Zymomonas mobilis in system biology era. Biotechnology for Biofuels, 2019, 12, 52.	6.2	58
716	Dual emission from nanoconfined R-phycoerythrin fluorescent proteins for white light emission diodes. RSC Advances, 2019, 9, 9777-9782.	1.7	16
717	Intracellular Imaging with Genetically Encoded RNA-based Molecular Sensors. Nanomaterials, 2019, 9, 233.	1.9	32
718	Structural Factors Enabling Successful GFP-Like Proteins with Alanine as the Third Chromophore-Forming Residue. Journal of Molecular Biology, 2019, 431, 1397-1408.	2.0	2
719	Volume-conserving photoisomerization of a nonplanar GFP chromophore derivative: Nonadiabatic dynamics simulation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 86-94.	2.0	2
720	In vivo characterisation of fluorescent proteins in budding yeast. Scientific Reports, 2019, 9, 2234.	1.6	71

#	Article	IF	CITATIONS
721	Green Fluorescent Protein- and Discosoma sp. Red Fluorescent Protein-Tagged Organelle Marker Lines for Protein Subcellular Localization in Rice. Frontiers in Plant Science, 2019, 10, 1421.	1.7	18
722	Folding Latency of Fluorescent Proteins Affects the Mitochondrial Localization of Fusion Proteins. Cell Structure and Function, 2019, 44, 183-194.	0.5	8
723	Engineering Photoactivatability in Genetically Encoded Voltage and pH Indicators. Frontiers in Cellular Neuroscience, 2019, 13, 482.	1.8	14
724	aeBlue Chromoprotein Color is Temperature Dependent. Protein and Peptide Letters, 2019, 27, 74-84.	0.4	3
725	Near-Infrared Markers based on Bacterial Phytochromes with Phycocyanobilin as a Chromophore. International Journal of Molecular Sciences, 2019, 20, 6067.	1.8	8
726	Bioinspired Amyloid Nanodots with Visible Fluorescence. Advanced Optical Materials, 2019, 7, 1801400.	3.6	26
727	Dynamic organelle localization and cytoskeletal reorganization during preimplantation mouse embryo development revealed by live imaging of genetically encoded fluorescent fusion proteins. Genesis, 2019, 57, e23277.	0.8	7
728	Photoswitching FRET to monitor protein–protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 864-873.	3.3	40
729	Single-Molecule Tracking Approaches to Protein Synthesis Kinetics in Living Cells. Biochemistry, 2019, 58, 7-14.	1.2	4
730	The whither of bacteriophytochromeâ€based nearâ€infrared fluorescent proteins: Insights from twoâ€photon absorption spectroscopy. Journal of Biophotonics, 2019, 12, e201800353.	1.1	4
731	Detection of the conformational changes of Discosoma red fluorescent proteins adhered on silver nanoparticles-based nanocomposites via surface-enhanced Raman scattering. Nanotechnology, 2019, 30, 165101.	1.3	3
732	Lifetime-based photoconversion of EGFP as a tool for FLIM. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 266-277.	1.1	9
733	Side chain torsion dictates planarity and ionizability of green fluorescent protein's chromophore leading to spectral perturbations. Journal of Biomolecular Structure and Dynamics, 2019, 37, 4450-4459.	2.0	2
734	Assessment of Functionals for TDDFT Calculations of One- and Two-Photon Absorption Properties of Neutral and Anionic Fluorescent Proteins Chromophores. Journal of Chemical Theory and Computation, 2019, 15, 490-508.	2.3	27
736	Imaging methods used to study mouse and human HSC niches: Current and emerging technologies. Bone, 2019, 119, 19-35.	1.4	27
737	Role of Sodium Taurocholate Cotransporting Polypeptide as a New Reporter and Drug-Screening Platform: Implications for Preventing Hepatitis B Virus Infections. Molecular Imaging and Biology, 2020, 22, 313-323.	1.3	11
738	Genome editing-based approaches for imaging protein localization and dynamics in the mammalian brain. Neuroscience Research, 2020, 150, 2-7.	1.0	6
739	Facile preparation of fluorescent nanodiamond based polymer nanoparticles via ring-opening polymerization and their biological imaging. Materials Science and Engineering C, 2020, 106, 110297.	3.8	12

#	Article	IF	CITATIONS
740	Engineering of a Red Fluorogenic Protein/Merocyanine Complex for Liveâ€Cell Imaging. ChemBioChem, 2020, 21, 723-729.	1.3	10
741	Illuminating the origins of twoâ€photon absorption properties in fluorescent protein chromophores. International Journal of Quantum Chemistry, 2020, 120, e26086.	1.0	7
742	An optical modulator on the pyrazolone-based bi-component system. Dyes and Pigments, 2020, 172, 107805.	2.0	13
743	Promising Applications of AlEgens in Animal Models. Small Methods, 2020, 4, 1900583.	4.6	25
744	Transmembrane Nox4 topology revealed by topological determination by Ubiquitin Fusion Assay, a novel method to uncover membrane protein topology. Biochemical and Biophysical Research Communications, 2020, 521, 383-388.	1.0	2
745	Blue metal–organic framework encapsulated denatured R-phycoerythrin proteins for a white-light-emitting thin film. Journal of Materials Chemistry C, 2020, 8, 240-246.	2.7	28
746	Direct Observation of the Protonation States in the Mutant Green Fluorescent Protein. Journal of Physical Chemistry Letters, 2020, 11, 492-496.	2.1	9
747	Expression and Characterization of a Bright Far-red Fluorescent Protein from the Pink-Pigmented Tissues of Porites lobata. Marine Biotechnology, 2020, 22, 67-80.	1.1	2
748	Protein trap: a new Swiss army knife for geneticists?. Molecular Biology Reports, 2020, 47, 1445-1458.	1.0	2
749	Real-time visualization of titin dynamics reveals extensive reversible photobleaching in human induced pluripotent stem cell-derived cardiomyocytes. American Journal of Physiology - Cell Physiology, 2020, 318, C163-C173.	2.1	8
750	Fluorescence microscopy methods for the study of protein oligomerization. Progress in Molecular Biology and Translational Science, 2020, 169, 1-41.	0.9	11
751	Room-Temperature Dual Fluorescence of a Locked Green Fluorescent Protein Chromophore Analogue. Journal of the American Chemical Society, 2020, 142, 738-749.	6.6	24
752	Multicolor Tunable Polymeric Nanoparticle from the Tetraphenylethylene Cage for Temperature Sensing in Living Cells. Journal of the American Chemical Society, 2020, 142, 512-519.	6.6	102
753	Fluorogen-Activating Proteins: Next-Generation Fluorescence Probes for Biological Research. Bioconjugate Chemistry, 2020, 31, 16-27.	1.8	23
754	Methods to Visualize Auxin and Cytokinin Signaling Activity in the Shoot Apical Meristem. Methods in Molecular Biology, 2020, 2094, 79-89.	0.4	6
755	Targeting Enzymes for Pharmaceutical Development. Methods in Molecular Biology, 2020, , .	0.4	2
756	A robust CRISPR–Cas9-based fluorescent reporter assay for the detection and quantification of DNA double-strand break repair. Nucleic Acids Research, 2020, 48, e126-e126.	6. 5	14
757	Graphene-Wrapped Copper Nanoparticles: An Antimicrobial and Biocompatible Nanomaterial with Valuable Properties for Medical Uses. ACS Omega, 2020, 5, 26329-26334.	1.6	9

#	ARTICLE	IF	Citations
758	Rapid and Selective Labeling of Endogenous Transmembrane Proteins in Living Cells with a Difluorophenyl Ester Affinityâ€Based Probe. Chemistry - an Asian Journal, 2020, 15, 3416-3420.	1.7	7
759	Facile preparation of fluorescent carbon quantum dots from denatured sour milk and its multifunctional applications in the fluorometric determination of gold ions, in vitro bioimaging and fluorescent polymer film. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112788.	2.0	24
760	New imaging tools to study synaptogenesis. , 2020, , 119-148.		O
761	Reversible and irreversible fluorescence activity of the Enhanced Green Fluorescent Protein in pH: Insights for the development of pH-biosensors. International Journal of Biological Macromolecules, 2020, 164, 3474-3484.	3.6	13
762	Organic Dyes and Visible Fluorescent Proteins as Fluorescence Reporters., 2020, , 167-236.		O
763	Fluorescence imaging of intracellular nucleases—A review. Analytica Chimica Acta, 2020, 1137, 225-237.	2.6	5
764	Selected peptide-based fluorescent probes for biological applications. Beilstein Journal of Organic Chemistry, 2020, 16, 2971-2982.	1.3	11
765	Removing artifacts in polarizable embedding calculations of one- and two-photon absorption spectra of fluorescent proteins. Journal of Chemical Physics, 2020, 153, 215102.	1.2	5
766	Absolute quantum yield measurements of fluorescent proteins using a plasmonic nanocavity. Communications Biology, 2020, 3, 627.	2.0	15
767	Fluorescent Copolymers for Bacterial Bioimaging and Viability Detection. ACS Sensors, 2020, 5, 2843-2851.	4.0	12
768	Fluorescence Phenomena in Amyloid and Amyloidogenic Bionanostructures. Crystals, 2020, 10, 668.	1.0	17
769	Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiology and Molecular Biology Reviews, 2020, 84, .	2.9	17
770	Unscrambling fluorophore blinking for comprehensive cluster detection via photoactivated localization microscopy. Nature Communications, 2020, 11, 4993.	5.8	24
771	What is the Optimal Size of the Quantum Region in Embedding Calculations of Two-Photon Absorption Spectra of Fluorescent Proteins?. Journal of Chemical Theory and Computation, 2020, 16, 6439-6455.	2.3	6
772	Fluorescent Tags in Biology: Three-Dimensional Structure. Russian Journal of Bioorganic Chemistry, 2020, 46, 498-505.	0.3	1
773	Accurate and efficient structure-based computational mutagenesis for modeling fluorescence levels of Aequorea victoria green fluorescent protein mutants. Protein Engineering, Design and Selection, 2020, 33, .	1.0	2
774	Recent Progress in Small Spirocyclic, Xanthene-Based Fluorescent Probes. Molecules, 2020, 25, 5964.	1.7	26
775	Crop plant signaling for real-time plant identification in smart farm: A systematic review and new concept in artificial intelligence for automatedÂweed control. Artificial Intelligence in Agriculture, 2020, 4, 262-271.	4.4	10

#	Article	IF	CITATIONS
776	In Situ Detection of Complex DNA Damage Using Microscopy: A Rough Road Ahead. Cancers, 2020, 12, 3288.	1.7	12
777	Terrestrial and marine bioluminescent organisms from the Indian subcontinent: a review. Environmental Monitoring and Assessment, 2020, 192, 747.	1.3	4
778	The intrinsically disordered region of GCE protein adopts a more fixed structure by interacting with the LBD of the nuclear receptor FTZ-F1. Cell Communication and Signaling, 2020, 18, 180.	2.7	8
779	Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chemical Reviews, 2020, 120, 12357-12489.	23.0	299
780	Real-time detection of somatic hybrid cells during electrofusion of carrot protoplasts with stably labelled mitochondria. Scientific Reports, 2020, 10, 18811.	1.6	6
781	Fluorescent Labeling of Proteins of Interest in Live Cells: Beyond Fluorescent Proteins. Bioconjugate Chemistry, 2020, 31, 1587-1595.	1.8	52
782	Intrinsic Luminescence from Nonaromatic Biomolecules. ChemPlusChem, 2020, 85, 1065-1080.	1.3	60
783	Acid-brightening fluorescent protein (abFP) for imaging acidic vesicles and organelles. Methods in Enzymology, 2020, 639, 167-189.	0.4	1
784	Cephalopod-inspired optical engineering of human cells. Nature Communications, 2020, 11, 2708.	5.8	29
785	Unraveling the Effect on Luminescent Properties by Postsynthetic Covalent and Noncovalent Grafting of gfp Chromophore Analogues in Nanoscale MOF-808. Inorganic Chemistry, 2020, 59, 8251-8258.	1.9	18
786	An artificial protein-probe hybrid as a responsive probe for ratiometric detection and imaging of hydrogen peroxide in cells. Journal of Materials Chemistry B, 2020, 8, 5420-5424.	2.9	14
787	Analysis of GPI-Anchored Receptor Distribution and Dynamics in Live Cells by Tag-Mediated Enzymatic Labeling and FRET. Methods and Protocols, 2020, 3, 33.	0.9	4
788	Two-Photon Absorption Cross-Sections in Fluorescent Proteins Containing Non-canonical Chromophores Using Polarizable QM/MM. Frontiers in Molecular Biosciences, 2020, 7, 111.	1.6	6
789	Illuminating Cellular Biochemistry: Fluorogenic Chemogenetic Biosensors for Biological Imaging. ChemPlusChem, 2020, 85, 1487-1497.	1.3	13
790	Sea as a color palette: the ecology and evolution of fluorescence. Zoological Letters, 2020, 6, 9.	0.7	22
791	Near-infrared fluorescent protein and bioluminescence-based probes for high-resolution <i>in vivo</i> optical imaging. Materials Advances, 2020, 1, 967-987.	2.6	20
792	Engineering Glowing Chemogenetic Hybrids for Spying on Cells. European Journal of Organic Chemistry, 2020, 2020, 5637-5646.	1.2	5
793	Biarsenical fluorescent probes for multifunctional site-specific modification of proteins applicable in life sciences: an overview and future outlook. Metallomics, 2020, 12, 1179-1207.	1.0	4

#	Article	IF	CITATIONS
794	Photoconvertible diazaxanthilidene dyes for live cell imaging. Methods in Enzymology, 2020, 639, 379-388.	0.4	2
795	Fluorescent protein expression in the ectomycorrhizal fungus Laccaria bicolor: a plasmid toolkit for easy use of fluorescent markers in basidiomycetes. Current Genetics, 2020, 66, 791-811.	0.8	7
796	Green Fluorescence Patterns in Closely Related Symbiotic Species of Zanclea (Hydrozoa, Capitata). Diversity, 2020, 12, 78.	0.7	8
797	Devising Efficient Redâ€Shifting Strategies for Bioimaging: A Generalizable Donorâ€Acceptor Fluorophore Prototype. Chemistry - an Asian Journal, 2020, 15, 1514-1523.	1.7	36
798	SNAP/CLIP-Tags and Strain-Promoted Azide–Alkyne Cycloaddition (SPAAC)/Inverse Electron Demand Diels–Alder (IEDDA) for Intracellular Orthogonal/Bioorthogonal Labeling. Bioconjugate Chemistry, 2020, 31, 1370-1381.	1.8	26
799	Yeast Intracellular Staining (yICS): Enabling High-Throughput, Quantitative Detection of Intracellular Proteins <i>via</i> Flow Cytometry for Pathway Engineering. ACS Synthetic Biology, 2020, 9, 2119-2131.	1.9	3
800	Back to the Future: Genetically Encoded Fluorescent Proteins as Inert Tracers of the Intracellular Environment. International Journal of Molecular Sciences, 2020, 21, 4164.	1.8	13
801	Design of fluorescent protein-based sensors through a general protection-deprotection strategy. Methods in Enzymology, 2020, 640, 63-82.	0.4	1
802	Fluorescent Bioconjugates for Super-Resolution Optical Nanoscopy. Bioconjugate Chemistry, 2020, 31, 1857-1872.	1.8	30
803	Marine resources and animals in modern biotechnology. , 2020, , 567-591.		3
804	Rational design of genetically encoded reporter genes for optical imaging of apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 459-473.	2.2	4
806	Free radicals derived from Î ³ -radiolysis of water and AAPH thermolysis mediate oxidative crosslinking of eGFP involving Tyr-Tyr and Tyr-Cys bonds: the fluorescence of the protein is conserved only towards peroxyl radicals. Free Radical Biology and Medicine, 2020, 150, 40-52.	1.3	6
807	Photoactivatable fluorescent probes for spatiotemporal-controlled biosensing and imaging. TrAC - Trends in Analytical Chemistry, 2020, 125, 115811.	5.8	33
808	Imaging of fluorescence anisotropy during photoswitching provides a simple readout for protein self-association. Nature Communications, 2020, 11, 21.	5.8	25
809	Multiparameter screening method for developing optimized red-fluorescent proteins. Nature Protocols, 2020, 15, 450-478.	5.5	22
810	Single-Virus Tracking: From Imaging Methodologies to Virological Applications. Chemical Reviews, 2020, 120, 1936-1979.	23.0	131
811	Ultrafast excited-state proton transfer dynamics in dihalogenated non-fluorescent and fluorescent GFP chromophores. Journal of Chemical Physics, 2020, 152, 021101.	1.2	14
812	Optimized mRuby3 is a Suitable Fluorescent Protein for in vivo Co-localization Studies with GFP in the Diatom Phaeodactylum tricornutum. Protist, 2020, 171, 125715.	0.6	4

#	Article	IF	Citations
813	Comparing the performance of mScarlet-I, mRuby3, and mCherry as FRET acceptors for mNeonGreen. PLoS ONE, 2020, 15, e0219886.	1.1	29
814	Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches. International Journal of Molecular Sciences, 2020, 21, 2323.	1.8	31
815	The SNAP- <i>tag</i> technology revised: an effective <i>chemo-enzymatic approach</i> by using a universal azide-based substrate. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 85-97.	2.5	6
816	Plasmodium berghei sporozoites in nonreplicative vacuole are eliminated by a PI3P â€mediated autophagyâ€independent pathway. Cellular Microbiology, 2021, 23, e13271.	1.1	6
817	Widespread fluorescence in terrestrial and marine samples investigated from India. Acta Ecologica Sinica, 2021, 41, 30-38.	0.9	3
818	Dye-protein interactions between Rhodamine B and whey proteins that affect the photoproperties of the dye. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 408, 113092.	2.0	5
819	Color Tuning of Fluorogens for FAST Fluorogenâ€Activating Protein. Chemistry - A European Journal, 2021, 27, 3986-3990.	1.7	18
820	<i>ANCA</i> : Alignment-Based Network Construction Algorithm. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 512-524.	1.9	14
821	Fate Mapping of Cancer Cells in Metastatic Lymph Nodes Using Photoconvertible Proteins. Methods in Molecular Biology, 2021, 2265, 363-376.	0.4	1
822	Genetically Encoded Biosensors Based on Fluorescent Proteins. Sensors, 2021, 21, 795.	2.1	26
823	Label-Free Multimodal Multiphoton Intravital Imaging. Advances in Experimental Medicine and Biology, 2021, 3233, 127-146.	0.8	0
824	Amino acid residue at the 165th position tunes EYFP chromophore maturation. A structure-based design. Computational and Structural Biotechnology Journal, 2021, 19, 2950-2959.	1.9	0
825	NanoFAST: structure-based design of a small fluorogen-activating protein with only 98 amino acids. Chemical Science, 2021, 12, 6719-6725.	3.7	22
826	Fluorescent nanodiamond $\hat{a}\in$ hyaluronate conjugates for target-specific molecular imaging. RSC Advances, 2021, 11, 23073-23081.	1.7	5
827	In vivo Fluorescence Imaging of Extracellular ATP in the Mouse Cerebral Cortex with a Hybrid-type Optical Sensor. Bio-protocol, 2021, 11, e4046.	0.2	3
828	In vivo assay and modelling of protein and mitochondrial turnover during aging. Fly, 2021, 15, 60-72.	0.9	3
829	Out-of-Phase Imaging after Optical Modulation (OPIOM) for Multiplexed Fluorescence Imaging Under Adverse Optical Conditions. Methods in Molecular Biology, 2021, 2350, 191-227.	0.4	0
830	Strategic engineering of alkyl spacer length for a pH-tolerant lysosome marker and dual organelle localization. Chemical Science, 2021, 12, 9630-9644.	3.7	27

#	Article	IF	CITATIONS
831	Membrane dynamics are slowed for Alexa594-labeled membrane proteins due to substrate interactions. BBA Advances, 2021, 1, 100026.	0.7	4
832	Fluorescent proteins of the EosFP clade: intriguing marker tools with multiple photoactivation modes for advanced microscopy. RSC Chemical Biology, 2021, 2, 796-814.	2.0	13
833	The video-rate imaging of sub-10 nm plasmonic nanoparticles in a cellular medium free of background scattering. Chemical Science, 2021, 12, 3017-3024.	3.7	12
834	Tuning the electronic transition energy of indole via substitution: application to identify tryptophan-based chromophores that absorb and emit visible light. Physical Chemistry Chemical Physics, 2021, 23, 6433-6437.	1.3	11
835	Spectroscopic Analysis of Fe Ion-Induced Fluorescence Quenching of the Green Fluorescent Protein ZsGreen. Journal of Fluorescence, 2021, 31, 307-314.	1.3	10
836	Generation of Transgenic Fluorescent Reporter Lines for Studying Hematopoietic Development in the Mouse. Methods in Molecular Biology, 2021, 2224, 153-182.	0.4	0
837	Molecular Imaging of Cellular Signaling Pathways. , 2021, , 929-941.		0
838	Acetate/Acetic Acid-Assisted One-Pot Synthesis of (Diarylmethylene)imidazolone from Amide or Thioamide. Heterocycles, 2021, 102, 516.	0.4	0
839	Challenges and Opportunities in NUT Carcinoma Research. Genes, 2021, 12, 235.	1.0	6
840	Construction of Ultralarge Two-Dimensional Fluorescent Protein Arrays via a Reengineered Rhodamine B-Based Molecular Tool. ACS Macro Letters, 2021, 10, 307-311.	2.3	4
841	Fluorescent protein expression in temperature tolerant and susceptible reef-building corals. Journal of the Marine Biological Association of the United Kingdom, 2021, 101, 71-80.	0.4	1
842	Biosensors Used for Epifluorescence and Confocal Laser Scanning Microscopies to Study Dickeya and Pectobacterium Virulence and Biocontrol. Microorganisms, 2021, 9, 295.	1.6	2
843	Local Electric Field Controls Fluorescence Quantum Yield of Red and Far-Red Fluorescent Proteins. Frontiers in Molecular Biosciences, 2021, 8, 633217.	1.6	18
845	AlEgenâ€enhanced protein imaging: Probe design and sensing mechanisms. Aggregate, 2021, 2, e41.	5.2	26
846	Crystal structure of a far-red–sensing cyanobacteriochrome reveals an atypical bilin conformation and spectral tuning mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
847	Structure–Function Dataset Reveals Environment Effects within a Fluorescent Protein Model System**. Angewandte Chemie - International Edition, 2021, 60, 10073-10081.	7.2	7
848	Fluorescent Markers: Proteins and Nanocrystals. , 0, , .		1
849	Structure–Function Dataset Reveals Environment Effects within a Fluorescent Protein Model System**. Angewandte Chemie, 2021, 133, 10161-10169.	1.6	2

#	Article	IF	CITATIONS
850	Current and future advances in fluorescence-based visualization of plant cell wall components and cell wall biosynthetic machineries. Biotechnology for Biofuels, 2021, 14, 78.	6.2	39
851	Challenges of analysing stochastic gene expression in bacteria using single-cell time-lapse experiments. Essays in Biochemistry, 2021, 65, 67-79.	2.1	13
852	Genetic Labeling of Cells Allows Identification and Tracking of Transgenic Platelets in Mice. International Journal of Molecular Sciences, 2021, 22, 3710.	1.8	2
853	The ecology of wine fermentation: a model for the study of complex microbial ecosystems. Applied Microbiology and Biotechnology, 2021, 105, 3027-3043.	1.7	16
855	Enhanced UnaG With Minimal Labeling Artifact for Single-Molecule Localization Microscopy. Frontiers in Molecular Biosciences, 2021, 8, 647590.	1.6	3
856	Tools and approaches for analyzing the role of mitochondria in health, development and disease using human cerebral organoids. Developmental Neurobiology, 2021, 81, 591-607.	1.5	4
857	$G\hat{l}^2\hat{l}^3$ signaling from an eponymous past to a specific future. Cell Systems, 2021, 12, 289-290.	2.9	2
858	Insights into the mechanisms of lightâ€oxygenâ€voltage domain color tuning from a set of highâ€resolution Xâ€ray structures. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1005-1016.	1.5	11
859	Broad Applications of Thiazole Orange in Fluorescent Sensing of Biomolecules and Ions. Molecules, 2021, 26, 2828.	1.7	27
860	Molecular excited states through a machine learning lens. Nature Reviews Chemistry, 2021, 5, 388-405.	13.8	107
861	Solid-Binding Proteins: Bridging Synthesis, Assembly, and Function in Hybrid and Hierarchical Materials Fabrication. Annual Review of Chemical and Biomolecular Engineering, 2021, 12, 333-357.	3.3	6
862	Bioluminescence in aquatic and terrestrial organisms elicited through various kinds of stimulation. Aquatic Ecology, 2021, 55, 737-764.	0.7	3
863	Quantum mechanical/molecular mechanical studies of photophysical properties of fluorescent proteins. Wiley Interdisciplinary Reviews: Computational Molecular Science, 0, , e1557.	6.2	1
864	Chromophore reduction plus reversible photobleaching: how the mKate2 "photoconversion―works. Photochemical and Photobiological Sciences, 2021, 20, 791-803.	1.6	6
865	Dynamics of Proteins and Macromolecular Machines in Escherichia coli. EcoSal Plus, 2021, 9, eESP00112020.	2.1	0
866	Biophotonic probes for bio-detection and imaging. Light: Science and Applications, 2021, 10, 124.	7.7	74
867	Cell-type–specific, multicolor labeling of endogenous proteins with split fluorescent protein tags in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9

#	Article	IF	CITATIONS
870	Encoding Fluorescence Anisotropic Barcodes with DNA Frameworks. Journal of the American Chemical Society, 2021, 143, 10735-10742.	6.6	31
871	Structural and spectrophotometric investigation of two unnatural amino-acid altered chromophores in the superfolder green fluorescent protein. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1010-1018.	1.1	3
872	Unusual aggregation property of recombinantly expressed cancer-testis antigens in mammalian cells. Journal of Biochemistry, 2021, 170, 435-443.	0.9	2
874	Investigation of mutations (L41F, F17M, N57E, Y99F_Y134W) effects on the TolAIII-UnaG fluorescence protein's unconjugated bilirubin (UC-BR) binding ability and thermal stability properties. Preparative Biochemistry and Biotechnology, 2021, , 1-10.	1.0	1
875	Glowing plants can light up the night sky? A review. Biotechnology and Bioengineering, 2021, 118, 3706-3715.	1.7	2
877	Structural insights into two distinct nanobodies recognizing the same epitope of green fluorescent protein. Biochemical and Biophysical Research Communications, 2021, 565, 57-63.	1.0	8
878	Excited-State Proton Transfer Dynamics in LSSmOrange Studied by Time-Resolved Impulsive Stimulated Raman Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 7466-7473.	2.1	6
879	Live cell tagging tracking and isolation for spatial transcriptomics using photoactivatable cell dyes. Nature Communications, 2021, 12, 4995.	5.8	25
883	Focal adhesion dynamics in cellular function and disease. Cellular Signalling, 2021, 85, 110046.	1.7	68
884	Emerging imaging methods to study whole-brain function in rodent models. Translational Psychiatry, 2021, 11, 457.	2.4	21
885	Ubiquitin is a carbon dioxide–binding protein. Science Advances, 2021, 7, eabi5507.	4.7	13
886	Design of Large Stokes Shift Fluorescent Proteins Based on Excited State Proton Transfer of an Engineered Photobase. Journal of the American Chemical Society, 2021, 143, 15091-15102.	6.6	33
887	Dual-State Emission (DSE) in Organic Fluorophores: Design and Applications. Chemistry of Materials, 2021, 33, 7160-7184.	3.2	119
888	Nonresonant CARS Imaging of Porous and Solid Silicon Nanoparticles in Human Cells. ACS Biomaterials Science and Engineering, 2022, 8, 4185-4195.	2.6	2
889	Action spectroscopy of the isolated red Kaede fluorescent protein chromophore. Journal of Chemical Physics, 2021, 155, 124304.	1.2	9
890	Beyond protein tagging: Rewiring the genetic code of fluorescent proteins – A review. International Journal of Biological Macromolecules, 2021, 191, 840-851.	3.6	7
891	A ratiometric fluorometric probe for doxycycline in food by using bovine serum albumin protected Au nanoclusters. Food Control, 2021, 129, 108218.	2.8	6
892	Dimming the donor to brighten up FRET-based biosensors. Cell Calcium, 2021, 99, 102474.	1.1	О

#	Article	IF	CITATIONS
893	Physicochemical Properties of Photoconvertible Fluorescent Protein from Montastraea cavernosa. Russian Journal of Bioorganic Chemistry, 2021, 47, 244-251.	0.3	1
894	Transformations of the Chromophore in the Course of Maturation of a Chromoprotein from Actinia equina. Russian Journal of Bioorganic Chemistry, 2021, 47, 230-235.	0.3	0
895	Fluorescent Protein Variants Generated by Reassembly between Skeleton and Chromophore. ACS Omega, 2021, 6, 2925-2933.	1.6	0
896	Green Fluorescent Protein GFP-Chromophore-Based Probe for the Detection of Mitochondrial Viscosity in Living Cells. ACS Applied Bio Materials, 2021, 4, 2128-2134.	2.3	24
897	Corrole-Substituted Fluorescent Heme Proteins. Inorganic Chemistry, 2021, 60, 2716-2729.	1.9	17
898	A single point mutation converts a proton-pumping rhodopsin into a red-shifted, turn-on fluorescent sensor for chloride. Chemical Science, 2021, 12, 5655-5663.	3.7	19
899	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50 50 4.3	02 Td (editio 1,430
900	Fluorescent Proteins: The Show Must Go On!., 0,, 55-90.		3
901	Structural Basis of Photoswitching in Fluorescent Proteins. Methods in Molecular Biology, 2014, 1148, 177-202.	0.4	15
902	pcSOFI as a Smart Label-Based Superresolution Microscopy Technique. Methods in Molecular Biology, 2014, 1148, 261-276.	0.4	17
903	Analysis of Protein Dynamics with Tandem Fluorescent Protein Timers. Methods in Molecular Biology, 2014, 1174, 195-210.	0.4	36
904	Intravital Imaging of Hematopoietic Stem Cells in the Mouse Skull. Methods in Molecular Biology, 2014, 1185, 247-265.	0.4	10
905	Generation of Transgenic Mouse Fluorescent Reporter Lines for Studying Hematopoietic Development. Methods in Molecular Biology, 2014, 1194, 289-312.	0.4	10
906	Site-Specific Protein Labeling in the Pharmaceutical Industry: Experiences from Novartis Drug Discovery. Methods in Molecular Biology, 2015, 1266, 7-27.	0.4	9
907	A Review of Fluorescent Proteins for Use in Yeast. Methods in Molecular Biology, 2016, 1369, 309-346.	0.4	11
908	Analyzing Membrane Dynamics with Live Cell Fluorescence Microscopy with a Focus on Yeast Mitochondria. Methods in Molecular Biology, 2013, 1033, 275-283.	0.4	7
909	Construction and Application of Riboswitch-Based Sensors That Detect Metabolites Within Bacterial Cells. Methods in Molecular Biology, 2014, 1103, 177-197.	0.4	4
910	Application of In-Fusionâ,,¢ Cloning for the Parallel Construction of E. coli Expression Vectors. Methods in Molecular Biology, 2014, 1116, 209-234.	0.4	22

#	Article	lF	Citations
911	Fluorescence Lifetime Imaging (FLIM): Basic Concepts and Recent Applications. Springer Series in Chemical Physics, 2015, , 119-188.	0.2	9
912	Fluorescent Reporter Genes and the Analysis of Bacterial Regulatory Networks. Lecture Notes in Computer Science, 2015, , 27-50.	1.0	1
913	Dissecting Peroxisome-Mediated Signaling Pathways: A New and Exciting Research Field., 2014, , 255-273.		8
914	Fluorescence Lifetime Imaging. , 2015, , 1-50.		1
915	Ecological and Societal Benefits of Jellyfish. , 2014, , 105-127.		48
916	Confocal Laser Scanning Microscopy. , 2016, , 673-691.		1
917	An advanced genetic toolkit for exploring the biology of the rock-inhabiting black fungus Knufia petricola. Scientific Reports, 2020, 10, 22021.	1.6	13
918	Influence of the N atom and its position on electron photodetachment of deprotonated indole and azaindole. Physical Chemistry Chemical Physics, 2020, 22, 27290-27299.	1.3	5
924	Subatomic resolution X-ray structures of green fluorescent protein. IUCrJ, 2019, 6, 387-400.	1.0	24
925	Long-term fluorescence lifetime imaging of a genetically encoded sensor for caspase-3 activity in mouse tumor xenografts. Journal of Biomedical Optics, 2018, 23, 1.	1.4	11
926	Three-Dimensional Imaging in Mouse Developmental Pathology Studies. , 2015, , 275-290.		2
927	Live Cell Imaging Methods Review. Materials and Methods, 0, 2, .	0.0	6
928	Overcoming tissue scattering in wide-field two-photon imaging by extended detection and computational reconstruction. Optics Express, 2019, 27, 20117.	1.7	5
929	Superior contrast and resolution by image formation in rotating coherent scattering (ROCS) microscopy. Optica, 2018, 5, 1371.	4.8	25
930	Simple imaging protocol for autofluorescence elimination and optical sectioning in fluorescence endomicroscopy. Optica, 2019, 6, 972.	4.8	9
931	Monitoring of Gene Expression in Bacteria during Infections Using an Adaptable Set of Bioluminescent, Fluorescent and Colorigenic Fusion Vectors. PLoS ONE, 2011, 6, e20425.	1.1	50
932	Live Imaging of Mitosomes and Hydrogenosomes by HaloTag Technology. PLoS ONE, 2012, 7, e36314.	1.1	23
933	Recovery of Red Fluorescent Protein Chromophore Maturation Deficiency through Rational Design. PLoS ONE, 2012, 7, e52463.	1.1	17

#	Article	IF	CITATIONS
934	Characterization of Flavin-Based Fluorescent Proteins: An Emerging Class of Fluorescent Reporters. PLoS ONE, 2013, 8, e64753.	1.1	103
935	Sensitivity of Superfolder GFP to Ionic Agents. PLoS ONE, 2014, 9, e110750.	1.1	18
936	X-Ray Crystal Structure and Properties of Phanta, a Weakly Fluorescent Photochromic GFP-Like Protein. PLoS ONE, 2015, 10, e0123338.	1.1	2
937	Green Fluorescence of Cytaeis Hydroids Living in Association with Nassarius Gastropods in the Red Sea. PLoS ONE, 2016, 11, e0146861.	1.1	8
938	Object Segmentation and Ground Truth in 3D Embryonic Imaging. PLoS ONE, 2016, 11, e0150853.	1.1	20
939	In Vivo and In Vitro Detection of Luminescent and Fluorescent Lactobacillus reuteri and Application of Red Fluorescent mCherry for Assessing Plasmid Persistence. PLoS ONE, 2016, 11, e0151969.	1.1	32
940	Molecular evolution of versatile derivatives from a GFP-like protein in the marine copepod Chiridius poppei. PLoS ONE, 2017, 12, e0181186.	1.1	9
941	A novel in ovo model to study cancer metastasis using chicken embryos and GFP expressing cancer cells. Bosnian Journal of Basic Medical Sciences, 2020, 20, 140-148.	0.6	7
942	The strategy of fusion genes construction determines efficient expression of introduced transcription factors Acta Biochimica Polonica, 2014, 61, .	0.3	6
943	A mutant of the phototoxic protein KillerRed that does not form DsRed-like chromophore. Bulletin of Russian State Medical University, 2019, , 45-48.	0.3	1
944	Advanced methods in fluorescence microscopy. Analytical Cellular Pathology, 2013, 36, 5-17.	0.7	3
945	Synthetic Fluorophores for Visualizing Biomolecules in Living Systems. Acta Naturae, 2016, 8, 33-46.	1.7	44
946	First record of Aequorea macrodactyla (Cnidaria, Hydrozoa) from the Israeli coast of the eastern Mediterranean Sea, an alien species indicating invasive pathways. NeoBiota, 0, 26, 55-70.	1.0	6
947	Evidence for expression of promoterless GFP cassette: Is GFP an ideal reporter gene in biotechnology science?. Research in Pharmaceutical Sciences, 2019, 14, 351.	0.6	2
948	A Cyan Fluorescent Protein Gene (cfp)-Transgenic Marine Medaka Oryzias dancena with Potential Ornamental Applications. Fisheries and Aquatic Sciences, 2014, 17, 479-486.	0.3	4
949	Real-time in vivo imaging of extracellular ATP in the brain with a hybrid-type fluorescent sensor. ELife, 2020, 9, .	2.8	38
950	Development of a Fluorescent Protein Based FRET Biosensor for Determination of Protease Activity. Sakarya University Journal of Science, 2021, 25, 1235-1244.	0.3	2
951	Modular fluorescent nanoparticle DNA probes for detection of peptides and proteins. Scientific Reports, 2021, 11, 19921.	1.6	9

#	Article	IF	Citations
952	Macrophage Identification In Situ. Biomedicines, 2021, 9, 1393.	1.4	10
953	Î ² -Barrels and Amyloids: Structural Transitions, Biological Functions, and Pathogenesis. International Journal of Molecular Sciences, 2021, 22, 11316.	1.8	11
954	Genetic and viral approaches to record or manipulate neurons in insects. Current Opinion in Insect Science, 2021, 48, 79-88.	2.2	4
955	Strategies for improving performance, lifetime, and stability in light-emitting diodes using liquid medium. Chemical Physics Reviews, 2021, 2, .	2.6	6
956	Diagnostic Optical Imaging of Breast Cancer: From Animal Models to First-in-Men Studies. , 0, , .		0
957	A time-dependent DFT/molecular dynamics study of the proton-wire responsible for the red fluorescence in the LSSmKate2 protein. Highlights in Theoretical Chemistry, 2014, , 133-141.	0.0	0
958	活细èfžæ^åfæ−¹æ³•å·žé;¾. 实验ææ−™å'Œæ−¹æ³•, 0, cn2, .	0.0	0
959	In Vivo Bacterial Morphogenetic Protein Interactions. , 0, , .		O
960	Development of optical imaging to visualize dynamics of cells in vivo. Drug Delivery System, 2013, 28, 17-23.	0.0	0
961	IN VIVO METHODS TO STUDY UPTAKE OF NANOPARTICLES INTO THE BRAIN. Journal of Drug Delivery and Therapeutics, 2013, 3, .	0.2	1
964	Fluorescence Lifetime Imaging. , 2014, , 1-50.		4
965	Imaging-Based Measures of Synaptic Tenacity. Neuromethods, 2014, , 161-185.	0.2	1
966	Characteristics of Enzymes and Cloning Vectors Used to Create Recombinant DNA., 2014, , 1-23.		0
967	Bio-optical Imaging. , 2014, , 1-14.		0
969	Evaluating Baculovirus Infection Using Green Fluorescent Protein and Variants. Methods in Molecular Biology, 2016, 1350, 447-459.	0.4	0
970	GREEN FLUORESCENT PROTEIN AND THEIR APPLICATIONS IN ADVANCE RESEARCH. Journal of Research in Engineering and Applied Sciences, 2016, 01, 42-46.	0.2	0
972	The Use of Electroporation in Developmental Biology. , 2017, , 1-35.		2
976	The Use of Electroporation in Developmental Biology. , 2018, , 1-35.		0

#	Article	IF	CITATIONS
977	Tetrazine-Containing Colorful Bioorthogonal Probes Based on the Indolizine Core Skeleton. Springer Theses, 2018, , 43-84.	0.0	0
978	Enzymes and Cloning Vectors Used to Create Recombinant DNA, Characteristics of., 2018, , 328-347.		0
979	Mikroskopowe metody badania cytoszkieletu. Cosmos: Problems of Biological Sciences, 2018, 67, 219-232.	0.0	0
982	Đ'Đ _, Đ¾Đ»ÑŽĐ¼Đ,Đ½ĐμÑцĐμĐ½Ñ,Đ½Ñ‹Đ¹ Đ,Đ¼Đ,ĐʻжĐ,Đ½Đ³: Đ½Đ¾Đ²Ñ‹Đμ Đ²Đ¾ĐĐ¼Đ¾Đ¶Đ½Đŝ	¾ÑÑ,Ð,.,?	2018, , 100-
983	Bioluminescent imaging: new opportunities. Bulletin of Russian State Medical University, 2018, , 87-90.	0.3	0
984	Functional Imaging and Treatment of Tumors with New Fluorescent Proteins., 2019,,.		0
988	Crystal structure and spectral studies of green fluorescent protein (GFP) chromophore analogue acetate. European Journal of Chemistry, 2019, 10, 175-179.	0.3	2
991	Electrophoretic Mobility Shift Assays with GFP-Tagged Proteins (GFP-EMSA). Methods in Molecular Biology, 2020, 2089, 159-166.	0.4	1
993	Using iRFP Genetic Labeling Technology to Track Tumorogenesis of Transplanted CRISPR/Cas9-Edited iPSC in Skeletal Muscle. Methods in Molecular Biology, 2020, 2126, 73-83.	0.4	1
994	A non-fluorescent HaloTag blocker for improved measurement and visualization of protein synthesis in living cells. F1000Research, 2020, 9, 302.	0.8	1
995	Rethinking resolution estimation in fluorescence microscopy: from theoretical resolution criteria to super-resolution microscopy. Science China Life Sciences, 2020, 63, 1776-1785.	2.3	7
996	New 1,3-Disubstituted Benzo[h]Isoquinoline Cyclen-Based Ligand Platform: Synthesis, Eu3+Multiphoton Sensitization and Imaging Applications. Molecules, 2021, 26, 58.	1.7	O
997	Parasite Burden Measurement in the Leishmania major Infected Mice by Using the Direct Fluorescent Microscopy, Limiting Dilu-tion Assay, and Real-Time PCR Analysis. Iranian Journal of Parasitology, 2020, 15, 576-586.	0.6	2
998	Affinity Purification of GO-Matryoshka Biosensors from E. coli for Quantitative Ratiometric Fluorescence Analyses. Bio-protocol, 2020, 10, e3773.	0.2	0
1000	A non-fluorescent HaloTag blocker for improved measurement and visualization of protein synthesis in living cells. F1000Research, 2020, 9, 302.	0.8	4
1001	In vivo photoacoustic imaging of a nonfluorescent E2 crimson genetic reporter in mammalian tissues. Journal of Biomedical Optics, 2020, 25, 1.	1.4	2
1002	Chromosome instability induced by a single defined sister chromatid fusion. Life Science Alliance, 2020, 3, e202000911.	1.3	4
1003	Increasing the Fluorescence Brightness of Superphotostable EGFP Mutant by Introducing Mutations That Block Chromophore Protonation. Russian Journal of Bioorganic Chemistry, 2020, 46, 1229-1241.	0.3	1

#	ARTICLE	IF	CITATIONS
1004	Evaluation of royal jelly as an alternative to fetal bovine serum in cell culture using cell proliferation assays and live cell imaging. African Journal of Traditional Complementary and Alternative Medicines, 2014, 11, 148-55.	0.2	2
1005	Synthetic Fluorophores for Visualizing Biomolecules in Living Systems. Acta Naturae, 2016, 8, 33-46.	1.7	13
1006	Fluorescence-based sensing of the bioenergetic and physicochemical status of the cell. Current Topics in Membranes, 2021, 88, 1-54.	0.5	7
1007	The challenges of monitoring and manipulating anaerobic microbial communities. Bioresource Technology, 2022, 344, 126326.	4.8	3
1008	Efficient markerless integration of genes in the chromosome of probiotic <i>E.Âcoli</i> Nissle 1917 by bacterial conjugation. Microbial Biotechnology, 2022, 15, 1374-1391.	2.0	10
1009	LSSmScarlet, dCyRFP2s, dCyOFP2s and CRISPRed2s, Genetically Encoded Red Fluorescent Proteins with a Large Stokes Shift. International Journal of Molecular Sciences, 2021, 22, 12887.	1.8	9
1010	Investigation of the robustness of Cupriavidus necator engineered strains during fed-batch cultures. AMB Express, 2021, 11, 151.	1.4	5
1011	Snake Toxins Labeled by Green Fluorescent Protein or Its Synthetic Chromophore are New Probes for Nicotinic acetylcholine Receptors. Frontiers in Molecular Biosciences, 2021, 8, 753283.	1.6	1
1012	Fast-dissociating but highly specific antibodies are novel tools in biology, especially useful for multiplex super-resolution microscopy. STAR Protocols, 2021, 2, 100967.	0.5	2
1013	A novel violet fluorescent protein contains a unique oxidized tyrosine as the simplest chromophore ever reported in fluorescent proteins. Protein Science, 2021, , .	3.1	2
1014	Environment-sensitive fluorogens based on a GFP chromophore structural motif. Dyes and Pigments, 2022, 198, 110033.	2.0	8
1017	Multiphoton Bleaching of Red Fluorescent Proteins and the Ways to Reduce It. International Journal of Molecular Sciences, 2022, 23, 770.	1.8	5
1018	Design and characterization of synthetic promoters. , 2022, , 11-21.		1
1019	Development of 1,8-naphthalimide dyes for rapid imaging of subcellular compartments in plants. Chemical Communications, 2022, 58, 1685-1688.	2.2	5
1020	Computational Methods for Single-Cell Imaging and Omics Data Integration. Frontiers in Molecular Biosciences, 2021, 8, 768106.	1.6	13
1021	Visualizing G protein-coupled receptor homomers using photoactivatable dye localization microscopy. Methods in Cell Biology, 2022, , .	0.5	0
1022	Using genetically modified extracellular vesicles as a non-invasive strategy to evaluate brain-specific cargo. Biomaterials, 2022, 281, 121366.	5.7	13
1023	The Role of Hydrogen Bonds and Electrostatic Interactions in Enhancing Twoâ€Photon Absorption in Green and Yellow Fluorescent Proteins. ChemPhysChem, 2022, 23, .	1.0	4

#	Article	IF	CITATIONS
1025	A Ribosomal Perspective on Neuronal Local Protein Synthesis. Frontiers in Molecular Neuroscience, 2022, 15, 823135.	1.4	9
1026	Analysis of the H-Ras mobility pattern <i>in vivo</i> shows cellular heterogeneity inside epidermal tissue. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	2
1027	Energetic Basis and Design of Enzyme Function Demonstrated Using GFP, an Excited-State Enzyme. Journal of the American Chemical Society, 2022, 144, 3968-3978.	6.6	9
1028	An Efficient Aequorea victoria Green Fluorescent Protein for Stimulated Emission Depletion Super-Resolution Microscopy. International Journal of Molecular Sciences, 2022, 23, 2482.	1.8	1
1029	In Vivo Visualization of Stable Neuroblastoma Cell Lines with Overexpression of Firefly Luciferase or Far-Red Fluorescent Protein. BioNanoScience, 0 , , 1 .	1.5	0
1031	Principles, modulation, and applications of fluorescent protein chromophores. Chemical Physics Reviews, 2022, 3, 011308.	2.6	2
1032	Temperature-Dependent Fluorescence of mPlum Fluorescent Protein from 295 to 20 K. Journal of Physical Chemistry B, 2022, 126, 2337-2344.	1.2	2
1033	Synthesis of Inherently Fluorescent Core–Shell Nanoparticles for Cell Imaging and Targeting Therapy: An In Vitro Evaluation. Macromolecular Materials and Engineering, 0, , 2100961.	1.7	2
1034	Building a Spectral Cytometry Toolbox: Coupling Fluorescent Proteins and Antibodies to Microspheres. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, , .	1.1	1
1035	eGFP Gene Integration in HO: A Metabolomic Impact?. Microorganisms, 2022, 10, 781.	1.6	2
1036	SPASER as Nanoprobe for Biological Applications: Current State and Opportunities. Laser and Photonics Reviews, 2022, 16 , .	4.4	3
1037	Advances in protein analysis in single live cells: Principle, instrumentation and applications. TrAC - Trends in Analytical Chemistry, 2022, 152, 116619.	5.8	6
1038	Systematic Exploration of Furoindolizineâ€Based Molecular Frameworks towards a Versatile Fluorescent Platform. Chemistry - A European Journal, 2022, , .	1.7	0
1039	Rapid directed molecular evolution of fluorescent proteins in mammalian cells. Protein Science, 2022, 31, 728-751.	3.1	11
1040	Endogenous protein tagging in medaka using a simplified CRISPR/Cas9 knock-in approach. ELife, 2021, 10,	2.8	20
1041	Twoâ€color fluorescent proteins reporting survivin regulation in breast cancer cells for high throughput drug screening. Biotechnology and Bioengineering, 2022, 119, 1004-1017.	1.7	4
1042	Fluorescence Microscopy—An Outline of Hardware, Biological Handling, and Fluorophore Considerations. Cells, 2022, 11, 35.	1.8	30
1043	Designer Heme Proteins: Achieving Novel Function with Abiological Heme Analogues. Accounts of Chemical Research, 2021, 54, 4565-4575.	7.6	20

#	Article	IF	CITATIONS
1044	When light meets biology $\hat{a} \in ``how the specimen affects quantitative microscopy. Journal of Cell Science, 2022, 135, .$	1.2	13
1054	Optical Fluorescence Imaging of Native Proteins Using a Fluorescent Probe with a Cell-Membrane-Permeable Carboxyl Group. International Journal of Molecular Sciences, 2022, 23, 5841.	1.8	4
1056	Genetically encoded fluorescent sensing probes. Scientia Sinica Chimica, 2022, , .	0.2	0
1057	New near-infrared fluorescent probes and tools. Nature Methods, 2022, 19, 654-655.	9.0	9
1058	Protein Mobility Measurements through Oxidative Green-to-Red Photoconversion of EGFP. Journal of Physical Chemistry B, 0, , .	1.2	0
1060	Study of the Position of the Conjugated Substitute Influence on the Optical Properties of the Kaede Protein Chromophore Derivatives. Russian Journal of Bioorganic Chemistry, 2022, 48, 651-654.	0.3	1
1061	Dual-expression system for blue fluorescent protein optimization. Scientific Reports, 2022, 12, .	1.6	14
1062	Resource for FRET-Based Biosensor Optimization. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
1063	Cyanobacterial photoreceptors and their applications. , 2022, , 201-210.		0
1064	Ratiometric Oxygen Sensing with H-NOX Protein Conjugates. Inorganic Chemistry, 2022, 61, 10521-10532.	1.9	3
1065	Action-Absorption Spectroscopy at the Band Origin of the Deprotonated Green Fluorescent Protein Chromophore In Vacuo. Journal of Physical Chemistry Letters, 0, , 6683-6685.	2.1	3
1066	Structure-based rational design of an enhanced fluorogen-activating protein for fluorogens based on GFP chromophore. Communications Biology, 2022, 5, .	2.0	5
1067	Genetically Encoded Fluorescent Sensors for SARS-CoV-2 Papain-like Protease PLpro. International Journal of Molecular Sciences, 2022, 23, 7826.	1.8	3
1068	Quantum chemistry study of the multiphoton absorptionÂin enhanced green fluorescent proteinÂat the single amino acid residue level. ChemPhysChem, 0, , .	1.0	1
1069	Mastering the use of cellular barcoding to explore cancer heterogeneity. Nature Reviews Cancer, 2022, 22, 609-624.	12.8	13
1071	mCherry contains a fluorescent protein isoform that interferes with its reporter function. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	6
1072	Real-Time Fluorescence Visualization and Quantitation of Cell Growth and Death in Response to Treatment in 3D Collagen-Based Tumor Model. International Journal of Molecular Sciences, 2022, 23, 8837.	1.8	4
1073	mBeRFP: a versatile fluorescent tool to enhance multichannel live imaging and its applications. Development (Cambridge), 2022, 149, .	1.2	1

#	Article	IF	CITATIONS
1074	pH Changes in the Mitochondrial Matrix and Cytosol under Glutamate Deregulation of Ca2+ Homeostasis in Cultured Rat Hippocampal Neurons. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2022, 16, 236-245.	0.3	0
1075	Lighting up Micro-/Nanorobots with Fluorescence. Chemical Reviews, 2023, 123, 3944-3975.	23.0	33
1076	$\label{lem:multicolor} Multifunctional\ stimuli-responsive\ chemogenetic\ platform\ for\ conditional\ multicolor\ cell-selective\ labeling.\ Chemical\ Science,\ 0,\ ,\ .$	3.7	2
1077	Condon Optimization: Codon Optimization of Therapeutic Proteins: Suggested Criteria for Increased Efficacy and Safety., 2022,, 197-224.		0
1078	Genetically Encoded Sensors to Study Metabolism in Drosophila. Methods in Molecular Biology, 2022, , 401-414.	0.4	1
1079	LSSmScarlet2 and LSSmScarlet3, Chemically Stable Genetically Encoded Red Fluorescent Proteins with a Large Stokes' Shift. International Journal of Molecular Sciences, 2022, 23, 11051.	1.8	2
1080	Halogen-Containing 4-Hydroxybenzylidene-Rhodanines as Fast Protein Fluorogens. Russian Journal of Bioorganic Chemistry, 2022, 48, 1105-1108.	0.3	0
1081	EYFP fusions to HD-Zip IV transcription factors enhance their stability and lead to phenotypic changes in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2022, 17, .	1.2	0
1082	Application and development of fluorescence probes in MINFLUX nanoscopy. Journal of Innovative Optical Health Sciences, 0, , .	0.5	1
1083	Visualization of 3D Organoids Through the Latest Advancements in Microscopy. Neuromethods, 2023, , 43-66.	0.2	2
1084	â€~Phase transitions' in bacteria – From structural transitions in free living bacteria to phenotypic transitions in bacteria within biofilms. Physics of Life Reviews, 2022, 43, 98-138.	1.5	2
1085	Photoactive Yellow Protein Represents a Distinct, Evolutionarily Novel Family of PAS Domains. Journal of Bacteriology, 2022, 204, .	1.0	4
1087	Raman Spectroscopy for Chemical Biology Research. Journal of the American Chemical Society, 2022, 144, 19651-19667.	6.6	67
1088	Different properties of two types of red fluorescent proteins in octocoral, <i>Scleronephthya</i> spp. as Akane families. Luminescence, 0, , .	1.5	O
1089	Techniques for the detection and analysis of LLPS and MLOs. , 2023, , 205-231.		1
1090	A fiber-optical fluorescence sensor for in-line determination of cleanliness during CIP processes. Food and Bioproducts Processing, 2023, 137, 56-63.	1.8	1
1091	Ultrafast excited state relaxation of a model green fluorescent protein chromophore: Femtosecond fluorescence and transient absorption study. Journal of Molecular Structure, 2023, 1275, 134538.	1.8	2
1092	Fluorescent proteins for a brighter science. Biochemical and Biophysical Research Communications, 2022, 633, 29-32.	1.0	3

#	Article	IF	CITATIONS
1093	Fluorescent Proteins., 2022,, 445-455.		0
1094	Co-expression of different proteins in Escherichia coli using plasmids with identical origins of replication. Biochemical and Biophysical Research Communications, 2023, 641, 57-60.	1.0	2
1095	RNA splicing based on reporter genes system: Detection, imaging and applications. Coordination Chemistry Reviews, 2023, 477, 214929.	9.5	0
1096	Quantum-derived embedding schemes for local excitations. Chemical Modelling, 2022, , 24-60.	0.2	3
1097	Organelle-Selective Membrane Labeling through Phospholipase D-Mediated Transphosphatidylation. Jacs Au, 2022, 2, 2703-2713.	3 . 6	3
1098	Keto-Analogs of Arylidene-Imidazolones as Fluorogenic Dyes. Russian Journal of Bioorganic Chemistry, 2022, 48, 1367-1371.	0.3	1
1099	Single mRNA Imaging with Fluorogenic RNA Aptamers and Smallâ€molecule Fluorophores. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
1100	Single mRNA Imaging with Fluorogenic RNA Aptamers and Smallâ€molecule Fluorophores. Angewandte Chemie, 0, , .	1.6	3
1101	Choosing the Right Fluorescent Probe. Springer Series on Fluorescence, 2022, , .	0.8	0
1102	A Stand-Alone Microfluidic Chip for Long-Term Cell Culture. Micromachines, 2023, 14, 207.	1.4	0
1103	Infertility control of transgenic fluorescent zebrafish with targeted mutagenesis of the dnd1 gene by CRISPR/Cas9 genome editing. Frontiers in Genetics, 0, 14 , .	1.1	1
1104	An unusual disulfide-linked dimerization in the fluorescent protein rsCherryRev1.4. Acta Crystallographica Section F, Structural Biology Communications, 2023, 79, 38-44.	0.4	0
1105	Optogenetics-Inspired Fluorescent Synaptic Devices with Nonvolatility. ACS Nano, 2023, 17, 3696-3704.	7.3	18
1106	Phototoxicity and cell passage affect intracellular reactive oxygen species levels and sensitivity towards non-thermal plasma treatment in fluorescently-labeled cancer cells. Journal Physics D: Applied Physics, 2023, 56, 294001.	1.3	1
1107	Design, preparation and characterization of octopus-like self-releasing intracellular protein transporter LEB5 based on Escherichia coli heat-labile enterotoxin. International Journal of Biological Macromolecules, 2023, 237, 124172.	3. 6	0
1108	Bacterial lux-biosensors: Constructing, applications, and prospects. Biosensors and Bioelectronics: X, 2023, 13, 100323.	0.9	1
1109	Recent Development and Applications of Sensors for the Detection of Matrix Metalloproteinases. Advanced Materials Technologies, 2023, 8, .	3.0	3
1110	Sequential recognition capability of a novel flavin-dipicolyl analogue toward zinc and phosphate ion: A model capable of selective recognition of AMP over ADP/ATP. Dyes and Pigments, 2023, 212, 111148.	2.0	6

#	Article	IF	CITATIONS
1111	Alternative Strategy for Spectral Tuning of Flavin-Binding Fluorescent Proteins. Journal of Physical Chemistry B, 2023, 127, 1301-1311.	1.2	4
1112	Biomedical Photonics for Intraoperative Diagnostics: Review of Capabilities and Clinical Applications. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta,) Tj ETQq1 1 0.784	3 lo4 irgBT	/Overlock 1(
1113	HaloTagâ€Based Reporters for Fluorescence Imaging and Biosensing. ChemBioChem, 2023, 24, .	1.3	10
1114	Proton transfer reactions: From photochemistry to biochemistry and bioenergetics. BBA Advances, 2023, 3, 100085.	0.7	8
1116	Live-Cell SOFI Correlation with SMLM and AFM Imaging. ACS Bio & Med Chem Au, 2023, 3, 261-269.	1.7	1
1117	Crystal Structure of Bright Fluorescent Protein BrUSLEE with Subnanosecond Fluorescence Lifetime; Electric and Dynamic Properties. International Journal of Molecular Sciences, 2023, 24, 6403.	1.8	0
1118	Genetically encoded imaging tools for investigating cell dynamics at a glance. Journal of Cell Science, 2023, 136, .	1.2	3
1119	Fluorescent Platforms for Environmental Sensing. , 2023, , 378-405.		1
1120	Fluorescent Protein Production, Purification, and Coupling to Microspheres. Current Protocols, 2023, 3, .	1.3	0
1121	Development of Spectral Imaging Cytometry. Methods in Molecular Biology, 2023, , 3-22.	0.4	2
1122	Recent Advances in Enhancement of Raman Scattering Intensity for Biological Applications. , 2023, 1, 575-589.		0
1160	Jellyfish in Coastal Ecosystems: Advances in our Understanding of Population Drivers, Role in Biogeochemical Cycling, and Socio-Economic Impacts. , 2024, , 474-495.		1
1161	Single-Particle Tracking of Virus Entry in Live Cells. Sub-Cellular Biochemistry, 2023, , 153-168.	1.0	0
1165	An improved pathway for autonomous bioluminescence imaging in eukaryotes. Nature Methods, 2024, 21, 406-410.	9.0	1