Comparison of the disinfection by-product formation p to chlorine and monochloramine

Water Research 44, 729-740 DOI: 10.1016/j.watres.2009.10.008

Citation Report

#	Article	IF	CITATIONS
2	The Influence of Temperature on Norovirus Inactivation by Monochloramine in Potable Waters: Testing with Murine Norovirus as a Surrogate for Human Norovirus. Food and Environmental Virology, 2010, 2, 97-100.	1.5	6
3	Photocatalytic oxidation of natural organic matter surrogates and the impact on trihalomethane formation potential. Chemosphere, 2010, 81, 1509-1516.	4.2	39
4	Multi-method characterization of DOM from the Turia river (Spain). Applied Geochemistry, 2010, 25, 1632-1643.	1.4	12
5	I-THM Formation and Speciation: Preformed Monochloramine versus Prechlorination Followed by Ammonia Addition. Environmental Science & amp; Technology, 2011, 45, 10429-10437.	4.6	69
6	Investigation of factors affecting the accumulation of vinyl chloride in polyvinyl chloride piping used in drinking water distribution systems. Water Research, 2011, 45, 2607-2615.	5.3	38
7	Spatio-temporal variation in trihalomethanes in New South Wales. Water Research, 2011, 45, 5715-5726.	5.3	26
8	Disinfection and Antimicrobial Processes. Water Environment Research, 2011, 83, 1333-1350.	1.3	2
9	Micro liquid–liquid extraction combined with large-volume injection gas chromatography–mass spectrometry for the determination of haloacetaldehydes in treated water. Journal of Chromatography A, 2011, 1218, 8295-8302.	1.8	30
10	Determination of halonitromethanes in treated water. Journal of Chromatography A, 2011, 1218, 2497-2504.	1.8	29
11	Understanding data requirements for trihalomethane formation modelling in water supply systems. Urban Water Journal, 2011, 8, 41-56.	1.0	12
12	Control of disinfection by-product formation using ozone-based advanced oxidation processes. Environmental Technology (United Kingdom), 2012, 33, 487-495.	1.2	26
13	Chemical Disinfection. , 2012, , 21-70.		0
14	Hybrid Techniques. , 2012, , 107-126.		0
15	Use of three-dimensional excitation and emission matrix fluorescence spectroscopy for predicting the disinfection by-product formation potential of reclaimed water. Water Research, 2012, 46, 5765-5776.	5.3	69
16	Dichloroacetonitrile and Dichloroacetamide Can Form Independently during Chlorination and Chloramination of Drinking Waters, Model Organic Matters, and Wastewater Effluents. Environmental Science & Technology, 2012, 46, 10624-10631.	4.6	150
17	Kinetic model for the radical degradation of tri-halonitromethane disinfection byproducts in water. Radiation Physics and Chemistry, 2012, 81, 1646-1652.	1.4	6
18	Impact of advanced water conservation features and new copper pipe on rapid chloramine decay and microbial regrowth. Water Research, 2012, 46, 611-621.	5.3	97
19	Exposure levels to brominated compounds in seawater swimming pools treated with chlorine. Water Research, 2012, 46, 828-836.	5.3	70

#	Article	IF	CITATIONS
20	Metagenomic Analyses of Drinking Water Receiving Different Disinfection Treatments. Applied and Environmental Microbiology, 2012, 78, 6095-6102.	1.4	193
21	Optimization of chlorine-based disinfection for the control of disinfection by-products formation and CODMn: A case study. Chemical Engineering Journal, 2012, 197, 116-122.	6.6	9
22	Solvent-minimized extraction for determining halonitromethanes and trihalomethanes in water. Journal of Chromatography A, 2012, 1248, 1-8.	1.8	22
23	Disinfection by-product formation potentials in wastewater effluents and their reductions in a wastewater treatment plant. Journal of Environmental Monitoring, 2012, 14, 1515.	2.1	37
24	Synthesis of polyaspartic acid–melamine grafted copolymer and evaluation of its scale inhibition performance and dispersion capacity for ferric oxide. Desalination, 2012, 286, 285-289.	4.0	64
25	Removal of natural organic matter for controlling disinfection by-products formation by enhanced coagulation: A case study. Separation and Purification Technology, 2012, 84, 41-45.	3.9	41
26	Analysis of inorganic chloramines in water. TrAC - Trends in Analytical Chemistry, 2012, 33, 55-67.	5.8	39
27	Headspace gas chromatography–mass spectrometry for rapid determination of halonitromethanes in tap and swimming pool water. Analytical and Bioanalytical Chemistry, 2012, 402, 2315-2323.	1.9	18
28	Bioanalytical and chemical assessment of the disinfection by-product formation potential: Role of organic matter. Water Research, 2013, 47, 5409-5421.	5.3	82
29	Occurrence, profiling and prioritization of halogenated disinfection by-products in drinking water of China. Environmental Sciences: Processes and Impacts, 2013, 15, 1424.	1.7	51
30	Trichloromethane Formation Potential in Killing Algae with Chlorine Dioxide. Procedia Environmental Sciences, 2013, 18, 597-601.	1.3	4
31	Disinfection by-products formation and precursors transformation during chlorination and chloramination of highly-polluted source water: Significance of ammonia. Water Research, 2013, 47, 5901-5910.	5.3	72
32	Comparison of conventional technologies and a Submerged Membrane Photocatalytic Reactor (SMPR) for removing trihalomethanes (THM) precursors in drinking water treatment plants. Desalination, 2013, 330, 28-34.	4.0	19
33	Influence of excess KMnO4 on the adsorption of powdered activated carbon. Chemical Engineering Journal, 2013, 226, 279-285.	6.6	10
34	Degradation kinetics and chloropicrin formation during aqueous chlorination of dinoseb. Chemosphere, 2013, 93, 2662-2668.	4.2	20
35	Factors affecting THMs, HAAs and HNMs formation of Jin Lan Reservoir water exposed to chlorine and monochloramine. Science of the Total Environment, 2013, 444, 196-204.	3.9	131
36	Chlorination and bromination kinetics of emerging contaminants in aqueous systems. Chemical Engineering Journal, 2013, 219, 43-50.	6.6	57
37	Synthesis of polyaspartic acid/5-aminoorotic acid graft copolymer and evaluation of its scale inhibition and corrosion inhibition performance. Desalination, 2013, 311, 156-161.	4.0	61

#	Article	IF	CITATIONS
38	Formation of halogenated disinfection by-products during microfiltration and reverse osmosis treatment: Implications for water recycling. Separation and Purification Technology, 2013, 104, 221-228.	3.9	46
39	The effects of matrices and ozone dose on changes in the characteristics of natural organic matter. Chemical Engineering Journal, 2013, 222, 435-443.	6.6	41
40	Formation of haloacetonitriles and haloacetamides during chlorination of pure culture bacteria. Chemosphere, 2013, 92, 375-381.	4.2	35
41	Properties of sediment NOM collected from a drinking water reservoir in South China, and its association with THMs and HAAs formation. Journal of Hydrology, 2013, 476, 274-279.	2.3	52
42	Chlorination and chloramination of high-bromide natural water: DBPs species transformation. Separation and Purification Technology, 2013, 102, 86-93.	3.9	49
43	Formation of disinfection by-products from the monochloramination of chironomid larvae metabolite solution. Desalination and Water Treatment, 2013, 51, 5848-5854.	1.0	5
44	Formation of disinfection by-products after pre-oxidation with chlorine dioxide or ferrate. Water Research, 2013, 47, 5856-5864.	5.3	90
45	Factors affecting formation of disinfection by-products during chlorination of Cyclops. Journal of Water Supply: Research and Technology - AQUA, 2013, 62, 169-175.	0.6	8
46	Membrane Biological Reactors: Theory, Modeling, Design, Management and Applications to Wastewater Reuse. Water Intelligence Online, 0, 12, .	0.3	15
47	Climate change influence on drinking water quality. , 2013, , .		4
48	Occurrence of regulated and non-regulated disinfection by-products in small drinking water systems. Chemosphere, 2014, 117, 425-432.	4.2	55
49	A comparison of carbonaceous, nitrogenous and iodinated disinfection by-products formation potential in different dissolved organic fractions and their reduction in drinking water treatment processes. Separation and Purification Technology, 2014, 133, 82-90.	3.9	34
50	Fast and "green―method for the analytical monitoring of haloketones in treated water. Journal of Chromatography A, 2014, 1358, 232-239.	1.8	10
51	Degradation of phenylurea herbicides by chlorine dioxide and formation of disinfection by-products during subsequent chlor(am)ination. Chemical Engineering Journal, 2014, 258, 210-217.	6.6	48
52	The formation potential of haloacetonitriles in the Dez River water, Iran. Environmental Technology (United Kingdom), 2014, 35, 2347-2355.	1.2	10
53	Influencing factors of disinfection byproducts formation during chloramination of Cyclops metabolite solutions. Journal of Environmental Sciences, 2014, 26, 575-580.	3.2	5
54	Characterization of the Molecular Weight and Reactivity of Natural Organic Matter in Surface Waters, ACS Symposium Series, 2014 209-233	0.5	5

#	Article	IF	CITATIONS
56	Disinfection by-product formation from the monochloramination of chironomid larvae. Water Science and Technology: Water Supply, 2015, 15, 142-149.	1.0	3
57	Analysis, Occurrence, and Toxicity of Haloacetaldehydes in Drinking Waters: Iodoacetaldehyde as an Emerging Disinfection By-Product. ACS Symposium Series, 2015, , 25-43.	0.5	6
58	Chlorination of bensulfuron-methyl: Kinetics, reaction factors and disinfection by-product formation. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53, 46-51.	2.7	13
59	Recent Developments in Environmental Photocatalytic Degradation of Organic Pollutants: The Case of Titanium Dioxide Nanoparticles—A Review. Journal of Nanomaterials, 2015, 2015, 1-29.	1.5	174
60	Characterization, DBPs formation, and mutagenicity of soluble microbial products (SMPs) in wastewater under simulated stressful conditions. Chemical Engineering Journal, 2015, 279, 258-263.	6.6	33
61	Disinfection methods and by-products formation. Desalination and Water Treatment, 2015, 56, 1150-1161.	1.0	17
62	Identification of disinfection by-product precursors from the discharge of a coking wastewater treatment plant. RSC Advances, 2015, 5, 43786-43797.	1.7	17
63	Determination of 14 haloketones in treated water using solid–phase microextraction and gas chromatography–mass spectrometry. Journal of Chromatography A, 2015, 1407, 208-215.	1.8	13
64	Impact of pre-ozonation on disinfection by-product formation and speciation from chlor(am)ination of algal organic matter of Microcystis aeruginosa. Ecotoxicology and Environmental Safety, 2015, 120, 256-262.	2.9	53
65	Improved (and Singular) Disinfectant Protocol for Indirectly Assessing Organic Precursor Concentrations of Trihalomethanes and Dihaloacetonitriles. Environmental Science & Technology, 2015, 49, 9858-9865.	4.6	7
66	Effect of water quality and operational parameters on trihalomethanes formation potential in Dez River water, Iran. Water Resources and Industry, 2015, 11, 1-12.	1.9	35
67	Chlorine/UV induced photochemical degradation of total ammonia nitrogen (TAN) and process optimization. RSC Advances, 2015, 5, 63793-63799.	1.7	4
68	Study on the release of HPC and particles in ozonation and biological activated carbon processes. Chemical Engineering Journal, 2015, 276, 37-43.	6.6	11
69	Short-term spatial and temporal variability of disinfection by-product occurrence in small drinking water systems. Science of the Total Environment, 2015, 518-519, 280-289.	3.9	26
70	Carbon-based nanomaterials for removal of chemical and biological contaminants from water: A review of mechanisms and applications. Carbon, 2015, 91, 122-143.	5.4	486
71	UV/chlorine process for ammonia removal and disinfection by-product reduction: Comparison with chlorination. Water Research, 2015, 68, 804-811.	5.3	139
72	Ultraviolet membrane bioreactor for enhancing the removal of organic matter in micro-polluted water. Desalination and Water Treatment, 2015, 56, 2335-2343.	1.0	0
73	Preparation of a lowâ€phosphorous terpolymer as a scale, corrosion inhibitor, and dispersant for ferric oxide. Journal of Applied Polymer Science, 2015, 132, .	1.3	15

#	Article	IF	CITATIONS
74	Assessing trihalomethanes (THMs) and N-nitrosodimethylamine (NDMA) formation potentials in drinking water treatment plants using fluorescence spectroscopy and parallel factor analysis. Chemosphere, 2015, 121, 84-91.	4.2	100
75	Transformation of sulfonylurea herbicides in simulated drinking water treatment processes. Environmental Science and Pollution Research, 2015, 22, 3847-3855.	2.7	4
76	Effect of Metal lons on the Formation of Trichloronitromethane during Chlorination of Catechol and Nitrite. Journal of Environmental Quality, 2016, 45, 1933-1940.	1.0	4
77	Graphene Functionalization by 1,6-Diaminohexane and Silver Nanoparticles for Water Disinfection. Journal of Nanomaterials, 2016, 2016, 1-7.	1.5	16
78	Draft Genome Sequences of Six Mycobacterium immunogenum Strains Obtained from a Chloraminated Drinking Water Distribution System Simulator. Genome Announcements, 2016, 4, .	0.8	5
79	Effects of bromide on inactivation efficacy and disinfection byproduct formation in photocatalytic inactivation. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 324, 145-151.	2.0	5
80	Natural Organic Matter Exposed to Sulfate Radicals Increases Its Potential to Form Halogenated Disinfection Byproducts. Environmental Science & Technology, 2016, 50, 5060-5067.	4.6	67
81	Enhanced formation of bromate and brominated disinfection byproducts during chlorination of bromide-containing waters under catalysis of copper corrosion products. Water Research, 2016, 98, 302-308.	5.3	34
82	Modeling Source Water TOC Using Hydroclimate Variables and Local Polynomial Regression. Environmental Science & Technology, 2016, 50, 4413-4421.	4.6	12
83	Factors affecting THM, HAN and HNM formation during UV-chlor(am)ination of drinking water. Chemical Engineering Journal, 2016, 306, 1180-1188.	6.6	36
84	Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems. Environmental Monitoring and Assessment, 2016, 188, 518.	1.3	38
85	Effect of Microcystis aeruginosa on Disinfection By-Product Formation During Chlorination of Chironomid larvae Metabolites. Environmental Engineering Science, 2016, 33, 681-687.	0.8	2
86	Effect of Phosphate Loading on the Generation of Extracellular Organic Matters of Microcystis Aeruginosa and Its Derived Disinfection By-Products. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	10
87	Climatic, Geographic and Operational Determinants of Trihalomethanes (THMs) in Drinking Water Systems. Scientific Reports, 2016, 6, 35027.	1.6	34
88	Characterization of haloacetaldehyde and trihalomethane formation potentials during drinking water treatment. Chemosphere, 2016, 159, 378-384.	4.2	35
89	Synthesis of itaconic acid—sodium allysulfonate—sodium hypophosphite copolymer and evaluation of its scale and corrosion inhibition performance. Desalination and Water Treatment, 2016, 57, 5740-5752.	1.0	6
90	Comparison of chlorination and chloramination in carbonaceous and nitrogenous disinfection byproduct formation potentials with prolonged contact time. Water Research, 2016, 88, 661-670.	5.3	49
91	C-, N-DBP formation and quantification by differential spectra in MBR treated municipal wastewater	6.6	16

#	Article	IF	CITATIONS
92	Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell. Water Research, 2016, 92, 164-172.	5.3	172
93	Occurrence and variability of iodinated trihalomethanes concentrations within two drinking-water distribution networks. Science of the Total Environment, 2016, 543, 505-513.	3.9	42
94	Cold on-column injection coupled with gas chromatography/mass spectrometry for determining halonitromethanes in drinking water. Analytical Methods, 2016, 8, 362-370.	1.3	15
95	Identification of disinfection by-products in freshwater and seawater swimming pools and evaluation of genotoxicity. Environment International, 2016, 88, 94-102.	4.8	80
96	Effects of operating conditions on trihalomethanes formation and speciation during chloramination in reclaimed water. Environmental Science and Pollution Research, 2016, 23, 1576-1583.	2.7	10
97	New Insights into Trihalomethane and Haloacetic Acid Formation Potentials: Correlation with the Molecular Composition of Natural Organic Matter in Source Water. Environmental Science & Technology, 2017, 51, 2015-2021.	4.6	66
98	Reaction of tetracycline with biologically relevant chloramines. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 178, 171-180.	2.0	12
99	THM and HAA formation from NOM in raw and treated surface waters. Water Research, 2017, 112, 226-235.	5.3	120
100	The formation of haloacetamides, as an emerging class of N-DBPs, from chlor(am)ination of algal organic matter extracted from Microcystis aeruginosa, Scenedesmus quadricauda and Nitzschia palea. RSC Advances, 2017, 7, 7679-7687.	1.7	10
101	Effect of Nitrite on the Formation of Trichloronitromethane (TCNM) During Chlorination of Polyhydroxy-Phenols and Sugars. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	5
102	Effect of medium-pressure UV-lamp treatment on disinfection by-products in chlorinated seawater swimming pool waters. Science of the Total Environment, 2017, 599-600, 910-917.	3.9	21
103	Chlor(am)ination of iopamidol: Kinetics, pathways and disinfection by-products formation. Chemosphere, 2017, 184, 489-497.	4.2	40
104	Toxic Byproduct Formation during Electrochemical Treatment of Latrine Wastewater. Environmental Science & Technology, 2017, 51, 7111-7119.	4.6	157
105	Bromine incorporation into five DBP classes upon chlorination of water with extremely low SUVA values. Science of the Total Environment, 2017, 590-591, 720-728.	3.9	39
106	Controlling disinfection by-products and organic fouling by integrated ferrihydrite–microfiltration process for surface water treatment. Separation and Purification Technology, 2017, 176, 184-192.	3.9	17
107	Effect of water chemistry on disinfection by-product formation in the complex surface water system. Chemosphere, 2017, 172, 384-391.	4.2	26
108	Models for estimation of the presence of non-regulated disinfection by-products in small drinking water systems. Environmental Monitoring and Assessment, 2017, 189, 577.	1.3	8
109	A two-stage predictive model to simultaneous control of trihalomethanes in water treatment plants and distribution systems: adaptability to treatment processes. Environmental Science and Pollution Research, 2017, 24, 22631-22648.	2.7	12

#	Article	IF	CITATIONS
110	Chlorination or monochloramination: Balancing the regulated trihalomethane formation and microbial inactivation in marine aquaculture waters. Aquaculture, 2017, 480, 94-102.	1.7	25
111	Mutagenicity and estrogenicity of raw water and drinking water in an industrialized city in the Yangtze River Delta. Chemosphere, 2017, 185, 647-655.	4.2	14
112	Parameters for Seawater Reverse Osmosis Product Water: A Review. Exposure and Health, 2017, 9, 157-168.	2.8	7
113	Formation and speciation of haloacetamides and haloacetonitriles for chlorination, chloramination, and chlorination followed by chloramination. Chemosphere, 2017, 166, 126-134.	4.2	29
114	Study of the Chlorination of Avobenzone in Sea Water by Gas Chromatography–High Resolution Mass Spectrometry. Journal of Analytical Chemistry, 2017, 72, 1369-1374.	0.4	8
115	The effectiveness of removing precursors of chlorinated organic substances in pilot water treatment plant. E3S Web of Conferences, 2017, 22, 00188.	0.2	0
116	Application of monochloramine for wastewater reuse: Effect on biostability during transport and biofouling in RO membranes. Journal of Membrane Science, 2018, 551, 243-253.	4.1	26
117	Arsenic/Iron Removal From Groundwater With Elevated Ammonia and Natural Organic Matter. Journal - American Water Works Association, 2018, 110, E2-E17.	0.2	5
118	A rapid technique to determine performance and efficiency of activated carbon water filters. Water Science and Technology: Water Supply, 2018, 18, 371-382.	1.0	7
119	Optimized CWPO phenol oxidation in CSTR reactor catalyzed by Al/Fe-PILC from concentrated precursors at circumneutral pH. Journal of Environmental Chemical Engineering, 2018, 6, 2429-2441.	3.3	31
120	Characterization of brominated disinfection byproducts formed during chloramination of fulvic acid in the presence of bromide. Science of the Total Environment, 2018, 627, 118-124.	3.9	39
121	Determination of adsorbable organic halogens in surface water samples by combustion–microcoulometry versus combustion–ion chromatography titration. Journal of Chromatography A, 2018, 1539, 41-52.	1.8	17
122	Impact of zinc on biologically mediated monochloramine decay in waters from a field based pilot scale drinking water distribution system. Chemical Engineering Journal, 2018, 339, 240-248.	6.6	10
123	Formation of DBPs and halogen-specific TOX in the presence of iopamidol and chlorinated oxidants. Chemosphere, 2018, 202, 349-357.	4.2	19
124	Comparison of the effects of chloramine and chlorine on the aromaticity of dissolved organic matter and yields of disinfection by-products. Chemosphere, 2018, 191, 477-484.	4.2	47
125	Dynamic changes in free-chlorine levels within a commercial post-harvest wash and prevention of cross-contamination between shredded lettuce batches. Food Control, 2018, 85, 127-134.	2.8	15
126	The Henry's constant of monochloramine. Chemosphere, 2018, 192, 244-249.	4.2	5
127	Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications. Applied Catalysis B: Environmental, 2018, 236, 546-568.	10.8	647

#	Article	IF	CITATIONS
128	Regression models evaluating THMs, HAAs and HANs formation upon chloramination of source water collected from Yangtze River Delta Region, China. Ecotoxicology and Environmental Safety, 2018, 160, 249-256.	2.9	35
129	Chlorination and chloramination of benzophenone-3 and benzophenone-4 UV filters. Ecotoxicology and Environmental Safety, 2018, 163, 528-535.	2.9	17
130	Framework for cost-effective prediction of unregulated disinfection by-products in drinking water distribution using differential free chlorine. Environmental Science: Water Research and Technology, 2018, 4, 1564-1576.	1.2	7
131	Impacts of shale gas production wastewater on disinfection byproduct formation: An investigation from a non-bromide perspective. Water Research, 2018, 144, 656-664.	5.3	16
132	Unregulated disinfection By-products in drinking water in Quebec: A meta analysis. Journal of Environmental Management, 2018, 223, 984-1000.	3.8	23
133	A comparison study of sand filtration and ultrafiltration in drinking water treatment: Removal of organic foulants and disinfection by-product formation. Science of the Total Environment, 2019, 691, 322-331.	3.9	48
134	Assessment of the chlorine demand and disinfection byproduct formation potential of surface waters via satellite remote sensing. Water Research, 2019, 165, 115001.	5.3	15
135	Factors influencing DBPs occurrence in tap water of Jinhua Region in Zhejiang Province, China. Ecotoxicology and Environmental Safety, 2019, 171, 813-822.	2.9	53
136	The Case for LED-UVC as a Primary Disinfectant for Small Sustainable Drinking Water Systems. MATEC Web of Conferences, 2019, 280, 05014.	0.1	1
137	Occurrence of disinfection by-products in sewage treatment plants and the marine environment in Hong Kong. Ecotoxicology and Environmental Safety, 2019, 181, 404-411.	2.9	35
138	Effect of fullerol nanoparticles on the transport and release of copper ions in saturated porous media. Environmental Science and Pollution Research, 2019, 26, 15255-15261.	2.7	1
139	Emerging disinfection by-products' formation potential in raw water, wastewater, and treated wastewater in Thailand. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 745-758.	0.9	13
140	Electrogeneration of inorganic chloramines on boron-doped diamond anodes during electrochemical oxidation of ammonium chloride, urea and synthetic urine matrix. Water Research, 2019, 160, 107-117.	5.3	68
141	Degradation of iodinated disinfection byproducts by VUV/UV process based on a mini-fluidic VUV/UV photoreaction system. Water Research, 2019, 158, 417-423.	5.3	36
142	Iodo-trihalomethanes formation during chlorination and chloramination of iodide-containing waters in the presence of Cu2+. Science of the Total Environment, 2019, 671, 101-107.	3.9	12
143	Effects of Sunlight on the Trichloronitromethane Formation Potential of Wastewater Effluents: Dependence on Nitrite Concentration. Environmental Science & Technology, 2019, 53, 4285-4294.	4.6	24
144	Halogenated acetaldehydes in water: A review of their occurrence, formation, precursors and control strategies. Critical Reviews in Environmental Science and Technology, 2019, 49, 1331-1385.	6.6	9
145	New Technologies to Remove Halides from Water: An Overview. Nanotechnology in the Life Sciences, 2019, , 147-180.	0.4	5

#	Article	IF	CITATIONS
146	Global Transcriptional Analysis of Nontransformed Human Intestinal Epithelial Cells (FHs 74 Int) after Exposure to Selected Drinking Water Disinfection By-Products. Environmental Health Perspectives, 2019, 127, 117006.	2.8	21
147	Formation characteristics of carbonaceous and nitrogenous disinfection by-products depending on residual organic compounds by CGS and DAF. Environmental Science and Pollution Research, 2019, 26, 34008-34017.	2.7	14
148	Corrosion inhibition performance of threonineâ€modified polyaspartic acid for carbon steel in simulated cooling water. Journal of Applied Polymer Science, 2019, 136, 47242.	1.3	15
149	An overview of the uses of high performance size exclusion chromatography (HPSEC) in the characterization of natural organic matter (NOM) in potable water, and ion-exchange applications. Chemosphere, 2019, 217, 122-139.	4.2	44
150	Removal of disinfection byproduct precursors and reduction in additive toxicity of chlorinated and chloraminated waters by ozonation and up-flow biological activated carbon process. Chemosphere, 2019, 216, 624-632.	4.2	14
151	Impact of chlorine exposure time on disinfection byproduct formation in the presence of iopamidol and natural organic matter during chloramination. Journal of Environmental Sciences, 2019, 78, 204-214.	3.2	9
152	Formation potential of emerging disinfection by-products during ozonation and chlorination of sewage effluents. Science of the Total Environment, 2020, 700, 134449.	3.9	31
153	Identification of important precursors and theoretical toxicity evaluation of byproducts driving cytotoxicity and genotoxicity in chlorination. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	13
154	Assessing pharmaceutical removal and reduction in toxicity provided by advanced wastewater treatment systems. Environmental Science: Water Research and Technology, 2020, 6, 62-77.	1.2	81
155	Strengths of correlations with formation of chlorination disinfection byproducts: effects of predictor type and other factors. Environmental Science and Pollution Research, 2020, 27, 5337-5352.	2.7	9
156	The haloacetic acid leap in effluent of a biologically active carbon filter experiencing a disinfectant switch. Chemosphere, 2020, 244, 125435.	4.2	6
157	Characterization of dissolved organic matter derived from atmospheric dry deposition and its DBP formation. Water Research, 2020, 171, 115368.	5.3	31
158	Disinfection by-products in drinking water: Occurrence, toxicity and abatement. Environmental Pollution, 2020, 267, 115474.	3.7	149
159	Investigating unregulated disinfection byproduct reduction efficiencies in drinking waters using zirconium oxychloride, a novel coagulant. Journal of Water Process Engineering, 2020, 37, 101496.	2.6	2
160	Estimation of haloacetonitriles formation in water: Uniform formation conditions versus formation potential tests. Science of the Total Environment, 2020, 744, 140987.	3.9	11
161	Removal of CX3R-type disinfection by-product precursors from rainwater with conventional drinking water treatment processes. Water Research, 2020, 185, 116099.	5.3	25
162	Editorial Perspectives: Scottish Water case study. Environmental Science: Water Research and Technology, 2020, 6, 2257-2258.	1.2	0
163	Factors affecting the formation of disinfection by-products in drinking water: human health risk. , 2020, , 433-450.		11

#	Article	IF	CITATIONS
164	An investigation of haloacetic acid occurrence in indoor and outdoor swimming pools in Beijing China. IOP Conference Series: Earth and Environmental Science, 2020, 467, 012136.	0.2	2
165	Assessing the efficacy of dissolved air and flash-pressurized flotations using low energy for the removal of organic precursors and disinfection byproducts: a pilot-scale study. Environmental Science and Pollution Research, 2021, 28, 40598-40607.	2.7	4
166	Bibliometric review of research trends on disinfection by-products in drinking water during 1975–2018. Separation and Purification Technology, 2020, 241, 116741.	3.9	43
167	Influence of granular activated carbon media properties on natural organic matter and disinfection by-product precursor removal from drinking water. Water Research, 2020, 174, 115613.	5.3	55
168	Selective removal of natural organic matter during drinking water production changes the composition of disinfection by-products. Environmental Science: Water Research and Technology, 2020, 6, 779-794.	1.2	31
169	Trace Analysis of 61 Emerging Br-, Cl-, and I-DBPs: New Methods to Achieve Part-Per-Trillion Quantification in Drinking Water. Analytical Chemistry, 2020, 92, 3058-3068.	3.2	53
170	Disinfection by-product formation during UV/Chlorine treatment of pesticides in a novel UV-LED reactor at 285Anm and the mitigation impact of GAC treatment. Science of the Total Environment, 2020, 712, 136413.	3.9	29
171	The formation of disinfection by-products from the chlorination and chloramination of amides. Chemosphere, 2020, 248, 125940.	4.2	21
172	The role of biofilms on the formation and decay of disinfection by-products in chlor(am)inated water distribution systems. Science of the Total Environment, 2021, 753, 141606.	3.9	20
173	Comparison of chlorination and chloramination practices on microbial inactivation efficiencies within a scaledâ€up water distribution network using central composite design. Water and Environment Journal, 2021, 35, 269-284.	1.0	3
174	Removal of the precursors of regulated DBPs and TOX from surface waters and wastewater effluents using mixed anion exchange resins. Chemosphere, 2021, 263, 128094.	4.2	13
175	Meta-analysis of small for gestational age births and disinfection byproduct exposures. Environmental Research, 2021, 196, 110280.	3.7	18
176	Unraveling the chemodiversity of halogenated disinfection by-products formed during drinking water treatment using target and non-target screening tools. Journal of Hazardous Materials, 2021, 401, 123681.	6.5	40
177	Identification and quantification of chloramines, bromamines and bromochloramine by Membrane Introduction Mass Spectrometry (MIMS). Science of the Total Environment, 2021, 751, 142303.	3.9	13
178	Sorptive removal of disinfection by-product precursors from UK lowland surface waters: Impact of molecular weight and bromide. Science of the Total Environment, 2021, 754, 142152.	3.9	5
179	Reactivity-directed analysis – a novel approach for the identification of toxic organic electrophiles in drinking water. Environmental Sciences: Processes and Impacts, 2021, 23, 48-65.	1.7	10
180	Emerging investigator series: emerging disinfection by-product quantification method for wastewater reuse: trace level assessment using tandem mass spectrometry. Environmental Science: Water Research and Technology, 2021, 7, 285-297.	1.2	3
181	Advanced removal of water NOM by Pre-ozonation, Enhanced coagulation and Bio-augmented Granular Activated Carbon. International Journal of Environmental Science and Technology, 2021, 18, 3143-3152.	1.8	16

#	Article	IF	Citations
182	The Role of Catalytic Ozonation Processes on the Elimination of DBPs and Their Precursors in Drinking Water Treatment. Catalysts, 2021, 11, 521.	1.6	21
183	Using potassium ferrate control hazardous disinfection by-products during chlorination. Environmental Science and Pollution Research, 2021, 28, 54137-54146.	2.7	3
185	Derivates variation of phenylalanine as a model disinfection by-product precursor during long term chlorination and chloramination. Science of the Total Environment, 2021, 771, 144885.	3.9	11
186	Application of Heterojunction Ni–Sb–SnO ₂ Anodes for Electrochemical Water Treatment. ACS ES&T Engineering, 2021, 1, 1236-1245.	3.7	18
187	Predictive modeling of haloacetonitriles under uniform formation conditions. Water Research, 2021, 201, 117322.	5.3	8
188	New iodine-based electrochemical advanced oxidation system for water disinfection: Are disinfection by-products a concern?. Water Research, 2021, 201, 117340.	5.3	9
189	Formation and influence factors of halonitromethanes in chlorination of nitro-aromatic compounds. Chemosphere, 2021, 278, 130497.	4.2	15
190	Technological advancement for eliminating antibiotic resistance genes from wastewater: A review of their mechanisms and progress. Journal of Environmental Chemical Engineering, 2021, 9, 106183.	3.3	28
191	Toxicity-oriented water quality engineering. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	31
192	Effervescence-assisted spiral hollow-fibre liquid-phase microextraction of trihalomethanes, halonitromethanes, haloacetonitriles, and haloketones in drinking water. Journal of Hazardous Materials, 2020, 397, 122790.	6.5	15
193	Occurrence of Regulated and Emerging Iodinated DBPs in the Shanghai Drinking Water. PLoS ONE, 2013, 8, e59677.	1.1	39
194	Analysis of the Characteristics of Organic Matter in Reclaimed Water on Disinfection Process. Water Pollution and Treatment, 2015, 03, 7-12.	0.0	0
195	Photocatalytic Decontamination in Pharmaceutical Effluent Treatment. , 2018, , 1-17.		0
196	Photocatalytic Decontamination in Pharmaceutical Effluent Treatment. , 2019, , 1641-1657.		0
197	Chloramination of iopamidol- and bromide-spiked waters containing natural organic matter. Water Science and Technology: Water Supply, 2021, 21, 886-898.	1.0	2
198	Foresight Look on the Disinfection By-Products Formation. Open Access Library Journal (oalib), 2020, 07, 1-17.	0.1	5
199	Effects of Plants and Plant Fermentation Broth on the Removal and Characteristics of Dissolved Organic Matter in Self-Supplying Carbon Source Constructed Wetlands Treating Secondary Effluent. IOP Conference Series: Earth and Environmental Science, 2020, 571, 012063.	0.2	1
201	Transformation Mechanisms of Acetaldehyde and its Substituted Aldehydes into the Corresponding Nitriles and (N-Chloro)Amides During Chloramination: A Computational Study. SSRN Electronic Journal, O, , .	0.4	0

~		<u> </u>
(ΤΔΤΙ	ON	REDUBL

#	Article	IF	CITATIONS
202	Impacts of seasonality and operating conditions on algal-dual osmosis membrane system for potable water reuse: Part 2. Journal of Environmental Management, 2022, 304, 114295.	3.8	0
203	New ¹⁹ F NMR methodology reveals structures of molecules in complex mixtures of fluorinated compounds. Chemical Science, 2022, 13, 3766-3774.	3.7	8
204	Simultaneous prediction of trihalomethanes, haloacetic acids, haloacetonitriles and haloacetamides using simulated distribution system tests. Environmental Science: Water Research and Technology, 2022, 8, 742-756.	1.2	5
205	Formation potential and analysis of 32 regulated and unregulated disinfection by-products: Two new simplified methods. Journal of Environmental Sciences, 2022, 117, 209-221.	3.2	6
206	Revealing the mechanism of formation and transformation of chlorinated byâ€products during electrolyzing synthetic urine using Ti/RuO _x â€rO _x and BDD electrodes. Fuel Cells, 2022, 22, 102-114.	1.5	1
207	Transformation mechanisms of acetaldehyde and its substituted aldehydes into the corresponding nitriles and (N-chloro)amides during chloramination: A computational study. Science of the Total Environment, 2022, 836, 155592.	3.9	2
208	Generation of iodinated trihalomethanes during chloramination in the presence of solid copper corrosion products. Water Research, 2022, 220, 118630.	5.3	2
209	Insight into the formation of iodinated trihalomethanes during chlorination, monochloramination, and dichloramination of iodide-containing water. Journal of Environmental Sciences, 2022, 117, 285-294.	3.2	5
210	Mechanisms of oxidative removal of 1,4-dioxane via free chlorine rapidly mixing into monochloramine: Implications on water treatment and reuse. Journal of Hazardous Materials, 2022, 440, 129760.	6.5	3
211	Towards Viable Eco-Friendly Local Treatment of Blackwater in Sparsely Populated Regions. Water (Switzerland), 2023, 15, 542.	1.2	3
222	Various Disinfection Processes and Formation of Disinfection by-Products in Drinking Water. , 2024, , 85-108.		0