Solar Energy Supply and Storage for the Legacy and Nor

Chemical Reviews 110, 6474-6502 DOI: 10.1021/cr100246c

Citation Report

#	Article	IF	CITATIONS
1	Photochemical energy conversion. , 0, , 112-190.		0
5	Basic ancillary ligands promote O–O bond formation in iridium-catalyzed water oxidation: A DFT study. Dalton Transactions, 2011, 40, 11241.	1.6	45
6	Cobalt–phosphate complexes catalyze the photoelectrochemical water oxidation of BiVO4 electrodes. Physical Chemistry Chemical Physics, 2011, 13, 21392.	1.3	164
7	Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition. Nanoscale, 2011, 3, 3482.	2.8	154
8	Reversible intercyclobutadiene haptotropism in cyclopentadienylcobalt linear [4]phenylene. Chemical Communications, 2011, 47, 9039.	2.2	8
9	Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10056-10061.	3.3	195
11	Bidirectional and Unidirectional PCET in a Molecular Model of a Cobalt-Based Oxygen-Evolving Catalyst. Journal of the American Chemical Society, 2011, 133, 5174-5177.	6.6	127
12	Photocatalytic hydrogen production. Chemical Communications, 2011, 47, 9268.	2.2	300
13	Anthropogenic Chemical Carbon Cycle for a Sustainable Future. Journal of the American Chemical Society, 2011, 133, 12881-12898.	6.6	1,159
14	Photocatalytic Hydrogen Evolution under Highly Basic Conditions by Using Ru Nanoparticles and 2-Phenyl-4-(1-naphthyl)quinolinium Ion. Journal of the American Chemical Society, 2011, 133, 16136-16145.	6.6	98
15	Towards an electricity-powered world. Energy and Environmental Science, 2011, 4, 3193.	15.6	397
16	Electrocatalytic Water Oxidation Beginning with the Cobalt Polyoxometalate [Co ₄ (H ₂ O) ₂ (PW ₉ O ₃₄) ₂] Identification of Heterogeneous CoO _{<i>x</i>} as the Dominant Catalyst. Journal of the American Chemical Society. 2011, 133, 14872-14875.)–6.6	>: ₃₉₄
17	Electrochemical evidence for catalytic water oxidation mediated by a high-valent cobalt complex. Chemical Communications, 2011, 47, 4249.	2.2	343
18	Stretchable, elastic materials and devices for solar energy conversion. Energy and Environmental Science, 2011, 4, 3314.	15.6	356
19	Water Oxidation by a Mononuclear Ruthenium Catalyst: Characterization of the Intermediates. Journal of the American Chemical Society, 2011, 133, 14649-14665.	6.6	180
20	Photo-assisted water oxidation with cobalt-based catalyst formed from thin-film cobalt metal on silicon photoanodes. Energy and Environmental Science, 2011, 4, 2058.	15.6	106
21	Solution and solid-state interactions in a supramolecular ruthenium photosensitizer–polyoxometalate aggregate. Chemical Communications, 2011, 47, 6852.	2.2	27
22	Chemical solutions for the closed-cycle storage of solar energy. Energy and Environmental Science, 2011, 4, 4449.	15.6	242

ATION RED

2

#	Article	IF	CITATIONS
23	Photosensitization and photocatalysis in bioinorganic, bio-organometallic and biomimetic systems. Advances in Inorganic Chemistry, 2011, , 235-289.	0.4	24
24	Molecular Cobalt Pentapyridine Catalysts for Generating Hydrogen from Water. Journal of the American Chemical Society, 2011, 133, 9212-9215.	6.6	397
25	Mechanistic Studies of O ₂ Reduction Effected by Group 9 Bimetallic Hydride Complexes. Journal of the American Chemical Society, 2011, 133, 17796-17806.	6.6	29
26	How to Make Hydrogen from the Sun: Cu2O and Fe2O3 Modified TiO2 Nanotubes for Photoelectrochemical Solar Cells. ECS Meeting Abstracts, 2011, , .	0.0	0
27	Enhancing the photoelectrochemical performance of hematite (α-Fe2O3) electrodes by cadmium incorporation. Applied Catalysis B: Environmental, 2011, 110, 207-215.	10.8	88
28	Polyoxometalates in the Design of Effective and Tunable Water Oxidation Catalysts. Israel Journal of Chemistry, 2011, 51, 238-246.	1.0	37
29	Core–shell MoO ₃ –MoS ₂ Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials. Nano Letters, 2011, 11, 4168-4175.	4.5	1,099
30	Chapter 16. Synthetic Photo-catalytic Proteins – a Model of Photosystem II. RSC Energy and Environment Series, 2011, , 448-463.	0.2	Ο
31	Lightâ€Driven Activation of the [H ₂ O(terpy)Mn ^{III} â€Ĥ⁄4â€{O ₂)â€Mn ^{IV} (terpy)OH _{2Unit in a Chromophore–Catalyst Complex. Chemistry - an Asian Journal, 2011, 6, 1335-1339.}	b>]. 7	21
32	Studies of a Series of [Ni(P ^R ₂ N ^{Ph} ₂ (CH ₃ CN)] ^{2- Complexes as Electrocatalysts for H₂ Production: Substituent Variation at the Phosphorus Atom of the P₂N₂ Ligand. Inorganic Chemistry, 2011, 50,}	- 1.9	141
33	Hydrogen Generation by Hangman Metalloporphyrins. Journal of the American Chemical Society, 2011, 133, 8775-8777.	6.6	255
34	Electocatalytic Water Oxidation by Cobalt(III) Hangman β-Octafluoro Corroles. Journal of the American Chemical Society, 2011, 133, 9178-9180.	6.6	488
35	Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy and Environmental Science, 2011, 4, 3878.	15.6	1,082
36	Catalytic mechanisms of hydrogen evolution with homogeneous and heterogeneous catalysts. Energy and Environmental Science, 2011, 4, 2754.	15.6	169
37	Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts. Science, 2011, 334, 645-648.	6.0	1,559
39	Splitting Water with Cobalt. Angewandte Chemie - International Edition, 2011, 50, 7238-7266.	7.2	1,231
40	Semiconductor nanostructure-based photoelectrochemical water splitting: A brief review. Chemical Physics Letters, 2011, 507, 209-215.	1.2	235
41	Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19644-19648.	3.3	103

#	Article	IF	CITATIONS
42	<i>Ab initio</i> modeling of sulphur doped TiO ₂ nanotubular photocatalyst for water-splitting hydrogen generation. IOP Conference Series: Materials Science and Engineering, 2012, 38, 012057.	0.3	17
43	Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15617-15621.	3.3	81
44	Perspectives for Photobiology in Molecular Solar Fuels. Australian Journal of Chemistry, 2012, 65, 643.	0.5	3
45	Preparation and Characterization of Catalysts for Clean Energy: A Challenge for X-rays and Electrons. Australian Journal of Chemistry, 2012, 65, 608.	0.5	12
46	Thermal Energy Storages Analysis for High Temperature in Air Solar Systems. , 2012, , .		1
47	LaCoO3 acting as an efficient and robust catalyst for photocatalytic water oxidation with persulfate. Physical Chemistry Chemical Physics, 2012, 14, 5753.	1.3	109
48	Catalytic activity of metal-based nanoparticles for photocatalytic water oxidation and reduction. Journal of Materials Chemistry, 2012, 22, 24284.	6.7	69
49	Transition Metal Decorated Porphyrin-like Porous Fullerene: Promising Materials for Molecular Hydrogen Adsorption. Journal of Physical Chemistry C, 2012, 116, 25184-25189.	1.5	68
50	Implementing molecular catalysts for hydrogen production in proton exchange membrane water electrolysers. Coordination Chemistry Reviews, 2012, 256, 2435-2444.	9.5	51
51	Elucidating the Domain Structure of the Cobalt Oxide Water Splitting Catalyst by X-ray Pair Distribution Function Analysis. Journal of the American Chemical Society, 2012, 134, 11096-11099.	6.6	139
52	Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chemical Science, 2012, 3, 2515.	3.7	861
53	Mixed-valence [FeIFeII] hydrogenase active site model complexes stabilized by a bidentate carborane bis-phosphine ligand. Dalton Transactions, 2012, 41, 12468.	1.6	40
55	Molybdenum Boride and Carbide Catalyze Hydrogen Evolution in both Acidic and Basic Solutions. Angewandte Chemie - International Edition, 2012, 51, 12703-12706.	7.2	1,094
56	Electron Transfer in Dye‧ensitised Semiconductors Modified with Molecular Cobalt Catalysts: Photoreduction of Aqueous Protons. Chemistry - A European Journal, 2012, 18, 15464-15475.	1.7	112
57	Simple Nickelâ€Based Catalyst Systems Combined With Graphitic Carbon Nitride for Stable Photocatalytic Hydrogen Production in Water. ChemSusChem, 2012, 5, 2133-2138.	3.6	126
58	Options for Change in the Australian Energy Profile. Ambio, 2012, 41, 841-850.	2.8	5
59	Wavelength dependent photocatalytic H2 generation using iridium–Pt/Pd complexes. Dalton Transactions, 2012, 41, 12678.	1.6	26
60	Colloidal metal oxide particles loaded with synthetic catalysts for solar H2production. Faraday Discussions, 2012, 155, 191-205.	1.6	24

#	Article	IF	CITATIONS
61	Stability-enhanced hydrogen-evolving dirhodium photocatalysts through ligand modification. Chemical Communications, 2012, 48, 9474.	2.2	22
62	Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy and Environmental Science, 2012, 5, 7626.	15.6	451
63	Energy storage characteristics of a new rechargeable solid oxide iron–air battery. RSC Advances, 2012, 2, 10163.	1.7	60
64	Biphasic water splitting by osmocene. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11558-11563.	3.3	41
65	Quantum Chemical Benchmarking, Validation, and Prediction of Acidity Constants for Substituted Pyridinium Ions and Pyridinyl Radicals. Journal of Chemical Theory and Computation, 2012, 8, 3187-3206.	2.3	81
66	Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution. Chemistry of Materials, 2012, 24, 3659-3666.	3.2	627
67	Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy and Environmental Science, 2012, 5, 9217.	15.6	501
68	Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts. Energy and Environmental Science, 2012, 5, 6763.	15.6	474
69	Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity. ACS Catalysis, 2012, 2, 1916-1923.	5.5	1,007
70	The role of the bridging ligand in photocatalytic supramolecular assemblies for the reduction of protons and carbon dioxide. Coordination Chemistry Reviews, 2012, 256, 1682-1705.	9.5	140
72	Selective Reduction of Aqueous Protons to Hydrogen with a Synthetic Cobaloxime Catalyst in the Presence of Atmospheric Oxygen. Angewandte Chemie - International Edition, 2012, 51, 9381-9384.	7.2	123
73	Visibleâ€Lightâ€Driven Generation of Highâ€Valent Oxoâ€Bridged Dinuclear and Tetranuclear Manganese Terpyridine Entities Linked to Photoactive Ruthenium Units of Relevance to Photosystem II. European Journal of Inorganic Chemistry, 2012, 2012, 5485-5499.	1.0	6
74	Relationship between dye–iodine binding and cell voltage in dyeâ€sensitized solar cells: A quantumâ€mechanical look. Journal of Computational Chemistry, 2012, 33, 2492-2497.	1.5	16
75	Polyoxometalate water oxidation catalysts and the production of green fuel. Chemical Society Reviews, 2012, 41, 7572.	18.7	678
76	Can We Progress from Solipsistic Science to Frugal Innovation?. Daedalus, 2012, 141, 45-52.	0.9	37
78	IR and X-ray time-resolved simultaneous experiments:Âan opportunity to investigate the dynamics of complex systems and non-equilibrium phenomena using third-generation synchrotron radiation sources. Journal of Synchrotron Radiation, 2012, 19, 892-904.	1.0	18
79	Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution. Journal of the American Chemical Society, 2012, 134, 17253-17261.	6.6	1,403
80	Synthesis and Activities of Rutile IrO ₂ and RuO ₂ Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. Journal of Physical Chemistry Letters, 2012, 3, 399-404.	2.1	2,912

#	Article	IF	CITATIONS
81	Detailed Electrochemical Studies of the Tetraruthenium Polyoxometalate Water Oxidation Catalyst in Acidic Media: Identification of an Extended Oxidation Series using Fourier Transformed Alternating Current Voltammetry. Inorganic Chemistry, 2012, 51, 11521-11532.	1.9	33
82	Molecular Chemistry for Solar Fuels: From Natural to Artificial Photosynthesis. Australian Journal of Chemistry, 2012, 65, 564.	0.5	12
83	Oxygen Reduction Reactions of Monometallic Rhodium Hydride Complexes. Inorganic Chemistry, 2012, 51, 7192-7201.	1.9	22
84	Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy and Environmental Science, 2012, 5, 6136.	15.6	675
85	Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy and Environmental Science, 2012, 5, 6732.	15.6	400
86	Vertically Oriented Iron Oxide Films Produced by Hydrothermal Process: Effect of Thermal Treatment on the Physical Chemical Properties. ACS Applied Materials & amp; Interfaces, 2012, 4, 5515-5523.	4.0	51
87	Water Oxidation at Hematite Photoelectrodes: The Role of Surface States. Journal of the American Chemical Society, 2012, 134, 4294-4302.	6.6	895
88	The Hydrogen Catalyst Cobaloxime: A Multifrequency EPR and DFT Study of Cobaloxime's Electronic Structure. Journal of Physical Chemistry B, 2012, 116, 2943-2957.	1.2	48
89	The Nature of Lithium Battery Materials under Oxygen Evolution Reaction Conditions. Journal of the American Chemical Society, 2012, 134, 16959-16962.	6.6	287
90	Computational and Experimental Study of the Mechanism of Hydrogen Generation from Water by a Molecular Molybdenum-Oxo Electrocatalyst. Journal of the American Chemical Society, 2012, 134, 5233-5242.	6.6	68
91	Nucleation, Growth, and Repair of a Cobalt-Based Oxygen Evolving Catalyst. Journal of the American Chemical Society, 2012, 134, 6326-6336.	6.6	216
92	Structure–Activity Correlations in a Nickel–Borate Oxygen Evolution Catalyst. Journal of the American Chemical Society, 2012, 134, 6801-6809.	6.6	612
93	Halogen Oxidation and Halogen Photoelimination Chemistry of a Platinum–Rhodium Heterobimetallic Core. Inorganic Chemistry, 2012, 51, 5152-5163.	1.9	31
94	Controlled Sn-Doping in TiO ₂ Nanowire Photoanodes with Enhanced Photoelectrochemical Conversion. Nano Letters, 2012, 12, 1503-1508.	4.5	390
95	A cobalt(ii) quaterpyridine complex as a visible light-driven catalyst for both water oxidation and reduction. Energy and Environmental Science, 2012, 5, 7903.	15.6	186
96	Integrated 3D-printed reactionware for chemical synthesis and analysis. Nature Chemistry, 2012, 4, 349-354.	6.6	541
97	Solar Fuels: Vision and Concepts. Ambio, 2012, 41, 156-162.	2.8	9
98	Electrochemical generation of hydrogen from acetic acid using a molecular molybdenum–oxo catalyst. Energy and Environmental Science, 2012, 5, 7762.	15.6	79

#	Article	IF	CITATIONS
99	Proton-coupled electron transfer kinetics for the hydrogen evolution reaction of hangman porphyrins. Energy and Environmental Science, 2012, 5, 7737.	15.6	151
100	Using combinations of oxidants and bases as PCET reactants: thermochemical and practical considerations. Energy and Environmental Science, 2012, 5, 7771.	15.6	97
101	The role of proton coupled electron transfer in water oxidation. Energy and Environmental Science, 2012, 5, 7704.	15.6	198
102	Molecular solar thermal (MOST) energy storage and release system. Energy and Environmental Science, 2012, 5, 8534.	15.6	171
103	Biomimetic molecular water splitting catalysts for hydrogen generation. International Journal of Hydrogen Energy, 2012, 37, 8787-8799.	3.8	33
104	Graphyne and Graphdiyne: Promising Materials for Nanoelectronics and Energy Storage Applications. Journal of Physical Chemistry C, 2012, 116, 5951-5956.	1.5	430
105	CO ₂ Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu ₂ O Films. Journal of the American Chemical Society, 2012, 134, 7231-7234.	6.6	1,721
106	Artificial photosynthesis for solar fuels. Faraday Discussions, 2012, 155, 357-376.	1.6	149
107	Splitting water with rust: hematite photoelectrochemistry. Dalton Transactions, 2012, 41, 7830.	1.6	166
108	Self-regenerated solar-driven photocatalytic water-splitting by urea derived graphitic carbon nitride with platinum nanoparticles. Chemical Communications, 2012, 48, 8826.	2.2	244
110	Xâ€ray Transient Absorption and Picosecond IR Spectroscopy of Fulvalene(tetracarbonyl)diruthenium on Photoexcitation. Angewandte Chemie - International Edition, 2012, 51, 7692-7696.	7.2	47
111	On the Configuration of Supercapacitors for Maximizing Electrochemical Performance. ChemSusChem, 2012, 5, 818-841.	3.6	429
112	Water Oxidation by Electrodeposited Cobalt Oxides—Role of Anions and Redoxâ€Inert Cations in Structure and Function of the Amorphous Catalyst. ChemSusChem, 2012, 5, 542-549.	3.6	149
113	Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory. Physical Chemistry Chemical Physics, 2012, 14, 49-70.	1.3	198
114	Structural and spectroscopic characterization of tetranuclear iron complexes containing a bridge. Journal of Coordination Chemistry, 2012, 65, 2713-2723.	0.8	12
115	Overview: Capturing the Sun for Energy Production. Ambio, 2012, 41, 103-107.	2.8	11
116	Synthesis and photophysics of a novel photocatalyst for hydrogen production based on a tetrapyridoacridine bridging ligand. Chemical Physics, 2012, 393, 65-73.	0.9	27
117	A Nation-Sized Battery?. Energy Policy, 2012, 45, 263-267.	4.2	81

#	Article	IF	CITATIONS
118	Highly oriented hematite nanorods arrays for photoelectrochemical water splitting. Journal of Power Sources, 2012, 205, 525-529.	4.0	89
119	Computational and structural studies on the complexation of cobalt(II) acetate by water and pyridine. Journal of Molecular Structure, 2012, 1007, 45-51.	1.8	3
120	Addressing the Intermittency Challenge: Massive Energy Storage in a Sustainable Future [Scanning the Issue]. Proceedings of the IEEE, 2012, 100, 317-321.	16.4	40
121	Reduction of graphene oxide by an in-situ photoelectrochemical method in a dye-sensitized solar cell assembly. Nanoscale Research Letters, 2012, 7, 101.	3.1	56
122	Synthesis and Characterization of New Iridium Photosensitizers for Catalytic Hydrogen Generation from Water. Chemistry - A European Journal, 2012, 18, 3220-3225.	1.7	90
123	Shape―and Sizeâ€Controlled Nanomaterials for Artificial Photosynthesis. ChemSusChem, 2013, 6, 1834-1847.	3.6	51
124	An Investigation of Thin-Film Ni–Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen. Journal of the American Chemical Society, 2013, 135, 12329-12337.	6.6	2,132
125	Strategies for Stabilization of Electrodeposited Metal Particles in Electropolymerized Films for H2O Oxidation and H+ Reduction. ACS Applied Materials & amp; Interfaces, 2013, 5, 7050-7057.	4.0	10
126	Ordered mesoporous Co3O4 spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts. Journal of Materials Chemistry A, 2013, 1, 9992.	5.2	275
127	An ultraviolet responsive hybrid solar cell based on titania/poly(3-hexylthiophene). Scientific Reports, 2013, 3, 1283.	1.6	59
128	Growth and Activation of an Amorphous Molybdenum Sulfide Hydrogen Evolving Catalyst. ACS Catalysis, 2013, 3, 2002-2011.	5.5	248
129	Visible light-driven water oxidation catalyzed by mononuclear ruthenium complexes. Journal of Catalysis, 2013, 306, 129-132.	3.1	58
130	Production of H2 at fast rates using a nickel electrocatalyst in water–acetonitrile solutions. Chemical Communications, 2013, 49, 7767.	2.2	81
131	A Cobalt-Based Catalyst for the Hydrogenation of CO ₂ under Ambient Conditions. Journal of the American Chemical Society, 2013, 135, 11533-11536.	6.6	343
132	Water Oxidation Catalysis: Electrocatalytic Response to Metal Stoichiometry in Amorphous Metal Oxide Films Containing Iron, Cobalt, and Nickel. Journal of the American Chemical Society, 2013, 135, 11580-11586.	6.6	817
133	Role of Advanced Analytical Techniques in the Design and Characterization of Improved Catalysts for Water Oxidation. , 2013, , 305-339.		3
134	Current Development of Photocatalysts for Solar Energy Conversion. , 2013, , 279-304.		2
135	Pacman and Hangman Metal Tetraazamacrocycles. ChemSusChem, 2013, 6, 1541-1544.	3.6	15

ARTICLE

CITATIONS

IF

136	Applied Photochemistry. , 2013, , .		37
137	Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water. Journal of the American Chemical Society, 2013, 135, 13521-13530.	6.6	1,093
138	Proton-Coupled Electron Transfers: pH-Dependent Driving Forces? Fundamentals and Artifacts. Journal of the American Chemical Society, 2013, 135, 14359-14366.	6.6	33
139	Synthesis and Electrochemical Studies of Cobalt(III) Monohydride Complexes Containing Pendant Amines. Inorganic Chemistry, 2013, 52, 9975-9988.	1.9	62
140	A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cell. Energy and Environmental Science, 2013, 6, 2706.	15.6	83
141	A Bio-Inspired, Small Molecule Electron-Coupled-Proton Buffer for Decoupling the Half-Reactions of Electrolytic Water Splitting. Journal of the American Chemical Society, 2013, 135, 13656-13659.	6.6	119
142	What Factors Control O ₂ Binding and Release Thermodynamics in Mononuclear Ruthenium Water Oxidation Catalysts? A Theoretical Exploration. Inorganic Chemistry, 2013, 52, 5088-5096.	1.9	18
143	Cytochrome c-coupled photosystem I and photosystem II (PSI/PSII) photo-bioelectrochemical cells. Energy and Environmental Science, 2013, 6, 2950.	15.6	68
144	First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy and Environmental Science, 2013, 6, 3553.	15.6	946
145	A Nobleâ€Metalâ€Free System for Photocatalytic Hydrogen Production from Water. Chemistry - A European Journal, 2013, 19, 15972-15978.	1.7	155
146	Electro- and Photochemical Water Oxidation on Ligand-free Co ₃ O ₄ Nanoparticles with Tunable Sizes. ACS Catalysis, 2013, 3, 383-388.	5.5	167
147	A computational study of the insertion of Li, Na, and Mg atoms into Si(111) nanosheets. Nano Energy, 2013, 2, 1149-1157.	8.2	76
148	Optically Transparent Water Oxidation Catalysts Based on Copper Nanowires. Angewandte Chemie - International Edition, 2013, 52, 13708-13711.	7.2	67
149	Structural properties of trans hydrido–hydroxo M(H)(OH)(NH2CMe2CMe2NH2)(PPh3)2 (M = Ru, Os) complexes and their proton exchange behaviour with water in solution. Dalton Transactions, 2013, 42, 10214.	1.6	14
150	Nanoenergy. , 2013, , .		5
151	CO ₂ Capture by a Rhenium(I) Complex with the Aid of Triethanolamine. Journal of the American Chemical Society, 2013, 135, 16825-16828.	6.6	208
152	In situ fabrication of porous MoS2 thin-films as high-performance catalysts for electrochemical hydrogen evolution. Chemical Communications, 2013, 49, 7516.	2.2	120
153	Designing artificial photosynthetic devices using hybrid organic–inorganic modules based on polyoxometalates. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20110411.	1.6	28

#	Article	IF	CITATIONS
154	Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energy Conversion and Management, 2013, 76, 194-214.	4.4	291
155	Solar Fuels: Photoelectrosynthesis of CO from CO ₂ at pâ€Type Si using Fe Porphyrin Electrocatalysts. Chemistry - A European Journal, 2013, 19, 13522-13527.	1.7	41
156	A stable dual-functional system of visible-light-driven Ni(ii) reduction to a nickel nanoparticle catalyst and robust in situ hydrogen production. Chemical Communications, 2013, 49, 11251.	2.2	48
157	Switching from Ru to Fe: picosecond IR spectroscopic investigation of the potential of the (fulvalene)tetracarbonyldiiron frame for molecular solar-thermal storage. Physical Chemistry Chemical Physics, 2013, 15, 7466.	1.3	14
158	Decreasing operating potential for water electrolysis to hydrogen via local confinement of iron-based soft coordination suprapolymers. Physical Chemistry Chemical Physics, 2013, 15, 15912.	1.3	1
159	Photoinduced Charge Transfer in Porphyrin–Cobaloxime and Corrole–Cobaloxime Hybrids. Journal of Physical Chemistry C, 2013, 117, 1647-1655.	1.5	62
160	Harnessing Infrared Photons for Photoelectrochemical Hydrogen Generation. A PbS Quantum Dot Based "Quasi-Artificial Leaf― Journal of Physical Chemistry Letters, 2013, 4, 141-146.	2.1	101
161	Highly photoactive Ti-doped α-Fe ₂ O ₃ thin film electrodes: resurrection of the dead layer. Energy and Environmental Science, 2013, 6, 634-642.	15.6	208
162	Homogeneous water oxidation catalysts containing a single metal site. Chemical Communications, 2013, 49, 218-227.	2.2	184
163	The Influence of the Cation on the Oxygen Reduction and Evolution Activities of Oxide Surfaces in Alkaline Electrolyte. Electrocatalysis, 2013, 4, 49-55.	1.5	113
164	Mechanistic Studies of the Oxygen Evolution Reaction Mediated by a Nickel–Borate Thin Film Electrocatalyst. Journal of the American Chemical Society, 2013, 135, 3662-3674.	6.6	430
165	Cu(ii)/Cu(0) electrocatalyzed CO2 and H2O splitting. Energy and Environmental Science, 2013, 6, 813.	15.6	76
166	An iron complex with pendent amines as a molecular electrocatalyst for oxidation of hydrogen. Nature Chemistry, 2013, 5, 228-233.	6.6	218
167	Promoting the Activity of Catalysts for the Oxidation of Water with Bridged Dinuclear Ruthenium Complexes. Angewandte Chemie - International Edition, 2013, 52, 3398-3401.	7.2	110
168	Photoâ€active Cobalt Cubane Model of an Oxygenâ€Evolving Catalyst. ChemSusChem, 2013, 6, 65-69.	3.6	31
169	New Insights on Photocatalytic H ₂ Liberation from Water Using Transition-Metal Oxides: Lessons from Cluster Models of Molybdenum and Tungsten Oxides. Journal of the American Chemical Society, 2013, 135, 17039-17051.	6.6	41
170	CO2 reduction via aluminum complexes of ammonia boranes. Dalton Transactions, 2013, 42, 5447.	1.6	84
171	Photoactivation of metal–halogen bonds in a Ni(ii) NHC complex. Dalton Transactions, 2013, 42, 2355.	1.6	19

#	Article	IF	CITATIONS
172	High photoelectrocatalytic performance of a MoS2–SiC hybrid structure for hydrogen evolution reaction. Journal of Materials Chemistry A, 2013, 1, 4657.	5.2	58
173	Cobalt Corrole Catalyst for Efficient Hydrogen Evolution Reaction from H ₂ O under Ambient Conditions: Reactivity, Spectroscopy, and Density Functional Theory Calculations. Inorganic Chemistry, 2013, 52, 3381-3387.	1.9	167
174	Electrochemical Hydrogen Production in Acidic Water by an Azadithiolate Bridged Synthetic Hydrogenese Mimic: Role of Aqueous Solvation in Lowering Overpotential. ACS Catalysis, 2013, 3, 429-436.	5.5	66
175	Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions. Chemical Society Reviews, 2013, 42, 2388-2400.	18.7	586
176	Modeling integrated photovoltaic–electrochemical devices using steady-state equivalent circuits. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, .	3.3	93
177	Are DFT Methods Accurate in Mononuclear Ruthenium-Catalyzed Water Oxidation? An ab Initio Assessment. Journal of Chemical Theory and Computation, 2013, 9, 1872-1879.	2.3	43
178	Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis. Science, 2013, 340, 60-63.	6.0	1,321
179	Nonprecious-Metal-Assisted Photochemical Hydrogen Production from <i>ortho</i> -Phenylenediamine. Journal of the American Chemical Society, 2013, 135, 8646-8654.	6.6	52
180	Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nature Chemistry, 2013, 5, 403-409.	6.6	453
181	Mechanistic Details for Cobalt Catalyzed Photochemical Hydrogen Production in Aqueous Solution: Efficiencies of the Photochemical and Non-Photochemical Steps. Inorganic Chemistry, 2013, 52, 4853-4859.	1.9	82
182	Efficiency Limit of Molecular Solar Thermal Energy Collecting Devices. ACS Sustainable Chemistry and Engineering, 2013, 1, 585-590.	3.2	90
183	Density Functional Study of the First Wetting Layer on the GaN (0001) Surface. Journal of Physical Chemistry C, 2013, 117, 8774-8783.	1.5	28
184	Evidence for Iron Nanoparticles Catalyzing the Rapid Dehydrogenation of Ammonia-Borane. ACS Catalysis, 2013, 3, 1092-1102.	5.5	57
185	Biomass-derived electrocatalytic composites for hydrogen evolution. Energy and Environmental Science, 2013, 6, 1818.	15.6	343
186	Nanomaterials for Solar Energy Conversion: Dye-Sensitized Solar Cells Based on Ruthenium (II) Tris-Heteroleptic Compounds or Natural Dyes. , 2013, , 49-80.		4
187	Facile Routes to Produce Hematite Film for Hydrogen Generation from Photoelectro-Chemical Water Splitting. , 2013, , 81-99.		6
188	Triple Junction Polymer Solar Cells for Photoelectrochemical Water Splitting. Advanced Materials, 2013, 25, 2932-2936.	11.1	67
189	Chemical and Visibleâ€Lightâ€Driven Water Oxidation by Iron Complexes at pHâ€7–9: Evidence for Dualâ€Ac Intermediates in Ironâ€Catalyzed Water Oxidation. Angewandte Chemie - International Edition, 2013, 52, 1789-1791.	ctive 7.2	171

#	Article	IF	CITATIONS
190	Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes. Physical Chemistry Chemical Physics, 2013, 15, 6499.	1.3	156
191	Water Oxidation Catalysis Beginning with 2.5 μM [Co ₄ (H ₂ O) ₂ (PW ₉ O ₃₄) ₂] Investigation of the True Electrochemically Driven Catalyst at ≥600 mV Overpotential at a Glassy Carbon Electrode. ACS Catalysis. 2013. 3. 1209-1219.)– <td>>:₁₂₄</td>	>: ₁₂₄
192	Highly active screen-printed electrocatalysts for water oxidation based on Î ² -manganese oxide. Energy and Environmental Science, 2013, 6, 2222.	15.6	151
193	Electronic Effects on Singleâ€Site Iron Catalysts for Water Oxidation. Chemistry - A European Journal, 2013, 19, 8042-8047.	1.7	118
194	Intermediate-Range Structure of Self-Assembled Cobalt-Based Oxygen-Evolving Catalyst. Journal of the American Chemical Society, 2013, 135, 6403-6406.	6.6	151
195	Solar Energy Conversion. , 2013, , 267-304.		2
196	Photoinduced Biphasic Hydrogen Evolution: Decamethylosmocene as a Lightâ€Driven Electron Donor. ChemPhysChem, 2013, 14, 2308-2316.	1.0	34
197	Parameters affecting electron transfer dynamics from semiconductors to molecular catalysts for the photochemical reduction of protons. Energy and Environmental Science, 2013, 6, 3291.	15.6	108
198	Remarkable Enhancement of Photocatalytic Hydrogen Evolution Efficiency Utilizing An Internal Cavity of Supramolecular Porphyrin Hexagonal Nanocylinders Under Visible-Light Irradiation. Journal of Physical Chemistry C, 2013, 117, 4441-4449.	1.5	41
199	Nanostructural dependence of hydrogen production in silicon photocathodes. Journal of Materials Chemistry A, 2013, 1, 5414.	5.2	55
200	Porphyrin-Based Supramolecular Nanoarchitectures for Solar Energy Conversion. Journal of Physical Chemistry Letters, 2013, 4, 1771-1780.	2.1	101
201	Interfaces between water splitting catalysts and buried silicon junctions. Energy and Environmental Science, 2013, 6, 532-538.	15.6	58
202	Exceptional Dendrimerâ€Based Mimics of Diiron Hydrogenase for the Photochemical Production of Hydrogen. Angewandte Chemie - International Edition, 2013, 52, 5631-5635.	7.2	93
203	Stabilized CdSe-CoPi Composite Photoanode for Light-Assisted Water Oxidation by Transformation of a CdSe/Cobalt Metal Thin Film. ACS Applied Materials & amp; Interfaces, 2013, 5, 2364-2367.	4.0	20
204	An Optocatalytic Model for Semiconductor–Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts. Journal of Physical Chemistry Letters, 2013, 4, 931-935.	2.1	130
205	Proton–Electron Transport and Transfer in Electrocatalytic Films. Application to a Cobalt-Based O2-Evolution Catalyst. Journal of the American Chemical Society, 2013, 135, 10492-10502.	6.6	151
206	3d Element Complexes of Pentadentate Bipyridine-Pyridine-Based Ligand Scaffolds: Structures and Photocatalytic Activities. Inorganic Chemistry, 2013, 52, 6055-6061.	1.9	85
207	Dual functions of YF3:Eu3+ for improving photovoltaic performance of dye-sensitized solar cells. Scientific Reports, 2013, 3, 2058.	1.6	80

#	ARTICLE	IF	CITATIONS
208	Integration of Photoswitchable Proteins, Photosynthetic Reaction Centers and Semiconductor/Biomolecule Hybrids with Electrode Supports for Optobioelectronic Applications. Advanced Materials, 2013, 25, 349-377.	11.1	124
209	Photocatalytic generation of hydrogen from water using a cobalt pentapyridine complex in combination with molecular and semiconductor nanowire photosensitizers. Chemical Science, 2013, 4, 118-124.	3.7	179
210	Electrocatalytic Oxidation of Formate with Nickel Diphosphine Dipeptide Complexes: Effect of Ligands Modified with Amino Acids. European Journal of Inorganic Chemistry, 2013, 2013, 5366-5371.	1.0	16
212	Water Reduction Systems Associated with Homoleptic Cyclometalated Iridium Complexes of Various 2â€Phenylpyridines. ChemSusChem, 2013, 6, 1357-1365.	3.6	28
213	Introduction to Production of Valuable Compounds from Biomass and Waste Valorization Using Nanomaterials. , 2013, , 13-18.		2
217	Enhanced photocatalytic hydrogen evolution by combining water soluble graphene with cobalt salts. Beilstein Journal of Nanotechnology, 2014, 5, 1167-1174.	1.5	12
218	Photochemical Route for the Preparation of Complex Amorphous Water Oxidation Catalyst. ECS Transactions, 2014, 58, 67-76.	0.3	1
220	A mononuclear copper electrocatalyst for both water reduction and oxidation. RSC Advances, 2014, 4, 53674-53680.	1.7	75
224	Efficient photochemical production of hydrogen in aqueous solution by simply incorporating a water-insoluble hydrogenase mimic into a hydrogel. Journal of Materials Chemistry A, 2014, 2, 20500-20505.	5.2	15
225	Efficient Electricity Generation and Degradation of Organic Pollutants in Wastewater Using Ag-BiOI Photoactivated Fuel Cell. ACS Symposium Series, 2014, , 149-164.	0.5	0
226	How to Chemically Tailor Metal-Porphyrin-Like Active Sites on Carbon Nanotubes and Graphene for Minimal Overpotential in the Electrochemical Oxygen Evolution and Oxygen Reduction Reactions. Journal of Physical Chemistry C, 2014, 118, 29482-29491.	1.5	36
227	Direct Observation of Key Catalytic Intermediates in a Photoinduced Proton Reduction Cycle with a Diiron Carbonyl Complex. Journal of the American Chemical Society, 2014, 136, 17366-17369.	6.6	49
229	Direct growth of porous crystalline NiCo ₂ O ₄ nanowire arrays on a conductive electrode for high-performance electrocatalytic water oxidation. Journal of Materials Chemistry A, 2014, 2, 20823-20831.	5.2	111
230	Facile and simple fabrication of an efficient nanoporous WO3 photoanode for visible-light-driven water splitting. International Journal of Hydrogen Energy, 2014, 39, 20736-20743.	3.8	30
231	H ₂ Mapping on Pt-Loaded TiO ₂ Nanotube Gradient Arrays. Langmuir, 2014, 30, 15356-15363.	1.6	22
232	Water Oxidation Catalysis: Survey of Amorphous Binary Metal Oxide Films Containing Lanthanum and Late 3d Transition Metals. European Journal of Inorganic Chemistry, 2014, 2014, 660-664.	1.0	17
233	Synthesis of augmented biofuel processes using solar energy. AICHE Journal, 2014, 60, 2533-2545.	1.8	12
234	Chinese Puzzle Molecule: A 15â€Hydride, 28â€Copper Atom Nanoball. Angewandte Chemie - International Edition, 2014, 53, 7214-7218.	7.2	127

#	Article	IF	CITATIONS
235	Formation of a Nanoparticulate Birnessiteâ€Like Phase in Purported Molecular Water Oxidation Catalyst Systems. ChemCatChem, 2014, 6, 2028-2038.	1.8	29
236	Effects of Inorganic Acid Modification on Photocatalytic Performance of TiO ₂ and Its Activityâ€Enhanced Mechanism Related to Adsorbed O ₂ . ChemPlusChem, 2014, 79, 318-324.	1.3	13
237	Synthesis of CaMn ₂ O ₄ -related electrocatalyst for oxygen evolution electrode of water-splitting. Materials Research Society Symposia Proceedings, 2014, 1640, 1.	0.1	1
238	Titania Nanotubes by Electrochemical Anodization for Solar Energy Conversion. Journal of the Electrochemical Society, 2014, 161, D3066-D3077.	1.3	31
239	Ultrathin Carbon Nanotubes for Efficient Energy Storage: A First-Principles Study. Chinese Physics Letters, 2014, 31, 026801.	1.3	1
240	Synthesis, characterization and electrochemistry of phenyl-functionalized diiron propanedithiolate complexes. Polyhedron, 2014, 67, 416-421.	1.0	48
241	Realizing high visible-light-induced carriers mobility in TiO2-based photoanodes. Journal of Power Sources, 2014, 251, 195-201.	4.0	3
242	Precise oxygen evolution catalysts: Status and opportunities. Scripta Materialia, 2014, 74, 25-32.	2.6	165
243	Photocatalytic hydrogen production from a noble metal free system based on a water soluble porphyrin derivative and a cobaloxime catalyst. Chemical Communications, 2014, 50, 521-523.	2.2	88
244	Mechanistic Approaches to Molecular Catalysts for Water Oxidation. European Journal of Inorganic Chemistry, 2014, 2014, 607-618.	1.0	43
245	Homogeneous versus Heterogeneous Catalysts in Water Oxidation. European Journal of Inorganic Chemistry, 2014, 2014, 645-659.	1.0	119
246	Efficient Chemical and Visibleâ€Lightâ€Driven Water Oxidation using Nickel Complexes and Salts as Precatalysts. ChemSusChem, 2014, 7, 127-134.	3.6	70
247	Cobaltâ€Embedded Nitrogenâ€Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values. Angewandte Chemie - International Edition, 2014, 53, 4372-4376.	7.2	857
248	Catalysis at the boundaries. Nature, 2014, 508, 460-461.	13.7	11
249	Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2â^' clusters. Nature Chemistry, 2014, 6, 248-253.	6.6	730
250	25th Anniversary Article: Organic Photovoltaic Modules and Biopolymer Supercapacitors for Supply of Renewable Electricity: A Perspective from Africa. Advanced Materials, 2014, 26, 830-848.	11.1	43
251	lonic liquid-based green processes for energy production. Chemical Society Reviews, 2014, 43, 7838-7869.	18.7	399
252	Two Co ^{II} Metal–Organic Frameworks Based on a Multicarboxylate Ligand as Electrocatalysts for Water Splitting. ChemPlusChem, 2014, 79, 266-277.	1.3	35 _

ARTICLE IF CITATIONS Do you hear what I see?. Nature, 2014, 508, 461-462. 13.7 5 253 Hydrogen evolution by a metal-free electrocatalyst. Nature Communications, 2014, 5, 3783. 254 5.8 1,851 The stabilization effect of surface capping on photocatalytic activity and recyclable stability of 255 1.6 21 Ag3PO4. Catalysis Communications, 2014, 46, 138-141. Ultrahigh Hydrogen Evolution Performance of Underâ€Water "Superaerophobic―MoS₂ 11.1 Nanostructured Electrodes. Advanced Materials, 2014, 26, 2683-2687. Synergistic Catalytic Effect of MoS₂ Nanoparticles Supported on Gold Nanoparticle Films 257 1.8 46 for a Highly Efficient Oxygen Reduction Reaction. ChemCatChem, 2014, 6, 1877-1881. Development of Molecular Electrocatalysts for Energy Storage. Inorganic Chemistry, 2014, 53, 3935-3960. 371 A super-efficient cobalt catalyst for electrochemical hydrogen production from neutral water with 259 15.6 121 80 mV overpotential. Energy and Environmental Science, 2014, 7, 329-334. Production of hydrogen by electrocatalysis: making the H \hat{a} \in "H bond by combining protons and hydrides. 260 244 Chemical Communications, 2014, 50, 3125-3143. Facile Access via Green Procedures to a Material with the Benzodifuran Moiety for Organic 261 3.2 39 Photovoltaics. ACS Sustainable Chemistry and Engineering, 2014, 2, 1043-1048. Synthesis of MoS2-carbon composites with different morphologies and their application in hydrogen 3.8 evolution reaction. International Journal of Hydrogen Energy, 2014, 39, 9638-9650. Functionalized porphyrin derivatives for solar energy conversion. Polyhedron, 2014, 82, 19-32. 263 1.0 45 Water Oxidation Chemistry of a Synthetic Dinuclear Ruthenium Complex Containing Redox-Active 264 38 Quinone Ligands. Inorganić Chemistry, 2014, 53, 3973-3984. Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst. Journal of 265 6.6 1,202 the American Chemical Society, 2014, 136, 7077-7084. Hydrogen Evolution from Neutral Water under Aerobic Conditions Catalyzed by Cobalt 6.6 239 Microperoxidase-11. Journal of the American Chemical Society, 2014, 136, 4-7 Diaryl-substituted norbornadienes with red-shifted absorption for molecular solar thermal energy 267 2.2 96 storage. Chemical Communications, 2014, 50, 5330-5332. Structural, electronic and acid/base properties of [Ru(tpy)(tpyOH)]2+ and [Ru(tpyOH)2]2+ (tpy=2,2 $\hat{a}\in^2$:6 $\hat{a}\in^2$,2 $\hat{a}\in^3$ -terpyridine, tpyOH=4 $\hat{a}\in^2$ -hydroxy-2,2 $\hat{a}\in^2$:6 $\hat{a}\in^2$,2 $\hat{a}\in^3$ -terpyridine). Polyhedron, 2014, 67, 32 \hat{g} -3/37. 269 Determining the Overpotential for a Molecular Electrocatalyst. ACS Catalysis, 2014, 4, 630-633. 5.5 285 Water Oxidation Catalyzed by Mononuclear Ruthenium Complexes with a 270 2,2 $\hat{\epsilon}^2$ -Bipyridine-6,6 $\hat{\epsilon}^2$ -dicarboxylate (bda) Ligand: How Ligand Environment Influences the Catalytic Behavior. Inorganic Chemistry, 2014, 53, 1307-1319.

#	Article	IF	CITATIONS
271	Tantalum and aluminum co-doped iron oxide as a robust photocatalyst for water oxidation. Applied Catalysis B: Environmental, 2014, 147, 733-740.	10.8	98
272	Modification of TiO2 nanotubes by Cu2O for photoelectrochemical, photocatalytic, and photovoltaic devices. Electrochimica Acta, 2014, 128, 341-348.	2.6	50
273	Molybdenum Phosphosulfide: An Active, Acid‣table, Earthâ€Abundant Catalyst for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2014, 53, 14433-14437.	7.2	908
274	Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews, 2014, 114, 11863-12001.	23.0	1,161
275	Surface Generation of a Cobaltâ€Đerived Water Oxidation Electrocatalyst Developed in a Neutral HCO ₃ ^{â^'} /CO ₂ System. Advanced Energy Materials, 2014, 4, 1400252.	10.2	58
276	Water Oxidation Catalysis by Co(II) Impurities in Co(III) ₄ O ₄ Cubanes. Journal of the American Chemical Society, 2014, 136, 17681-17688.	6.6	152
277	Low Overpotential in Vacancy-Rich Ultrathin CoSe ₂ Nanosheets for Water Oxidation. Journal of the American Chemical Society, 2014, 136, 15670-15675.	6.6	970
278	Which Oxidation State Leads to O–O Bond Formation in Cp*Ir(bpy)Cl-Catalyzed Water Oxidation, Ir(V), Ir(VI), or Ir(VII)?. ACS Catalysis, 2014, 4, 3937-3949.	5.5	34
279	Hydroxyl Migration in Heterotrimetallic Clusters: An Assessment of Fluxionality Pathways. Journal of Physical Chemistry A, 2014, 118, 11047-11055.	1.1	2
280	Kinetics of Hydrogen Atom Abstraction from Substrate by an Active Site Thiyl Radical in Ribonucleotide Reductase. Journal of the American Chemical Society, 2014, 136, 16210-16216.	6.6	32
281	Photocatalytic applications with CdS • block copolymer/exfoliated graphene nanoensembles: hydrogen generation and degradation of Rhodamine B. Nanotechnology, 2014, 25, 445404.	1.3	4
282	Self-template construction of hollow Co3O4 microspheres from porous ultrathin nanosheets and efficient noble metal-free water oxidation catalysts. Nanoscale, 2014, 6, 7255.	2.8	194
283	An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system. Energy and Environmental Science, 2014, 7, 3371-3380.	15.6	152
284	Photocatalytic water oxidation at soft interfaces. Chemical Science, 2014, 5, 2683-2687.	3.7	62
285	Controllable synthesis of graphene supported MnO ₂ nanowires via self-assembly for enhanced water oxidation in both alkaline and neutral solutions. Journal of Materials Chemistry A, 2014, 2, 123-129.	5.2	59
286	Mechanistic insights into hydride transfer for catalytic hydrogenation of CO ₂ with cobalt complexes. Dalton Transactions, 2014, 43, 11803-11806.	1.6	44
287	Ordered arrays of tilted silicon nanobelts with enhanced solar hydrogen evolution performance. Nanoscale, 2014, 6, 2097.	2.8	8
288	The Influence of the Second and Outer Coordination Spheres on Rh(diphosphine) ₂ CO ₂ Hydrogenation Catalysts. ACS Catalysis, 2014, 4, 3663-3670.	5.5	37

#	Article	IF	CITATIONS
289	Mechanism of water oxidation by non-heme iron catalysts when driven with sodium periodate. Dalton Transactions, 2014, 43, 12501-12513.	1.6	54
290	Photocrystallographic Observation of Halide-Bridged Intermediates in Halogen Photoeliminations. Journal of the American Chemical Society, 2014, 136, 15346-15355.	6.6	31
291	Sol-flame synthesis of cobalt-doped TiO ₂ nanowires with enhanced electrocatalytic activity for oxygen evolution reaction. Physical Chemistry Chemical Physics, 2014, 16, 12299-12306.	1.3	44
292	Electrodeposited nickel-sulfide films as competent hydrogen evolution catalysts in neutral water. Journal of Materials Chemistry A, 2014, 2, 19407-19414.	5.2	192
293	Nanolayered manganese oxides as water-oxidizing catalysts: the effects of Cu(<scp>ii</scp>) and Ni(<scp>ii</scp>) ions. RSC Advances, 2014, 4, 36017-36023.	1.7	17
294	An unexpected role of the monodentate ligand in photocatalytic hydrogen production of the pentadentate ligand-based cobalt complexes. Chemical Communications, 2014, 50, 6520.	2.2	68
295	Molybdenum carbide stabilized on graphene with high electrocatalytic activity for hydrogen evolution reaction. Chemical Communications, 2014, 50, 13135-13137.	2.2	235
296	MnO ₂ spontaneously coated on carbon nanotubes for enhanced water oxidation. Chemical Communications, 2014, 50, 11938-11941.	2.2	31
297	Ascorbate as an electron relay between an irreversible electron donor and Ru(<scp>ii</scp>) or Re(<scp>i</scp>) photosensitizers. Chemical Communications, 2014, 50, 6737-6739.	2.2	80
298	Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15001-15006.	3.3	159
299	A polyoxometalate-based complex with visible-light photochromism as the electrocatalyst for generating hydrogen from water. Dalton Transactions, 2014, 43, 16928-16936.	1.6	10
300	A hierarchical Ni–Co–O@Ni–Co–S nanoarray as an advanced oxygen evolution reaction electrode. Physical Chemistry Chemical Physics, 2014, 16, 20402-20405.	1.3	54
301	Single-layer Group-IVB nitride halides as promising photocatalysts. Journal of Materials Chemistry A, 2014, 2, 6755.	5.2	90
302	An acetate bound cobalt oxide catalyst for water oxidation: role of monovalent anions and cations in lowering overpotential. Physical Chemistry Chemical Physics, 2014, 16, 12221.	1.3	31
303	Computing Free Energy Landscapes: Application to Ni-based Electrocatalysts with Pendant Amines for H ₂ Production and Oxidation. ACS Catalysis, 2014, 4, 229-242.	5.5	68
304	Orientation-Dependent Oxygen Evolution Activities of Rutile IrO ₂ and RuO ₂ . Journal of Physical Chemistry Letters, 2014, 5, 1636-1641.	2.1	466
305	Mechano-Electrochemistry and Fuel-Forming Mechano-Electrocatalysis on Spring Electrodes. Journal of Physical Chemistry C, 2014, 118, 19246-19251.	1.5	6
306	Halide-Bridged Binuclear HX-Splitting Catalysts. Inorganic Chemistry, 2014, 53, 9122-9128.	1.9	31

ARTICLE IF CITATIONS # Comparison of [Ni(P^{Ph}₂N^{Ph}₂(CH₃CN)]<sup>2+{/sup> 307 13 and [Pd(P^{Ph}₂N^{Ph}₂]<sub>2</sub]₂]<sub>2</sub]₂]₂]₂]<sub>2</sub]<sub>2</sub]<sub>2</sub]<sub>2</sub]<sub>2</sub]<sub>2</sub]<sub>2</sub]<sub>2</sub]<sub>2</sub]<sub>2</sub]<sub>2</sub]<sub>2</sub]<sub>2</sub]<sub>2</sub]<sub>2</sub]<sub>2</sub]<sub>2</sub]<sub>2</sub]<sub>2</sub]<sub>2</sub]<sub>2</sub]₂]<sub>2</sub]<sub>2</sub]<sub>2</sub]<sub>2</sub]<sub>2</su Electrocatalysts for H₂ Production. Organometallics, 2014, 33, 4617-4620. Hematite nanorods array on carbon cloth as an efficient 3D oxygen evolution anode. 308 2.3 39 Electrochemistry Communications, 2014, 49, 21-24. Immobilization of a molecular catalyst on carbon nanotubes for highly efficient electro-catalytic 309 2.2 42 water oxidation. Chemical Communications, 2014, 50, 13948-13951. Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water 165 electrolysis. Energy and Environmental Science, 2014, 7, 682-688. Terpyridine complexes of first row transition metals and electrochemical reduction of 311 1.3154 CO₂ to CO. Physical Chemistry Chemical Physics, 2014, 16, 13635-13644. A Cobalt Hydride Catalyst for the Hydrogenation of CO₂: Pathways for Catalysis and Deactivation. ACS Catalysis, 2014, 4, 3755-3762. 5.5 Ten-percent solar-to-fuel conversion with nonprecious materials. Proceedings of the National 313 3.3 262 Academy of Sciences of the United States of America, 2014, 111, 14057-14061. Thermochemical Insight into the Reduction of CO to CH3OH with [Re(CO)]+ and [Mn(CO)]+ Complexes. 314 6.6 Journal of the American Chemical Society, 2014, 136, 8661-8668. Photocatalytic generation of solar fuels from the reduction of H₂O and 315 100 1.3 CO₂: a look at the patent literature. Physical Chemistry Chemical Physics, 2014, 16, 19790. Nitrogen-Doped Graphene Supported CoSe₂ Nanobelt Composite Catalyst for Efficient Water Oxidation. ACS Nano, 2014, 8, 3970-3978. Improved photo-stability of silicon nanobelt arrays by atomic layer deposition for efficient 317 4.014 photocatalytic hydrogen evolution. Journal of Power Sources, 2014, 268, 677-682. Thermal energy storages analysis for high temperature in air solar systems. Applied Thermal Engineering, 2014, 71, 130-141. 3.0 Ni₁₂P₅ Nanoparticles as an Efficient Catalyst for Hydrogen Generation 319 7.3 413 <i>via</i> Electrolysis and Photoelectrolysis. ACS Nano, 2014, 8, 8121-8129. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society 18.7 2,037 Reviews, 2014, 43, 6555. Optically transparent hydrogen evolution catalysts made from networks of copper–platinum 321 15.6 74 coreâ€"shell nanowires. Energy and Environmental Science, 2014, 7, 1461-1467. Removal of Water Adsorbates on GaN Surfaces via Hopping Processes and with the Aid of a Pt₄ Cluster: An Ab Initio Study. Journal of Physical Chemistry C, 2014, 118, 20383-20392. Discovery of New Oxygen Evolution Reaction Electrocatalysts by Combinatorial Investigation of the 323 1.7 29 Ni–Laấ€"Co–Ce Oxide Composition Space. ChemElectroChem, 2014, 1, 1613-1617. Metal adatoms-decorated silicene as hydrogen storage media. International Journal of Hydrogen 324 3.8 Energy, 2014, 39, 14027-14032.

#	Article	IF	CITATIONS
325	First mononuclear copper(II) electro-catalyst for catalyzing hydrogen evolution from acetic acid and water. International Journal of Hydrogen Energy, 2014, 39, 13972-13978.	3.8	79
326	FeP nanoparticles grown on graphene sheets as highly active non-precious-metal electrocatalysts for hydrogen evolution reaction. Chemical Communications, 2014, 50, 11554-11557.	2.2	187
327	Enabling Silicon for Solar-Fuel Production. Chemical Reviews, 2014, 114, 8662-8719.	23.0	329
328	Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy and Environmental Science, 2014, 7, 3519-3542.	15.6	1,151
329	A review on advances in photocatalysts towards CO2 conversion. RSC Advances, 2014, 4, 20856.	1.7	148
330	Earth-Abundant Metal Pyrites (FeS ₂ , CoS ₂ , NiS ₂ , and Their Alloys) for Highly Efficient Hydrogen Evolution and Polysulfide Reduction Electrocatalysis. Journal of Physical Chemistry C, 2014, 118, 21347-21356.	1.5	548
331	Electrochemical oxidation of H ₂ catalyzed by ruthenium hydride complexes bearing P ₂ N ₂ ligands with pendant amines as proton relays. Energy and Environmental Science, 2014, 7, 3630-3639.	15.6	20
332	Nitrogen-doped graphene interpenetrated 3D Ni-nanocages: efficient and stable water-to-dioxygen electrocatalysts. Nanoscale, 2014, 6, 13179-13187.	2.8	33
333	Stabilization of Ruthenium(II) Polypyridyl Chromophores on Nanoparticle Metal-Oxide Electrodes in Water by Hydrophobic PMMA Overlayers. Journal of the American Chemical Society, 2014, 136, 13514-13517.	6.6	70
334	Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis. ACS Applied Materials & Interfaces, 2014, 6, 16449-16465.	4.0	1,018
335	Electrocatalysis of the hydrogen-evolution reaction by electrodeposited amorphous cobalt selenide films. Journal of Materials Chemistry A, 2014, 2, 13835-13839.	5.2	133
336	Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nature Communications, 2014, 5, 4477.	5.8	1,900
337	Highâ€Throughput Mapping of the Electrochemical Properties of (Niâ€Feâ€Coâ€Ce)O _{<i>x</i>} Oxygenâ€Evolution Catalysts. ChemElectroChem, 2014, 1, 524-528.	1.7	71
338	Recent advances on solar water splitting using hematite nanorod film produced by purpose-built material methods. Journal of Materials Research, 2014, 29, 16-28.	1.2	33
339	Synthesis and photophysical studies of self-assembled multicomponent supramolecular coordination prisms bearing porphyrin faces. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9390-9395.	3.3	50
340	Unraveling the Mechanism of Water Oxidation Catalyzed by Nonheme Iron Complexes. Chemistry - A European Journal, 2014, 20, 5696-5707.	1.7	75
341	Water Oxidation by a Nickel-Glycine Catalyst. Journal of the American Chemical Society, 2014, 136, 10198-10201.	6.6	88
342	Concerted Proton-Electron Transfers: Fundamentals and Recent Developments. Annual Review of Analytical Chemistry, 2014, 7, 537-560.	2.8	53

#	Article	IF	CITATIONS
343	Electrocatalytic Oxygen Evolution over Supported Small Amorphous Ni–Fe Nanoparticles in Alkaline Electrolyte. Langmuir, 2014, 30, 7893-7901.	1.6	234
344	Nucleation and Growth Mechanisms of an Electrodeposited Manganese Oxide Oxygen Evolution Catalyst. Journal of Physical Chemistry C, 2014, 118, 17142-17152.	1.5	73
345	Low pH Electrolytic Water Splitting Using Earth-Abundant Metastable Catalysts That Self-Assemble in Situ. Journal of the American Chemical Society, 2014, 136, 3304-3311.	6.6	147
346	A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid. Journal of the American Chemical Society, 2014, 136, 6002-6010.	6.6	474
347	Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nature Communications, 2014, 5, 4345.	5.8	411
348	Toward Design of Synergistically Active Carbon-Based Catalysts for Electrocatalytic Hydrogen Evolution. ACS Nano, 2014, 8, 5290-5296.	7.3	947
349	Transfer Printing Methods for Flexible Thin Film Solar Cells: Basic Concepts and Working Principles. ACS Nano, 2014, 8, 8746-8756.	7.3	89
350	Iridium Oxide–Polymer Nanocomposite Electrode Materials for Water Oxidation. ACS Applied Materials & Interfaces, 2014, 6, 12852-12859.	4.0	42
351	Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy, 2014, 9, 373-382.	8.2	478
352	Spectroscopic Studies of Nanoparticulate Thin Films of a Cobalt-Based Oxygen Evolution Catalyst. Journal of Physical Chemistry C, 2014, 118, 17060-17066.	1.5	33
353	Extraordinary Hydrogen Evolution and Oxidation Reaction Activity from Carbon Nanotubes and Graphitic Carbons. ACS Nano, 2014, 8, 8447-8456.	7.3	115
354	Water Oxidation Catalysis Beginning with Co ₄ (H ₂ O) ₂ (PW ₉ O ₃₄) ₂ 10â When Driven by the Chemical Oxidant Ruthenium(III)tris(2,2′-bipyridine): Stoichiometry, Kinetic, and Mechanistic Studies en Route to Identifying the True Catalyst. ACS Catalysis. 2014. 4, 79-89.	€"	74
356	Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels. Nature Chemistry, 2014, 6, 441-447.	6.6	261
357	Graphene-Supported Nanoelectrocatalysts for Fuel Cells: Synthesis, Properties, and Applications. Chemical Reviews, 2014, 114, 5117-5160.	23.0	899
358	Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. Journal of the American Chemical Society, 2014, 136, 6744-6753.	6.6	2,659
359	A comparative computational study of the diffusion of Na and Li atoms in Sn(111) nanosheets. Solid State Ionics, 2014, 268, 273-276.	1.3	7
360	A dinuclear triazenido–copper complex: A new molecular electro-catalyst for generating hydrogen from acetic acid or water. Journal of Molecular Catalysis A, 2014, 391, 191-197.	4.8	49
361	Graphene film-confined molybdenum sulfide nanoparticles: Facile one-step electrodeposition preparation and application as a highly active hydrogen evolution reaction electrocatalyst. Journal of Power Sources, 2014, 263, 181-185.	4.0	83

#	Apticie	IE	CITATIONS
#	Niâ€Based Electrocatalyst for Water Oxidation Developed Inâ€6itu in a	IF 10.2	70
302	Materials, 2014, 4, 1301929.	10.2	70
363	Electrocatalytic O ₂ Reduction by [Fe-Fe]-Hydrogenase Active Site Models. Journal of the American Chemical Society, 2014, 136, 8847-8850.	6.6	51
364	Smart Grids Versus the Achilles' Heel of Renewable Energy: Can the Needed Storage Infrastructure Be Constructed Before the Fossil Fuel Runs Out?. Proceedings of the IEEE, 2014, 102, 1094-1105.	16.4	14
365	Advances in Photofunctional Dendrimers for Solar Energy Conversion. Journal of Physical Chemistry Letters, 2014, 5, 2340-2350.	2.1	56
366	Packing heat. Nature Chemistry, 2014, 6, 385-386.	6.6	13
367	Metal(II)-Induced Coordination Polymer Based on 4-(5-(Pyridin-4-yl)-4H-1,2,4-triazol-3-yl)benzoate as an Electrocatalyst for Water Splitting. Crystal Growth and Design, 2014, 14, 649-657.	1.4	58
368	Distinguishing Homogeneous from Heterogeneous Water Oxidation Catalysis when Beginning with Polyoxometalates. ACS Catalysis, 2014, 4, 909-933.	5.5	195
369	High-Performance Electrocatalysis Using Metallic Cobalt Pyrite (CoS ₂) Micro- and Nanostructures. Journal of the American Chemical Society, 2014, 136, 10053-10061.	6.6	1,211
370	A Hydrogen-Evolving Ni(P ₂ N ₂) ₂ Electrocatalyst Covalently Attached to a Glassy Carbon Electrode: Preparation, Characterization, and Catalysis. Comparisons with the Homogeneous Analogue. Inorganic Chemistry, 2014, 53, 6875-6885.	1.9	49
371	A nickel molecular electro-catalyst for generating hydrogen from acetic acid or water. International Journal of Hydrogen Energy, 2014, 39, 10980-10986.	3.8	73
372	Enhanced visible light-driven hydrogen production from water by a noble-metal-free system containing organic dye-sensitized titanium dioxide loaded with nickel hydroxide as the cocatalyst. Applied Catalysis B: Environmental, 2014, 160-161, 173-178.	10.8	76
373	Incorporation of tantalum ions enhances the electrocatalytic activity of hexagonal WO3 nanowires for hydrogen evolution reaction. Electrochimica Acta, 2014, 134, 201-208.	2.6	36
374	A Review on Visible Light Active Perovskite-Based Photocatalysts. Molecules, 2014, 19, 19995-20022.	1.7	471
375	Raman and Infrared Spectroscopic Characterization of Graphene. , 2014, , 165-194.		0
376	Functionalized Membranes for Photocatalytic Hydrogen Production. Chemistry - A European Journal, 2014, 20, 14570-14574.	1.7	49
377	Enhanced water oxidation efficiency of hematite thin films by oxygen-deficient atmosphere. Journal of Materials Research, 2015, 30, 3595-3604.	1.2	19
378	Colloidal transfer printing method for periodically textured thin films in flexible media with greatly enhanced solar energy harvesting. Materials Research Express, 2015, 2, 106402.	0.8	4
379	Bioâ€Inspired Leafâ€Mimicking Nanosheet/Nanotube Heterostructure as a Highly Efficient Oxygen Evolution Catalyst. Advanced Science, 2015, 2, 1500003.	5.6	90

# 380	ARTICLE Co(OH) ₂ @PANI Hybrid Nanosheets with 3D Networks as Highâ€Performance Electrocatalysts for Hydrogen Evolution Reaction. Advanced Materials, 2015, 27, 7051-7057.	IF 11.1	CITATIONS 294
385	Singleâ€Crystal Semiconductors with Narrow Band Gaps for Solar Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 10718-10732.	7.2	123
386	Photoelectrochemical Performances of Hematite (αâ€ <scp>Fe₂O₃</scp>) Films Doped with Various Metals. Bulletin of the Korean Chemical Society, 2015, 36, 1487-1494.	1.0	19
387	An Oxofluoride Catalyst Comprised of Transition Metals and a Metalloid for Application in Water Oxidation. Chemistry - A European Journal, 2015, 21, 12991-12995.	1.7	12
388	Electrocatalytic Hydrogen Production by an Aluminum(III) Complex: Ligandâ€Based Proton and Electron Transfer. Angewandte Chemie - International Edition, 2015, 54, 11642-11646.	7.2	118
389	Operando Synthesis of a Dendritic and Wellâ€Crystallized Molybdenum Oxide/Silver Catalyst for Enhanced Activity in the Hydrogen Evolution Reaction. ChemCatChem, 2015, 7, 2517-2525.	1.8	5
390	Ï€â€Excess σ ² P=C–N–Heterocycles: Catalytic <i>P</i> â€Arylation and Alkylation of <i>N</i> â€Alkylâ€1,3â€benzazaphospholes and Isolation of <i>P</i> , <i>N</i> â€Disubstituted DihydrobenzazaÂphosphole <i>P</i> â€Oxides. European Journal of Inorganic Chemistry, 2015, 2015, 3995-4005.	1.0	11
391	Substituent Effects on Physical Properties and Catalytic Activities toward Water Oxidation in Mononuclear Ruthenium Complexes. European Journal of Inorganic Chemistry, 2015, 2015, 5495-5502.	1.0	25
393	Synergistic Effect between Metal–Nitrogen–Carbon Sheets and NiO Nanoparticles for Enhanced Electrochemical Waterâ€Oxidation Performance. Angewandte Chemie - International Edition, 2015, 54, 10530-10534.	7.2	301
394	Engineering Nanoporous Iron(III) Oxide into an Effective Water Oxidation Electrode. ChemCatChem, 2015, 7, 2455-2459.	1.8	28
395	Efficiency Records in Mesoscopic Dyeâ€5ensitized Solar Cells. Chemical Record, 2015, 15, 803-828.	2.9	41
396	The Hydric Effect in Inorganic Nanomaterials for Nanoelectronics and Energy Applications. Advanced Materials, 2015, 27, 3850-3867.	11.1	55
397	A Highâ€Performance Electrocatalyst for Oxygen Evolution Reaction: LiCo _{0.8} Fe _{0.2} O ₂ . Advanced Materials, 2015, 27, 7150-7155.	11.1	249
399	Metallic Co ₄ N Porous Nanowire Arrays Activated by Surface Oxidation as Electrocatalysts for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2015, 54, 14710-14714.	7.2	684
400	A Flexible Electrode Based on Iron Phosphide Nanotubes for Overall Water Splitting. Chemistry - A European Journal, 2015, 21, 18062-18067.	1.7	228
401	Oxidized Mild Steel S235: An Efficient Anode for Electrocatalytically Initiated Water Splitting. ChemSusChem, 2015, 8, 3099-3110.	3.6	50
402	<i>transâ€</i> (Cl)â€{Ru(5,5′â€diamideâ€2,2′â€bipyridine)(CO) ₂ Cl ₂]: Synthesis and Photocatalytic CO ₂ Reduction Activity. Chemistry - A European Journal, 2015, 21, 10049-10060.	, Structure 1.7	2, 46
403	Molecular Mixedâ€Metal Manganese Oxido Cubanes as Precursors to Heterogeneous Oxygen Evolution Catalysts. Chemistry - A European Journal, 2015, 21, 13420-13430.	1.7	20

#	Article	IF	CITATIONS
405	Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications. Nanomaterials, 2015, 5, 755-777.	1.9	73
406	Solar Hydrogen Reaching Maturity. Oil and Gas Science and Technology, 2015, 70, 863-876.	1.4	29
407	Mixed-valent, heteroleptic homometallic diketonates as templates for the design of volatile heterometallic precursors. Chemical Science, 2015, 6, 2835-2842.	3.7	22
408	Tungsten-based porous thin-films for electrocatalytic hydrogen generation. Journal of Materials Chemistry A, 2015, 3, 5798-5804.	5.2	43
409	Porous one-dimensional Mo ₂ C–amorphous carbon composites: high-efficient and durable electrocatalysts for hydrogen generation. Physical Chemistry Chemical Physics, 2015, 17, 16609-16614.	1.3	52
410	High-efficiency dye-sensitized solar cells with molecular copper phenanthroline as solid hole conductor. Energy and Environmental Science, 2015, 8, 2634-2637.	15.6	149
411	Effects of morphology and exposed facets of α-Fe ₂ O ₃ nanocrystals on photocatalytic water oxidation. RSC Advances, 2015, 5, 52210-52216.	1.7	35
412	In Situ Transformation of Hydrogen-Evolving CoP Nanoparticles: Toward Efficient Oxygen Evolution Catalysts Bearing Dispersed Morphologies with Co-oxo/hydroxo Molecular Units. ACS Catalysis, 2015, 5, 4066-4074.	5.5	420
413	Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nature Communications, 2015, 6, 6512.	5.8	1,194
414	Near-infrared–driven decomposition of metal precursors yields amorphous electrocatalytic films. Science Advances, 2015, 1, e1400215.	4.7	48
415	Cobalt diselenide nanobelts grafted on carbon fiber felt: an efficient and robust 3D cathode for hydrogen production. Chemical Science, 2015, 6, 4594-4598.	3.7	114
416	Metallic WO ₂ –Carbon Mesoporous Nanowires as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 6983-6986.	6.6	470
417	Simple and Efficient System for Combined Solar Energy Harvesting and Reversible Hydrogen Storage. Journal of the American Chemical Society, 2015, 137, 7576-7579.	6.6	52
418	Ni ₂ P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni ₂ P nanoparticles. Energy and Environmental Science, 2015, 8, 2347-2351.	15.6	1,487
419	Stainless steel made to rust: a robust water-splitting catalyst with benchmark characteristics. Energy and Environmental Science, 2015, 8, 2685-2697.	15.6	180
420	Multidisciplinary approaches to solar hydrogen. Interface Focus, 2015, 5, 20140091.	1.5	24
421	Solar Electrical Energy Storage. , 2015, , 7-25.		6
422	Identification of optimal solar fuel electrocatalysts via high throughput in situ optical measurements. Journal of Materials Research, 2015, 30, 442-450.	1.2	16

#	Article	IF	CITATIONS
423	Polymer nanocomposites for energy storage, energy saving, and anticorrosion. Journal of Materials Chemistry A, 2015, 3, 14929-14941.	5.2	201
424	Alkyne substituted mononuclear photocatalysts based on [RuCl(bpy)(tpy)] ⁺ . Dalton Transactions, 2015, 44, 11368-11379.	1.6	10
425	Ultrafine Metal Phosphide Nanocrystals <i>in Situ</i> Decorated on Highly Porous Heteroatom-Doped Carbons for Active Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2015, 7, 28369-28376.	4.0	72
426	Onsite Substitution Synthesis of Ultrathin Ni Nanofilms Loading Ultrafine Pt Nanoparticles for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2015, 7, 26101-26107.	4.0	32
427	Ultrafine CoP Nanoparticles Supported on Carbon Nanotubes as Highly Active Electrocatalyst for Both Oxygen and Hydrogen Evolution in Basic Media. ACS Applied Materials & Interfaces, 2015, 7, 28412-28419.	4.0	187
428	Platinum(<scp>ii</scp>)–porphyrin as a sensitizer for visible-light driven water oxidation in neutral phosphate buffer. Energy and Environmental Science, 2015, 8, 975-982.	15.6	49
429	Synthetic Strategies for Variably Substituted Ruthenium–Imidazophenanthrolinium Complexes. European Journal of Inorganic Chemistry, 2015, 2015, 750-762.	1.0	11
430	Role of chlorophyll in Spirulina on photocatalytic activity of CO 2 reduction under visible light over modified N-doped TiO 2 photocatalysts. Applied Catalysis B: Environmental, 2015, 168-169, 114-124.	10.8	70
431	Transition-Metal Doping of Oxide Nanocrystals for Enhanced Catalytic Oxygen Evolution. Journal of Physical Chemistry C, 2015, 119, 1921-1927.	1.5	96
432	Calcium-doped lanthanum nickelate layered perovskite and nickel oxide nano-hybrid for highly efficient water oxidation. Nano Energy, 2015, 12, 115-122.	8.2	144
433	Copper as a Robust and Transparent Electrocatalyst for Water Oxidation. Angewandte Chemie - International Edition, 2015, 54, 2073-2078.	7.2	209
434	Integration of organometallic complexes with semiconductors and other nanomaterials for photocatalytic H2 production. Coordination Chemistry Reviews, 2015, 287, 1-14.	9.5	140
435	One-pot synthesis of diiron phosphide/nitrogen-doped graphene nanocomposite for effective hydrogen generation. Nano Energy, 2015, 12, 666-674.	8.2	93
436	Open Pore Architecture of an Ordered Mesoporous IrO ₂ Thin Film for Highly Efficient Electrocatalytic Water Oxidation. ChemSusChem, 2015, 8, 795-799.	3.6	34
437	Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2337-2342.	3.3	366
438	A high-performance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation. Journal of Materials Chemistry A, 2015, 3, 6921-6928.	5.2	291
439	Single‣hell Carbonâ€Encapsulated Iron Nanoparticles: Synthesis and High Electrocatalytic Activity for Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2015, 54, 4535-4538.	7.2	268
440	Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews, 2015, 44, 2060-2086.	18.7	4,323

#	Article	IF	CITATIONS
441	Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. Journal of the American Chemical Society, 2015, 137, 4347-4357.	6.6	3,158
442	Nanoarray based "superaerophobic―surfaces for gas evolution reaction electrodes. Materials Horizons, 2015, 2, 294-298.	6.4	146
443	Towards a methanol economy based on homogeneous catalysis: methanol to H ₂ and CO ₂ to methanol. Chemical Communications, 2015, 51, 6714-6725.	2.2	175
444	Synthesis and electrocatalytic properties of a dinuclear copper(II) complex for generating hydrogen from acetic acid or water. Journal of Coordination Chemistry, 2015, 68, 573-585.	0.8	11
445	SrNb _{0.1} Co _{0.7} Fe _{0.2} O _{3â^'<i>δ</i>} Perovskite as a Nextâ€Generation Electrocatalyst for Oxygen Evolution in Alkaline Solution. Angewandte Chemie - International Edition, 2015, 54, 3897-3901.	7.2	400
446	Hollow mesoporous NiCo ₂ O ₄ nanocages as efficient electrocatalysts for oxygen evolution reaction. Dalton Transactions, 2015, 44, 4148-4154.	1.6	151
447	Y2O3: Eu3+, Tb3+ spherical particles based anti-reflection and wavelength conversion bi-functional films: Synthesis and application to solar cells. Journal of Alloys and Compounds, 2015, 629, 74-79.	2.8	13
448	Self-standing non-noble metal (Ni–Fe) oxide nanotube array anode catalysts with synergistic reactivity for high-performance water oxidation. Journal of Materials Chemistry A, 2015, 3, 7179-7186.	5.2	96
449	Electrocatalytic Hydrogen Production by [Ni(7P ^{Ph} ₂ N ^H) ₂] ²⁺ : Removing the Distinction Between Endo- and Exo-Protonation Sites. ACS Catalysis, 2015, 5, 2116-2123.	5.5	20
450	Toward Molecular Catalysts by Computer. Accounts of Chemical Research, 2015, 48, 248-255.	7.6	65
451	Colorimetric Screening for High-Throughput Discovery of Light Absorbers. ACS Combinatorial Science, 2015, 17, 176-181.	3.8	12
452	Parallel Electrochemical Treatment System and Application for Identifying Acid-Stable Oxygen Evolution Electrocatalysts. ACS Combinatorial Science, 2015, 17, 71-75.	3.8	12
453	Solar fuels vis-Ã-vis electricity generation from sunlight: The current state-of-the-art (a review). Renewable and Sustainable Energy Reviews, 2015, 44, 904-932.	8.2	54
454	Photochemical and electrocatalytic water oxidation activity of cobalt carbodiimide. Journal of Materials Chemistry A, 2015, 3, 5072-5082.	5.2	68
455	The influence of Ferric ion contamination on the solid polymer electrolyte water electrolysis performance. Electrochimica Acta, 2015, 158, 253-257.	2.6	44
456	Light-driven hydrogen evolution with a nickel thiosemicarbazone redox catalyst featuring Niâ‹ H interactions under basic conditions. New Journal of Chemistry, 2015, 39, 1051-1059.	1.4	25
457	N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production. Energy and Environmental Science, 2015, 8, 1329-1338.	15.6	136
458	Earth-Abundant Copper-Based Bifunctional Electrocatalyst for Both Catalytic Hydrogen Production and Water Oxidation. ACS Catalysis, 2015, 5, 1530-1538.	5.5	150

#	Article	IF	CITATIONS
459	Molybdenum carbide nanocrystal embedded N-doped carbon nanotubes as electrocatalysts for hydrogen generation. Journal of Materials Chemistry A, 2015, 3, 5783-5788.	5.2	198
460	Structural Progression in Clusters of Ionized Water, (H ₂ 0) _{<i>n</i>=1–5} ⁺ . Journal of Physical Chemistry A, 2015, 119, 752-766.	1.1	42
461	Metal oxidation states in biological water splitting. Chemical Science, 2015, 6, 1676-1695.	3.7	275
462	An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nature Communications, 2015, 6, 5982.	5.8	897
463	Role of Strain and Conductivity in Oxygen Electrocatalysis on LaCoO ₃ Thin Films. Journal of Physical Chemistry Letters, 2015, 6, 487-492.	2.1	152
464	Carbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction. Nanoscale, 2015, 7, 3130-3136.	2.8	133
466	Copper–silver oxide nanowires grown on an alloy electrode as an efficient electrocatalyst for water oxidation. RSC Advances, 2015, 5, 26150-26156.	1.7	10
467	High-Throughput Screening for Acid-Stable Oxygen Evolution Electrocatalysts in the (Mn–Co–Ta–Sb)O x Composition Space. Electrocatalysis, 2015, 6, 229-236.	1.5	53
468	Fast and Simple Preparation of Ironâ€Based Thin Films as Highly Efficient Waterâ€Oxidation Catalysts in Neutral Aqueous Solution. Angewandte Chemie - International Edition, 2015, 54, 4870-4875.	7.2	256
469	Nickel phosphine catalysts with pendant amines for electrocatalytic oxidation of alcohols. Chemical Communications, 2015, 51, 6172-6174.	2.2	43
470	Electrocatalytic water oxidation by Cu ^{II} complexes with branched peptides. Chemical Communications, 2015, 51, 6322-6324.	2.2	72
471	Tuning Complex Transition Metal Hydroxide Nanostructures as Active Catalysts for Water Oxidation by a Laser–Chemical Route. Nano Letters, 2015, 15, 2498-2503.	4.5	42
472	A water-soluble dinuclear copper electrocatalyst, [Cu(oxpn)Cu(OH)2] for both water reduction and oxidation. Electrochimica Acta, 2015, 161, 388-394.	2.6	58
473	Mapping the performance of amorphous ternary metal oxide water oxidation catalysts containing aluminium. Journal of Materials Chemistry A, 2015, 3, 756-761.	5.2	48
474	Benchmarking of Homogeneous Electrocatalysts: Overpotential, Turnover Frequency, Limiting Turnover Number. Journal of the American Chemical Society, 2015, 137, 5461-5467.	6.6	141
475	Metallic Nickel Nitride Nanosheets Realizing Enhanced Electrochemical Water Oxidation. Journal of the American Chemical Society, 2015, 137, 4119-4125.	6.6	1,004
476	Electrochemical Water Oxidation by <i>In Situ</i> -Generated Copper Oxide Film from [Cu(TEOA)(H ₂ 0) ₂][SO ₄] Complex. Inorganic Chemistry, 2015, 54, 3061-3067.	1.9	81
477	Water oxidation catalysed by a mononuclear Co ^{II} polypyridine complex; possible reaction intermediates and the role of the chloride ligand. Chemical Communications, 2015, 51, 13074-13077.	2.2	62

#	Article	IF	CITATIONS
478	A Molecular Copper Catalyst for Hydrogenation of CO ₂ to Formate. ACS Catalysis, 2015, 5, 5301-5305.	5.5	140
479	Photochemical hydrogen production from 3d transition-metal complexes bearing o-phenylenediamine ligands. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 313, 99-106.	2.0	6
480	Electrochemical-driven water reduction catalyzed by a water soluble cobalt(III) complex with Schiff base ligand. Electrochimica Acta, 2015, 178, 368-373.	2.6	39
481	Photovoltaic effect by vapor-printed polyselenophene. Organic Electronics, 2015, 26, 55-60.	1.4	8
482	Reactivity and Mechanism Studies of Hydrogen Evolution Catalyzed by Copper Corroles. ACS Catalysis, 2015, 5, 5145-5153.	5.5	164
483	Amorphous Nickel Hydroxide Nanosheets with Ultrahigh Activity and Super-Long-Term Cycle Stability as Advanced Water Oxidation Catalysts. Crystal Growth and Design, 2015, 15, 4475-4483.	1.4	51
484	The potential versus current state of water splitting with hematite. Physical Chemistry Chemical Physics, 2015, 17, 22485-22503.	1.3	133
485	Unexpected effect of catalyst concentration on photochemical CO ₂ reduction by trans(Cl)–Ru(bpy)(CO) ₂ Cl ₂ : new mechanistic insight into the CO/HCOO ^{â~} selectivity. Chemical Science, 2015, 6, 3063-3074.	3.7	103
486	Electrocatalytic Dihydrogen Production by an Earth-Abundant Manganese Bipyridine Catalyst. Inorganic Chemistry, 2015, 54, 6674-6676.	1.9	64
487	Fast magnetically driven electrodeposition of amorphous metal oxide water oxidation catalysts from carbon-coated metallic nanoparticles. Journal of Materials Chemistry A, 2015, 3, 16190-16197.	5.2	6
488	One-step preparation of nickel sulfide/nickel hydroxide films for electrocatalytic hydrogen generation from water. RSC Advances, 2015, 5, 60674-60680.	1.7	16
489	Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation. Journal of Materials Chemistry A, 2015, 3, 16348-16353.	5.2	209
490	Electrocatalytic Hydrogen Evolution from Molybdenum Sulfide–Polymer Composite Films on Carbon Electrodes. ACS Applied Materials & Interfaces, 2015, 7, 15866-15875.	4.0	22
491	Watching the dynamics of electrons and atoms at work in solar energy conversion. Faraday Discussions, 2015, 185, 51-68.	1.6	10
492	Parallelization of photocatalytic gas-producing reactions. Review of Scientific Instruments, 2015, 86, 034101.	0.6	6
493	Modulation of electronic and redox properties in phenolate-rich cobalt(iii) complexes and their implications for catalytic proton reduction. Dalton Transactions, 2015, 44, 3454-3466.	1.6	17
494	Metal–Polypyridyl Catalysts for Electro- and Photochemical Reduction of Water to Hydrogen. Accounts of Chemical Research, 2015, 48, 2027-2036.	7.6	201
495	Nickel-based cocatalysts for photocatalytic hydrogen production. Applied Surface Science, 2015, 351, 779-793.	3.1	213

#	Article	IF	CITATIONS
496	Diiron Complexes Bearing Bridging Hydrocarbyl Ligands as Electrocatalysts for Proton Reduction. Organometallics, 2015, 34, 3228-3235.	1.1	34
497	Gold nanorods or nanoparticles deposited on layered manganese oxide: new findings. New Journal of Chemistry, 2015, 39, 7260-7267.	1.4	8
498	Highly Active Hydrogen Evolution Electrodes via Co-Deposition of Platinum and Polyoxometalates. ACS Applied Materials & Interfaces, 2015, 7, 11648-11653.	4.0	46
499	In-Situ Generation of Oxide Nanowire Arrays from AgCuZn Alloy Sulfide with Enhanced Electrochemical Oxygen-Evolving Performance. ACS Applied Materials & Interfaces, 2015, 7, 17112-17121.	4.0	24
500	C-, N-, S-, and Fe-Doped TiO ₂ and SrTiO ₃ Nanotubes for Visible-Light-Driven Photocatalytic Water Splitting: Prediction from First Principles. Journal of Physical Chemistry C, 2015, 119, 18686-18696.	1.5	104
501	Three-dimensional porous carbon nanofiber networks decorated with cobalt-based nanoparticles: A robust electrocatalyst for efficient water oxidation. Carbon, 2015, 94, 680-686.	5.4	28
502	X-ray Crystallographic, Multifrequency Electron Paramagnetic Resonance, and Density Functional Theory Characterization of the Ni(P ^{Cy} ₂ N ^{<i>t</i>Bu} ₂) ₂ ^{<i>n</i>+} Hydrogen Oxidation Catalyst in the Ni(I) Oxidation State. Inorganic Chemistry, 2015, 54, 6226-6234.	1.9	13
503	Solar Hydrogen Production by Amorphous Silicon Photocathodes Coated with a Magnetron Sputter Deposited Mo ₂ C Catalyst. Journal of the American Chemical Society, 2015, 137, 7035-7038.	6.6	80
504	Edge-terminated molybdenum disulfide with a 9.4-Ã interlayer spacing for electrochemical hydrogen production. Nature Communications, 2015, 6, 7493.	5.8	628
505	Near infrared light-driven water oxidation in a molecule-based artificial photosynthetic device using an upconversion nano-photosensitizer. Chemical Communications, 2015, 51, 13008-13011.	2.2	7
506	Amorphous oxygen-rich molybdenum oxysulfide Decorated p-type silicon microwire Arrays for efficient photoelectrochemical water reduction. Nano Energy, 2015, 16, 130-142.	8.2	85
507	Self-healing for nanolayered manganese oxides in the presence of cerium(<scp>iv</scp>) ammonium nitrate: new findings. New Journal of Chemistry, 2015, 39, 2547-2550.	1.4	21
508	Photocatalytic water reduction from a noble-metal-free molecular dyad based on a thienyl-expanded BODIPY photosensitizer. Chemical Communications, 2015, 51, 12361-12364.	2.2	53
509	Ultra-tiny Co(OH) ₂ particles supported on graphene oxide for highly efficient electrocatalytic water oxidation. RSC Advances, 2015, 5, 39075-39079.	1.7	23
510	Co ₃ ZnC core–shell nanoparticle assembled microspheres/reduced graphene oxide as an advanced electrocatalyst for hydrogen evolution reaction in an acidic solution. Journal of Materials Chemistry A, 2015, 3, 11066-11073.	5.2	31
511	Cyclic Voltammetry Analysis of Electrocatalytic Films. Journal of Physical Chemistry C, 2015, 119, 12174-12182.	1.5	41
512	Electrochemical-driven water splitting catalyzed by a water-soluble cobalt(II) complex supported by N,N′-bis(2′-pyridinecarboxamide)-1,2-benzene with high turnover frequency. Journal of Power Sources, 2015, 287, 50-57.	4.0	47
513	One-step preparation of optically transparent Ni-Fe oxide film electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2015, 169, 402-408.	2.6	46

#	Article	IF	CITATIONS
514	Electrodeposited Cobaltâ€Phosphorousâ€Derived Films as Competent Bifunctional Catalysts for Overall Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 6251-6254.	7.2	712
515	Water-assisted proton delivery and removal in bio-inspired hydrogen production catalysts. Dalton Transactions, 2015, 44, 10969-10979.	1.6	28
516	The mechanism of hydrogen evolution in Cu(bztpen)-catalysed water reduction: a DFT study. Dalton Transactions, 2015, 44, 9736-9739.	1.6	32
517	Pyrolyzed cobalt porphyrin-modified carbon nanomaterial as an active catalyst for electrocatalytic water oxidation. International Journal of Hydrogen Energy, 2015, 40, 6538-6545.	3.8	45
518	Turning it off! Disfavouring hydrogen evolution to enhance selectivity for CO production during homogeneous CO ₂ reduction by cobalt–terpyridine complexes. Chemical Science, 2015, 6, 2522-2531.	3.7	152
519	Design of a dinuclear ruthenium based catalyst with a rigid xanthene bridge for catalytic water oxidation. Inorganic Chemistry Communication, 2015, 55, 56-59.	1.8	12
520	Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015, 44, 5148-5180.	18.7	4,776
521	Scalable synthesis of a Pd nanoparticle loaded hierarchically porous graphene network through multiple synergistic interactions. Chemical Communications, 2015, 51, 8357-8360.	2.2	34
522	Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy and Environmental Science, 2015, 8, 1404-1427.	15.6	1,628
523	Functionalized ZnO@TiO2nanorod array film loaded with ZnIn0.25Cu0.02S1.395solid-solution: synthesis, characterization and enhanced visible light driven water splitting. Nanoscale, 2015, 7, 11082-11092.	2.8	18
524	Optimized synthesis of a tert-butyl-phenyl-substituted tetrapyridophenazine ligand and its Ru(<scp>ii</scp>) complexes and determination of dimerization behaviour of the complexes through supramolecular "Fingerhakel― Dalton Transactions, 2015, 44, 8889-8905.	1.6	12
525	Efficient electrochemical water oxidation catalysis by nanostructured Mn ₂ O ₃ . RSC Advances, 2015, 5, 24200-24204.	1.7	13
526	Multiphase Nanostructure of a Quinary Metal Oxide Electrocatalyst Reveals a New Direction for OER Electrocatalyst Design. Advanced Energy Materials, 2015, 5, 1402307.	10.2	85
527	Platinum nanocuboids supported on reduced graphene oxide as efficient electrocatalyst for the hydrogen evolution reaction. Journal of Power Sources, 2015, 285, 393-399.	4.0	117
528	Efficient use of land to meet sustainable energyÂneeds. Nature Climate Change, 2015, 5, 353-358.	8.1	95
529	Surface Oxidation of Stainless Steel: Oxygen Evolution Electrocatalysts with High Catalytic Activity. ACS Catalysis, 2015, 5, 2671-2680.	5.5	153
531	Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nature Communications, 2015, 6, 6616.	5.8	1,671
532	Enhancement of photovoltaic performance of TiO ₂ -based dye-sensitized solar cells by doping Ca ₃ La _{3(1â^'x)} Eu _{3x} (BO ₃) ₅ . Journal of Materials Chemistry A, 2015, 3, 4875-4883.	5.2	21

ARTICLE IF CITATIONS A high energy density azobenzene/graphene hybrid: a nano-templated platform for solar thermal 533 5.2 89 storage. Journal of Materials Chemistry A, 2015, 3, 11787-11795. Alkaline Electrolyte and Fe Impurity Effects on the Performance and Active-Phase Structure of NiOOH 534 1.5 Thin Films for OÉR Catalysis Applications. Journal of Physical Chemistry C, 2015, 119, 11475-11481. A Functional Group Approach for Prediction of APPI Response of Organic Synthetic Targets. Journal 535 1.2 5 of the American Society for Mass Spectrometry, 2015, 26, 1221-1232. Iridium Oxidation as Observed by Surface Interrogation Scanning Electrochemical Microscopy. Journal of Physical Chemistry C, 2015, 119, 8147-8154. Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 2015, 115, 4823-4892. 537 23.0 2,083 Ultrathin hematite film for photoelectrochemical water splitting enhanced with reducing graphene oxide. International Journal of Hydrogen Energy, 2015, 40, 6763-6770. 3.8 Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution 539 2.2 195 reaction. Chemical Communications, 2015, 51, 7851-7854. Electrosynthesis of Highly Transparent Cobalt Oxide Water Oxidation Catalyst Films from Cobalt 3.6 Aminopólycarboxylate Cómplexes. ChemSusChem, 2015, 8, 1394-1403. Iron-Doped Nickel Oxide Nanocrystals as Highly Efficient Electrocatalysts for Alkaline Water 541 7.3 446 Splitting. ACS Nano, 2015, 9, 5180-5188. Gold and silver anchored cobalt porphyrins used for catalytic water splitting. Materials Chemistry 542 and Physics, 2015, 159, 159-166. Layered MoS2 nanoparticles on TiO2 nanotubes by a photocatalytic strategy for use as high-performance electrocatalysts in hydrogen evolution reactions. Green Chemistry, 2015, 17, 543 4.6 64 2764-2768. A Half-Reaction Alternative to Water Oxidation: Chloride Oxidation to Chlorine Catalyzed by Silver 544 6.6 Ion. Journal of the American Chemical Society, 2015, 137, 3193-3196. Effects of Fe Electrolyte Impurities on Ni(OH)₂/NiOOH Structure and Oxygen Evolution 545 1.5 806 Activity. Journal of Physical Chemistry C, 2015, 119, 7243-7254. Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and 546 5.8 hydrogen evolution reactions. Nano Research, 2015, 8, 3725-3736. Toward a tunable synthetic [FeFe] hydrogenase mimic: single-chain nanoparticles functionalized with 547 1.9 64 a single diiron cluster. Polymer Chemistry, 2015, 6, 7646-7651. Hierarchical nanosheet-based CoMoO₄â€"NiMoO₄nanotubes for applications 548 in asymmetric supercapacitors and the oxygen evolution reaction. Journal of Materials Chemistry A, 140 2015, 3, 22750-22758. Nature of Activated Manganese Oxide for Oxygen Evolution. Journal of the American Chemical 549 6.6 359 Society, 2015, 137, 14887-14904. Photoelectrochemical water splitting in an organic artificial leaf. Journal of Materials Chemistry A, 2015, 3, 23936-23945.

#	Article	IF	CITATIONS
551	Efficient Electrocatalytic Water Oxidation at Neutral and High pH by Adventitious Nickel at Nanomolar Concentrations. Journal of the American Chemical Society, 2015, 137, 13980-13988.	6.6	84
552	High-Performance Overall Water Splitting Electrocatalysts Derived from Cobalt-Based Metal–Organic Frameworks. Chemistry of Materials, 2015, 27, 7636-7642.	3.2	579
553	Photovoltaic and Photoelectrochemical Solar Energy Conversion with Cu ₂ O. Journal of Physical Chemistry C, 2015, 119, 26243-26257.	1.5	160
554	Catalytic Oxygen Evolution by Cobalt Oxido Thin Films. Topics in Current Chemistry, 2015, 371, 173-213.	4.0	46
555	<i>In Situ</i> X-ray Absorption Near-Edge Structure Study of Advanced NiFe(OH) _{<i>x</i>} Electrocatalyst on Carbon Paper for Water Oxidation. Journal of Physical Chemistry C, 2015, 119, 19573-19583.	1.5	146
556	A Fe-doped Ni ₃ S ₂ particle film as a high-efficiency robust oxygen evolution electrode with very high current density. Journal of Materials Chemistry A, 2015, 3, 23207-23212.	5.2	308
557	Oxide-based nanostructures for photocatalytic and electrocatalytic applications. CrystEngComm, 2015, 17, 8978-9001.	1.3	62
558	Microwave-Assisted Reactant-Protecting Strategy toward Efficient MoS ₂ Electrocatalysts in Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 23741-23749.	4.0	107
559	Efficient Electrochemical and Photoelectrochemical H ₂ Production from Water by a Cobalt Dithiolene One-Dimensional Metal–Organic Surface. Journal of the American Chemical Society, 2015, 137, 13740-13743.	6.6	151
560	Ab Initio-Based Kinetic Modeling for the Design of Molecular Catalysts: The Case of H ₂ Production Electrocatalysts. ACS Catalysis, 2015, 5, 5436-5452.	5.5	38
561	Cobalt Oxide Electrode Doped with Iridium Oxide as Highly Efficient Water Oxidation Electrode. ACS Catalysis, 2015, 5, 5525-5529.	5.5	33
562	Graphene/nano-porous silicon and graphene/bimetallic silicon nanostructures (Pt–M, M: Pd, Ru, Rh), efficient electrocatalysts for the hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2015, 17, 23770-23782.	1.3	33
563	Earth-abundant metal complexes as catalysts for water oxidation; is it homogeneous or heterogeneous?. Catalysis Science and Technology, 2015, 5, 4901-4925.	2.1	55
564	Bioinspired design of redox-active ligands for multielectron catalysis: effects of positioning pyrazine reservoirs on cobalt for electro- and photocatalytic generation of hydrogen from water. Chemical Science, 2015, 6, 4954-4972.	3.7	99
565	Oxygen Evolution Catalyzed by Nickel–Iron Oxide Nanocrystals with a Nonequilibrium Phase. ACS Applied Materials & Interfaces, 2015, 7, 19755-19763.	4.0	49
566	The future of solar energy: A personal assessment. Energy Economics, 2015, 52, S142-S148.	5.6	37
567	Ni ₃ Se ₂ film as a non-precious metal bifunctional electrocatalyst for efficient water splitting. Catalysis Science and Technology, 2015, 5, 4954-4958.	2.1	144
568	Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy and Environmental Science, 2015, 8, 3022-3029.	15.6	851

#	Article	IF	CITATIONS
569	Metallic Iron–Nickel Sulfide Ultrathin Nanosheets As a Highly Active Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media. Journal of the American Chemical Society, 2015, 137, 11900-11903.	6.6	609
570	An oxygen evolution catalyst on an antimony doped tin oxide nanowire structured support for proton exchange membrane liquid water electrolysis. Journal of Materials Chemistry A, 2015, 3, 20791-20800.	5.2	79
571	An Iron-based Film for Highly Efficient Electrocatalytic Oxygen Evolution from Neutral Aqueous Solution. ACS Applied Materials & amp; Interfaces, 2015, 7, 21852-21859.	4.0	161
572	Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions: A Combined EPR and DFT Study. Journal of Physical Chemistry Letters, 2015, 6, 4730-4735.	2.1	14
573	Fabrication and characterization of flexible solar cell from electrodeposited Cu2O thin film on plastic substrate. Solar Energy, 2015, 122, 1193-1198.	2.9	41
574	Mechanism of Photocatalytic Hydrogen Generation by a Polypyridyl-Based Cobalt Catalyst in Aqueous Solution. Inorganic Chemistry, 2015, 54, 646-657.	1.9	117
575	Microstructure Effects on the Water Oxidation Activity of Co ₃ O ₄ /Porous Silica Nanocomposites. ACS Catalysis, 2015, 5, 1037-1044.	5.5	39
576	A sensitivity analysis to assess the relative importance of improvements in electrocatalysts, light absorbers, and system geometry on the efficiency of solar-fuels generators. Energy and Environmental Science, 2015, 8, 876-886.	15.6	32
577	Two-Dimensional Metal–Organic Surfaces for Efficient Hydrogen Evolution from Water. Journal of the American Chemical Society, 2015, 137, 118-121.	6.6	521
578	Hydrogen generation: Aromatic dithiolate-bridged metal carbonyl complexes as hydrogenase catalytic site models. Journal of Inorganic Biochemistry, 2015, 143, 88-110.	1.5	46
579	Perfluorinated Cobalt Phthalocyanine Effectively Catalyzes Water Electrooxidation. European Journal of Inorganic Chemistry, 2015, 2015, 49-52.	1.0	37
580	Substitution Effects on the Water Oxidation of Ruthenium Catalysts: A Quantum-Chemical Look. Journal of Physical Chemistry C, 2015, 119, 242-250.	1.5	15
581	A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: high performance for electrocatalytic hydrogen production from pH 0–14. Journal of Materials Chemistry A, 2015, 3, 1941-1946.	5.2	138
582	A high surface area ordered mesoporous BiFeO ₃ semiconductor with efficient water oxidation activity. Journal of Materials Chemistry A, 2015, 3, 1587-1593.	5.2	87
583	High open-circuit voltage small-molecule p-DTS(FBTTh ₂) ₂ :ICBA bulk heterojunction solar cells – morphology, excited-state dynamics, and photovoltaic performance. Journal of Materials Chemistry A, 2015, 3, 1530-1539.	5.2	35
584	Highly Porous Materials as Tunable Electrocatalysts for the Hydrogen and Oxygen Evolution Reaction. Advanced Functional Materials, 2015, 25, 393-399.	7.8	169
585	Cluster-controlled dimerisation in supramolecular ruthenium photosensitizer–polyoxometalate systems. Dalton Transactions, 2015, 44, 330-337.	1.6	14
586	Mechanical degradation and stability of organic solar cells: molecular and microstructural determinants. Energy and Environmental Science, 2015, 8, 55-80.	15.6	205

# 587	ARTICLE CdS quantum dot sensitized p-type NiO as photocathode with integrated cobaloxime in photoelectrochemical cell for water splitting. Chinese Chemical Letters, 2015, 26, 141-144.	IF 4.8	CITATIONS 20
588	A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Research, 2015, 8, 23-39.	5.8	1,201
589	Synthesis and characterization of Ho3+-doped strontium titanate downconversion nanocrystals and its application in dye-sensitized solar cells. Journal of Alloys and Compounds, 2015, 622, 1-7.	2.8	26
590	A water-soluble iron electrocatalyst for water oxidation with high TOF. Applied Catalysis A: General, 2015, 490, 128-132.	2.2	39
591	Electrocatalytic H ₂ production from seawater over Co, N-codoped nanocarbons. Nanoscale, 2015, 7, 2306-2316.	2.8	158
592	A Novel MoSe ₂ –Reduced Graphene Oxide/Polyimide Composite Film for Applications in Electrocatalysis and Photoelectrocatalysis Hydrogen Evolution. Advanced Functional Materials, 2015, 25, 1814-1820.	7.8	165
593	Photoinduced electron transfer in donor–bridge–acceptor assemblies: The case of Os(II)-bis(terpyridine)-(bi)pyridinium dyads. Coordination Chemistry Reviews, 2015, 304-305, 109-116.	9.5	39
594	Potential of Organic Phase Change Material Gel and Organic Phase Change Material Gel-in-Water Emulsion as Heat Storage Materials. Journal of the Japan Society of Colour Material, 2016, 89, 251-257.	0.0	0
595	The Artificial Leaf: Recent Progress and Remaining Challenges. Makara Journal of Science, 2016, 20, .	1.1	2
596	Hydrogen Evolution Reaction of γ-Mo0.5W0.5 C Achieved by High Pressure High Temperature Synthesis. Catalysts, 2016, 6, 208.	1.6	3
597	Porphyrin-Based Nanostructures for Photocatalytic Applications. Nanomaterials, 2016, 6, 51.	1.9	150
598	Porous Nickel–Iron Selenide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 19386-19392.	4.0	284
599	N-Doped graphene-supported Co@CoO core–shell nanoparticles as high-performance bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 12046-12053.	5.2	91
601	Phaseâ€Transformation Engineering in Cobalt Diselenide Realizing Enhanced Catalytic Activity for Hydrogen Evolution in an Alkaline Medium. Advanced Materials, 2016, 28, 7527-7532.	11.1	307
602	Nanostructured Amorphous Nickel Boride for Highâ€Efficiency Electrocatalytic Hydrogen Evolution over a Broad pH Range. ChemCatChem, 2016, 8, 708-712.	1.8	73
603	Singly versus Doubly Reduced Nickel Porphyrins for Proton Reduction: Experimental and Theoretical Evidence for a Homolytic Hydrogenâ€Evolution Reaction. Angewandte Chemie - International Edition, 2016, 55, 5457-5462.	7.2	148
604	Cobaltâ€Nanocrystalâ€Assembled Hollow Nanoparticles for Electrocatalytic Hydrogen Generation from Neutralâ€pH Water. Angewandte Chemie - International Edition, 2016, 55, 6725-6729.	7.2	58
605	Sulfur and Nitrogen Codoped Carbon Tubes as Bifunctional Metalâ€Free Electrocatalysts for Oxygen Reduction and Hydrogen Evolution in Acidic Media. Chemistry - A European Journal, 2016, 22, 10326-10329.	1.7	59

#	Article	IF	CITATIONS
606	Homoâ€Tandem Polymer Solar Cells with <i>V</i> _{OC} >1.8 V for Efficient PVâ€Driven Water Splitting. Advanced Materials, 2016, 28, 3366-3373.	11.1	57
607	Oxidative Chemical Vapor Deposition of Neutral Hole Transporting Polymer for Enhanced Solar Cell Efficiency and Lifetime. Advanced Materials, 2016, 28, 6399-6404.	11.1	23
608	Singly versus Doubly Reduced Nickel Porphyrins for Proton Reduction: Experimental and Theoretical Evidence for a Homolytic Hydrogenâ€Evolution Reaction. Angewandte Chemie, 2016, 128, 5547-5552.	1.6	30
609	Strong oupled Cobalt Borate Nanosheets/Graphene Hybrid as Electrocatalyst for Water Oxidation Under Both Alkaline and Neutral Conditions. Angewandte Chemie, 2016, 128, 2534-2538.	1.6	52
610	Nickel Confined in the Interlayer Region of Birnessite: an Active Electrocatalyst for Water Oxidation. Angewandte Chemie, 2016, 128, 10537-10541.	1.6	28
611	Strongâ€Coupled Cobalt Borate Nanosheets/Graphene Hybrid as Electrocatalyst for Water Oxidation Under Both Alkaline and Neutral Conditions. Angewandte Chemie - International Edition, 2016, 55, 2488-2492.	7.2	391
612	Fabrication of mesoporous NiFe2O4 nanorods as efficient oxygen evolution catalyst for water splitting. Electrochimica Acta, 2016, 211, 871-878.	2.6	117
613	First-Principle and Experiment Framework for Charge Distribution at the Interface of the Molybdenum Dichalcogenide Hybrid for Enhanced Electrochemical Hydrogen Generation. Journal of Physical Chemistry C, 2016, 120, 15096-15104.	1.5	21
614	Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions. Nano Energy, 2016, 27, 247-254.	8.2	196
615	Cobaltâ€Doping in Molybdenumâ€Carbide Nanowires Toward Efficient Electrocatalytic Hydrogen Evolution. Advanced Functional Materials, 2016, 26, 5590-5598.	7.8	400
616	Solar Thermal Energy Storage in a Photochromic Macrocycle. Chemistry - A European Journal, 2016, 22, 10796-10800.	1.7	36
617	Optimization of Norbornadiene Compounds for Solar Thermal Storage by Firstâ€Principles Calculations. ChemSusChem, 2016, 9, 1786-1794.	3.6	38
618	Overall Water Splitting Catalyzed Efficiently by an Ultrathin Nanosheetâ€Built, Hollow Ni ₃ S ₂ â€Based Electrocatalyst. Advanced Functional Materials, 2016, 26, 4839-4847.	7.8	438
619	Promoting the Water Oxidation Catalysis by Synergistic Interactions between Ni(OH) ₂ and Carbon Nanotubes. Advanced Energy Materials, 2016, 6, 1600516.	10.2	68
620	Hematite Surface Activation by Chemical Addition of Tin Oxide Layer. ChemPhysChem, 2016, 17, 2710-2717.	1.0	17
621	Visible-light-driven selective oxidation of benzyl alcohol and thioanisole by molecular ruthenium catalyst modified hematite. Chemical Communications, 2016, 52, 9711-9714.	2.2	35
622	Nickel Confined in the Interlayer Region of Birnessite: an Active Electrocatalyst for Water Oxidation. Angewandte Chemie - International Edition, 2016, 55, 10381-10385.	7.2	112
623	Copperâ€Based Photosensitisers in Water Reduction: A More Efficient In Situ Formed System and Improved Mechanistic Understanding. Chemistry - A European Journal, 2016, 22, 1233-1238.	1.7	76

#	Article	IF	CITATIONS
624	Chalcogenide and Phosphide Solid tate Electrocatalysts for Hydrogen Generation. ChemPlusChem, 2016, 81, 1045-1055.	1.3	74
625	Novel Composites of αâ€Fe ₂ O ₃ Tetrakaidecahedron and Graphene Oxide as an Effective Photoelectrode with Enhanced Photocurrent Performances. Advanced Functional Materials, 2016, 26, 3331-3339.	7.8	206
626	Design and Synthesis of FeOOH/CeO ₂ Heterolayered Nanotube Electrocatalysts for the Oxygen Evolution Reaction. Advanced Materials, 2016, 28, 4698-4703.	11.1	592
627	Azobenzene/graphene hybrid for high-density solar thermal storage by optimizing molecular structure. Science China Technological Sciences, 2016, 59, 1383-1390.	2.0	25
628	Hybrid Mn ₃ O ₄ –NiO nanocomposites as efficient photoelectrocatalysts towards water splitting under neutral pH conditions. RSC Advances, 2016, 6, 113694-113702.	1.7	8
629	Amorphous Co(OH)2 nanosheet electrocatalyst and the physical mechanism for its high activity and long-term cycle stability. Journal of Applied Physics, 2016, 119, .	1.1	59
630	OER activity manipulated by IrO6 coordination geometry: an insight from pyrochlore iridates. Scientific Reports, 2016, 6, 38429.	1.6	92
631	Hydrothermal synthesis of Co3O4 nanowire electrocatalysts for oxygen evolution reaction. Journal of Renewable and Sustainable Energy, 2016, 8, 044703.	0.8	8
632	A rapid and scalable method for making mixed metal oxide alloys for enabling accelerated materials discovery. Journal of Materials Research, 2016, 31, 1596-1607.	1.2	14
633	Self-supported nanoporous NiCo ₂ O ₄ nanowires with cobalt–nickel layered oxide nanosheets for overall water splitting. Nanoscale, 2016, 8, 1390-1400.	2.8	180
635	Visible light responsive noble metal-free nanocomposite of V-doped TiO2 nanorod with highly reduced graphene oxide forÂenhanced solar H2 production. International Journal of Hydrogen Energy, 2016, 41, 6752-6762.	3.8	30
636	Ageing mechanisms of highly active and stable nickel-coated silicon photoanodes for water splitting. Journal of Materials Chemistry A, 2016, 4, 8053-8060.	5.2	29
637	Insight into Metal-Catalyzed Water Oxidation from a DFT Perspective. Advances in Organometallic Chemistry, 2016, 65, 115-173.	0.5	5
638	Photochemical water oxidation system using ruthenium catalysts embedded into vesicle membranes. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 321, 151-160.	2.0	6
639	Novel Fe ₂ P/graphitized carbon yolk/shell octahedra for high-efficiency hydrogen production and lithium storage. Journal of Materials Chemistry A, 2016, 4, 9923-9930.	5.2	45
640	Electrochemical etching of α-cobalt hydroxide for improvement of oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 9578-9584.	5.2	125
641	Highly efficient photocatalytic hydrogen evolution from nickel quinolinethiolate complexes under visible light irradiation. Journal of Power Sources, 2016, 324, 253-260.	4.0	34
642	Highly Efficient Electrocatalysis and Mechanistic Investigation of Intermediate IrO _{<i>x</i>} (OH) _{<i>y</i>} Nanoparticle Films for Water Oxidation. ACS Catalysis, 2016, 6, 3946-3954.	5.5	96

#	Article	IF	CITATIONS
643	Halogenated earth abundant metalloporphyrins as photostable sensitizers for visible-light-driven water oxidation in a neutral phosphate buffer solution. Physical Chemistry Chemical Physics, 2016, 18, 15191-15198.	1.3	16
644	Highly active and durable self-standing WS ₂ /graphene hybrid catalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 9472-9476.	5.2	75
645	Highly efficient electrochemically driven water oxidation by graphene-supported mixed-valent Mn16-containing polyoxometalate. Green Energy and Environment, 2016, 1, 138-143.	4.7	17
646	Explicit degradation modelling in optimal lead–acid battery use for photovoltaic systems. IET Generation, Transmission and Distribution, 2016, 10, 1098-1106.	1.4	19
647	Controllable synthesis of three dimensional electrodeposited Co–P nanosphere arrays as efficient electrocatalysts for overall water splitting. RSC Advances, 2016, 6, 52761-52771.	1.7	51
648	Artificial Photosynthesis at Dynamic Selfâ€Assembled Interfaces in Water. Chemistry - A European Journal, 2016, 22, 58-72.	1.7	39
649	Photocatalytic hydrogen evolution and decomposition of glycerol over <scp>C</scp> d _{0.5} <scp>Z</scp> n _{0.5} <scp>S</scp> solid solution under visible light irradiation. Environmental Progress and Sustainable Energy, 2016, 35, 141-148.	1.3	19
650	Comparative Ab-Initio Study of Substituted Norbornadiene-Quadricyclane Compounds for Solar Thermal Storage. Journal of Physical Chemistry C, 2016, 120, 3635-3645.	1.5	71
651	Photochemical hydrogen production and cobaloximes: the influence of the cobalt axial N-ligand on the system stability. Dalton Transactions, 2016, 45, 6732-6738.	1.6	84
652	Photoâ€Rechargeable Electric Energy Storage Systems. Advanced Energy Materials, 2016, 6, 1500369.	10.2	157
653	Bifunctionality and Mechanism of Electrodeposited Nickel–Phosphorous Films for Efficient Overall Water Splitting. ChemCatChem, 2016, 8, 106-112.	1.8	147
654	Experimental and Computational Evidence of Highly Active Fe Impurity Sites on the Surface of Oxidized Au for the Electrocatalytic Oxidation of Water in Basic Media. ChemElectroChem, 2016, 3, 66-73.	1.7	44
655	An effective preparation method of composite photocatalysts for hydrogen evolution using an organic photosensitizer and metal particles assembled on alumina-silica. Catalysis Today, 2016, 278, 303-311.	2.2	8
656	Computational Investigation and Design of Cobalt Aqua Complexes for Homogeneous Water Oxidation. Journal of Physical Chemistry C, 2016, 120, 7966-7975.	1.5	37
657	Simultaneous Reduction of CO ₂ and Splitting of H ₂ O by a Single Immobilized Cobalt Phthalocyanine Electrocatalyst. ACS Catalysis, 2016, 6, 3092-3095.	5.5	237
658	Synthesis, Characterization, and Photocatalytic H ₂ -Evolving Activity of a Family of [Co(N4Py)(X)] ^{<i>n</i>+} Complexes in Aqueous Solution. Inorganic Chemistry, 2016, 55, 4564-4581.	1.9	47
659	An electrochemically functional layer of hydrogenase extract on an electrode of large and tunable specific surface area. Journal of Materials Chemistry A, 2016, 4, 6487-6494.	5.2	19
660	Enhanced electrocatalytic oxygen evolution of α-Co(OH) ₂ nanosheets on carbon nanotube/polyimide films. Nanoscale, 2016, 8, 9667-9675.	2.8	133
#	Article	IF	CITATIONS
-----	--	------	-----------
661	Cobalt phosphide-based nanoparticles as bifunctional electrocatalysts for alkaline water splitting. Journal of Materials Chemistry A, 2016, 4, 7549-7554.	5.2	53
662	An electron injection promoted highly efficient electrocatalyst of FeNi ₃ @GR@Fe-NiOOH for oxygen evolution and rechargeable metal–air batteries. Journal of Materials Chemistry A, 2016, 4, 7762-7771.	5.2	70
663	Self-assembled, nanostructured coatings for water oxidation by alternating deposition of Cu-branched peptide electrocatalysts and polyelectrolytes. Chemical Science, 2016, 7, 5249-5259.	3.7	17
664	A transition metal oxofluoride offering advantages in electrocatalysis and potential use in applications. Faraday Discussions, 2016, 188, 481-498.	1.6	5
665	Hierarchical iron nickel oxide architectures derived from metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction. Electrochimica Acta, 2016, 208, 17-24.	2.6	86
666	Reaction Pathways of Hydrogen-Evolving Electrocatalysts: Electrochemical and Spectroscopic Studies of Proton-Coupled Electron Transfer Processes. ACS Catalysis, 2016, 6, 3644-3659.	5.5	117
667	Photoelectrochemical hydrogen production in water using a layer-by-layer assembly of a Ru dye and Ni catalyst on NiO. Chemical Science, 2016, 7, 5537-5546.	3.7	119
668	Hollow CoP nanopaticle/N-doped graphene hybrids as highly active and stable bifunctional catalysts for full water splitting. Nanoscale, 2016, 8, 10902-10907.	2.8	158
669	In situ Grown Pyramid Structures of Nickel Diselenides Dependent on Oxidized Nickel Foam as Efficient Electrocatalyst for Oxygen Evolution Reaction. Electrochimica Acta, 2016, 205, 77-84.	2.6	96
670	Editorial of the PCCP themed issue on "Basic Mechanisms in Energy Conversionâ€: Physical Chemistry Chemical Physics, 2016, 18, 10680-10681.	1.3	0
671	Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy, 2016, 24, 139-147.	8.2	282
672	Nanosized CoWO 4 and NiWO 4 as efficient oxygen-evolving electrocatalysts. Electrochimica Acta, 2016, 209, 75-84.	2.6	70
673	Main Group Lewis Acid-Mediated Transformations of Transition-Metal Hydride Complexes. Chemical Reviews, 2016, 116, 8873-8911.	23.0	114
674	Solar-Driven Water Oxidation and Decoupled Hydrogen Production Mediated by an Electron-Coupled-Proton Buffer. Journal of the American Chemical Society, 2016, 138, 6707-6710.	6.6	95
675	Coaxial ultrathin Co1â^'yFeyOx nanosheet coating on carbon nanotubes for water oxidation with excellent activity. RSC Advances, 2016, 6, 80613-80620.	1.7	15
676	Highly active and stable layered ternary transition metal chalcogenide for hydrogen evolution reaction. Nano Energy, 2016, 28, 366-372.	8.2	107
677	In Situ Rapid Formation of a Nickel–Iron-Based Electrocatalyst for Water Oxidation. ACS Catalysis, 2016, 6, 6987-6992.	5.5	103
678	A cobalt-based hybrid electrocatalyst derived from a carbon nanotube inserted metal–organic framework for efficient water-splitting. Journal of Materials Chemistry A, 2016, 4, 16057-16063.	5.2	156

#	Article	IF	CITATIONS
679	Two dimensional and layered transition metal oxides. Applied Materials Today, 2016, 5, 73-89.	2.3	400
680	Lamellar structured CoSe 2 nanosheets directly arrayed on Ti plate as an efficient electrochemical catalyst for hydrogen evolution. Electrochimica Acta, 2016, 217, 156-162.	2.6	45
681	Uniformly mesoporous NiO/NiFe2O4 biphasic nanorods as efficient oxygen evolving catalyst for water splitting. International Journal of Hydrogen Energy, 2016, 41, 17976-17986.	3.8	106
682	One-Pot Growth of 3D Reduced Graphene Oxide Foams Embedded with NiFe Oxide Nanocatalysts for Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2016, 163, F3158-F3163.	1.3	10
683	Activity of Water Oxidation on Pure and (Fe, Ni, and Cu)-Substituted Co ₃ O ₄ . ACS Energy Letters, 2016, 1, 858-862.	8.8	59
684	Catalytic Water-Oxidation Activity of a Weakly Coupled Binuclear Ruthenium Polypyridyl Complex. European Journal of Inorganic Chemistry, 2016, 2016, 5547-5556.	1.0	18
685	Rapid prototyping of electrolyzer flow field plates. Energy and Environmental Science, 2016, 9, 3417-3423.	15.6	49
686	Understanding and tuning the properties of redox-accumulating manganese helicates. Dalton Transactions, 2016, 45, 18900-18908.	1.6	14
687	Charge-Transfer Dynamics in Nanorod Photocatalysts with Bimetallic Metal Tips. Journal of Physical Chemistry C, 2016, 120, 24491-24497.	1.5	26
688	MoS ₂ Nanosheet Loaded with TiO ₂ Nanoparticles: An Efficient Electrocatalyst for Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2016, 163, H1087-H1090.	1.3	23
689	[MoO(S ₂) ₂ L] ^{1–} (L = picolinate or pyrimidine-2-carboxylate) Complexes as MoS _{<i>x</i>} -Inspired Electrocatalysts for Hydrogen Production in Aqueous Solution. Journal of the American Chemical Society, 2016, 138, 13726-13731.	6.6	41
690	Hydrogen evolution reaction performance of the molybdenum disulfide/nickel–phosphorus composites in alkaline solution. International Journal of Hydrogen Energy, 2016, 41, 18942-18952.	3.8	30
691	Heteroatom-doped graphene â€~Idli': A green and foody approach towards development of metal free bifunctional catalyst for rechargeable zinc-air battery. Nano Energy, 2016, 30, 118-129.	8.2	50
692	Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media. Journal of Power Sources, 2016, 333, 213-236.	4.0	390
693	Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO ₂ to C ₁ Hydrocarbons. ACS Catalysis, 2016, 6, 7769-7777.	5.5	190
694	Water Oxidation Catalyzed by a Ruthenium Complex with an Ru-C Bond. ChemistrySelect, 2016, 1, 3045-3048.	0.7	4
695	One‣tep Synthesis of CoSâ€Doped βâ€Co(OH) ₂ @Amorphous MoS ₂₊ <i>_x</i> Hybrid Catalyst Grown on Nickel Foam for Highâ€Performance Electrochemical Overall Water Splitting. Advanced Functional Materials, 2016, 26, 7386-7393.	7.8	217
696	A Cobaltâ€Based Film for Highly Efficient Electrocatalytic Water Oxidation in Neutral Aqueous Solution. ChemCatChem, 2016, 8, 2757-2760.	1.8	13

#	Article	IF	CITATIONS
697	On How Experimental Conditions Affect the Electrochemical Response of Disordered Nickel Oxyhydroxide Films. Chemistry of Materials, 2016, 28, 5635-5642.	3.2	22
698	Hierarchically nanostructured MoS ₂ with rich in-plane edges as a high-performance electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 14577-14585.	5.2	58
699	Solution Growth of Vertical VS ₂ Nanoplate Arrays for Electrocatalytic Hydrogen Evolution. Chemistry of Materials, 2016, 28, 5587-5591.	3.2	173
700	Electropolymerized supermolecule derived N, P co-doped carbon nanofiber networks as a highly efficient metal-free electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 13726-13730.	5.2	131
701	Coâ€doping Strategy for Developing Perovskite Oxides as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Advanced Science, 2016, 3, 1500187.	5.6	245
702	Two-step synthesis of binary Ni–Fe sulfides supported on nickel foam as highly efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 13499-13508.	5.2	250
703	Choosing the best molecular precursor to prepare Li ₄ Ti ₅ O ₁₂ by the sol–gel method using ¹ H NMR: evidence of [Ti ₃ (OEt) ₁₃] ^{â^'} in solution. Dalton Transactions, 2016, 45, 13888-13898.	1.6	5
704	Low Band Gap Benzimidazole COF Supported Ni ₃ N as Highly Active OER Catalyst. Advanced Energy Materials, 2016, 6, 1601189.	10.2	182
705	One-Step Hydrothermal Deposition of Ni:FeOOH onto Photoanodes for Enhanced Water Oxidation. ACS Energy Letters, 2016, 1, 624-632.	8.8	122
706	MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 15148-15155.	5.2	291
707	Porous FeNi oxide nanosheets as advanced electrochemical catalysts for sustained water oxidation. Journal of Materials Chemistry A, 2016, 4, 14939-14943.	5.2	63
708	Highly Active and Stable Graphene Tubes Decorated with FeCoNi Alloy Nanoparticles via a Templateâ€Free Graphitization for Bifunctional Oxygen Reduction and Evolution. Advanced Energy Materials, 2016, 6, 1601198.	10.2	224
709	Noncovalent Immobilization of a Pyrene-Modified Cobalt Corrole on Carbon Supports for Enhanced Electrocatalytic Oxygen Reduction and Oxygen Evolution in Aqueous Solutions. ACS Catalysis, 2016, 6, 6429-6437.	5.5	170
710	Nanostructured Fe(III) catalysts for water oxidation assembled with the aid of organic acid salt electrolytes. Applied Surface Science, 2016, 387, 1274-1280.	3.1	2
711	Rational design of Pt–Ni–Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction. Nanoscale, 2016, 8, 16379-16386.	2.8	128
712	Topâ€Down and Bottomâ€Up Approaches in Engineering 1 T Phase Molybdenum Disulfide (MoS ₂): Towards Highly Catalytically Active Materials. Chemistry - A European Journal, 2016, 22, 14336-14341.	1.7	45
713	X-ray Spectroscopic Characterization of Co(IV) and Metal–Metal Interactions in Co ₄ O ₄ : Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 11017-11030.	6.6	94
714	Mo _x C/CNT Composites as Active Electrocatalysts for the Hydrogen Evolution Reaction under Alkaline Conditions. Electroanalysis, 2016, 28, 2293-2296.	1.5	10

#	Article	IF	CITATIONS
715	High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. Journal of the American Chemical Society, 2016, 138, 16174-16181.	6.6	852
716	Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nature Energy, 2016, 1, .	19.8	1,979
717	Highly Corrosion Resistant and Sandwich-like Si ₃ N ₄ /Cr-CrN _{<i>x</i>VSi_{/Si₃N₄ Coatings Used for Solar Selective Absorbing Applications. ACS Applied Materials & Interfaces, 2016, 8, 34008-34018.}}	4.0	23
718	Catalytic reduction of proton, oxygen and carbon dioxide with cobalt macrocyclic complexes. Journal of Porphyrins and Phthalocyanines, 2016, 20, 935-949.	0.4	18
719	Tunable Gravimetric and Volumetric Hydrogen Storage Capacities in Polyhedral Oligomeric Silsesquioxane Frameworks. ACS Applied Materials & Interfaces, 2016, 8, 25219-25228.	4.0	14
720	From water reduction to oxidation: Janus Co-Ni-P nanowires as high-efficiency and ultrastable electrocatalysts for over 3000Âh water splitting. Journal of Power Sources, 2016, 330, 156-166.	4.0	190
721	A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization. Journal of the American Chemical Society, 2016, 138, 13639-13646.	6.6	689
722	Electrocatalytic and photocatalytic hydrogen generation from water by a water-soluble cobaltÂcomplex supported by 2-ethyl-2-(2-hydroxybenzylideneamino)propane-1,3-diol. International Journal of Hydrogen Energy, 2016, 41, 14676-14683.	3.8	15
723	A Molecular Ni omplex Containing Tetrahedral Nickel Selenide Core as Highly Efficient Electrocatalyst for Water Oxidation. ChemSusChem, 2016, 9, 3128-3132.	3.6	80
724	Suppression of Deactivation Processes in Photocatalytic Reduction of CO ₂ Using Pulsed Light. ChemCatChem, 2016, 8, 2688-2695.	1.8	10
725	Transition Metal Carbides and Nitrides in Energy Storage and Conversion. Advanced Science, 2016, 3, 1500286.	5.6	1,001
726	Characterization of Interfacial Chargeâ€Transfer Photoexcitation of Polychromiumâ€Oxoâ€Electrodeposited TiO ₂ as an Earthâ€Abundant Photoanode for Water Oxidation Driven by Visible Light. ChemPlusChem, 2016, 81, 1116-1122.	1.3	7
727	Electroâ€Oxidation of Ni42 Steel: A Highly Active Bifunctional Electrocatalyst. Advanced Functional Materials, 2016, 26, 6402-6417.	7.8	90
728	Simultaneous H ₂ Generation and Biomass Upgrading in Water by an Efficient Nobleâ€Metalâ€Free Bifunctional Electrocatalyst. Angewandte Chemie - International Edition, 2016, 55, 9913-9917.	7.2	435
729	Selfâ€Assembly of Singleâ€Layer CoAlâ€Layered Double Hydroxide Nanosheets on 3D Graphene Network Used as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Advanced Materials, 2016, 28, 7640-7645.	11.1	355
730	Simultaneous H ₂ Generation and Biomass Upgrading in Water by an Efficient Nobleâ€Metalâ€Free Bifunctional Electrocatalyst. Angewandte Chemie, 2016, 128, 10067-10071.	1.6	94
731	Ureaâ€Based Fuel Cells and Electrocatalysts for Urea Oxidation. Energy Technology, 2016, 4, 1329-1337.	1.8	189
732	Integrating Electrocatalytic 5-Hydroxymethylfurfural Oxidation and Hydrogen Production via Co–P-Derived Electrocatalysts. ACS Energy Letters, 2016, 1, 386-390.	8.8	272

#	Article	IF	CITATIONS
733	Progress on Electrocatalysts of Hydrogen Evolution Reaction Based on Carbon Fiber Materials. Chinese Journal of Analytical Chemistry, 2016, 44, 1447-1457.	0.9	33
734	Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nature Communications, 2016, 7, 11741.	5.8	332
735	A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. Journal of Materials Chemistry A, 2016, 4, 17587-17603.	5.2	1,037
736	In Situ Spectroscopic Identification of μ-OO Bridging on Spinel Co ₃ O ₄ Water Oxidation Electrocatalyst. Journal of Physical Chemistry Letters, 2016, 7, 4847-4853.	2.1	136
737	Dissection of Electronic Substituent Effects in Multielectron–Multistep Molecular Catalysis. Electrochemical CO ₂ -to-CO Conversion Catalyzed by Iron Porphyrins. Journal of Physical Chemistry C, 2016, 120, 28951-28960.	1.5	139
738	Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related Compounds. CheM, 2016, 1, 699-726.	5.8	462
739	Graphene oxide co-doped with nitrogen and sulfur and decorated with cobalt phosphide nanorods: An efficient hybrid catalyst for electrochemical hydrogen evolution. Electrochimica Acta, 2016, 222, 246-256.	2.6	57
740	Co-Doped NiSe nanowires on nickel foam via a cation exchange approach as efficient electrocatalyst for enhanced oxygen evolution reaction. RSC Advances, 2016, 6, 106832-106836.	1.7	46
741	Enhanced catalytic performance of ZnO-CoOx electrode generated from electrochemical corrosion of Co-Zn alloy for oxygen evolution reaction. Electrochimica Acta, 2016, 222, 999-1006.	2.6	15
742	One dimensional metal dithiolene (M = Ni, Fe, Zn) coordination polymers for the hydrogen evolution reaction. Dalton Transactions, 2016, 45, 19311-19321.	1.6	59
743	Electrochemically activated NiSe-Ni x S y hybrid nanorods as efficient electrocatalysts for oxygen evolution reaction. Electrochimica Acta, 2016, 220, 536-544.	2.6	60
744	Tuning the Photoelectrocatalytic Hydrogen Evolution of Pt-Decorated Silicon Photocathodes by the Temperature and Time of Electroless Pt Deposition. Langmuir, 2016, 32, 11728-11735.	1.6	11
745	Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Science Advances, 2016, 2, e1501122.	4.7	1,078
746	Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition. Nature Communications, 2016, 7, 11510.	5.8	316
747	Stereoelectronic Effects in Cl ₂ Elimination from Binuclear Pt(III) Complexes. Inorganic Chemistry, 2016, 55, 11815-11820.	1.9	22
748	Self-supported porous Cobalt Oxide Nanowires with enhanced Electrocatalytic performance toward Oxygen evolution reaction. Journal of Chemical Sciences, 2016, 128, 1879-1885.	0.7	10
749	Role of Electron Correlation along the Water Splitting Reaction. Journal of Chemical Theory and Computation, 2016, 12, 5803-5810.	2.3	5
750	Hybrid bio-photo-electro-chemical cells for solar water splitting. Nature Communications, 2016, 7, 12552.	5.8	74

#	Article	IF	CITATIONS
751	Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. Nature Communications, 2016, 7, 12765.	5.8	312
752	Ammonia intercalated flower-like MoS2 nanosheet film as electrocatalyst for high efficient and stable hydrogen evolution. Scientific Reports, 2016, 6, 31092.	1.6	76
753	Pyrolyzed cobalt porphyrin-based conjugated mesoporous polymers as bifunctional catalysts for hydrogen production and oxygen evolution in water. Chemical Communications, 2016, 52, 13483-13486.	2.2	61
754	In situ electrochemical formation of NiSe/NiO _x core/shell nano-electrocatalysts for superior oxygen evolution activity. Catalysis Science and Technology, 2016, 6, 8268-8275.	2.1	78
755	Structural characterization and proton reduction electrocatalysis of thiolate-bridged bimetallic (CoCo and CoFe) complexes. Dalton Transactions, 2016, 45, 18559-18565.	1.6	26
756	Hierarchical nickel–cobalt phosphide yolk–shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting. Nanoscale, 2016, 8, 19129-19138.	2.8	140
757	Self-assembly and photocatalytic H ₂ evolution activity of two unprecedented polytantalotungstates based on the largest {Ta ₁₈ } and {Ta ₁₈ Yb ₂ } clusters. Chemical Communications, 2016, 52, 13787-13790.	2.2	25
758	Controllable orientation-dependent crystal growth of high-index faceted dendritic NiC _{0.2} nanosheets as high-performance bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 18499-18508.	5.2	51
759	Diiron Complexes [Fe ₂ (CO) ₅ (μâ€pdt/Mebdt)(L)] Containing a Chelating Diphosphine Ligand L=(Oxydiâ€2,1â€phenylene)bis(diphenylphosphine): Bioinspired [FeFe] Hydrogenase Model Complexes. ChemistrySelect, 2016, 1, 5671-5678.	0.7	3
760	Metallic Cobalt Nanoparticles Encapsulated in Nitrogenâ€Enriched Graphene Shells: Its Bifunctional Electrocatalysis and Application in Zinc–Air Batteries. Advanced Functional Materials, 2016, 26, 4397-4404.	7.8	350
761	Solutionâ€Processed Twoâ€Ðimensional Metal Dichalcogenideâ€Based Nanomaterials for Energy Storage and Conversion. Advanced Materials, 2016, 28, 6167-6196.	11.1	438
762	Hierarchically Porous Nickel Sulfide Multifunctional Superstructures. Advanced Energy Materials, 2016, 6, 1502333.	10.2	268
763	Cobaltâ€Nanocrystalâ€Assembled Hollow Nanoparticles for Electrocatalytic Hydrogen Generation from Neutralâ€pH Water. Angewandte Chemie, 2016, 128, 6837-6841.	1.6	14
764	Quinones as Reversible Electron Relays in Artificial Photosynthesis. ChemPhysChem, 2016, 17, 1321-1328.	1.0	26
765	Lowâ€Overpotential Electrocatalytic Water Splitting with Nobleâ€Metalâ€Free Nanoparticles Supported in a sp ³ Nâ€Rich Flexible COF. Advanced Energy Materials, 2016, 6, 1600110.	10.2	121
766	Enhanced Photocatalytic Hydrogen Production by Adsorption of an [FeFe]â€Hydrogenase Subunit Mimic on Selfâ€Assembled Membranes. European Journal of Inorganic Chemistry, 2016, 2016, 554-560.	1.0	26
767	An efficient self-assembly Ru - Al material as heterogeneous catalyst for water oxidation. Inorganic Chemistry Communication, 2016, 70, 129-131.	1.8	0
768	Size-Dependent Activity Trends Combined with in Situ X-ray Absorption Spectroscopy Reveal Insights into Cobalt Oxide/Carbon Nanotube-Catalyzed Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2016, 6, 4347-4355.	5.5	125

#	Article	IF	CITATIONS
769	An Efficient and Stable Hydrophobic Molecular Cobalt Catalyst for Water Electro-oxidation at Neutral pH. ACS Catalysis, 2016, 6, 4647-4652.	5.5	50
770	Cu-based Polyoxometalate Catalyst for Efficient Catalytic Hydrogen Evolution. Inorganic Chemistry, 2016, 55, 6750-6758.	1.9	50
771	General Thermal Texturization Process of MoS ₂ for Efficient Electrocatalytic Hydrogen Evolution Reaction. Nano Letters, 2016, 16, 4047-4053.	4.5	106
772	Why is a proton transformed into a hydride by [NiFe] hydrogenases? An intrinsic reactivity analysis based on conceptual DFT. Physical Chemistry Chemical Physics, 2016, 18, 15369-15374.	1.3	12
773	Thermodynamic performance of a mid-temperature solar fuel system for cooling, heating and power generation. Applied Thermal Engineering, 2016, 106, 1268-1281.	3.0	22
774	Mechanism of Hydrogen Evolution Reaction on 1T-MoS ₂ from First Principles. ACS Catalysis, 2016, 6, 4953-4961.	5.5	678
775	Photocatalytic oxidation of alkenes and alcohols in water by a manganese(<scp>v</scp>) nitrido complex. Chemical Communications, 2016, 52, 9271-9274.	2.2	20
776	Electrodeposited SiO ₂ film: a promising interlayer of a highly active Ti electrode for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 11949-11956.	5.2	28
777	Fe/Ni Metal–Organic Frameworks and Their Binder-Free Thin Films for Efficient Oxygen Evolution with Low Overpotential. ACS Applied Materials & Interfaces, 2016, 8, 16736-16743.	4.0	198
778	Beyond Metal-Hydrides: Non-Transition-Metal and Metal-Free Ligand-Centered Electrocatalytic Hydrogen Evolution and Hydrogen Oxidation. Journal of the American Chemical Society, 2016, 138, 7844-7847.	6.6	97
779	Universal Strategy to Fabricate a Two-Dimensional Layered Mesoporous Mo ₂ C Electrocatalyst Hybridized on Graphene Sheets with High Activity and Durability for Hydrogen Generation. ACS Applied Materials & Interfaces, 2016, 8, 18107-18118.	4.0	71
780	Water splitting–biosynthetic system with CO ₂ reduction efficiencies exceeding photosynthesis. Science, 2016, 352, 1210-1213.	6.0	760
781	Proton Reduction Using a Hydrogenase-Modified Nanoporous Black Silicon Photoelectrode. ACS Applied Materials & Interfaces, 2016, 8, 14481-14487.	4.0	44
783	Efficient solar-to-chemical conversion with chlorine photoanode. Electrochemistry Communications, 2016, 67, 69-72.	2.3	3
784	CaF2:Ce3+/Yb3+ hollow spheres luminescence downconversion property optimize anti-reflective coatings for solar cells. Solar Energy, 2016, 134, 45-51.	2.9	21
785	Molybdenum carbide supported by N-doped carbon: Controlled synthesis and application in electrocatalytic hydrogen evolution reaction. Materials Letters, 2016, 176, 101-105.	1.3	20
786	Enhanced oxygen evolution reaction of metallic nickel phosphide nanosheets by surface modification. Inorganic Chemistry Frontiers, 2016, 3, 1021-1027.	3.0	58
787	Probing the electrochemical properties of an electrophoretically deposited Co ₃ O ₄ /rGO/CNTs nanocomposite for supercapacitor applications. RSC Advances, 2016, 6, 60578-60586.	1.7	33

#	Article	IF	CITATIONS
788	Characterization of a trinuclear ruthenium species in catalytic water oxidation by Ru(bda)(pic) ₂ in neutral media. Chemical Communications, 2016, 52, 8619-8622.	2.2	36
789	X20CoCrWMo10-9//Co ₃ O ₄ : a metal–ceramic composite with unique efficiency values for water-splitting in the neutral regime. Energy and Environmental Science, 2016, 9, 2609-2622.	15.6	84
790	How theory and simulation can drive fuel cell electrocatalysis. Nano Energy, 2016, 29, 334-361.	8.2	71
791	Electronic Properties of Pure and Fe-Doped β-Ni(OH) ₂ : New Insights Using Density Functional Theory with a Cluster Approach. Journal of Physical Chemistry C, 2016, 120, 12344-12350.	1.5	18
792	3D Hierarchical Porous Mo ₂ C for Efficient Hydrogen Evolution. Small, 2016, 12, 2859-2865.	5.2	101
793	High-Performance Water Electrolysis System with Double Nanostructured Superaerophobic Electrodes. Small, 2016, 12, 2492-2498.	5.2	113
794	Reinvestigation of Water Oxidation Catalyzed by a Dinuclear Cobalt Polypyridine Complex: Identification of CoO _{<i>x</i>} as a Real Heterogeneous Catalyst. ACS Catalysis, 2016, 6, 5062-5068.	5.5	105
795	Cs(I) Cation Enhanced Cu(II) Catalysis of Water Oxidation. Inorganic Chemistry, 2016, 55, 7135-7140.	1.9	15
796	Nitrogen and Sulfur Codoped Graphite Foam as a Selfâ€Supported Metalâ€Free Electrocatalytic Electrode for Water Oxidation. Advanced Energy Materials, 2016, 6, 1501492.	10.2	153
797	Solarâ€ŧoâ€Hydrogen Efficiency of 9.5 % by using a Thin‣ayer Platinum Catalyst and Commercial Amorphous Silicon Solar Cells. ChemCatChem, 2016, 8, 1713-1717.	1.8	7
798	Homogeneous Photocatalytic Water Oxidation with a Dinuclear Co ^{III} –Pyridylmethylamine Complex. Inorganic Chemistry, 2016, 55, 1154-1164.	1.9	73
799	First row transition metal catalysts for solar-driven water oxidation produced by electrodeposition. Journal of Materials Chemistry A, 2016, 4, 6724-6741.	5.2	80
800	Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition. Nano Energy, 2016, 29, 83-110.	8.2	650
801	Mechanistic insights into the activation process in electrocatalytic ethanol oxidation by phosphomolybdic acid-stabilised palladium(0) nanoparticles (PdNPs@PMo ₁₂). RSC Advances, 2016, 6, 5359-5366.	1.7	19
802	3D flexible hydrogen evolution electrodes with Se-promoted molybdenum sulfide nanosheet arrays. RSC Advances, 2016, 6, 11077-11080.	1.7	28
803	Binary nickel–iron nitride nanoarrays as bifunctional electrocatalysts for overall water splitting. Inorganic Chemistry Frontiers, 2016, 3, 630-634.	3.0	145
804	Exploration of the electrochemical mechanism of ultrasmall multiple phases molybdenum carbides nanocrystals for hydrogen evolution reaction. RSC Advances, 2016, 6, 9240-9246.	1.7	48
805	Morphology–activity correlation in hydrogen evolution catalyzed by cobalt sulfides. Inorganic Chemistry Frontiers, 2016, 3, 279-285.	3.0	33

#	Article	IF	CITATIONS
806	Artificial photosynthesis using metal/nonmetal-nitride semiconductors: current status, prospects, and challenges. Journal of Materials Chemistry A, 2016, 4, 2801-2820.	5.2	127
807	MoO2 nanoparticles on reduced graphene oxide/polyimide-carbon nanotube film as efficient hydrogen evolution electrocatalyst. Journal of Power Sources, 2016, 304, 146-154.	4.0	45
808	Experimental and Computational Mechanistic Studies Guiding the Rational Design of Molecular Electrocatalysts for Production and Oxidation of Hydrogen. Inorganic Chemistry, 2016, 55, 445-460.	1.9	67
809	Semisynthetic and Biomolecular Hydrogen Evolution Catalysts. Inorganic Chemistry, 2016, 55, 467-477.	1.9	54
810	Water oxidation catalysis: an amorphous quaternary Ba-Sr-Co-Fe oxide as a promising electrocatalyst for the oxygen-evolution reaction. Chemical Communications, 2016, 52, 1513-1516.	2.2	63
811	Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. Journal of Materials Chemistry A, 2016, 4, 3068-3076.	5.2	477
812	Direct electrochemical formation of nanostructured amorphous Co(OH) ₂ on gold electrodes with enhanced activity for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 991-999.	5.2	175
813	Experimental and Theoretical Insight into Electrocatalytic Hydrogen Evolution with Nickel Bis(aryldithiolene) Complexes as Catalysts. Inorganic Chemistry, 2016, 55, 432-444.	1.9	76
814	An iron-based thin film as a highly efficient catalyst for electrochemical water oxidation in a carbonate electrolyte. Chemical Communications, 2016, 52, 5753-5756.	2.2	51
815	Visible Lightâ€Driven Hydrogen Evolution from Aqueous Solution in a Nobleâ€Metalâ€Free System Catalyzed by a Cobalt Phthalocyanine. ChemistrySelect, 2016, 1, 425-429.	0.7	13
816	Electrochemically activated-iron oxide nanosheet arrays on carbon fiber cloth as a three-dimensional self-supported electrode for efficient water oxidation. Journal of Materials Chemistry A, 2016, 4, 6048-6055.	5.2	66
817	Manganese Oxidation State Assignment for Manganese Catalase. Journal of the American Chemical Society, 2016, 138, 4358-4361.	6.6	13
818	In situ grown, self-supported iron–cobalt–nickel alloy amorphous oxide nanosheets with low overpotential toward water oxidation. Chemical Communications, 2016, 52, 4290-4293.	2.2	71
819	Microwave-assisted synthesis of multiply-twinned Au–Ag nanocrystals on reduced graphene oxide for high catalytic performance towards hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 3865-3871.	5.2	32
820	Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy and Environmental Science, 2016, 9, 1468-1475.	15.6	437
821	Oxygen Reduction Catalysis at a Dicobalt Center: The Relationship of Faradaic Efficiency to Overpotential. Journal of the American Chemical Society, 2016, 138, 2925-2928.	6.6	84
822	Heteronanowires of MoC–Mo ₂ C as efficient electrocatalysts for hydrogen evolution reaction. Chemical Science, 2016, 7, 3399-3405.	3.7	532
823	Defect-Rich Metallic Titania (TiO _{1.23})—An Efficient Hydrogen Evolution Catalyst for Electrochemical Water Splitting. ACS Catalysis, 2016, 6, 2222-2229.	5.5	86

#	Article	IF	CITATIONS
824	Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nature Communications, 2016, 7, 10667.	5.8	577
825	Evaluation of the coordination preferences and catalytic pathways of heteroaxial cobalt oximes towards hydrogen generation. Chemical Science, 2016, 7, 3264-3278.	3.7	35
826	Titania@gold plasmonic nanoarchitectures: An ideal photoanode for dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 2016, 60, 408-420.	8.2	58
827	Electro-catalyst based on cerium doped cobalt oxide for oxygen evolution reaction in electrochemical water splitting. Journal of Materials Science: Materials in Electronics, 2016, 27, 5294-5302.	1.1	44
828	A fascinating combination of Co, Ni and Al nanomaterial for oxygen evolution reaction. Applied Surface Science, 2016, 370, 445-451.	3.1	62
829	Three-dimensional coral-like cobalt selenide as an advanced electrocatalyst for highly efficient oxygen evolution reaction. Electrochimica Acta, 2016, 194, 59-66.	2.6	128
830	Oxygen evolution reaction electrocatalysis on SrIrO ₃ grown using molecular beam epitaxy. Journal of Materials Chemistry A, 2016, 4, 6831-6836.	5.2	62
831	Rational design of semiconductor-based photocatalysts for advanced photocatalytic hydrogen production: the case of cadmium chalcogenides. Inorganic Chemistry Frontiers, 2016, 3, 591-615.	3.0	151
832	Electrochemical Water Splitting Coupled with Solar Cells. Lecture Notes in Energy, 2016, , 229-245.	0.2	0
833	Synthesis of Cu ₃ P nanocubes and their excellent electrocatalytic efficiency for the hydrogen evolution reaction in acidic solution. RSC Advances, 2016, 6, 9672-9677.	1.7	49
834	YBO 3 : Ce 3+ , Yb 3+ based near-infrared quantum cutting phosphors: Synthesis and application to solar cells. Ceramics International, 2016, 42, 9396-9401.	2.3	15
835	Evaluating Activity for Hydrogen-Evolving Cobalt and Nickel Complexes at Elevated Pressures of Hydrogen and Carbon Monoxide. Electrocatalysis, 2016, 7, 87-96.	1.5	9
836	Maghemite nanoparticles decorated on carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 5216-5222.	5.2	65
837	In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co ₃ O ₄ . Journal of the American Chemical Society, 2016, 138, 36-39.	6.6	787
838	Zn0.76Co0.24S/CoS2 nanowires array for efficient electrochemical splitting of water. Electrochimica Acta, 2016, 190, 360-364.	2.6	99
839	Thermal enhancement of water affinity on the surface of undoped hematite photoelectrodes. Solar Energy Materials and Solar Cells, 2016, 144, 395-404.	3.0	12
840	Synergistic Effects in Nanoengineered HNb ₃ O ₈ /Graphene Hybrids with Improved Photocatalytic Conversion Ability of CO ₂ into Renewable Fuels. Langmuir, 2016, 32, 254-264.	1.6	37
841	Solar energy for electricity and fuels. Ambio, 2016, 45, 15-23.	2.8	50

#	Article	IF	CITATIONS
842	Hierarchically Porous Urchin-Like Ni ₂ P Superstructures Supported on Nickel Foam as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catalysis, 2016, 6, 714-721.	5.5	737
843	Increased activity in hydrogen evolution electrocatalysis for partial anionic substitution in cobalt oxysulfide nanoparticles. Journal of Materials Chemistry A, 2016, 4, 2842-2848.	5.2	32
844	Metal–organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting. Chemical Science, 2016, 7, 1690-1695.	3.7	745
845	Dimerization assembly mechanism involving proton coupled electron transfer for hydrogen evolution from water by molybdenum-oxo catalyst. Journal of Alloys and Compounds, 2016, 664, 439-443.	2.8	14
846	A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Research, 2016, 9, 28-46.	5.8	773
847	One-step synthesis of self-supported porous NiSe 2 /Ni hybrid foam: An efficient 3D electrode for hydrogen evolution reaction. Nano Energy, 2016, 20, 29-36.	8.2	279
848	When Layered Nickel–Cobalt Silicate Hydroxide Nanosheets Meet Carbon Nanotubes: A Synergetic Coaxial Nanocable Structure for Enhanced Electrocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 945-951.	4.0	97
849	The hierarchical nanowires array of iron phosphide integrated on a carbon fiber paper as an effective electrocatalyst for hydrogen generation. Journal of Materials Chemistry A, 2016, 4, 1454-1460.	5.2	120
850	Kinetic Analysis of Competitive Electrocatalytic Pathways: New Insights into Hydrogen Production with Nickel Electrocatalysts. Journal of the American Chemical Society, 2016, 138, 604-616.	6.6	51
851	Immobilisation of water-oxidising amphiphilic ruthenium complexes on unmodified silica gel. RSC Advances, 2016, 6, 5739-5744.	1.7	7
852	pH dependence of OER activity of oxides: Current and future perspectives. Catalysis Today, 2016, 262, 2-10.	2.2	288
853	Dye-sensitised semiconductors modified with molecular catalysts for light-driven H ₂ production. Chemical Society Reviews, 2016, 45, 9-23.	18.7	298
854	Hydrogen evolution catalyzed by a water-soluble cobalt(II) complex with picolinic acid ions. International Journal of Hydrogen Energy, 2016, 41, 249-254.	3.8	19
855	Cu(II) Aliphatic Diamine Complexes for Both Heterogeneous and Homogeneous Water Oxidation Catalysis in Basic and Neutral Solutions. ACS Catalysis, 2016, 6, 77-83.	5.5	90
856	In-grown structure of NiFe mixed metal oxides and CNT hybrid catalysts for oxygen evolution reaction. Chemical Communications, 2016, 52, 1439-1442.	2.2	74
857	Crystallographic Structure and Morphology Transformation of MnO ₂ Nanorods as Efficient Electrocatalysts for Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2016, 163, H67-H73.	1.3	72
858	Computational Characterization of Redox Non-Innocence in Cobalt-Bis(Diaryldithiolene)-Catalyzed Proton Reduction. Journal of Chemical Theory and Computation, 2016, 12, 223-230.	2.3	30
859	Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy and Environmental Science, 2016, 9, 1771-1782.	15.6	632

Article	IF	Citations
PtCo/CoO x nanocomposites: Bifunctional electrocatalysts for oxygen reduction and evolution reactions synthesized via tandem laser ablation synthesis in solution-galvanic replacement reactions. Applied Catalysis B: Environmental, 2016, 182, 286-296.	10.8	99
Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting. Energy and Environmental Science, 2016, 9, 145-154.	15.6	156
One pot synthesis of CdS/TiO 2 hetero-nanostructures for enhanced H 2 production from water and removal of pollutants from aqueous streams. Materials Research Bulletin, 2016, 73, 377-384.	2.7	16
Nickel promoted cobalt disulfide nanowire array supported on carbon cloth: An efficient and stable bifunctional electrocatalyst for full water splitting. Electrochemistry Communications, 2016, 63, 60-64.	2.3	154
Solar Energy Conversion. , 2016, , 245-261.		0
MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution. Carbon, 2016, 98, 84-89.	5.4	89
Transition metal based layered double hydroxides tailored for energy conversion and storage. Materials Today, 2016, 19, 213-226.	8.3	464
Ab initio calculations of doped TiO2 anatase (101) nanotubes for photocatalytical water splitting applications. Materials Science in Semiconductor Processing, 2016, 42, 138-141.	1.9	13
Synergistic effects in biphasic nanostructured electrocatalyst: Crystalline core versus amorphous shell. Nano Energy, 2017, 41, 788-797.	8.2	27
Artificial, molecular-based light-harvesting antenna systems made of metal dendrimers and multibodipy species. Comptes Rendus Chimie, 2017, 20, 209-220.	0.2	23
Mixedâ€Metal Tungsten Oxide Photoanode Materials Made by Pulsed‣aser in Liquids Synthesis. ChemPhysChem, 2017, 18, 1091-1100.	1.0	14
Graphene-coated hybrid electrocatalysts derived from bimetallic metal–organic frameworks for efficient hydrogen generation. Journal of Materials Chemistry A, 2017, 5, 5000-5006.	5.2	92
Intralayered Ostwald Ripening to Ultrathin Nanomesh Catalyst with Robust Oxygenâ€Evolving Performance. Advanced Materials, 2017, 29, 1604765.	11.1	283
Cobalt Assisted Synthesis of IrCu Hollow Octahedral Nanocages as Highly Active Electrocatalysts toward Oxygen Evolution Reaction. Advanced Functional Materials, 2017, 27, 1604688.	7.8	186
Homologous NiO//Ni ₂ P nanoarrays grown on nickel foams: a well matched electrode pair with high stability in overall water splitting. Nanoscale, 2017, 9, 4409-4418.	2.8	127
MOF Templateâ€Directed Fabrication of Hierarchically Structured Electrocatalysts for Efficient Oxygen Evolution Reaction. Advanced Energy Materials, 2017, 7, 1602643.	10.2	281
Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1486-149	91. 3.3	488

878	Highâ€Throughput Synthesis of Mixedâ€Metal Electrocatalysts for CO ₂ Reduction. Angewandte Chemie - International Edition, 2017, 56, 6068-6072.	7	7.2	131
-----	---	---	-----	-----

#

#	Article	IF	CITATIONS
879	Highâ€Performance Supported Iridium Oxohydroxide Water Oxidation Electrocatalysts. ChemSusChem, 2017, 10, 1943-1957.	3.6	65
880	An Sâ€Oxygenated [NiFe] Complex Modelling Sulfenate Intermediates of an O ₂ â€Tolerant Hydrogenase. Angewandte Chemie - International Edition, 2017, 56, 2208-2211.	7.2	21
881	Molecular polypyridine-based metal complexes as catalysts for the reduction of CO ₂ . Chemical Society Reviews, 2017, 46, 761-796.	18.7	426
882	Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017, 46, 337-365.	18.7	4,505
883	Metal-Organic Frameworks for Energy Applications. CheM, 2017, 2, 52-80.	5.8	941
884	Heterometallic Lanthanide–Titanium Oxo Clusters: A New Family of Water Oxidation Catalysts. Inorganic Chemistry, 2017, 56, 1057-1060.	1.9	72
885	Coupling Subâ€Nanometric Copper Clusters with Quasiâ€Amorphous Cobalt Sulfide Yields Efficient and Robust Electrocatalysts for Water Splitting Reaction. Advanced Materials, 2017, 29, 1606200.	11.1	350
886	In Situ Construction of Nickel Phosphosulfide (Ni ₅ P ₄ S) Active Species on 3D Ni Foam through Chemical Vapor Deposition for Electrochemical Hydrogen Evolution. ChemElectroChem, 2017, 4, 1108-1116.	1.7	24
887	A Theoretical Perspective on the Photovoltaic Performance of S,N-Heteroacenes: An Even–Odd Effect on the Charge Separation Dynamics. Journal of Physical Chemistry C, 2017, 121, 2574-2587.	1.5	56
888	Ein Sâ€oxygenierter [NiFe]â€Komplex als Modell für Sulfenat―intermediate einer O ₂ â€ŧolerante Hydrogenase. Angewandte Chemie, 2017, 129, 2243-2247.	ⁿ 1.6	1
889	Structural, electronic and optical properties of CsPbX3 (X=Cl, Br, I) for energy storage and hybrid solar cell applications. Journal of Alloys and Compounds, 2017, 705, 828-839.	2.8	203
890	Electrodeposited-hydroxide surface-covered porous nickel–cobalt alloy electrodes for efficient oxygen evolution reaction. Chemical Communications, 2017, 53, 3365-3368.	2.2	35
891	Spectroelectrochemical analysis of the mechanism of (photo)electrochemical hydrogen evolution at a catalytic interface. Nature Communications, 2017, 8, 14280.	5.8	83
892	Novel visible-light-sensitized Chl-Mg/P25 catalysts for photocatalytic degradation of rhodamine B. Applied Catalysis B: Environmental, 2017, 207, 326-334.	10.8	43
893	Regulated Synthesis of Mo Sheets and Their Derivative MoX Sheets (X: P, S, or C) as Efficient Electrocatalysts for Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces, 2017, 9, 8041-8046.	4.0	43
894	MoS ₂ –Ni ₃ S ₂ Heteronanorods as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catalysis, 2017, 7, 2357-2366.	5.5	963
895	Facile electrochemical preparation of self-supported porous Ni–Mo alloy microsphere films as efficient bifunctional electrocatalysts for water splitting. Journal of Materials Chemistry A, 2017, 5, 5797-5805.	5.2	119
896	Hydrogen energy production using manganese/semiconductor system inspired by photosynthesis. International Journal of Hydrogen Energy, 2017, 42, 8530-8538.	3.8	11

		CITATION REPORT		
#	Article		IF	Citations
897	Graphene and Their Hybrid Electrocatalysts for Water Splitting. ChemCatChem, 2017,	9, 1554-1568.	1.8	88
898	A stepwise-designed Rh-Au-Si nanocomposite that surpasses Pt/C hydrogen evolution overpotentials. Nano Research, 2017, 10, 1749-1755.	activity at high	5.8	37
899	Dual function photocatalysis of cyano-bridged heteronuclear metal complexes for wate and two-electron reduction of dioxygen to produce hydrogen peroxide as a solar fuel. Communications, 2017, 53, 3473-3476.	er oxidation Chemical	2.2	37
900	Mesoporous nickel–iron binary oxide nanorods for efficient electrocatalytic water ox Research, 2017, 10, 2096-2105.	kidation. Nano	5.8	57
901	Enhancing Water Oxidation Catalysis on a Synergistic Phosphorylated NiFe Hydroxide Catalyst Wettability. ACS Catalysis, 2017, 7, 2535-2541.	by Adjusting	5.5	292
902	Iridium–PNP Pincer Complexes for Methanol Dehydrogenation at Low Base Concent ChemCatChem, 2017, 9, 1891-1896.	ration.	1.8	41
903	Highâ€Throughput Synthesis of Mixedâ€Metal Electrocatalysts for CO ₂ Angewandte Chemie, 2017, 129, 6164-6168.	Reduction.	1.6	28
904	Overestimated solar water splitting performance on oxide semiconductor anodes. Scie Materials, 2017, 60, 90-92.	ence China	3.5	5
905	Copper Oxide Film In-situ Electrodeposited from Cu(II) Complex as Highly Efficient Cat Oxidation. Electrochimica Acta, 2017, 230, 501-507.	alyst for Water	2.6	18
906	Influence of Surface Adsorption on the Oxygen Evolution Reaction on IrO _{2of the American Chemical Society, 2017, 139, 3473-3479.}	>(110). Journal	6.6	269
907	In situ O ₂ -emission assisted synthesis of molybdenum carbide nanomate efficient electrocatalyst for hydrogen production in both acidic and alkaline media. Jou Materials Chemistry A, 2017, 5, 5178-5186.	rials as an Irnal of	5.2	62
908	Charge Transfer Processes in OPV Materials as Revealed by EPR Spectroscopy. Advance Materials, 2017, 7, 1602226.	ed Energy	10.2	75
909	P Dopants Triggered New Basal Plane Active Sites and Enlarged Interlayer Spacing in N Nanosheets toward Electrocatalytic Hydrogen Evolution. ACS Energy Letters, 2017, 2,	10S ₂ 745-752.	8.8	304
910	Iron–cobalt bimetal oxide nanorods as efficient and robust water oxidation catalysts Transactions, 2017, 46, 10602-10610.	s. Dalton	1.6	22
911	Highly crystalline β-FeOOH(Cl) nanorod catalysts doped with transition metals for effi oxidation. Sustainable Energy and Fuels, 2017, 1, 636-643.	cient water	2.5	40
912	Iron–doped NiCoO 2 nanoplates as efficient electrocatalysts for oxygen evolution re Surface Science, 2017, 407, 177-184.	action. Applied	3.1	40
913	Amorphous Cobalt–Iron Hydroxide Nanosheet Electrocatalyst for Efficient Electroch Photoâ€Electrochemical Oxygen Evolution. Advanced Functional Materials, 2017, 27,	emical and 1603904.	7.8	260
914	Bimetallic phosphide hollow nanocubes derived from a prussian-blue-analog used as high-performance catalysts for the oxygen evolution reaction. Catalysis Science and Te 2017, 7, 1549-1555.	echnology,	2.1	118

#	Article	IF	CITATIONS
915	Strong Metal–Phosphide Interactions in Core–Shell Geometry for Enhanced Electrocatalysis. Nano Letters, 2017, 17, 2057-2063.	4.5	145
916	Self-supported rectangular CoP nanosheet arrays grown on a carbon cloth as an efficient electrocatalyst for the hydrogen evolution reaction over a variety of pH values. New Journal of Chemistry, 2017, 41, 2436-2442.	1.4	26
917	Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors. Coordination Chemistry Reviews, 2017, 337, 80-96.	9.5	282
918	Recent Advances in Atomic Metal Doping of Carbonâ€based Nanomaterials for Energy Conversion. Small, 2017, 13, 1700191.	5.2	290
919	In Situ Preparation of Pt Nanoparticles Supported on N-Doped Carbon as Highly Efficient Electrocatalysts for Hydrogen Production. Journal of Physical Chemistry C, 2017, 121, 8923-8930.	1.5	32
920	Electrosynthesis of NiP _x nanospheres for electrocatalytic hydrogen evolution from a neutral aqueous solution. Chemical Communications, 2017, 53, 5507-5510.	2.2	84
921	Ultrathin Graphene Layers Encapsulating Nickel Nanoparticles Derived Metal–Organic Frameworks for Highly Efficient Electrocatalytic Hydrogen and Oxygen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2017, 5, 4771-4777.	3.2	176
922	NH ₃ Postâ€Treatment Induces High Activity of Coâ€Based Electrocatalysts Supported on Carbon Nanotubes for the Oxygen Evolution Reaction. ChemElectroChem, 2017, 4, 2091-2098.	1.7	7
923	Electrospun ytterbium and europium ions co-doped stannic oxide nanofibers and application in dye-sensitized solar cells. Materials Research Bulletin, 2017, 92, 90-98.	2.7	10
924	A scalable and facile synthesis of carbon nanospheres as a metal free electrocatalyst for oxidation of l -ascorbic acid: Alternate fuel for direct oxidation fuel cells. Journal of Electroanalytical Chemistry, 2017, 799, 609-616.	1.9	18
925	Nitrogen and fluorine dual-doped porous graphene-nanosheets as efficient metal-free electrocatalysts for hydrogen-evolution in acidic media. Catalysis Science and Technology, 2017, 7, 2228-2235.	2.1	37
926	Cu(<scp>iii</scp>)triarylcorroles with asymmetric push–pull meso-substitutions: tunable molecular electrochemically catalyzed hydrogen evolution. Dalton Transactions, 2017, 46, 6912-6920.	1.6	18
927	In-situ activation of self-supported 3D hierarchically porous Ni3S2 films grown on nanoporous copper as excellent pH-universal electrocatalysts for hydrogen evolution reaction. Nano Energy, 2017, 36, 85-94.	8.2	211
928	Self-Assembled Ruthenium(II)Porphyrin-Aluminium(III)Porphyrin-Fullerene Triad for Long-Lived Photoinduced Charge Separation. Journal of Physical Chemistry A, 2017, 121, 4242-4252.	1.1	25
929	Constructing three-dimensional porous Ni/Ni ₃ S ₂ nano-interfaces for hydrogen evolution electrocatalysis under alkaline conditions. Dalton Transactions, 2017, 46, 10700-10706.	1.6	41
930	Synthesis and electrochemical properties of a water soluble nickel(II) complex supported by N-phenylpyridin-2-ylmethanimine ligand. Inorganic Chemistry Communication, 2017, 82, 11-15.	1.8	12
931	Mechanistic insight into oxygen evolution electrocatalysis of surface phosphate modified cobalt phosphide nanorod bundles and their superior performance for overall water splitting. Electrochimica Acta, 2017, 242, 355-363.	2.6	127
932	On the Electrolytic Stability of Iron-Nickel Oxides. CheM, 2017, 2, 590-597.	5.8	104

#	Article	IF	CITATIONS
933	Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes. Sustainable Energy and Fuels, 2017, 1, 1217-1231.	2.5	103
935	Recent advances in metal–nitrogen–carbon catalysts for electrochemical water splitting. Materials Chemistry Frontiers, 2017, 1, 2155-2173.	3.2	109
936	Photocatalytic CO ₂ Reduction by Periodic Mesoporous Organosilica (PMO) Containing Two Different Ruthenium Complexes as Photosensitizing and Catalytic Sites. Chemistry - A European Journal, 2017, 23, 10301-10309.	1.7	38
937	Highly efficient photocatalytic H 2 evolution using TiO 2 nanoparticles integrated with electrocatalytic metal phosphides as cocatalysts. Applied Surface Science, 2017, 416, 957-964.	3.1	50
938	Design of template-stabilized active and earth-abundant oxygen evolution catalysts in acid. Chemical Science, 2017, 8, 4779-4794.	3.7	172
939	Cobalt corroles with phosphonic acid pendants as catalysts for oxygen and hydrogen evolution from neutral aqueous solution. Chemical Communications, 2017, 53, 6195-6198.	2.2	110
940	Enhanced Electrocatalysis for Energyâ€Efficient Hydrogen Production over CoP Catalyst with Nonelectroactive Zn as a Promoter. Advanced Energy Materials, 2017, 7, 1700020.	10.2	519
941	Promoting Active Species Generation by Electrochemical Activation in Alkaline Media for Efficient Electrocatalytic Oxygen Evolution in Neutral Media. Nano Letters, 2017, 17, 578-583.	4.5	191
942	Understanding Structure-Dependent Catalytic Performance of Nickel Selenides for Electrochemical Water Oxidation. ACS Catalysis, 2017, 7, 310-315.	5.5	155
943	Interconnected Molybdenum Carbide-Based Nanoribbons for Highly Efficient and Ultrastable Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 24608-24615.	4.0	44
944	Titania Cowrapped α-Sulfur Composite as a Visible Light Active Photocatalyst for Hydrogen Evolution Using in Situ Methanol from CO ₂ as a Sacrificial Agent. ACS Sustainable Chemistry and Engineering, 2017, 5, 6736-6745.	3.2	18
945	Highly efficient and durable water oxidation in a near-neutral carbonate electrolyte electrocatalyzed by a core–shell structured NiO@Ni–Ci nanosheet array. Sustainable Energy and Fuels, 2017, 1, 1287-1291.	2.5	27
947	Mechanistic insights into the light-driven hydrogen evolution reaction from formic acid mediated by an iridium photocatalyst. Catalysis Science and Technology, 2017, 7, 2763-2771.	2.1	7
948	Design and Development of Efficient Bifunctional Catalysts by Tuning the Electronic Properties of Cobalt–Manganese Tungstate for Oxygen Reduction and Evolution Reactions. ChemCatChem, 2017, 9, 3681-3690.	1.8	43
949	Colloidal synthesis of iridium-iron nanoparticles for electrocatalytic oxygen evolution. Sustainable Energy and Fuels, 2017, 1, 1199-1203.	2.5	19
950	A Cost-Efficient Bifunctional Ultrathin Nanosheets Array for Electrochemical Overall Water Splitting. Small, 2017, 13, 1700355.	5.2	72
951	Competent Electrocatalytic and Photocatalytic Proton Reduction by a Dechelated [Co(tpy) ₂] ²⁺ Scaffold. European Journal of Inorganic Chemistry, 2017, 2017, 3409-3418.	1.0	18
952	Earth-abundant amorphous catalysts for electrolysis of water. Chinese Journal of Catalysis, 2017, 38, 991-1005.	6.9	66

#	Article	IF	CITATIONS
953	Amorphous Metallic NiFeP: A Conductive Bulk Material Achieving High Activity for Oxygen Evolution Reaction in Both Alkaline and Acidic Media. Advanced Materials, 2017, 29, 1606570.	11.1	441
954	Facile electrodeposition of cauliflower-like S-doped nickel microsphere films as highly active catalysts for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 15056-15064.	5.2	45
955	Waterâ€Plasmaâ€Enabled Exfoliation of Ultrathin Layered Double Hydroxide Nanosheets with Multivacancies for Water Oxidation. Advanced Materials, 2017, 29, 1701546.	11.1	539
956	Highly Stable Threeâ€Dimensional Porous Nickelâ€Iron Nitride Nanosheets for Full Water Splitting at High Current Densities. Chemistry - A European Journal, 2017, 23, 10187-10194.	1.7	61
957	Near-infrared absorption carboxylated chlorophyll-a derivatives for biocompatible dye-sensitized hydrogen evolution. International Journal of Hydrogen Energy, 2017, 42, 15731-15738.	3.8	33
958	Hydrogen adsorption on MoS ₂ -surfaces: a DFT study on preferential sites and the effect of sulfur and hydrogen coverage. Physical Chemistry Chemical Physics, 2017, 19, 16231-16241.	1.3	64
959	Highly stable three-dimensional nickel–iron oxyhydroxide catalysts for oxygen evolution reaction at high current densities. Electrochimica Acta, 2017, 245, 770-779.	2.6	37
960	Hierarchical Fe-doped NiO x nanotubes assembled from ultrathin nanosheets containing trivalent nickel for oxygen evolution reaction. Nano Energy, 2017, 38, 167-174.	8.2	160
961	Activation of Ternary Transition Metal Chalcogenide Basal Planes through Chemical Strain for the Hydrogen Evolution Reaction. ChemPlusChem, 2017, 82, 785-791.	1.3	25
962	Unraveling factors leading to efficient norbornadiene–quadricyclane molecular solar-thermal energy storage systems. Journal of Materials Chemistry A, 2017, 5, 12369-12378.	5.2	65
963	Textured NiSe2 Film: Bifunctional Electrocatalyst for Full Water Splitting at Remarkably Low Overpotential with High Energy Efficiency. Scientific Reports, 2017, 7, 2401.	1.6	104
964	In-situ carbonization approach for the binder-free Ir-dispersed ordered mesoporous carbon hydrogen evolution electrode. Journal of Energy Chemistry, 2017, 26, 1140-1146.	7.1	11
965	Advances and trends in redox materials for solar thermochemical fuel production. Solar Energy, 2017, 156, 3-20.	2.9	130
966	Li Electrochemical Tuning of Metal Oxide for Highly Selective CO ₂ Reduction. ACS Nano, 2017, 11, 6451-6458.	7.3	123
967	Electrocatalytic Water Oxidation by a Homogeneous Copper Catalyst Disfavors Single-Site Mechanisms. Journal of the American Chemical Society, 2017, 139, 8586-8600.	6.6	107
968	In situ grown nickel nanoparticles in a calixarene nanoreactor on a graphene–MoS ₂ support for efficient water electrolysis. Sustainable Energy and Fuels, 2017, 1, 1329-1338.	2.5	13
969	Highly Active and Stable Iridium Pyrochlores for Oxygen Evolution Reaction. Chemistry of Materials, 2017, 29, 5182-5191.	3.2	172
970	Tetra- and Heptametallic Ru(II),Rh(III) Supramolecular Hydrogen Production Photocatalysts. Journal of the American Chemical Society, 2017, 139, 7843-7854.	6.6	35

#	Article	IF	CITATIONS
971	Dual cobalt–copper light-driven catalytic reduction of aldehydes and aromatic ketones in aqueous media. Chemical Science, 2017, 8, 4739-4749.	3.7	73
972	An alkaline electro-activated Fe–Ni phosphide nanoparticle-stack array for high-performance oxygen evolution under alkaline and neutral conditions. Journal of Materials Chemistry A, 2017, 5, 13329-13335.	5.2	135
973	Engineering phase transformation of cobalt selenide in carbon cages and the phases' bifunctional electrocatalytic activity for water splitting. Nanotechnology, 2017, 28, 315401.	1.3	24
974	Synthesis of Nickel Phosphide Electrocatalysts from Hybrid Metal Phosphonates. ACS Applied Materials & Interfaces, 2017, 9, 14013-14022.	4.0	59
975	High activity of a Pt decorated Ni/C nanocatalyst for hydrogen oxidation. Chinese Journal of Catalysis, 2017, 38, 396-403.	6.9	11
976	Theoretical evaluation of N-alkylcarbazoles potential in hydrogen release. International Journal of Hydrogen Energy, 2017, 42, 9966-9977.	3.8	17
977	Core–Shellâ€ 5 tructured NiS ₂ @Niâ€8 _i Nanoarray for Efficient Water Oxidation at Nearâ€Neutral pH. ChemCatChem, 2017, 9, 3138-3143.	1.8	32
978	Efficient Electrocatalyst for the Hydrogen Evolution Reaction Derived from Polyoxotungstate/Polypyrrole/Graphene. ChemSusChem, 2017, 10, 2402-2407.	3.6	41
979	Microwave-Electrochemical Deposition of a Fe-Co Alloy with Catalytic Ability in Hydrogen Evolution. Electrochimica Acta, 2017, 235, 480-487.	2.6	19
980	In situ surface derivation of an Fe–Co–Bi layer on an Fe-doped Co ₃ O ₄ nanoarray for efficient water oxidation electrocatalysis under near-neutral conditions. Journal of Materials Chemistry A, 2017, 5, 6388-6392.	5.2	68
981	Photocatalysis with TiO ₂ Nanotubes: "Colorful―Reactivity and Designing Site-Specific Photocatalytic Centers into TiO ₂ Nanotubes. ACS Catalysis, 2017, 7, 3210-3235.	5.5	236
983	Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting. Nature Energy, 2017, 2, .	19.8	115
984	From Mixed-Metal MOFs to Carbon-Coated Coreâ€"Shell Metal Alloy@Metal Oxide Solid Solutions: Transformation of Co/Ni-MOF-74 to Co _{<i>x</i>} Ni _{1â€"<i>x</i>} @Co _{<i>y</i>} Ni _{1â€"<i>y</i>} O@C for the Oxygen Evolution Reaction. Inorganic Chemistry. 2017. 56, 5203-5209.	1.9	93
985	Electrocatalysis of Furfural Oxidation Coupled with H ₂ Evolution via Nickelâ€Based Electrocatalysts in Water. ChemNanoMat, 2017, 3, 491-495.	1.5	78
986	Recent Advances in Wideâ€Bandgap Photovoltaic Polymers. Advanced Materials, 2017, 29, 1605437.	11.1	276
987	Hydrogenation of CO ₂ in Water Using a Bis(diphosphine) Ni–H Complex. ACS Catalysis, 2017, 7, 3089-3096.	5.5	66
988	Electrospinning Heteroâ€Nanofibers of Fe ₃ Câ€Mo ₂ C/Nitrogenâ€Dopedâ€Carbon as Efficient Electrocatalysts for Hydrogen Evolution. ChemSusChem, 2017, 10, 2597-2604.	3.6	100
989	A general approach to synthesise ultrathin NiM (M = Fe, Co, Mn) hydroxide nanosheets as high-performance low-cost electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 7769-7775.	5.2	94

#	Article	IF	CITATIONS
990	Temperature dependence of photocatalytic CO ₂ reduction by trans(Cl)–Ru(bpy)(CO) ₂ Cl ₂ : activation energy difference between CO and formate production. Faraday Discussions, 2017, 198, 263-277.	1.6	12
991	Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3â^'xS4 coupled Ni3S2 nanosheet arrays. Nano Energy, 2017, 35, 161-170.	8.2	339
992	Hierarchically Structured 3D Integrated Electrodes by Galvanic Replacement Reaction for Highly Efficient Water Splitting. Advanced Energy Materials, 2017, 7, 1700107.	10.2	116
993	Oxygen defective metal oxides for energy conversion and storage. Nano Today, 2017, 13, 23-39.	6.2	266
994	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	23.0	3,940
995	Monolayer Group IV–VI Monochalcogenides: Low-Dimensional Materials for Photocatalytic Water Splitting. Journal of Physical Chemistry C, 2017, 121, 7615-7624.	1.5	154
996	Structural models of the biological oxygen-evolving complex: achievements, insights, and challenges for biomimicry. Green Chemistry, 2017, 19, 2309-2325.	4.6	74
997	Polymer surfactant-assisted tunable nanostructures of amorphous IrO thin films for efficient electrocatalytic water oxidation. Catalysis Today, 2017, 290, 51-58.	2.2	17
998	N-doped nanoporous Co ₃ O ₄ nanosheets with oxygen vacancies as oxygen evolving electrocatalysts. Nanotechnology, 2017, 28, 165402.	1.3	105
999	Solar Fuels and Solar Chemicals Industry. Accounts of Chemical Research, 2017, 50, 616-619.	7.6	333
1000	Co–catalytic Metal Oxide Nanoparticles Decorated Silicon/ Hematite Core Shell Nanowire Arrays as Efficient Photo Electrodes for Water Splitting. ChemistrySelect, 2017, 2, 2544-2551.	0.7	5
1001	In situ electrochemically generated composite-type CoOx/WOx in self-activated cobalt tungstate nanostructures: implication for highly enhanced electrocatalytic oxygen evolution. Electrochimica Acta, 2017, 224, 551-560.	2.6	48
1002	Photodeposited ruthenium dioxide films for oxygen evolution reaction electrocatalysis. Journal of Materials Chemistry A, 2017, 5, 1575-1580.	5.2	24
1003	Porous NiCo Diselenide Nanosheets Arrayed on Carbon Cloth as Promising Advanced Catalysts Used in Water Splitting. Electrochimica Acta, 2017, 225, 503-513.	2.6	46
1004	An Operando Investigation of (Ni–Fe–Co–Ce)O _{<i>x</i>} System as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 1248-1258.	5.5	156
1005	Modulation of charge carrier pathways in CdS nanospheres by integrating MoS ₂ and Ni ₂ P for improved migration and separation toward enhanced photocatalytic hydrogen evolution. Catalysis Science and Technology, 2017, 7, 641-649.	2.1	76
1006	Ternary NiCo ₂ P <i>_x</i> Nanowires as pHâ€Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1605502.	11.1	544
1007	Critical Aspects of Heme–Peroxo–Cu Complex Structure and Nature of Proton Source Dictate Metal–O _{peroxo} Breakage versus Reductive O–O Cleavage Chemistry. Journal of the American Chemical Society, 2017, 139, 472-481.	6.6	38

		CITATION R	EPORT	
#	ARTICLE CVD Polymers for Devices and Device Fabrication, Advanced Materials, 2017, 29, 16046	06.	IF 11.1	CITATIONS
1009	A Redoxâ€anchoring Approach to Wellâ€dispersed MoC _x /C Nanocomposit Electrocatalytic Hydrogen Evolution. Chemistry - an Asian Journal, 2017, 12, 446-452.	e for Efficient	1.7	18
1010	Molybdenum carbide nanoparticles embedded in nitrogen-doped porous carbon nanofib catalyst for hydrogen evolution and oxygen reduction reactions. Carbon, 2017, 114, 628	ers as a dual 3-634.	5.4	94
1011	Dualâ€Functional N Dopants in Edges and Basal Plane of MoS ₂ Nanosheets and Durable Hydrogen Evolution. Advanced Energy Materials, 2017, 7, 1602086.	s Toward Efficient	10.2	286
1012	Doped 1D Nanostructures of Transitionâ€metal Oxides: Firstâ€principles Evaluation of P Suitability. Israel Journal of Chemistry, 2017, 57, 461-476.	hotocatalytic	1.0	15
1013	Structure-dependent electrode properties of hollow carbon micro-fibers derived from Pla and willow catkins for high-performance supercapacitors. Journal of Materials Chemistry 2580-2591.	tanus fruit A, 2017, 5,	5.2	66
1014	Silicon microwire arrays decorated with amorphous heterometal-doped molybdenum sul water photoelectrolysis. Nano Energy, 2017, 32, 422-432.	fide for	8.2	58
1015	High-Resolution Analysis of Photoanodes for Water Splitting by Means of Scanning Photoelectrochemical Microscopy. Analytical Chemistry, 2017, 89, 1222-1228.		3.2	61
1016	Reaction Parameters Influencing Cobalt Hydride Formation Kinetics: Implications for Ber H ₂ -Evolution Catalysts. Journal of the American Chemical Society, 2017, 13	ichmarking 39, 239-244.	6.6	100
1017	Switched Photocurrent on Tin Sulfideâ€Based Nanoplate Photoelectrodes. ChemSusChe 670-674.	rm, 2017, 10,	3.6	18
1018	Electro-oxidation of a cobalt based steel in LiOH: a non-noble metal based electro-cataly for durable water-splitting in an acidic milieu. Nanoscale, 2017, 9, 17829-17838.	st suitable	2.8	23
1019	Hierarchically Structured Cu-Based Electrocatalysts with Nanowires Array for Water Split Journal of Physical Chemistry C, 2017, 121, 25875-25881.	ting.	1.5	69
1020	Development of a ruthenium multi-pyridine complex as photosensitizer for highly efficiend driven water oxidation. Inorganic Chemistry Communication, 2017, 86, 10-13.	nt light	1.8	2
1021	Direct selenylation of mixed Ni/Fe metal-organic frameworks to NiFe-Se/C nanorods for c splitting. Journal of Power Sources, 2017, 366, 193-199.	overall water	4.0	72
1022	Enhanced photoelectrochemical response for hydrogen generation in self-assembled alig core/shell nanorod arrays grown by chemical bath deposition. Materials Today Energy, 20	gned ZnO/PbS 017, 6, 105-114.	2.5	29
1023	MoS ₂ /Ni ₃ S ₂ nanorod arrays well-aligned on Ni for hierarchical efficient bifunctional catalytic electrode for overall water splitting. RSC Adva 7, 46286-46296.	am: a 3D nces, 2017,	1.7	60
1024	[FeFe]-Hydrogenase and its organic molecule mimics—Artificial and bioengineering apµ hydrogenproduction. Journal of Photochemistry and Photobiology C: Photochemistry Re 33, 1-26.	plication for views, 2017,	5.6	29
1025	A porous Ru nanomaterial as an efficient electrocatalyst for the hydrogen evolution reac acidic and neutral conditions. Chemical Communications, 2017, 53, 11713-11716.	tion under	2.2	83

#	Article	IF	CITATIONS
1026	μ-Pyridine-bridged copper complex with robust proton-reducing ability. Dalton Transactions, 2017, 46, 14869-14879.	1.6	23
1027	Interplay of hemilability and redox activity in models of hydrogenase active sites. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9775-E9782.	3.3	40
1028	Highly defective porous CoP nanowire as electrocatalyst for full water splitting. International Journal of Hydrogen Energy, 2017, 42, 29080-29090.	3.8	68
1029	Self-Supported Hierarchical FeCoNi-LTH/NiCo ₂ O ₄ /CC Electrodes with Enhanced Bifunctional Performance for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 36917-36926.	4.0	76
1030	Superior Inorganic Ion Cofactors of Tetraborate Species Attaining Highly Efficient Heterogeneous Electrocatalysis for Water Oxidation on Cobalt Oxyhydroxide Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 36955-36961.	4.0	7
1031	An amorphous Co-carbonate-hydroxide nanowire array for efficient and durable oxygen evolution reaction in carbonate electrolytes. Nanoscale, 2017, 9, 16612-16615.	2.8	173
1032	Benzoate Anions-Intercalated Layered Nickel Hydroxide Nanobelts Array: An Earth-Abundant Electrocatalyst with Greatly Enhanced Oxygen Evolution Activity. ACS Sustainable Chemistry and Engineering, 2017, 5, 9625-9629.	3.2	36
1033	Ir-oriented nanocrystalline assemblies with high activity for hydrogen oxidation/evolution reactions in an alkaline electrolyte. Journal of Materials Chemistry A, 2017, 5, 22959-22963.	5.2	31
1034	Amorphous MoS _x developed on Co(OH) ₂ nanosheets generating efficient oxygen evolution catalysts. Journal of Materials Chemistry A, 2017, 5, 23103-23114.	5.2	81
1035	Semiconducting Metal Oxide Nanostructures for Water Splitting and Photovoltaics. Advanced Energy Materials, 2017, 7, 1700706.	10.2	108
1036	Powerful synergy: efficient Pt–Au–Si nanocomposites as state-of-the-art catalysts for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 21903-21908.	5.2	19
1037	Graphitized carbon-coated vanadium carbide nanoboscages modified by nickel with enhanced electrocatalytic activity for hydrogen evolution in both acid and alkaline solutions. Journal of Materials Chemistry A, 2017, 5, 23028-23034.	5.2	65
1038	Firstâ€Row Transition Metal Based Catalysts for the Oxygen Evolution Reaction under Alkaline Conditions: Basic Principles and Recent Advances. Small, 2017, 13, 1701931.	5.2	352
1039	In situ growth of cobalt@cobalt-borate core–shell nanosheets as highly-efficient electrocatalysts for oxygen evolution reaction in alkaline/neutral medium. Nanoscale, 2017, 9, 16059-16065.	2.8	64
1040	Efficiently Synergistic Hydrogen Evolution Realized by Trace Amount of Pt-Decorated Defect-Rich SnS ₂ Nanosheets. ACS Applied Materials & Interfaces, 2017, 9, 37750-37759.	4.0	76
1041	Mixed-Metal–Organic Framework Self-Template Synthesis of Porous Hybrid Oxyphosphides for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 38621-38628.	4.0	40
1042	Functionalized Carbon Nanotubes with Ni(II) Bipyridine Complexes as Efficient Catalysts for the Alkaline Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 8033-8041.	5.5	56
	Halogen substitutions leading to enhanced oxygen evolution and oxygen reduction reactions in	1.0	

#	Article	IF	CITATIONS
1044	Light-driven Hydrogen Evolution from Water by a Tripodal Silane Based Co ^{II} ₆ L ¹ ₈ Octahedral Cage. Inorganic Chemistry, 2017, 56, 13286-13292.	1.9	24
1045	Structure–Activity and Stability Relationships for Cobalt Polypyridylâ€Based Hydrogenâ€Evolving Catalysts in Water. ChemSusChem, 2017, 10, 4570-4580.	3.6	47
1046	Transition-Metal Single Atoms in a Graphene Shell as Active Centers for Highly Efficient Artificial Photosynthesis. CheM, 2017, 3, 950-960.	5.8	326
1047	Origin of Photoelectrochemical Generation of Dihydrogen by a Dye-Sensitized Photocathode without an Intentionally Introduced Catalyst. Journal of Physical Chemistry C, 2017, 121, 25836-25846.	1.5	16
1048	Domain Structures of Ni and NiFe (Oxy)Hydroxide Oxygen-Evolution Catalysts from X-ray Pair Distribution Function Analysis. Journal of Physical Chemistry C, 2017, 121, 25421-25429.	1.5	25
1049	A Self-Supported Porous Hierarchical Core–Shell Nanostructure of Cobalt Oxide for Efficient Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 8205-8213.	5.5	46
1050	Rapid Quantification of Film Thickness and Metal Loading for Electrocatalytic Metal Oxide Films. Chemistry of Materials, 2017, 29, 7272-7277.	3.2	11
1051	Frontiers of solvent-free functional molecular liquids. Chemical Communications, 2017, 53, 10344-10357.	2.2	77
1052	Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: A review with insights on structure, activity and mechanism. Materials Today Energy, 2017, 6, 1-26.	2.5	301
1053	Fe ₃ C@nitrogen doped CNT arrays aligned on nitrogen functionalized carbon nanofibers as highly efficient catalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 19672-19679.	5.2	109
1054	<i>Operando</i> Spectroscopic Analysis of CoP Films Electrocatalyzing the Hydrogen-Evolution Reaction. Journal of the American Chemical Society, 2017, 139, 12927-12930.	6.6	127
1055	Controlled Electrodeposition Synthesis of Co–Ni–P Film as a Flexible and Inexpensive Electrode for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 31887-31896.	4.0	116
1056	Metal-Assisted Ligand-Centered Electrocatalytic Hydrogen Evolution upon Reduction of a Bis(thiosemicarbazonato)Cu(II) Complex. Inorganic Chemistry, 2017, 56, 11254-11265.	1.9	102
1057	Charge transmission channel construction between a MOF and rGO by means of Co–Mo–S modification. Catalysis Science and Technology, 2017, 7, 4478-4488.	2.1	68
1058	Synthesis of 3D-MoO ₂ microsphere supported MoSe ₂ as an efficient electrocatalyst for hydrogen evolution reaction. Nanotechnology, 2017, 28, 465404.	1.3	22
1059	Enhancing the water oxidation activity of Ni2P nanocatalysts by iron-doping and electrochemical activation. Electrochimica Acta, 2017, 253, 498-505.	2.6	40
1060	A Mn-doped Ni ₂ P nanosheet array: an efficient and durable hydrogen evolution reaction electrocatalyst in alkaline media. Chemical Communications, 2017, 53, 11048-11051.	2.2	309
1061	PVP-assisted synthesis of porous CoO prisms with enhanced electrocatalytic oxygen evolution properties. Journal of Energy Chemistry, 2017, 26, 1210-1216.	7.1	26

#	Article	IF	Citations
1062	Structural Dynamics and Evolution of Bismuth Electrodes during Electrochemical Reduction of CO ₂ in Imidazolium-Based Ionic Liquid Solutions. ACS Catalysis, 2017, 7, 7285-7295.	5.5	41
1063	Endohedral metallofullerenes (M@C60) as efficient catalysts for highly active hydrogen evolution reaction. Journal of Catalysis, 2017, 354, 231-235.	3.1	84
1064	Preparation of Cobaltâ€Based Electrodes by Physical Vapor Deposition on Various Nonconductive Substrates for Electrocatalytic Water Oxidation. ChemSusChem, 2017, 10, 4699-4703.	3.6	11
1065	Stabilization of Polyoxometalate Water Oxidation Catalysts on Hematite by Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2017, 9, 35048-35056.	4.0	39
1066	An efficient Co3S4/CoP hybrid catalyst for electrocatalytic hydrogen evolution. Scientific Reports, 2017, 7, 11891.	1.6	45
1067	Oxygen evolution on Fe-doped NiO electrocatalysts deposited via microplasma. Nanoscale, 2017, 9, 15070-15082.	2.8	60
1068	Ultrafast and large scale preparation of superior catalyst for oxygen evolution reaction. Journal of Power Sources, 2017, 365, 320-326.	4.0	41
1069	One-pot synthesis nickel sulfide/amorphous molybdenum sulfide nanosheets array on nickel foam as a robust oxygen evolution reaction electrocatalyst. Journal of Solid State Chemistry, 2017, 256, 124-129.	1.4	19
1070	Anomalous in situ Activation of Carbon-Supported Ni2P Nanoparticles for Oxygen Evolving Electrocatalysis in Alkaline Media. Scientific Reports, 2017, 7, 8236.	1.6	21
1071	Self-healing catalysis in water. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13380-13384.	3.3	95
1072	Water Splitting via Decoupled Photocatalytic Water Oxidation and Electrochemical Proton Reduction Mediated by Electronâ€Coupledâ€Proton Buffer. Chemistry - an Asian Journal, 2017, 12, 2666-2669.	1.7	19
1073	Nitrogen Doped Carbon Nanosheets Coupled Nickel–Carbon Pyramid Arrays Toward Efficient Evolution of Hydrogen. Advanced Sustainable Systems, 2017, 1, 1700032.	2.7	12
1074	Role of Short-Range Chemical Ordering in (GaN) _{1–<i>x</i>} (ZnO) _{<i>x</i>} for Photodriven Oxygen Evolution. Chemistry of Materials, 2017, 29, 6525-6535.	3.2	17
1075	Theoretical evaluation of the structure–activity relationship in graphene-based electrocatalysts for hydrogen evolution reactions. RSC Advances, 2017, 7, 27033-27039.	1.7	21
1076	Nitrogenâ€Ðoped Graphene with a Threeâ€Ðimensional Architecture Assisted by Carbon Nitride Tetrapods as an Efficient Metalâ€Free Electrocatalyst for Hydrogen Evolution. ChemElectroChem, 2017, 4, 2643-2652.	1.7	29
1077	Towards Catalytic Ammonia Oxidation to Dinitrogen: A Synthetic Cycle by Using a Simple Manganese Complex. Chemistry - A European Journal, 2017, 23, 11479-11484.	1.7	48
1078	Remarkable enhancement of the alkaline oxygen evolution reaction activity of NiCo ₂ O ₄ by an amorphous borate shell. Inorganic Chemistry Frontiers, 2017, 4, 1546-1550.	3.0	34
1079	Efficient water oxidation with amorphous transition metal boride catalysts synthesized by chemical reduction of metal nitrate salts at room temperature. RSC Advances, 2017, 7, 32923-32930.	1.7	27

#	Article	IF	CITATIONS
1080	A NiFe-Based Hierarchically Structured 3D Electrode by Hydrothermal Deposition for Highly Efficient Water Oxidation. Electrochimica Acta, 2017, 247, 835-842.	2.6	12
1081	Computational screening of two-dimensional coordination polymers as efficient catalysts for oxygen evolution and reduction reaction. Journal of Catalysis, 2017, 352, 579-585.	3.1	130
1082	Homologous Catalysts Based on Feâ€Doped CoP Nanoarrays for Highâ€Performance Full Water Splitting under Benign Conditions. ChemSusChem, 2017, 10, 3188-3192.	3.6	58
1083	Electrocatalytic water oxidation by Cu(<scp>ii</scp>) ions in a neutral borate buffer solution. Chemical Communications, 2017, 53, 9324-9327.	2.2	29
1084	Nickel Diselenide Ultrathin Nanowires Decorated with Amorphous Nickel Oxide Nanoparticles for Enhanced Water Splitting Electrocatalysis. Small, 2017, 13, 1701487.	5.2	99
1085	4, 4′-Bipyridine as a molecular catalyst for electrochemical hydrogen production. Electrochimica Acta, 2017, 248, 585-592.	2.6	4
1086	Cobalt-based nanosheet arrays as efficient electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 17640-17646.	5.2	40
1087	N-Heterocyclic Carbene-Stabilized Boranthrene as a Metal-Free Platform for the Activation of Small Molecules. Journal of the American Chemical Society, 2017, 139, 11032-11035.	6.6	94
1088	Bandgap Engineering of the g-ZnO Nanosheet via Cationic–Anionic Passivated Codoping for Visible-Light-Driven Photocatalysis. Journal of Physical Chemistry C, 2017, 121, 18534-18543.	1.5	33
1089	Grapheneâ€Supported Pyreneâ€Modified Cobalt Corrole with Axial Triphenylphosphine for Enhanced Hydrogen Evolution in pHâ€0–14 Aqueous Solutions. ChemSusChem, 2017, 10, 4632-4641.	3.6	77
1090	Electrocatalytic Hydrogen Evolution and Hydrogen Oxidation with a Ni(PS) ₂ Complex. European Journal of Inorganic Chemistry, 2017, 2017, 3714-3719.	1.0	17
1091	Water Oxidation Catalysis: Tuning the Electrocatalytic Properties of Amorphous Lanthanum Cobaltite through Calcium Doping. ACS Catalysis, 2017, 7, 6385-6391.	5.5	18
1092	Polyoxometalates Assemblies and Their Electrochemical Applications. Structure and Bonding, 2017, , 89-119.	1.0	7
1093	Iron–Cobalt Phosphomolybdate with High Electrocatalytic Activity for Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2017, 12, 2694-2702.	1.7	11
1094	Water-oxidation photoanodes using organic light-harvesting materials: a review. Journal of Materials Chemistry A, 2017, 5, 19560-19592.	5.2	87
1095	Polythiophene: From Fundamental Perspectives to Applications. Chemistry of Materials, 2017, 29, 10248-10283.	3.2	286
1096	A Mixture of Ionic Liquid and Ethanol Used for Galvanostatic Electrodeposition of CulnxGa1-xSe2Thin Films. Journal of the Electrochemical Society, 2017, 164, D969-D977.	1.3	4
1097	Heterogenization of a [NiFe] Hydrogenase Mimic through Simple and Efficient Encapsulation into a Mesoporous MOF. Inorganic Chemistry, 2017, 56, 14801-14808.	1.9	28

#	Article	IF	CITATIONS
1098	A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion. Chinese Chemical Letters, 2017, 28, 2180-2194.	4.8	176
1099	Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides. Nature Communications, 2017, 8, 2022.	5.8	147
1100	Future cost and performance of water electrolysis: An expert elicitation study. International Journal of Hydrogen Energy, 2017, 42, 30470-30492.	3.8	1,240
1101	Potent Bis-Cyclometalated Iridium Photoreductants with β-Diketiminate Ancillary Ligands. Inorganic Chemistry, 2017, 56, 15295-15303.	1.9	34
1102	Hydrogen sorption efficiency of titanium decorated calix[4]pyrroles. Physical Chemistry Chemical Physics, 2017, 19, 32566-32574.	1.3	21
1103	Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nature Communications, 2017, 8, 1509.	5.8	361
1104	Towards identifying the active sites on RuO ₂ (110) in catalyzing oxygen evolution. Energy and Environmental Science, 2017, 10, 2626-2637.	15.6	278
1106	Hierarchical Mesoporous NiO/MnO ₂ @PANI Core–Shell Microspheres, Highly Efficient and Stable Bifunctional Electrocatalysts for Oxygen Evolution and Reduction Reactions. ACS Applied Materials & Interfaces, 2017, 9, 42676-42687.	4.0	100
1107	Beyond Solar Fuels: Renewable Energyâ€Driven Chemistry. ChemSusChem, 2017, 10, 4409-4419.	3.6	79
1108	First-principles study of hydrogen adsorption on two-dimensional C ₂ N sheet. Journal of Physics: Conference Series, 2017, 901, 012102.	0.3	4
1109	Dicationic Thiolate-Bridged Diruthenium Complexes for Catalytic Oxidation of Molecular Dihydrogen. Organometallics, 2017, 36, 4499-4506.	1.1	6
1110	Electronic Structure Reconfiguration toward Pyrite NiS ₂ <i>via</i> Engineered Heteroatom Defect Boosting Overall Water Splitting. ACS Nano, 2017, 11, 11574-11583.	7.3	310
1111	Efficient Photoelectrochemical O ₂ and CO Production Using BiVO ₄ Water Oxidation Photoanode and CO ₂ Reduction Au Nanoparticle Cathode Prepared by In Situ Deposition from Au ³⁺ Containing Solution. Advanced Sustainable Systems, 2017, 1, 1700111.	2.7	11
1112	Controlled crystal growth orientation and surface charge effects in self-assembled nickel oxide nanoflakes and their activity for the oxygen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 28397-28407.	3.8	34
1113	Metal Phosphides as Coâ€Catalysts for Photocatalytic and Photoelectrocatalytic Water Splitting. ChemSusChem, 2017, 10, 4306-4323.	3.6	150
1114	Integrated 3D self-supported Ni decorated MoO ₂ nanowires as highly efficient electrocatalysts for ultra-highly stable and large-current-density hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 24453-24461.	5.2	64
1115	Cobalt, nickel, and iron complexes of 8-hydroxyquinoline-di(2-picolyl)amine for light-driven hydrogen evolution. Dalton Transactions, 2017, 46, 16455-16464.	1.6	24
1116	Monolithically integrated NiCoP nanosheet array on Ti mesh: An efficient and reusable catalyst in NaBH4 alkaline media toward on-demand hydrogen generation. International Journal of Hydrogen Energy, 2017, 42, 19028-19034.	3.8	38

#	Article	IF	CITATIONS
1117	Macroporous Inverse Opal-like Mo _{<i>x</i>} C with Incorporated Mo Vacancies for Significantly Enhanced Hydrogen Evolution. ACS Nano, 2017, 11, 7527-7533.	7.3	102
1118	Cobalt/molybdenum carbide@N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Journal of Materials Chemistry A, 2017, 5, 16929-16935.	5.2	258
1119	Highly Active, Nonprecious Electrocatalyst Comprising Borophene Subunits for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2017, 139, 12370-12373.	6.6	335
1120	Oxygen evolution catalysis in alkaline conditions over hard templated nickel-cobalt based spinel oxides. International Journal of Hydrogen Energy, 2017, 42, 27910-27918.	3.8	36
1121	A facile conversion of a Ni/Fe coordination polymer to a robust electrocatalyst for the oxygen evolution reaction. RSC Advances, 2017, 7, 32819-32825.	1.7	21
1122	MOF-derived CoSe ₂ microspheres with hollow interiors as high-performance electrocatalysts for the enhanced oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 15310-15314.	5.2	174
1123	A coordinatively saturated cobalt complex as a new kind catalyst for efficient electro- and photo-catalytic hydrogen production in purely aqueous media. International Journal of Hydrogen Energy, 2017, 42, 16428-16435.	3.8	19
1124	CoS nanosheet arrays grown on nickel foam as an excellent OER catalyst. Journal of Alloys and Compounds, 2017, 723, 772-778.	2.8	78
1125	Tracking the Fe ^{IV} (O) intermediate and O–O bond formation of a nonheme iron catalyst for water oxidation. Chemical Communications, 2017, 53, 9063-9066.	2.2	19
1126	Temperature dependence of electrocatalytic water oxidation: a triple device model with a photothermal collector and photovoltaic cell coupled to an electrolyzer. Faraday Discussions, 2017, 198, 169-179.	1.6	32
1127	A2B type copper(III)corroles containing zero-to-five fluorine atoms: Synthesis, electronic structure and facile modulation of electrocatalyzed hydrogen evolution. Dyes and Pigments, 2017, 137, 523-531.	2.0	24
1128	Engineering Disorder into Heterogeniteâ€Like Cobalt Oxides by Phosphate Doping: Implications for the Design of Waterâ€Oxidation Catalysts. ChemCatChem, 2017, 9, 511-521.	1.8	23
1129	Synergistic Effect of Cobalt and Iron in Layered Double Hydroxide Catalysts for the Oxygen Evolution Reaction. ChemSusChem, 2017, 10, 156-165.	3.6	117
1130	Direct Synthesis of Two Inorganic Catalysts on Carbon Fibres for the Electrocatalytic Oxidation of Water. Chemistry - A European Journal, 2017, 23, 568-575.	1.7	0
1131	Photocatalytic reduction of CO2 to CO over the Ti–Highly dispersed HZSM-5 zeolite containing Fe. Applied Catalysis B: Environmental, 2017, 203, 725-730.	10.8	44
1132	Improving the photovoltaic conversion efficiency of ZnO based dye sensitized solar cells by indium doping. Journal of Alloys and Compounds, 2017, 692, 67-76.	2.8	107
1133	Superior Electrochemical Oxygen Evolution Enabled by Threeâ€Dimensional Layered Double Hydroxide Nanosheet Superstructures. ChemCatChem, 2017, 9, 84-88.	1.8	40
1134	Towards efficient and robust anodes for water splitting: Immobilization of Ru catalysts on carbon electrode and hematite by in situ polymerization. Catalysis Today, 2017, 290, 73-77.	2.2	22

	CITATION R	EPORT	
#	Article	IF	CITATIONS
1135	Exploring the role of pendant amines in transition metal complexes for the reduction of N2 to hydrazine and ammonia. Coordination Chemistry Reviews, 2017, 334, 67-83.	9.5	39
1136	Varied hydrogen evolution reaction properties of nickel phosphide nanoparticles with different compositions in acidic and alkaline conditions. Journal of Materials Science, 2017, 52, 804-814.	1.7	27
1137	Effect of Chromium Doping on Electrochemical Water Oxidation Activity by Co _{3–<i>x</i>} Cr _{<i>x</i>} O ₄ Spinel Catalysts. ACS Catalysis, 2017, 7, 443-451.	5.5	92
1138	In situ formation of high performance Ni-phytate on Ni-foam for efficient electrochemical water oxidation. Electrochemistry Communications, 2017, 74, 42-47.	2.3	39
1139	Electrocatalytic water oxidation by a nickel oxide film derived from a molecular precursor. Chinese Journal of Catalysis, 2017, 38, 1812-1817.	6.9	7
1140	Charge migration and charge transfer in molecular systems. Structural Dynamics, 2017, 4, 061508.	0.9	146
1141	Hybrid Organic–Inorganic Transitionâ€Metal Phosphonates as Precursors for Water Oxidation Electrocatalysts. Advanced Functional Materials, 2017, 27, 1703158.	7.8	55
1142	High performance, low cost carbon nanotube yarn based 3D printed electrodes compatible with a conventional screen printed electrode system. , 2017, 2017, 100-105.		5
1143	Metal–Organic Frameworks and Their Derivatives for Photocatalytic Water Splitting. Inorganics, 2017, 5, 40.	1.2	68
1144	Well-Defined Metal Nanoparticles for Electrocatalysis. Studies in Surface Science and Catalysis, 2017, , 123-148.	1.5	4
1145	Practical Cluster Models for a Layered \hat{I}^2 -NiOOH Material. Materials, 2017, 10, 480.	1.3	7
1146	A Porous Cobalt (II) Metal–Organic Framework with Highly Efficient Electrocatalytic Activity for the Oxygen Evolution Reaction. Polymers, 2017, 9, 676.	2.0	27
1147	Energy Harvesting Based on Polymer. , 2017, , 151-196.		9
1148	Mechanism of Water Oxidation Catalyzed by a Dinuclear Ruthenium Complex Bridged by Anthraquinone. Catalysts, 2017, 7, 56.	1.6	11
1149	Engineering Pyrite-Type Bimetallic Ni-Doped CoS2 Nanoneedle Arrays over a Wide Compositional Range for Enhanced Oxygen and Hydrogen Electrocatalysis with Flexible Property. Catalysts, 2017, 7, 366.	1.6	28
1150	Design Rules for Oxygen Evolution Catalysis at Porous Iron Oxide Electrodes: A 1000â€Fold Current Density Increase. ChemSusChem, 2017, 10, 3644-3651.	3.6	27
1151	Spinâ€coated epoxy resin embedding technique enables facile SEM/FIB thickness determination of porous metal oxide ultraâ€thin films. Journal of Microscopy, 2018, 270, 302-308.	0.8	6
1152	Influence of Strain on the Surface–Oxygen Interaction and the Oxygen Evolution Reaction of SrIrO ₃ . Journal of Physical Chemistry C, 2018, 122, 4359-4364.	1.5	39

#	Article	IF	CITATIONS
1153	Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy and Environmental Science, 2018, 11, 744-771.	15.6	1,055
1154	Tracking precursor degradation during the photo-induced formation of amorphous metal oxide films. Journal of Materials Chemistry A, 2018, 6, 4544-4549.	5.2	6
1155	Traditional NiCo ₂ S ₄ Phase with Porous Nanosheets Array Topology on Carbon Cloth: A Flexible, Versatile and Fabulous Electrocatalyst for Overall Water and Urea Electrolysis. ACS Sustainable Chemistry and Engineering, 2018, 6, 5011-5020.	3.2	164
1156	Millimeterâ€Long Vertically Aligned Carbonâ€Nanotube―Supported Co ₃ O ₄ Composite Electrode for Highâ€Performance Asymmetric Supercapacitor. ChemElectroChem, 2018, 5, 1394-1400.	1.7	32
1157	Ultrathin nanosheets-assembled CuO flowers for highly efficient electrocatalytic water oxidation. Journal of Materials Science, 2018, 53, 8141-8150.	1.7	40
1158	Reversing the Tradeoff between Rate and Overpotential in Molecular Electrocatalysts for H ₂ Production. ACS Catalysis, 2018, 8, 3286-3296.	5.5	79
1159	A structurally versatile nickel phosphite acting as a robust bifunctional electrocatalyst for overall water splitting. Energy and Environmental Science, 2018, 11, 1287-1298.	15.6	205
1160	Reactant or reagent? Oxidation of H ₂ at electronically distinct nickel-thiolate sites [Ni ₂ (μ-SR) ₂] ⁺ and [Ni–SR] ⁺ . Dalton Transactions, 2018, 47, 10561-10568.	1.6	5
1161	Highly Enhanced Electrochemical Water Oxidation Reaction over Hyperfine β-FeOOH(Cl):Ni Nanorod Electrode by Modification with Amorphous Ni(OH)2. Bulletin of the Chemical Society of Japan, 2018, 91, 778-786.	2.0	24
1162	Robust and conductive MagnéliÂPhase Ti4O7 decorated on 3D-nanoflower NiRu-LDH as high-performance oxygen reduction electrocatalyst. Nano Energy, 2018, 47, 309-315.	8.2	59
1163	Porous superstructures constructed from ultrafine FeP nanoparticles for highly active and exceptionally stable hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 6387-6392.	5.2	79
1164	Highly Reversible Water Oxidation at Ordered Nanoporous Iridium Electrodes Based on an Original Atomic Layer Deposition. ChemElectroChem, 2018, 5, 1259-1264.	1.7	32
1165	Mononuclear first-row transition-metal complexes as molecular catalysts for water oxidation. Chinese Journal of Catalysis, 2018, 39, 228-244.	6.9	62
1166	Design of Boron Doped C2N-C3N Coplanar Conjugated Heterostructure for Efficient HER Electrocatalysis. Scientific Reports, 2018, 8, 5661.	1.6	21
1167	Bifunctional electrocatalysts of MOF-derived Co–N/C on bamboo-like MnO nanowires for high-performance liquid- and solid-state Zn–air batteries. Journal of Materials Chemistry A, 2018, 6, 9716-9722.	5.2	167
1168	Low-Symmetry Mesoporous Titanium Dioxide (<i>lsm</i> -TiO ₂) Electrocatalyst for Efficient and Durable Oxygen Evolution in Aqueous Alkali. Journal of the Electrochemical Society, 2018, 165, H300-H309.	1.3	17
1170	Molten-salt synthesis of porous La0.6Sr0.4Co0.2Fe0.8O2.9 perovskite as an efficient electrocatalyst for oxygen evolution. Nano Research, 2018, 11, 4796-4805.	5.8	35
1171	A Cu ₂ Se–Cu ₂ O film electrodeposited on titanium foil as a highly active and stable electrocatalyst for the oxygen evolution reaction. Chemical Communications, 2018, 54, 4979-4982.	2.2	42

#	Article	IF	CITATIONS
1172	Highly dispersed and disordered nickel–iron layered hydroxides and sulphides: robust and high-activity water oxidation catalysts. Sustainable Energy and Fuels, 2018, 2, 1561-1573.	2.5	29
1173	Hydrogen adsorption trends on Al-doped Ni ₂ P surfaces for optimal catalyst design. Physical Chemistry Chemical Physics, 2018, 20, 13785-13791.	1.3	9
1174	Chapter 4. Unravelling the Charge Transfer Mechanism in Water Splitting Hematite Photoanodes. RSC Energy and Environment Series, 2018, , 100-127.	0.2	5
1175	Strongly Coupled CoO Nanoclusters/CoFe LDHs Hybrid as a Synergistic Catalyst for Electrochemical Water Oxidation. Small, 2018, 14, e1800195.	5.2	91
1176	Bimetallic NiFe2O4 synthesized via confined carburization in NiFe-MOFs for efficient oxygen evolution reaction. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	19
1177	Halogen Photoelimination from Sb ^V Dihalide Corroles. Inorganic Chemistry, 2018, 57, 5333-5342.	1.9	28
1178	Surface Engineering of a Nickel Oxide–Nickel Hybrid Nanoarray as a Versatile Catalyst for Both Superior Water and Urea Oxidation. Inorganic Chemistry, 2018, 57, 4693-4698.	1.9	51
1179	Hydrothermal synthesis of nanosized (Fe, Co, Ni)-TiO2 for enhanced visible light photosensitive applications. Optik, 2018, 165, 408-415.	1.4	18
1180	Transitionâ€Metalâ€Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review. Small, 2018, 14, e1704179.	5.2	182
1181	Electrochemically Activated Iridium Oxide Black as Promising Electrocatalyst Having High Activity and Stability for Oxygen Evolution Reaction. ACS Energy Letters, 2018, 3, 1110-1115.	8.8	48
1182	Enhanced Photoelectrochemical Water Oxidation on BiVO4 with Mesoporous Cobalt Nitride Sheets as Oxygen-Evolution Cocatalysts. European Journal of Inorganic Chemistry, 2018, 2018, 2557-2563.	1.0	14
1183	Chemical and electronic structure analysis of a SrTiO3 (001)/p-Ge (001) hydrogen evolution photocathode. MRS Communications, 2018, 8, 446-452.	0.8	8
1184	Supramolecular approach towards light-harvesting materials based on porphyrins and chlorophylls. Journal of Materials Chemistry A, 2018, 6, 6710-6753.	5.2	156
1185	Wâ€Đoped MoO ₂ /MoC Hybrids Encapsulated by Pâ€Đoped Carbon Shells for Enhanced Electrocatalytic Hydrogen Evolution. Energy Technology, 2018, 6, 1707-1714.	1.8	21
1186	Iron and cobalt hydroxides: Describing the oxygen evolution reaction activity trend with the amount of electrocatalyst. Electrochimica Acta, 2018, 274, 224-232.	2.6	6
1187	3D structured Mo-doped Ni3S2 nanosheets as efficient dual-electrocatalyst for overall water splitting. Applied Surface Science, 2018, 441, 1024-1033.	3.1	127
1188	A highly stable bifunctional catalyst based on 3D Co(OH)2@NCNTs@NF towards overall water-splitting. Nano Energy, 2018, 47, 96-104.	8.2	121
1189	Ternary interfacial superstructure enabling extraordinary hydrogen evolution electrocatalysis. Materials Today, 2018, 21, 602-610.	8.3	48

#	Article	IF	Citations
1190	Electrochemical Analysis of Carbon Nanosheet Catalyst on Silicon Photocathode for Hydrogen Generation. Bulletin of the Korean Chemical Society, 2018, 39, 356-362.	1.0	4
1191	Electrolyzer Design for Flexible Decoupled Water Splitting and Organic Upgrading with Electron Reservoirs. CheM, 2018, 4, 637-649.	5.8	130
1192	Enhancing and stabilizing α-Fe2O3 photoanode towards neutral water oxidation: Introducing a dual-functional NiCoAl layered double hydroxide overlayer. Journal of Catalysis, 2018, 359, 287-295.	3.1	64
1193	Dual-Functional Starfish-like P-Doped Co–Ni–S Nanosheets Supported on Nickel Foams with Enhanced Electrochemical Performance and Excellent Stability for Overall Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 7087-7095.	4.0	103
1194	Integrated Flexible Electrode for Oxygen Evolution Reaction: Layered Double Hydroxide Coupled with Single-Walled Carbon Nanotubes Film. ACS Sustainable Chemistry and Engineering, 2018, 6, 2911-2915.	3.2	41
1195	Cellulose nanocrystals (CNC) derived Mo2C@sulfur-doped carbon aerogels for hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 13720-13726.	3.8	50
1196	Reactivity of Two-Electron-Reduced Boron Formazanate Compounds with Electrophiles: Facile N–H/N–C Bond Homolysis Due to the Formation of Stable Ligand Radicals. Inorganic Chemistry, 2018, 57, 9720-9727.	1.9	14
1197	Inverse Opal-like Porous MoSe _{<i>x</i>} Films for Hydrogen Evolution Catalysis: Overpotential-Pore Size Dependence. ACS Applied Materials & Interfaces, 2018, 10, 4937-4945.	4.0	36
1198	Encapsulation of Ni/Fe ₃ O ₄ heterostructures inside onion-like N-doped carbon nanorods enables synergistic electrocatalysis for water oxidation. Nanoscale, 2018, 10, 3997-4003.	2.8	75
1199	Phase and composition controlled synthesis of cobalt sulfide hollow nanospheres for electrocatalytic water splitting. Nanoscale, 2018, 10, 4816-4824.	2.8	256
1200	Wet-chemistry topotactic synthesis of bimetallic iron–nickel sulfide nanoarrays: an advanced and versatile catalyst for energy efficient overall water and urea electrolysis. Journal of Materials Chemistry A, 2018, 6, 4346-4353.	5.2	181
1201	Nature of MoH···I bonds in Cp ₂ Mo(L)H···I ≡Câ€R Complexes (L=H, CN, PPh _{2Applied Organometallic Chemistry, 2018, 32, e4258.}	ub>,) Tj ET 1.7	Qq1 1 0.784 4
1202	An Fe(TCNQ) ₂ nanowire array on Fe foil: an efficient non-noble-metal catalyst for the oxygen evolution reaction in alkaline media. Chemical Communications, 2018, 54, 2300-2303.	2.2	120
1203	Facile Templateless Fabrication of a Cobalt Oxyhydroxide Nanosheet Film with Nanoscale Porosity as an Efficient Electrocatalyst for Water Oxidation. ChemPhotoChem, 2018, 2, 332-339.	1.5	4
1204	Highly Dispersed Mo ₂ C Nanoparticles Embedded in Ordered Mesoporous Carbon for Efficient Hydrogen Evolution. ACS Applied Energy Materials, 2018, 1, 736-743.	2.5	44
1205	Reaction mechanisms of catalytic photochemical CO2 reduction using Re(I) and Ru(II) complexes. Coordination Chemistry Reviews, 2018, 373, 333-356.	9.5	212
1206	Highly dispersed of Ni0.85Se nanoparticles on nitrogen-doped graphene oxide as efficient and durable electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2018, 262, 107-114.	2.6	39
1207	Synthesis, electrochemical properties and catalytic behavior for electrochemical hydrogen production of [Ni(1,3-bis(diphenylphosphino)propane)((2-mercaptopyridinate)-κN,S)]BF4. Polyhedron, 2018, 141, 267-270.	1.0	2

#	Article	IF	CITATIONS
1208	The unified ordered mesoporous carbons supported Co-based electrocatalysts for full water splitting. Electrochimica Acta, 2018, 261, 412-420.	2.6	16
1209	Highly efficient photocatalytic reduction of CO2 and H2O to CO and H2 with a cobalt bipyridyl complex. Journal of Energy Chemistry, 2018, 27, 502-506.	7.1	33
1210	Fundamentals of bulk heterojunction organic solar cells: An overview of stability/degradation issues and strategies for improvement. Renewable and Sustainable Energy Reviews, 2018, 84, 43-53.	8.2	189
1211	Electrodeposition of porous MoO42doped NiFe nanosheets for highly efficient electrocatalytic oxygen evolution reactions. Electrochimica Acta, 2018, 260, 477-482.	2.6	33
1212	Synthesis, Characterization, and Photoelectrochemical Catalytic Studies of a Water‧table Zincâ€Based Metal–Organic Framework. ChemSusChem, 2018, 11, 542-546.	3.6	20
1213	Ti/Co-S catalyst covered amorphous Si-based photocathodes with high photovoltage for the HER in non-acid environments. Journal of Materials Chemistry A, 2018, 6, 811-816.	5.2	21
1214	Co ₉ S ₈ @MoS ₂ Core–Shell Heterostructures as Trifunctional Electrocatalysts for Overall Water Splitting and Zn–Air Batteries. ACS Applied Materials & Interfaces, 2018, 10, 1678-1689.	4.0	242
1215	Solar-Thermal Pyrolysis of Mallee Wood at High Temperatures. Energy & Fuels, 2018, 32, 4350-4356.	2.5	15
1216	Few-Layer Iron Selenophosphate, FePSe ₃ : Efficient Electrocatalyst toward Water Splitting and Oxygen Reduction Reactions. ACS Applied Energy Materials, 2018, 1, 220-231.	2.5	80
1217	Copper oxide nanosheets prepared by molten salt method for efficient electrocatalytic oxygen evolution reaction with low catalyst loading. Electrochimica Acta, 2018, 263, 318-327.	2.6	44
1218	Porous CoP nanosheets converted from layered double hydroxides with superior electrochemical activity for hydrogen evolution reactions at wide pH ranges. Chemical Communications, 2018, 54, 1465-1468.	2.2	120
1219	Alkaline–Acid Zn–H ₂ O Fuel Cell for the Simultaneous Generation of Hydrogen and Electricity. Angewandte Chemie - International Edition, 2018, 57, 3910-3915.	7.2	92
1220	Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nature Catalysis, 2018, 1, 111-119.	16.1	600
1221	ITO nanoparticle film as a hole-selective layer for PbS-sensitized photocathodes. New Journal of Chemistry, 2018, 42, 2243-2247.	1.4	3
1222	Energy-efficient electrolytic hydrogen production assisted by coupling urea oxidation with a pH-gradient concentration cell. Chemical Communications, 2018, 54, 2603-2606.	2.2	99
1224	Direct Z-scheme heterojunction nanocomposite for the enhanced solar H2 production. Applied Catalysis A: General, 2018, 553, 43-51.	2.2	33
1225	A Stable Graphitic, Nanocarbonâ€Encapsulated, Cobaltâ€Rich Core–Shell Electrocatalyst as an Oxygen Electrode in a Water Electrolyzer. Advanced Energy Materials, 2018, 8, 1702838.	10.2	113
1226	Synthesis of Cobalt–Glycerate hierarchical structure and their conversion into hierarchical CoP nanospheres for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 2034-2042.	3.8	42

#	Article	IF	CITATIONS
1227	Active-Site-Enriched Iron-Doped Nickel/Cobalt Hydroxide Nanosheets for Enhanced Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 5382-5390.	5.5	311
1228	A Large‣cale Graphene–Bimetal Film Electrode with an Ultrahigh Mass Catalytic Activity for Durable Water Splitting. Advanced Energy Materials, 2018, 8, 1800403.	10.2	29
1229	Cobalt Boron Imidazolate Framework Derived Cobalt Nanoparticles Encapsulated in B/N Codoped Nanocarbon as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Functional Materials, 2018, 28, 1801136.	7.8	155
1230	Photochemical CO ₂ Reduction Catalyzed by <i>Trans</i> (Cl)â€[Ru(2,2′â€bipyridine)(CO) ₂ Cl ₂] Bearing Two Methyl Groups at 4, 5,5′―or 6,6′â€Positions in the Ligand. ChemPhotoChem, 2018, 2, 314-322.	4â € ∂â€,	18
1231	Conformal and continuous deposition of bifunctional cobalt phosphide layers on p-silicon nanowire arrays for improved solar hydrogen evolution. Nano Research, 2018, 11, 4823-4835.	5.8	28
1232	Strain Effect in Bimetallic Electrocatalysts in the Hydrogen Evolution Reaction. ACS Energy Letters, 2018, 3, 1198-1204.	8.8	183
1233	Fabrication and theoretical investigation of MoS2-Co3S4 hybrid hollow structure as electrode material for lithium-ion batteries and supercapacitors. Chemical Engineering Journal, 2018, 347, 607-617.	6.6	81
1234	Recent progress in photocatalytic conversion of carbon dioxide over gallium oxide and its nanocomposites. Current Opinion in Chemical Engineering, 2018, 20, 114-121.	3.8	15
1235	Strategy of nitrogen defects sponge from g-C 3 N 4 nanosheets and Ni-Bi-Se complex modification for efficient dye-sensitized photocatalytic H 2 evolution. Molecular Catalysis, 2018, 453, 1-11.	1.0	22
1236	Theoretical insights into the reactivity of Fe-based catalysts for water oxidation: the role of electron-withdrawing groups. Physical Chemistry Chemical Physics, 2018, 20, 14919-14926.	1.3	5
1237	Activation/deactivation behavior of nano-NiOx based anodes towards the OER: Influence of temperature. Electrochimica Acta, 2018, 276, 176-183.	2.6	30
1238	MOF-directed templating synthesis of hollow nickel-cobalt sulfide with enhanced electrocatalytic activity for oxygen evolution. International Journal of Hydrogen Energy, 2018, 43, 8815-8823.	3.8	43
1239	Metal–organic framework-derived Zn _{0.975} Co _{0.025} S/CoS ₂ embedded in N,S-codoped carbon nanotube/nanopolyhedra as an efficient electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 10441-10446.	5.2	69
1240	Electrochemically active XWO4 (X = Co, Cu, Mn, Zn) nanostructure for water splitting applications. Applied Nanoscience (Switzerland), 2018, 8, 1241-1258.	1.6	43
1241	Novel NiFe/NiFe-LDH composites as competitive catalysts for clean energy purposes. Applied Surface Science, 2018, 447, 107-116.	3.1	29
1242	A catalyst based on copper-cadmium bimetal for electrochemical reduction of CO2 to CO with high faradaic efficiency. Electrochimica Acta, 2018, 271, 544-550.	2.6	49
1243	Regular Dimpled Nickel Surfaces for Improved Efficiency of the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 1771-1782.	2.5	23
1244	Ternary hybrids as efficient bifunctional electrocatalysts derived from bimetallic metal–organic-frameworks for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 5789-5796.	5.2	102

#	Article	IF	CITATIONS
1245	Room-temperature synthesis and characterization of carbon-encapsulated molybdenum nanoparticles. Materials Research Bulletin, 2018, 103, 186-196.	2.7	3
1246	Parallelized Reaction Pathway and Stronger Internal Band Bending by Partial Oxidation of Metal Sulfide–Graphene Composites: Important Factors of Synergistic Oxygen Evolution Reaction Enhancement. ACS Catalysis, 2018, 8, 4091-4102.	5.5	116
1247	Mechanistic study of the [(dpp-bian)Re(CO)3Br] electrochemical reduction using in situ EPR spectroscopy and computational chemistry. Electrochimica Acta, 2018, 270, 526-534.	2.6	21
1248	Electrolytic CO ₂ Reduction in a Flow Cell. Accounts of Chemical Research, 2018, 51, 910-918.	7.6	735
1249	Urea-assisted synthesis of amorphous molybdenum sulfide on P-doped carbon nanotubes for enhanced hydrogen evolution. Journal of Materials Science, 2018, 53, 8951-8962.	1.7	22
1250	Amorphous CoFeBO nanoparticles as highly active electrocatalysts for efficient water oxidation reaction. International Journal of Hydrogen Energy, 2018, 43, 6138-6149.	3.8	46
1251	Large-scale synthesis of nitrogen doped MoS2 quantum dots for efficient hydrogen evolution reaction. Electrochimica Acta, 2018, 270, 256-263.	2.6	42
1252	Steel-based electrocatalysts for efficient and durable oxygen evolution in acidic media. Catalysis Science and Technology, 2018, 8, 2104-2116.	2.1	35
1253	Thickness controllable and mass produced WC@C@Pt hybrid for efficient hydrogen production. Energy Storage Materials, 2018, 10, 268-274.	9.5	28
1254	Three-dimensional reduced graphene oxide–Mn 3 O 4 nanosheet hybrid decorated with palladium nanoparticles for highly efficient hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 3369-3377.	3.8	18
1255	Solarâ€ŧoâ€Hydrogen Energy Conversion Based on Water Splitting. Advanced Energy Materials, 2018, 8, 1701620.	10.2	429
1256	Co(OH) ₂ hollow nanoflowers as highly efficient electrocatalysts for oxygen evolution reaction. Journal of Materials Research, 2018, 33, 568-580.	1.2	22
1257	Water splitting based on homogeneous copper molecular catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 141-151.	2.0	41
1258	An efficient catalyst film fabricated by electrophoretic deposition of cobalt hydroxide for electrochemical water oxidation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 395-401.	2.0	4
1259	Ferroelectric electrocatalysts: a new class of materials for oxygen evolution reaction with synergistic effect of ferroelectric polarization. Journal of Materials Science, 2018, 53, 1414-1423.	1.7	15
1260	Hierarchically Structured NiFeO _{<i>x</i>} /CuO Nanosheets/Nanowires as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemCatChem, 2018, 10, 1005-1011.	1.8	28
1261	Nanomaterials for Solar Energy Conversion: Dye-Sensitized Solar Cells Based on Ruthenium(II) tris-Heteroleptic Compounds or Natural Dyes. , 2018, , 69-106.		9
1262	Template-based synthesis of uniform bimetallic nickel-tin oxide hollow nanospheres as a new sensing platform for detection of erythrosine in food products. Sensors and Actuators B: Chemical, 2018, 255, 1716-1725.	4.0	8

#	Article	IF	CITATIONS
1263	Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting. Nano Research, 2018, 11, 1664-1675.	5.8	129
1264	Observing the Electrochemical Oxidation of Co Metal at the Solid/Liquid Interface Using Ambient Pressure X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 666-671.	1.2	73
1265	Thermal and photocatalytic production of hydrogen with earth-abundant metal complexes. Coordination Chemistry Reviews, 2018, 355, 54-73.	9.5	116
1266	Preparation of nanostructured Cu(OH) ₂ and CuO electrocatalysts for water oxidation by electrophoresis deposition. Journal of Materials Research, 2018, 33, 581-589.	1.2	33
1267	Ni@Ru and NiCo@Ru Core–Shell Hexagonal Nanosandwiches with a Compositionally Tunable Core and a Regioselectively Grown Shell. Small, 2018, 14, 1702353.	5.2	50
1268	Hierarchical CuCo ₂ S ₄ nanoarrays for high-efficient and durable water oxidation electrocatalysis. Chemical Communications, 2018, 54, 78-81.	2.2	90
1269	Synthesis of yolk–shell spheres based on molybdenum diselenide-encapsulated molybdenum oxide for efficient electrocatalytic hydrogen evolution. Sustainable Energy and Fuels, 2018, 2, 444-454.	2.5	21
1270	Novel strongly coupled tungsten-carbon-nitrogen complex for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 16-23.	3.8	41
1271	MnO2-CoP3 nanowires array: An efficient electrocatalyst for alkaline oxygen evolution reaction with enhanced activity. Electrochemistry Communications, 2018, 86, 161-165.	2.3	202
1273	A Co-MOF nanosheet array as a high-performance electrocatalyst for the oxygen evolution reaction in alkaline electrolytes. Inorganic Chemistry Frontiers, 2018, 5, 344-347.	3.0	90
1274	Co3O4 polyhedrons with enhanced electric conductivity as efficient water oxidation electrocatalysts in alkaline medium. Journal of Materials Science, 2018, 53, 4323-4333.	1.7	42
1275	Amorphous Ni(OH)2 encounter with crystalline CuS in hollow spheres: A mesoporous nano-shelled heterostructure for hydrogen evolution electrocatalysis. Nano Energy, 2018, 44, 7-14.	8.2	201
1276	Electropolymerization of Aniline on Nickel-Based Electrocatalysts Substantially Enhances Their Performance for Hydrogen Evolution. ACS Applied Energy Materials, 2018, 1, 3-8.	2.5	50
1277	Amorphous Cobalt Vanadium Oxide as a Highly Active Electrocatalyst for Oxygen Evolution. ACS Catalysis, 2018, 8, 644-650.	5.5	220
1278	High-Performance Transition Metal Phosphide Alloy Catalyst for Oxygen Evolution Reaction. ACS Nano, 2018, 12, 158-167.	7.3	321
1279	Electrocatalytic behavior of transition metal (Ni, Fe, Cr) doped metal oxide nanocomposites for oxygen evolution reaction. Applied Surface Science, 2018, 449, 660-668.	3.1	37
1280	Au Ni alloy nanoparticles supported on reduced graphene oxide as highly efficient electrocatalysts for hydrogen evolution and oxygen reduction reactions. International Journal of Hydrogen Energy, 2018, 43, 1424-1438.	3.8	42
1281	Roadmap on semiconductor–cell biointerfaces. Physical Biology, 2018, 15, 031002.	0.8	45

#	Article	IF	CITATIONS
1282	Device Fabrication for Water Oxidation, Hydrogen Generation, and CO2 Reduction via Molecular Engineering. Joule, 2018, 2, 36-60.	11.7	98
1283	Light driven epoxidation of olefins using a graphene oxide/g-C ₃ N ₄ supported Mo (salen) complex. New Journal of Chemistry, 2018, 42, 85-90.	1.4	25
1284	Effect of oxygen doping on the hydrogen evolution reaction in MoS2 monolayer. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82, 163-168.	2.7	19
1285	Molecular catalysts of Co, Ni, Fe, and Mo for hydrogen generation in artificial photosynthetic systems. Coordination Chemistry Reviews, 2018, 373, 295-316.	9.5	107
1286	One-step synthesis of Pt based electrocatalysts encapsulated by polyoxometalate for methanol oxidation. New Journal of Chemistry, 2018, 42, 198-203.	1.4	16
1287	In Situ Preparation of Mo ₂ C Nanoparticles Embedded in Ketjenblack Carbon as Highly Efficient Electrocatalysts for Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 983-990.	3.2	83
1288	What is the predominant electron transfer process for Au NRs/TiO2 nanodumbbell heterostructure under sunlight irradiation?. Applied Catalysis B: Environmental, 2018, 220, 471-476.	10.8	42
1289	A Comprehensive Review on Controlling Surface Composition of Ptâ€Based Bimetallic Electrocatalysts. Advanced Energy Materials, 2018, 8, 1703597.	10.2	123
1290	Alkaline–Acid Zn–H ₂ O Fuel Cell for the Simultaneous Generation of Hydrogen and Electricity. Angewandte Chemie, 2018, 130, 3974-3979.	1.6	52
1291	Photo-Assisted Hydrogen Evolution with Reduced Graphene Oxide Catalyst on Silicon Nanowire Photocathode. Applied Sciences (Switzerland), 2018, 8, 2046.	1.3	20
1292	Phosphorized polyoxometalate-etched iron-hydroxide porous nanotubes for efficient electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 24479-24485.	5.2	39
1293	A 2,2′-bipyridine-containing covalent organic framework bearing rhenium(<scp>i</scp>) tricarbonyl moieties for CO ₂ reduction. Dalton Transactions, 2018, 47, 17450-17460.	1.6	80
1294	3D nanoporous Ni/V ₂ O ₃ hybrid nanoplate assemblies for highly efficient electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 21452-21457.	5.2	38
1295	Chapter 3. Understanding the Effects of Composition and Structure on the Oxygen Evolution Reaction (OER) Occurring on NiFeOx Catalysts. RSC Energy and Environment Series, 2018, , 79-116.	0.2	3
1296	Structural and Spectroscopic Studies of Nanostructured Alumina Doped LaFeO3 a Photo catalyst Ceramics Synthesized Through an Auto Igniting Combustion Synthesis. IOP Conference Series: Materials Science and Engineering, 2018, 360, 012026.	0.3	0
1297	Vertically Aligned Ultrathin 1T-WS2 Nanosheets Enhanced the Electrocatalytic Hydrogen Evolution. Nanoscale Research Letters, 2018, 13, 167.	3.1	57
1299	1. Introduction: hydrogen storage as solution for a changing energy landscape. , 2018, , 1-34.		0
1300	Highly efficient visible-light-assisted photocatalytic hydrogen generation from water splitting catalyzed by Zn0.5Cd0.5S/Ni2P heterostructures. International Journal of Hydrogen Energy, 2018, 43, 22917-22928	3.8	26

ARTICLE IF CITATIONS Homogeneous Metal Nitrate Hydroxide Nanoarrays Grown on Nickel Foam for Efficient 1301 5.2 50 Electrocatalytic Oxygen Evolution. Small, 2018, 14, e1803783. A transparent electrode with water-oxidizing activity. International Journal of Hydrogen Energy, 2018, 3.8 43, 22896-22904. Measurements of Oxygen Electroadsorption Energies and Oxygen Evolution Reaction on 1303 RuO₂(110): A Discussion of the Sabatier Principle and Its Role in Electrocatalysis. Journal 6.6 177 of the American Chemical Society, 2018, 140, 17597-17605. Remarkable Bifunctional Oxygen and Hydrogen Evolution Electrocatalytic Activities with Trace-Level Fe Doping in Ni- and Co-Layered Double Hydroxides for Overall Water-Splitting. ACS Applied Materials & amp; Interfaces, 2018, 10, 42453-42468. 1304 Activating P2-NaxCoO2 for efficient water oxidation catalysis via controlled chemical oxidation. 1305 1.7 7 Materials Today Chemistry, 2018, 10, 206-212. Combustion synthesis and photoelectrochemical characterization of gallium zinc oxynitrides. Journal of Materials Research, 2018, 33, 3971-3978. 1.2 Near-infrared CdSexTe1-x@CdS "giant―quantum dots for efficient photoelectrochemical hydrogen 1307 3.8 22 generation. International Journal of Hydrogen Energy, 2018, 43, 22064-22074. Bio-inspired Z-scheme g-C3N4/Ag2CrO4 for efficient visible-light photocatalytic hydrogen generation. 1308 1.6 60 Scientific Reports, 2018, 8, 16504. Photo- and electrocatalytic H<sub>2</sub> evolution with cobalt oxime complexes. Bulletin 1309 0.1 12 of Japan Society of Coordination Chemistry, 2018, 71, 18-29. Applying Game Theory Economics to Clean Renewable Energy Source Implementation in Urban Areas. , 2018,,. Research Advances of Amorphous Metal Oxides in Electrochemical Energy Storage and Conversion. 1311 202 5.2 Small, 2019, 15, e1804371. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral 5.8 325 dimers. Nature Communications, 2018, 9, 5236. Towards activation of amorphous MoS via Cobalt doping for enhanced electrocatalytic hydrogen 1313 3.8 29 evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 23109-23117. Effects of Metal Combinations on the Electrocatalytic Properties of Transition-Metal-Based Layered Double Hydroxides for Water Oxidation: A Perspective with Insights. ACS Omega, 2018, 3, 16529-16541. 1314 1.6 Hierarchical MoS2/Ni3S2 core-shell nanofibers for highly efficient and stable overall-water-splitting 1315 2.516 in alkaline media. Materials Today Energy, 2018, 10, 214-221. Mechanism of Water Oxidation by Ferrate(VI) at pHâ€...7â€"9. Chemistry - A European Journal, 2018, 24, 23 18735-18742. Toward a Tunable Synthetic [FeFe]-Hydrogenase H-Cluster Mimic Mediated by Perylene Monoimide 1317 Model Complexes: Insight into Molecular Structures and Electrochemical Characteristics. 1.1 35 Organometallics, 2018, 37, 3278-3285. Proton-Coupled Electron Transfer to a Molybdenum Ethylene Complex Yields a Î²-Agostic Ethyl: 6.6 Structure, Dynamics and Mechanism. Journal of the American Chemical Society, 2018, 140, 13817-13826.
#	Article	IF	CITATIONS
1319	Oxygenâ€Ðoped Nickel Iron Phosphide Nanocube Arrays Grown on Ni Foam for Oxygen Evolution Electrocatalysis. Small, 2018, 14, e1802204.	5.2	161
1320	Active basal plane in ZT-phased MX2 (M = Mo, W; X = S, Se, Te) catalysts for the hydrogen evolution reaction: A theoretical study. International Journal of Hydrogen Energy, 2018, 43, 19432-19437.	3.8	15
1321	The Effect of Metal Components in the Quaternary Electrocatalysts on the Morphology and Catalytic Performance of Transition Metal Phosphides. Electroanalysis, 2018, 30, 2584-2588.	1.5	4
1322	Insight into Fe(Salen) Encapsulated Co-Porphyrin Framework Derived Thin Film for Efficient Oxygen Evolution Reaction. Crystal Growth and Design, 2018, 18, 7150-7157.	1.4	18
1323	3D graphene aerogel supported FeNi-P derived from electroactive nickel hexacyanoferrate as efficient oxygen evolution catalyst. Electrochimica Acta, 2018, 292, 107-114.	2.6	30
1324	Gold–Titanium Dioxide Half-Dome Heterostructures for Plasmonic Hydrogen Evolution. ACS Applied Energy Materials, 0, , .	2.5	6
1325	Amorphous Boron Oxide Coated NiCo Layered Double Hydroxide Nanoarrays for Highly Efficient Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 14257-14263.	3.2	40
1326	Ligand-Assisted Metal-Centered Electrocatalytic Hydrogen Evolution upon Reduction of a Bis(thiosemicarbazonato)Ni(II) Complex. Inorganic Chemistry, 2018, 57, 13486-13493.	1.9	58
1327	Nickel foam-supported NiFe layered double hydroxides nanoflakes array as a greatly enhanced electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 21824-21834.	3.8	58
1328	Computational Investigation of the Oxygen Evolution Reaction Catalyzed by Nickel (Oxy)hydroxide Complexes. Journal of Physical Chemistry C, 2018, 122, 25785-25795.	1.5	8
1329	Enhanced Photocurrent via π-Bridge Extension of Perylenemonoimide-Based Dyes for p-Type Dye-Sensitized Solar Cells and Photoelectrochemical Cells. ACS Omega, 2018, 3, 14448-14456.	1.6	10
1330	Tuning Sulfur Doping for Bifunctional Electrocatalyst with Selectivity between Oxygen and Hydrogen Evolution. ACS Applied Energy Materials, 2018, 1, 5822-5829.	2.5	21
1331	Interfacial Interaction between FeOOH and Ni–Fe LDH to Modulate the Local Electronic Structure for Enhanced OER Electrocatalysis. ACS Catalysis, 2018, 8, 11342-11351.	5.5	414
1332	Polyoxothiometalate-Derivatized Silicon Photocathodes for Sunlight-Driven Hydrogen Evolution Reaction. ACS Omega, 2018, 3, 13837-13849.	1.6	13
1333	What Matters in Fuel Cell Electrocatalysis?—A Theory Perspective. , 2018, , 908-919.		0
1334	Oxygen Evolution Reaction on Nitrogen-Doped Defective Carbon Nanotubes and Graphene. Journal of Physical Chemistry C, 2018, 122, 25882-25892.	1.5	66
1335	Defect Engineering of Cobalt-Based Materials for Electrocatalytic Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 15954-15969.	3.2	151
1336	Room-Temperature Preparation of Cobalt-Based Electrocatalysts through Simple Solution Treatment for Selectively High-Efficiency Hydrogen Evolution Reaction in Alkaline or Acidic Medium. Journal of Nanomaterials, 2018, 2018, 1-9.	1.5	2

#	Article	IF	CITATIONS
1337	CoSe2 nanoparticles grown on carbon nanofibers derived from bacterial cellulose as an efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 20704-20711.	3.8	27
1338	Intercalation of Li ⁺ into a Co-Containing Steel-Ceramic Composite: Substantial Oxygen Evolution at Almost Zero Overpotential. ACS Catalysis, 2018, 8, 10914-10925.	5.5	17
1339	Molecularly Defined Interface Created by Porous Polymeric Networks on Gold Surface for Concerted and Selective CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2018, 6, 17277-17283.	3.2	26
1340	Control Synthesis of Nickel Selenides and Their Multiwalled Carbon Nanotubes Composites as Electrocatalysts for Enhanced Water Oxidation. Journal of Physical Chemistry C, 2018, 122, 26096-26104.	1.5	38
1341	Ultrathin Nitrogenâ€Doped Holey Carbon@Graphene Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions in Alkaline and Acidic Media. Angewandte Chemie, 2018, 130, 16749-16753.	1.6	49
1342	Ultrathin Nitrogenâ€Doped Holey Carbon@Graphene Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions in Alkaline and Acidic Media. Angewandte Chemie - International Edition, 2018, 57, 16511-16515.	7.2	261
1343	Direct oxygen isotope effect identifies the rate-determining step of electrocatalytic OER at an oxidic surface. Nature Communications, 2018, 9, 4565.	5.8	58
1344	Bimetallic MnCo selenide yolk shell structures for efficient overall water splitting. Electrochimica Acta, 2018, 290, 82-89.	2.6	49
1345	Hydrogenation of CO2 on Nickel–Iron Nanoparticles Under Sunlight Irradiation. Topics in Catalysis, 2018, 61, 1810-1819.	1.3	12
1346	Efficient strategy for significantly decreasing overpotentials of hydrogen generation via oxidizing small molecules at flexible bifunctional CoSe electrodes. Journal of Power Sources, 2018, 401, 238-244.	4.0	44
1347	Nitrate-induced and <i>in situ</i> electrochemical activation synthesis of oxygen deficiencies-rich nickel/nickel (oxy)hydroxide hybrid films for enhanced electrocatalytic water splitting. Nanoscale, 2018, 10, 17546-17551.	2.8	31
1348	All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nature Energy, 2018, 3, 862-869.	19.8	356
1350	Development, design and applications of structural capacitors. Applied Energy, 2018, 231, 89-101.	5.1	42
1351	Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 2018, 118, 9233-9280.	23.0	2,379
1352	Constructing a hexagonal copper-coin-shaped NiCoSe ₂ @NiO@CoNi ₂ \$ ₄ @CoS ₂ hybrid nanoarray on nickel foam as a robust oxygen evolution reaction electrocatalyst. Journal of Materials Chemistry A, 2018, 6, 18641-18648.	5.2	65
1353	Layered Double Hydroxideâ€Based Catalysts: Recent Advances in Preparation, Structure, and Applications. Advanced Functional Materials, 2018, 28, 1802943.	7.8	317
1354	A Universal Strategy to Design Superior Water‣plitting Electrocatalysts Based on Fast In Situ Reconstruction of Amorphous Nanofilm Precursors. Advanced Materials, 2018, 30, e1804333.	11.1	108
1355	Construction of Porous Mo ₃ P/Mo Nanobelts as Catalysts for Efficient Water Splitting. Angewandte Chemie, 2018, 130, 14335-14339.	1.6	58

#	Article	IF	CITATIONS
1356	Construction of Porous Mo ₃ P/Mo Nanobelts as Catalysts for Efficient Water Splitting. Angewandte Chemie - International Edition, 2018, 57, 14139-14143.	7.2	70
1357	Molybdenum carbide nanoparticle decorated hierarchical tubular carbon superstructures with vertical nanosheet arrays for efficient hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 18833-18838.	5.2	18
1358	Flower-Shaped Self-Assembled Ni _{0.5} Cu _{0.5} Co ₂ O ₄ Porous Architecture: A Ternary Metal Oxide as a High-Performance Charge Storage Electrode Material. ACS Applied Nano Materials, 2018, 1, 5812-5822.	2.4	35
1359	Theoretical investigation of platinum-like catalysts of molybdenum carbides for hydrogen evolution reaction. Solid State Communications, 2018, 284-286, 25-30.	0.9	11
1360	Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability. Nanomaterials, 2018, 8, 38.	1.9	30
1361	Heterogeneous catalytic water oxidation controlled by coordination geometries of copper(<scp>ii</scp>) centers with thiolato donors. Chemical Communications, 2018, 54, 10766-10769.	2.2	16
1362	A facile, one-step electroless deposition of NiFeOOH nanosheets onto photoanodes for highly durable and efficient solar water oxidation. Journal of Materials Chemistry A, 2018, 6, 20678-20685.	5.2	31
1363	Hydrothermal Synthesis of NiCo ₂ O ₄ Nanowires on Carbon Fiber Paper for Hydrogen Evolution Catalyst. Key Engineering Materials, 0, 775, 139-143.	0.4	7
1364	A self-supported Ni–Co perselenide nanorod array as a high-activity bifunctional electrode for a hydrogen-producing hydrazine fuel cell. Journal of Materials Chemistry A, 2018, 6, 17763-17770.	5.2	81
1365	Synthesis and electrochemical analysis of novel IrO2 nanoparticle catalysts supported on carbon nanotube for oxygen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 18095-18104.	3.8	48
1366	PdSeO ₃ Monolayer: Promising Inorganic 2D Photocatalyst for Direct Overall Water Splitting Without Using Sacrificial Reagents and Cocatalysts. Journal of the American Chemical Society, 2018, 140, 12256-12262.	6.6	216
1367	Designing electrochemically reversible H2 oxidation and production catalysts. Nature Reviews Chemistry, 2018, 2, 244-252.	13.8	78
1368	Azobenzene-based solar thermal fuels: design, properties, and applications. Chemical Society Reviews, 2018, 47, 7339-7368.	18.7	306
1369	Hierarchical MoS2 nanoflowers on carbon cloth asÂan efficient cathode electrode for hydrogen evolution under all pH values. International Journal of Hydrogen Energy, 2018, 43, 11038-11046.	3.8	59
1370	Improving the performance of water splitting electrodes by composite plating with nano-SiO2. Electrochimica Acta, 2018, 281, 60-68.	2.6	6
1371	Electrochemical trapping of metastable Mn ³⁺ ions for activation of MnO ₂ oxygen evolution catalysts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5261-E5268.	3.3	173
1372	Chemical Activity of the Peroxide/Oxide Redox Couple: Case Study of Ba ₅ Ru ₂ O ₁₁ in Aqueous and Organic Solvents. Chemistry of Materials, 2018, 30, 3882-3893.	3.2	8
1373	Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance. Journal of the American Chemical Society, 2018, 140, 7748-7759.	6.6	1,157

#	Article	IF	Citations
1374	Metal phosphonate coordination networks and frameworks as precursors of electrocatalysts for the hydrogen and oxygen evolution reactions. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	17
1375	Enhanced hydrogen storage performance of three-dimensional hierarchical porous grapheneÂwith nickel nanoparticles. International Journal of Hydrogen Energy, 2018, 43, 11120-11131.	3.8	21
1376	Optimization of rechargeable zinc-air battery with Co3O4/MnO2/CNT bifunctional catalyst: effects of catalyst loading, binder content, and spraying area. Ionics, 2018, 24, 3877-3884.	1.2	13
1377	Moderately reduced graphene oxide via UV-ozone treatment as hole transport layer for high efficiency organic solar cells. Organic Electronics, 2018, 59, 140-148.	1.4	11
1378	A solar rechargeable battery based on the sodium ion storage mechanism with Fe ₂ (MoO ₄) ₃ microspheres as anode materials. Journal of Materials Chemistry A, 2018, 6, 10627-10631.	5.2	21
1379	Co doping of worm–like Cu2S: An efficient and durable heterogeneous electrocatalyst for alkaline water oxidation. Journal of Alloys and Compounds, 2018, 762, 637-642.	2.8	18
1380	A 3D well-matched electrode pair of Ni–Co–S//Ni–Co–P nanoarrays grown on nickel foam as a high-performance electrocatalyst for water splitting. Journal of Materials Chemistry A, 2018, 6, 12506-12514.	5.2	102
1381	An overall water-splitting polyoxometalate catalyst for the electromicrobial conversion of CO ₂ in neutral water. Journal of Materials Chemistry A, 2018, 6, 9915-9921.	5.2	27
1382	Hierarchical Ni3S2-NiOOH hetero-nanocomposite grown on nickel foam as a noble-metal-free electrocatalyst for hydrogen evolution reaction in alkaline electrolyte. Applied Surface Science, 2018, 456, 164-173.	3.1	43
1383	Pt and Pt–Ni(OH) ₂ Electrodes for the Hydrogen Evolution Reaction in Alkaline Electrolytes and Their Nanoscaled Electrocatalysts. ChemSusChem, 2018, 11, 2643-2653.	3.6	99
1384	Facile synthesis of a red light-inducible overall water-splitting photocatalyst using gold as a solid-state electron mediator. Chemical Communications, 2018, 54, 7999-8002.	2.2	18
1385	Synergistic effect: Hierarchical Ni3S2@Co(OH)2 heterostructure as efficient bifunctional electrocatalyst for overall water splitting. Applied Surface Science, 2018, 457, 156-163.	3.1	62
1386	Carbon Nanomaterials in Direct Liquid Fuel Cells. Chemical Record, 2018, 18, 1365-1372.	2.9	104
1387	An ultrathin nickel-based film electrodeposited from a Ni-Tris molecular precursor for highly efficient electrocatalytic water oxidation. Electrochimica Acta, 2018, 283, 104-110.	2.6	12
1388	Photocatalytic hydrogen production with alkylated nickel bis-dithiolene complexes. Polyhedron, 2018, 152, 138-146.	1.0	18
1389	Geometric distortions in nickel (oxy)hydroxide electrocatalysts by redox inactive iron ions. Energy and Environmental Science, 2018, 11, 2476-2485.	15.6	83
1390	Computational modeling of the photovoltaic activities in EABX3 (EA = ethylammonium, B = Pb, Sn, Ge,)	Tj ETQq0 1.4	0.0 rgBT /Ov 14
1391	Efficient hydrogen evolution performance of phase-pure NiS electrocatalysts grown on fluorine-doped tin oxide-coated glass by facile chemical bath deposition. International Journal of Hydrogen Energy, 2018, 43, 13022-13031.	3.8	15

#	Article	IF	CITATIONS
1392	Fast fabrication of ultrathin CoMn LDH nanoarray as flexible electrode for water oxidation. Electrochimica Acta, 2018, 283, 755-763.	2.6	46
1393	Scalable Triple Cation Mixed Halide Perovskite–BiVO ₄ Tandems for Biasâ€Free Water Splitting. Advanced Energy Materials, 2018, 8, 1801403.	10.2	128
1394	Nanoporous CoP ₃ Nanowire Array: Acid Etching Preparation and Application as a Highly Active Electrocatalyst for the Hydrogen Evolution Reaction in Alkaline Solution. ACS Sustainable Chemistry and Engineering, 2018, 6, 11186-11189.	3.2	134
1395	Water Oxidation Reaction Catalyzed by Co3O4 Treated with Organic Compounds. Industrial & Engineering Chemistry Research, 2018, 57, 11259-11264.	1.8	10
1396	Flexible InGaN nanowire membranes for enhanced solar water splitting. Optics Express, 2018, 26, A640.	1.7	13
1397	Nanostructured Ni2N thin films magnetron-sputtered on nickel foam as efficient electrocatalyst for hydrogen evolution reaction. Materials Letters, 2018, 229, 148-151.	1.3	17
1398	Tuning Bifunctional Oxygen Electrocatalysts by Changing the A‣ite Rareâ€Earth Element in Perovskite Nickelates. Advanced Functional Materials, 2018, 28, 1803712.	7.8	122
1399	Augmenting the Photocurrent of CuWO4 Photoanodes by Heat Treatment in the Nitrogen Atmosphere. Journal of Physical Chemistry C, 2018, 122, 19281-19288.	1.5	32
1400	Oxygen Reduction Reaction Promoted by Manganese Porphyrins. ACS Catalysis, 2018, 8, 8671-8679.	5.5	91
1401	Spontaneous Formation of Noble―and Heavyâ€Metalâ€Free Alloyed Semiconductor Quantum Rods for Efficient Photocatalysis. Advanced Materials, 2018, 30, e1803351.	11.1	47
1402	A nickel(II) complex of S,S′-bis(2-pyridylmethyl)-1,2-thioethane, a cocatalyst for photochemical driven hydrogen evolution from water under visible light. Inorganic Chemistry Communication, 2018, 95, 158-162.	1.8	8
1403	One step synthesis of Fe4.4Ni17.6Se16 coupled NiSe foam as self-supported, highly efficient and durable oxygen evolution electrode. Materials Today Chemistry, 2018, 9, 133-139.	1.7	10
1404	An IrRu alloy nanocactus on Cu _{2â^'x} S@IrS _y as a highly efficient bifunctional electrocatalyst toward overall water splitting in acidic electrolytes. Journal of Materials Chemistry A, 2018, 6, 16130-16138.	5.2	58
1405	Influence of Transition Metal on the Hydrogen Evolution Reaction over Nano-Molybdenum-Carbide Catalyst. Catalysts, 2018, 8, 294.	1.6	33
1406	In-situ synthesis of carbon-coated β-NiS nanocrystals for hydrogen evolution reaction in both acidic and alkaline solution. International Journal of Hydrogen Energy, 2018, 43, 16061-16067.	3.8	11
1407	Phase Exploration and Identification of Multinary Transition-Metal Selenides as High-Efficiency Oxygen Evolution Electrocatalysts through Combinatorial Electrodeposition. ACS Catalysis, 2018, 8, 8273-8289.	5.5	76
1408	A cobalt complex, a highly efficient catalyst for electro- and photochemical driven hydrogen generation in purely aqueous media. Polyhedron, 2018, 154, 295-301.	1.0	14
1409	Surface Orientation Dependent Water Dissociation on Rutile Ruthenium Dioxide. Journal of Physical Chemistry C, 2018, 122, 17802-17811.	1.5	44

#	Article	IF	CITATIONS
1410	Engineering Two-Dimensional Mass-Transport Channels of the MoS ₂ Nanocatalyst toward Improved Hydrogen Evolution Performance. ACS Applied Materials & Interfaces, 2018, 10, 25409-25414.	4.0	23
1411	<i>Operando</i> X-ray spectroscopic tracking of self-reconstruction for anchored nanoparticles as high-performance electrocatalysts towards oxygen evolution. Energy and Environmental Science, 2018, 11, 2945-2953.	15.6	157
1412	Investigation of Bridgehead Effects on Reduction Potential in Alkyl and Aryl Azadithiolateâ€Bridged (µâ€5CH 2 XCH 2 S) [Fe(CO) 3] 2 Synthetic Analogues of [FeFe]â€H 2 ase Active Site. European Journal of Inorganic Chemistry, 2018, 2018, 3633-3643.	1.0	7
1413	AuPd bimetallic nanoparticle decorated TiO2 rutile nanorod arrays for enhanced photoelectrochemical water splitting. Journal of Applied Electrochemistry, 2018, 48, 995-1007.	1.5	26
1414	Alumina-Supported CoPS Nanostructures Derived from LDH as Highly Active Bifunctional Catalysts for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 10087-10096.	3.2	35
1415	Nickel oxide–polypyrrole nanocomposite electrode materials for electrocatalytic water oxidation. Catalysis Science and Technology, 2018, 8, 4030-4043.	2.1	20
1416	Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chemical Society Reviews, 2018, 47, 8173-8202.	18.7	222
1417	Recent advances in hydrogen evolution reaction catalysts on carbon/carbon-based supports in acid media. Journal of Power Sources, 2018, 398, 9-26.	4.0	163
1418	Nickel foam derived nitrogen doped nickel sulfide nanowires as an efficient electrocatalyst for the hydrogen evolution reaction. Dalton Transactions, 2018, 47, 9871-9876.	1.6	20
1419	Cobalt-Doped Goethite-Type Iron Oxyhydroxide (α-FeOOH) for Highly Efficient Oxygen Evolution Catalysis. ACS Omega, 2018, 3, 7840-7845.	1.6	28
1420	Fabrication of Fe-doped Co2P nanoparticles as efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation. Electrochimica Acta, 2018, 283, 1490-1497.	2.6	27
1421	Designing Hybrid NiP ₂ /NiO Nanorod Arrays for Efficient Alkaline Hydrogen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 17896-17902.	4.0	82
1422	Conversion of Iron Ore into an Active Catalyst for the Oxygen Evolution Reaction. Advanced Sustainable Systems, 2018, 2, 1800019.	2.7	11
1423	Highly reduced and protonated aqueous solutions of [P2W18O62]6â^² for on-demand hydrogen generation and energy storage. Nature Chemistry, 2018, 10, 1042-1047.	6.6	199
1424	Shape-Dependent Electrocatalytic Activity of Iridium Oxide Decorated Erbium Pyrosilicate toward the Hydrogen Evolution Reaction over the Entire pH Range. ACS Catalysis, 2018, 8, 8830-8843.	5.5	37
1425	B-site doping effects of NdBa _{0.75} Ca _{0.25} Co ₂ O _{5+δ} double perovskite catalysts for oxygen evolution and reduction reactions. Journal of Materials Chemistry A, 2018, 6, 17807-17818.	5.2	50
1426	Photoinduced Oxygen Evolution Catalysis Promoted by Polyoxometalate Salts of Cationic Photosensitizers. Frontiers in Chemistry, 2018, 6, 302.	1.8	8
1427	Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting – A review. Journal of Power Sources, 2018, 400, 31-68.	4.0	418

#	Δρτιςι ε	IF	CITATIONS
¹¹	Nanostructured NiFe (oxy)hydroxide with easily oxidized Ni towards efficient oxygen evolution	5.2	61
1429	reactions. Journal of Materials Chemistry A, 2018, 6, 16810-16817. Sandwichâ€Like Reduced Graphene Oxide/Carbon Black/Amorphous Cobalt Borate Nanocomposites as Bifunctional Cathode Electrocatalyst in Rechargeable Zincâ€Air Batteries. Advanced Energy Materials, 2018, 8, 1801495.	10.2	65
1430	Nanocrystalline Boron-Doped Diamond as a Corrosion-Resistant Anode for Water Oxidation via Si Photoelectrodes. ACS Applied Materials & Interfaces, 2018, 10, 29552-29564.	4.0	23
1431	Electrocatalytic Upgrading of Biomassâ€Derived Intermediate Compounds to Valueâ€Added Products. Chemistry - A European Journal, 2018, 24, 18258-18270.	1.7	140
1432	Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives. Nanoscale, 2018, 10, 11241-11280.	2.8	258
1433	<i>In situ</i> hybridization of an MXene/TiO ₂ /NiFeCo-layered double hydroxide composite for electrochemical and photoelectrochemical oxygen evolution. RSC Advances, 2018, 8, 20576-20584.	1.7	75
1434	Atomic and Molecular Layer Deposition for Superior Lithium‣ulfur Batteries: Strategies, Performance, and Mechanisms. Batteries and Supercaps, 2018, 1, 41-68.	2.4	50
1435	Pathways Following Electron Injection: Medium Effects and Cross-Surface Electron Transfer in a Ruthenium-Based, Chromophore–Catalyst Assembly on TiO ₂ . Journal of Physical Chemistry C, 2018, 122, 13017-13026.	1.5	10
1436	Solar Energy Potential in Ecuador. , 2018, , .		2
1437	Decoration of Bi2Se3 nanosheets with a thin Bi2SeO2 layer for visible-light-driven overall water splitting. International Journal of Hydrogen Energy, 2018, 43, 10950-10958.	3.8	17
1438	Making a Splash in Homogeneous CO ₂ Hydrogenation: Elucidating the Impact of Solvent on Catalytic Mechanisms. Chemistry - A European Journal, 2018, 24, 16964-16971.	1.7	25
1439	A Novel Bimetallic Nickel–Molybdenum Carbide Nanowire Array for Efficient Hydrogen Evolution. ChemSusChem, 2018, 11, 2717-2723.	3.6	41
1440	Nickel-carbonate nanowire array: An efficient and durable electrocatalyst for water oxidation under nearly neutral conditions. Frontiers of Chemical Science and Engineering, 2018, 12, 467-472.	2.3	26
1441	Covalent Organic Frameworks Linked by Amine Bonding for Concerted Electrochemical Reduction of CO2. CheM, 2018, 4, 1696-1709.	5.8	306
1442	Microporous 2D NiCoFe phosphate nanosheets supported on Ni foam for efficient overall water splitting in alkaline media. Nanoscale, 2018, 10, 12975-12980.	2.8	94
1443	Electrolyte-Free Dye-Sensitized Solar Cell with High Open Circuit Voltage Using a Bifunctional Ferrocene-Based Cyanovinyl Molecule as Dye and Redox Couple. Organometallics, 2018, 37, 1999-2002.	1.1	27
1444	Bamboo-Structured Nitrogen-Doped Carbon Nanotube Coencapsulating Cobalt and Molybdenum Carbide Nanoparticles: An Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 9912-9920.	3.2	147
1445	Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy and Environmental Science, 2019, 12, 442-462.	15.6	433

#	Article	IF	CITATIONS
1446	Graphdiyne-Supported NiFe Layered Double Hydroxide Nanosheets as Functional Electrocatalysts for Oxygen Evolution. ACS Applied Materials & Interfaces, 2019, 11, 2662-2669.	4.0	104
1447	Heptazine-based porous graphitic carbon nitride: a visible-light driven photocatalyst for water splitting. Journal of Materials Chemistry A, 2019, 7, 20799-20805.	5.2	25
1448	Seawater-Mediated Solar-to-Sodium Conversion by Bismuth Vanadate Photoanode- Photovoltaic Tandem Cell: Solar Rechargeable Seawater Battery. IScience, 2019, 19, 232-243.	1.9	16
1449	Synthesis and Characterization of Strong Cyclometalated Iridium Photoreductants for Application in Photocatalytic Aryl Bromide Hydrodebromination. ACS Catalysis, 2019, 9, 8646-8658.	5.5	49
1450	Subwavelength photocathodes <i>via</i> metal-assisted chemical etching of GaAs for solar hydrogen generation. Nanoscale, 2019, 11, 15367-15373.	2.8	9
1451	Electrosynthesis, activation, and applications of nickel-iron oxyhydroxide in (photo-)electrochemical water splitting at near neutral condition. Electrochimica Acta, 2019, 321, 134667.	2.6	9
1452	Synthesis, Characterization, and HER Activity of Pendant Diamine Derivatives of NiATSM. European Journal of Inorganic Chemistry, 2019, 2019, 3782-3790.	1.0	9
1453	Distorted Inverse Spinel Nickel Cobaltite Grown on a MoS ₂ Plate for Significantly Improved Water Splitting Activity. Chemistry of Materials, 2019, 31, 7590-7600.	3.2	42
1454	Carbon Derived from Soft Pyrolysis of a Covalent Organic Framework as a Support for Small-Sized RuO ₂ Showing Exceptionally Low Overpotential for Oxygen Evolution Reaction. ACS Omega, 2019, 4, 13465-13473.	1.6	33
1455	Construction of hierarchical Mo2C nanoparticles onto hollow N-doped carbon polyhedrons for efficient hydrogen evolution reaction. Electrochimica Acta, 2019, 321, 134680.	2.6	33
1456	Research advances towards large-scale solar hydrogen production from water. EnergyChem, 2019, 1, 100014.	10.1	130
1457	Comparative study of 1:1 Lewis acid–base adducts between Cp2M(L)H (M = V, Nb, Ta; L = C and BF3/AlF3. Theoretical Chemistry Accounts, 2019, 138, 1.	O, C2H4, I 0.5	P(CH3)3)
1458	2D/2D Heterojunction of Niâ^'Coâ^'P/Graphdiyne for Optimized Electrocatalytic Overall Water Splitting. ChemCatChem, 2019, 11, 5407-5411.	1.8	22
1459	A Cobalt–Iron Double-Atom Catalyst for the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2019, 141, 14190-14199.	6.6	401
1460	Interfacial Coupling Effect on Electron Transport in Hierarchical TaON/Au/ZnCo-LDH Photoanode with Enhanced Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2019, 11, 33062-33073.	4.0	19
1461	Metal–Organic-Frameworks-Derived Cu/Cu ₂ O Catalyst with Ultrahigh Current Density for Continuous-Flow CO ₂ Electroreduction. ACS Sustainable Chemistry and Engineering, 2019, 7, 15739-15746.	3.2	39
1462	Manipulation of Heteroatom Substitution on Nitrogen and Phosphorus Co-Doped Graphene as a High Active Catalyst for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2019, 123, 22202-22211.	1.5	29
1463	Recent advances of nanoporous metal-based catalyst: synthesis, application and perspectives. Journal of Iron and Steel Research International, 2019, 26, 779-795.	1.4	9

#	Article	IF	CITATIONS
1464	Photochemical oxidation of water catalysed by cyclometalated Ir(iii) complexes bearing Schiff-base ligands. New Journal of Chemistry, 2019, 43, 13662-13669.	1.4	4
1465	Electrospun Cuâ€Deposited Flexible Fibers as an Efficient Oxygen Evolution Reaction Electrocatalyst. ChemPhysChem, 2019, 20, 2973-2980.	1.0	7
1466	Thermal-assisted synthesis of unique Cu nanodendrites for the efficient electrochemical reduction of CO2. Applied Catalysis B: Environmental, 2019, 259, 118096.	10.8	35
1467	Ni ³⁺ -Induced Hole States Enhance the Oxygen Evolution Reaction Activity of Ni _{<i>x</i>} Co _{3–<i>x</i>} O ₄ Electrocatalysts. Chemistry of Materials, 2019, 31, 7618-7625.	3.2	76
1468	Optimization of oxygen evolution dynamics on RuO ₂ <i>via</i> controlling of spontaneous dissociation equilibrium. Materials Chemistry Frontiers, 2019, 3, 1779-1785.	3.2	7
1469	Promising photocatalysts with high carrier mobility for water splitting in monolayer Ge2P4S2 and Ge2As4S2. International Journal of Hydrogen Energy, 2019, 44, 21536-21545.	3.8	16
1470	Anionic Effects on Metal Pair of Se-Doped Nickel Diphosphide for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 14247-14255.	3.2	30
1471	Photocatalytic conversion of CO2 using earth-abundant catalysts: A review on mechanism and catalytic performance. Renewable and Sustainable Energy Reviews, 2019, 113, 109246.	8.2	123
1472	Cupraelectro-Catalyzed Alkyne Annulation: Evidence for Distinct C–H Alkynylation and Decarboxylative C–H/C–C Manifolds. ACS Catalysis, 2019, 9, 7690-7696.	5.5	76
1473	Loss-Free Excitonic Quantum Battery. Journal of Physical Chemistry C, 2019, 123, 18303-18314.	1.5	38
1474	Defect-engineered MoS ₂ with extended photoluminescence lifetime for high-performance hydrogen evolution. Journal of Materials Chemistry C, 2019, 7, 10173-10178.	2.7	34
1475	Inâ€situ Growth of a Bimetallic Cobaltâ€Nickel Organic Framework on Iron Foam: Achieving the Electron Modification on a Robust Selfâ€supported Oxygen Evolution Electrode. ChemCatChem, 2019, 11, 6061-6069.	1.8	33
1476	An Insulating Al2O3 Overlayer Prevents Lateral Hole Hopping Across Dye-Sensitized TiO2 Surfaces. ACS Applied Materials & Interfaces, 2019, 11, 27453-27463.	4.0	13
1477	Catalytic Surface Specificity of Ni(OH) 2 â€Decorated Pt Nanocubes for the Hydrogen Evolution Reaction in an Alkaline Electrolyte. ChemSusChem, 2019, 12, 4021-4028.	3.6	28
1478	A surface-mounted MOF thin film with oriented nanosheet arrays for enhancing the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 18519-18528.	5.2	92
1479	Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current status and perspectives. Journal of Materials Chemistry A, 2019, 7, 18674-18707.	5.2	277
1480	Engineering Multifunctional Collaborative Catalytic Interface Enabling Efficient Hydrogen Evolution in All pH Range and Seawater. Advanced Energy Materials, 2019, 9, 1901333.	10.2	196
1481	Fabrication of Amorphous BiOCl/TiO ₂ â€C ₃ N ₄ Heterostructure for Efficient Water Oxidation. ChemistrySelect, 2019, 4, 8277-8282.	0.7	14

#	Article	IF	CITATIONS
1482	Electrodeposition of poly-NiFe-alizarin red S complex for efficient electrocatalytic oxygen evolution reactions. Journal of Solid State Electrochemistry, 2019, 23, 2595-2600.	1.2	4
1483	Single-Layer PtI2: A Multifunctional Material with Promising Photocatalysis toward the Oxygen Evolution Reaction and Negative Poisson's Ratio. ACS Applied Materials & Interfaces, 2019, 11, 31793-31798.	4.0	18
1484	Wrinkled Ni-doped Mo2C coating on carbon fiber paper: An advanced electrocatalyst prepared by molten-salt method for hydrogen evolution reaction. Electrochimica Acta, 2019, 319, 293-301.	2.6	60
1485	Ag2S-CoS hetero-nanowires terminated with stepped surfaces for improved oxygen evolution reaction. Catalysis Communications, 2019, 129, 105749.	1.6	12
1486	A review of transition metalâ€based bifunctional oxygen electrocatalysts. Journal of the Chinese Chemical Society, 2019, 66, 829-865.	0.8	82
1487	Heterometallic Metal–Organic Frameworks (MOFs): The Advent of Improving the Energy Landscape. ACS Energy Letters, 2019, 4, 1938-1946.	8.8	76
1488	A ruthenium-based plasmonic hybrid photocatalyst for aqueous carbon dioxide conversion with a high reaction rate and selectivity. Journal of Materials Chemistry A, 2019, 7, 17254-17260.	5.2	19
1489	Potassium Hydroxide Mixed with Lithium Hydroxide: An Advanced Electrolyte for Oxygen Evolution Reaction. Solar Rrl, 2019, 3, 1900195.	3.1	4
1490	Assessment of Soft Ligand Removal Strategies: Alkylation as a Promising Alternative to High-Temperature Treatments for Colloidal Nanoparticle Surfaces. , 2019, 1, 177-184.		26
1491	Interface Engineering of an RGO/MoS ₂ /Pd 2D Heterostructure for Electrocatalytic Overall Water Splitting in Alkaline Medium. ACS Applied Materials & Interfaces, 2019, 11, 42094-42103.	4.0	62
1492	Atomic Arrangement in Metalâ€Doped NiS ₂ Boosts the Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie - International Edition, 2019, 58, 18676-18682.	7.2	174
1493	The Aurivillius Compound CoBi ₂ O ₂ F ₄ – an Efficient Catalyst for Electrolytic Water Oxidation after Liquid Exfoliation. ChemCatChem, 2019, 11, 6105-6110.	1.8	12
1494	From Bad Electrochemical Practices to an Environmental and Waste Reducing Approach for the Generation of Active Hydrogen Evolving Electrodes. Angewandte Chemie - International Edition, 2019, 58, 17383-17392.	7.2	24
1495	Exploring the Influence of Halogen Coordination Effect of Stable Bimetallic MOFs on Oxygen Evolution Reaction. Chemistry - A European Journal, 2019, 25, 15830-15836.	1.7	27
1496	Cationâ€Modulated HER and OER Activities of Hierarchical VOOH Hollow Architectures for Highâ€Efficiency and Stable Overall Water Splitting. Small, 2019, 15, e1904688.	5.2	85
1497	New insight on hydrogen evolution reaction activity of the most exposure (0â€ ⁻ 1â€ ⁻ 1) surface and its monovacancy defect for FeP system: A theoretical perspective. Chemical Physics Letters, 2019, 734, 136740.	1.2	6
1498	Silicon-based carbonaceous electrocatalysts for oxygen reduction and evolution properties in alkaline conditions. SN Applied Sciences, 2019, 1, 1.	1.5	4
1499	Synthesis of RuNi alloy nanostructures composed of multilayered nanosheets for highly efficient electrocatalytic hydrogen evolution. Nano Energy, 2019, 66, 104173.	8.2	116

#	Article	IF	Citations
1500	From Bad Electrochemical Practices to an Environmental and Waste Reducing Approach for the Generation of Active Hydrogen Evolving Electrodes. Angewandte Chemie, 2019, 131, 17544-17553.	1.6	3
1501	Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 764-774.	5.2	123
1502	Tuning Electron Density Endows Fe _{1–<i>x</i>} Co _{<i>x</i>} P with Exceptional Capability of Electrooxidation of Organic Pollutants. Environmental Science & Technology, 2019, 53, 13878-13887.	4.6	59
1503	Solidâ€State Conversion Synthesis of Advanced Electrocatalysts for Water Splitting. Chemistry - A European Journal, 2020, 26, 3961-3972.	1.7	8
1505	Triple-Shelled Co-VSe <i>_x</i> Hollow Nanocages as Superior Bifunctional Electrode Materials for Efficient Pt-Free Dye-Sensitized Solar Cells and Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces, 2019, 11, 43278-43286.	4.0	32
1506	In Situ Coordination Environment Tuning of Cobalt Sites for Efficient Water Oxidation. ACS Catalysis, 2019, 9, 11734-11742.	5.5	30
1507	Solar Water Splitting with Perovskite/Silicon Tandem Cell and TiC-Supported Pt Nanocluster Electrocatalyst. Joule, 2019, 3, 2930-2941.	11.7	85
1508	Protein and Proteome Atlas for Plants under Stresses: New Highlights and Ways for Integrated Omics in Post-Genomics Era. International Journal of Molecular Sciences, 2019, 20, 5222.	1.8	13
1509	One‣tep Controllable Synthesis of Catalytic Ni ₄ Mo/MoO <i>_x</i> /Cu Nanointerfaces for Highly Efficient Water Reduction. Advanced Energy Materials, 2019, 9, 1901454.	10.2	39
1510	Atomic Arrangement in Metalâ€Doped NiS ₂ Boosts the Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie, 2019, 131, 18849-18855.	1.6	38
1511	Porous Molybdenum Carbide Nanostructures Synthesized on Carbon Cloth by CVD for Efficient Hydrogen Production. Chemistry - A European Journal, 2019, 25, 16106-16113.	1.7	24
1512	Enhanced Iridium Mass Activity of 6H-Phase, Ir-Based Perovskite with Nonprecious Incorporation for Acidic Oxygen Evolution Electrocatalysis. ACS Applied Materials & Interfaces, 2019, 11, 42006-42013.	4.0	48
1513	Characterization and Mechanism of Efficient Visible-Light-Driven Water Oxidation on an in Situ N ₂ -Intercalated WO ₃ Nanorod Photoanode. ACS Sustainable Chemistry and Engineering, 2019, 7, 17896-17906.	3.2	13
1514	Enhancing hydrogen evolution activity by doping and tuning the curvature of manganese-embedded carbon nanotubes. Catalysis Science and Technology, 2019, 9, 5301-5314.	2.1	23
1515	The synthetic strategies of metal–organic framework membranes, films and 2D MOFs and their applications in devices. Journal of Materials Chemistry A, 2019, 7, 21004-21035.	5.2	94
1516	Analytical electrolyzer enabling operando characterization of flow plates. Review of Scientific Instruments, 2019, 90, 074103.	0.6	5
1517	Copper-Tin Alloys for the Electrocatalytic Reduction of CO2 in an Imidazolium-Based Non-Aqueous Electrolyte. Energies, 2019, 12, 3132.	1.6	13
1518	Fe doped skutterudite-type CoP3 nanoneedles as efficient electrocatalysts for hydrogen and oxygen evolution in alkaline media. Journal of Alloys and Compounds, 2019, 808, 151767.	2.8	16

		15	0
#	ARTICLE	IF	CHATIONS
1519	photoelectrochemical water splitting. Chemical Society Reviews, 2019, 48, 4979-5015.	18.7	429
1520	Self-supported CoFe LDH/Co _{0.85} Se nanosheet arrays as efficient electrocatalysts for the oxygen evolution reaction. Catalysis Science and Technology, 2019, 9, 5736-5744.	2.1	37
1521	Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis. Nature Communications, 2019, 10, 4060.	5.8	131
1522	Structure-property relationship of graphene coupled metal (Ni, Co, Fe) (oxy)hydroxides for efficient electrochemical evolution of oxygen. Journal of Catalysis, 2019, 377, 619-628.	3.1	15
1523	Pushing the activity of CO2 electroreduction by system engineering. Science Bulletin, 2019, 64, 1805-1816.	4.3	30
1524	Plasmonic Ag decorated CdMoO ₄ as an efficient photocatalyst for solar hydrogen production. RSC Advances, 2019, 9, 28525-28533.	1.7	11
1525	Ceria/cobalt borate hybrids as efficient electrocatalysts for water oxidation under neutral conditions. Nanoscale Advances, 2019, 1, 3686-3692.	2.2	10
1526	Probing the Partial Activation of Water by Open-Shell Interactions, Cl(H ₂ 0) _{1–4} . Journal of Physical Chemistry A, 2019, 123, 8657-8673.	1.1	9
1527	Ultrafine Co@nitrogen-doped carbon core-shell nanostructures anchored on carbon nanotubes for highly efficient oxygen reduction. Applied Surface Science, 2019, 494, 691-699.	3.1	24
1528	Utilizing Charge Effects and Minimizing Intramolecular Proton Rearrangement to Improve the Overpotential of a Thiosemicarbazonato Zinc HER Catalyst. Inorganic Chemistry, 2019, 58, 12986-12997.	1.9	14
1529	Introduction of Mn(<scp>iii</scp>) to regulate the electronic structure of fluorine-doped nickel hydroxide for efficient water oxidation. Nanoscale Advances, 2019, 1, 4099-4108.	2.2	22
1530	Recent Advances and Prospective in Ruthenium-Based Materials for Electrochemical Water Splitting. ACS Catalysis, 2019, 9, 9973-10011.	5.5	491
1531	Bimetallic Iron–Cobalt Catalysts and Their Applications in Energy-Related Electrochemical Reactions. Catalysts, 2019, 9, 762.	1.6	16
1532	Hexagonal β-Ni(OH)2 nanoplates with oxygen vacancies as efficient catalysts for the oxygen evolution reaction. Electrochimica Acta, 2019, 324, 134868.	2.6	37
1533	Group IV transition metal based phospho-chalcogenides@MoTe2 for electrochemical hydrogen evolution reaction over wide range of pH. International Journal of Hydrogen Energy, 2019, 44, 24628-24641.	3.8	19
1534	Carved nanoframes of cobalt–iron bimetal phosphide as a bifunctional electrocatalyst for efficient overall water splitting. Chemical Science, 2019, 10, 464-474.	3.7	238
1535	Highly Efficient Solarâ€Ðriven Carbon Dioxide Reduction on Molybdenum Disulfide Catalyst Using Choline Chlorideâ€Based Electrolyte. Advanced Energy Materials, 2019, 9, 1803536.	10.2	34
1536	Alternative Oxidation Reactions for Solar-Driven Fuel Production. ACS Catalysis, 2019, 9, 2007-2017.	5.5	115

#	Article	IF	Citations
1537	Layer-by-layer assembly for photoelectrochemical nanoarchitectonics. Molecular Systems Design and Engineering, 2019, 4, 65-77.	1.7	25
1538	Tuning the oxygen evolution reaction on a nickel–iron alloy <i>via</i> active straining. Nanoscale, 2019, 11, 426-430.	2.8	52
1539	Metal–organic frameworks based on tetraphenylpyrazine-derived tetracarboxylic acid for electrocatalytic hydrogen evolution reaction and NAC sensing. CrystEngComm, 2019, 21, 494-501.	1.3	25
1540	Achieving a direct band gap and high power conversion efficiency in an Sbl ₃ /Bil ₃ type-II vdW heterostructure <i>via</i> interlayer compression and electric field application. Physical Chemistry Chemical Physics, 2019, 21, 2619-2627.	1.3	13
1541	Copper hydride clusters in energy storage and conversion. Dalton Transactions, 2019, 48, 3531-3538.	1.6	82
1542	Recent progresses in the design of BiVO4-based photocatalysts for efficient solar water splitting. Catalysis Today, 2019, 335, 31-38.	2.2	54
1543	Activating CoFe2O4 electrocatalysts by trace Au for enhanced oxygen evolution activity. Applied Surface Science, 2019, 478, 206-212.	3.1	36
1544	Solar-driven carbon dioxide fixation using photosynthetic semiconductor bio-hybrids. Faraday Discussions, 2019, 215, 54-65.	1.6	30
1545	Nanoscale hetero-interfaces between metals and metal compounds for electrocatalytic applications. Journal of Materials Chemistry A, 2019, 7, 5090-5110.	5.2	128
1546	Bimetallic metal-organic framework derived electrocatalyst for efficient overall water splitting. International Journal of Hydrogen Energy, 2019, 44, 5983-5989.	3.8	26
1547	Fabrication of NiC/MoC/NiMoO ₄ Heterostructured Nanorod Arrays as Stable Bifunctional Electrocatalysts for Efficient Overall Water Splitting. Chemistry - an Asian Journal, 2019, 14, 1013-1020.	1.7	17
1548	Reductive Disproportionation of CO ₂ Mediated by Bimetallic Nickelate(–I)/Group 13 Complexes. European Journal of Inorganic Chemistry, 2019, 2019, 2140-2145.	1.0	20
1549	Engineering hybrid CoMoS4/Ni3S2 nanostructures as efficient bifunctional electrocatalyst for overall water splitting. Journal of Power Sources, 2019, 416, 95-103.	4.0	80
1550	The role of oxygen vacancies in water oxidation for perovskite cobalt oxide electrocatalysts: are more better?. Chemical Communications, 2019, 55, 1442-1445.	2.2	100
1551	Electrochemically chopped WS ₂ quantum dots as an efficient and stable electrocatalyst for water reduction. Catalysis Science and Technology, 2019, 9, 223-231.	2.1	32
1552	Ni-Doped CuS as an efficient electrocatalyst for the oxygen evolution reaction. Catalysis Science and Technology, 2019, 9, 406-417.	2.1	76
1553	Recent progress in ligand-centered homogeneous electrocatalysts for hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2019, 6, 343-354.	3.0	69
1554	Enhancing photoelectrochemical hydrogen production of a n ⁺ p-Si hetero-junction photocathode with amorphous Ni and Ti layers. Inorganic Chemistry Frontiers, 2019, 6, 527-532.	3.0	10

#	Article	IF	CITATIONS
1555	Artesunate enhances adriamycin cytotoxicity by inhibiting glycolysis in adriamycin-resistant chronic myeloid leukemia K562/ADR cells. RSC Advances, 2019, 9, 1004-1014.	1.7	3
1556	A highly active oxygen evolution electrocatalyst: Ni-Fe-layered double hydroxide intercalated with the Molybdate and Vanadate anions. International Journal of Hydrogen Energy, 2019, 44, 14842-14852.	3.8	52
1557	Suppressed Charge Recombination in Hematite Photoanode via Protonation and Annealing. ACS Applied Energy Materials, 2019, 2, 5438-5445.	2.5	16
1558	Strontium-doped lanthanum iron nickelate oxide as highly efficient electrocatalysts for oxygen evolution reaction. Journal of Colloid and Interface Science, 2019, 553, 813-819.	5.0	18
1559	The application of CeO ₂ -based materials in electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 17675-17702.	5.2	128
1560	NiO/Porous Reduced Graphene Oxide as Active Hybrid Electrocatalyst for Oxygen Evolution Reaction. Russian Journal of Electrochemistry, 2019, 55, 333-338.	0.3	16
1561	Morphological and electronic modification of 3D porous nickel microsphere arrays by cobalt and sulfur dual synergistic modulation for overall water splitting electrolysis and supercapacitors. Applied Surface Science, 2019, 491, 570-578.	3.1	22
1562	Heterostructural NiFe-LDH@Ni3S2 nanosheet arrays as an efficient electrocatalyst for overall water splitting. Electrochimica Acta, 2019, 318, 42-50.	2.6	84
1563	Core-shell copper oxide @ nickel/nickel–iron hydroxides nanoarrays enabled efficient bifunctional electrode for overall water splitting. Electrochimica Acta, 2019, 318, 695-702.	2.6	34
1564	Molecular and Material Engineering of Photocathodes Derivatized with Polyoxometalate-Supported {Mo ₃ S ₄ } HER Catalysts. Journal of the American Chemical Society, 2019, 141, 11954-11962.	6.6	34
1565	Bimetallic nanostructures: combining plasmonic and catalytic metals for photocatalysis. Advances in Physics: X, 2019, 4, 1619480.	1.5	72
1566	N-doped Mo2C nanoblock for efficient hydrogen evolution reaction. Journal of Solid State Electrochemistry, 2019, 23, 2043-2050.	1.2	9
1567	Role of Dissolution Intermediates in Promoting Oxygen Evolution Reaction at RuO ₂ (110) Surface. Journal of Physical Chemistry C, 2019, 123, 22151-22157.	1.5	86
1568	3D hierarchical V–Ni-based nitride heterostructure as a highly efficient pH-universal electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15823-15830.	5.2	100
1569	Highâ€Currentâ€Density HER Electrocatalysts: Grapheneâ€like Boron Layer and Tungsten as Key Ingredients in Metal Diborides. ChemSusChem, 2019, 12, 3726-3731.	3.6	41
1570	Interplay of Homogeneous Reactions, Mass Transport, and Kinetics in Determining Selectivity of the Reduction of CO ₂ on Gold Electrodes. ACS Central Science, 2019, 5, 1097-1105.	5.3	97
1571	WO3 cocatalyst improves hydrogen evolution capacity of ZnCdS under visible light irradiation. International Journal of Hydrogen Energy, 2019, 44, 16327-16335.	3.8	48
1572	Artificial photosynthesis systems for catalytic water oxidation. Advances in Inorganic Chemistry, 2019, 74, 3-59.	0.4	35

#	Article	IF	CITATIONS
1573	Ligand Noninnocence in Nickel Porphyrins: Nickel Isobacteriochlorin Formation under Hydrogen Evolution Conditions. Inorganic Chemistry, 2019, 58, 7958-7968.	1.9	32
1574	Surface-engineered cobalt oxide nanowires as multifunctional electrocatalysts for efficient Zn-Air batteries-driven overall water splitting. Energy Storage Materials, 2019, 23, 1-7.	9.5	48
1575	Band Gap Narrowing of Zinc Orthogermanate by Dimensional and Defect Modification. Journal of Physical Chemistry C, 2019, 123, 14573-14581.	1.5	6
1576	Chemical and morphological transformation of MOF-derived bimetallic phosphide for efficient oxygen evolution. Nano Energy, 2019, 62, 745-753.	8.2	189
1577	Electrodeposited mesh-type dimensionally stable anode for oxygen evolution reaction in acidic and alkaline media. Chemical Engineering Science, 2019, 206, 424-431.	1.9	12
1578	Nanoporous Palladium–Silver Surface Alloys as Efficient and pH-Universal Catalysts for the Hydrogen Evolution Reaction. ACS Energy Letters, 2019, 4, 1379-1386.	8.8	72
1579	Enhanced electrochemical properties of cellular CoPS@C nanocomposites for HER, OER and Li-ion batteries. RSC Advances, 2019, 9, 14859-14867.	1.7	10
1580	Heterostructures in two-dimensional colloidal metal chalcogenides: Synthetic fundamentals and applications. Nano Research, 2019, 12, 1750-1769.	5.8	33
1581	Tunable catalytic activity of cobalt-intercalated layered MnO2 for water oxidation through confinement and local ordering. Journal of Catalysis, 2019, 374, 143-149.	3.1	13
1582	Fast microwave-induced synthesis of solid cobalt hydroxide nanorods and their thermal conversion into porous cobalt oxide nanorods for efficient oxygen evolution reaction. Sustainable Energy and Fuels, 2019, 3, 1713-1719.	2.5	17
1583	First principles calculations of surface dependent electronic structures: a study on β-FeOOH and γ-FeOOH. Physical Chemistry Chemical Physics, 2019, 21, 18486-18494.	1.3	17
1584	Structural and functional role of anions in electrochemical water oxidation probed by arsenate incorporation into cobalt-oxide materials. Physical Chemistry Chemical Physics, 2019, 21, 12485-12493.	1.3	18
1585	Functional macroporous iron-phosphorous films by electrodeposition on colloidal crystal templates. Electrochimica Acta, 2019, 313, 211-222.	2.6	6
1586	Mono″Multinuclear Water Oxidation Catalysts. ChemSusChem, 2019, 12, 3209-3235.	3.6	22
1587	An Amorphous Nickel–Ironâ€Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction. Advanced Materials, 2019, 31, e1900883.	11.1	243
1588	Respective influence of stoichiometry and NiOOH formation in hydrogen and oxygen evolution reactions of nickel selenides. Applied Surface Science, 2019, 487, 1152-1158.	3.1	47
1589	Dual Catalytic Cycle of H2 and H2O Oxidations by a Half-Sandwich Iridium Complex: A Theoretical Study. Inorganic Chemistry, 2019, 58, 7274-7284.	1.9	4
1590	Nanoporous molybdenum dioxide on pencil graphite electrode as high effective electrocatalyst for the hydrogen evolution reaction. Journal of the Iranian Chemical Society, 2019, 16, 2065-2070.	1.2	3

#	Article	IF	CITATIONS
1591	Electrocatalytic materials design for oxygen evolution reaction. Advances in Inorganic Chemistry, 2019, , 241-303.	0.4	14
1592	Preparation of 3D nanostructured MnCo ₂ S ₄ as a robust electrocatalyst for overall water splitting. ChemistrySelect, 2019, 4, 4499-4505.	0.7	11
1593	Component synergy and armor protection induced superior catalytic activity and stability of ultrathin Co-Fe spinel nanosheets confined in mesoporous silica shells for ammonia decomposition reaction. Applied Catalysis B: Environmental, 2019, 253, 121-130.	10.8	32
1594	Recent Progress in Bifunctional Electrocatalysts for Overall Water Splitting under Acidic Conditions. ChemElectroChem, 2019, 6, 3244-3253.	1.7	79
1595	Nickel doped cobalt - hollow nanoparticles as an efficient electrocatalyst for hydrogen evolution from neutral water. International Journal of Hydrogen Energy, 2019, 44, 14869-14876.	3.8	16
1596	Efficient Oxygen Evolution Catalysis Triggered by Nickel Phosphide Nanoparticles Compositing with Reduced Graphene Oxide with Controlled Architecture. ACS Sustainable Chemistry and Engineering, 2019, 7, 9566-9573.	3.2	34
1597	Decoupling half-reactions of electrolytic water splitting by integrating a polyaniline electrode. Journal of Materials Chemistry A, 2019, 7, 13149-13153.	5.2	53
1598	A photocatalytic system with a bis(thiosemicarbazonato)‑nickel over CdS nanorods for hydrogen evolution from water under visible light. Inorganic Chemistry Communication, 2019, 102, 5-9.	1.8	12
1599	Fe2O3 nanocatalysts on N-doped carbon nanomaterial for highly efficient electrochemical hydrogen evolution in alkaline. Journal of Power Sources, 2019, 426, 74-83.	4.0	50
1600	Freestanding and Hierarchically Structured Au-Dendrites/3D-Graphene Scaffold Supports Highly Active and Stable Ni ₃ S ₂ Electrocatalyst toward Overall Water Splitting. ACS Applied Energy Materials, 2019, 2, 3708-3716.	2.5	29
1601	Efficient Electrocatalytic Hydrogenation with a Palladium Membrane Reactor. Journal of the American Chemical Society, 2019, 141, 7815-7821.	6.6	90
1602	Coâ€Modified MoS ₂ Hybrids as Superior Bifunctional Electrocatalysts for Water Splitting Reactions: Integrating Multiple Active Components in One. Advanced Materials Interfaces, 2019, 6, 1900372.	1.9	22
1603	Novel WS ₂ -Based 3D Electrode with Protecting Scaffold for Efficient and Stable Hydrogen Evolution. Journal of Physical Chemistry C, 2019, 123, 12142-12148.	1.5	15
1604	Self-supported nanotubular MoP electrode for highly efficient hydrogen evolution via water splitting. Catalysis Communications, 2019, 127, 1-4.	1.6	14
1605	Coupling Co2P and CoP nanoparticles with copper ions incorporated Co9S8 nanowire arrays for synergistically boosting hydrogen evolution reaction electrocatalysis. Journal of Colloid and Interface Science, 2019, 550, 10-16.	5.0	47
1606	Nanocubic bimetallic organic framework self-templated from Ni precursor as efficient electrocatalysts for oxygen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 11705-11716.	3.8	11
1607	Analysis of multilayer based TiO ₂ and ZnO photoanodes for dye-sensitized solar cells. Materials Research Express, 2019, 6, 075902.	0.8	13
1608	Catalyst-Free Hydrogen Synthesis from Liquid Ethanol: An ab Initio Molecular Dynamics Study. Journal of Physical Chemistry C, 2019, 123, 9202-9208.	1.5	21

#	Article	IF	CITATIONS
1609	Oxygen Evolution Reaction Activity in IrOx/SrIrO3 Catalysts: Correlations between Structural Parameters and the Catalytic Activity. Journal of Physical Chemistry Letters, 2019, 10, 1516-1522.	2.1	24
1610	Unraveling the Excited-State Dynamics of Eosin Y Photosensitizers Using Single-Molecule Spectroscopy. Journal of Physical Chemistry A, 2019, 123, 2592-2600.	1.1	7
1611	Solar-light-driven photocatalytic production of peroxydisulfate over noble-metal loaded WO ₃ . Chemical Communications, 2019, 55, 3813-3816.	2.2	20
1612	Irâ€Au Bimetallic Nanoparticle Modified Silicon Nanowires with Ultralow Content of Ir for Hydrogen Evolution Reaction. ChemCatChem, 2019, 11, 2126-2130.	1.8	15
1613	Roomâ€Temperature Ultrafast Synthesis of NiCo‣ayered Double Hydroxide as an Excellent Electrocatalyst for Water Oxidation. ChemistrySelect, 2019, 4, 2409-2415.	0.7	25
1614	Wellâ€Dispersed Nickel―and Zincâ€Tailored Electronic Structure of a Transition Metal Oxide for Highly Active Alkaline Hydrogen Evolution Reaction. Advanced Materials, 2019, 31, e1807771.	11.1	216
1615	3D Metallic Ti@Ni _{0.85} Se with Triple Hierarchy as Highâ€Efficiency Electrocatalyst for Overall Water Splitting. ChemSusChem, 2019, 12, 2271-2277.	3.6	22
1616	Van der Waals heterostructures of P, BSe, and SiC monolayers. Journal of Applied Physics, 2019, 125, .	1.1	57
1617	Rational Design of Atomic Layers of Pt Anchored on Mo ₂ C Nanorods for Efficient Hydrogen Evolution over a Wide pH Range. Small, 2019, 15, e1900014.	5.2	52
1618	Portland cement clinker production using concentrated solar energy – A proof-of-concept approach. Solar Energy, 2019, 183, 677-688.	2.9	25
1619	Conductive metal–organic framework nanowire arrays for electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2019, 7, 10431-10438.	5.2	115
1620	Graphene quantum dots as a green photosensitizer with carbon-doped ZnO nanorods for quantum-dot-sensitized solar cell applications. Bulletin of Materials Science, 2019, 42, 1.	0.8	27
1621	Improved Interfacial Charge Transfer Dynamics and Onset Shift in Nanostructured Hematite Photoanodes via Efficient Ti ⁴⁺ /Sn ⁴⁺ Heterogeneous Self-Doping Through Controlled TiO ₂ Underlayers. ACS Sustainable Chemistry and Engineering, 2019, 7, 6947-6958	3.2	25
1622	A trinuclear cobalt-based coordination polymer as an efficient oxygen evolution electrocatalyst at neutral pH. Journal of Colloid and Interface Science, 2019, 545, 269-275.	5.0	22
1623	Nanoscale palladium as a new benchmark electrocatalyst for water oxidation at low overpotential. Journal of Materials Chemistry A, 2019, 7, 9137-9144.	5.2	65
1624	Formation of Prussian blue analog on Ni foam via in-situ electrodeposition method and conversion into Ni-Fe-mixed phosphates as efficient oxygen evolution electrode. Electrochimica Acta, 2019, 313, 91-98.	2.6	35
1625	Tailoring the Electronic Structure of Co ₂ P by N Doping for Boosting Hydrogen Evolution Reaction at All pH Values. ACS Catalysis, 2019, 9, 3744-3752.	5.5	357
1626	Rutheniumâ€Based Singleâ€Atom Alloy with High Electrocatalytic Activity for Hydrogen Evolution. Advanced Energy Materials, 2019, 9, 1803913.	10.2	270

#	Article	IF	CITATIONS
1627	Interface Coupling of Ni–Co Layered Double Hydroxide Nanowires and Cobalt-Based Zeolite Organic Frameworks for Efficient Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 8255-8264.	3.2	43
1628	Transition Metal (Fe, Co and Ni)â^'Carbideâ^'Nitride (Mâ^'Câ^'N) Nanocatalysts: Structure and Electrocatalytic Applications. ChemCatChem, 2019, 11, 2780-2792.	1.8	46
1629	Effect of Facetâ€Selective Assembly of Cocatalyst on BiVO ₄ Photoanode for Solar Water Oxidation. ChemCatChem, 2019, 11, 3763-3769.	1.8	34
1630	Heterogeneous Ni-Fe-P integrated with nickel foam as an efficient and durable electrocatalyst for water oxidation. International Journal of Hydrogen Energy, 2019, 44, 11684-11694.	3.8	14
1631	Oxygen Evolution on in Situ Selective Formation of AgO: Plane Is the Key Factor. Journal of Physical Chemistry C, 2019, 123, 10967-10973.	1.5	4
1632	Bifunctional oxygen evolution and supercapacitor electrode with integrated architecture of NiFe-layered double hydroxides and hierarchical carbon framework. Nanotechnology, 2019, 30, 325402.	1.3	14
1633	Electrodeposition of a cobalt phosphide film for the enhanced photoelectrochemical water oxidation with α-Fe2O3 photoanode. Electrochimica Acta, 2019, 307, 92-99.	2.6	24
1634	Oneâ€Step Synthesis of MoS 2 Nanosheet Arrays on 3D Carbon Fiber Felts as a Highly Efficient Catalyst for the Hydrogen Evolution Reaction. Energy Technology, 2019, 7, 1900052.	1.8	8
1635	Environmentallyâ€Friendly Exfoliate and Active Site Selfâ€Assembly: Thin 2D/2D Heterostructure Amorphous Nickel–Iron Alloy on 2D Materials for Efficient Oxygen Evolution Reaction. Small, 2019, 15, e1805435.	5.2	64
1636	Boosting the oxygen evolution electrocatalysis of layered nickel hydroxidenitrate nanosheets by iron doping. International Journal of Hydrogen Energy, 2019, 44, 10627-10636.	3.8	34
1637	Nanostructured Rhenium–Carbon Composites as Hydrogen-Evolving Catalysts Effective over the Entire pH Range. ACS Applied Nano Materials, 2019, 2, 2725-2733.	2.4	24
1638	Stabilization of Ruthenium(II) Polypyridyl Chromophores on Mesoporous TiO ₂ Electrodes: Surface Reductive Electropolymerization and Silane Chemistry. ACS Central Science, 2019, 5, 506-514.	5.3	15
1639	Electrocatalytic Water Splitting and CO ₂ Reduction: Sustainable Solutions via Singleâ€Atom Catalysts Supported on 2D Materials. Small Methods, 2019, 3, 1800492.	4.6	63
1640	Transition-metal-based NiCoS/C-dot nanoflower asÂa stable electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 8214-8222.	3.8	30
1641	Aluminumâ€Tailored Energy Level and Morphology of Co _{3â^'} <i>_x</i> Al <i>_x</i> O ₄ Porous Nanosheets toward Highly Efficient Electrocatalysts for Water Oxidation. Small, 2019, 15, e1804886.	5.2	30
1642	Strong-coupled CoOx nanoparticles/Bi2WO6 nanosheets hybrid as electrocatalyst for water oxidation under alkaline conditions. Materials Research Bulletin, 2019, 113, 152-160.	2.7	18
1643	An Efficient Electrocatalyst by Electroless Cobalt–Nickel–Phosphorus Alloy Plating on Three-Dimensional Graphene for Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2019, 166, D69-D76.	1.3	11
1644	Free-standing cotton-derived carbon microfiber@nickel-aluminum layered double hydroxides composite and its excellent capacitive performance. Journal of Alloys and Compounds, 2019, 787, 27-35.	2.8	21

#	Article	IF	CITATIONS
1645	Synthesis and Electrocatalytic Properties of Ni–Fe-Layered Double Hydroxide Nanomaterials. Minerals, Metals and Materials Series, 2019, , 293-301.	0.3	0
1646	CoMoSx@Ni-CoMoSx double-shelled cage-in-cage hollow polyhedron as enhanced Pt-free catalytic material for high-efficiency dye-sensitized solar cell. Journal of Power Sources, 2019, 417, 21-28.	4.0	33
1647	Mo-doped Ni ₂ P hollow nanostructures: highly efficient and durable bifunctional electrocatalysts for alkaline water splitting. Journal of Materials Chemistry A, 2019, 7, 7636-7643.	5.2	110
1648	Facile fabrication and nanostructure control of mesoporous iridium oxide films for efficient electrocatalytic water oxidation. Energy, 2019, 173, 278-289.	4.5	12
1649	Mechanistic Insight into Dioxygen Evolution from Diastereomeric μ-Peroxo Dinuclear Co(III) Complexes Based on Stoichiometric Electron-Transfer Oxidation. Inorganic Chemistry, 2019, 58, 3676-3682.	1.9	22
1650	Microwave Synthesis of Ultrathin Nickel Hydroxide Nanosheets with Iron Incorporation for Electrocatalytic Water Oxidation. ACS Applied Energy Materials, 2019, 2, 1961-1968.	2.5	24
1651	Amorphous Fe2O3 improved [O] transfer cycle of Ce4+/Ce3+ in CeO2 for atom economy synthesis of imines at low temperature. Journal of Catalysis, 2019, 371, 161-174.	3.1	58
1652	Recent Advances in the Development of Molecular Catalystâ€Based Anodes for Water Oxidation toward Artificial Photosynthesis. ChemSusChem, 2019, 12, 1775-1793.	3.6	60
1653	An Amorphous Cobalt Borate Nanosheet-Coated Cobalt Boride Hybrid for Highly Efficient Alkaline Water Oxidation Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 5620-5625.	3.2	51
1654	The g-C3N4 nanosheets decorated by plasmonic Au nanoparticles: A heterogeneous electrocatalyst for oxygen evolution reaction enhanced by sunlight illumination. Electrochimica Acta, 2019, 303, 110-117.	2.6	27
1655	Holey nanospheres of amorphous bimetallic phosphide electrodeposited on 3D porous Ni foam for efficient oxygen evolution. Applied Surface Science, 2019, 479, 540-547.	3.1	31
1656	Feasibility of an Agent-Based Investment Platform for Renewable Energy Source Implementation. , 2019,		0
1657	Research on Analysis Method of Shading and Blocking of LFR Field. E3S Web of Conferences, 2019, 118, 03041.	0.2	0
1658	Electrospun Cuâ€Deposited Flexible Fibers as an Efficient Oxygen Evolution Reaction Electrocatalyst. ChemPhysChem, 2019, 20, 2899-2899.	1.0	2
1659	Crystalline Multi-Metal Nanosheets Array with Enriched Oxygen Vacancies as Efficient and Stable Bifunctional Electrocatalysts for Water Splitting. ACS Applied Energy Materials, 2019, 2, 8919-8929.	2.5	20
1660	Dye-sensitized LaFeO ₃ photocathode for solar-driven H ₂ generation. Chemical Communications, 2019, 55, 12940-12943.	2.2	28
1661	Iron carbonate hydroxide templated binary metal–organic frameworks for highly efficient electrochemical water oxidation. Chemical Communications, 2019, 55, 14773-14776.	2.2	41
1662	Seed-assisted synthesis of fcc Ru–Cu bimetallic nanostructures and their catalytic properties for the hydrogen evolution reaction. CrystEngComm, 2019, 21, 7266-7270.	1.3	1

#	Article	IF	CITATIONS
1663	An amorphous FeNiO _x thin film obtained by anodic electrodeposition as an electrocatalyst toward the oxygen evolution reaction. New Journal of Chemistry, 2019, 43, 19422-19428.	1.4	9
1664	Electronic modulation of composite electrocatalysts derived from layered NiFeMn triple hydroxide nanosheets for boosted overall water splitting. Nanoscale, 2019, 11, 20797-20808.	2.8	30
1665	Facile and sustainable fabrication of transparent mesoporous IrO _x films formed by nanoparticle assembly for efficient electrocatalytic water oxidation. Sustainable Energy and Fuels, 2019, 3, 3489-3497.	2.5	3
1666	Hierarchical nanoporous intermetallic compounds with self-grown transition-metal hydroxides as bifunctional catalysts for the alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 25925-25931.	5.2	15
1667	Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nature Communications, 2019, 10, 5335.	5.8	339
1668	CoS2/TiO2 Nanocomposites for Hydrogen Production under UV Irradiation. Materials, 2019, 12, 3882.	1.3	21
1669	The Frontiers of Nanomaterials (SnS, PbS and CuS) for Dye-Sensitized Solar Cell Applications: An Exciting New Infrared Material. Molecules, 2019, 24, 4223.	1.7	17
1670	Photochemical hydrogen evolution from water by a 1D-network of octahedral Ni ₆ L ₈ cages. Chemical Communications, 2019, 55, 13156-13159.	2.2	12
1671	Investigation of the structural, electronic, and optical properties of Mn-doped CsPbCl ₃ : theory and experiment. RSC Advances, 2019, 9, 29556-29565.	1.7	52
1672	Intrinsic poorly-crystallized Fe5O7(OH)·4H2O: a highly efficient oxygen evolution reaction electrocatalyst under alkaline conditions. RSC Advances, 2019, 9, 42470-42473.	1.7	3
1673	Surface-assembled non-noble metal nanoscale Ni-colloidal thin-films as efficient electrocatalysts for water oxidation. RSC Advances, 2019, 9, 37274-37286.	1.7	16
1674	Selective loading of platinum or silver cocatalyst onto a hydrogen-evolution photocatalyst in a silver-mediated all solid-state Z-scheme system for enhanced overall water splitting. RSC Advances, 2019, 9, 41913-41917.	1.7	11
1675	Enhancement of the hydrogen evolution performance by finely tuning the morphology of Co-based catalyst without changing chemical composition. Nano Research, 2019, 12, 191-196.	5.8	18
1676	One-dimension TiO2 nanostructures with enhanced activity for CO2 photocatalytic reduction. Applied Surface Science, 2019, 464, 534-543.	3.1	68
1677	Atomic-level insight into the mechanism of 0D/2D black phosphorus quantum dot/graphitic carbon nitride (BPQD/GCN) metal-free heterojunction for photocatalysis. Applied Surface Science, 2019, 463, 1148-1153.	3.1	64
1678	Simply tuned and sustainable cobalt oxide decorated titania nanotubes for photoelectrochemical water splitting. Applied Surface Science, 2019, 464, 68-77.	3.1	16
1679	Ultrathin Feâ€Nâ€C Nanosheets Coordinated Feâ€Doped CoNi Alloy Nanoparticles for Electrochemical Water Splitting. Particle and Particle Systems Characterization, 2019, 36, 1800252.	1.2	21
1680	Crystal facets-predominated oxygen evolution reaction activity of earth abundant CoMoO4 electrocatalyst. Journal of Alloys and Compounds, 2019, 781, 460-466.	2.8	40

#	ARTICLE	IF	CITATIONS
1681	Molecular Cobalt Catalysts for H ₂ Generation with Redox Activity and Proton Relays in the Second Coordination Sphere. Inorganic Chemistry, 2019, 58, 1697-1709.	1.9	44
1682	Conducting Polymers–Thylakoid Hybrid Materials for Water Oxidation and Photoelectric Conversion. Advanced Electronic Materials, 2019, 5, 1800789.	2.6	36
1683	Killing Two Birds with One Stone: A Highly Active Tubular Carbon Catalyst with Effective N Doping for Oxygen Reduction and Hydrogen Evolution Reactions. Catalysis Letters, 2019, 149, 486-495.	1.4	12
1684	Designed synthesis of cobalt nanoparticles embedded carbon nanocages as bifunctional electrocatalysts for oxygen evolution and reduction. Carbon, 2019, 144, 492-499.	5.4	31
1685	Novel cobalt-fumarate framework as a robust and efficient electrocatalyst for water oxidation at neutral pH. Electrochimica Acta, 2019, 298, 248-253.	2.6	17
1686	Tuning the Electronic Structure of NiO via Li Doping for the Fast Oxygen Evolution Reaction. Chemistry of Materials, 2019, 31, 419-428.	3.2	78
1687	A steady composite molecular anode Ru1/MWCNTsCOOH/GC for robust catalytic water oxidation. Journal of Energy Chemistry, 2019, 35, 49-54.	7.1	6
1688	Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Research, 2019, 12, 375-380.	5.8	182
1689	Dual Modulation via Electrochemical Reduction Activiation on Electrocatalysts for Enhanced Oxygen Evolution Reaction. ACS Energy Letters, 2019, 4, 423-429.	8.8	55
1690	Synthesis of hollow core-shell CdS@TiO2/Ni2P photocatalyst for enhancing hydrogen evolution and degradation of MB. Chemical Engineering Journal, 2019, 360, 221-230.	6.6	89
1691	Facile synthesis of MOF-Derived Co@CoNx/bamboo-like carbon tubes for efficient electrocatalytic water oxidation. Electrochimica Acta, 2019, 296, 372-378.	2.6	38
1692	Recent Advances and Emerging Trends in Photoâ€Electrochemical Solar Energy Conversion. Advanced Energy Materials, 2019, 9, 1802877.	10.2	220
1693	Direct Electrodeposition of Phosphorus-Doped Nickel Superstructures from Choline Chloride–Ethylene Glycol Deep Eutectic Solvent for Enhanced Hydrogen Evolution Catalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 1529-1537.	3.2	33
1694	Large-scale synthesis of porous nickel boride for robust hydrogen evolution reaction electrocatalyst. Applied Surface Science, 2019, 470, 591-595.	3.1	48
1695	Tunable nanocotton-like amorphous ternary Ni-Co-B: A highly efficient catalyst for enhanced oxygen evolution reaction. Electrochimica Acta, 2019, 296, 644-652.	2.6	77
1696	Efficient, highly stable Zn-doped NiO nanocluster electrocatalysts for electrochemical water splitting applications. Journal of Sol-Gel Science and Technology, 2019, 89, 500-510.	1.1	51
1697	Probing the Electrochemical Properties of Flower Like Mesoporous MoS2 in Different Aqueous Electrolytes. Journal of Electronic Materials, 2019, 48, 904-915.	1.0	11
1698	Seamless tungsten disulfide-tungsten heterojunction with abundant exposed active sites for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 244, 320-326.	10.8	33

#	Article	IF	CITATIONS
1699	Decoupling Effects of Surface Recombination and Barrier Height on p-Si(111) Photovoltage in Semiconductor Liquid Junctions via Molecular Dipoles and Metal Oxides. ACS Applied Energy Materials, 2019, 2, 66-79.	2.5	11
1700	Molecular Photosensitizers in Energy Research and Catalysis: Design Principles and Recent Developments. ACS Energy Letters, 2019, 4, 558-566.	8.8	50
1701	Homogeneous electrocatalytic oxidation of ammonia to N ₂ under mild conditions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2849-2853.	3.3	87
1702	Fabrication of new metal-free materials for the hydrogen evolution reaction on base of the acridine derivatives immobilized on carbon materials. Materials Chemistry and Physics, 2019, 224, 148-155.	2.0	12
1703	Engineering an Earthâ€Abundant Elementâ€Based Bifunctional Electrocatalyst for Highly Efficient and Durable Overall Water Splitting. Advanced Functional Materials, 2019, 29, 1807031.	7.8	146
1704	Recent Progress in Decoupled H ₂ and O ₂ Production from Electrolytic Water Splitting. ChemElectroChem, 2019, 6, 2157-2166.	1.7	49
1705	X-ray Absorption Spectroscopy and Theoretical Investigation of the Reductive Protonation of Cyclopentadienyl Cobalt Compounds. Inorganic Chemistry, 2019, 58, 1167-1176.	1.9	0
1706	Hydrogenâ€Mediated Electron Transfer in Hybrid Microbial–Inorganic Systems and Application in Energy and the Environment. Energy Technology, 2019, 7, 1800987.	1.8	28
1707	Nanoporous water oxidation electrodes with a low loading of laser-deposited Ru/C exhibit enhanced corrosion stability. Beilstein Journal of Nanotechnology, 2019, 10, 157-167.	1.5	6
1708	Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li–S batteries. Journal of Energy Chemistry, 2019, 38, 94-113.	7.1	104
1709	Facile Synthesis of Amorphous Ternary Metal Borides–Reduced Graphene Oxide Hybrid with Superior Oxygen Evolution Activity. ACS Applied Materials & Interfaces, 2019, 11, 846-855.	4.0	67
1710	The Middle Road Less Taken: Electronic-Structure-Inspired Design of Hybrid Photocatalytic Platforms for Solar Fuel Generation. Accounts of Chemical Research, 2019, 52, 645-655.	7.6	29
1711	β-Mo2C/N, P-co-doped carbon as highly efficient catalyst for hydrogen evolution reaction. Journal of Materials Science, 2019, 54, 4589-4600.	1.7	18
1712	Fluoride-Induced Dynamic Surface Self-Reconstruction Produces Unexpectedly Efficient Oxygen-Evolution Catalyst. Nano Letters, 2019, 19, 530-537.	4.5	210
1713	Dual Tuning of Composition and Nanostructure of Hierarchical Hollow Nanopolyhedra Assembled by NiCo-Layered Double Hydroxide Nanosheets for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Energy Materials, 2019, 2, 312-319.	2.5	39
1714	Controlled synthesis of 3D porous structured cobalt-iron based nanosheets by electrodeposition as asymmetric electrodes for ultra-efficient water splitting. Applied Catalysis B: Environmental, 2019, 244, 583-593.	10.8	105
1715	Enhanced Oxygen Evolution Reaction Activity of Nanoporous SnO ₂ /Fe ₂ O ₃ /IrO ₂ Thin Film Composite Electrodes with Ultralow Noble Metal Loading. Advanced Materials Interfaces, 2019, 6, 1801432.	1.9	18
1716	Electrocatalytic proton and water reduction by a Co(III) polypyridyl complex. Polyhedron, 2019, 159, 127-134.	1.0	10

#	Article	IF	CITATIONS
1717	Maximal orbital analysis of molecular wavefunctions. Journal of Computational Chemistry, 2019, 40, 39-50.	1.5	3
1718	Structural Design and Electronic Modulation of Transitionâ€Metalâ€Carbide Electrocatalysts toward Efficient Hydrogen Evolution. Advanced Materials, 2019, 31, e1802880.	11.1	422
1719	MOF derived N-doped carbon coated CoP particle/carbon nanotube composite for efficient oxygen evolution reaction. Carbon, 2019, 141, 643-651.	5.4	192
1720	Tuning the Triplet–Triplet Energy Transfer Between Phthalocyanine and Carotenoid by Methyl Groups on the Conjugated Chain. Photochemistry and Photobiology, 2019, 95, 453-454.	1.3	1
1721	CoNiSe2 heteronanorods decorated with layered-double-hydroxides for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 242, 132-139.	10.8	198
1722	Introduction: hydrogen storage as solution for a changing energy landscape. Physical Sciences Reviews, 2019, 4, .	0.8	2
1723	Recent progress on earth abundant electrocatalysts for hydrogen evolution reaction (HER) in alkaline medium to achieve efficient water splitting – A review. Journal of Energy Chemistry, 2019, 34, 111-160.	7.1	323
1724	Graphene nanoribbon-TiO2-quantum dots hybrid photoanode to boost the performance of photoelectrochemical for hydrogen generation. Catalysis Today, 2020, 340, 161-169.	2.2	15
1725	A highly active three-dimensional Z-scheme ZnO/Au/g-C3N4 photocathode for efficient photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2020, 263, 118180.	10.8	126
1726	Hierarchical NiCo2S4 nanosheets grown on graphene to catalyze the oxygen evolution reaction. Journal of Materials Science, 2020, 55, 1627-1636.	1.7	28
1727	Photocatalytic redox reactions with metalloporphyrins. Journal of Porphyrins and Phthalocyanines, 2020, 24, 21-32.	0.4	17
1728	Borate crosslinking synthesis of structure tailored carbon-based bifunctional electrocatalysts directly from guar gum hydrogels for efficient overall water splitting. Carbon, 2020, 157, 153-163.	5.4	30
1729	Large scale synthesis of Mo2C nanoparticle incorporated carbon nanosheet (Mo2C–C) for enhanced hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 18623-18634.	3.8	30
1730	Oxygen Evolution Reaction on Singleâ€Walled Carbon Nanotubes Noncovalently Functionalized with Metal Phthalocyanines. ChemElectroChem, 2020, 7, 428-436.	1.7	28
1731	Molecular Solar Thermal Storage Enhanced by Hyperbranched Structures. Solar Rrl, 2020, 4, 1900422.	3.1	19
1732	Fabrication of a Hierarchical Ni(OH) 2 @Ni 3 S 2 /Ni Foam Electrode from a Prussian Blue Analogueâ€Based Composite with Enhanced Electrochemical Capacitive and Electrocatalytic Properties. Chemistry - A European Journal, 2020, 26, 1111-1116.	1.7	6
1733	A solar cell that breathes in moisture for energy generation. Nano Energy, 2020, 68, 104263.	8.2	32
1734	Assembling amorphous (Fe-Ni)Co -OH/Ni3S2 nanohybrids with S-vacancy and interfacial effects as an ultra-highly efficient electrocatalyst: Inner investigation of mechanism for alkaline	10.8	73

#	Article	IF	CITATIONS
1735	Orthogonal Supramolecular Assembly Triggered by Inclusion and Exclusion Interactions with Cucurbit[7]uril for Photocatalytic H 2 Evolution. ChemSusChem, 2020, 13, 394-399.	3.6	13
1736	PANI@Co-FeLDHs as highly efficient electrocatalysts for oxygen evolution reaction. Catalysis Communications, 2020, 133, 105826.	1.6	17
1737	Cobaltaâ€Electrocatalyzed Câ^'H Activation in Biomassâ€Derived Glycerol: Powered by Renewable Wind and Solar Energy. ChemSusChem, 2020, 13, 668-671.	3.6	31
1738	Engineering interfacial modification on nanocrystalline hematite photoanodes: A close look into the efficiency parameters. Solar Energy Materials and Solar Cells, 2020, 208, 110377.	3.0	12
1739	CoP/Nâ€Doped Carbon Nanowire Derived from Coâ€Based Coordination Polymer as Efficient Electrocatalyst toward Oxygen Evolution Reaction. Energy Technology, 2020, 8, 1901419.	1.8	5
1740	Decipher of the structure and surface chemistry in molybdenum phosphosulfide on electrochemical catalytic hydrogen evolution reaction. Journal of Catalysis, 2020, 382, 228-236.	3.1	12
1741	Water dissociation and hydrogen evolution on the surface of Fe-based bulk metallic glasses. Physical Chemistry Chemical Physics, 2020, 22, 700-708.	1.3	8
1742	Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horizons, 2020, 5, 43-56.	4.1	223
1743	Phase segregated Cu _{2â^'x} Se/Ni ₃ Se ₄ bimetallic selenide nanocrystals formed through the cation exchange reaction for active water oxidation precatalysts. Chemical Science, 2020, 11, 1523-1530.	3.7	26
1744	Electrochemical Performance Evaluation of CuO@Cu2O Nanowires Array on Cu Foam as Bifunctional Electrocatalyst for Efficient Water Splitting. Chinese Journal of Analytical Chemistry, 2020, 48, e20001-e20012.	0.9	35
1745	Designing solar-cell absorber materials through computational high-throughput screening*. Chinese Physics B, 2020, 29, 028803.	0.7	6
1746	Voltage issue of aqueous rechargeable metal-ion batteries. Chemical Society Reviews, 2020, 49, 180-232.	18.7	522
1747	A coaxial three-layer (Ni, Fe)O _x H _y /Ni/Cu mesh electrode: excellent oxygen evolution reaction activity for water electrolysis. Catalysis Science and Technology, 2020, 10, 1803-1808.	2.1	9
1748	Loading FeOOH on Ni(OH) ₂ hollow nanorods to obtain a three-dimensional sandwich catalyst with strong electron interactions for an efficient oxygen evolution reaction. Nanoscale, 2020, 12, 983-990.	2.8	69
1749	Metal-free highly efficient photocatalysts for overall water splitting: C ₃ N ₅ multilayers. Nanoscale, 2020, 12, 306-315.	2.8	57
1750	Construction of a nanocavity structure with a carrier-selective layer for enhancement of photocatalytic hydrogen production performance. Sustainable Energy and Fuels, 2020, 4, 2164-2173.	2.5	6
1751	Vapor-fed photoelectrolysis of water at 0.3 V using gas-diffusion photoanodes of SrTiO ₃ layers. Sustainable Energy and Fuels, 2020, 4, 1443-1453.	2.5	17
1752	Synthesis, characterization, magnetic anisotropy and catalytic behaviors of a cobalt complex of S,S′-bis(2-pyridylmethyl)-1,2-thiobenzene. Inorganica Chimica Acta, 2020, 503, 119400.	1.2	2

#	Article	IF	CITATIONS
1753	Design of a [FeFe] macrocyclic metallotecton for light-driven hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 2699-2708.	3.8	10
1754	Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions. Journal of Alloys and Compounds, 2020, 821, 153542.	2.8	191
1755	Design of twin junction with solid solution interface for efficient photocatalytic H2 production. Nano Energy, 2020, 69, 104410.	8.2	62
1756	Confining Subâ€Nanometer Pt Clusters in Hollow Mesoporous Carbon Spheres for Boosting Hydrogen Evolution Activity. Advanced Materials, 2020, 32, e1901349.	11.1	255
1757	3Dâ€Graphene Decorated with g ₃ N ₄ /Cu ₃ P Composite: A Noble Metalâ€free Bifunctional Electrocatalyst for Overall Water Splitting. ChemCatChem, 2020, 12, 1394-1402.	1.8	71
1758	Photocatalysis with Transition Metal Based Photosensitizers. Comments on Inorganic Chemistry, 2020, 40, 53-85.	3.0	39
1759	<i>In situ</i> fabrication of dynamic self-optimizing Ni ₃ S ₂ nanosheets as an efficient catalyst for the oxygen evolution reaction. Dalton Transactions, 2020, 49, 70-78.	1.6	19
1760	Partial phosphorization of porous Co–Ni–B for efficient hydrogen evolution electrocatalysis. International Journal of Hydrogen Energy, 2020, 45, 4545-4555.	3.8	19
1761	Self-assembled carbon nitride/cobalt (III) porphyrin photocatalyst for mimicking natural photosynthesis. Diamond and Related Materials, 2020, 101, 107648.	1.8	36
1762	Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review. Journal of Alloys and Compounds, 2020, 819, 153346.	2.8	253
1763	Thermal conductivity-controlled Zn-doped MgO/Mg(OH) ₂ micro-structures for high-efficiency thermo-dynamic heat energy storage. Journal of Asian Ceramic Societies, 2020, 8, 50-56.	1.0	10
1764	The Au/Ag alloy nanoshuttle-TiO2 nanostructure with enhanced H2 production under visible light and inactivation analysis. Nanotechnology, 2020, 31, 095406.	1.3	3
1765	Atomically Embedded Ag via Electrodiffusion Boosts Oxygen Evolution of CoOOH Nanosheet Arrays. ACS Catalysis, 2020, 10, 562-569.	5.5	93
1766	Efficient hydrogen production via urea electrolysis with cobalt doped nickel hydroxide-riched hybrid films: Cobalt doping effect and mechanism aspect. Journal of Catalysis, 2020, 381, 454-461.	3.1	62
1767	Spinel-type oxygen-incorporated Ni3+ self-doped Ni3S4 ultrathin nanosheets for highly efficient and stable oxygen evolution electrocatalysis. Journal of Colloid and Interface Science, 2020, 564, 418-427.	5.0	43
1768	Controllable in situ growth of amorphous MoS nanosheets on CoAl layered double hydroxides for efficient oxygen evolution reaction. Electrochemistry Communications, 2020, 110, 106634.	2.3	15
1769	Lattice-Strain Control of Flexible Janus Indium Chalcogenide Monolayers for Photocatalytic Water Splitting. Journal of Physical Chemistry C, 2020, 124, 167-174.	1.5	30
1770	Plasma-assisted synthesis of hierarchical NiCoxPy nanosheets as robust and stable electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media. Electrochimica Acta, 2020, 331, 135431.	2.6	26

#	Article	IF	CITATIONS
1771	Dye‣ensitized Heterogeneous Photocatalysts for Green Redox Reactions. European Journal of Inorganic Chemistry, 2020, 2020, 899-917.	1.0	37
1772	Laser Fragmentationâ€Induced Defectâ€Rich Cobalt Oxide Nanoparticles for Electrochemical Oxygen Evolution Reaction. ChemSusChem, 2020, 13, 520-528.	3.6	55
1773	Investigating affordable cobalt based metallosurfactant as an efficient electrocatalyst for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2020, 562, 598-607.	5.0	23
1774	Rapid growth of amorphous cobalt-iron oxyhydroxide nanosheet arrays onto iron foam: Highly efficient and low-cost catalysts for oxygen evolution. Journal of Electroanalytical Chemistry, 2020, 856, 113621.	1.9	13
1775	Unraveling the Kinetics of Photocatalytic Water Oxidation on WO ₃ . Journal of Physical Chemistry Letters, 2020, 11, 412-418.	2.1	21
1776	Guarding active sites and electron transfer engineering of core-shell nanosheet as robust bifunctional applications for overall water splitting and capacitors. Electrochimica Acta, 2020, 331, 135372.	2.6	3
1777	3D Carbon Materials for Efficient Oxygen and Hydrogen Electrocatalysis. Advanced Energy Materials, 2020, 10, 1902494.	10.2	97
1778	Zusammenwirken von Rutheniumkatalysatoren und elektrokatalytisch generierten, hypervalenten Iodreagenzien für die Câ€Hâ€Oxygenierung. Angewandte Chemie, 2020, 132, 3210-3215.	1.6	28
1779	Câ^'H Oxygenation Reactions Enabled by Dual Catalysis with Electrogenerated Hypervalent Iodine Species and Ruthenium Complexes. Angewandte Chemie - International Edition, 2020, 59, 3184-3189.	7.2	83
1780	Metal-free photo- and electro-catalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 23674-23698.	5.2	59
1781	Efficient photocatalytic degradation of crystal violet by using graphene oxide/nickel sulphide nanocomposites. Bulletin of Materials Science, 2020, 43, 1.	0.8	17
1782	Ab initio study of oxygen evolution reaction and hydrogen evolution reaction via water splitting on pure and nitrogen-doped graphene surface. Materials Today Communications, 2020, 25, 101602.	0.9	6
1783	H ₂ evolution from H ₂ O <i>via</i> O–H oxidative addition across a 9,10-diboraanthracene. Chemical Communications, 2020, 56, 13804-13807.	2.2	9
1784	Photobase effect for just-in-time delivery in photocatalytic hydrogen generation. Nature Communications, 2020, 11, 5179.	5.8	23
1785	Robust non-Pt noble metal-based nanomaterials for electrocatalytic hydrogen generation. Applied Physics Reviews, 2020, 7, .	5.5	28
1786	Octahedral Coordinated Trivalent Cobalt Enriched Multimetal Oxygenâ€Evolution Catalysts. Advanced Energy Materials, 2020, 10, 2002593.	10.2	47
1787	Mulberryâ€Inspired Nickelâ€Niobium Phosphide on Plasmaâ€Defectâ€Engineered Carbon Support for Highâ€Performance Hydrogen Evolution. Small, 2020, 16, e2004843.	5.2	30
1788	Computational mechanistic study on molecular catalysis of water oxidation by cyclam ligand-based iron complex. Theoretical Chemistry Accounts, 2020, 139, 1.	0.5	6

		15	C
#		IF	CITATIONS
1789	oxidation catalysis. International Journal of Hydrogen Energy, 2020, 45, 26583-26594.	3.8	11
1790	Hybrid-atom-doped NiMoO ₄ nanotubes for oxygen evolution reaction. New Journal of Chemistry, 2020, 44, 17477-17482.	1.4	17
1791	A modified â€~skeleton/skin' strategy for designing CoNiP nanosheets arrayed on graphene foam for on/off switching of NaBH ₄ hydrolysis. RSC Advances, 2020, 10, 26834-26842.	1.7	11
1792	Understanding the Synergistic Effect in Oxygen Evolution Reaction Catalysis from Chemical Kinetics Point of View: An Iron Oxide/Nickel Oxide Case Study. Journal of the Electrochemical Society, 2020, 167, 116514.	1.3	11
1793	Alkyl-grafted azobenzene molecules for photo-induced heat storage and release via integration function of phase change and photoisomerization. Composites Communications, 2020, 21, 100402.	3.3	29
1794	The pulsed laser ablation synthesis of colloidal iron oxide nanoparticles for the enhancement of TiO2 nanotubes photo-activity. Applied Surface Science, 2020, 530, 147097.	3.1	20
1795	Electrodeposited NiFe ₂ Se ₄ on Nickel Foam as a Binder-Free Electrode for High-Performance Asymmetric Supercapacitors. Industrial & Engineering Chemistry Research, 2020, 59, 14163-14171.	1.8	31
1796	Harnessing complex photonic systems for renewable energy. Advances in Physics: X, 2020, 5, 1768898.	1.5	3
1797	Recent advances in rational design of efficient electrocatalyst for full water splitting across all pH conditions. MRS Bulletin, 2020, 45, 539-547.	1.7	26
1798	Ferrites for electrocatalytic water splitting applications. , 2020, , 123-145.		2
1799	Bifunctional CoFeVO <i>_x</i> Catalyst for Solar Water Splitting by using Multijunction and Heterojunction Silicon Solar Cells. Advanced Materials Technologies, 2020, 5, 2000592.	3.0	13
1800	Photocatalytic Molecular Oxygen Activation by Regulating Excitonic Effects in Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 20763-20771.	6.6	321
1801	A Highly Efficient Co ₃ V ₂ O ₈ /MoS ₂ /Carbon Cloth Nanocomposite Bifunctional Electrocatalyst for Overall Water Splitting. ChemistrySelect, 2020, 5, 14276-14281.	0.7	7
1802	Continuous Surface Strain Tuning for NiFe-Layered Double Hydroxides Using a Multi-inlet Vortex Mixer. Industrial & Engineering Chemistry Research, 2020, 59, 19897-19906.	1.8	0
1803	In situ direct growth of flower-like hierarchical architecture of CoNi-layered double hydroxide on Ni foam as an efficient self-supported oxygen evolution electrocatalyst. International Journal of Hydrogen Energy, 2020, 45, 22788-22796.	3.8	27
1804	Hybridization of Bimetallic Molybdenumâ€Tungsten Carbide with Nitrogenâ€Doped Carbon: A Rational Design of Super Active Porous Composite Nanowires with Tailored Electronic Structure for Boosting Hydrogen Evolution Catalysis. Advanced Functional Materials, 2020, 30, 2003198.	7.8	57
1805	S-Doped hierarchical graphene decorated with Co-porphyrins as an efficient electrocatalyst for zinc–air batteries. New Journal of Chemistry, 2020, 44, 14343-14349.	1.4	7
1806	Study on POM assisted electrolysis for hydrogen and ammonia production. International Journal of Hydrogen Energy, 2020, 45, 28313-28324.	3.8	6

#	Article	IF	CITATIONS
1807	Metallenes: Recent Advances and Opportunities in Energy Storage and Conversion Applications. , 2020, 2, 1148-1172.		64
1808	Niâ€Activated Transition Metal Carbides for Efficient Hydrogen Evolution in Acidic and Alkaline Solutions. Advanced Energy Materials, 2020, 10, 2002260.	10.2	144
1809	First principles study of structural, optoelectronic and photocatalytic properties of SnS, SnSe monolayers and their van der Waals heterostructure. Chemical Physics, 2020, 539, 110939.	0.9	18
1810	Apparent disagreement between cyclic voltammetry and electrochemical impedance spectroscopy explained by time-domain simulation of constant phase elements. International Journal of Hydrogen Energy, 2020, 45, 22383-22393.	3.8	10
1811	Hydrothermally/electrochemically decorated FeSe on Ni-foam electrode: An efficient bifunctional electrocatalysts for overall water splitting in an alkaline medium. International Journal of Hydrogen Energy, 2020, 45, 27182-27192.	3.8	20
1812	Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy, 2020, 78, 105234.	8.2	250
1813	Coordination-Induced N–H Bond Weakening in a Molybdenum Pyrrolidine Complex: Isotopic Labeling Provides Insight into the Pathway for H ₂ Evolution. Organometallics, 2020, 39, 3050-3059.	1.1	8
1814	Enhanced stability and ultrahigh activity of amorphous ripple nanostructured Ni-doped Fe oxyhydroxide electrode toward synergetic electrocatalytic water splitting. RSC Advances, 2020, 10, 26364-26373.	1.7	29
1815	Tuning the Properties of Benzothiadiazole Dyes for Efficient Visible Light-Driven Photocatalytic H ₂ Production under Different Conditions. ACS Applied Energy Materials, 2020, 3, 8912-8928.	2.5	20
1816	Novel Co _{3(1–<i>x</i>)} Fe _{3<i>x</i>} V ₂ O ₈ Nanoparticles as Highly Active and Noble-Metal-Free Electrocatalysts for Oxygen Evolution Reaction. Energy & Fuels, 2020, 34, 15019-15025.	2.5	4
1817	Highly active Co–N-doped graphene as an efficient bifunctional electrocatalyst (ORR/HER) for flexible all-solid-state zinc–air batteries. Sustainable Energy and Fuels, 2020, 4, 6165-6173.	2.5	9
1818	Recent progress on nanostructured bimetallic electrocatalysts for water splitting and electroreduction of carbon dioxide. Journal of Semiconductors, 2020, 41, 091705.	2.0	13
1819	A cobalt complex of bis(methylthioether)pyridine, a new catalyst for hydrogen evolution. Polyhedron, 2020, 192, 114863.	1.0	5
1820	Carbon Nanotube Electrodeâ€Based Perovskite–Silicon Tandem Solar Cells. Solar Rrl, 2020, 4, 2000353.	3.1	19
1821	NiFe ₂ O ₄ hollow nanoparticles of small sizes on carbon nanotubes for oxygen evolution. Catalysis Science and Technology, 2020, 10, 6970-6976.	2.1	9
1822	Recent progress in porphyrin- and phthalocyanine-containing perovskite solar cells. RSC Advances, 2020, 10, 32678-32689.	1.7	51
1823	Understanding the formation of bulk- and surface-active layered (oxy)hydroxides for water oxidation starting from a cobalt selenite precursor. Energy and Environmental Science, 2020, 13, 3607-3619.	15.6	77
1824	Elucidating the Mechanistic Origins of Photocatalytic Hydrogen Evolution Mediated by MoS ₂ /CdS Quantum-Dot Heterostructures. ACS Applied Materials & Interfaces, 2020, 12, 43728-43740.	4.0	42

#	Article	IF	CITATIONS
1825	Nickel doped MoS2 nanoparticles as precious-metal free bifunctional electrocatalysts for glucose assisted electrolytic H2 generation. International Journal of Hydrogen Energy, 2020, 45, 32940-32948.	3.8	21
1826	MOF-Derived Hierarchical CoSe ₂ with Sheetlike Nanoarchitectures as an Efficient Bifunctional Electrocatalyst. Inorganic Chemistry, 2020, 59, 12778-12787.	1.9	27
1827	Atomic-Level Functionalized Graphdiyne for Electrocatalysis Applications. Catalysts, 2020, 10, 929.	1.6	11
1828	Electronic and photocatalytic properties of two-dimensional boron phosphide/SiC van der Waals heterostructure with direct type-II band alignment: a first principles study. RSC Advances, 2020, 10, 32027-32033.	1.7	18
1829	Mo-Doped ultrafine VC nanoparticles confined in few-layer graphitic nanocarbon for improved electrocatalytic hydrogen evolution. Inorganic Chemistry Frontiers, 2020, 7, 4142-4149.	3.0	10
1830	The Effect of Laser Re-Solidification on Microstructure and Photo-Electrochemical Properties of Fe-Decorated TiO2 Nanotubes. Materials, 2020, 13, 4019.	1.3	2
1831	Amidine/Amidinate Cobalt Complexes: One-Pot Synthesis, Mechanism, and Photocatalytic Application for Hydrogen Production. Inorganic Chemistry, 2020, 59, 14910-14919.	1.9	8
1832	Self-supporting composited electrocatalysts of ultrafine Mo ₂ C on 3D-hierarchical porous carbon monoliths for efficient hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 23265-23273.	5.2	13
1833	Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain. Frontiers of Physics, 2020, 15, 1.	2.4	20
1834	Coâ€Induced Electronic Optimization of Hierarchical NiFe LDH for Oxygen Evolution. Small, 2020, 16, e2002426.	5.2	263
1835	Bioinspired Water Oxidation Using a Mn-Oxo Cluster Stabilized by Non-Innocent Organic Tyrosine Y161 and Plastoquinone Mimics. ACS Sustainable Chemistry and Engineering, 2020, 8, 13648-13659.	3.2	7
1836	Nitrogenâ€Doped Hierarchical Heterostructured Aerophobic MoS _x /Ni ₃ S ₂ Nanowires by Oneâ€pot Synthesis: System Engineering and Synergistic Effect in Electrocatalysis of Hydrogen Evolution Reaction. Energy and Environmental Materials 2021 4 658-663	7.3	24
1837	Three-dimensional porous CoNiO2@reduced graphene oxide nanosheet arrays/nickel foam as a highly efficient bifunctional electrocatalyst for overall water splitting. Tungsten, 2020, 2, 390-402.	2.0	58
1838	MoS2/CoAl-LDH heterostructure for enhanced efficient of oxygen evolution reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125419.	2.3	13
1839	PLD-fabricated perovskite oxide nanofilm as efficient electrocatalyst with highly enhanced water oxidation performance. Applied Catalysis B: Environmental, 2020, 272, 119046.	10.8	29
1840	Redox-active ligand assisted electrocatalytic water oxidation by a mononuclear cobalt complex. Dalton Transactions, 2020, 49, 7155-7165.	1.6	40
1841	Iron-doped NiSe2 in-situ grown on graphene as an efficient electrocatalyst for oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2020, 866, 114134.	1.9	19
1842	Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels, 2020, 34, 6634-6695.	2.5	100

#	Article	IF	CITATIONS
1843	Aggregationâ€Induced Improvement of Catalytic Activity by Innerâ€Aggregate Electronic Communication of Metalâ€Fullereneâ€Based Surfactants. ChemCatChem, 2020, 12, 2726-2731.	1.8	5
1844	Elucidation of Active Sites on S, N Codoped Carbon Cubes Embedding Co–Fe Carbides toward Reversible Oxygen Conversion in Highâ€Performance Zinc–Air Batteries. Small, 2020, 16, e1907368.	5.2	66
1845	Amorphous versus Crystalline in Water Oxidation Catalysis: A Case Study of NiFe Alloy. Nano Letters, 2020, 20, 4278-4285.	4.5	201
1846	OER Performances of Cationic Substituted (100)-Oriented IrO ₂ Thin Films: A Joint Experimental and Theoretical Study. ACS Applied Energy Materials, 2020, 3, 5229-5237.	2.5	14
1847	Design of MoS ₂ /Graphene van der Waals Heterostructure as Highly Efficient and Stable Electrocatalyst for Hydrogen Evolution in Acidic and Alkaline Media. ACS Applied Materials & Interfaces, 2020, 12, 24777-24785.	4.0	62
1848	Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions. Beilstein Journal of Nanotechnology, 2020, 11, 770-781.	1.5	20
1849	Regulating the charge diffusion of two-dimensional cobalt–iron hydroxide/graphene composites for high-rate water oxidation. Journal of Materials Chemistry A, 2020, 8, 11573-11581.	5.2	18
1850	Core/shell -structured NiMoO4 @ MoSe2/NixSey Nanorod on Ni Foam as a Bifunctional Electrocatalyst for Efficient Overall Water Splitting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124888.	2.3	35
1851	Underwater Superaerophobicity/Superaerophilicity and Unidirectional Bubble Passage Based on the Femtosecond Laser‧tructured Stainless Steel Mesh. Advanced Materials Interfaces, 2020, 7, 1902128.	1.9	22
1852	Competition and selectivity during parallel evolution of bromine, chlorine and oxygen on IrOx electrodes. Journal of Catalysis, 2020, 389, 99-110.	3.1	21
1853	The impact of oil price on the clean energy metal prices: A multi-scale perspective. Resources Policy, 2020, 68, 101730.	4.2	24
1854	Ir Cluster-Decorated Carbon Composite as Bifunctional Electrocatalysts for Acidic Stable Overall Water Splitting. Journal of the Electrochemical Society, 2020, 167, 104511.	1.3	18
1855	Dual Role of Silver Moieties Coupled with Ordered Mesoporous Cobalt Oxide towards Electrocatalytic Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 16544-16552.	7.2	64
1856	Controlled development of higher-dimensional nanostructured copper oxide thin films as binder free electrocatalysts for oxygen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 16583-16590.	3.8	21
1857	CoNiSe ₂ Nanostructures for Clean Energy Production. ACS Omega, 2020, 5, 14702-14710.	1.6	27
1858	Dual Role of Silver Moieties Coupled with Ordered Mesoporous Cobalt Oxide towards Electrocatalytic Oxygen Evolution Reaction. Angewandte Chemie, 2020, 132, 16687.	1.6	23
1859	Cobalt-based heterogeneous catalysts in an electrolyzer system for sustainable energy storage. Dalton Transactions, 2020, 49, 11430-11450.	1.6	12
1860	Recent Advancement in MoS2 for Hydrogen Evolution Reactions. Current Graphene Science, 2020, 3, 11-25.	0.5	1

#	Article	IF	CITATIONS
1861	Synthesis and characterization of CuO–NiO nanocomposite: highly active electrocatalyst for oxygen evolution reaction application. Journal of Materials Science: Materials in Electronics, 2020, 31, 11286-11294.	1.1	10
1862	Tailoring eletronic structure of Pd nanoparticles via MnO2 as electron transfer intermediate for enhanced hydrogen evolution reaction. Chemical Physics Letters, 2020, 748, 137405.	1.2	5
1863	Boosting C2 products in electrochemical CO ₂ reduction over highly dense copper nanoplates. Catalysis Science and Technology, 2020, 10, 4562-4570.	2.1	28
1864	2D MoSe2/CoP intercalated nanosheets for efficient electrocatalytic hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 19246-19256.	3.8	32
1865	Transferring photocatalytic CO ₂ reduction mediated by Cu(N^N)(P^P) ⁺ complexes from organic solvents into ionic liquid media. Green Chemistry, 2020, 22, 4541-4549.	4.6	12
1866	Hollow Porous MnFe ₂ O ₄ Sphere Grown on Elmâ€Moneyâ€Derived Biochar towards Energyâ€ S aving Full Water Electrolysis. Chemistry - A European Journal, 2020, 26, 14397-14404.	1.7	9
1867	N-doped Co6Mo6C nanorods as highly active and durable bifunctional electrocatalysts for water splitting. Journal of Electroanalytical Chemistry, 2020, 871, 114271.	1.9	9
1868	Recent Studies on Multifunctional Electrocatalysts for Fuel Cell by Various Nanomaterials. Catalysts, 2020, 10, 621.	1.6	4
1869	Recent trends in functionalized nanoparticles loaded polymeric composites: An energy application. Materials Science for Energy Technologies, 2020, 3, 515-525.	1.0	26
1870	Effective Visible Light Exploitation by Copper Molybdo-tungstate Photoanodes. ACS Applied Energy Materials, 2020, 3, 6956-6964.	2.5	11
1871	Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nature Catalysis, 2020, 3, 245-255.	16.1	237
1872	Mechanistic Study of IrO ₂ Dissolution during the Electrocatalytic Oxygen Evolution Reaction. Journal of Physical Chemistry Letters, 2020, 11, 2695-2700.	2.1	70
1873	Ni _x Fe _{1â^'x} B nanoparticle self-modified nanosheets as efficient bifunctional electrocatalysts for water splitting: experiments and theories. Journal of Materials Chemistry A, 2020, 8, 7360-7367.	5.2	28
1874	Micro-nanoporous MoO2@CoMo heterostructure catalyst for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 270, 118895.	10.8	63
1875	Nanostructured Î^MnO ₂ /Cd(OH) ₂ Heterojunction Constructed under Ambient Conditions as a Sustainable Cathode for Photocatalytic Hydrogen Production. Industrial & Engineering Chemistry Research, 2020, 59, 7584-7593.	1.8	7
1876	How the strain effects decreases the band gap energy in the CsPbX ₃ perovskite compounds?. Phase Transitions, 2020, 93, 455-469.	0.6	15
1877	Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy, 2020, 72, 104728.	8.2	78
1878	Core–Shell Structured NiFeSn@NiFe (Oxy)Hydroxide Nanospheres from an Electrochemical Strategy for Electrocatalytic Oxygen Evolution Reaction. Advanced Science, 2020, 7, 1903777.	5.6	69

#	Article	IF	CITATIONS
1879	Metal–Organic Framework–Impregnated Calixareneâ€Based Clusterâ€Derived Hierarchically Porous Bimetallic Phosphide Nanocomposites for Efficient Water Splitting. Energy Technology, 2020, 8, 2000059.	1.8	9
1880	Photoelectrochemical reduction of CO2 over Ru/Mn/Co trimetallic catalysts supported anatase TiO2 under visible light irradiation. Journal of Sol-Gel Science and Technology, 2020, 94, 279-287.	1.1	7
1881	Poly(acrylamide- <i>co</i> -acrylic acid) gel polymer electrolyte incorporating with water-soluble sodium sulfide salt for quasi-solid-state quantum dot-sensitized solar cell. High Performance Polymers, 2020, 32, 183-191.	0.8	6
1882	Construction and Application of Interfacial Inorganic Nanostructures. Chinese Journal of Chemistry, 2020, 38, 772-786.	2.6	13
1883	Bandgap Opening of Graphdiyne Monolayer via B, N-Codoping for Photocatalytic Overall Water Splitting: Design Strategy from DFT Studies. Journal of Physical Chemistry C, 2020, 124, 6624-6633.	1.5	39
1884	Kinetics and mechanistic study of electrocatalytic hydrogen evolution by [Co(Fc-tpy)2]2+. Polyhedron, 2020, 187, 114677.	1.0	10
1885	Copper Vanadate (Cu ₃ V ₂ O ₈): (Mo, W) Doping Insights to Enhance Performance as an Anode for Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2020, 3, 6060-6064.	2.5	18
1886	Ion-Induced Delamination of Layered Bulk Metal–Organic Frameworks into Ultrathin Nanosheets for Boosting the Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 10554-10563.	3.2	17
1887	Co(OH)2 ELECTROCATALYST DECORATED ON TiO2 FILM FOR ENHANCED PHOTOELECTROCATALYTIC WATER OXIDATION. Surface Review and Letters, 2020, 27, 2050003.	0.5	1
1888	The role of the capping agent and nanocrystal size in photoinduced hydrogen evolution using CdTe/CdS quantum dot sensitizers. Dalton Transactions, 2020, 49, 10212-10223.	1.6	8
1889	Visible-Light-Driven Selective Oxidation of Biomass-Derived HMF to DFF Coupled with H ₂ Generation by Noble Metal-Free Zn _{0.5} Cd _{0.5} S/MnO ₂ Heterostructures. ACS Applied Energy Materials, 2020, 3, 7138-7148.	2.5	60
1890	Vacancies and edges: Enhancing supercapacitive performance metrics of electrode materials. Journal of Energy Storage, 2020, 31, 101614.	3.9	25
1891	Template-stabilized oxidic nickel oxygen evolution catalysts. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16187-16192.	3.3	41
1892	Synthesis, Isomerization and Electrocatalytic Properties of Thiolate-Bridged Dicobalt Hydride Complexes with Different Substituents. European Journal of Inorganic Chemistry, 2020, 2020, 2757-2764.	1.0	4
1893	Fatty acid/metal ion composite as thermal energy storage materials. SN Applied Sciences, 2020, 2, 1.	1.5	22
1894	A dinuclear nickel catalyst based on metal–metal cooperation for electrochemical hydrogen production. Inorganica Chimica Acta, 2020, 505, 119498.	1.2	3
1895	Characterizing electronic and atomic structures for amorphous and molecular metal oxide catalysts at functional interfaces by combining soft X-ray spectroscopy and high-energy X-ray scattering. Nanoscale, 2020, 12, 13276-13296.	2.8	14
1896	Metalloenzyme mimic: diironhexacarbonyl cluster coupled to redox-active 4-mercapto-1,8-naphthalic anhydride ligands. Transition Metal Chemistry, 2020, 45, 577-581.	0.7	2

#	Article	IF	CITATIONS
1897	Electronic and optoelectronic properties of van der Waals heterostructure based on graphene-like GaN, blue phosphorene, SiC, and ZnO: A first principles study. Journal of Applied Physics, 2020, 127, .	1.1	19
1898	Integrating anaerobic digestion, hydrothermal liquefaction, and biomethanation within a power-to-gas framework for dairy waste management and grid decarbonization: a techno-economic assessment. Sustainable Energy and Fuels, 2020, 4, 4644-4661.	2.5	18
1899	Bifunctional Water Splitting Photoelectrocatalysts Using Flexible Organometallic Complex and Nanographene Multilayer Thin Films. ACS Applied Energy Materials, 2020, 3, 7103-7112.	2.5	5
1900	Enhancing the activity of photocatalytic hydrogen evolution from CdSe quantum dots with a polyoxovanadate cluster. Chemical Communications, 2020, 56, 8762-8765.	2.2	21
1901	Synergistic Effect of Molybdenum and Tungsten in Highly Mixed Carbide Nanoparticles as Effective Catalysts in the Hydrogen Evolution Reaction under Alkaline and Acidic Conditions. ChemElectroChem, 2020, 7, 983-988.	1.7	13
1902	Non-noble metal single-atom catalysts prepared by wet chemical method and their applications in electrochemical water splitting. Journal of Energy Chemistry, 2020, 47, 333-345.	7.1	104
1903	Molybdenum disulfide with enlarged interlayer spacing decorated on reduced graphene oxide for efficient electrocatalytic hydrogen evolution. Journal of Materials Science, 2020, 55, 6637-6647.	1.7	59
1904	Preparation of Fe–Co–P–Gr/NF Coating via Electroless Composite Plating as Efficient Electrocatalysts for Overall Water Splitting. Electronic Materials Letters, 2020, 16, 164-173.	1.0	9
1905	Ionic liquid-assisted one-step preparation of ultrafine amorphous metallic hydroxide nanoparticles for the highly efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 15767-15773.	5.2	37
1906	Electronic Redistribution: Construction and Modulation of Interface Engineering on CoP for Enhancing Overall Water Splitting. Advanced Functional Materials, 2020, 30, 1909618.	7.8	240
1907	Multilevel Hollow MXene Tailored Lowâ€Pt Catalyst for Efficient Hydrogen Evolution in Fullâ€pH Range and Seawater. Advanced Functional Materials, 2020, 30, 1910028.	7.8	150
1908	Deciphering Ironâ€Ðependent Activity in Oxygen Evolution Catalyzed by Nickel–Iron Layered Double Hydroxide. Angewandte Chemie - International Edition, 2020, 59, 8072-8077.	7.2	274
1909	Co-doped 1T′/T phase dominated MoS1+XSe1+Y alloy nanosheets as bifunctional electrocatalyst for overall water splitting. Applied Surface Science, 2020, 513, 145828.	3.1	10
1910	Efficient electrocatalytic oxygen evolution of CuxCo3-xO4 nanoparticles in alkaline medium. Materials Today: Proceedings, 2020, 22, 262-267.	0.9	2
1911	Electrocatalytic Hydrogen Evolution and Oxidation with Rhenium Tris(thiolate) Complexes: A Competition between Rhenium and Sulfur for Electrons and Protons. ACS Catalysis, 2020, 10, 3778-3789.	5.5	22
1912	Role of Defects in the Interplay between Adsorbate Evolving and Lattice Oxygen Mechanisms of the Oxygen Evolution Reaction in RuO ₂ and IrO ₂ . ACS Catalysis, 2020, 10, 3650-3657.	5.5	339
1913	Deciphering Ironâ€Dependent Activity in Oxygen Evolution Catalyzed by Nickel–Iron Layered Double Hydroxide. Angewandte Chemie, 2020, 132, 8149-8154.	1.6	56
1914	Kinetics and the potential well in electrochemical hydrogen evolution by [Co(4-tolyl-tpy)2]2+. Electrochimica Acta, 2020, 340, 136000.	2.6	14

#	Article	IF	CITATIONS
1915	One-Pot-Synthesized CoFe-Glycerate Hollow Spheres with Rich Oxyhydroxides for Efficient Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 5464-5477.	3.2	31
1916	Crystal phase tuning and valence engineering in non-noble catalysts for outstanding overall water splitting. Journal of Materials Chemistry A, 2020, 8, 4524-4532.	5.2	13
1917	CoFe–OH Double Hydroxide Films Electrodeposited on Ni-Foam as Electrocatalyst for the Oxygen Evolution Reaction. Zeitschrift Fur Physikalische Chemie, 2020, 234, 995-1019.	1.4	9
1918	Electroless Plating of NiFeP Alloy on the Surface of Silicon Photoanode for Efficient Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 11479-11488.	4.0	28
1919	Versatile Route To Fabricate Precious-Metal Phosphide Electrocatalyst for Acid-Stable Hydrogen Oxidation and Evolution Reactions. ACS Applied Materials & Interfaces, 2020, 12, 11737-11744.	4.0	37
1920	Second Coordination Sphere Effects in an Evolved Ru Complex Based on Highly Adaptable Ligand Results in Rapid Water Oxidation Catalysis. Journal of the American Chemical Society, 2020, 142, 5068-5077.	6.6	69
1921	Nonâ€Nobleâ€Metalâ€Based Electrocatalysts toward the Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 1910274.	7.8	760
1922	First principles modelling of the N-doped Co0.5-terminated (0Â0Â1) Co3O4 surface. Nuclear Instruments & Methods in Physics Research B, 2020, 465, 11-14.	0.6	1
1923	Facile synthesis of one-dimensional MoWP hybrid nanowires and their enhanced electrochemical catalytic activities. Chemical Physics Letters, 2020, 741, 137107.	1.2	6
1924	A bioinspired thiolate-bridged dinickel complex with a pendant amine: synthesis, structure and electrocatalytic properties. Dalton Transactions, 2020, 49, 2151-2158.	1.6	12
1925	Ultrathin Amorphous Nickel Doped Cobalt Phosphates with Highly Ordered Mesoporous Structures as Efficient Electrocatalyst for Oxygen Evolution Reaction. Small, 2020, 16, e1906766.	5.2	50
1926	Flexible Co–Mo–N/Au Electrodes with a Hierarchical Nanoporous Architecture as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Advanced Materials, 2020, 32, e1907214.	11.1	114
1927	Hybrid Ni ₃ S ₂ –MoS ₂ nanowire arrays as a pH-universal catalyst for accelerating the hydrogen evolution reaction. Chemical Communications, 2020, 56, 2471-2474.	2.2	29
1928	Synthesis, crystal structure, characterization of pyrazine diaminotriazine based complexes and their systematic comparative study with pyridyl diaminotriazine based complexes for light-driven hydrogen production. Polyhedron, 2020, 180, 114412.	1.0	8
1929	Modulation in Ruthenium–Cobalt Electronic Structure for Highly Efficient Overall Water Splitting. ACS Applied Energy Materials, 2020, 3, 1869-1874.	2.5	25
1930	Visible light-assisted reduction of CO ₂ into formaldehyde by heteroleptic ruthenium metal complex–TiO ₂ hybrids in an aqueous medium. Green Chemistry, 2020, 22, 1650-1661.	4.6	25
1931	Amorphous nickel sulfide nanoparticles anchored on N-doped graphene nanotubes with superior properties for high-performance supercapacitors and efficient oxygen evolution reaction. Nanoscale, 2020, 12, 4655-4666.	2.8	29
1932	Design, Synthesis and High HER Performances of 3D Ni/Mo Sulfide on Ni Foam. ChemCatChem, 2020, 12, 1647-1652.	1.8	18

#	Article	IF	CITATIONS
1933	Alloy Foamâ€Đerived Ni _{0.86} Fe _{2.14} O ₄ Hexagonal Plates as an Efficient Electrochemical Catalyst for the Oxygen Evolution Reaction. ChemistrySelect, 2020, 5, 1578-1585.	0.7	2
1934	Prussian blue analog nanocubes tuning synthesis of coral-like Ni3S2@MIL-53(NiFeCo) core-shell nanowires array and boosting oxygen evolution reaction. Journal of Power Sources, 2020, 451, 227295.	4.0	22
1935	A solid-state integrated photo-supercapacitor based on ZnO nanorod arrays decorated with Ag ₂ S quantum dots as the photoanode and a PEDOT charge storage counter-electrode. RSC Advances, 2020, 10, 5712-5721.	1.7	23
1936	Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: A review. Current Opinion in Solid State and Materials Science, 2020, 24, 100805.	5.6	262
1937	The Importance of Ligand Selection on the Formation of Metal Phosphonate-Derived CoMoP and CoMoP ₂ Nanoparticles for Catalytic Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 4147-4156.	2.4	23
1938	Self‣upported Vanadium Carbide by an Electropolymerizationâ€Assisted Method for Efficient Hydrogen Production. ChemSusChem, 2020, 13, 3671-3678.	3.6	22
1939	Metal–Organic Framework-Based Catalysts with Single Metal Sites. Chemical Reviews, 2020, 120, 12089-12174.	23.0	692
1940	Synergistic tuning of oxygen vacancies and d-band centers of ultrathin cobaltous dihydroxycarbonate nanowires for enhanced electrocatalytic oxygen evolution. Nanoscale, 2020, 12, 11735-11745.	2.8	10
1941	Monocrystalline silicon-based tandem configuration for solar-to-hydrogen conversion. Inorganic Chemistry Communication, 2020, 116, 107926.	1.8	4
1942	Molecular Catalysts Boost the Rate of Electrolytic CO ₂ Reduction. ACS Energy Letters, 2020, 5, 1512-1518.	8.8	52
1943	Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. Journal of Materials Chemistry A, 2020, 8, 9146-9159.	5.2	196
1944	Vanadium nitride for aqueous supercapacitors: a topic review. Journal of Materials Chemistry A, 2020, 8, 8218-8233.	5.2	88
1945	Recent advances in nanostructured intermetallic electrocatalysts for renewable energy conversion reactions. Journal of Materials Chemistry A, 2020, 8, 8195-8217.	5.2	64
1946	Slow magnetic relaxation and water oxidation activity of dinuclear Co ^{II} Co ^{III} and unique triangular Co ^{II} Co ^{II} Co ^{III} mixed-valence complexes. Dalton Transactions, 2020, 49, 6328-6340.	1.6	15
1947	Recent progress in self-supported two-dimensional transition metal oxides and (oxy)hydroxides as oxygen evolution reaction catalysts. Sustainable Energy and Fuels, 2020, 4, 2625-2637.	2.5	28
1948	Fabrication of platinum thin films for ultra-high electrocatalytic hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 15076-15085.	3.8	23
1949	Recent progress of precious-metal-free electrocatalysts for efficient water oxidation in acidic media. Journal of Energy Chemistry, 2020, 51, 113-133.	7.1	66
1950	Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production. Nature Communications, 2020, 11, 1853.	5.8	229

#	Article	IF	CITATIONS
1951	Highly-dispersed ruthenium precursors <i>via</i> a self-assembly-assisted synthesis of uniform ruthenium nanoparticles for superior hydrogen evolution reaction. RSC Advances, 2020, 10, 14313-14316.	1.7	8
1952	Optimizing Band Cap of Inorganic Halide Perovskites by Donor–Acceptor Pair Codoping. Inorganic Chemistry, 2020, 59, 6053-6059.	1.9	8
1953	Exploring single atom catalysts of transition-metal doped phosphorus carbide monolayer for HER: A first-principles study. Journal of Energy Chemistry, 2021, 52, 155-162.	7.1	54
1954	Influence of interlayer water molecules in Ni-based catalysts for oxygen evolution reaction. Journal of Energy Chemistry, 2021, 53, 316-322.	7.1	17
1955	In-situ surface self-reconstruction in ternary transition metal dichalcogenide nanorod arrays enables efficient electrocatalytic oxygen evolution. Journal of Energy Chemistry, 2021, 55, 10-16.	7.1	28
1956	A Cobalt@Cucurbit[5]uril Complex as a Highly Efficient Supramolecular Catalyst for Electrochemical and Photoelectrochemical Water Splitting. Angewandte Chemie, 2021, 133, 2004-2013.	1.6	18
1957	Recent Advances in 1D Electrospun Nanocatalysts for Electrochemical Water Splitting. Small Structures, 2021, 2, 2000048.	6.9	157
1958	Tailoring the Ca-doped bismuth ferrite for electrochemical oxygen evolution reaction and photocatalytic activity. Applied Surface Science, 2021, 540, 148387.	3.1	32
1959	Morphologically controlled cobalt oxide nanoparticles for efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2021, 582, 322-332.	5.0	51
1960	New 3-D Mn(II) coordination polymer with redox active oxalate linker; an efficient and robust electrocatalyst for oxygen evolution reaction. Inorganica Chimica Acta, 2021, 514, 119982.	1.2	3
1961	Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives. Coordination Chemistry Reviews, 2021, 427, 213552.	9.5	66
1962	Ultrafine VN nanoparticles confined in Co@N-doped carbon nanotubes for boosted hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 853, 157257.	2.8	22
1963	Improvement of the electrocatalytic performance of FeP in neutral electrolytes with Fe nanoparticles. Chemical Engineering Journal, 2021, 408, 127330.	6.6	33
1964	Directly application of bimetallic 2D-MOF for advanced electrocatalytic oxygen evolution. International Journal of Hydrogen Energy, 2021, 46, 416-424.	3.8	30
1965	In-situ constructed Ru-rich porous framework on NiFe-based ribbon for enhanced oxygen evolution reaction in alkaline solution. Journal of Materials Science and Technology, 2021, 70, 197-204.	5.6	23
1966	A Cobalt@Cucurbit[5]uril Complex as a Highly Efficient Supramolecular Catalyst for Electrochemical and Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2021, 60, 1976-1985.	7.2	55
1967	Electrocatalytic Water Oxidation by a Phosphorus–Nitrogen Oâ•PN3-Pincer Cobalt Complex. Inorganic Chemistry, 2021, 60, 614-622.	1.9	14
1968	Local probe investigation of electrocatalytic activity. Chemical Science, 2021, 12, 71-98.	3.7	13
#	Article	IF	CITATIONS
------	---	-----	-----------
1969	(Fe,Co)/Nâ€Doped Multiâ€Walled Carbon Nanotubes as Efficient Bifunctional Electrocatalysts for Rechargeable Zincâ€Air Batteries. ChemCatChem, 2021, 13, 1023-1033.	1.8	22
1970	Photothermal storage and controllable release of a phase-change azobenzene/aluminum nitride aerogel composite. Composites Communications, 2021, 23, 100575.	3.3	31
1971	Electrochemical Polymerization Provides a Functionâ€Integrated System for Water Oxidation. Angewandte Chemie - International Edition, 2021, 60, 5965-5969.	7.2	13
1972	Electrochemical Polymerization Provides a Functionâ€Integrated System for Water Oxidation. Angewandte Chemie, 2021, 133, 6030-6034.	1.6	5
1973	DNA as template and P-source for synthesis of Co2P/Co2N core–shell nanostructure embedded in N-doped carbon nanofiber derived from electrospun precursor for oxygen evolution reaction. Electrochimica Acta, 2021, 367, 137562.	2.6	12
1974	Surface-assembled Fe-Oxide colloidal nanoparticles for high performance electrocatalytic water oxidation. International Journal of Hydrogen Energy, 2021, 46, 5207-5222.	3.8	14
1975	Recent Advances in Electrocatalysis of Oxygen Evolution Reaction using Nobleâ€Metal, Transitionâ€Metal, and Carbonâ€Based Materials. ChemElectroChem, 2021, 8, 447-483.	1.7	68
1976	Photoactive Conjugated Polymerâ€Based Hybrid Biosystems for Enhancing Cyanobacterial Photosynthesis and Regulating Redox State of Protein. Advanced Functional Materials, 2021, 31, 2007814.	7.8	31
1977	Recent progress in ammonia fuel cells and their potential applications. Journal of Materials Chemistry A, 2021, 9, 727-752.	5.2	177
1978	Facile synthesis of novel carbon dots@metal organic framework composite for remarkable and highly sustained oxygen evolution reaction. Journal of Alloys and Compounds, 2021, 856, 158038.	2.8	34
1979	Research advances of light-driven hydrogen evolution using polyoxometalate-based catalysts. Chinese Journal of Catalysis, 2021, 42, 855-871.	6.9	65
1980	Ultrafine ruthenium-iridium alloy nanoparticles well-dispersed on N-rich carbon frameworks as efficient hydrogen-generation electrocatalysts. Chemical Engineering Journal, 2021, 417, 128105.	6.6	28
1981	A Fe–Ni ₅ P ₄ /Fe–Ni ₂ P heterojunction electrocatalyst for highly efficient solar-to-hydrogen generation. Journal of Materials Chemistry A, 2021, 9, 1221-1229.	5.2	33
1982	Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting. Journal of Materials Chemistry A, 2021, 9, 3786-3827.	5.2	140
1983	Photochemical Water Oxidation Using a Doubly N-Confused Hexaphyrin Dinuclear Cobalt Complex. Inorganic Chemistry, 2021, 60, 1284-1288.	1.9	10
1984	Unveiling the Hydration Structure of Ferrihydrite for Hole Storage in Photoelectrochemical Water Oxidation. Angewandte Chemie - International Edition, 2021, 60, 6691-6698.	7.2	33
1985	Chemo- and regioselective hydroformylation of alkenes with CO ₂ /H ₂ over a bifunctional catalyst. Green Chemistry, 2021, 23, 8040-8046.	4.6	13
1986	Unveiling the Hydration Structure of Ferrihydrite for Hole Storage in Photoelectrochemical Water Oxidation. Angewandte Chemie, 2021, 133, 6765-6772.	1.6	7

#	Article	IF	CITATIONS
1987	Efficient and durable FeCoNi-(Oxy)hydroxide anode: Stoichiometric ration regulated morphology-, defect- and valence-dependent water oxidation performance. Chemical Engineering Journal, 2021, 417, 127934.	6.6	4
1988	Monolithically-integrated BiVO4/p+-n GaAs1-xPx tandem photoanodes capable of unassisted solar water splitting. International Journal of Hydrogen Energy, 2021, 46, 1642-1655.	3.8	6
1989	Surface defect engineering of metal oxides photocatalyst for energy application and water treatment. Journal of Materiomics, 2021, 7, 388-418.	2.8	117
1990	Cobalt porphyrin intercalation into zirconium phosphate layers for electrochemical water oxidation. Sustainable Energy and Fuels, 2021, 5, 430-437.	2.5	14
1991	Porous Co2P film coated on carbon fiber as highly performance electrocatalyst toward overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 31-40.	3.8	13
1992	Colloidal Nanocrystals as Electrocatalysts with Tunable Activity and Selectivity. ACS Catalysis, 2021, 11, 1248-1295.	5.5	51
1993	Multimetallic nanostructures for electrocatalytic oxygen evolution reaction in acidic media. Materials Chemistry Frontiers, 2021, 5, 4445-4473.	3.2	14
1994	Ir-based bifunctional electrocatalysts for overall water splitting. Catalysis Science and Technology, 2021, 11, 4673-4689.	2.1	53
1995	Electrocatalytic hydrogen evolution using hybrid electrodes based on single-walled carbon nanohorns and cobalt(<scp>ii</scp>) polypyridine complexes. Journal of Materials Chemistry A, 2021, 9, 20032-20039.	5.2	10
1996	Research Progress of Electrocatalyst for Hydrogen Evolution Reaction. Hans Journal of Nanotechnology, 2021, 11, 155-165.	0.1	0
1997	Design of molecular water oxidation catalysts with earth-abundant metal ions. Chemical Society Reviews, 2021, 50, 6790-6831.	18.7	102
1998	Polypyridyl Co complex-based water reduction catalysts: why replace a pyridine group with isoquinoline rather than quinoline?. Dalton Transactions, 2021, 50, 2042-2049.	1.6	8
1999	Efficient homogeneous electrocatalytic hydrogen evolution using a Ni-containing polyoxometalate catalyst. Chemical Communications, 2021, 57, 9910-9913.	2.2	15
2000	Stacking effects in van der Waals heterostructures of blueP and Janus XYO (X = Ti, Zr, Hf: Y = S, Se) monolayers. RSC Advances, 2021, 11, 12189-12199.	1.7	7
2001	Sulfur doped ruthenium nanoparticles as a highly efficient electrocatalyst for the hydrogen evolution reaction in alkaline media. Catalysis Science and Technology, 2021, 11, 3865-3872.	2.1	6
2002	Electronic effects on polypyridyl Co complex-based water reduction catalysts. RSC Advances, 2021, 11, 24359-24365.	1.7	2
2003	Two-dimensional metal-free boron chalcogenides B ₂ X ₃ (X = Se and Te) as photocatalysts for water splitting under visible light. Nanoscale, 2021, 13, 3627-3632.	2.8	9
2004	Multifunctional materials for clean energy conversion. , 2021, , 131-152.		0

#	Article	IF	CITATIONS
2005	Metal, Metal Oxides, and Metal Sulfide Roles in Fuel Cell. Environmental Chemistry for A Sustainable World, 2021, , 115-145.	0.3	0
2006	A new strategy for constructing artificial light-harvesting systems: supramolecular self-assembly gels with AIE properties. Soft Matter, 2021, 17, 5666-5670.	1.2	7
2007	Cathodic corrosion activated Fe-based nanoglass as a highly active and stable oxygen evolution catalyst for water splitting. Journal of Materials Chemistry A, 2021, 9, 12152-12160.	5.2	23
2008	Synergistically enhanced performance of transition-metal doped Ni ₂ P for supercapacitance and overall water splitting. Dalton Transactions, 2021, 50, 11821-11833.	1.6	25
2009	Amorphization mechanism of SrIrO ₃ electrocatalyst: How oxygen redox initiates ionic diffusion and structural reorganization. Science Advances, 2021, 7, .	4.7	122
2010	Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chemical Society Reviews, 2021, 50, 2663-2695.	18.7	333
2011	Synthesis of Y2Ti2O5S2 by thermal sulfidation for photocatalytic water oxidation and reduction under visible light irradiation. Research on Chemical Intermediates, 2021, 47, 225-234.	1.3	19
2012	Pencil graphite rods decorated with nickel and nickel–iron as low-cost oxygen evolution reaction electrodes. Sustainable Energy and Fuels, 2021, 5, 3929-3938.	2.5	7
2013	β-Diketiminate-supported iridium photosensitizers with increased excited-state reducing power. Inorganic Chemistry Frontiers, 2021, 8, 3253-3265.	3.0	8
2014	Graphitic Carbon Nitride Nanostructures as Potent Catalysts for Water Splitting: Theoretical Insights. RSC Nanoscience and Nanotechnology, 2021, , 127-173.	0.2	2
2015	Electrochemical behaviors of a pincer-type NNN-Fe complex and catalytic H2 evolution activity. Chemical Communications, 2021, 57, 7497-7500.	2.2	4
2016	Porous Cu ₂ BaSn(S,Se) ₄ Film as a Photocathode Using Non-Toxic Solvent and a Ball-Milling Approach. ACS Applied Energy Materials, 2021, 4, 81-87.	2.5	7
2017	Electrochemical biomass upgrading on CoOOH nanosheets in a hybrid water electrolyzer. Green Chemistry, 2021, 23, 2525-2530.	4.6	31
2018	Selective Electrochemical Alkaline Seawater Oxidation Catalyzed by Cobalt Carbonate Hydroxide Nanorod Arrays with Sequential Proton-Electron Transfer Properties. ACS Sustainable Chemistry and Engineering, 2021, 9, 905-913.	3.2	25
2019	Use of Phase Change Materials for Energy-Efficient Buildings in India. Energy, Environment, and Sustainability, 2021, , 305-327.	0.6	1
2020	Highly efficient H ₂ production and size-selective AgCl synthesis <i>via</i> electrolytic cell design. Journal of Materials Chemistry A, 2021, 9, 22871-22877.	5.2	2
2021	Determination of rutile transition metal oxide (110) surface terminations by scanning tunneling microscopy contrast reversal. Physical Review B, 2021, 103, .	1.1	0
2022	Successes, challenges, and opportunities for quantum chemistry in understanding metalloenzymes for solar fuels research. Chemical Communications, 2021, 57, 3952-3974.	2.2	24

#	Article	lF	CITATIONS
2023	Two-Dimensional Transition Metal Chalcogenides for Hydrogen Evolution Catalysis. , 2021, , 3075-3101.		0
2024	Earthâ€Abundant Amorphous Electrocatalysts for Electrochemical Hydrogen Production: A Review. Advanced Energy and Sustainability Research, 2021, 2, 2000071.	2.8	30
2025	Combination of Highly Efficient Electrocatalytic Water Oxidation with Selective Oxygenation of Organic Substrates using Manganese Borophosphates. Advanced Materials, 2021, 33, e2004098.	11.1	52
2026	High-performance diluted nickel nanoclusters decorating ruthenium nanowires for pH-universal overall water splitting. Energy and Environmental Science, 2021, 14, 3194-3202.	15.6	53
2027	Photoredox catalysis on unactivated substrates with strongly reducing iridium photosensitizers. Chemical Science, 2021, 12, 4069-4078.	3.7	68
2028	Enhanced electrocatalytic activity of CuO-SnO2 nanocomposite in alkaline medium. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	6
2029	Black phosphorus-based photocatalysts for energy and environmental applications. , 2021, , 421-449.		2
2030	Toward Molecular Mechanisms of Solar Water Splitting in Semiconductor/Manganese Materials and Photosystem II. Advances in Photosynthesis and Respiration, 2021, , 105-129.	1.0	1
2031	Exogenous electricity flowing through cyanobacterial photosystem I drives CO ₂ valorization with high energy efficiency. Energy and Environmental Science, 2021, 14, 5480-5490.	15.6	19
2032	Photoacoustics Reveals Specific Thermodynamic Information in Photosynthesis. Advances in Photosynthesis and Respiration, 2021, , 499-532.	1.0	0
2033	Hierarchical fibrous bimetallic electrocatalyst based on ZnO-MoS2 composite nanostructures as high performance for hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2021, 883, 115061.	1.9	19
2034	Hydrogen production from water electrolysis: role of catalysts. Nano Convergence, 2021, 8, 4.	6.3	540
2035	Multi‣lemental Electronic Coupling for Enhanced Hydrogen Generation. Small, 2021, 17, e2006617.	5.2	6
2037	Selective Cocatalyst Deposition on ZnTiO _{3â^'} <i>_x</i> N <i>_y</i> Hollow Nanospheres with Efficient Charge Separation for Solarâ€Driven Overall Water Splitting. Small, 2021, 17, e2100084.	5.2	24
2038	A Molecular Tetrahedral Cobalt–Seleno-Based Complex as an Efficient Electrocatalyst for Water Splitting. Molecules, 2021, 26, 945.	1.7	13
2039	Continuous electrochemical water splitting from natural water sources via forward osmosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
2040	Recent innovations of silk-derived electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 7848-7865.	3.8	30
2041	Effects of water content on electrochemical capacitive behavior of nanostructured Cu3(BTC)2 MOF prepared in aqueous solution. Electrochimica Acta, 2021, 368, 137616.	2.6	17

#	Article	IF	CITATIONS
2042	Engineered Nanoscale Singleâ€Metalâ€Oxides Catalytic Thin Films for Highâ€Performance Water Oxidation. Energy Technology, 2021, 9, 2000896.	1.8	5
2043	Abundant Active Sites on the Basal Plane and Edges of Layered van der Waals Fe ₃ GeTe ₂ for Highly Efficient Hydrogen Evolution. , 2021, 3, 313-319.		19
2044	Novel polyoxometalate-based composite as efficient electrocatalyst for alkaline water oxidation reaction. Journal of the Iranian Chemical Society, 2021, 18, 2079.	1.2	2
2045	Transition metal-based electrocatalysts for overall water splitting. Chinese Chemical Letters, 2021, 32, 2597-2616.	4.8	94
2046	Electrostatic Interactions Accelerating Water Oxidation Catalysis via Intercatalyst O–O Coupling. Journal of the American Chemical Society, 2021, 143, 2484-2490.	6.6	25
2047	Three-Dimensional Needle Branch-like PANI/CoNiP Hybrid Electrocatalysts for Hydrogen Evolution Reaction in Acid Media. ACS Applied Energy Materials, 2021, 4, 2471-2480.	2.5	18
2049	Supercapacitor electrode materials: addressing challenges in mechanism and charge storage. Reviews in Inorganic Chemistry, 2022, 42, 53-88.	1.8	66
2050	Recent development on self-supported transition metal-based catalysts for water electrolysis at large current density. Applied Materials Today, 2021, 22, 100913.	2.3	42
2051	Inexpensive Amorphous Fe ^{III} Oxoâ€∤Hydroxide as Highly Active and Ultradurable Electrocatalyst for Water Electrolysis. ChemElectroChem, 2021, 8, 887-894.	1.7	15
2052	Co-Cu-P nanosheet-based open architecture for high-performance oxygen evolution reaction. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	7
2053	Heterogeneous Synergetic Effect of Metal–Oxide Interfaces for Efficient Hydrogen Evolution in Alkaline Solutions. ACS Applied Materials & Interfaces, 2021, 13, 13838-13847.	4.0	26
2054	Scalable solid-phase synthesis of defect-rich graphene for oxygen reduction electrocatalysis. Green Energy and Environment, 2023, 8, 224-232.	4.7	8
2055	Natural Products, the Fourth Industrial Revolution, and the Quintuple Helix. Natural Product Communications, 2021, 16, 1934578X2110030.	0.2	1
2056	Material Design and Surface/Interface Engineering of Photoelectrodes for Solar Water Splitting. Solar Rrl, 2021, 5, 2100100.	3.1	33
2057	Computational investigation of the reaction of nickel-bis(dithiolene) and nickel-bis(diselenolene) complexes with OH. Canadian Journal of Chemistry, 2021, 99, 346-353.	0.6	0
2058	Cobalt-Based Electrocatalysts for Water Splitting: An Overview. Catalysis Surveys From Asia, 2021, 25, 114-147.	1.0	16
2059	Facilitating the Deprotonation of OH to O through Fe ⁴⁺ â€Induced States in Perovskite LaNiO ₃ Enables a Fast Oxygen Evolution Reaction. Small, 2021, 17, e2006930.	5.2	40
2060	Epitaxial Stabilization and Oxygen Evolution Reaction Activity of Metastable Columbite Iridium Oxide. ACS Applied Energy Materials, 2021, 4, 3074-3082.	2.5	7

#	Article	IF	CITATIONS
2061	Theoretical screening of group IIIA-VIIA elements doping to promote hydrogen evolution of MoS2 basal plane. Applied Surface Science, 2021, 542, 148535.	3.1	31
2062	Rod-shaped α-MnO2 electrocatalysts with high Mn3+ content for oxygen reduction reaction and Zn-air battery. Journal of Alloys and Compounds, 2021, 860, 158427.	2.8	17
2063	Physical Separation of H ₂ Activation from Hydrogenation Chemistry Reveals the Specific Role of Secondary Metal Catalysts. Angewandte Chemie - International Edition, 2021, 60, 11937-11942.	7.2	18
2064	Single Platinum Atoms Immobilized on Monolayer Tungsten Trioxide Nanosheets as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2009770.	7.8	53
2065	Strongly stabilized integrated bimetallic oxide of Fe2O3-MoO3 Nano-crystal entrapped N-doped graphene as a superior oxygen reduction reaction electrocatalyst. Chemical Engineering Journal, 2021, 410, 128358.	6.6	47
2066	Physical Separation of H 2 Activation from Hydrogenation Chemistry Reveals the Specific Role of Secondary Metal Catalysts. Angewandte Chemie, 2021, 133, 12044-12049.	1.6	0
2067	Interstitial polydopamine layer stabilizing catalysts/electrode interface for sustainable water oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126121.	2.3	4
2068	A Force Field for a Manganese-Vanadium Water Oxidation Catalyst: Redox Potentials in Solution as Showcase. Catalysts, 2021, 11, 493.	1.6	8
2069	Highly Efficient Electrocatalytic Water Oxidation by a Transparent Ordered Mesoporous Film of Intermediate IrO <i>_x</i> (OH) <i>_y</i> . ACS Applied Energy Materials, 2021, 4, 4355-4364.	2.5	4
2070	Study of perovskite CH3NH3PbI3 thin films under thermal exposure. Bulletin of Materials Science, 2021, 44, 1.	0.8	3
2071	Synthesis of 3D CoO nanowires supported NiFe layered double hydroxide using an atmospheric pressure microplasma for high-performance oxygen evolution reaction. Chemical Engineering Journal, 2021, 410, 128366.	6.6	39
2072	Nickel Phosphides Electrodeposited on TiO ₂ Nanotube Arrays as Electrocatalysts for Hydrogen Evolution. ACS Applied Nano Materials, 2021, 4, 4542-4551.	2.4	19
2073	Electrocatalysis for the Oxygen Evolution Reaction in Acidic Media: Progress and Challenges. Applied Sciences (Switzerland), 2021, 11, 4320.	1.3	41
2074	Recent Advances in Nanoparticles Confined in Twoâ€Dimensional Materials as Highâ€Performance Electrocatalysts for Energyâ€Conversion Technologies. ChemCatChem, 2021, 13, 2541-2558.	1.8	4
2075	Experimental and theoretical insights to demonstrate the hydrogen evolution activity of layered platinum dichalcogenides electrocatalysts. Journal of Materials Research and Technology, 2021, 12, 385-398.	2.6	11
2076	Periodicity in the Electrochemical Dissolution of Transition Metals. Angewandte Chemie - International Edition, 2021, 60, 13343-13349.	7.2	40
2077	Regulation of Perovskite Surface Stability on the Electrocatalysis of Oxygen Evolution Reaction. , 2021, 3, 721-737.		61
2078	Aqueous Rechargeable Multivalent Metalâ€ion Batteries: Advances and Challenges. Advanced Energy Materials, 2021, 11, 2100608.	10.2	122

#	Article	IF	CITATIONS
2079	Periodicity in the Electrochemical Dissolution of Transition Metals. Angewandte Chemie, 2021, 133, 13455-13461.	1.6	3
2080	Interfacial Engineering of Nickel Hydroxide on Cobalt Phosphide for Alkaline Water Electrocatalysis. Advanced Functional Materials, 2021, 31, 2101578.	7.8	101
2081	Two new polyoxoniobosilicate-based compounds: Syntheses, structures, characterizations and their catalytic properties for epoxidation and water oxidation. Journal of Solid State Chemistry, 2021, 297, 122029.	1.4	4
2082	Photocatalytic Transfer Hydrogenation in Water: Insight into Mechanism and Catalyst Speciation. Organometallics, 2021, 40, 1482-1491.	1.1	6
2083	Atomic Sulfur Filling Oxygen Vacancies Optimizes H Absorption and Boosts the Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie, 2021, 133, 14236-14242.	1.6	27
2084	Hot Electrons in TiO2–Noble Metal Nano-Heterojunctions: Fundamental Science and Applications in Photocatalysis. Nanomaterials, 2021, 11, 1249.	1.9	40
2085	Spin Effect on Oxygen Electrocatalysis. Advanced Energy and Sustainability Research, 2021, 2, 2100034.	2.8	32
2086	Electrochemical Catalysts for Green Hydrogen Energy. Advanced Energy and Sustainability Research, 2021, 2, 2100019.	2.8	4
2087	Atomic Sulfur Filling Oxygen Vacancies Optimizes H Absorption and Boosts the Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie - International Edition, 2021, 60, 14117-14123.	7.2	129
2088	Controllable Synthesis of 2D Nonlayered Cr2S3 Nanosheets and Their Electrocatalytic Activity Toward Oxygen Evolution Reaction. Frontiers in Chemical Engineering, 2021, 3, .	1.3	5
2089	2D Vanadium diselenide supported on reduced graphene oxide for water electrolysis: a comprehensive study in alkaline media. Emergent Materials, 2021, 4, 1047-1053.	3.2	10
2090	DFT investigation on direct Z-scheme photocatalyst for overall water splitting: MoTe2/BAs van der Waals heterostructure. Applied Surface Science, 2021, 551, 149364.	3.1	59
2091	Efficient photocatalytic generation of hydrogen by twin Zn Cd S nanorods decorated with noble metal-free co-catalyst and reduction of 4-nitrophenol in water. Applied Surface Science, 2021, 550, 149367.	3.1	20
2092	MXene decorated by phosphorus-doped TiO2 for photo-enhanced electrocatalytic hydrogen evolution reaction. Renewable Energy, 2021, 170, 858-865.	4.3	37
2093	Conductivity Modulation of 3Dâ€Printed Shellular Electrodes through Embedding Nanocrystalline Intermetallics into Amorphous Matrix for Ultrahigh urrent Oxygen Evolution. Advanced Energy Materials, 2021, 11, 2100968.	10.2	40
2094	Prevailing conjugated porous polymers for electrochemical energy storage and conversion: Lithium-ion batteries, supercapacitors and water-splitting. Coordination Chemistry Reviews, 2021, 436, 213782.	9.5	52
2095	Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction. Rare Metals, 2021, 40, 3375-3405.	3.6	112
2096	Versatile noble-metal-free electrocatalyst synergistically accelerating for the highly comprehensive understanding evidence for Electrochemical Water Splitting: Future Achievements & Perspectives. Surfaces and Interfaces, 2021, 24, 101104.	1.5	10

#	Article	IF	CITATIONS
2097	Ruthenium-Imine catalyzed KBH4 hydrolysis as an efficient hydrogen production system. International Journal of Hydrogen Energy, 2021, 46, 20984-20994.	3.8	13
2098	Metal based catalysts for hydrogen production reactions. Materials Today: Proceedings, 2021, , .	0.9	2
2099	NiCo layered double hydroxides derived Ni0.67Co0.33(PO3)2 as stable and efficient electrocatalysts for overall water splitting. Journal of Alloys and Compounds, 2021, 869, 159311.	2.8	8
2100	Selfâ€Supporting Electrodes for Gasâ€Involved Key Energy Reactions. Advanced Functional Materials, 2021, 31, 2104620.	7.8	39
2101	Improving Photoelectrochemical Activity of ZnO/TiO2 Core–Shell Nanostructure through Ag Nanoparticle Integration. Catalysts, 2021, 11, 911.	1.6	6
2102	Bifunctional Electrolyzation for Simultaneous Organic Pollutant Degradation and Hydrogen Generation. ACS ES&T Engineering, 2021, 1, 1360-1368.	3.7	16
2103	New <scp>leadâ€free</scp> double perovskites <scp> X ₂ Gel ₆ </scp> (XÂ=ÂK, Rb,) T of Energy Research, 2021, 45, 19645-19652.	j ETQq0 0 2.2	0 rgBT /Ove 20
2104	Boosting the activity of FeOOH via integration of ZIF-12 and graphene to efficiently catalyze the oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 25050-25059.	3.8	7
2105	Mechanistic Insight into the O ₂ Evolution Catalyzed by Copper Complexes with Tetra- and Pentadentate Ligands. Journal of Physical Chemistry A, 2021, 125, 6461-6473.	1.1	4
2106	Cobalt nanoparticles encapsulated in nitrogen-rich carbonitride nanotubes for efficient and stable hydrogen evolution reaction at all pH values. International Journal of Hydrogen Energy, 2021, 46, 26347-26357.	3.8	7
2107	Tuning the Electrochemical Properties of Polymeric Cobalt Phthalocyanines for Efficient Water Splitting. Advanced Functional Materials, 2021, 31, 2103290.	7.8	38
2108	3D self-supporting mixed transition metal oxysulfide nanowires on porous graphene networks for oxygen evolution reaction in alkaline solution. Journal of Electroanalytical Chemistry, 2021, 893, 115308.	1.9	10
2109	First-principles study of the vacancy defects in ZnIn2Te4 and CdIn2Te4. International Journal of Modern Physics C, O, , 2150166.	0.8	0
2110	Photohalogen elimination chemistry in low-valent binuclear nickel complexes. Polyhedron, 2021, 203, 115228.	1.0	1
2111	lridium-containing water-oxidation catalysts in acidic electrolyte. Chinese Journal of Catalysis, 2021, 42, 1054-1077.	6.9	66
2112	Improving the onset potential and Tafel slope determination of earth-abundant water oxidation electrocatalysts. Electrochimica Acta, 2021, 388, 138613.	2.6	30
2113	Achieving Selective and Efficient Electrocatalytic Activity for CO2 Reduction on N-Doped Graphene. Frontiers in Chemistry, 2021, 9, 734460.	1.8	9
2114	Proton reduction in the presence of oxygen by iron porphyrin enabled with 2nd sphere redox active ferrocenes. Chinese Journal of Catalysis, 2021, 42, 1327-1331.	6.9	7

#	Article	IF	CITATIONS
2115	High surface area NiCoP nanostructure as efficient water splitting electrocatalyst for the oxygen evolution reaction. Materials Research Bulletin, 2021, 140, 111312.	2.7	16
2116	Molecular Engineering of Photocathodes based on Polythiophene Organic Semiconductors for Photoelectrochemical Hydrogen Generation. ACS Applied Materials & Interfaces, 2021, 13, 40602-40611.	4.0	8
2117	Dual Doping of MoP with M(Mn,Fe) and S to Achieve High Hydrogen Evolution Reaction Activity in Both Acidic and Alkaline Media. ChemCatChem, 2021, 13, 4392-4402.	1.8	6
2118	Enhanced activity of Pd/α-MnO2 for electrocatalytic oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 26976-26988.	3.8	11
2119	Unraveling the Synergy of Chemical Hydroxylation and the Physical Heterointerface upon Improving the Hydrogen Evolution Kinetics. ACS Nano, 2021, 15, 15017-15026.	7.3	59
2120	Review on application of perylene diimide (PDI)-based materials in environment: Pollutant detection and degradation. Science of the Total Environment, 2021, 780, 146483.	3.9	49
2121	Sequenced Successive Ionic Layer Adsorption and Reaction for Rational Design of Ni(OH)2/FeOOH Heterostructures with Tailored Catalytic Properties. ACS Applied Energy Materials, 2021, 4, 8252-8261.	2.5	6
2122	Conjugated Porous Polymers: Groundâ€Breaking Materials for Solar Energy Conversion. Advanced Energy Materials, 2021, 11, 2101530.	10.2	44
2123	Dye-sensitized photoanode decorated with pyridine additives for efficient solar water oxidation. Chinese Journal of Catalysis, 2021, 42, 1352-1359.	6.9	8
2124	Metamorphosis of Heterostructured Surfaceâ€Mounted Metal–Organic Frameworks Yielding Record Oxygen Evolution Mass Activities. Advanced Materials, 2021, 33, e2103218.	11.1	43
2125	An ultrathin two-dimensional iridium-based perovskite oxide electrocatalyst with highly efficient {001} facets for acidic water oxidation. Journal of Energy Chemistry, 2022, 66, 619-627.	7.1	31
2126	Covalent organic frameworks: Advances in synthesis and applications. Materials Today Communications, 2021, 28, 102612.	0.9	18
2127	An Electrospun Porous CuBi2O4 Nanofiber Photocathode for Efficient Solar Water Splitting. Polymers, 2021, 13, 3341.	2.0	2
2128	Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nature Reviews Materials, 2022, 7, 55-64.	23.3	265
2129	A stable and active three-dimensional carbon based trimetallic electrocatalyst for efficient overall wastewater splitting. International Journal of Hydrogen Energy, 2021, 46, 30762-30779.	3.8	9
2130	The Effect of Calcium Perovskite and Newly Developed Magnetic CaFe2O4/CaTiO3 Perovskite Nanocomposite on Degradation of Toxic Dyes Under UV–Visible Radiation. Journal of Cluster Science, 0, , 1.	1.7	0
2131	Waterâ€Assisted Chemical Route Towards the Oxygen Evolution Reaction at the Hydrated (110) Ruthenium Oxide Surface: Heterogeneous Catalysis via DFTâ€MD and Metadynamics Simulations. Chemistry - A European Journal, 2021, 27, 17024-17037.	1.7	4
2132	Design of tin polyphosphate for hydrogen evolution reaction and supercapacitor applications. Journal of the Korean Ceramic Society, 2021, 58, 688-699.	1.1	9

ARTICLE IF CITATIONS Rhodamine tethered 1,1'-unsymmetrical ferrocene functionalization: Metal sensing, cell imaging and 2133 0.8 7 logic gate properties. Journal of Organometallic Chemistry, 2021, 948, 121922. Interface Engineering of Heterogeneous CeO₂â€"CoO Nanofibers with Rich Oxygen 2134 Vacancies for Enhanced Electrocatalytic Oxygen Evolution Performance. ACS Applied Materials & amp; Interfaces, 2021, 13, 46998-47009. Electrodeposited Cobalt Stannide: A Highly Efficient Oxygen Evolution Reaction Catalyst. Journal of 2135 1.3 3 the Electrochemical Society, 2021, 168, 096505. Carbon quantum dots enriching molecular nickel polyoxometalate over CdS semiconductor for photocatalytic water splitting. Applied Catalysis B: Environmental, 2021, 293, 120214. Progress of the Elements Doped NaFeO₂Cathode Materials for High Performance 2137 0.7 5 Sodiumâ€ion Batteries. ChemistrySelect, 2021, 6, 9701-9708. Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chemical Reviews, 2021, 121, 13174-13212. 23.0 Au-Ru alloy nanofibers as a highly stable and active bifunctional electrocatalyst for acidic water 2139 3.1 25 splitting. Applied Surface Science, 2021, 563, 150293. Heterogeneous Co@CoO composited P, N co-doped carbon nanofibers on carbon cloth as pH-tolerant 2140 2.8 16 electrocatalyst for efficient oxygen evolution. Journal of Alloys and Compounds, 2021, 877, 160279. Synthesis, characterization, structural, redox and electrocatalytic proton reduction properties of 2141 1.2 5 cobalt polypyridyl complexes. Inorganica Chimica Acta, 2022, 529, 120637. Preparation and capacitive storage properties of multidimensional (1-D and 2-D) nanocarbon-hybridized N-containing porous carbon for carbon/carbon supercapacitor: 2142 2.3 Nanocarbon-aided capacitance boosting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627. 127225 Advances in structural modification of perovskite semiconductors for visible light assisted photocatalytic CO2 reduction to renewable solar fuels: A review. Journal of Environmental Chemical 2143 3.3 56 Engineering, 2021, 9, 106264. Bismuth based photoelectrodes for solar water splitting. Journal of Energy Chemistry, 2021, 61, 7.1 517-530. Moving toward a framework for electricity and heat equivalence in energy systems analysis. IScience, 2145 1.9 2 2021, 24, 103123. NiSe2@NixSy nanorod on nickel foam as efficient bifunctional electrocatalyst for overall water 2146 3.8 16 splitting. Intérnational Journal of Hydrogen Energy, 2021, 46, 34713-34726. In-situ reconstruction of non-noble multi-metal core-shell oxyfluorides for water oxidation. Journal 2147 5.07 of Colloid and Interface Science, 2021, 602, 55-63. Facile preparation of sugarcane bagasse-derived carbon supported MoS2 nanosheets for hydrogen 2148 evolution reaction. Industrial Crops and Products, 2021, 172, 114064. Tuning the optoelectronic properties of scaffolds by using variable central core unit and their 2149 1.2 39 photovoltaic applications. Chemical Physics Letters, 2021, 782, 139018. Electrocatalytic hydrogen evolution by molecular Cu(II) catalysts. Polyhedron, 2021, 208, 115425.

#	Article	IF	CITATIONS
2151	Enhanced activity promoted by amorphous metal oxyhydroxides on CeO2 for alkaline oxygen evolution reaction. Journal of Colloid and Interface Science, 2021, 604, 719-726.	5.0	7
2152	Hybrid heterojunction of molybdenum disulfide/single cobalt atoms anchored nitrogen, sulfur-doped carbon nanotube /cobalt disulfide with multiple active sites for highly efficient hydrogen evolution. Applied Catalysis B: Environmental, 2021, 298, 120630.	10.8	52
2153	Facile coordination driven synthesis of metal-organic gels toward efficiently electrocatalytic overall water splitting. Applied Catalysis B: Environmental, 2021, 299, 120641.	10.8	39
2154	Ni4Mo alloy nanosheets coating on carbon tube arrays as high-performance electrocatalyst toward overall water splitting Journal of Alloys and Compounds, 2021, 886, 161180.	2.8	17
2155	Dual-phase amorphous-nanocrystalline nanoporous sites activated in Mo inserted CuTi metallic glass as efficient electrocatalysts for hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 886, 161270.	2.8	7
2156	Bioinspired molecular clusters for water oxidation. Coordination Chemistry Reviews, 2021, 448, 214164.	9.5	24
2157	Atomic-resolution investigation of structural transformation caused by oxygen vacancy in La0.9Sr0.1TiO3+ titanate layer perovskite ceramics. Journal of Materials Science and Technology, 2022, 104, 172-182.	5.6	18
2158	Progress in the development of heteroatom-doped nickel phosphates for electrocatalytic water splitting. Journal of Colloid and Interface Science, 2022, 607, 1091-1102.	5.0	76
2159	Correlating the electronic structure of perovskite La1â^'Sr CoO3 with activity for the oxygen evolution reaction: The critical role of Co 3d hole state. Journal of Energy Chemistry, 2022, 65, 637-645.	7.1	39
2160	Bimetallic copper nickel sulfide electrocatalyst by one step chemical bath deposition for efficient and stable overall water splitting applications. Journal of Colloid and Interface Science, 2022, 606, 101-112.	5.0	56
2161	Boosting oxygen evolution activity of nickel iron hydroxide by iron hydroxide colloidal particles. Journal of Colloid and Interface Science, 2022, 606, 518-525.	5.0	12
2162	Sandwich-like Co(OH)x/Ag/Co(OH)2 nanosheet composites for oxygen evolution reaction in anion exchange membrane water electrolyzer. Journal of Alloys and Compounds, 2021, 889, 161674.	2.8	14
2163	Etching to unveil active sites of nanocatalysts for electrocatalysis. Materials Chemistry Frontiers, 2021, 5, 3962-3985.	3.2	6
2164	CO ₂ electrochemical reduction boosted by the regulated electronic properties of metalloporphyrins through tuning an atomic environment. New Journal of Chemistry, 2021, 45, 10664-10671.	1.4	2
2165	A self-supported FeNi layered double hydroxide anode with high activity and long-term stability for efficient oxygen evolution reaction. Sustainable Energy and Fuels, 2021, 5, 3205-3212.	2.5	3
2166	A cobalt oxide–polypyrrole nanocomposite as an efficient and stable electrode material for electrocatalytic water oxidation. Sustainable Energy and Fuels, 2021, 5, 4710-4723.	2.5	5
2167	Nano-spinel cobalt decorated sulphur doped graphene: an efficient and durable electrocatalyst for oxygen evolution reaction and non-enzymatic sensing of H ₂ O ₂ . New Journal of Chemistry, 2021, 45, 15544-15554.	1.4	3
2168	The <i>in situ</i> derivation of a NiFe-LDH ultra-thin layer on Ni-BDC nanosheets as a boosted electrocatalyst for the oxygen evolution reaction. CrystEngComm, 2021, 23, 1172-1180.	1.3	17

ARTICLE IF CITATIONS <i>In situ</i> fabrication of a Niâ€"Feâ€"S hollow hierarchical sphere: an efficient (pre)catalyst for OER 1.4 18 2169 and HER. New Journal of Chemistry, 2021, 45, 12996-13003. Photodegradation processes. Interface Science and Technology, 2021, , 55-124. 1.6 Electrokinetic effect and H₂O₂ boosting in synthetic graphene/Ĩ±-FeOOH 2171 5.29 aerogel films for the generation of electricity. Journal of Materials Chemistry A, 2021, 9, 5588-5596. Fabrication of a porous NiFeP/Ni electrode for highly efficient hydrazine oxidation boosted H₂ evolution. Nanoscale Advances, 2021, 3, 2280-2286. Photoelectrochemical hydrogen evolution using CdTe_xS_{1â^'x} quantum dots as 2173 1.6 11 sensitizers on NiO photocathodes. Dalton Transactions, 2021, 50, 696-704. Constructing CuNi dual active sites on ZnIn₂S₄ for highly photocatalytic hydrogen evolution. Catalysis Science and Technology, 2021, 11, 2753-2761. 2174 2.1 Large-current-stable bifunctional nanoporous Fe-rich nitride electrocatalysts for highly efficient 2175 5.2 87 overall water and urea splitting. Journal of Materials Chemistry A, 2021, 9, 10199-10207. An Efficient and Earthâ€Abundant Oxygenâ€Evolving Electrocatalyst Based on Amorphous Metal Borides. Advanced Energy Materials, 2018, 8, 1701475. 10.2 Highâ€Voltage Electrolytes for Aqueous Energy Storage Devices. Batteries and Supercaps, 2020, 3, 2178 2.4 92 323-330. Effect of Fe doping on the graphitic level of Mo2C/N-C for electrocatalytic water splitting. Applied 2179 2.2 Catalysis A: General, 2020, 601, 117623. First principle study of reversible hydrogen storage in Sc grafted Calix[4]arene and 2180 3.8 19 Octamethylcalix[4]arene. International Journal of Hydrogen Energy, 2019, 44, 4889-4896. Construction of hierarchical Prussian Blue Analogue phosphide anchored on Ni2P@MoOx nanosheet spheres for efficient overall water splitting. International Journal of Hydrogen Energy, 2020, 45, 3.8 13353-13364. Noble-metal-free cobaloxime coupled with metal-organic frameworks NH2-MIL-125: A novel bifunctional photocatalyst for photocatalytic NO removal and H2 evolution under visible light 2182 6.5 32 irradiation. Journal of Házardous Materials, 2020, 399, 122824. Photochemically deposited Ir-doped NiCo oxyhydroxide nanosheets provide highly efficient and stable 8.2 electrocatalysts for the oxygen evolution reaction. Nano Energy, 2020, 75, 104885. Hybrid Catalytic-Protective Structure of CuInS₂ and B-N Doped Carbon as a Highly 2184 Efficient and Ultra-Stable Electrocatalyst for Oxygen Evolution Reaction. Journal of Physical 10 1.5 Chemistry C, 2021, 125, 546-557. Efficient Photochemical, Thermal, and Electrochemical Water Oxidation Catalyzed by a Porous 29 Iron-Based Oxide Derived Metal–Organic Framework. Journal of Physical Chemistry C, 2016, 120, 517-526. Understanding the Relationship Between Kinetics and Thermodynamics in CO₂ 2186 5.543 Hydrogenation Catalysis. ACS Catalysis, 2017, 7, 6008-6017. Role of electrolyte composition on the acid stability of mixed-metal oxygen evolution catalysts. 2.2 Chemical Communications, 2020, 56, 10477-10480.

#	Article	IF	CITATIONS
2188	Full water splitting by a nanoporous CeO ₂ nanowire array under alkaline conditions. Inorganic Chemistry Frontiers, 2020, 7, 2533-2537.	3.0	20
2189	Pseudo-atomic-scale metals well-dispersed on nano-carbons as ultra-low metal loading oxygen-evolving electrocatalysts. Chemical Science, 2020, 11, 6012-6019.	3.7	6
2190	Rational design of multinary copper chalcogenide nanocrystals for photocatalytic hydrogen evolution. Journal of Semiconductors, 2020, 41, 091706.	2.0	8
2191	Effect of annealing temperature on the synthesis and photocatalytic properties of Bi0.65K0.2Ba0.15FeO3 perovskite-like nanoparticle synthesized by sol-gel method. Beni-Suef University Journal of Basic and Applied Sciences, 2020, 9, .	0.8	15
2192	Corrole photochemistry. Pure and Applied Chemistry, 2020, 92, 1901-1919.	0.9	26
2193	Synthesis of Mesoporous NiFe2O4 Nanoparticles for Enhanced Supercapacitive Performance. Journal of Clean Energy Technologies, 2018, 6, 51-55.	0.1	26
2194	Enhanced Activity for Oxygen Evolution Reaction of Nanoporous IrNi thin film Formed by Electrochemical Selective Etching Process. Journal of Electrochemical Science and Technology, 2019, 10, 402-407.	0.9	9
2195	Molybdenum Phosphide Flakes Catalyze Hydrogen Generation in Acidic and Basic Solutions. American Journal of Analytical Chemistry, 2014, 05, 1200-1213.	0.3	19
2196	Photoelectrochemical Water Oxidation Using ZnO Nanorods Coupled with Cobalt-Based Catalysts. Journal of Electrochemical Science and Technology, 2011, 2, 187-192.	0.9	18
2197	Controlled Deposition of Iridium Oxide Nanoparticles on Graphene. Electrochemistry, 2020, 88, 392-396.	0.6	2
2198	Modulation of H ⁺ /H ^{â^'} exchange in iridium-hydride 2-hydroxypyridine complexes by remote Lewis acids. Chemical Communications, 2021, 57, 11705-11708.	2.2	2
2199	Enantioselective palladaelectro-catalyzed C–H olefinations and allylations for N–C axial chirality. Chemical Science, 2021, 12, 14182-14188.	3.7	52
2200	Dinuclear 2,4-di(pyridin-2-yl)-pyrimidine based ruthenium photosensitizers for hydrogen photo-evolution under red light. Dalton Transactions, 2021, 50, 16528-16538.	1.6	1
2201	Flexibility Enhances Reactivity: Redox Isomerism and Jahn–Teller Effects in a Bioinspired Mn ₄ O ₄ Cubane Water Oxidation Catalyst. ACS Catalysis, 2021, 11, 13320-13329.	5.5	12
2202	Reliability of electrode materials for supercapacitors and batteries in energy storage applications: a review. lonics, 2022, 28, 27-52.	1.2	13
2203	Aiding Time-Dependent Laser Ablation to Direct 1T-MoS ₂ for an Improved Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2021, 9, 14744-14755.	3.2	12
2204	Emerging Electrocatalysts for Water Oxidation under Nearâ€Neutral CO ₂ Reduction Conditions. Advanced Materials, 2022, 34, e2105852.	11.1	34
2205	Recent advances in Niâ€Fe (Oxy)hydroxide electrocatalysts for the oxygen evolution reaction in alkaline electrolyte targeting industrial applications. Nano Select, 2022, 3, 766-791.	1.9	16

#	Article	IF	Citations
2206	Fabrication of Functionâ€Integrated Water Oxidation Catalysts by Electrochemical Polymerization of Ruthenium Complexes. ChemElectroChem, 2022, 9, e202101363.	1.7	2
2207	Substrate Dependent Charge Transfer Kinetics at the Solid/Liquid Interface of Carbonâ€Based Electrodes with Potential Application for Organic Naâ€ion Batteries. Israel Journal of Chemistry, 2022, 62, .	1.0	4
2208	Engineering [Fe(CN)6]3â^' vacancy via free-chelating agents in Prussian blue analogues on reduced graphene oxide for efficient oxygen evolution reaction. Applied Surface Science, 2022, 574, 151620.	3.1	15
2209	A comprehensive review on the recent developments in transition metal-based electrocatalysts for oxygen evolution reaction. Applied Surface Science Advances, 2021, 6, 100184.	2.9	66
2210	Multi-electron Transfer Catalysts for Air-Based Organic Oxidations and Water Oxidation. NATO Science for Peace and Security Series B: Physics and Biophysics, 2012, , 229-242.	0.2	0
2211	Probing the Thermodynamics of Photosystem I by Spectroscopic and Mutagenic Methods. , 0, , .		0
2212	Hydrogen Fuel as Alternative Energy: Enhanced Hematite-Based Photoelectrochemical Water Splitting. , 2012, , 1-12.		0
2213	CHAPTER 12. Metallosupramolecular Assemblies for Application as Photocatalysts for the Production of Solar Fuels. RSC Smart Materials, 2015, , 345-396.	0.1	2
2214	Structure-Activity Relationships in Ni-Fe Oxyhydroxide Oxygen Evolution Electrocatalysts. ECS Meeting Abstracts, 2016, , .	0.0	0
2215	Polymer-Derived Carbon/Inorganic Nanohybrids for Electrochemical Energy Storage and Conversion. Engineering Materials and Processes, 2017, , 419-480.	0.2	0
2216	A Robust PS II Mimic: Using Manganese/Tungsten Oxide Nanostructures for Photo Water Splitting. , 2017, , 343-358.		0
2217	Artificial Photosynthesis: An Approach for a Sustainable Future. , 2018, , 1-25.		1
2218	Monolithic Solar Seawater Battery: Seawater-Mediated Solar-to-Sodium Conversion with 8.0 % Efficiency by Bismuth Vanadate Photoanode - Photovoltaic Tandem Cell. SSRN Electronic Journal, 0, , .	0.4	0
2219	Designing Highly Active High Current Density HER Electrocatalysts: Synergistic Effects of Mo and W in α-Mo _x W _{1-X} B ₂ with Graphene-Like Boron Layers. SSRN Electronic Journal, 0, , .	0.4	0
2220	First-Principles Modelling of N-Doped Co ₃ O ₄ . Latvian Journal of Physics and Technical Sciences, 2018, 55, 36-42.	0.4	1
2221	One-Step Synthesis of Cu ₉ S ₅ Ultra-Long Nanowires for Oxygen Evolution Reaction. Material Sciences, 2019, 09, 331-337.	0.0	0
2222	Artificial Photosynthesis: An Approach for a Sustainable Future. , 2019, , 1909-1933.		0
2224	Polymer Electrolyte Membranes Consisting of PVA- <i>g</i> POEM Graft Copolymers for Supercapacitors. Membrane Journal, 2019, 29, 323-328.	0.2	0

#	Article	IF	CITATIONS
2225	PREPARATION AND ELECTROCHEMICAL BEHAVIOR OF THE ACTIVATED CARBON FROM POMEGRANATE PEELS AS ENERGY-STORAGE MATERIALS. Al-Azhar Bulletin of Science, 2020, 31, 1-9.	0.0	0
2226	Synthesis, Characterization, and Photovoltaic Performance of CdO-Based Nano Hybrid Material in Solid-State Dye-Sensitized Solar Cells. Journal of Electrochemical Energy Conversion and Storage, 2021, 18, .	1.1	0
2227	N-doped graphene supported W2C/WC as efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 902-916.	3.8	13
2228	Recent advances in structural engineering of 2D hexagonal boron nitride electrocatalysts. Nano Energy, 2022, 91, 106661.	8.2	49
2229	Strong Ligand Stabilization Based on Ï€â€Extension in a Series of Ruthenium Terpyridine Water Oxidation Catalysts. Chemistry - A European Journal, 2021, 27, 16871-16878.	1.7	12
2230	Kesterite monograins for solar cells and water splitting applications. Thin Solid Films, 2021, 739, 138981.	0.8	3
2231	Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nature Energy, 2021, 6, 1054-1066.	19.8	159
2233	Mechanism and Dynamics of Formation of Bisoxo Intermediates and O–O Bond in the Catalytic Water Oxidation Process. Journal of Physical Chemistry A, 2021, 125, 279-290.	1.1	5
2234	Oxygen Evolution Reaction on a N-Doped Co _{0.5} -Terminated Co ₃ o ₄ (001) Surface. Proceedings of the Latvian Academy of Sciences, 2020, 74, 396-403.	0.0	0
2235	Efficient near-infrared luminescence and energy transfer mechanism in Ca3Al2O6: Ce3+, Yb3+ phosphors. Journal of Luminescence, 2022, 241, 118511.	1.5	7
2236	New functional hybrid materials based on clay minerals for enhanced electrocatalytic activity. Journal of Alloys and Compounds, 2022, 892, 162239.	2.8	8
2237	Amorphous aerogel of trimetallic FeCoNi alloy for highly efficient oxygen evolution. Chemical Engineering Journal, 2022, 430, 132955.	6.6	40
2238	Design of noble metal-free CoTiO3/Zn0.5Cd0.5S heterostructure photocatalyst for selective synthesis of furfuraldehyde combined with H2production. Journal of Colloid and Interface Science, 2022, 608, 1040-1050.	5.0	40
2239	Determining the Type and Size of Energy Storage Systems to Smooth the Power of Renewable Energy Resources. , 2020, , 29-59.		1
2240	Two-Dimensional Transition Metal Chalcogenides for Hydrogen Evolution Catalysis. , 2020, , 1-28.		0
2241	The Application of Pincer Ligand in Catalytic Water Splitting. Topics in Organometallic Chemistry, 2020, , 379.	0.7	0
2242	Bifunctional nanocatalysts for water splitting and its challenges. , 2020, , 59-95.		1
2243	The Synergetic Effect of MoSO ₂ /Graphite Nanosheets as Highly Efficient for Electrochemical Water Splitting in Acidic Media. Science of Advanced Materials, 2021, 13, 1574-1583.	0.1	0

#	Article	IF	CITATIONS
2244	One-pot synthesis of N and P Co-doped carbon layer stabilized cobalt-doped MoP 3D porous structure for enhanced overall water splitting. Journal of Alloys and Compounds, 2022, 895, 162595.	2.8	22
2245	Electrocatalytic Activity of Heteroatom-Doped Graphene for Oxidation of Hydroquinones. Electrochemistry, 2020, 88, 407-412.	0.6	3
2246	Proton to hydride umpolung at a phosphonium center <i>via</i> electron relay: a new strategy for main-group based water reduction. Chemical Science, 2021, 12, 15603-15608.	3.7	4
2247	Metal-organic framework-derived FeS2/CoNiSe2 heterostructure nanosheets for highly-efficient oxygen evolution reaction. Applied Surface Science, 2022, 578, 152016.	3.1	17
2248	Unveiling the Impact of Fe Incorporation on Intrinsic Performance of Reconstructed Water Oxidation Electrocatalyst. ACS Energy Letters, 2021, 6, 4345-4354.	8.8	67
2249	Towards synthetic unimolecular [Fe2S2]-photocatalysts sensitized by perylene dyes. Dyes and Pigments, 2022, 198, 109940.	2.0	7
2250	A telluride-doped porous carbon as highly efficient bifunctional catalyst for rechargeable Zn-air batteries. Electrochimica Acta, 2022, 404, 139606.	2.6	12
2251	Energy Storage upon Photochromic 6-ï€ Photocyclization and Efficient On-Demand Heat Release with Oxidation Stimuli. Journal of Physical Chemistry Letters, 2021, 12, 11391-11398.	2.1	7
2252	Epoxy-Based/BaMnO4 Nanodielectrics: Dielectric Response and Energy Storage Efficiency. Electronics (Switzerland), 2021, 10, 2803.	1.8	3
2253	Cd-Doped Polyoxotitanium Nanoclusters with a Modifiable Organic Shell for Photoelectrochemical Water Splitting. Inorganic Chemistry, 2021, 60, 19263-19269.	1.9	7
2254	Nanocomposite and bio-nanocomposite polymeric materials/membranes development in energy and medical sector: A review. International Journal of Biological Macromolecules, 2021, 193, 2121-2139.	3.6	57
2255	Atomicâ€Scale Observations of the Manganese Porphyrin/Au Catalyst Interface Under the Electrocatalytic Process Revealed with Electrochemical Scanning Tunneling Microscopy. Advanced Materials Interfaces, 2021, 8, 2100873.	1.9	6
2256	Defect-rich CoMoS nanosheets on PANI nanowires as excellent hybrid electrocatalyst for water splitting. Electrochimica Acta, 2022, 403, 139586.	2.6	12
2257	Halide-Doping Effect of Strontium Cobalt Oxide Electrocatalyst and the Induced Activity for Oxygen Evolution in an Alkaline Solution. Catalysts, 2021, 11, 1408.	1.6	7
2258	Field-Free Improvement of Oxygen Evolution Reaction in Magnetic Two-Dimensional Heterostructures. Nano Letters, 2021, 21, 10486-10493.	4.5	43
2259	Mononuclear Mn complexes featuring N,S-/N,N-donor and 1,3,5-triaza-7-phosphaadamantane ligands: synthesis and electrocatalytic properties. New Journal of Chemistry, 2021, 45, 20272-20279.	1.4	1
2260	Recent progress in seawater electrolysis for hydrogen evolution by transition metal phosphides. Catalysis Communications, 2022, 162, 106382.	1.6	30
2261	Mechanistic understanding of pH effects on the oxygen evolution reaction. Electrochimica Acta, 2022, 405, 139810.	2.6	31

#	Article	IF	CITATIONS
2262	Solution–processed Cu2O/ZnO/TiO2/Pt nanowire photocathode for efficient photoelectrochemical water splitting. Journal of Alloys and Compounds, 2022, 899, 163348.	2.8	15
2263	Rational design of metal oxide catalysts for electrocatalytic water splitting. Nanoscale, 2021, 13, 20324-20353.	2.8	38
2264	Tuning the electronic structure of tungsten oxide for enhanced hydrogen evolution reaction in alkaline electrolyte. ChemElectroChem, 0, , .	1.7	4
2265	Electronic Structure-Based Descriptors for Oxide Properties and Functions. Accounts of Chemical Research, 2022, 55, 298-308.	7.6	42
2266	Enhanced Electrocatalytic CO ₂ Reduction to C ₂₊ Products by Adjusting the Local Reaction Environment with Polymer Binders. Advanced Energy Materials, 2022, 12, .	10.2	71
2267	Research progress and future aspects: Metal selenides as effective electrodes. Energy Storage Materials, 2022, 47, 13-43.	9.5	92
2268	Steering the Glycerol Electroâ€Reforming Selectivity via Cation–Intermediate Interactions. Angewandte Chemie, 2022, 134, .	1.6	6
2269	Ab Initio Computational Details With Facile High-Temperature Synthesis of Pure and Alloyed CsPbI ₃ With Inherent Stability Analysis for Optoelectronic Applications. IEEE Journal of Photovoltaics, 2022, 12, 625-633.	1.5	5
2270	Transition metal nanoparticles as electrocatalysts for ORR, OER, and HER. , 2022, , 49-83.		0
2271	Ni ₃ (PO ₄) ₂ Cocatalyst-Supported β–Ga ₂ O ₃ /GaN Photoanodes for Highly Stable Solar Water Splitting. ACS Applied Energy Materials, 2022, 5, 2169-2183.	2.5	6
2272	Future prospects of oxide-free materials for energy-related applications. , 2022, , 451-466.		0
2273	Elucidating Film Loss and the Role of Hydrogen Bonding of Adsorbed Redox Enzymes by Electrochemical Quartz Crystal Microbalance Analysis. ACS Catalysis, 2022, 12, 1886-1897.	5.5	16
2274	p-Block Metal Oxide Noninnocence in the Oxygen Evolution Reaction in Acid: The Case of Bismuth Oxide. Chemistry of Materials, 2022, 34, 826-835.	3.2	8
2275	A 3D hierarchical network derived from 2D Fe-doped NiSe nanosheets/carbon nanotubes with enhanced OER performance for overall water splitting. Journal of Materials Chemistry A, 2022, 10, 3102-3111.	5.2	48
2276	Systematic Influence of Electronic Modification of Ligands on the Catalytic Rate of Water Oxidation by a Singleâ€ S ite Ruâ€Based Catalyst. ChemSusChem, 2022, 15, .	3.6	2
2277	Examination of the BrĄ̃nsted–Evans–Polanyi relationship for the hydrogen evolution reaction on transition metals based on constant electrode potential density functional theory. Physical Chemistry Chemical Physics, 2022, 24, 2476-2481.	1.3	6
2278	Electro-Reforming Polyethylene Terephthalate Plastic to Co-Produce Valued Chemicals and Green Hydrogen. Journal of Physical Chemistry Letters, 2022, 13, 622-627.	2.1	58
2279	An efficient amorphous ternary transition metal boride (WFeNiB) electrocatalyst for oxygen evolution from water. Sustainable Energy and Fuels, 2022, 6, 1345-1352.	2.5	9

#	Article	IF	CITATIONS
2280	Metal–organic framework derived carbon-encapsulated hollow CuO/Cu ₂ O heterostructure heterohedron as an efficient electrocatalyst for hydrogen evolution reaction. Dalton Transactions, 2022, 51, 3349-3356.	1.6	10
2281	Steering the Glycerol Electroâ€Reforming Selectivity via Cation–Intermediate Interactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	37
2282	A photosensitizer–polyoxometalate dyad that enables the decoupling of light and dark reactions for delayed on-demand solar hydrogen production. Nature Chemistry, 2022, 14, 321-327.	6.6	66
2283	Influence of the crystalline phase on the electrocatalytic behaviour of Sm _{2â^`<i>x</i>} Sr _{<i>x</i>} NiO _{4â^`<i>î^</i>} (<i>x</i> = 0.4 to 1.0) Ruddlesden–Popper-based systems: a comparative study of bulk and thin electrocatalysts. Physical Chemistry Chemical Physics. 2022, 24, 5330-5342.	1.3	3
2284	Elucidating Two Distinct Pathways for Electrocatalytic Hydrogen Production Using Co II Pincer Complexes. ChemSusChem, 2022, , .	3.6	2
2285	Dualâ€metal singleâ€atomic catalyst: The challenge in synthesis, characterization, and mechanistic investigation for electrocatalysis. SmartMat, 2022, 3, 533-564.	6.4	35
2286	First-principles study of the oxygen evolution reaction on Ni3Fe-layered double hydroxides surfaces with varying sulfur coverage. Molecular Catalysis, 2022, 519, 112116.	1.0	1
2287	Morphology-controlled synthesis of Cu2S for efficient oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2022, 907, 116020.	1.9	7
2288	Mo- and W-molecular catalysts for the H2 evolution, CO2 reduction and N2 fixation. Coordination Chemistry Reviews, 2022, 457, 214400.	9.5	6
2289	Crystalline-amorphous interface of mesoporous Ni2PÂ@ÂFePOxHy for oxygen evolution at high current density in alkaline-anion-exchange-membrane water-electrolyzer. Applied Catalysis B: Environmental, 2022, 306, 121127.	10.8	90
2290	Photoelectrochemical energy storage materials: design principles and functional devices towards direct solar to electrochemical energy storage. Chemical Society Reviews, 2022, 51, 1511-1528.	18.7	113
2291	A new approach exploiting thermally activated delayed fluorescence molecules to optimize solar thermal energy storage. Nature Communications, 2022, 13, 797.	5.8	18
2292	Direct Seawater Splitting by Forward Osmosis Coupled to Water Electrolysis. ACS Applied Energy Materials, 2022, 5, 1403-1408.	2.5	18
2293	Interface Engineering of Co/CoMoN/NF Heterostructures for Highâ€Performance Electrochemical Overall Water Splitting. Advanced Science, 2022, 9, e2105313.	5.6	90
2294	Recent Progress in the Synthesis and Electrocatalytic Application of Metal–Organic Frameworks Encapsulated Nanoparticle Composites. , 2022, , 731-764.		7
2295	Electrocatalytic proton reduction by dinuclear cobalt complexes in a nonaqueous electrolyte. New Journal of Chemistry, 2022, 46, 6027-6038.	1.4	8
2296	Light-driven reduction of aromatic olefins in aqueous media catalysed by aminopyridine cobalt complexes. Chemical Science, 2022, 13, 4270-4282.	3.7	10
2297	Visible-light driven water oxidation and oxygen production at soft interfaces. Chemical Communications, 2022, 58, 3965-3968.	2.2	4

	Спатокт		
#	Article	IF	CITATIONS
2298	Polymer/fullerene nanocomposite coatings—frontÂline potential. Emergent Materials, 2022, 5, 29-40.	3.2	7
2299	Catalytic Mechanism of Competing Proton Transfer Events from Water and Acetic Acid by [Co ^{II} (bpbH ₂)Cl ₂] for Water Splitting Processes. Journal of Physical Chemistry A, 2022, 126, 1321-1328.	1.1	0
2300	Recent advancement and future challenges of photothermal catalysis for VOCs elimination: From catalyst design to applications. Green Energy and Environment, 2023, 8, 654-672.	4.7	82
2301	Bimetallic Multi‣evel Layered Coâ€NiOOH/Ni ₃ S ₂ @NF Nanosheet for Hydrogen Evolution Reaction in Alkaline Medium. Small, 2022, 18, e2106904.	5.2	31
2302	An extensive investigation of structural, electronic, optical, magnetic, and thermoelectric properties of NaMnAsO ₄ cluster by firstâ€principles calculations. International Journal of Energy Research, 2022, 46, 9586-9601.	2.2	7
2303	Facile Construction of Cu/ZnO Heterojunctions for Enhanced Photocatalytic Performance. Nano, 2022, 17, .	0.5	1
2304	Rational design of interfacial energy level matching for CuGaS2 based photocatalysts over hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 11853-11862.	3.8	5
2305	Ce(III)â€Based Coordinationâ€Complexâ€Based Efficient Radical Scavenger for Exceptional Durability Enhancement of Polymer Application in Protonâ€Exchange Membrane Fuel Cells and Organic Photovoltaics. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	5
2306	Dual In Situ Laser Techniques Underpin the Role of Cations in Impacting Electrocatalysts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
2307	A Selfâ€Assembly Methodâ€Derived Mo _{<i>x</i>} C@Nâ€Doped Carbon Nanosheet Enabling Efficient Water Electrolysis. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	3
2308	Electrochemical hydrogen generation technology: Challenges in electrodes materials for a sustainable energy. Electrochemical Science Advances, 2023, 3, .	1.2	8
2309	Self-healing oxygen evolution catalysts. Nature Communications, 2022, 13, 1243.	5.8	46
2310	Recent Progress on Semiconductor Heterojunctionâ€Based Photoanodes for Photoelectrochemical Water Splitting. Small Science, 2022, 2, .	5.8	60
2311	Development of Strong Visibleâ€Lightâ€Absorbing Cyclometalated Iridium(III) Complexes for Robust and Efficient Lightâ€Driven Hydrogen Production. Chemistry - A European Journal, 2022, 28, .	1.7	16
2312	A Pyreneâ€Triazacyclononane Anchor Affords High Operational Stability for CO ₂ RR by a CNTâ€Supported Histidineâ€Tagged CODH. Angewandte Chemie, 0, , .	1.6	0
2313	A Pyreneâ€Triazacyclononane Anchor Affords High Operational Stability for CO ₂ RR by a CNTâ€Supported Histidineâ€Tagged CODH. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
2314	Electrochemical Polymerization of a Carbazoleâ€Tethered Cobalt Phthalocyanine for Electrocatalytic Water Oxidation. ChemNanoMat, 0, , .	1.5	1
2315	Dual In Situ Laser Techniques Underpin the Role of Cations in Impacting Electrocatalysts. Angewandte Chemie, 2022, 134, .	1.6	7

#	Article	IF	CITATIONS
2316	Control of the morphologies of molybdenum disulfide for hydrogen evolution reaction. International Journal of Energy Research, 2022, 46, 11479-11491.	2.2	8
2317	Conversion of Interfacial Chemical Bonds for Inducing Efficient Photoelectrocatalytic Water Splitting. ACS Materials Au, 2022, 2, 321-329.	2.6	4
2318	Morphology-Controlled Silver-Containing Rhodium Nanoparticles for the Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2022, 169, 044517.	1.3	2
2319	Effect of <scp>nanofillers</scp> and <scp>nanotoxicity</scp> on the performance of composites: Influencing factors, future scope, challenges and applications. Polymer Composites, 2022, 43, 3335-3349.	2.3	6
2320	Designing highly efficient 3D porous Ni-Fe sulfide nanosheets based catalyst for the overall water splitting through component regulation. Journal of Colloid and Interface Science, 2022, 616, 422-432.	5.0	37
2321	Strain-induced electronic and optical properties of inorganic lead halide perovskites APbBr3 (A= Rb) Tj ETQq1 1 0	.784314 r	gBT /Overloc
2322	Electronic modulation of iridium-molybdenum oxides with a low crystallinity for high-efficiency acidic oxygen evolution reaction. Chemical Engineering Journal, 2022, 440, 135851.	6.6	23
2323	Silver decorated hydroxides electrocatalysts for efficient oxygen evolution reaction. Chemical Engineering Journal, 2022, 442, 136168.	6.6	11
2324	Electricâ€Field Assisted Hydrolysisâ€Oxidation of MOFs: Hierarchical Ternary (Oxy)hydroxide Microâ€Flowers for Efficient Electrocatalytic Oxygen Evolution. Small, 2022, 18, e2104863.	5.2	9
2325	SiCP ₄ Monolayer with a Direct Band Gap and High Carrier Mobility for Photocatalytic Water Splitting. Journal of Physical Chemistry Letters, 2022, 13, 190-197.	2.1	16
2326	Efficient Water Oxidation Catalyzed by a Graphene Oxide/Copper Electrode, Supported on Carbon Cloth. Russian Journal of Electrochemistry, 2021, 57, 1196-1206.	0.3	7
2327	Hexagonal Phase Ni ₃ Fe Nanosheets toward Highâ€Performance Water Splitting by a Roomâ€Temperature Methane Plasma Method. Advanced Functional Materials, 2022, 32, .	7.8	26
2328	Fe-doped NiCo2O4 hollow hierarchical sphere as an efficient electrocatalyst for oxygen evolution reaction. Frontiers of Materials Science, 2021, 15, 577-588.	1.1	5
2329	Unravelling the Mystery: Enlightenment of the Uncommon Electrochemistry of Naphthalene Monoimide [FeFe] Hydrogenase Mimics. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	6
2330	Bimetallic Ir _{<i>x</i>} Pb nanowire networks with enhanced electrocatalytic activity for the oxygen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 11196-11204.	5.2	6
2331	Exploring the Potential of Water-Soluble Cu(II) Complexes with MPA–CdTe Quantum Dots for Photoinduced Electron Transfer. Catalysts, 2022, 12, 422.	1.6	2
2332	Low-Pt Amount Supported Polypyrrole/MXene 1D/2D Electrocatalyst for Efficient Hydrogen Evolution Reaction. Electrocatalysis, 2022, 13, 469-478.	1.5	6
2333	Novel [FeFe]-Hydrogenase Mimics: Unexpected Course of the Reaction of Ferrocenyl α-Thienyl Thioketone with Fe3(CO)12. Materials, 2022, 15, 2867.	1.3	7

#	Article	IF	CITATIONS
2336	Free-standing Co/Zn sulfide supported on Cu-foam for efficient overall water splitting. New Journal of Chemistry, 2022, 46, 11149-11157.	1.4	3
2337	Multicriteria decision making in organic-metal frameworks for fuel storage. , 2022, , 609-630.		0
2338	Mof-Derived Carbon Nanotubes Modified Nimoco Ternary Alloy Electrocatalyst for Efficient and Stable Overall Water Splitting. SSRN Electronic Journal, 0, , .	0.4	0
2339	Doping engineering toward metal oxides for water splitting. , 2022, , 217-238.		0
2340	Influence of the Linker Chemistry on the Photoinduced Chargeâ€Transfer Dynamics of Heteroâ€dinuclear Photocatalysts. Chemistry - A European Journal, 2022, 28, .	1.7	6
2341	In Situ Electrochemically Formed Ag/NiOOH/Ni ₃ S ₂ Heterostructure Electrocatalysts with Exceptional Performance toward Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 5976-5985.	3.2	15
2342	Solid supported synthesis of unsymmetrical bi-functionalized ferrocenyl-rhodaminyl molecular system to explore phosgene, heavy metal ion sensing, and cell imaging properties. Journal of Organometallic Chemistry, 2022, 972, 122369.	0.8	3
2343	The coupled electrocatalyst synergy fabrication for the electrochemical oxygen evolution reaction: From electrode to green energy system. Journal of the Chinese Chemical Society, 0, , .	0.8	0
2344	Fe5Ge2Te2: Ironâ€rich Layered Chalcogenide for Highly Efficient Hydrogen Evolution. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	0
2345	MgO as promoter for electrocatalytic activities of Co3O4–MgO composite via abundant oxygen vacancies and Co2+ ions towards oxygen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 12672-12682.	3.8	30
2346	Tuning the electronic, optical, and thermal properties of cubic perovskites CsPbCl _{3-n} Br _n (n = 0, 1, 2, and 3) through altering the halide ratio. Physica Scripta, 2022, 97, 065704.	1.2	3
2347	Optimal operating conditions evaluation of an anion-exchange-membrane electrolyzer based on FUMASEPA® FAA3-50 membrane. International Journal of Hydrogen Energy, 2023, 48, 11914-11921.	3.8	19
2348	Dual-template strategy synthesis of hierarchically porous electrocatalysts for oxygen reduction reaction. , 2022, 1, 100006.		2
2349	Strategies for accessing photosensitizers with extreme redox potentials. Chemical Physics Reviews, 2022, 3, .	2.6	21
2350	In-situ etching of stainless steel: NiFe2O4 octahedral nanoparticles for efficient electrocatalytic oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 911, 165141.	2.8	10
2351	Strain-induced tunability of the optoelectronic properties of inorganic lead iodide perovskites APbI3 (A= Rb and Cs). Physica B: Condensed Matter, 2022, 638, 413960.	1.3	12
2352	Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride. Coordination Chemistry Reviews, 2022, 465, 214516.	9.5	34
2353	Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chemical Society Reviews, 2022, 51, 4583-4762.	18.7	453

#	Article	IF	CITATIONS
2354	CO ₂ -Assisted synthesis of a crystalline/amorphous NiFe-MOF heterostructure for high-efficiency electrocatalytic water oxidation. Chemical Communications, 2022, 58, 6833-6836.	2.2	12
2355	Innovative strategies in design of transition metal-based catalysts for large-current-density alkaline water/seawater electrolysis. Materials Today Physics, 2022, 26, 100727.	2.9	41
2356	Ternary NiMoCo alloys and fluffy carbon nanotubes grown on ZIF-67-derived polyhedral carbon frameworks as bifunctional electrocatalyst for efficient and stable overall water splitting. Electrochimica Acta, 2022, 424, 140613.	2.6	6
2357	Optoelectronic Applications of Conjugated Organic Polymers: Influence of Donor/Acceptor Groups through Density Functional Studies. Journal of Physical Chemistry C, 2022, 126, 9313-9323.	1.5	9
2358	Water Oxidation by a Neoteric Dinuclear Mn(II) Electrocatalyst in Aqueous Medium. European Journal of Inorganic Chemistry, 0, , .	1.0	1
2359	Two-Dimensional ZnS/SnS2 Heterojunction as a Direct Z-Scheme Photocatalyst for Overall Water Splitting: A DFT Study. Materials, 2022, 15, 3786.	1.3	5
2360	Accelerated oxygen evolution kinetics on Ir-doped SrTiO ₃ perovskite by NH ₃ plasma treatment. Chinese Physics B, 0, , .	0.7	0
2361	Photo-enhanced rechargeable high-energy-density metal batteries for solar energy conversion and storage. , 2022, 1, e9120007.		89
2362	The surface of metal boride tinted by oxygen evolution reaction for enhanced water electrolysis. Journal of Energy Chemistry, 2022, 72, 509-515.	7.1	19
2363	Introduction of Nanotechnology and Sustainability. RSC Nanoscience and Nanotechnology, 2022, , 1-32.	0.2	2
2364	High quantum yield photochemical water oxidation using a water-soluble cobalt phthalocyanine as a homogenous catalyst. Chemical Communications, 0, , .	2.2	2
2365	Flower-like Co3Ni1B nanosheets based on reduced graphene oxide (rGO) as an efficient electrocatalyst for the oxygen evolution reaction. New Journal of Chemistry, 2022, 46, 13524-13532.	1.4	10
2368	Covalent Metalloporphyrin Polymer Coated on Carbon Nanotubes as Bifunctional Electrocatalysts for Water Splitting. Inorganic Chemistry, 2022, 61, 10198-10204.	1.9	11
2369	Layered double hydroxide (LDH) nanomaterials with engineering aspects for photocatalytic CO2 conversion to energy efficient fuels: Fundamentals, recent advances, and challenges. Journal of Environmental Chemical Engineering, 2022, 10, 108151.	3.3	20
2370	Rapidly and mildly transferring anatase phase of graphene-activated TiO2 to rutile with elevated Schottky barrier: Facilitating interfacial hot electron injection for Vis-NIR driven photocatalysis. Nano Research, 2022, 15, 10142-10147.	5.8	4
2371	CdS/VS ₂ Heterostructured Nanoparticles as Efficient Visibleâ€Lightâ€Driven Photocatalysts for Boosting Hydrogen Evolution. ChemNanoMat, 0, , .	1.5	1
2372	Hydrogen-Bonded Organic Framework Structure: A Metal-Free Electrocatalyst for the Evolution of Hydrogen. ACS Omega, 2022, 7, 22440-22446.	1.6	5
2373	Fabrication of an Efficient N, S Co-Doped WO3 Operated in Wide-Range of Visible-Light for Photoelectrochemical Water Oxidation. Nanomaterials, 2022, 12, 2079.	1.9	7

#	Article	IF	CITATIONS
2374	Electron spin modulation engineering in oxygen-involved electrocatalysis. Journal of Physics Condensed Matter, 2022, 34, 364002.	0.7	4
2375	Ultralight, Safe, Economical, and Portable Oxygen Generators with Low Energy Consumption Prepared by Air-Breathing Electrochemical Extraction. ACS Applied Materials & Interfaces, 2022, 14, 28114-28122.	4.0	2
2376	Lowâ€cost Trimetallic Niâ€Feâ€Mn Oxides/(Oxy)hydroxides Nanosheets Array for Efficient Oxygen Evolution Reaction. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	1
2377	In-situ formation of Are-MXY(M = Mo, W; (X ≠Y) = S, Se, Te) van der Waals heterostructure. Journal of Solid State Chemistry, 2022, 313, 123284.	1.4	2
2378	Janus bimetallic materials as efficient electrocatalysts for hydrogen oxidation and evolution reactions. Journal of Colloid and Interface Science, 2022, 625, 128-135.	5.0	10
2379	High performance transition metal-based electrocatalysts for green hydrogen production. Chemical Communications, 2022, 58, 7874-7889.	2.2	14
2380	Non-Heme Oxoiron complexes as active intermediates in water oxidation process with hydrogen/oxygen atom transfer reactions. Dalton Transactions, 0, , .	1.6	0
2381	Fabrication and Characterization of Nanostructured Rock Wool as a Novel Material for Efficient Water-Splitting Application. Nanomaterials, 2022, 12, 2169.	1.9	4
2382	Azobenzene-Based Solar Thermal Fuels: A Review. Nano-Micro Letters, 2022, 14, .	14.4	28
2383	Srâ€doped Double Perovskite La2CoMnO6 to Promote the Oxygen Evolution Reaction Activity. ChemElectroChem, 0, , .	1.7	1
2384	The High Electrocatalytic Performance of NiFeSe/CFP for Hydrogen Evolution Reaction Derived from a Prussian Blue Analogue. Catalysts, 2022, 12, 739.	1.6	4
2385	Ultrasmall VN/Co heterostructure with optimized N active sites anchored in N-doped graphitic nanocarbons for boosting hydrogen evolution. , 2022, 1, 100027.		0
2386	Electrochemically prepared Fe: NiO thin film catalysis for oxygen evolution reaction. Journal of Materials Science: Materials in Electronics, 2022, 33, 18180-18186.	1.1	2
2387	Understanding of Oxygen Redox in the Oxygen Evolution Reaction. Advanced Materials, 2022, 34, .	11.1	109
2388	Influence of spin–orbit coupling and biaxial strain on the inorganic lead iodide perovskites, APbI3 (A =) Tj ETQq	0	Qverlock 1
2389	Electronic Structure of Molecular Cobalt Catalysts for H ₂ Production Revealed by Multifrequency EPR. Journal of Physical Chemistry C, 2022, 126, 11889-11899.	1.5	0
2390	Fabrication of CoS/CdS heterojunctions for enhanced photocatalytic hydrogen production. Inorganica Chimica Acta, 2022, 541, 121085.	1.2	5
2391	Photocatalytic CO ₂ reduction sensitized by a special-pair mimic porphyrin connected with a rhenium(<scp>i</scp>) tricarbonyl complex. Chemical Science, 2022, 13, 9861-9879.	3.7	9

#	Article	IF	CITATIONS
2392	Co-prosperity of electrocatalytic activity and stability in high entropy spinel (Cr _{0.2} Mn _{0.2} Fe _{0.2} Ni _{0.2} Zn _{0.2}) ₃ O for the oxygen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 17633-17641.	<sāb₂>4<td>ub37</td></s	u b3 7
2393	Electrodeposited Nickel Oxide Thin Film for Electrochemical Water Splitting. International Journal of Advanced Research in Science, Communication and Technology, 0, , 38-42.	0.0	1
2394	Evaluating Znâ€Porphyrinâ€Based Nearâ€IRâ€Sensitive Nonâ€Fullerene Acceptors for Efficient Panchromatic Organic Solar Cells. ChemistryOpen, 2022, 11, .	0.9	5
2395	Selfâ€supported Co, Pâ€codoped MnCO ₃ pyramid as an efficient Electrocatalyst for hydrogen evolution reaction. International Journal of Energy Research, 0, , .	2.2	0
2396	Overview and Outlook on Graphene and Carbon Nanotubes in Perovskite Photovoltaics from Singleâ€Junction to Tandem Applications. Advanced Functional Materials, 2022, 32, .	7.8	14
2397	A Stable Alkylated Cobalt Catalyst for Photocatalytic H ₂ Generation in Liposomes. ChemCatChem, 0, , .	1.8	2
2398	Aqueous OH ^{â^'} /H ⁺ Dualâ€ion Znâ€Based Batteries. ChemSusChem, 2023, 16, .	3.6	3
2399	Recent advances in nonâ€precious Niâ€based promising catalysts for water splitting application. International Journal of Energy Research, 2022, 46, 17829-17847.	2.2	17
2400	Tailor-designed bimetallic Co/Ni macroporous electrocatalyst for efficient glycerol oxidation and water electrolysis. International Journal of Hydrogen Energy, 2022, 47, 32145-32157.	3.8	20
2401	Computational evaluation of Ca-decorated nanoporous CN monolayers as high capacity and reversible hydrogen storage media. International Journal of Hydrogen Energy, 2022, 47, 29371-29381.	3.8	18
2402	Strategies for Designing High-Performance Hydrogen Evolution Reaction Electrocatalysts at Large Current Densities above 1000 mA cm ^{–2} . ACS Nano, 2022, 16, 11577-11597.	7.3	89
2403	Surface functionalization of carbon cloth with conductive Ni/Fe-MOFs for highly efficient oxygen evolution. Surfaces and Interfaces, 2022, 33, 102294.	1.5	7
2404	One-pot synthesis of bismuth-containing multicomponent photocatalyst Ag-BWV-y towards efficient H2 generation. Materials Today Communications, 2022, 33, 104503.	0.9	0
2405	Polymorphic ternary metal chalcogenide solid solution nanopowder as electrocatalyst for hydrogen and oxygen evolution reaction. Materials Science in Semiconductor Processing, 2022, 152, 107102.	1.9	1
2406	β- and γ-NiFeOOH electrocatalysts for an efficient oxygen evolution reaction: an electrochemical activation energy aspect. Journal of Materials Chemistry A, 2022, 10, 20847-20855.	5.2	19
2407	Two new Ni/Co-MOFs as electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. New Journal of Chemistry, 2022, 46, 18996-19001.	1.4	1
2408	A comparative study of the mechanical stability, electronic, optical and photocatalytic properties of CsPbX ₃ (X = Cl, Br, I) by DFT calculations for optoelectronic applications. RSC Advances, 2022, 12, 23704-23717.	1.7	12
2409	Heteroleptic copper(<scp>i</scp>) charge-transfer chromophores with panchromatic absorption. Chemical Communications, 2022, 58, 11446-11449.	2.2	9

#	Article	IF	CITATIONS
2410	Challenges and prospects of high-voltage aqueous electrolytes for energy storage applications. Physical Chemistry Chemical Physics, 2022, 24, 20674-20688.	1.3	3
2411	Two-dimensional β-PdSeO3 monolayer as a high-efficiency photocatalyst for solar-to-hydrogen conversion. Catalysis Science and Technology, 0, , .	2.1	0
2412	Influence of the pendant groups on electrochemical water oxidation catalyzed by cobalt(<scp>ii</scp>) triazolylpyridine complexes. Dalton Transactions, 2022, 51, 15854-15862.	1.6	4
2413	Theory and Computation in Photo-Electro-Chemical Catalysis: Highlights, Challenges, and Prospects. Engineering Materials, 2022, , 3-43.	0.3	0
2414	Photo-electrochemical Effect in the Amorphous Cobalt Oxide Water Oxidation Catalyst Cobalt–Phosphate (CoPi). ACS Energy Letters, 2022, 7, 3129-3138.	8.8	5
2415	Recent Development of Nickel-Based Electrocatalysts for Urea Electrolysis in Alkaline Solution. Nanomaterials, 2022, 12, 2970.	1.9	16
2416	Self-construction of pea-like Cu/Cu2S Mott-Schottky electrocatalyst for the oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, , .	3.8	4
2417	Synthesis of Pyrochlore Oxides Containing Ir and Ru for Efficient Oxygen Evolution Reaction. Materials, 2022, 15, 6107.	1.3	6
2418	Oxygen Vacancyâ€Rich Sr ₂ MgSi ₂ O ₇ :Eu ²⁺ ,Dy ³⁺ Long Afterglow Phosphor as a Roundâ€theâ€Clock Catalyst for Selective Reduction of CO ₂ to CO. Advanced Functional Materials, 2022, 32	7.8	21
2419	Review of High Entropy Alloys Electrocatalysts for Hydrogen Evolution, Oxygen Evolution, and Oxygen Reduction Reaction. Chemical Record, 2022, 22, .	2.9	16
2420	Remarkable Enhancement of Catalytic Activity of Cuâ€Complexes in the Electrochemical Hydrogen Evolution Reaction by Using Triply Fused Porphyrin**. ChemSusChem, 2023, 16, .	3.6	8
2421	Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation. Nature Communications, 2022, 13, .	5.8	77
2423	Structural, elastic, phononic, optical and electronic properties investigation of two-dimensional XIS (X=Al, Ga, In) for photocatalytic water splitting. International Journal of Hydrogen Energy, 2022, 47, 41640-41647.	3.8	7
2424	Rational construction of high-active Co3O4 electrocatalysts for oxygen evolution reaction. Nano Research, 2023, 16, 624-633.	5.8	9
2425	Cerium-Doped CoMn2O4 Spinels as Highly Efficient Bifunctional Electrocatalysts for ORR/OER Reactions. Catalysts, 2022, 12, 1122.	1.6	11
2426	Iron decorated defective phosphorene as a viable hydrogen storage medium – A DFT study. International Journal of Hydrogen Energy, 2022, 47, 34976-34993.	3.8	6
2427	Cuprous oxide photocathodes for solar water splitting. Chemical Physics Reviews, 2022, 3, .	2.6	7
2428	Recent Development of Nanostructured Nickel Metal-Based Electrocatalysts for Hydrogen Evolution Reaction: A Review. Topics in Catalysis, 2023, 66, 149-181.	1.3	4

ARTICLE IF CITATIONS Sulfur Incorporation into NiFe Oxygen Evolution Electrocatalysts for Improved High Current Density 2429 0 2.6 Operation. Materials Advances, 0, , . Manipulation of oxygen evolution reaction kinetics of a free-standing CoSe ₂–NiSe₂heterostructured electrode by interfacial engineering. 2430 2.5 Sustainable Energy and Fuels, 2022, 6, 5392-5399. Penta-BCN monolayer: a metal-free photocatalyst with a high carrier mobility for water splitting. 2431 1.3 1 Physical Chemistry Chemical Physics, 2022, 24, 26863-26869. Battery materials. , 2023, , 308-363. Ni–Fe synergic effect in Fe–NiOH<sub><i>x</i>>/sub>boosting oxygen evolution under large current 2433 density enabled by the $\hat{a} \in \infty < i > in situ < /i > self-corrosion \hat{a} \in strategy. Journal of Materials Chemistry A, 2022,$ 5.2 8 10, 22437-22444. Strain-driven tunability of the optical, electronic, and mechanical properties of lead-free inorganic CsGeCl₃ perovskites. Physica Scripta, 2022, 97, 125817. 2434 1.2 Amorphous Iron-Doped Nickel Selenide Film on Nickel Foam via One-Step Electrodeposition Method for 2435 1.50 Overall Water Splitting. Electrocatalysis, 0, , . CuS_x Catalysts by Ag-Mediated Corrosion of Cu for Electrochemical Reduction of 2436 5.5 Sulfur-Containing CO₂ Gas to HCOOH. ACS Catalysis, 2022, 12, 13174-13185. Dealloying fabrication of hierarchical porous Nickelâ€"Iron foams for efficient oxygen evolution 2437 1.8 1 reaction. Frontiers in Chemistry, 0, 10, . Stability of van der Waals FePX < sub > 3 < / sub > materials (X: S, Se) for water-splitting applications. 2D 2438 Materials, 2023, 10, 014008. Facile synthesis of Er-MOF/FeO nanocomposite for oxygen evolution reaction. Materials Chemistry 2439 2.0 10 and Physics, 2022, 292, 126861. Fe-doped NiSe2 nanoparticles as efficient and stable electrocatalysts for oxygen evolution reaction. 2440 1.2 Chemical Physics Letters, 2022, 808, 140126. Influence of CaF2 addition on structure and luminescence properties of the 2441 4 Na2O–CaO–SiO2–Al2O3–ZnO–P2O5 glass co-doped with Ce3+/Yb3+. Optical Materials, 2022, 134, 113771. Advanced electrochemical energy storage and conversion on graphdiyne interface., 2022, 1, e9120036. 2442 24 Facile synthesis of novel Ag@cerium zirconate heterostructure for efficient oxygen evolution 2443 2 1.5 reaction. Surfaces and Interfaces, 2022, 35, 102410. Bioinspired and biomolecular catalysts for energy conversion and storage. FEBS Letters, 2023, 597, 2444 174-190. Identifying the geometric catalytic active sites of crystalline cobalt oxyhydroxides for oxygen 2445 5.836 evolution reaction. Nature Communications, 2022, 13, . Activation of inert Ag by nanoplasmonic synergy for enhanced hydrogen evolution reaction. 2446 3.8 International Journal of Hydrogen Energy, 2023, 48, 3316-3327.

#	Article	IF	CITATIONS
2447	Tailoring Polypyrrole and Polyaniline Polymers by Introducing Side Groups for Sensing and Photovoltaic Applications: A DFT Study. ACS Applied Electronic Materials, 2022, 4, 5246-5255.	2.0	3
2448	Self-assembled supramolecular materials for photocatalytic H ₂ production and CO ₂ reduction. Materials Futures, 2022, 1, 042104.	3.1	9
2449	Challenges in Elucidating the Free Energy Scheme of the Laccase Catalyzed Reduction of Oxygen. ChemCatChem, 2023, 15, .	1.8	6
2450	Regulated Bimetal-Doped Polyaniline: Amorphous-Crumple-Structured Viable Electrocatalyst for an Efficient Oxygen Evolution Reaction. Energy & Fuels, 2022, 36, 14349-14360.	2.5	11
2451	Electrocatalytic CO2 reduction with a binuclear bisâ€ŧerpyridine pyrazoleâ€bridged cobalt complex. Chemistry - A European Journal, 0, , .	1.7	2
2452	Aerogels-Inspired based Photo and Electrocatalyst for Water Splitting to Produce Hydrogen. Applied Materials Today, 2022, 29, 101670.	2.3	4
2453	Nanocomposites for Overall Water-Splitting. , 2022, , 1-31.		0
2454	Energy-saving hydrogen production by water splitting coupling urea decomposition and oxidation reactions. Journal of Materials Chemistry A, 2022, 11, 259-267.	5.2	12
2455	Recent progress on design and applications of transition metal chalcogenide-associated electrocatalysts for the overall water splitting. Chinese Journal of Catalysis, 2023, 44, 7-49.	6.9	47
2456	A review of non-oxide semiconductors for photoelectrochemical water splitting. Journal of Materials Chemistry C, 0, , .	2.7	4
2457	Ni-based ultrathin nanostructures for overall electrochemical water splitting. Materials Chemistry Frontiers, 2023, 7, 194-215.	3.2	10
2458	Recent Advances and Future Perspectives of Metalâ€Based Electrocatalysts for Overall Electrochemical Water Splitting. Chemical Record, 2023, 23, .	2.9	16
2459	Sn(IV) Polyanionic Materials as Efficient Visible-Light-Driven Water-Splitting Photocatalysts. Journal of Physical Chemistry C, 2022, 126, 21243-21252.	1.5	0
2460	Scalable Photovoltaicâ€Electrochemical Cells for Hydrogen Production from Water ―Recent Advances. ChemElectroChem, 2022, 9, .	1.7	4
2461	Exploration of catalytically active materials for efficient electrochemical hydrogen and oxygen evolution reactions. International Journal of Hydrogen Energy, 2023, 48, 8045-8070.	3.8	16
2462	Electrochemical Oxidation of Primary Alcohols Using a Co ₂ NiO ₄ Catalyst: Effects of Alcohol Identity and Electrochemical Bias on Product Distribution. ACS Catalysis, 2023, 13, 515-529.	5.5	9
2463	Enhanced Electrocatalytic Water Oxidation of Ultrathin Porous Co3O4 Nanosheets by Physically Mixing with Au Nanoparticles. Nanomaterials, 2022, 12, 4419.	1.9	0
2464	Ultrathin Broadband Metasurface Superabsorbers from a van der Waals Semimetal. Advanced Optical Materials, 2023, 11, .	3.6	2

#	Article	IF	CITATIONS
2465	Altering oxygen binding by redoxâ€inactive metal substitution to control catalytic activity: oxygen reduction on manganese oxide nanoparticles as a model system. Angewandte Chemie, 0, , .	1.6	0
2466	Altering Oxygen Binding by Redoxâ€Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
2467	Reaction Intermediates in Artificial Photosynthesis with Molecular Catalysts. ACS Catalysis, 2023, 13, 308-341.	5.5	6
2468	Rareâ€Earth Doping Transitional Metal Phosphide for Efficient Hydrogen Evolution in Natural Seawater. Small Structures, 2023, 4, .	6.9	8
2469	Skeletal Nanostructures Promoting Electrocatalytic Reactions with Three-Dimensional Frameworks. ACS Catalysis, 2023, 13, 355-374.	5.5	10
2470	Surface Engineering in MgCo ₂ O ₄ Spinel Oxide for an Improved Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2023, 11, 744-750.	3.2	6
2471	Microwave assisted recycling of spent Li-ion battery electrode material into efficient oxygen evolution reaction catalyst. Electrochimica Acta, 2023, 442, 141842.	2.6	6
2472	Strain-induced tunable optoelectronic properties of inorganic halide perovskites APbCl ₃ (A = K, Rb, and Cs). Japanese Journal of Applied Physics, 2023, 62, 011002.	0.8	18
2473	Improving the Catalytic Performance of the Hydrogen Evolution Reaction of αâ€MoB ₂ via Rational Doping by Transition Metal Elements. ChemPhysChem, 2023, 24, .	1.0	1
2474	Earth-abundant photoelectrodes for water splitting and alternate oxidation reactions: Recent advances and future perspectives. Progress in Materials Science, 2023, 134, 101073.	16.0	15
2475	The adjacent Fe oxidation greatly enhancing OER activity on the Ni active site: S plays the role in optimizing local coordination and electronic structure. Materials Today Chemistry, 2023, 27, 101330.	1.7	2
2476	Tuning oxygen-containing functional groups of graphene for supercapacitors with high stability. Nanoscale Advances, 2023, 5, 1163-1171.	2.2	16
2477	Electrodeposition of Stable Noble-Metal-Free Co-P Electrocatalysts for Hydrogen Evolution Reaction. Materials, 2023, 16, 593.	1.3	4
2478	Emerging photoâ€integrated rechargeable aqueous zincâ€ion batteries and capacitors toward direct solar energy conversion and storage. , 2023, 2, 37-53.		8
2479	Nanostructured manganese oxide on fullerene soot for water oxidation under neutral conditions. International Journal of Hydrogen Energy, 2023, 48, 14199-14209.	3.8	13
2480	Bifunctional Water Splitting Performance of NiFe LDH Improved by Pd ²⁺ Doping. ChemElectroChem, 2023, 10, .	1.7	3
2481	Direct growth of AC/ZnS-Ni7S6/Ni(OH)2 on nickel foam as a porous electrode material for high-performance supercapacitors. Electrochimica Acta, 2023, 441, 141821.	2.6	7
2482	LSTN (La0.4Sr0.4Ti0.9Ni0.1O3-&) perovskite and graphitic carbon nitride (g-C3N4) hybrids as a bifunctional electrocatalyst for water-splitting applications. Journal of Alloys and Compounds, 2023, 939, 168668.	2.8	13

#	Article	IF	CITATIONS
2483	Modern Technologies of Hydrogen Production. Processes, 2023, 11, 56.	1.3	17
2484	Amorphous Coâ€P Film: an Efficient Electrocatalyst for Hydrogen Evolution Reaction in Alkaline Seawater. European Journal of Inorganic Chemistry, 0, , .	1.0	2
2485	Polymer/fullerene nanomaterials in optoelectronic devices: Photovoltaics, light-emitting diodes, and optical sensors. , 2023, , 153-174.		0
2486	Advanced polymer/fullerene nanowhisker nanocomposites. , 2023, , 87-106.		0
2487	Polymer nanocomposites for dielectric and energy storage applications. , 2023, , 435-460.		1
2488	A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts. RSC Advances, 2023, 13, 3843-3876.	1.7	81
2489	A Comparison of Photodeposited RuO _{<i>x</i>} for Alkaline Water Electrolysis. ACS Applied Energy Materials, 2023, 6, 1449-1458.	2.5	2
2490	Potential of ionic liquids in green energy resources. , 2023, , 169-186.		0
2491	Solar–Thermal Fuels and the Role of Carbon Nanomaterials: A Perspective with Emphasis on the Azobenzene System. Energy & Fuels, 2023, 37, 1731-1756.	2.5	3
2492	Cobalt carbonate hydroxide assisted formation of self-supported CoNi-based Metal–Organic framework nanostrips as efficient electrocatalysts for oxygen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 15566-15573.	3.8	3
2493	Construction of a NiFe-LDH catalyst with a three-dimensional unified gas diffusion layer structure <i>via</i> a facile acid etching route for the oxygen evolution reaction. Materials Chemistry Frontiers, 2023, 7, 1335-1344.	3.2	3
2494	Fullerene: Fundamentals and state-of-the-art. , 2023, , 1-19.		0
2495	Appraisal of conducting polymers for potential bioelectronics. , 2023, , 265-298.		0
2496	Fullerene nano-additives in conjugated polymers: Topographies and technical implications. , 2023, , 65-85.		0
2497	Quantum dots synthesis for photovoltaic cells. , 2023, , 67-98.		0
2498	Ag Nanoparticle-Decorated V ₂ CT _{<i>x</i>} MXene Nanosheets as Catalysts for Water Splitting. ACS Applied Nano Materials, 2023, 6, 2374-2384.	2.4	13
2499	Monolayer BP: A Promising Photocatalyst for Water Splitting with High Carrier Mobility. Catalysis Letters, 2024, 154, 42-49.	1.4	0
2500	Promoting the electrocatalytic oxygen evolution reaction on NiCo2O4 with infrared-thermal effect: A strategy to utilize the infrared solar energy to reduce activation energy during water splitting. Journal of Colloid and Interface Science, 2023, 638, 54-62.	5.0	8

#	Article	IF	CITATIONS
2501	High-entropy alloys in water electrolysis: Recent advances, fundamentals, and challenges. Science China Materials, 2023, 66, 1681-1701.	3.5	24
2502	Materials for Water Splitting. , 2012, , 592-614.		8
2503	Rational design of 2D/2D CS/SiC van der Waals type-II heterojunctions: a visible-light-driven photocatalyst for hydrogen production. Materials Advances, 2023, 4, 1949-1963.	2.6	4
2504	Iron Oxyhydroxide: Structure and Applications in Electrocatalytic Oxygen Evolution Reaction. Advanced Functional Materials, 2023, 33, .	7.8	18
2505	Challenges and perspectives of hydrogen evolution-free aqueous Zn-Ion batteries. Energy Storage Materials, 2023, 59, 102767.	9.5	22
2506	Plasma-assisted low temperature ammonia decomposition on 3d transition metal (Fe, Co and Ni) doped CeO2 catalysts: Synergetic effect of morphology and co-doping. Fuel Processing Technology, 2023, 244, 107695.	3.7	8
2507	Recent advances in nanoengineering 2D metal-based materials for electrocatalytic conversion of carbon dioxide into fuels and value-added products. Fuel, 2023, 343, 127873.	3.4	7
2508	Vanadium tunning amorphous iron phosphate encapsulated iron phosphide on phosphorous-doped graphene promoted oxygen reactions for flexible zinc air batteries. Applied Catalysis B: Environmental, 2023, 331, 122674.	10.8	11
2509	Electrochemistry, electrocatalysis, and mechanistic details into hydrogen evolution pathways of hexacoordinated iron scaffolds in hydrogenase mimics. Journal of Electroanalytical Chemistry, 2023, 938, 117446.	1.9	2
2510	Emerging trends of electrocatalytic technologies for renewable hydrogen energy from seawater: Recent advances, challenges, and techno-feasible assessment. Journal of Energy Chemistry, 2023, 80, 658-688.	7.1	20
2511	Chelating adsorption-engaged synthesis of ultrafine iridium nanoparticles anchored on N-doped carbon nanofibers toward highly efficient hydrogen evolution in both alkaline and acidic media. Journal of Colloid and Interface Science, 2023, 641, 782-790.	5.0	17
2512	A Mini Review on Transition Metal Chalcogenides for Electrocatalytic Water Splitting: Bridging Material Design and Practical Application. Energy & Fuels, 2023, 37, 2608-2630.	2.5	39
2513	In Situ Detection of Iron in Oxidation States ≥ IV in Cobaltâ€Iron Oxyhydroxide Reconstructed during Oxygen Evolution Reaction. Advanced Energy Materials, 2023, 13, .	10.2	16
2514	Activated FeS ₂ @NiS ₂ Core–Shell Structure Boosting Cascade Reaction for Superior Electrocatalytic Oxygen Evolution. Small, 2023, 19, .	5.2	11
2515	Ruthenium-loaded titania nanotube arrays as catalysts for the hydrogen evolution reaction in alkaline membrane electrolysis. Journal of Power Sources, 2023, 562, 232747.	4.0	7
2516	Regeneration and Degradation in a Biomimetic Polyoxometalate Water Oxidation Catalyst. ACS Catalysis, 2023, 13, 3007-3019.	5.5	4
2517	Battery Technologies. Power Systems, 2023, , 43-68.	0.3	1
2518	Phase pure synthesis of iron-nickel nitride nanoparticles: A low cost electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 18280-18290.	3.8	9

#	Article	IF	CITATIONS
2519	Electrocatalytic Hydrogen Evolution of the Cobalt Triaryl Corroles Bearing Hydroxyl Groups. European Journal of Inorganic Chemistry, 2023, 26, .	1.0	4
2520	Floating Seawater Splitting Device Based on NiFeCrMo Metal Hydroxide Electrocatalyst and Perovskite/Silicon Tandem Solar Cells. ACS Nano, 2023, 17, 4539-4550.	7.3	9
2521	Electrodeposited cobalt-based electrocatalysts for efficient oxygen evolution reaction and supercapacitors. Results in Chemistry, 2023, 5, 100879.	0.9	1
2522	Fullerene nanowhisker nanocomposite—current stance and high-tech opportunities. Polymer-Plastics Technology and Materials, 2022, 61, 1908-1923.	0.6	3
2523	Nickel Oxide Thin Films for Oxygen Evolution Reaction. International Journal of Advanced Research in Science, Communication and Technology, 0, , 543-547.	0.0	0
2524	Poly(methyl methacrylate)/Fullerene nanocomposite—Factors and applications. Polymer-Plastics Technology and Materials, 2022, 61, 593-608.	0.6	5
2525	Improving Electrocatalytic Activity of MoO ₃ for the Oxygen Evolution Reaction by Incorporation of Li Ions. , 2023, 5, 1196-1201.		8
2526	Photoelectrochemical water oxidation by a MOF/semiconductor composite. Chemical Science, 0, , .	3.7	2
2527	A Bibliometric Study on Research Trends in Hydrogen Production from Solar Sources Based on Scopus. RGSA: Revista De Gestão Social E Ambiental, 2022, 16, e03091.	0.5	5
2528	Controllable Synthesis of N2-Intercalated WO3 Nanorod Photoanode Harvesting a Wide Range of Visible Light for Photoelectrochemical Water Oxidation. Molecules, 2023, 28, 2987.	1.7	0
2529	Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution. Nature Communications, 2023, 14, .	5.8	28
2530	Trendbericht: Photochemie. Nachrichten Aus Der Chemie, 2023, 71, 56-63.	0.0	0
2531	NMP makes the Difference – Facilitated Synthesis of [FeFe] Hydrogenase Mimics. Dalton Transactions, 0, , .	1.6	0
2532	Electrolyte-Induced Restructuring of Acid-Stable Oxygen Evolution Catalysts. Chemistry of Materials, 2023, 35, 3218-3225.	3.2	1
2533	Highly Stable and Efficient Oxygen Evolution Electrocatalyst Based on Co Oxides Decorated with Ultrafine Ru Nanoclusters. Small, 2023, 19, .	5.2	7
2534	Relationships between Compositional Heterogeneity and Electronic Spectra of (Ga _{1–<i>x</i>} Zn _{<i>x</i>})(N _{1–<i>x</i>} O _{<i>x</i>}) Nanocrystals Revealed by Valence Electron Energy Loss Spectroscopy. Journal of Physical Chemistry C, O	1.5	0
2535	Advances in the Field of Two-Dimensional Crystal-Based Photodetectors. Nanomaterials, 2023, 13, 1379.	1.9	6
2536	Nickel sulfide-based electrocatalysts for overall water splitting. International Journal of Hydrogen Energy, 2023, 48, 27992-28017.	3.8	8

#	Article	IF	CITATIONS
2537	Will Cuprous Oxide Really Make It in Water-Splitting Applications?. ACS Energy Letters, 2023, 8, 2338-2344.	8.8	7
2538	Multicomponent Metal Oxide- and Metal Hydroxide-Based Electrocatalysts for Alkaline Water Splitting. Materials, 2023, 16, 3280.	1.3	9
2539	Effective modulating of the Mo dissolution and polymerization in Ni4Mo/NiMoO4 heterostructure via metal-metal oxide-support interaction for boosting H2 production. Chemical Engineering Journal, 2023, 466, 143097.	6.6	8
2540	Recent advances in g-C3N4/Metal organic frameworks heterojunctions for high-performance photocatalytic environmental remediation and energy production. Journal of Molecular Liquids, 2023, 382, 121890.	2.3	10
2554	Multi-functional photocatalytic systems for solar fuel production. Journal of Materials Chemistry A, 2023, 11, 14614-14629.	5.2	1
2567	Highly selective reduction of CO ₂ to HCOOH by a ZnO/SnO ₂ electrocatalyst with heterogeneous interfaces. New Journal of Chemistry, 2023, 47, 12075-12079.	1.4	0
2569	A review on consequences of flexible layered double hydroxide-based electrodes: fabrication and water splitting application. Sustainable Energy and Fuels, 2023, 7, 3741-3775.	2.5	4
2574	Phase engineering of iron group transition metal selenides for water splitting. Materials Chemistry Frontiers, 2023, 7, 4865-4879.	3.2	7
2578	Semiconductor nanomaterials in mimicking photosynthesis. , 2023, , 353-376.		0
2583	Near-infrared light-inducible Z-scheme overall water-splitting photocatalyst without an electron mediator. Chemical Communications, 0, , .	2.2	0
2584	Making the connections: Physical and electric interactions in biohybrid photosynthetic systems. Energy and Environmental Science, 0, , .	15.6	0
2593	Current progress in metal–organic frameworks and their derivatives for electrocatalytic water splitting. Inorganic Chemistry Frontiers, 2023, 10, 6489-6505.	3.0	2
2594	Advancements in catalysts for glycerol oxidation <i>via</i> photo-/electrocatalysis: a comprehensive review of recent developments. Green Chemistry, 0, , .	4.6	0
2595	Research progress on MOFs and their derivatives as promising and efficient electrode materials for electrocatalytic hydrogen production from water. RSC Advances, 2023, 13, 24393-24411.	1.7	2
2621	Developments on energy-efficient buildings using phase change materials: a sustainable building solution. Clean Technologies and Environmental Policy, 2024, 26, 263-289.	2.1	0
2634	Recent advances of bifunctional electrocatalysts and electrolyzers for overall seawater splitting. Journal of Materials Chemistry A, 2024, 12, 634-656.	5.2	4
2643	Tin as a co-catalyst for electrocatalytic oxidation and reduction reactions. Inorganic Chemistry Frontiers, 2024, 11, 1019-1047.	3.0	0
2646	Recent advances in trifunctional electrocatalysts for Zn–air battery and water splitting. Materials Chemistry Frontiers, 0, , .	3.2	0

#	Article	IF	CITATIONS
2648	Highly efficient sustainable strategies toward carbon-neutral energy production. Energy and Environmental Science, 2024, 17, 1007-1045.	15.6	1
2661	Metal oxides for dye-sensitized solar cells. , 2024, , 543-576.		0
2667	Electrochemical synthesis of ammonia. , 2024, , 63-88.		0
2671	Fundamentals of Reaction, Kinetics and Mechanism of Methanol Production. , 2024, , .		0