Role of chloroplasts and other plastids in ageing and des of Vishnu and Shiva

Ageing Research Reviews 9, 117-130

DOI: 10.1016/j.arr.2009.08.003

Citation Report

#	Article	IF	CITATIONS
1	Intracellular invasion of green algae in a salamander host. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6497-6502.	3.3	105
2	A raison d'être for two distinct pathways in the early steps of plant isoprenoid biosynthesis?. Progress in Lipid Research, 2012, 51, 95-148.	5.3	310
3	The pathway of cell dismantling during programmed cell death in lace plant (Aponogeton) Tj ETQq0 0 0 rgBT /Ov	verlock 10 1.6	Tf 50 662 Td
4	Tocopherol biosynthesis: chemistry, regulation and effects of environmental factors. Acta Physiologiae Plantarum, 2012, 34, 1607-1628.	1.0	134
5	Ageing of trees: Application of general ageing theories. Ageing Research Reviews, 2013, 12, 855-866.	5.0	35
6	Chloroplast Control of Leaf Senescence. Advances in Photosynthesis and Respiration, 2013, , 529-550.	1.0	6
7	Phytohormones and microRNAs as sensors and regulators of leaf senescence: Assigning macro roles to small molecules. Biotechnology Advances, 2013, 31, 1153-1171.	6.0	84
8	Gibberellins (GA3) and benzylaminopurine (BAP) affect differently the postharvest life of Calathea zebrina and Hosta sieboldiana. International Journal of Postharvest Technology and Innovation, 2013, 3, 41.	0.1	0
9	Plastidâ€associated polyamines: their role in differentiation, structure, functioning, stress response and senescence. Plant Biology, 2014, 16, 297-305.	1.8	38
10	Mitochondrial dysfunction mediated by cytoplasmic acidification results in pollen tube growth cessation in <i>Pyrus pyrifolia</i> . Physiologia Plantarum, 2015, 153, 603-615.	2.6	18
11	Dark-induced senescence of barley leaves involves activation of plastid transglutaminases. Amino Acids, 2015, 47, 825-838.	1.2	24
12	From Accumulation to Degradation: Reprogramming Polyamine Metabolism Facilitates Dark-Induced Senescence in Barley Leaf Cells. Frontiers in Plant Science, 2015, 6, 1198.	1.7	30
13	Do cytokinins, volatile isoprenoids and carotenoids synergically delay leaf senescence?. Plant, Cell and Environment, 2016, 39, 1103-1111.	2.8	36
14	The antioxidative defense system is involved in the premature senescence in transgenic tobacco (Nicotiana tabacum NC89). Biological Research, 2016, 49, 30.	1.5	18
15	Defining Planktonic Protist Functional Groups on Mechanisms for Energy and Nutrient Acquisition: Incorporation of Diverse Mixotrophic Strategies. Protist, 2016, 167, 106-120.	0.6	290
16	Physio-Genetic Dissection of Dark-Induced Leaf Senescence and Timing Its Reversal in Barley. Plant Physiology, 2018, 178, 654-671.	2.3	40
17	Dark-Induced Barley Leaf Senescence – A Crop System for Studying Senescence and Autophagy Mechanisms. Frontiers in Plant Science, 2021, 12, 635619.	1.7	15
18	Tree age did not affect the leaf anatomical structure or ultrastructure of Platycladus orientalis L. (Cupressaceae). Peerl, 2019, 7, e7938.	0.9	4

#	Article	IF	CITATIONS
19	Chloroplast Development: Time, Dissipative Structures and Fluctuations. Advances in Photosynthesis and Respiration, 2013 , , $17-35$.	1.0	0
20	The Dynamic Role of Chloroplasts in Integrating Plant Growth and Development. Advances in Photosynthesis and Respiration, 2013, , 3-16.	1.0	0
21	Overexpression of Tomato ACL5 Gene in Tobacco Leads to Increased Plant Growth and Delayed the Onset of Leaf Senescence. Journal of Plant Growth Regulation, 2023, 42, 4764-4783.	2.8	1