Global pollinator declines: trends, impacts and drivers

Trends in Ecology and Evolution 25, 345-353

DOI: 10.1016/j.tree.2010.01.007

Citation Report

#	Article	IF	CITATIONS
1	Economic Consequences of Pollinator Declines: A Synthesis. Agricultural and Resource Economics Review, 2010, 39, 368-383.	0.6	55
2	CONSERVATION GENETICS OF NEOTROPICAL POLLINATORS REVISITED: MICROSATELLITE ANALYSIS SUGGESTS THAT DIPLOID MALES ARE RARE IN ORCHID BEES. Evolution; International Journal of Organic Evolution, 2010, 64, 3318-3326.	1.1	26
3	Lifeâ€history traits predict species responses to habitat area and isolation: a crossâ€continental synthesis. Ecology Letters, 2010, 13, 969-979.	3.0	336
4	Mutualisms in a changing world: an evolutionary perspective. Ecology Letters, 2010, 13, 1459-1474.	3.0	442
5	As abelhas, os serviços ecossistêmicos e o Código Florestal Brasileiro. Biota Neotropica, 2010, 10, 59-62.	1.0	27
6	RNA Viruses in Hymenopteran Pollinators: Evidence of Inter-Taxa Virus Transmission via Pollen and Potential Impact on Non-Apis Hymenopteran Species. PLoS ONE, 2010, 5, e14357.	1.1	333
7	Securing the Conservation of Biodiversity across Administrative Levels and Spatial, Temporal, and Ecological Scales – Research Needs and Approaches of the ⟨i⟩SCALES⟨/i⟩ Project. Gaia, 2010, 19, 187-193.	0.3	54
8	Climate change impacts on biodiversity: a short introduction with special emphasis on the ALARM approach for the assessment of multiple risks. BioRisk, 0, 5, 3-29.	0.2	3
9	The Regional Network for Asian Schistosomiasis and Other Helminth Zoonoses (RNAS+). Advances in Parasitology, 2010, 73, 101-135.	1.4	28
10	Light pollution as a biodiversity threat. Trends in Ecology and Evolution, 2010, 25, 681-682.	4.2	592
11	Global growth and stability of agricultural yield decrease with pollinator dependence. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5909-5914.	3.3	310
12	Patterns of widespread decline in North American bumble bees. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 662-667.	3.3	1,249
13	Functional Extinctions of Bird Pollinators Cause Plant Declines. Science, 2011, 331, 1019-1020.	6.0	63
14	Native Pollinators in Anthropogenic Habitats. Annual Review of Ecology, Evolution, and Systematics, 2011, 42, 1-22.	3.8	429
15	Testing Pollen of Single and Stacked Insect-Resistant Bt-Maize on In vitro Reared Honey Bee Larvae. PLoS ONE, 2011, 6, e28174.	1.1	40
16	Performance of Apis mellifera, Bombus impatiens, and Peponapis pruinosa (Hymenoptera: Apidae) as Pollinators of Pumpkin. Journal of Economic Entomology, 2011, 104, 1153-1161.	0.8	96
17	Forest Habitat Conservation in Africa Using Commercially Important Insects. Annual Review of Entomology, 2011, 56, 465-485.	5.7	29
18	The Role of Resources and Risks in Regulating Wild Bee Populations. Annual Review of Entomology, 2011, 56, 293-312.	5.7	460

#	Article	IF	Citations
19	Endosymbionts and honey bee colony losses?. Trends in Ecology and Evolution, 2011, 26, 494.	4.2	23
20	Fame, glory and neglect in meta-analyses. Trends in Ecology and Evolution, 2011, 26, 493-494.	4.2	36
21	Honey bee risk assessment: new approaches for <i>in vitro</i> larvae rearing and data analyses. Methods in Ecology and Evolution, 2011, 2, 509-517.	2.2	54
22	A decline in pollinator dependent vegetable crop productivity in India indicates pollination limitation and consequent agro-economic crises Nature Precedings, 0, , .	0.1	16
23	Biodiversity in a Rapidly Changing World: How to Manage and Use Information?. , 2011, , .		0
26	Pesticide Biomarkers in Terrestrial Invertebrates. , 2011, , .		2
27	Twenty Landmark Papers in Biodiversity Conservation. , 2011, , .		2
28	Value of Wildland Habitat for Supplying Pollination Services to Californian Agriculture. Rangelands, 2011, 33, .	0.9	0
29	Value of Wildland Habitat for Supplying Pollination Services to Californian Agriculture. Rangelands, 2011, 33, 33-41.	0.9	52
30	Changing Bee and Hoverfly Pollinator Assemblages along an Urban-Rural Gradient. PLoS ONE, 2011, 6, e23459.	1.1	262
31	Field Margins, Foraging Distances and Their Impacts on Nesting Pollinator Success. PLoS ONE, 2011, 6, e25971.	1.1	48
33	Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 2011, 14, 101-112.	3.0	1,279
34	Natural and within-farmland biodiversity enhances crop productivity. Ecology Letters, 2011, 14, 251-259.	3.0	248
35	Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecology Letters, 2011, 14, 1062-1072.	3.0	681
36	Litter inputs and plant interactions affect nectar sugar content. Journal of Ecology, 2011, 99, 828-837.	1.9	41
37	Patterns of range-wide genetic variation in six North American bumble bee (Apidae: Bombus) species. Molecular Ecology, 2011, 20, 4870-4888.	2.0	98
38	Evaluating the Quality of Citizen-Scientist Data on Pollinator Communities. Conservation Biology, 2011, 25, 607-617.	2.4	182
39	Effects of Invasive Parasites on Bumble Bee Declines. Conservation Biology, 2011, 25, 662-671.	2.4	192

#	Article	IF	Citations
40	Mutualisms matter: pollination rate limits the distribution of oilâ€secreting orchids. Oikos, 2011, 120, 1531-1538.	1.2	59
41	Bumblebee colonies produce larger foragers in complex landscapes. Basic and Applied Ecology, 2011, , .	1.2	12
42	Pollination services in the UK: How important are honeybees?. Agriculture, Ecosystems and Environment, 2011, 142, 137-143.	2.5	278
43	A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honey bees. Ecotoxicology, 2011, 20, 149-157.	1.1	295
44	Management to enhance pollen and nectar resources for bumblebees and butterflies within intensively farmed landscapes. Journal of Insect Conservation, 2011, 15, 853-864.	0.8	90
45	Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina. Biodiversity and Conservation, 2011, 20, 3077-3100.	1.2	124
46	Infestation of Japanese Native Honey Bees by Tracheal Mite and Virus from Non-native European Honey Bees in Japan. Microbial Ecology, 2011, 62, 895-906.	1.4	81
47	Geometric morphometrics of the wing as a tool for assigning genetic lineages and geographic origin to Melipona beecheii (Hymenoptera: Meliponini). Apidologie, 2011, 42, 499-507.	0.9	52
48	Bees in the Southwest Pacific: Origins, diversity and conservation. Apidologie, 2011, 42, 759-770.	0.9	26
49	Disturbance and Resilience in Tropical American Palm Populations and Communities. Botanical Review, The, 2011, 77, 426-461.	1.7	43
50	Enhancing habitat to help the plight of the bumblebee. Pest Management Science, 2011, 67, 377-379.	1.7	10
51	Developing European conservation and mitigation tools for pollination services: approaches of the STEP (Status and Trends of European Pollinators) project. Journal of Apicultural Research, 2011, 50, 152-164.	0.7	64
52	The Neuroecology of a Pollinator's Buffet: Olfactory Preferences and Learning in Insect Pollinators. Integrative and Comparative Biology, 2011, 51, 781-793.	0.9	31
53	Influence of landscape context on the abundance and diversity of bees in Mediterranean olive groves. Bulletin of Entomological Research, 2011, 101, 557-564.	0.5	58
54	A Strong Immune Response in Young Adult Honeybees Masks Their Increased Susceptibility to Infection Compared to Older Bees. PLoS Pathogens, 2012, 8, e1003083.	2.1	70
55	Ecosystem Services in Biologically Diversified versus Conventional Farming Systems: Benefits, Externalities, and Trade-Offs. Ecology and Society, 2012, 17, .	1.0	656
56	Generalist Bee Species on Brazilian Bee-Plant Interaction Networks. Psyche: Journal of Entomology, 2012, 2012, 1-7.	0.4	17
57	Comparison of the Efficiency of the Bumble Bees <l>Bombus impatiens</l> and <l>Bombus ephippiatus</l> (Hymenoptera: Apidae) as Pollinators of Tomato in Greenhouses. Journal of Economic Entomology, 2012, 105, 1871-1877.	0.8	16

#	Article	IF	CITATIONS
58	<i>Varroa destructor</i> : research avenues towards sustainable control. Journal of Apicultural Research, 2012, 51, 125-132.	0.7	131
59	Drastic historic shifts in bumble-bee community composition in Sweden. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 309-315.	1.2	198
60	Parasite-insecticide interactions: a case study of Nosema ceranae and fipronil synergy on honeybee. Scientific Reports, 2012, 2, 326.	1.6	161
61	Hymenopteran Collective Foraging and Information Transfer about Resources 2012. Psyche: Journal of Entomology, 2012, 2012, 1-2.	0.4	0
62	Effects of Soil Quality Enhancement on Pollinator-Plant Interactions. Psyche: Journal of Entomology, 2012, 2012, 1-8.	0.4	33
63	Movement of Soil-Applied Imidacloprid and Thiamethoxam into Nectar and Pollen of Squash (Cucurbita pepo). PLoS ONE, 2012, 7, e39114.	1.1	198
64	Changes in nectar supply: A possible cause of widespread butterfly decline. Environmental Epigenetics, 2012, 58, 384-391.	0.9	61
65	A Europe-Wide Experiment for Assessing the Impact of Genotype-Environment Interactions on the Vitality and Performance of Honey Bee Colonies: Experimental Design and Trait Evaluation. Journal of Apicultural Science, 2012, 56, 147-158.	0.1	41
66	Enhancement of Buffer Strips Can Improve Provision of Multiple Ecosystem Services. Outlooks on Pest Management, 2012, 23, 258-262.	0.1	4
67	Shortâ€term responses of native bees to livestock and implications for managing ecosystem services in grasslands. Ecosphere, 2012, 3, 1-19.	1.0	56
68	Dependence on sunbird pollination for fruit set in three West African montane mistletoe species. Journal of Tropical Ecology, 2012, 28, 205-213.	0.5	12
69	Reproduction of beetleâ€pollinated Anaxagorea dolichocarpa (Annonaceae) is resilient to habitat disturbance in rainforest fragments. Nordic Journal of Botany, 2012, 30, 453-460.	0.2	2
70	Varroa invasion and virus adaptation. Trends in Parasitology, 2012, 28, 353-354.	1.5	42
71	Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid). Zoology, 2012, 115, 365-371.	0.6	128
72	The role of bee diversity in pollination and fruit set of yellow passion fruit (Passiflora edulis forma) Tj ETQq0 0 0 r	gBT Overl	ock 10 Tf 50
73	Effects of multiple Bt proteins and GNA lectin on in vitro-reared honey bee larvae. Apidologie, 2012, 43, 549-560.	0.9	28
74	Realising multiple ecosystem services based on the response of three beneficial insect groups to floral traits and trait diversity. Basic and Applied Ecology, 2012, 13, 363-370.	1.2	101
75	Dead or Alive: Deformed Wing Virus and Varroa destructor Reduce the Life Span of Winter Honeybees. Applied and Environmental Microbiology, 2012, 78, 981-987.	1.4	283

#	Article	IF	Citations
76	Topology of plant-pollinator networks that are vulnerable to collapse from species extinction. Physical Review E, 2012, 86, 021924.	0.8	43
77	Coextinction and Persistence of Dependent Species in a Changing World. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 183-203.	3.8	204
78	The effects of landscape fragmentation on pollination dynamics: absence of evidence not evidence of absence. Biological Reviews, 2012, 87, 526-544.	4.7	200
79	Widespread fitness alignment in the legume–rhizobium symbiosis. New Phytologist, 2012, 194, 1096-1111.	3.5	143
80	Mating system shifts on the trailing edge. Annals of Botany, 2012, 109, 613-620.	1.4	92
81	Diverse pollinator communities enhance plant reproductive success. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4845-4852.	1.2	193
82	Pollinator habitat enhancement: Benefits to other ecosystem services. Agriculture, Ecosystems and Environment, 2012, 159, 112-122.	2.5	329
83	Factors influencing Nosema bombi infections in natural populations of Bombus terrestris (Hymenoptera: Apidae). Journal of Invertebrate Pathology, 2012, 110, 48-53.	1.5	13
84	Supporting wild pollinators in a temperate agricultural landscape: Maintaining mosaics of natural features and production. Biological Conservation, 2012, 149, 84-92.	1.9	66
85	Changing distribution patterns of an endangered butterfly: Linking local extinction patterns and variable habitat relationships. Biological Conservation, 2012, 152, 280-290.	1.9	25
86	Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry. Biological Conservation, 2012, 153, 101-107.	1.9	206
87	Simulation modelling of nectar and pollen foraging by honeybees. Biosystems Engineering, 2012, 112, 304-318.	1.9	8
88	Pollination services at risk: Bee habitats will decrease owing to climate change in Brazil. Ecological Modelling, 2012, 244, 127-131.	1.2	125
89	Herbivore and pollinator responses to grassland management intensity along experimental changes in plant species richness. Biological Conservation, 2012, 150, 42-52.	1.9	72
90	Effects of social immunity and unicoloniality on host–parasite interactions in invasive insect societies. Functional Ecology, 2012, 26, 1300-1312.	1.7	28
91	Do pathogen spillover, pesticide use, or habitat loss explain recent North American bumblebee declines?. Conservation Letters, 2012, 5, 232-239.	2.8	71
92	Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus) Tj ETQq0 0 C	Ͻ rgBT /Ον	erlock 10 Tf 5
93	Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature, 2012, 491, 105-108.	13.7	759

#	Article	IF	Citations
94	Restoration of Biodiversity and Ecosystem Services on Agricultural Land. Ecosystems, 2012, 15, 883-899.	1.6	209
95	Spatial genetic structure and low diversity of the rare arable plant Bupleurum rotundifolium L. indicate fragmentation in Central Europe. Agriculture, Ecosystems and Environment, 2012, 161, 70-77.	2.5	18
96	Farming with alternative pollinators (FAP)â€"An overlooked win-win-strategy for climate change adaptation. Agriculture, Ecosystems and Environment, 2012, 161, 161-164.	2.5	35
97	Modelling honey bee queen mating as a measure of feral colony density. Ecological Modelling, 2012, 247, 48-57.	1.2	10
98	Effects of Fastac 50 EC on bumble bee Bombus terrestris L. respiration: DGE disappearance does not lead to increasing water loss. Journal of Insect Physiology, 2012, 58, 1469-1476.	0.9	12
99	An assessment of pollen limitation on Chicago green roofs. Landscape and Urban Planning, 2012, 107, 401-408.	3.4	60
100	Decline in Pollinators., 2012,, 545-601.		6
101	Interactive Effects of Large- and Small-Scale Sources of Feral Honey-Bees for Sunflower in the Argentine Pampas. PLoS ONE, 2012, 7, e30968.	1.1	20
102	From April to Augustâ€"Wild Bees Pollinating Crops Through the Growing Season in Virginia, Usa. Environmental Entomology, 2012, 41, 813-821.	0.7	26
103	Roles of scale, matrix, and native habitat in supporting a diverse suburban pollinator assemblage. , 2012, 22, 1923-1935.		73
104	Systemic range shift lags among a pollinator species assemblage following rapid climate change ^{$1 < l \le 1 \le$}	0.5	25
105	Pyrosequencing analysis of the bacterial communities in the guts of honey bees Apis cerana and Apis mellifera in Korea. Journal of Microbiology, 2012, 50, 735-745.	1.3	96
106	Pollination Biology., 2012,,.		80
107	Pervasiveness of Parasites in Pollinators. PLoS ONE, 2012, 7, e30641.	1.1	137
108	Organic Farming Improves Pollination Success in Strawberries. PLoS ONE, 2012, 7, e31599.	1.1	69
109	Predictive Markers of Honey Bee Colony Collapse. PLoS ONE, 2012, 7, e32151.	1.1	291
110	Spatial and Temporal Trends of Global Pollination Benefit. PLoS ONE, 2012, 7, e35954.	1.1	275
111	Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009. PLoS ONE, 2012, 7, e37235.	1.1	483

#	Article	IF	CITATIONS
112	Landscape Structure Shapes Habitat Finding Ability in a Butterfly. PLoS ONE, 2012, 7, e41517.	1.1	23
113	High Bee and Wasp Diversity in a Heterogeneous Tropical Farming System Compared to Protected Forest. PLoS ONE, 2012, 7, e52109.	1.1	25
115	Pollinator-dependent production of food nutrients by fruits and vegetables in China. African Journal of Agricultural Research Vol Pp, 2012, 7, 6136-6142.	0.2	6
116	Euglossine bee communities in small forest fragments of the Atlantic Forest, Rio de Janeiro state, southeastern Brazil (Hymenoptera, Apidae). Revista Brasileira De Entomologia, 2012, 56, 210-219.	0.1	49
117	Dietary traces of neonicotinoid pesticides as a cause of population declines in honey bees: an evaluation by Hill's epidemiological criteria. Pest Management Science, 2012, 68, 819-827.	1.7	93
118	Comparative analysis of detection limits and specificity of molecular diagnostic markers for three pathogens (Microsporidia, Nosema spp.) in the key pollinators Apis mellifera and Bombus terrestris. Parasitology Research, 2012, 110, 1403-1410.	0.6	31
119	Host adaptations reduce the reproductive success of <i>Varroa destructor</i> in two distinct European honey bee populations. Ecology and Evolution, 2012, 2, 1144-1150.	0.8	83
120	From where did the <scp>W</scp> estern honeybee (<i><scp>A</scp>pis mellifera)</i> originate?. Ecology and Evolution, 2012, 2, 1949-1957.	0.8	121
121	The use of pollination networks in conservation ¹ This article is part of a Special Issue entitled "Pollination biology research in Canada: Perspectives on a mutualism at different scalesâ€. Botany, 2012, 90, 525-534.	0.5	18
122	The same, but different: pollen foraging in honeybee and bumblebee colonies. Apidologie, 2012, 43, 449-464.	0.9	180
123	Sphaerularia bombi (Nematoda: Sphaerulariidae) parasitizing Bombus atratus (Hymenoptera: Apidae) in southern South America. Parasitology Research, 2012, 111, 947-950.	0.6	8
124	Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia, 2012, 169, 1025-1032.	0.9	215
125	Spillover of functionally important organisms between managed and natural habitats. Agriculture, Ecosystems and Environment, 2012, 146, 34-43.	2.5	413
126	Rapid Shift in Pollinator Communities Following Invasive Species Removal. Restoration Ecology, 2012, 20, 593-602.	1.4	33
127	Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Global Ecology and Biogeography, 2012, 21, 88-99.	2.7	152
128	Evolutionary changes in plant reproductive traits following habitat fragmentation and their consequences for population fitness. Journal of Ecology, 2012, 100, 76-87.	1.9	126
129	Abundance and diversity of wild bees along gradients of heavy metal pollution. Journal of Applied Ecology, 2012, 49, 118-125.	1.9	81
130	Effects of humanâ€mediated pollinator impoverishment on floral traits and mating patterns in a shortâ€ived herb: an experimental approach. Functional Ecology, 2012, 26, 189-197.	1.7	58

#	Article	IF	CITATIONS
131	Spatial autocorrelation in honeybee foraging activity reveals optimal focus scale for predicting agro-environmental scheme efficiency. Ecological Modelling, 2012, 225, 103-114.	1.2	36
132	Early reproductive benefits of mass-flowering crops to the solitary bee Osmia rufa outbalance post-flowering disadvantages. Basic and Applied Ecology, 2012, 13, 268-276.	1.2	80
133	Attracting carnivorous arthropods with plant volatiles: The future of biocontrol or playing with fire?. Biological Control, 2012, 60, 77-89.	1.4	187
134	Ingestion by an endemic frugivore enhances seed germination of endemic plant species but decreases seedling survival of exotics. Journal of Biogeography, 2012, 39, 2021-2030.	1.4	8
135	Impact of landscape alteration and invasions on pollinators: a metaâ€analysis. Journal of Ecology, 2012, 100, 884-893.	1.9	86
136	Quantifying forage specialisation in polyphagic insects: the polylectic and rare solitary bee, <i>Colletes floralis</i> (Hymenoptera: Colletidae). Insect Conservation and Diversity, 2012, 5, 289-297.	1.4	10
137	Assessment of transgene flow in tomato and potential effects of genetically modified tomato expressing <scp>Cry3Bb1</scp> toxins onÂbumblebee feeding behaviour. Annals of Applied Biology, 2012, 161, 151-160.	1.3	6
138	Contrasting responses of hoverflies and wild bees to habitat structure and land use change in a tropical landscape (southern Yunnan, SW China). Insect Science, 2012, 19, 666-676.	1.5	11
139	Landscape structure influences pollinator movements and directly affects plant reproductive success. Oikos, 2012, 121, 562-568.	1.2	128
140	Molecular and spatial analyses reveal links between colonyâ€specific foraging distance and landscapeâ€level resource availability in two bumblebee species. Oikos, 2012, 121, 734-742.	1.2	59
141	Production costs of biodiversity zones on field and forest margins: A case study in Finland. Journal of Environmental Management, 2012, 103, 122-132.	3.8	2
142	Simultaneous stressors: Interactive effects of an immune challenge and dietary toxin can be detrimental to honeybees. Journal of Insect Physiology, 2012, 58, 918-923.	0.9	27
143	Warming, CO ₂ , and nitrogen deposition interactively affect a plantâ€pollinator mutualism. Ecology Letters, 2012, 15, 227-234.	3.0	143
144	Understanding and planning ecological restoration of plant–pollinator networks. Ecology Letters, 2012, 15, 319-328.	3.0	133
145	Genetic diversity of six arable plants in relation to their Red List status. Biodiversity and Conservation, 2012, 21, 745-761.	1.2	27
146	Movement and phenology of bees in a subtropical Australian agricultural landscape. Austral Ecology, 2013, 38, 456-464.	0.7	21
147	Pollen dispersal and fruit production in <i>Vaccinium oxycoccos</i> and comparison with its sympatric congener <i>V.Âuliginosum</i> Plant Biology, 2013, 15, 344-352.	1.8	7
148	Pollinator nesting guilds respond differently to urban habitat fragmentation in an oakâ€savannah ecosystem. Insect Conservation and Diversity, 2013, 6, 57-66.	1.4	56

#	Article	IF	CITATIONS
149	Climate-Resilient Horticulture: Adaptation and Mitigation Strategies., 2013,,.		18
150	Comparative susceptibility of three Western honeybee taxa to the microsporidian parasite Nosema ceranae. Infection, Genetics and Evolution, 2013, 17, 188-194.	1.0	26
151	Sub-lethal effects of thiamethoxam, a neonicotinoid pesticide, and propiconazole, a DMI fungicide, on colony initiation in bumblebee (Bombus terrestris) micro-colonies. Apidologie, 2013, 44, 563-574.	0.9	61
152	Economic gain, stability of pollination and bee diversity decrease from southern to northern Europe. Basic and Applied Ecology, 2013, 14, 461-471.	1.2	90
153	Is agricultural intensification in The Netherlands running up to its limits?. Njas - Wageningen Journal of Life Sciences, 2013, 66, 65-73.	7.9	59
154	Rapid ecological replacement of a native bumble bee by invasive species. Frontiers in Ecology and the Environment, 2013, 11, 529-534.	1.9	188
155	Linking Landscape Connectivity and Ecosystem Service Provision: Current Knowledge and Research Gaps. Ecosystems, 2013, 16, 894-908.	1.6	299
156	The <scp>T</scp> rojan hives: pollinator pathogens, imported and distributed in bumblebee colonies. Journal of Applied Ecology, 2013, 50, 1207-1215.	1.9	168
157	Do the honeybee pathogens <i><scp>N</scp>osema ceranae</i> and deformed wing virus act synergistically?. Environmental Microbiology Reports, 2013, 5, 506-510.	1.0	39
158	Reaching for a sustainable, resilient urban future using the lens of ecosystem services. Ecological Economics, 2013, 86, 285-291.	2.9	146
159	Reproductive biology of the Red List species <i>Polemonium caeruleum</i> (Polemoniaceae). Botanical Journal of the Linnean Society, 2013, 173, 92-107.	0.8	12
160	Habitat Loss and Fragmentation. , 2013, , 50-58.		19
161	High population variability and source–sink dynamics in a solitary bee species. Ecology, 2013, 94, 1400-1408.	1.5	28
162	Multifaceted responses to two major parasites in the honey bee (Apis mellifera). BMC Ecology, 2013, 13, 26.	3.0	5
163	Relationship between the age of Vespa velutina workers and their defensive behaviour established from colonies maintained in the laboratory. Insectes Sociaux, 2013, 60, 437-444.	0.7	17
164	Drivers of pollen limitation: macroecological interactions between breeding system, rarity, and diversity. Plant Ecology and Diversity, 2013, 6, 171-180.	1.0	25
165	Treetops at Risk., 2013,,.		13
166	Essential oil from Eupatorium buniifolium leaves as potential varroacide. Parasitology Research, 2013, 112, 3389-3400.	0.6	19

#	Article	IF	CITATIONS
167	Bumblebee community homogenization after uphill shifts in montane areas of northern Spain. Oecologia, 2013, 173, 1649-1660.	0.9	66
168	Additive effects of exotic plant abundance and land-use intensity on plant–pollinator interactions. Oecologia, 2013, 173, 913-923.	0.9	36
169	Mass-flowering crops enhance wild bee abundance. Oecologia, 2013, 172, 477-484.	0.9	179
170	Interpreting realized pollen flow in terms of pollinator travel paths and land-use resistance in heterogeneous landscapes. Landscape Ecology, 2013, 28, 1769-1783.	1.9	17
171	Combined effects of global change pressures on animal-mediated pollination. Trends in Ecology and Evolution, 2013, 28, 524-530.	4.2	320
172	Urban land use limits regional bumble bee gene flow. Molecular Ecology, 2013, 22, 2483-2495.	2.0	108
173	Vulnerability of Pollination Ecosystem Services. , 2013, , 117-128.		3
174	Pollinator shifts between <i><scp>O</scp>phrys sphegodes</i> populations: might adaptation to different pollinators drive population divergence?. Journal of Evolutionary Biology, 2013, 26, 2197-2208.	0.8	36
175	Grassland Restoration on Landfill Sites in the East Midlands, <scp>United Kingdom</scp> : An Evaluation of Floral Resources and Pollinating Insects. Restoration Ecology, 2013, 21, 560-568.	1.4	52
176	Flower color polymorphism in Iris lutescens (Iridaceae): Biochemical analyses in light of plant–insect interactions. Phytochemistry, 2013, 94, 123-134.	1.4	51
177	Obtaining a better taxonomic understanding of native bees: where do we start?. Systematic Entomology, 2013, 38, 645-653.	1.7	56
178	Conserving genetic diversity in the honeybee: Comments on Harpur <i>etÂal</i> . (2012). Molecular Ecology, 2013, 22, 3208-3210.	2.0	43
179	Global change, biodiversity, and ecosystem services: What can we learn from studies of pollination?. Basic and Applied Ecology, 2013, 14, 453-460.	1.2	41
180	Diesel exhaust rapidly degrades floral odours used by honeybees. Scientific Reports, 2013, 3, 2779.	1.6	93
181	Do plant traits influence a species' response to habitat disturbance? A meta-analysis. Biological Conservation, 2013, 168, 69-77.	1.9	13
182	Plant Invasions in Protected Areas., 2013,,.		83
183	Neonicotinoids, bee disorders and the sustainability of pollinator services. Current Opinion in Environmental Sustainability, 2013, 5, 293-305.	3.1	352
184	Pollination of a threatened orchid by an introduced hawk moth species in the tallgrass prairie of North America. Biological Conservation, 2013, 167, 316-324.	1.9	14

#	ARTICLE	IF	CITATIONS
185	Pathogens, Pests, and Economics: Drivers of Honey Bee Colony Declines and Losses. EcoHealth, 2013, 10, 434-445.	0.9	187
186	Flower-visitor and pollen transport networks in a large city: structure and properties. Arthropod-Plant Interactions, 2013, 7, 503-516.	0.5	47
187	Are the birds dangerous for insect pollinators? The relationship between hymenopterans and the red-backed shrike. Journal of Insect Conservation, 2013, 17, 1155-1160.	0.8	4
188	The Impact of Global Warming on Floral Traits That Affect the Selfing Rate in a High-Altitude Plant. International Journal of Plant Sciences, 2013, 174, 1099-1108.	0.6	16
189	Chronic sublethal stress causes bee colony failure. Ecology Letters, 2013, 16, 1463-1469.	3.0	175
190	Pesticideâ€laden dust emission and drift from treated seeds during seed drilling: a review. Pest Management Science, 2013, 69, 564-575.	1.7	108
191	Patterns of Flower Visitation across Elevation and Successional Gradients in Hawaiâ€~i. Pacific Science, 2013, 67, 253-266.	0.2	17
192	Present and Potential use of Bees as Managed Pollinators in Mexico (sup) 1 (/sup). Southwestern Entomologist, 2013, 38, 133-148.	0.1	11
193	A survey of pollinator and plant interactions in meadow and grassland habitats of Marin County, California. Bios, 2013, 84, 1-7.	0.0	3
194	Diversity and Origins of Fijian Leaf-Cutter Bees (Megachilidae). Pacific Science, 2013, 67, 561-570.	0.2	18
195	Movement patterns of solitary bees in a threatened fragmented habitat. Apidologie, 2013, 44, 90-99.	0.9	15
196	Invasive species management restores a plant–pollinator mutualism in <scp>H</scp> awaii. Journal of Applied Ecology, 2013, 50, 147-155.	1.9	60
197	Resource diversity and landscape-level homogeneity drive native bee foraging. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 555-558.	3.3	213
198	The microsporidian parasites Nosema ceranae and Nosema apis are widespread in honeybee (Apis) Tj ETQq $1\ 1\ 0$.784314 rg	gBT_/Overloc
199	Influence of local and landscape factors on bumblebees in semi-natural meadows: a multiple-scale study in a forested landscape. Journal of Insect Conservation, 2013, 17, 113-125.	0.8	29
200	Predation pressure dynamics study of the recently introduced honeybee killer Vespa velutina: learning from the enemy. Apidologie, 2013, 44, 209-221.	0.9	62
201	Fission-fusion bat behavior as a strategy for balancing the conflicting needs of maximizing information accuracy and minimizing infection risk. Journal of Theoretical Biology, 2013, 318, 101-109.	0.8	27
202	The effects of aluminum and nickel in nectar on the foraging behavior of bumblebees. Environmental Pollution, 2013, 177, 78-81.	3.7	63

#	Article	IF	CITATIONS
203	Road verges and winter wheat fields as resources for wild bees in agricultural landscapes. Agriculture, Ecosystems and Environment, 2013, 173, 66-71.	2.5	16
204	Can pollination services, species diversity and conservation be simultaneously promoted by sown wildflower strips on farmland?. Agriculture, Ecosystems and Environment, 2013, 179, 18-24.	2.5	68
205	A review of mateâ€finding <scp>A</scp> llee effects in insects: from individual behavior to population management. Entomologia Experimentalis Et Applicata, 2013, 146, 79-92.	0.7	49
206	Biodiversity buffers pollination from changes in environmental conditions. Global Change Biology, 2013, 19, 540-547.	4.2	176
207	Interactive effect of reduced pollen availability and Varroa destructor infestation limits growth and protein content of young honey bees. Journal of Insect Physiology, 2013, 59, 487-493.	0.9	42
208	Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 2013, 339, 1608-1611.	6.0	1,767
209	Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nature Communications, 2013, 4, 1634.	5.8	215
210	Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology, 2013, 94, 2042-2054.	1.5	232
211	Comparison of pollinators and natural enemies: a metaâ€analysis of landscape and local effects on abundance and richness in crops. Biological Reviews, 2013, 88, 1002-1021.	4.7	202
212	Specialization on traits as basis for the nicheâ€breadth of flower visitors and as structuring mechanism of ecological networks. Functional Ecology, 2013, 27, 329-341.	1.7	212
213	A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecology Letters, 2013, 16, 584-599.	3.0	875
214	Nitric oxide participates at the first steps of Apis mellifera cellular immune activation in response to non-self recognition. Apidologie, 2013, 44, 575-585.	0.9	23
215	Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate. Global Change Biology, 2013, 19, 2348-2359.	4.2	100
216	Interaction between distant taxa in the use of tree cavities in African ecosystems: a study using nest-boxes. Journal of Tropical Ecology, 2013, 29, 187-197.	0.5	13
217	Decline of nest site availability and nest density of underground bees along a distance gradient from human settlements. Entomological Science, 2013, 16, 170-178.	0.3	21
218	Comparing Apis Mellifera and Bombus spp. Pollination Efficiencies on Willamette Valley Blueberry Farms. Oregon Undergraduate Research Journal, 2013, 4, .	0.0	3
219	Flowering plants under global pollinator decline. Trends in Plant Science, 2013, 18, 353-359.	4.3	137
220	Pathogen prevalence in commercially reared bumble bees and evidence of spillover in conspecific populations. Biological Conservation, 2013, 159, 269-276.	1.9	97

#	ARTICLE	IF	CITATIONS
221	Wool carder bees of the genus <i>Anthidium</i> in the Western Hemisphere (Hymenoptera:) Tj ETQq0 0 0 rgBT /O the Linnean Society, 2013, 168, 221-425.	verlock 10 1.0	Tf 50 747 T 44
222	Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops. Global Change Biology, 2013, 19, 3103-3110.	4.2	133
223	Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nature Climate Change, 2013, 3, 759-763.	8.1	184
224	Ecological intensification: harnessing ecosystem services for food security. Trends in Ecology and Evolution, 2013, 28, 230-238.	4.2	1,325
225	Using plant functional traits as a link between land use and bee foraging abundance. Acta Oecologica, 2013, 50, 32-39.	0.5	9
226	Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment, 2013, 11, 251-259.	1.9	980
227	Microbial symbionts of honeybees: a promising tool to improve honeybee health. New Biotechnology, 2013, 30, 716-722.	2.4	53
228	Biodiversity and Human Health., 2013,, 357-372.		O
229	Biodiversity-Friendly Farming. , 2013, , 418-429.		5
230	Emerging dangers: Deadly effects of an emergent parasite in a new pollinator host. Journal of Invertebrate Pathology, 2013, 114, 114-119.	1.5	127
231	When Can Plant-Pollinator Interactions Promote Plant Diversity?. American Naturalist, 2013, 182, 131-146.	1.0	25
232	Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecological Applications, 2013, 23, 829-839.	1.8	277
233	Ecological Restoration. Advances in Agronomy, 2013, , 173-222.	2.4	42
234	The Global Plight of Pollinators. Science, 2013, 339, 1532-1533.	6.0	86
235	Contrasting effects of massâ€flowering crops on bee pollination of hedge plants at different spatial and temporal scales. Ecological Applications, 2013, 23, 1938-1946.	1.8	100
236	Almond orchards with living ground cover host more wild insect pollinators. Journal of Insect Conservation, 2013, 17, 1011-1025.	0.8	58
237	Is there a benefit of excluding sheep from pastures at flowering peak on flower-visiting insect diversity?. Journal of Insect Conservation, 2013, 17, 287-294.	0.8	13
238	Among-species differences in pollen quality and quantity limitation: implications for endemics in biodiverse hotspots. Annals of Botany, 2013, 112, 1461-1469.	1.4	47

#	Article	IF	CITATIONS
239	Hygienic Behavior in Honey Bees (Hymenoptera: Apidae): Effects of Brood, Food, and Time of the Year. Journal of Economic Entomology, 2013, 106, 2280-2285.	0.8	23
240	Eco-Evolutionary Dynamics of Agricultural Networks. Advances in Ecological Research, 2013, 49, 339-435.	1.4	54
241	Chronic Bee Paralysis Virus and Nosema ceranae Experimental Co-Infection of Winter Honey Bee Workers (Apis mellifera L.). Viruses, 2013, 5, 2282-2297.	1.5	46
242	When ecosystem services interact: crop pollination benefits depend on the level of pest control. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122243.	1.2	81
243	First Isolation of a Marseillevirus in the Diptera SyrphidaeEristalis tenax. Intervirology, 2013, 56, 386-394.	1,2	55
244	Historical changes in northeastern US bee pollinators related to shared ecological traits. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4656-4660.	3.3	432
245	Factors influencing the foraging activity of the allodapine bee Braunsapis puangensis on creeping daisy (Sphagneticola trilobata) in Fiji. Journal of Hymenoptera Research, 0, 35, 59-69.	0.8	7
246	Different toxic and hormetic responses of <i>Bombus impatiens</i> to <i>Beauveria bassiana, Bacillus subtilis</i> and spirotetramat. Pest Management Science, 2013, 69, 949-954.	1.7	25
247	Identifying key knowledge needs for evidenceâ€based conservation of wild insect pollinators: a collaborative crossâ€sectoral exercise. Insect Conservation and Diversity, 2013, 6, 435-446.	1.4	61
248	USE OF PRIMARY CULTURES OF KENYON CELLS FROM BUMBLEBEE BRAINS TO ASSESS PESTICIDE SIDE EFFECTS. Archives of Insect Biochemistry and Physiology, 2013, 84, 43-56.	0.6	11
249	Assessing the impact of an introduced bee, <i>Anthidium manicatum</i> , on pollinator communities in New Zealand. New Zealand Journal of Botany, 2013, 51, 213-228.	0.8	16
250	Enhanced biodiversity and pollination in <scp>UK</scp> agroforestry systems. Journal of the Science of Food and Agriculture, 2013, 93, 2073-2075.	1.7	39
251	Assemblage of flower visitors to <i><scp>D</scp>illenia suffruticosa</i> and possible negative effects of disturbances in <scp>S</scp> arawak, <scp>M</scp> alaysia. Entomological Science, 2013, 16, 341-351.	0.3	2
252	Boron fertilizers in rape – a risk for honey bees?. Journal of Applied Entomology, 2013, 137, 661-667.	0.8	6
253	Patterns of benthic algae and cyanobacteria along twinâ€stressor gradients of nutrients and fine sediment: a stream mesocosm experiment. Freshwater Biology, 2013, 58, 1849-1863.	1.2	67
254	Signatures of selection in the <scp>I</scp> berian honey bee (<i><scp>A</scp>pis mellifera) Tj ETQq1 1 0.784314 Ecology, 2013, 22, 5890-5907.</i>	rgBT /Ov 2.0	erlock 10 Ti 47
255	Single pollinator species losses reduce floral fidelity and plant reproductive function. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13044-13048.	3.3	262
256	A pollinators' eye view of a shelter mimicry system. Annals of Botany, 2013, 111, 1155-1165.	1.4	38

#	ARTICLE	IF	CITATIONS
257	Phenological overlap of interacting species in a changing climate: an assessment of available approaches. Ecology and Evolution, 2013, 3, 3183-3193.	0.8	70
258	Investigating plantâ€"pollinator relationships in the Aegean: the approaches of the project POL-AEGIS (The pollinators of the Aegean archipelago: diversity and threats). Journal of Apicultural Research, 2013, 52, 106-117.	0.7	34
259	New insights on the genetic diversity of the honeybee parasite <i>Nosema ceranae </i> based on <i>multilocus </i> sequence analysis. Parasitology, 2013, 140, 1346-1356.	0.7	31
260	Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Environmental Epigenetics, 2013, 59, 418-426.	0.9	168
261	Short- and long-term effects of neonicotinoid application in rice fields, on the mortality and colony collapse of honeybees (Apis mellifera). Journal of Apicultural Science, 2013, 57, 21-35.	0.1	5
262	Pollinator declines: reconciling scales and implications for ecosystem services. F1000Research, 2013, 2, 146.	0.8	20
263	Changes in wild bee fauna of a grassland in Brazil reveal negative effects associated with growing urbanization during the last 40 years. Zoologia, 2013, 30, 157-176.	0.5	61
264	Plant Pollinator Networks along a Gradient of Urbanisation. PLoS ONE, 2013, 8, e63421.	1.1	163
265	Size Changes in Honey Bee Larvae Oenocytes Induced by Exposure to Paraquat at Very Low Concentrations. PLoS ONE, 2013, 8, e65693.	1.1	50
266	Pollination Services Provided by Bees in Pumpkin Fields Supplemented with Either Apis mellifera or Bombus impatiens or Not Supplemented. PLoS ONE, 2013, 8, e69819.	1.1	43
267	Flower Volatiles, Crop Varieties and Bee Responses. PLoS ONE, 2013, 8, e72724.	1.1	60
268	The Effect of Olfactory Exposure to Non-Insecticidal Agrochemicals on Bumblebee Foraging Behavior. PLoS ONE, 2013, 8, e76273.	1.1	16
269	First Evidence for a Massive Extinction Event Affecting Bees Close to the K-T Boundary. PLoS ONE, 2013, 8, e76683.	1.1	25
270	Fire Promotes Pollinator Visitation: Implications for Ameliorating Declines of Pollination Services. PLoS ONE, 2013, 8, e79853.	1.1	47
271	Repression and Recuperation of Brood Production in Bombus terrestris Bumble Bees Exposed to a Pulse of the Neonicotinoid Pesticide Imidacloprid. PLoS ONE, 2013, 8, e79872.	1.1	46
272	Plant-Pollinator Coextinctions and the Loss of Plant Functional and Phylogenetic Diversity. PLoS ONE, 2013, 8, e81242.	1.1	22
273	Genetic Variability of the Neogregarine Apicystis bombi, an Etiological Agent of an Emergent Bumblebee Disease. PLoS ONE, 2013, 8, e81475.	1.1	28
274	Linking Land Cover Data and Crop Yields for Mapping and Assessment of Pollination Services in Europe. Land, 2013, 2, 472-492.	1.2	97

#	Article	IF	Citations
275	Climatic, Regional Land-Use Intensity, Landscape, and Local Variables Predicting Best the Occurrence and Distribution of Bee Community Diversity in Various Farmland Habitats in Uganda. Psyche: Journal of Entomology, 2013, 2013, 1-38.	0.4	3
276	EFSA's 18th Scientific Colloquium on Towards holistic approaches to the risk assessment of multiple stressors in bees. EFSA Supporting Publications, 2013, 10, 509E.	0.3	O
277	Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across Europe. PLoS ONE, 2014, 9, e82996.	1.1	171
278	Microbial Communities of Three Sympatric Australian Stingless Bee Species. PLoS ONE, 2014, 9, e105718.	1.1	56
279	Promoting Pollinating Insects in Intensive Agricultural Matrices: Field-Scale Experimental Manipulation of Hay-Meadow Mowing Regimes and Its Effects on Bees. PLoS ONE, 2014, 9, e85635.	1.1	58
280	Sex-Specific Differences in Pathogen Susceptibility in Honey Bees (Apis mellifera). PLoS ONE, 2014, 9, e85261.	1.1	52
281	Pollinator Interactions with Yellow Starthistle (Centaurea solstitialis) across Urban, Agricultural, and Natural Landscapes. PLoS ONE, 2014, 9, e86357.	1.1	45
282	Railway Embankments as New Habitat for Pollinators in an Agricultural Landscape. PLoS ONE, 2014, 9, e101297.	1.1	51
283	Imidacloprid Alters Foraging and Decreases Bee Avoidance of Predators. PLoS ONE, 2014, 9, e102725.	1.1	77
284	Honeybee Colony Disorder in Crop Areas: The Role of Pesticides and Viruses. PLoS ONE, 2014, 9, e103073.	1.1	139
285	Impact of Chronic Neonicotinoid Exposure on Honeybee Colony Performance and Queen Supersedure. PLoS ONE, 2014, 9, e103592.	1.1	182
286	So Near and Yet So Far: Harmonic Radar Reveals Reduced Homing Ability of Nosema Infected Honeybees. PLoS ONE, 2014, 9, e103989.	1.1	108
287	Habitat and Forage Associations of a Naturally Colonising Insect Pollinator, the Tree Bumblebee Bombus hypnorum. PLoS ONE, 2014, 9, e107568.	1.1	33
288	Neonicotinoid-Contaminated Puddles of Water Represent a Risk of Intoxication for Honey Bees. PLoS ONE, 2014, 9, e108443.	1.1	106
289	Phenology of Migration and Decline in Colony Numbers and Crop Hosts of Giant Honeybee (<i>Apis) Tj ETQq0 0</i>	0 rgBT /O	verlock 10 Tf
290	Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ, 2014, 2, e328.	0.9	183
291	Assessing and monitoring impacts of genetically modified plants on agro-ecosystems: the approach of AMIGA project. Entomologia, 2014, , .	1.0	11
292	SUPER RESOLUTION LASER RADAR WITH BLINKING ATMOSPHERIC PARTICLES APPLICATION TO INTERACTING FLYING INSECTS (Invited Paper). Progress in Electromagnetics Research, 2014, 147, 141-151.	1.6	89

#	Article	IF	CITATIONS
293	Pesticides, Food Safety and Integrated Pest Management., 2014, , 167-199.		11
294	Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Functional Ecology, 2014, 28, 1459-1471.	1.7	220
295	An atypical residue in the pore of Varroa destructor GABA-activated RDL receptors affects picrotoxin block and thymol modulation. Insect Biochemistry and Molecular Biology, 2014, 55, 19-25.	1.2	21
296	Evaluating the Qualitative Effectiveness of a Novel Pollinator: a Case Study of Two Endemic Hawaiian Plants. Biotropica, 2014, 46, 732-739.	0.8	7
297	Extremely frequent bee visits increase pollen deposition but reduce drupelet set in raspberry. Journal of Applied Ecology, 2014, 51, 1603-1612.	1.9	94
298	Bumblebee-mediated pollination of English populations of the Military Orchid (<i>Orchis) Tj ETQq1 1 0.784314 rg Journal of Botany, 2014, 4, 122-133.</i>	gBT /Overlo 0.2	ock 10 Tf 50 2
299	Lack of Pollinators Limits Fruit Production in Commercial Blueberry (<1>Vaccinium) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf 5	50 502 Td (c
300	Is Cut-Flower Industry Promotion by the Government Negatively Affecting Pollinator Biodiversity and Environmental/Human Health in Uganda?. ISRN Biodiversity, 2014, 2014, 1-52.	0.5	1
301	Aspects of Landscape and Pollinatorsâ€"What is Important to Bee Conservation?. Diversity, 2014, 6, 158-175.	0.7	53
302	Crop Pollination. , 2014, , 408-418.		2
303	CLIMBER: Climatic niche characteristics ofÂtheÂbutterflies in Europe. ZooKeys, 2014, 367, 65-84.	0.5	50
304	On the Front Line: Quantitative Virus Dynamics in Honeybee (Apis mellifera L.) Colonies along a New Expansion Front of the Parasite Varroa destructor. PLoS Pathogens, 2014, 10, e1004323.	2.1	195
305	Pollination ecosystem services in South African agricultural systems. South African Journal of Science, 2014, 110, 9.	0.3	28
306	Modeling Pollinator Community Response to Contrasting Bioenergy Scenarios. PLoS ONE, 2014, 9, e110676.	1.1	23
307	Examination of mass honey bee death at the entrance to hives in a paddy rice production district in Japan: the influence of insecticides sprayed on nearby rice fields. Journal of Apicultural Research, 2014, 53, 599-606.	0.7	9
308	An assessment of <i>Osmia rufa < /i> (syn. <i>bicornis < /i>) as a pollinator of the sour cherry (<i>Prunus) Tj ETQq1 1</i></i></i>	0,784314 0.7	rgBT /Overl
309	Phenology of high-arctic butterflies and their floral resources: Species-specific responses to climate change. Environmental Epigenetics, 2014, 60, 243-251.	0.9	49
310	Influence of Nest Box Color and Release Sites on <l>Osmia lignaria</l> (Hymenoptera:) Tj ETQq1 1 0.78 Entomology, 2014, 107, 2045-2054.	34314 rgB ⁻ 0.8	T /Overlock 24

#	ARTICLE	IF	CITATIONS
311	A national survey of managed honey bee 2012–2013 annual colony losses in the USA: results from the Bee Informed Partnership. Journal of Apicultural Research, 2014, 53, 1-18.	0.7	167
312	Do plant reproductive traits influence species susceptibility to decline?. Plant Ecology and Evolution, 2014, 147, 154-164.	0.3	21
313	Does Urbanization Promote Floral Diversification? Implications from Changes in Herkogamy with Pollinator Availability in an Urban-Rural Area. American Naturalist, 2014, 184, 258-267.	1.0	34
314	A survey of managed honey bee colony losses in the Republic of South Africa–2009 to 2011. Journal of Apicultural Research, 2014, 53, 35-42.	0.7	109
315	Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success. Agricultural and Forest Entomology, 2014, 16, 119-128.	0.7	154
316	Mutualistic Interactions and Biological Invasions. Annual Review of Ecology, Evolution, and Systematics, 2014, 45, 89-113.	3.8	324
317	Applying resilience thinking to production ecosystems. Ecosphere, 2014, 5, 1-11.	1.0	84
318	Disentangling multiple interactions in the hive ecosystem. Trends in Parasitology, 2014, 30, 556-561.	1.5	75
319	Influence of combined pesticide and parasite exposure on bumblebee colony traits in the laboratory. Journal of Applied Ecology, 2014, 51, 450-459.	1.9	94
320	Impact of chronic exposure to a pyrethroid pesticide on bumblebees and interactions with a trypanosome parasite. Journal of Applied Ecology, 2014, 51, 460-469.	1.9	54
321	Maize pollen foraging by honey bees in relation to crop area and landscape context. Basic and Applied Ecology, 2014, 15, 677-684.	1.2	38
322	Colony-Level Variation in Pollen Collection and Foraging Preferences Among Wild-Caught Bumble Bees (Hymenoptera: Apidae). Environmental Entomology, 2014, 43, 393-401.	0.7	15
323	National patterns of functional diversity and redundancy in predatory ground beetles and bees associated with key <scp>UK</scp> arable crops. Journal of Applied Ecology, 2014, 51, 142-151.	1.9	66
324	Bumblebees in the city: abundance, species richness and diversity in two urban habitats. Journal of Insect Conservation, 2014, 18, 1185-1191.	0.8	57
325	Management defines species turnover of bees and flowering plants in vineyards. Agricultural and Forest Entomology, 2014, 16, 95-101.	0.7	19
326	Building Taxon Substitution Guidelines on a Biological Control Foundation. Restoration Ecology, 2014, 22, 437-441.	1.4	14
327	lvy: an underappreciated key resource to flowerâ€visiting insects in autumn. Insect Conservation and Diversity, 2014, 7, 91-102.	1.4	37
328	Bowling for bees: optimal sample number for "bee bowl―sampling transects. Journal of Insect Conservation, 2014, 18, 1105-1113.	0.8	23

#	Article	IF	CITATIONS
329	Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17552-17557.	3.3	264
330	Insect pollination and selfâ€incompatibility in edible and/or medicinal crops in southwestern China, a global hotspot of biodiversity. American Journal of Botany, 2014, 101, 1700-1710.	0.8	18
331	The sudden collapse of pollinator communities. Ecology Letters, 2014, 17, 350-359.	3.0	213
332	Beekeeping for Poverty Alleviation and Livelihood Security. , 2014, , .		33
333	Escape from bacterial iron piracy through rapid evolution of transferrin. Science, 2014, 346, 1362-1366.	6.0	186
334	Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science, 2014, 346, 1360-1362.	6.0	318
335	Massâ€flowering crops increase richness of cavityâ€nesting bees and wasps in modern agroâ€ecosystems. GCB Bioenergy, 2014, 6, 219-226.	2.5	71
336	The effects of landscape on bumblebees to ensure crop pollination in the highland agricultural ecosystems in <scp>C</scp> hina. Journal of Applied Entomology, 2014, 138, 555-565.	0.8	14
337	On the natural history of neonicotinoids and bees. Functional Ecology, 2014, 28, 1311-1312.	1.7	3
338	Comparison of two molecular diagnostic tools for the quantification of <i><scp>C</scp>rithidia bombi</i> , a parasite of bumblebees. Entomologia Experimentalis Et Applicata, 2014, 150, 191-197.	0.7	3
339	Reproductive interference between honeybee species in artificial sympatry. Molecular Ecology, 2014, 23, 1096-1107.	2.0	20
340	Combining laboratory and field approaches to investigate the importance of flower nectar in the horizontal transmission of a bumblebee parasite. Entomologia Experimentalis Et Applicata, 2014, 152, 209-215.	0.7	24
341	Fifteen years of change: What a comparison of the two Flora Conservanda lists can tell us about rare plant species in the New England landscape. Rhodora, 2014, 116, 428-493.	0.0	1
342	Dynamics of the Presence of Israeli Acute Paralysis Virus in Honey Bee Colonies with Colony Collapse Disorder. Viruses, 2014, 6, 2012-2027.	1.5	44
343	Slow bee paralysis virus and its transmission in honey bee pupae byVarroa destructor. Journal of Apicultural Research, 2014, 53, 146-154.	0.7	10
344	Insights into the biodiversity of the Succulent Karoo hotspot of South Africa: the population genetics of a rare and endemic halictid bee, Patellapis doleritica. Conservation Genetics, 2014, 15, 1491-1502.	0.8	3
345	Enhancing crop shelf life with pollination. Agriculture and Food Security, 2014, 3, .	1.6	14
346	A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140558.	1.2	308

#	Article	IF	Citations
347	Cross-pollination benefits differ among oilseed rape varieties. Journal of Agricultural Science, 2014, 152, 770-778.	0.6	57
348	Listmania: The Strengths and Weaknesses of Lists of Garden Plants to Help Pollinators. BioScience, 2014, 64, 1019-1026.	2.2	64
349	Pollen Loads and Specificity of Native Pollinators of Lowbush Blueberry. Journal of Economic Entomology, 2014, 107, 1156-1162.	0.8	26
350	Pesticide Residues and Bees – A Risk Assessment. PLoS ONE, 2014, 9, e94482.	1.1	615
351	Landscape alteration and habitat modification: impacts on plant–pollinator systems. Current Opinion in Insect Science, 2014, 5, 44-49.	2.2	17
352	<i>Apis mellifera</i> haemocytes <i>iin-vitro</i> , What type of cells are they? Functional analysis before and after pupal metamorphosis. Journal of Apicultural Research, 2014, 53, 576-589.	0.7	15
353	Color Difference and Memory Recall in Free-Flying Honeybees: Forget the Hard Problem. Insects, 2014, 5, 629-638.	1.0	15
354	Reproduction and Pollination of the Endangered Dwarf Bear-Poppy <i>Arctomecon humilis</i> (Papaveraceae) across a Quarter Century: Unraveling of a Pollination Web?. Western North American Naturalist, 2014, 74, 311-324.	0.2	13
355	Pollination and floral biology of Adonis vernalis L. (Ranunculaceae) – a case study of threatened species. Acta Societatis Botanicorum Poloniae, 2014, 83, 29-37.	0.8	15
356	Floral biology of Senecio macrophyllus M. BIEB. (Asteraceae), a rare Central European steppe plant. Acta Societatis Botanicorum Poloniae, 2014, 83, 17-27.	0.8	15
357	Prevalence and phylogenetic analysis of honey bee viruses in the BiobÃo Region of Chile and their association with other honey bee pathogens. Chilean Journal of Agricultural Research, 2014, 74, 170-177.	0.4	22
358	Evaluation of Cage Designs and Feeding Regimes for Honey Bee (Hymenoptera: Apidae) Laboratory Experiments. Journal of Economic Entomology, 2014, 107, 54-62.	0.8	33
359	Effects of seasonality and farm proximity to forest on Hymenoptera in Tarraz \tilde{A}^{o} coffee farms. International Journal of Biodiversity Science, Ecosystem Services & Management, 2014, 10, 128-132.	2.9	4
360	Continentalâ€scale patterns of pathogen prevalence: a case study on the corncrake. Evolutionary Applications, 2014, 7, 1043-1055.	1.5	13
361	Field of Dreams: Restitution of Pollinator Services in Restored Birdâ€Pollinated Plant Populations. Restoration Ecology, 2014, 22, 832-840.	1.4	31
362	Does the invasive Lupinus polyphyllus increase pollinator visitation to a native herb through effects on pollinator population sizes?. Oecologia, 2014, 174, 217-226.	0.9	23
363	Agrochemicals in field marginsâ€"Field evaluation of plant reproduction effects. Agriculture, Ecosystems and Environment, 2014, 189, 82-91.	2.5	38
364	Effects of the neonicotinoid pesticide thiamethoxam at field-realistic levels on microcolonies of Bombus terrestris worker bumble bees. Ecotoxicology and Environmental Safety, 2014, 100, 153-158.	2.9	85

#	Article	IF	CITATIONS
365	Presence of Nosema ceranae associated with honeybee queen introductions. Infection, Genetics and Evolution, 2014, 23, 161-168.	1.0	19
366	Survival, reproduction and population growth of the bee pollinator, <i>Osmia rufa</i> (Hymenoptera:) Tj ETQq1 113-121.	0.784314 1.4	rgBT /Over 50
367	Toxicity of insecticides used in the Brazilian melon crop to the honey bee Apis mellifera under laboratory conditions. Apidologie, 2014, 45, 34-44.	0.9	34
368	Quantifying and mapping ecosystem services: Demand and supply of pollination in the European Union. Ecological Indicators, 2014, 36, 131-141.	2.6	185
369	Clearance of ingested neonicotinoid pesticide (imidacloprid) in honey bees (<i>Apis mellifera</i>) and bumblebees (<i>Bombus terrestris</i>). Pest Management Science, 2014, 70, 332-337.	1.7	100
370	Competition and facilitation among plants for pollination: can pollinator abundance shift the plant–plant interactions?. Plant Ecology, 2014, 215, 3-13.	0.7	44
371	Restoration of plant–pollinator interaction networks via species translocation. Theoretical Ecology, 2014, 7, 209-220.	0.4	17
372	Commercial bumblebee hives to assess an anthropogenic environment for pollinator support: a case study in the region of Ghent (Belgium). Environmental Monitoring and Assessment, 2014, 186, 2357-2367.	1.3	23
373	Biodiversity, photosynthetic mode, and ecosystem services differ between native and novel ecosystems. Oecologia, 2014, 175, 687-697.	0.9	35
374	Early mass-flowering crops mitigate pollinator dilution in late-flowering crops. Landscape Ecology, 2014, 29, 425-435.	1.9	90
375	Distance to semi-natural grassland influences seed production of insect-pollinated herbs. Oecologia, 2014, 175, 199-208.	0.9	25
376	Vespa velutina: a new invasive predator of honeybees in Europe. Journal of Pest Science, 2014, 87, 1-16.	1.9	231
377	Estimating crop pollinator population using mark–recapture method. Apidologie, 2014, 45, 205-214.	0.9	14
378	Do wild bees complement honeybee pollination of confection sunflowers in Israel?. Apidologie, 2014, 45, 235-247.	0.9	36
379	Behavioural evidence of colour vision in free flying stingless bees. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2014, 200, 485-496.	0.7	45
380	Faba bean gene-pools development for low-input agriculture: understanding early stages of natural selection. Euphytica, 2014, 196, 77-93.	0.6	7
381	Valuing Provisioning Ecosystem Services in Agriculture: The Impact of Climate Change on Food Production in the United Kingdom. Environmental and Resource Economics, 2014, 57, 197-214.	1.5	27
382	Climate, physiological tolerance and sexâ€biased dispersal shape genetic structure of <scp>N</scp> eotropical orchid bees. Molecular Ecology, 2014, 23, 1874-1890.	2.0	62

#	Article	IF	CITATIONS
383	Flower plantings increase wild bee abundance and the pollination services provided to a pollinationâ€dependent crop. Journal of Applied Ecology, 2014, 51, 890-898.	1.9	426
384	Effect of local spatial plant distribution and conspecific density on bumble bee foraging behaviour. Ecological Entomology, 2014, 39, 334-342.	1.1	16
385	Integrated Pest Management. , 2014, , .		43
386	Constraints imposed by pollinator behaviour on the ecology and evolution of plant mating systems. Journal of Evolutionary Biology, 2014, 27, 1413-1430.	0.8	70
387	Different responses of bees and hoverflies to land use in an urban–rural gradient show the importance of the nature of the rural land use. Landscape and Urban Planning, 2014, 126, 31-41.	3.4	64
388	Natural habitat loss and exotic plants reduce the functional diversity of flower visitors in a heterogeneous subtropical landscape. Functional Ecology, 2014, 28, 1117-1126.	1.7	19
389	Resistance of developing honeybee larvae during chronic exposure to dietary nicotine. Journal of Insect Physiology, 2014, 69, 74-79.	0.9	31
390	Landscape diversity moderates the effects of bee visitation frequency to flowers on crop production. Journal of Applied Ecology, 2014, 51, 1347-1356.	1.9	37
391	A reference process for automating bee species identification based on wing images and digital image processing. Ecological Informatics, 2014, 24, 248-260.	2.3	30
392	Economic and ecological implications of geographic bias in pollinator ecology in the light of pollinator declines. Oikos, 2014, 123, 401-407.	1.2	79
393	Immunogene and viral transcript dynamics during parasitic <i>Varroa destructor</i> mite infection of developing honey bee (<i>Apis mellifera</i>) pupae. Journal of Experimental Biology, 2014, 217, 1710-1718.	0.8	93
394	Specialized ecological interactions and plant species rarity: The role of pollinators and mycorrhizal fungi across multiple spatial scales. Biological Conservation, 2014, 169, 285-295.	1.9	63
395	State-space modelling reveals proximate causes of harbour seal population declines. Oecologia, 2014, 174, 151-162.	0.9	22
396	Role of floral resources in the conservation of pollinator communities in cider-apple orchards. Agriculture, Ecosystems and Environment, 2014, 183, 118-126.	2.5	54
397	Environmentally friendly management as an intermediate strategy between organic and conventional agriculture to support biodiversity. Biological Conservation, 2014, 178, 146-154.	1.9	38
398	Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis) Tj ETQq $1\ 1\ 0$.	784314 rg	gBT /Qverloc
399	Honeybee nutrition is linked to landscape composition. Ecology and Evolution, 2014, 4, 4195-4206.	0.8	101
400	Honey bee colonies act as reservoirs for two <i>Spiroplasma</i> facultative symbionts and incur complex, multiyear infection dynamics. MicrobiologyOpen, 2014, 3, 341-355.	1.2	61

#	Article	IF	Citations
401	Pollinator assemblages on dandelions and white clover in urban and suburban lawns. Journal of Insect Conservation, 2014, 18, 863-873.	0.8	95
402	No Evidence of Habitat Loss Affecting the Orchid Bees Eulaema nigrita Lepeletier and Eufriesea auriceps Friese (Apidae: Euglossini) in the Brazilian Cerrado Savanna. Neotropical Entomology, 2014, 43, 509-518.	0.5	21
403	Competition for pollination by the lesser shortâ€ŧailed bat and its influence on the flowering phenology of some <scp>N</scp> ew <scp>Z</scp> ealand endemics. Journal of Zoology, 2014, 293, 281-288.	0.8	9
404	A field study examining the effects of exposure to neonicotinoid seed-treated corn on commercial bumble bee colonies. Ecotoxicology, 2014, 23, 1755-1763.	1.1	56
405	Global malnutrition overlaps with pollinator-dependent micronutrient production. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141799.	1.2	124
406	Integrating Homo sapiens into ecological models: Imperatives of climate change. Ecological Complexity, 2014, 20, 325-334.	1.4	4
407	Fauna in decline: Meek shall inherit. Science, 2014, 345, 1129-1129.	6.0	14
408	Logging Legacies Affect Insect Pollinator Communities in Southern Appalachian Forests. Southeastern Naturalist, 2014, 13, 317.	0.2	27
409	Evolutionary and plastic responses to climate change in terrestrial plant populations. Evolutionary Applications, 2014, 7, 123-139.	1.5	462
410	Density of insectâ€pollinated grassland plants decreases with increasing surrounding landâ€use intensity. Ecology Letters, 2014, 17, 1168-1177.	3.0	87
411	Flower Visitors of <i>Hymenocallis coronaria</i> (Rocky Shoals Spider-lily) of Landsford Canal State Park — South Carolina, USA. Natural Areas Journal, 2014, 34, 332-337.	0.2	3
412	Secondary extinctions of biodiversity. Trends in Ecology and Evolution, 2014, 29, 664-672.	4.2	134
413	Crop-Emptying Rate and the Design of Pesticide Risk Assessment Schemes in the Honey Bee and Wild Bees (Hymenoptera: Apidae). Journal of Economic Entomology, 2014, 107, 38-46.	0.8	10
414	Distance from forest edge affects bee pollinators in oilseed rape fields. Ecology and Evolution, 2014, 4, 370-380.	0.8	90
415	A Comparison of Social Bee–Plant Networks between Two Urban Areas. Neotropical Entomology, 2014, 43, 399-408.	0.5	9
416	Risks of neonicotinoid insecticides to honeybees. Environmental Toxicology and Chemistry, 2014, 33, 719-731.	2.2	216
417	Plant Pollination and Dispersal. , 2014, , 89-117.		3
418	Bee pollination improves crop quality, shelf life and commercial value. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132440.	1.2	305

#	Article	IF	Citations
419	Unpaved roads disrupt the effect of herbivores and pollinators on the reproduction of a dominant shrub. Basic and Applied Ecology, 2014, 15, 524-533.	1.2	13
420	Defaunation in the Anthropocene. Science, 2014, 345, 401-406.	6.0	2,810
421	Reversing defaunation: Restoring species in a changing world. Science, 2014, 345, 406-412.	6.0	500
422	Effect of oral infection with Kashmir bee virus and Israeli acute paralysis virus on bumblebee (Bombus) Tj ETQq1 1	0.784314 1.5	rgBT /Over
423	Gamma irradiation of pollen and eradication of Israeli acute paralysis virus. Journal of Invertebrate Pathology, 2014, 121, 74-77.	1.5	17
424	Spatiotemporal distribution of floral resources in a Brazilian city: Implications for the maintenance of pollinators, especially bees. Urban Forestry and Urban Greening, 2014, 13, 689-696.	2.3	38
425	Exclusion of agricultural lands in spatial conservation prioritization strategies: consequences for biodiversity and ecosystem service representation. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141529.	1.2	20
426	Following beekeeping: More-than-human practice in agrifood. Journal of Rural Studies, 2014, 36, 149-159.	2.1	43
427	Wild bumble bees reduce pollination deficits in a crop mostly visited by managed honey bees. Agriculture, Ecosystems and Environment, 2014, 197, 255-263.	2.5	38
428	When mutualism goes bad: densityâ€dependent impacts of introduced bees on plant reproduction. New Phytologist, 2014, 204, 322-328.	3.5	95
429	Reproductive Ecology of Flowering Plants: A Manual. , 2014, , .		46
430	Disentangling multiple drivers of pollination in a landscape-scale experiment. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132667.	1.2	33
431	Fineâ€scale spatial genetic structure of common and declining bumble bees across an agricultural landscape. Molecular Ecology, 2014, 23, 3384-3395.	2.0	41
432	Native plants are the bee's knees: local and landscape predictors of bee richness and abundance in backyard gardens. Urban Ecosystems, 2014, 17, 641-659.	1.1	151
433	Mathematical Programming Models for Determining the Optimal Location of Beehives. Bulletin of Mathematical Biology, 2014, 76, 997-1016.	0.9	13
434	Bumble bees exhibit daily behavioral patterns in pollen foraging. Arthropod-Plant Interactions, 2014, 8, 273.	0.5	20
435	Differential insecticide susceptibility of the Neotropical stingless bee Melipona quadrifasciata and the honey bee Apis mellifera. Apidologie, 2014, 45, 626-636.	0.9	65
436	Distinguishing feral and managed honeybees (Apis mellifera) using stable carbon isotopes. Apidologie, 2014, 45, 653-663.	0.9	4

#	Article	IF	CITATIONS
437	Largeâ€scale tradeâ€off between agricultural intensification and crop pollination services. Frontiers in Ecology and the Environment, 2014, 12, 212-217.	1.9	144
438	Systemic Spread and Propagation of a Plant-Pathogenic Virus in European Honeybees, Apis mellifera. MBio, 2014, 5, e00898-13.	1.8	81
439	Insect–flower interactions: network structure in organic versus conventional vineyards. Animal Conservation, 2014, 17, 401-409.	1.5	19
440	Shifts in pollinator population structure may jeopardize pollination service. Journal of Theoretical Biology, 2014, 352, 24-30.	0.8	6
441	Effects of farming intensity, crop rotation and landscape heterogeneity on field bean pollination. Agriculture, Ecosystems and Environment, 2014, 184, 145-148.	2.5	51
442	The identity of crop pollinators helps target conservation for improved ecosystem services. Biological Conservation, 2014, 169, 128-135.	1.9	151
443	Living on the edge: Fig tree phenology at the northern range limit of monoecious Ficus in China. Acta Oecologica, 2014, 57, 135-141.	0.5	12
444	Spatio-temporal variation in species assemblages in field edges: seasonally distinct responses of solitary bees to local habitat characteristics and landscape conditions. Biodiversity and Conservation, 2014, 23, 2393-2414.	1.2	10
445	Nutrition affects survival in <scp>A</scp> frican honeybees exposed to interacting stressors. Functional Ecology, 2014, 28, 913-923.	1.7	68
446	Quantifying variation among garden plants in attractiveness to bees and other flowerâ€visiting insects. Functional Ecology, 2014, 28, 364-374.	1.7	160
447	Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agriculture, Ecosystems and Environment, 2014, 184, 34-40.	2.5	239
448	Does communityâ€level floral abundance affect the pollination success of a rewardless orchid, <i>Calanthe reflexa</i> <scp>M</scp> axim.?. Plant Species Biology, 2014, 29, 159-168.	0.6	13
449	Estimating the Potential Range Expansion and Environmental Impact of the Invasive Bee-Hawking Hornet, Vespa velutina nigrithorax. , 2014, , 269-288.		3
450	Terrestrial and Inland Water Systems. , 0, , 271-360.		25
451	Valuing pollination services: a comparison of approaches. , 2014, , .		0
453	Inferring the mode of colonization of the rapid range expansion of a solitary bee from multilocus <scp>DNA</scp> sequence variation. Journal of Evolutionary Biology, 2014, 27, 116-132.	0.8	15
455	Dominance of the semi-wild honeybee as coffee pollinator across a gradient of shade-tree structure in Ethiopia. Journal of Tropical Ecology, 2014, 30, 401-408.	0.5	18
456	A descriptive study of the prevalence of parasites and pathogens in Chinese black honeybees. Parasitology, 2015, 142, 1364-1374.	0.7	3

#	Article	IF	CITATIONS
457	Microbiota associated with pollen, bee bread, larvae and adults of solitary bee <i>Osmia cornuta</i> (Hymenoptera: Megachilidae). Bulletin of Entomological Research, 2015, 105, 470-476.	0.5	37
458	Superorganism resilience: eusociality and susceptibility of ecosystem service providing insects to stressors. Current Opinion in Insect Science, 2015, 12, 109-112.	2.2	105
459	A multilevel analysis on pollination-related policies. Ecosystem Services, 2015, 14, 133-143.	2.3	10
460	The bee fauna of large parks in downtown Paris, France. Annales De La Societe Entomologique De France, 2015, 51, 487-493.	0.4	29
461	Bumble Bees (Hymenoptera: Apidae) of Oklahoma: Past and Present Biodiversity. Journal of the Kansas Entomological Society, 2015, 88, 418.	0.1	11
462	Urban drivers of plantâ€pollinator interactions. Functional Ecology, 2015, 29, 879-888.	1.7	199
463	Red mason bees cannot compete with honey bees for floral resources in a cage experiment. Ecology and Evolution, 2015, 5, 5049-5056.	0.8	45
464	Susceptibility of pollinators to ongoing landscape changes depends on landscape history. Diversity and Distributions, 2015, 21, 1129-1140.	1.9	43
465	Out of Africa: evidence of the obligate mutualism between long corolla tubed plant and longâ€ŧongued fly in the Himalayas. Ecology and Evolution, 2015, 5, 5240-5251.	0.8	28
466	Experimental evidence that wildflower strips increase pollinator visits to crops. Ecology and Evolution, 2015, 5, 3523-3530.	0.8	106
467	Seasonal cycles, phylogenetic assembly, and functional diversity of orchid bee communities. Ecology and Evolution, 2015, 5, 1896-1907.	0.8	26
468	How much flowerâ€rich habitat is enough for wild pollinators? Answering a key policy question with incomplete knowledge. Ecological Entomology, 2015, 40, 22-35.	1.1	130
469	<scp>DNA</scp> barcoding largely supports 250Âyears of classical taxonomy: identifications for <scp>C</scp> entral <scp>E</scp> uropean bees (<scp>H</scp> ymenoptera, <scp>A</scp> poidea) Tj ETQq0 0 0	rg &1 /Ov€	erlaøk 10 Tf 50
470	Statement on the suitability of the BEEHAVE model for its potential use in a regulatory context and for the risk assessment of multiple stressors in honeybees at the landscape level. EFSA Journal, 2015, 13, 4125.	0.9	31
471	Field populations of native Indian honey bees from pesticide intensive agricultural landscape show signs of impaired olfaction. Scientific Reports, 2015, 5, 12504.	1.6	18
472	The combined effect of clothianidin and environmental stress on the behavioral and reproductive function in male mice. Journal of Veterinary Medical Science, 2015, 77, 1207-1215.	0.3	64
473	Neonicotinoid pesticides severely affect honey bee queens. Scientific Reports, 2015, 5, 14621.	1.6	190
474	Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing. Scientific Reports, 2015, 5, 16224.	1.6	57

#	ARTICLE	IF	CITATIONS
475	Responses of Plant Community Composition and Biomass Production to Warming and Nitrogen Deposition in a Temperate Meadow Ecosystem. PLoS ONE, 2015, 10, e0123160.	1.1	38
476	Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide. Scientific Reports, 2015, 5, 16508.	1.6	141
477	Deer overbrowsing on autumnâ€flowering plants causes bumblebee decline and impairs pollination service. Ecosphere, 2015, 6, 1-13.	1.0	24
478	Passive laboratory surveillance in Spain: pathogens as risk factors for honey bee colony collapse. Journal of Apicultural Research, 2015, 54, 525-531.	0.7	10
479	Regional vegetation change and implications for local conservation: An example from West Cornwall (United Kingdom). Global Ecology and Conservation, 2015, 4, 405-413.	1.0	6
480	Does ingestion of neem-contaminated diet cause mortality of honey bee larvae and foragers?. Journal of Apicultural Research, 2015, 54, 405-410.	0.7	6
481	Pesticide use within a pollinator-dependent crop has negative effects on the abundance and species richness of sweat bees, Lasioglossum spp., and on bumble bee colony growth. Journal of Insect Conservation, 2015, 19, 999-1010.	0.8	33
482	The Activity of Cholinesterases in Diapausing and Flying Red Mason Bees <1>Osmia bicornis 1 (Megachilidae). Folia Biologica, 2015, 63, 235-240.	0.1	1
483	Rearing and foraging affects bumblebee (<scp><i>B</i></scp> <i>ombus terrestris</i>) gut microbiota. Environmental Microbiology Reports, 2015, 7, 634-641.	1.0	15
484	Reduced-risk insecticides in Neotropical stingless bee species: impact on survival and activity. Annals of Applied Biology, 2015, 167, 186-196.	1.3	51
485	Genetic structure and population diversity of eleven edible herbs of Eastern Crete. Journal of Biological Research, 2015, 22, 7.	2.2	7
486	Agriculture and the threat to biodiversity in sub-saharan africa. Environmental Research Letters, 2015, 10, 095015.	2.2	49
487	Ecological traits affect the sensitivity of bees to landâ€use pressures in <scp>E</scp> uropean agricultural landscapes. Journal of Applied Ecology, 2015, 52, 1567-1577.	1.9	127
488	Indirect effects of grazing intensity on pollinators and floral visitation. Ecological Entomology, 2015, 40, 451-460.	1.1	34
489	Northern Range Extension of the Figeater Beetle, Cotinis mutabilis (Scarabaeidae: Cetoniinae), Into Nevada, Utah, and Colorado. Western North American Naturalist, 2015, 75, 8-13.	0.2	2
490	Assessing spatial population structure and heterogeneity in the dronefly. Journal of Zoology, 2015, 297, 286-300.	0.8	8
491	Landscape complexity has limited effects on the genetic structure of two arable plant species, <i>Adonis aestivalis </i> and <i>Consolida regalis </i> Weed Research, 2015, 55, 406-415.	0.8	10
492	Genome analyses suggest the presence of polyploidy and recent humanâ€driven expansions in eight global populations of the honeybee pathogen <scp><i>N</i></scp> <i>osema ceranae</i> Environmental Microbiology, 2015, 17, 4443-4458.	1.8	66

#	Article	IF	CITATIONS
493	Temperature versus resource constraints: which factors determine bee diversity on <scp>M</scp> ount <scp>K</scp> ilimanjaro, <scp>T</scp> anzania?. Global Ecology and Biogeography, 2015, 24, 642-652.	2.7	73
494	EDITOR'S CHOICE: Enhancing gardens as habitats for flowerâ€visiting aerial insects (pollinators): should we plant native or exotic species?. Journal of Applied Ecology, 2015, 52, 1156-1164.	1.9	186
495	Highâ€throughput monitoring of wild bee diversity and abundance via mitogenomics. Methods in Ecology and Evolution, 2015, 6, 1034-1043.	2.2	119
496	Pollinator rarity as a threat to a plant with a specialized pollination system. Botanical Journal of the Linnean Society, 2015, 179, 511-525.	0.8	30
497	Changes in plant lifeâ€form, pollination syndrome and breeding system at a regional scale promoted by land use intensity. Diversity and Distributions, 2015, 21, 1319-1328.	1.9	10
498	Can poisons stimulate bees? Appreciating the potential of hormesis in bee-pesticide research. Pest Management Science, 2015, 71, 1368-1370.	1.7	59
499	Wings as a new route of exposure to pesticides in the honey bee. Environmental Toxicology and Chemistry, 2015, 34, 1983-1988.	2.2	14
500	Biomonitoring the Environmental Quality by Bees. , 0, , .		2
501	Diversity of the Insect Visitors on <i>Calluna vulgaris </i> (Ericaceae) in Southern France Heathlands. Journal of Insect Science, 2015, 15, 130.	0.6	12
502	Honey Bees (Apis mellifera L.) and Pollination Issues: Current status, impacts and potential drivers of decline. Journal of Agricultural Science, 2015, 7, .	0.1	23
503	Effects of abiotic factors on the foraging activity of <i>Apis mellifera</i> Linnaeus, 1758 in inflorescences of <i>Vernonia polyanthes</i> Less (Asteraceae). Acta Scientiarum - Animal Sciences, 2015, 37, 405.	0.3	10
504	Optimising environmental risk assessments. EMBO Reports, 2015, 16, 1060-1063.	2.0	51
505	Pollinator Power: Nutrition Security Benefits of an Ecosystem Service. Environmental Health Perspectives, 2015, 123, A210-5.	2.8	9
506	Colonies of Bumble Bees (Bombus impatiens) Produce Fewer Workers, Less Bee Biomass, and Have Smaller Mother Queens Following Fungicide Exposure. Insects, 2015, 6, 478-488.	1.0	82
507	Neonicotinoid Insecticide Residues in Surface Water and Soil Associated with Commercial Maize (Corn) Fields in Southwestern Ontario. PLoS ONE, 2015, 10, e0118139.	1.1	179
508	Deep Sequencing and Ecological Characterization of Gut Microbial Communities of Diverse Bumble Bee Species. PLoS ONE, 2015, 10, e0118566.	1.1	22
509	Assessment of Chronic Sublethal Effects of Imidacloprid on Honey Bee Colony Health. PLoS ONE, 2015, 10, e0118748.	1.1	139
510	â€~Bee Hotels' as Tools for Native Pollinator Conservation: A Premature Verdict?. PLoS ONE, 2015, 10, e0122126.	1.1	97

#	Article	IF	Citations
511	Reduced SNP Panels for Genetic Identification and Introgression Analysis in the Dark Honey Bee (Apis) Tj ETQq0	0 Q.rgBT /	Overlock 10 T
512	16S rRNA Amplicon Sequencing Demonstrates that Indoor-Reared Bumblebees (Bombus terrestris) Harbor a Core Subset of Bacteria Normally Associated with the Wild Host. PLoS ONE, 2015, 10, e0125152.	1.1	51
513	Nest Suitability, Fine-Scale Population Structure and Male-Mediated Dispersal of a Solitary Ground Nesting Bee in an Urban Landscape. PLoS ONE, 2015, 10, e0125719.	1.1	44
514	Nosema ceranae Can Infect Honey Bee Larvae and Reduces Subsequent Adult Longevity. PLoS ONE, 2015, 10, e0126330.	1.1	66
515	Microsatellite Analysis of Museum Specimens Reveals Historical Differences in Genetic Diversity between Declining and More Stable Bombus Species. PLoS ONE, 2015, 10, e0127870.	1.1	21
516	A Long-Term Experimental Case Study of the Ecological Effectiveness and Cost Effectiveness of Invasive Plant Management in Achieving Conservation Goals: Bitou Bush Control in Booderee National Park in Eastern Australia. PLoS ONE, 2015, 10, e0128482.	1.1	25
517	Safeguarding Ecosystem Services: A Methodological Framework to Buffer the Joint Effect of Habitat Configuration and Climate Change. PLoS ONE, 2015, 10, e0129225.	1.1	34
518	Grassland Arthropods Are Controlled by Direct and Indirect Interactions with Cattle but Are Largely Unaffected by Plant Provenance. PLoS ONE, 2015, 10, e0129823.	1.1	14
519	Using DNA Metabarcoding to Identify the Floral Composition of Honey: A New Tool for Investigating Honey Bee Foraging Preferences. PLoS ONE, 2015, 10, e0134735.	1.1	203
520	Native and Non-Native Supergeneralist Bee Species Have Different Effects on Plant-Bee Networks. PLoS ONE, 2015, 10, e0137198.	1.1	76
521	Lessons from Red Data Books: Plant Vulnerability Increases with Floral Complexity. PLoS ONE, 2015, 10, e0138414.	1,1	20
522	Four Categories of Viral Infection Describe the Health Status of Honey Bee Colonies. PLoS ONE, 2015, 10, e0140272.	1.1	39
523	Taxonomic Characterization of Honey Bee (Apis mellifera) Pollen Foraging Based on Non-Overlapping Paired-End Sequencing of Nuclear Ribosomal Loci. PLoS ONE, 2015, 10, e0145365.	1.1	48
524	Persistence of Plants and Pollinators in the Face of Habitat Loss. Advances in Ecological Research, 2015, 53, 201-257.	1.4	17
525	Effects of some insecticides on longevity of the foragers honey bee worker of local honey bee race Apis mellifera jemenatica. Electronic Physician, 2015, 8, 1843-1849.	0.2	7
526	Seasonal succession of pollinator floral resources in four types of grasslands. Ecosphere, 2015, 6, 1-14.	1.0	23
527	An Economic Valuation of Biotic Pollination Services in Georgia. Journal of Economic Entomology, 2015, 108, 388-398.	0.8	13
528	The Dependence of Crops for Pollinators and the Economic Value of Pollination in Brazil. Journal of Economic Entomology, 2015, 108, 849-857.	0.8	164

#	Article	IF	CITATIONS
529	Effectiveness of managed populations of wild and honey bees as supplemental pollinators of sour cherry (<i>Prunus cerasus</i> L.) under different climatic conditions. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 109-117.	0.3	5
530	The role of biotic forces in driving macroevolution: beyond the Red Queen. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150186.	1.2	81
532	Weeds for bees? A review. Agronomy for Sustainable Development, 2015, 35, 891-909.	2.2	213
533	Causes of variation in wild bee responses to anthropogenic drivers. Current Opinion in Insect Science, 2015, 10, 104-109.	2.2	89
534	Meet our prime pollinators. Nature, 2015, 521, S48-S49.	13.7	5
535	Missing the bandwagon: Nonnative species impacts still concern managers. NeoBiota, 0, 25, 73-86.	1.0	33
536	Testing projected wild bee distributions in agricultural habitats: predictive power depends on species traits and habitat type. Ecology and Evolution, 2015, 5, 4426-4436.	0.8	9
537	Nectar Robbery and Thievery in the Hawk Moth (Lepidoptera: Sphingidae)-Pollinated Western Prairie Fringed Orchid <i>Platanthera praeclara</i> i>. Annals of the Entomological Society of America, 2015, 108, 1000-1013.	1.3	12
538	The conservation value of urban green space habitats for Australian native bee communities. Biological Conservation, 2015, 187, 240-248.	1.9	163
539	Interaction between <i>Varroa destructor</i> and imidacloprid reduces flight capacity of honeybees. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151738.	1.2	62
540	Is rapid evolution of reproductive traits in Adonis annua consistent with pollinator decline?. Acta Oecologica, 2015, 69, 161-166.	0.5	8
541	Hedgerows Have a Barrier Effect and Channel Pollinator Movement in the Agricultural Landscape. Journal of Landscape Ecology(Czech Republic), 2015, 8, 22-31.	0.2	20
542	Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture. Ecological Applications, 2015, 25, 1557-1565.	1.8	146
543	Small woods positively influence the occurrence and abundance of the common frog (Rana) Tj ETQq1 1 0.784314	1 rgBT /Ov	erlock 10 Tf
544	First detection of honey bee viruses in stingless bees in North America. Journal of Apicultural Research, 2015, 54, 93-95.	0.7	30
545	Heterospecific pollen deposition in <i>Delphinium barbeyi</i> iinking stigmatic pollen loads to reproductive output in the field. Annals of Botany, 2016, 117, mcv175.	1.4	23
546	Landscape features are a better correlate of wild plant pollination than agricultural practices in an intensive cropping system. Agriculture, Ecosystems and Environment, 2015, 201, 51-57.	2.5	21
547	Modeling trade-offs among ecosystem services in agricultural production systems. Environmental Modelling and Software, 2015, 72, 314-326.	1.9	64

#	Article	IF	CITATIONS
548	The IPBES Conceptual Framework â€" connecting nature and people. Current Opinion in Environmental Sustainability, 2015, 14, 1-16.	3.1	1,658
549	The manager dilemma: Optimal management of an ecosystem service in heterogeneous exploited landscapes. Ecological Modelling, 2015, 301, 78-89.	1.2	5
550	A stated preference valuation of the non-market benefits of pollination services in the UK. Ecological Economics, 2015, 111, 76-85.	2.9	36
551	Contemporary evolution of plant reproductive strategies under global change is revealed by stored seeds. Journal of Evolutionary Biology, 2015, 28, 766-778.	0.8	69
552	Soybean crops may benefit from forest pollinators. Agriculture, Ecosystems and Environment, 2015, 202, 217-222.	2.5	45
553	A sting in the spit: widespread crossâ€infection of multiple <scp>RNA</scp> viruses across wild and managed bees. Journal of Animal Ecology, 2015, 84, 615-624.	1.3	229
554	Secondary metabolites in floral nectar reduce parasite infections in bumblebees. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142471.	1.2	189
555	Spinosad in the native stingless bee Melipona quadrifasciata: Regrettable non-target toxicity of a bioinsecticide. Chemosphere, 2015, 124, 103-109.	4.2	76
556	Abscisic acid enhances the immune response in Apis mellifera and contributes to the colony fitness. Apidologie, 2015, 46, 542-557.	0.9	48
557	Prairie restorations and bees: The potential ability of seed mixes to foster native bee communities. Basic and Applied Ecology, 2015, 16, 64-72.	1.2	61
558	Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environmental Science and Pollution Research, 2015, 22, 119-134.	2.7	354
559	Time-series models to quantify short-term effects of meteorological conditions on bumblebee forager activity in agricultural landscapes. Agricultural and Forest Entomology, 2015, 17, 270-276.	0.7	21
560	The attractiveness of flowering herbaceous plants to bees (Hymenoptera: Apoidea) and hoverflies (Diptera: Syrphidae) in agroâ€ecosystems of Central Spain. Agricultural and Forest Entomology, 2015, 17, 20-28.	0.7	27
561	Traitâ€based analysis of decline in plant species ranges during the 20th century: a regional comparison between the <scp>UK</scp> and Estonia. Global Change Biology, 2015, 21, 2726-2738.	4.2	11
562	Effects of experimentally simulated pollinator decline on recruitment in two European herbs. Journal of Ecology, 2015, 103, 328-337.	1.9	16
563	Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1083-1088.	3.3	250
564	Impact of fipronil on the mushroom bodies of the stingless bee <i>Scaptotrigona postica</i> Management Science, 2015, 71, 114-122.	1.7	33
565	Crop pollinators in Brazil: a review of reported interactions. Apidologie, 2015, 46, 209-223.	0.9	133

#	Article	IF	CITATIONS
566	The antioxidant system in diapausing and active red mason bee <i><scp>O</scp>smia bicornis</i> Physiological Entomology, 2015, 40, 82-89.	0.6	10
567	Habitat, spatial and temporal drivers of diversity patterns in a wild bee assemblage. Biodiversity and Conservation, 2015, 24, 1195-1214.	1.2	45
568	Forage Legumes for Grazing and Conserving in Ruminant Production Systems. Critical Reviews in Plant Sciences, 2015, 34, 281-326.	2.7	149
569	A comparison of techniques for assessing farmland bumblebee populations. Oecologia, 2015, 177, 1093-1102.	0.9	23
570	Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design. Agronomy for Sustainable Development, 2015, 35, 607-623.	2.2	234
571	Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 2015, 347, 1255957.	6.0	2,565
572	Effects of fragmentation on a distinctive coastal sage scrub bee fauna revealed through incidental captures by pitfall traps. Journal of Insect Conservation, 2015, 19, 175-179.	0.8	19
573	Global Trends in the Status of Bird and Mammal Pollinators. Conservation Letters, 2015, 8, 397-403.	2.8	82
574	Genetic factors accelerate demographic decline in rare Asclepias species. Conservation Genetics, 2015, 16, 359-369.	0.8	9
575	On the verge? Preferential use of road-facing hedgerow margins by bumblebees in agro-ecosystems. Journal of Insect Conservation, 2015, 19, 67-74.	0.8	34
576	Variations in antioxidant defense during the development of the solitary bee Osmia bicornis. Apidologie, 2015, 46, 432-444.	0.9	28
577	The effects of acute stress on learning and memory in bumblebees. Learning and Motivation, 2015, 50, 39-47.	0.6	9
578	Development of sixteen novel microsatellite markers for the eastern carpenter bee, Xylocopa virginica (Hymenoptera: Apidae), through paired-end Illumina sequencing. Conservation Genetics Resources, 2015, 7, 427-429.	0.4	8
579	Maintenance of Pollinator Function in Restored Vernal Pools: Gnats Filling the Role of Solitary Bees. Ecological Restoration, 2015, 33, 51-60.	0.6	1
580	Diversity and flower-visiting rates of bee species as potential pollinators of melon (Cucumis melo L.) in the Brazilian Cerrado. Scientia Horticulturae, 2015, 186, 207-216.	1.7	26
581	Fragmentation and Management of Ethiopian Moist Evergreen Forest Drive Compositional Shifts of Insect Communities Visiting Wild Arabica Coffee Flowers. Environmental Management, 2015, 55, 373-382.	1.2	22
582	Survey of Soybean Insect Pollinators: Community Identification and Sampling Method Analysis. Environmental Entomology, 2015, 44, 488-498.	0.7	58
583	Effects of genotype, environment, and their interactions on honey bee health in Europe. Current Opinion in Insect Science, 2015, 10, 177-184.	2.2	68

#	Article	IF	CITATIONS
584	Bee nutrition and floral resource restoration. Current Opinion in Insect Science, 2015, 10, 133-141.	2.2	318
585	Nature's bounties: reliance on pollinators for health. Lancet, The, 2015, 386, 1925-1927.	6.3	2
586	Bee diversity (Hymenoptera: Apoidea) visiting Broad Bean (<i>Vicia faba</i> L.) flowers in Egypt. Zoology in the Middle East, 2015, 61, 256-263.	0.2	12
587	Winners and losers of climate change for the genus Merodon (Diptera: Syrphidae) across the Balkan Peninsula. Ecological Modelling, 2015, 313, 201-211.	1.2	22
588	Quantitative 3D Shape Description of Dust Particles from Treated Seeds by Means of X-ray Micro-CT. Environmental Science & Env	4.6	32
589	Increased Acetylcholinesterase Expression in Bumble Bees During Neonicotinoid-Coated Corn Sowing. Scientific Reports, 2015, 5, 12636.	1.6	26
590	Management of Pollination Services to Enhance Crop Productivity., 2015,, 697-711.		1
591	Turnover in bee species composition and functional trait distributions between seasons in a tropical agricultural landscape. Agriculture, Ecosystems and Environment, 2015, 211, 185-194.	2.5	23
592	How can an understanding of plant–pollinator interactions contribute to global food security?. Current Opinion in Plant Biology, 2015, 26, 72-79.	3.5	68
593	Parasitized honey bees are less likely to forage and carry less pollen. Journal of Invertebrate Pathology, 2015, 130, 64-71.	1.5	38
594	Parallel Epigenomic and Transcriptomic Responses to Viral Infection in Honey Bees (Apis mellifera). PLoS Pathogens, 2015, 11, e1004713.	2.1	145
595	Dynamics of Apis mellifera Filamentous Virus (AmFV) Infections in Honey Bees and Relationships with Other Parasites. Viruses, 2015, 7, 2654-2667.	1.5	44
596	Willows (<i>Salix</i> spp.) as pollen and nectar sources for sustaining fruit and berry pollinating insects. Canadian Journal of Plant Science, 2015, 95, 505-516.	0.3	31
597	Stakeholder perceptions of the effectiveness and efficiency of agri-environment schemes in enhancing pollinators on farmland. Land Use Policy, 2015, 47, 156-162.	2.5	10
598	Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Scientific Reports, 2015, 5, 11779.	1.6	142
599	Responses of bees to habitat loss in fragmented landscapes of Brazilian Atlantic Rainforest. Landscape Ecology, 2015, 30, 2067-2078.	1.9	77
600	Using pennycress, camelina, and canola cash cover crops to provision pollinators. Industrial Crops and Products, 2015, 75, 20-25.	2.5	87
601	A neonicotinoid impairs olfactory learning in Asian honey bees (Apis cerana) exposed as larvae or as adults. Scientific Reports, 2015, 5, 10989.	1.6	84

#	Article	IF	CITATIONS
602	Pollinator-friendly management does not increase the diversity of farmland bees and wasps. Biological Conservation, 2015, 187, 120-126.	1.9	109
603	Resilience and the industrial food system: analyzing the impacts of agricultural industrialization on food system vulnerability. Journal of Environmental Studies and Sciences, 2015, 5, 459-473.	0.9	82
604	Eco-Evolutionary Dynamics of Plant–Insect Communities Facing Disturbances. Advances in Ecological Research, 2015, , 91-114.	1.4	8
605	Have changing forests conditions contributed to pollinator decline in the southeastern United States?. Forest Ecology and Management, 2015, 348, 142-152.	1.4	7 5
606	Pollinator communities in strawberry crops – variation at multiple spatial scales. Bulletin of Entomological Research, 2015, 105, 497-506.	0.5	12
607	Butterfly diversity and habitat variation in a disturbed forest in northern Vietnam. Pan-Pacific Entomologist, 2015, 91, 29-38.	0.1	7
608	Crop management modifies the benefits of insect pollination in oilseed rape. Agriculture, Ecosystems and Environment, 2015, 207, 61-66.	2.5	65
609	Pollination services from field-scale agricultural diversification may be context-dependent. Agriculture, Ecosystems and Environment, 2015, 207, 17-25.	2.5	77
610	An ant–plant by-product mutualism is robust to selective logging of rain forest and conversion to oil palm plantation. Oecologia, 2015, 178, 441-450.	0.9	19
611	The effect of temperature and habitat quality on abundance of the Glanville fritillary on the Isle of Wight: implications for conservation management in a warming climate. Journal of Insect Conservation, 2015, 19, 217-225.	0.8	15
612	The management of bee communities by intercropping with flowering basil (Ocimum basilicum) enhances pollination and yield of bell pepper (Capsicum annuum). Journal of Insect Conservation, 2015, 19, 479-486.	0.8	34
613	Discrimination of haploid and diploid males of Bombus terrestris (Hymenoptera; Apidae) based on wing shape. Apidologie, 2015, 46, 644-653.	0.9	23
614	A national survey of managed honey bee 2013–2014 annual colony losses in the USA. Apidologie, 2015, 46, 292-305.	0.9	224
615	Pesticide exposure of honeybees (Apis mellifera) pollinating melon crops. Apidologie, 2015, 46, 703-715.	0.9	32
616	Coupled social and ecological dynamics of herders in Mongolian rangelands. Ecological Economics, 2015, 114, 208-217.	2.9	18
617	Ecological specialization matters: longâ€ŧerm trends in butterfly species richness and assemblage composition depend on multiple functional traits. Diversity and Distributions, 2015, 21, 792-802.	1.9	95
618	The effect of repeated, lethal sampling on wild bee abundance and diversity. Methods in Ecology and Evolution, 2015, 6, 1044-1054.	2.2	79
619	Effects, but no interactions, of ubiquitous pesticide and parasite stressors on honey bee (<scp><i>A</i></scp> <i>pis mellifera</i>) lifespan and behaviour in a colony environment. Environmental Microbiology, 2015, 17, 4322-4331.	1.8	47

#	ARTICLE	IF	CITATIONS
620	Seasonal Variation of Honeybee Pathogens and its Association with Pollen Diversity in Uruguay. Microbial Ecology, 2015, 70, 522-533.	1.4	40
621	Investigating the association between urban agriculture and food security, dietary diversity, and nutritional status: A systematic literature review. Food Policy, 2015, 53, 54-66.	2.8	104
622	The forgotten flies: the importance of non-syrphid Diptera as pollinators. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142934.	1.2	173
623	Historical legacies accumulate to shape future biodiversity in an era of rapid global change. Diversity and Distributions, 2015, 21, 534-547.	1.9	112
624	Beyond maps: a review of the applications of biological records. Biological Journal of the Linnean Society, 2015, 115, 532-542.	0.7	76
625	Diversity and abundance of solitary and primitively eusocial bees in an urban centre: a case study from Northampton (England). Journal of Insect Conservation, 2015, 19, 487-500.	0.8	65
626	Grower perceptions of native pollinators and pollination strategies in the lowbush blueberry industry. Renewable Agriculture and Food Systems, 2015, 30, 124-131.	0.8	35
627	Should invertebrates receive greater inclusion in wildlife research journals?. Journal of Wildlife Management, 2015, 79, 529-536.	0.7	21
628	Conservation Value, Management and Restoration of Europe'S Semi‑Natural Open Landscapes. Hacquetia, 2015, 14, 5-17.	0.2	31
629	Effects of dietary lambda-cyhalothrin exposure on bumblebee survival, reproduction, and foraging behavior in laboratory and greenhouse. Journal of Pest Science, 2015, 88, 777-783.	1.9	31
630	The New Zealand experience of varroa invasion highlights research opportunities for Australia. Ambio, 2015, 44, 694-704.	2.8	32
631	Riparian buffer strips: Their role in the conservation of insect pollinators in intensive grassland systems. Agriculture, Ecosystems and Environment, 2015, 211, 207-220.	2.5	64
632	Plant Biotic Interactions in the Sonoran Desert: Conservation Challenges and Future Directions. Journal of the Southwest, 2015, 57, 457-501.	0.1	6
633	Modeling pollinating bee visitation rates in heterogeneous landscapes from foraging theory. Ecological Modelling, 2015, 316, 133-143.	1.2	7 3
634	Is a Cardio-Protective Diet Sustainable? A Review of the Synergies and Tensions Between Foods That Promote the Health of the Heart and the Planet. Current Nutrition Reports, 2015, 4, 313-322.	2.1	16
635	The Effects of Diesel Exhaust Pollution on Floral Volatiles and the Consequences for Honey Bee Olfaction. Journal of Chemical Ecology, 2015, 41, 904-912.	0.9	68
636	Effects of nectar robbing on male and female reproductive success of a pollinator-dependent plant. Annals of Botany, 2016, 117, mcv165.	1.4	13
637	Pollen analysis and interaction networks of floral visitor bees of Eugenia uniflora L. (Myrtaceae), in Atlantic Forest areas in southern Brazil. Arthropod-Plant Interactions, 2015, 9, 623-632.	0.5	5

#	Article	IF	CITATIONS
638	Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151371.	1.2	229
639	Public approval plus more wildlife: twin benefits of reduced mowing of amenity grass in a suburban public park in Saltdean, <scp>UK</scp> . Insect Conservation and Diversity, 2015, 8, 107-119.	1.4	57
640	High diversity stabilizes the thermal resilience of pollinator communities in intensively managed grasslands. Nature Communications, 2015, 6, 7989.	5.8	121
641	How many species of arthropods visit flowers?. Arthropod-Plant Interactions, 2015, 9, 547-565.	0.5	93
642	Road mortality potentially responsible for billions of pollinating insect deaths annually. Journal of Insect Conservation, 2015, 19, 1029-1035.	0.8	78
643	Remote Sensing and Ecosystem Services: Current Status and Future Opportunities for the Study of Bees and Pollination-Related Services. Current Forestry Reports, 2015, 1, 261-274.	3.4	17
644	Plant phenological responses to a longâ€term experimental extension of growing season and soil warming in the tussock tundra of Alaska. Global Change Biology, 2015, 21, 4520-4532.	4.2	51
645	Exploitative competition alters bee foraging and flower choice. Behavioral Ecology and Sociobiology, 2015, 69, 1731-1738.	0.6	57
646	The compounding effects of high pollen limitation, selfing rates and inbreeding depression leave a New Zealand tree with few viable offspring. Annals of Botany, 2015, 116, 833-843.	1.4	17
647	The habitat effect on the diversity of pollen resources in several <i>Campanula</i> spp. – an implication for pollinator conservation. Journal of Apicultural Research, 2015, 54, 62-71.	0.7	12
648	Management of Overwintering Cover Crops Influences Floral Resources and Visitation by Native Bees. Environmental Entomology, 2015, 44, 999-1010.	0.7	30
649	Effects of decreases of animal pollinators on human nutrition and global health: a modelling analysis. Lancet, The, 2015, 386, 1964-1972.	6.3	150
650	Changes in Orchid Bee Communities Across Forest-Agroecosystem Boundaries in Brazilian Atlantic Forest Landscapes. Environmental Entomology, 2015, 44, 1465-1471.	0.7	18
651	Degradation of habitat disrupts plant–pollinator interactions for a rare self-compatible plant. Plant Ecology, 2015, 216, 1275-1283.	0.7	10
652	Neonicotinoid insecticide interact with honeybee odorant-binding protein: Implication for olfactory dysfunction. International Journal of Biological Macromolecules, 2015, 81, 624-630.	3.6	62
653	Spray Toxicity and Risk Potential of 42 Commonly Used Formulations of Row Crop Pesticides to Adult Honey Bees (Hymenoptera: Apidae). Journal of Economic Entomology, 2015, 108, 2640-2647.	0.8	77
654	Economic Dependence of U.S. Industrial Sectors on Animal-Mediated Pollination Service. Environmental Science & Environmental S	4.6	38
655	Selecting non-target species for risk assessment of entomophagous biological control agents: Evaluation of the PRONTI decision-support tool. Biological Control, 2015, 80, 77-88.	1.4	21

#	Article	IF	CITATIONS
656	Flowering phenology and nesting resources influence pollinator community composition in a fragmented ecosystem. Landscape Ecology, 2015, 30, 261-272.	1.9	48
657	Pollination by nocturnal <scp>L</scp> epidoptera, and the effects of light pollution: a review. Ecological Entomology, 2015, 40, 187-198.	1.1	200
658	Ant–aphid interactions increase ant floral visitation and reduce plant reproduction via decreased pollinator visitation. Ecology, 2015, 96, 1620-1630.	1.5	22
659	Relative impact of mate <i>versus</i> pollinator availability on pollen limitation and outcrossing rates in a massâ€flowering species. Plant Biology, 2015, 17, 209-218.	1.8	22
660	Species conservation under future climate change: the case of Bombus bellicosus, a potentially threatened South American bumblebee species. Journal of Insect Conservation, 2015, 19, 33-43.	0.8	48
661	Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecological Applications, 2015, 25, 881-890.	1.8	254
662	Species richness of wild bees, but not the use of managed honeybees, increases fruit set of a pollinatorâ€dependent crop. Journal of Applied Ecology, 2015, 52, 323-330.	1.9	146
663	Recent introduction of an allodapine bee into Fiji: A new model system for understanding biological invasions by pollinators. Insect Science, 2015, 22, 532-540.	1.5	15
664	Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environmental Microbiology, 2015, 17, 969-983.	1.8	295
665	Interacting effects of pollination, water and nutrients on fruit tree performance. Plant Biology, 2015, 17, 201-208.	1.8	65
666	Potential impacts of climate change on agriculture and food safety within the island of Irelandâ€â€This paper is one of a series of reviews on "Climate Change and Food Safety – an Island of Ireland perspectiveâ€. Trends in Food Science and Technology, 2015, 44, 1-10.	7.8	16
667	Where is the value in valuing pollination ecosystem services to agriculture?. Ecological Economics, 2015, 109, 59-70.	2.9	80
668	Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees. Ecological Applications, 2015, 25, 742-752.	1.8	41
669	Interactive effect of floral abundance and semi-natural habitats on pollinators in field beans (Vicia) Tj ETQq $1\ 1\ 0$.	78 <u>43</u> 14 rg	BT/Overlock
670	Pollination mitigates cucumber yield gaps more than pesticide and fertilizer use in tropical smallholder gardens. Journal of Applied Ecology, 2015, 52, 261-269.	1.9	38
671	Changes in the distribution of multispecies pest assemblages affect levels of crop damage in warming tropical Andes. Global Change Biology, 2015, 21, 82-96.	4.2	21
672	Adapting to climate change: assessing the vulnerability of ecosystem services in Europe in the context of rural development. Mitigation and Adaptation Strategies for Global Change, 2015, 20, 547-572.	1.0	16
673	Advancing environmental risk assessment of regulated products under EFSA's remit. EFSA Journal, 2016, 14, e00508.	0.9	11

#	Article	IF	CITATIONS
674	Interactions between the Bumblebee Bombus pascuorum and Red Clover (Trifolium pratense) Are Mediated by Plant Genetic Background. PLoS ONE, 2016, 11, e0161327.	1.1	3
675	Identification and protection of terrestrial global biodiversity hotspots: progress and challenges. Research and Reports in Biodiversity Studies, 0, , 15.	0.0	1
676	From Extraction to Meliponiculture: A Case Study of the Management of Stingless Bees in the West-Central Region of Mexico. , $2016, , .$		8
677	Enfraquecimento e perda de colônias de abelhas no Brasil: há casos de CCD?. Pesquisa Agropecuaria Brasileira, 2016, 51, 422-442.	0.9	46
678	Pollination Interventions., 2016,, 391-420.		1
679	Daily Evolution of the Insect Biomass Spectrum in an Agricultural Landscape Accessed with Lidar. EPJ Web of Conferences, 2016, 119, 22004.	0.1	24
680	2014 Student Debates. American Entomologist, 2016, 62, 98-107.	0.1	1
681	Managing and Mitigating the Health Risks of Climate Change: Calling for Evidence-Informed Policy and Action. Environmental Health Perspectives, 2016, 124, A176-A179.	2.8	21
682	Grassland Degradation., 2016,, 257-276.		10
683	Guidance to develop specific protection goals options for environmental risk assessment at EFSA, in relation to biodiversity and ecosystem services. EFSA Journal, 2016, 14, e04499.	0.9	59
684	Proximity to Woodland and Landscape Structure Drives Pollinator Visitation in Apple Orchard Ecosystem. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	56
685	Using Whole-Genome Sequence Information to Foster Conservation Efforts for the European Dark Honey Bee, Apis mellifera mellifera. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	34
686	Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures. Frontiers in Microbiology, 2016, 7, 1255.	1.5	165
687	Switchgrass (Panicum virgatum) Intercropping within Managed Loblolly Pine (Pinus taeda) Does Not Affect Wild Bee Communities. Insects, 2016, 7, 62.	1.0	11
688	Contrasting Pollinators and Pollination in Native and Non-Native Regions of Highbush Blueberry Production. PLoS ONE, 2016, 11, e0158937.	1.1	38
689	Insect Pollinators in Iowa Cornfields: Community Identification and Trapping Method Analysis. PLoS ONE, 2016, 11, e0143479.	1.1	27
690	Size and Sex-Dependent Shrinkage of Dutch Bees during One-and-a-Half Centuries of Land-Use Change. PLoS ONE, 2016, 11, e0148983.	1.1	43
691	Focal Plant Observations as a Standardised Method for Pollinator Monitoring: Opportunities and Limitations for Mass Participation Citizen Science. PLoS ONE, 2016, 11, e0150794.	1.1	34

#	Article	IF	CITATIONS
692	Genetic Diversity and Population Structure of the Rare and Endangered Plant Species Pulsatilla patens (L.) Mill in East Central Europe. PLoS ONE, 2016, 11, e0151730.	1.1	82
693	Sucrose Sensitivity of Honey Bees Is Differently Affected by Dietary Protein and a Neonicotinoid Pesticide. PLoS ONE, 2016, 11, e0156584.	1.1	36
694	Honey Bee Viruses in Wild Bees: Viral Prevalence, Loads, and Experimental Inoculation. PLoS ONE, 2016, 11, e0166190.	1,1	84
695	Effects of a Possible Pollinator Crisis on Food Crop Production in Brazil. PLoS ONE, 2016, 11, e0167292.	1.1	38
696	Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?. PLoS Pathogens, 2016, 12, e1005790.	2.1	86
697	Registros de espécies vasculares em unidades de conservação e implicações para a lista da flora ameaçada de extinção no estado de São Paulo. Rodriguesia, 2016, 67, 405-425.	0.9	3
698	Enhancing Legume Ecosystem Services through an Understanding of Plant–Pollinator Interplay. Frontiers in Plant Science, 2016, 7, 333.	1.7	38
699	Establishing Wildflower Pollinator Habitats in Agricultural Farmland to Provide Multiple Ecosystem Services. Frontiers in Plant Science, 2016, 7, 363.	1.7	33
701	Imidacloprid toxicity impairs spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas. NeuroReport, 2016, 27, 462-468.	0.6	36
702	Flight performance of actively foraging honey bees is reduced by a common pathogen. Environmental Microbiology Reports, 2016, 8, 728-737.	1.0	44
703	Contrasting effects of field boundary management on three pollinator groups. Insect Conservation and Diversity, 2016, 9, 427-437.	1.4	10
704	Demographic consequences of greater clonal than sexualÂreproduction in <i>Dicentra canadensis</i> Ecology and Evolution, 2016, 6, 3871-3883.	0.8	14
705	Differential impacts from an extreme cold spell on subtropicalÂvs.Âtropical specialist bees in southern Florida. Ecosphere, 2016, 7, e01302.	1.0	10
706	Experimental simulation of pollinator decline causes communityâ€wide reductions in seedling diversity and abundance. Ecology, 2016, 97, 1420-1430.	1.5	24
707	Data reliability in citizen science: learning curve and the effects of training method, volunteer background and experience on identification accuracy of insects visiting ivy flowers. Methods in Ecology and Evolution, 2016, 7, 1226-1235.	2.2	76
708	Interactive effects of pesticide exposure and pathogen infection on bee health–Âa critical analysis. Biological Reviews, 2016, 91, 1006-1019.	4.7	62
709	Climate change and ecosystem services. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 537-550.	3.6	50
710	Watermelon pollinators exhibit complementarity in both visitation rate and singleâ€visit pollination efficiency. Journal of Applied Ecology, 2016, 53, 360-370.	1.9	45

#	Article	IF	CITATIONS
711	Dynamics and persistence in a metacommunity centred on the plant <i><scp>A</scp>ntirrhinum majus</i> : theoretical predictions and an empirical test. Journal of Ecology, 2016, 104, 456-468.	1.9	6
712	Pyrodiversity begets plant–pollinator community diversity. Global Change Biology, 2016, 22, 1794-1808.	4.2	141
713	Actionable knowledge for ecological intensification of agriculture. Frontiers in Ecology and the Environment, 2016, 14, 209-216.	1.9	117
714	Limited direct effects of a massive wildfire on its sagebrush steppe bee community. Ecological Entomology, 2016, 41, 317-326.	1.1	24
715	The quality of flower-based ecosystem services in field margins and road verges from human and insect pollinator perspectives. Ecological Indicators, 2016, 70, 409-419.	2.6	12
716	Flower detection and acuity of the Australian native stingless bee Tetragonula carbonaria Sm Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2016, 202, 629-639.	0.7	34
717	Replication, effect sizes and identifying the biological impacts of pesticides on bees under field conditions. Journal of Applied Ecology, 2016, 53, 1358-1362.	1.9	31
718	Laboratory rearing of solitary bees and wasps. Insect Science, 2016, 23, 918-923.	1.5	6
719	Season and landscape composition affect pollen foraging distances and habitat use of honey bees. Ecological Applications, 2016, 26, 1920-1929.	1.8	96
720	A heterogeneous landscape does not guarantee high crop pollination. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161472.	1.2	14
721	Food Production and Nature Conservation. , 0, , .		9
722	A century of temporal stability of genetic diversity in wild bumblebees. Scientific Reports, 2016, 6, 38289.	1.6	26
723	Innovative Technologies And Modern Facilities In Beekeeping. IOP Conference Series: Materials Science and Engineering, 2016, 142, 012022.	0.3	4
724	Flowering Plants Preferred by Bumblebees (<i>Bombus</i> Latr.) in the Botanical Garden of Medicinal Plants in WrocÅ,aw. Journal of Apicultural Science, 2016, 60, 59-68.	0.1	5
725	Invasive Plants as Novel Food Resources, the Pollinators' Perspective. , 2016, , 119-132.		9
726	Species identification by experts and non-experts: comparing images from field guides. Scientific Reports, 2016, 6, 33634.	1.6	83
727	Large-scale monitoring of effects of clothianidin-dressed OSR seeds on pollinating insects in Northern Germany: effects on large earth bumble bees (Bombus terrestris). Ecotoxicology, 2016, 25, 1666-1678.	1.1	31
728	The effects of single and mixed infections of <i> Apicystis bombi < /i > and deformed wing virus in <i> Bombus terrestris < /i > . Parasitology, 2016, 143, 358-365.</i></i>	0.7	57

#	Article	IF	CITATIONS
729	Evidence for <i>Bombus occidentalis </i> (Hymenoptera: Apidae) Populations in the Olympic Peninsula, the Palouse Prairie, and Forests of Northern Idaho. Journal of Insect Science, 2016, 16, 20.	0.6	7
730	Distribution, phenology and host plants of Danish bees (Hymenoptera, Apoidea). Zootaxa, 2016, 4212, zootaxa.4212.1.1.	0.2	7
731	Extending standard testing period in honeybees to predict lifespan impacts of pesticides and heavy metals using dynamic energy budget modelling. Scientific Reports, 2016, 6, 37655.	1.6	24
733	Honey Bee Activity in Northern Highbush Blueberry Differs across Growing Regions in Washington State. Hortscience: A Publication of the American Society for Hortcultural Science, 2016, 51, 1228-1232.	0.5	6
734	Development and evaluation of loop-mediated isothermal amplification for rapid detection of Nosema ceranae in honeybee. Asian Pacific Journal of Tropical Disease, 2016, 6, 952-956.	0.5	6
735	Effect of acute pesticide exposure on bee spatial working memory using an analogue of the radial-arm maze. Scientific Reports, 2016, 6, 38957.	1.6	58
736	Evaluation of Selected Ornamental Asteraceae as a Pollen Source for Urban Bees. Journal of Apicultural Science, 2016, 60, 179-192.	0.1	4
737	Flowering Phenology and Floral Visitors in Distylous Populations of <i>Psychotria carthagenensis </i> (Rubiaceae) in Brazilian Cerrado. Annals of the Missouri Botanical Garden, 2016, 101, 636-647.	1.3	6
738	A mechanistic model to assess risks to honeybee colonies from exposure to pesticides under different scenarios of combined stressors and factors. EFSA Supporting Publications, 2016, 13, 1069E.	0.3	8
739	Changes of flowering phenology and flower size in rosaceous plants from a biodiversity hotspot in the past century. Scientific Reports, 2016, 6, 28302.	1.6	7
740	Fire effects on pollination in a sexually deceptive orchid. International Journal of Wildland Fire, 2016, 25, 888.	1.0	8
741	Multiple stressor effects on freshwater fish: a review and meta-analysis. , 2015, , 178-214.		14
742	Pollination Services to Agriculture., 0,,.		4
744	Land Degradation, Desertification and Climate Change. , 0, , .		34
745	High Arctic flowering phenology and plant–pollinator interactions in response to delayed snow melt and simulated warming. Environmental Research Letters, 2016, 11, 115006.	2.2	35
747	Interâ€assemblage facilitation: the functional diversity of cavityâ€producing beetles drives the size diversity of cavityâ€nesting bees. Ecology and Evolution, 2016, 6, 412-425.	0.8	14
748	The effects of habitat management on the species, phylogenetic and functional diversity of bees are modifiedÂby the environmental context. Ecology and Evolution, 2016, 6, 961-973.	0.8	20
749	Urban gardens promote bee foraging over natural habitats and plantations. Ecology and Evolution, 2016, 6, 1304-1316.	0.8	91

#	Article	IF	CITATIONS
750	Applying Ecological Engineering for Sustainable and Resilient Rice Production Systems. Procedia Food Science, 2016, 6, 7-15.	0.6	41
751	Extremely high proportions of male flowers and geographic variation in floral ratios within male figs of <i>Ficus tikoua</i> despite pollinators displaying active pollen collection. Ecology and Evolution, 2016, 6, 607-619.	0.8	7
752	Beekeepers' knowledges and participation in pollinator conservation policy. Journal of Rural Studies, 2016, 45, 88-98.	2.1	49
753	Evolutionary response of plant interaction traits to nutrient enrichment modifies the assembly and structure of antagonisticâ€mutualistic communities. Journal of Ecology, 2016, 104, 193-205.	1.9	6
754	Use of Crape Myrtle, <i>Lagerstroemia </i> (Myrtales: Lythraceae), Cultivars as a Pollen Source by Native and Non-Native Bees (Hymenoptera: Apidae) in Quincy, Florida. Florida Entomologist, 2016, 99, 38-46.	0.2	20
755	How landscape, pollen intake and pollen quality affect colony growth in Bombus terrestris. Landscape Ecology, 2016, 31, 2245-2258.	1.9	63
756	Flowering phenology influences bee community dynamics in old fields dominated by the invasive plant Centaurea stoebe. Basic and Applied Ecology, 2016, 17, 497-507.	1.2	10
757	Bay laurel (Laurus nobilis) as potential antiviral treatment in naturally BQCV infected honeybees. Virus Research, 2016, 222, 29-33.	1.1	17
758	Occurrence, detection, and quantification of economically important viruses in healthy and unhealthy honey bee (Hymenoptera: Apidae) colonies in Canada. Canadian Entomologist, 2016, 148, 22-35.	0.4	8
759	Insect assemblages associated with the exotic riparian shrub Russian olive (Elaeagnaceae), and co-occurring native shrubs in British Columbia, Canada. Canadian Entomologist, 2016, 148, 316-328.	0.4	2
760	The neonicotinoid pesticide, imidacloprid, affects Bombus impatiens (bumblebee) sonication behavior when consumed at doses below the LD50. Ecotoxicology, 2016, 25, 1150-1159.	1.1	29
762	The macroeconomic cost of catastrophic pollinator declines. Ecological Economics, 2016, 126, 1-13.	2.9	78
763	Bee response to fire regimes in Mediterranean pine forests: The role of nesting preference, trophic specialization, and body size. Basic and Applied Ecology, 2016, 17, 308-320.	1.2	30
764	Parasite resistance and tolerance in honeybees at the individual and social level. Zoology, 2016, 119, 290-297.	0.6	51
765	Silencing <i>Nicotiana attenuata <scp>LHY</scp></i> and <i><scp>ZTL</scp></i> alters circadian rhythms in flowers. New Phytologist, 2016, 209, 1058-1066.	3.5	71
766	Rising atmospheric CO ₂ is reducing the protein concentration of a floral pollen source essential for North American bees. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160414.	1.2	69
767	Specific Immune Stimulation by Endogenous Bacteria in Honey Bees (Hymenoptera: Apidae). Journal of Economic Entomology, 2016, 109, 1474-1477.	0.8	36
768	Honey bee foragers balance colony nutritional deficiencies. Behavioral Ecology and Sociobiology, 2016, 70, 509-517.	0.6	97

#	Article	IF	CITATIONS
769	Neutral processes contribute to patterns of spatial variation for flower colour in the Mediterraneanlris lutescens(Iridaceae). Annals of Botany, 2016, 117, 995-1007.	1.4	28
770	Much more than bees—Wildflower plantings support highly diverse flower-visitor communities from complex to structurally simple agricultural landscapes. Agriculture, Ecosystems and Environment, 2016, 225, 45-53.	2.5	56
771	Honeybee health in South America. Apidologie, 2016, 47, 835-854.	0.9	96
772	Consequences of a warming climate for social organisation in sweat bees. Behavioral Ecology and Sociobiology, 2016, 70, 1131-1139.	0.6	16
773	Pollen Deposition Is More Important than Species Richness for Seed Set in Luffa Gourd. Neotropical Entomology, 2016, 45, 499-506.	0.5	6
774	Electromagnetic radiation of mobile telecommunication antennas affects the abundance and composition of wild pollinators. Journal of Insect Conservation, 2016, 20, 315-324.	0.8	30
775	Food in a row: urban trees offer valuable floral resources to pollinating insects. Urban Ecosystems, 2016, 19, 1149-1161.	1.1	73
776	The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions. MBio, 2016, 7, e02164-15.	1.8	215
777	Pollination service delivery for European crops: Challenges and opportunities. Ecological Economics, 2016, 128, 1-7.	2.9	25
778	Nonnative plant shifts functional groups of arthropods following drought. Biological Invasions, 2016, 18, 1351-1361.	1.2	8
779	Patterns, Causes, and Consequences of Anthropocene Defaunation. Annual Review of Ecology, Evolution, and Systematics, 2016, 47, 333-358.	3.8	326
780	Pollinator conservation at the local scale: flower density, diversity and community structure increase flower visiting insect activity to mixed floral stands. Journal of Insect Conservation, 2016, 20, 711-721.	0.8	26
781	Bee diversity and abundance in a livestock drove road and its impact on pollination and seed set in adjacent sunflower fields. Agriculture, Ecosystems and Environment, 2016, 232, 336-344.	2.5	27
782	Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecology Letters, 2016, 19, 1277-1286.	3.0	91
783	Protecting an Ecosystem Service. Advances in Ecological Research, 2016, 54, 135-206.	1.4	115
784	A pest and disease survey of the isolated Norfolk Island honey bee (Apis mellifera) population. Journal of Apicultural Research, 2016, 55, 202-211.	0.7	13
785	A three-year survey of honey bee viruses in Lithuania. Journal of Apicultural Research, 2016, 55, 176-184.	0.7	9
786	New and Noteworthy Records of Bees (Hymenoptera: Apoidea: Anthophila) for Connecticut. Journal of the Kansas Entomological Society, 2016, 89, 138-157.	0.1	13

#	Article	IF	Citations
787	Conserving Pollinators in North American Forests: A Review. Natural Areas Journal, 2016, 36, 427-439.	0.2	99
788	Dispersal Limitation, Climate Change, and Practical Tools for Butterfly Conservation in Intensively Used Landscapes. Natural Areas Journal, 2016, 36, 440.	0.2	9
789	The Role of Honey Bees as Pollinators in Natural Areas. Natural Areas Journal, 2016, 36, 478-488.	0.2	38
790	The Importance of Phenological Diversity in Seed Mixes for Pollinator Restoration. Natural Areas Journal, 2016, 36, 531.	0.2	38
791	Fertilization in flowering plants. Resonance, 2016, 21, 827-842.	0.2	3
792	Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on red mason bees (Osmia bicornis). Ecotoxicology, 2016, 25, 1679-1690.	1.1	40
793	Beneficial microorganisms for honey bees: problems and progresses. Applied Microbiology and Biotechnology, 2016, 100, 9469-9482.	1.7	77
794	Colour is more than hue: preferences for compiled colour traits in the stingless bees Melipona mondury and M. quadrifasciata. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2016, 202, 615-627.	0.7	37
795	Hoverflies (<scp>D</scp> iptera: <scp>S</scp> yrphidae) benefit from a cultivation of the bioenergy crop <i><scp>S</scp>ilphium perfoliatum</i> <scp>L.</scp> (<scp>A</scp> steraceae) depending on larval feeding type, landscape composition and crop management. Agricultural and Forest Entomology, 2016, 18, 419-431.	0.7	19
796	Habitat type plays a greater role than livestock grazing in structuring shrubsteppe plant–pollinator communities. Journal of Insect Conservation, 2016, 20, 515-525.	0.8	11
797	Initial recommendations for higherâ€tier risk assessment protocols for bumble bees, ⟨i⟩Bombus⟨/i⟩ spp. (Hymenoptera: Apidae). Integrated Environmental Assessment and Management, 2016, 12, 222-229.	1.6	32
798	Measuring floral resource availability for insect pollinators in temperate grasslands–Âa review. Ecological Entomology, 2016, 41, 231-240.	1.1	34
799	The impact of sublethal concentrations of Cu, Pb and Cd on honey bee redox status, superoxide dismutase and catalase in laboratory conditions. Chemosphere, 2016, 164, 98-105.	4.2	55
800	Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10430-10435.	3.3	151
801	Defining the Insect Pollinator Community Found in Iowa Corn and Soybean Fields: Implications for Pollinator Conservation. Environmental Entomology, 2016, 45, 1099-1106.	0.7	32
802	Bumble bee species exhibit divergent responses to urbanisation in a <scp>S</scp> outhern <scp>C</scp> alifornia landscape. Ecological Entomology, 2016, 41, 685-692.	1.1	18
803	Responses of Varroa-resistant honey bees (Apis mellifera L.) to Deformed wing virus. Journal of Asia-Pacific Entomology, 2016, 19, 921-927.	0.4	17
804	Effects of microbial, organically acceptable, and reduced risk insecticides on Anthonomus signatus (Curculionidae: Coleoptera) in strawberries (FragariaÂ×Âananassa). Crop Protection, 2016, 89, 255-258.	1.0	3

#	Article	IF	CITATIONS
805	Mass Flowering Crops as a Conservation Resource for Wild Pollinators (Hymenoptera: Apoidea). Journal of the Kansas Entomological Society, 2016, 89, 158-167.	0.1	22
806	Safeguarding pollinators and their values to human well-being. Nature, 2016, 540, 220-229.	13.7	1,204
807	Differential expression pattern of Vago in bumblebee (Bombus terrestris), induced by virulent and avirulent virus infections. Scientific Reports, 2016, 6, 34200.	1.6	14
808	Social apoptosis in honey bee superorganisms. Scientific Reports, 2016, 6, 27210.	1.6	54
809	Evolutionary consequences of ecological factors: pollinator reliability predicts matingâ€system traits of a perennial plant. Ecology Letters, 2016, 19, 1486-1495.	3.0	39
810	Effects of Nosema apis, N. ceranae, and coinfections on honey bee (Apis mellifera) learning and memory. Scientific Reports, 2016, 6, 22626.	1.6	27
811	Scale dependent drivers of wild bee diversity in tropical heterogeneous agricultural landscapes. Ecology and Evolution, 2016, 6, 6983-6992.	0.8	32
812	Floral abundance and resource quality influence pollinator choice. Insect Conservation and Diversity, 2016, 9, 481-494.	1.4	72
813	Diversity and Resource Use Patterns of Anthophile Insects in Cuatro Ciénegas, Coahuila, Mexico. Environmental Entomology, 2016, 45, 1386-1397.	0.7	6
814	Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in northern Germany: residues of clothianidin in pollen, nectar and honey. Ecotoxicology, 2016, 25, 1691-1701.	1.1	43
815	Sampling bee communities using pan traps: alternative methods increase sample size. Journal of Insect Conservation, 2016, 20, 919-922.	0.8	16
817	Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160506.	1.2	93
818	Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160811.	1.2	162
819	Characterization of fructophilic lactic microbiota of Apis mellifera from the Caucasus Mountains. Annals of Microbiology, 2016, 66, 1387-1395.	1.1	12
820	Stewardship in Action. Natural Areas Journal, 2016, 36, 538-541.	0.2	0
821	Landscape structure influences bee community and coffee pollination at different spatial scales. Agriculture, Ecosystems and Environment, 2016, 235, 1-12.	2.5	88
822	Using metabarcoding to reveal and quantify plant-pollinator interactions. Scientific Reports, 2016, 6, 27282.	1.6	118
823	Bee Fauna and Floral Abundance Within Lawn-Dominated Suburban Yards in Springfield, MA. Annals of the Entomological Society of America, 2016, 109, 713-723.	1.3	57

#	ARTICLE	IF	CITATIONS
824	Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on honey bees (Apis mellifera). Ecotoxicology, 2016, 25, 1648-1665.	1.1	52
825	Functional traits help to explain half-century long shifts in pollinator distributions. Scientific Reports, 2016, 6, 24451.	1.6	49
826	Diet Overlap of Mammalian Herbivores and Native Bees: Implications for Managing Co-occurring Grazers and Pollinators. Natural Areas Journal, 2016, 36, 458-477.	0.2	15
827	Eight new species of Andrena Fabricius (Hymenoptera: Apoidea: Andrenidae) from Israel—a Mediterranean hotspot for wild bees. Zootaxa, 2016, 4189, zootaxa.4189.3.3.	0.2	9
828	Landâ€use change has no detectable effect on reproduction of a disturbanceâ€adapted, hawkmothâ€pollinated plant species. American Journal of Botany, 2016, 103, 1950-1963.	0.8	18
829	Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status. Scientific Reports, 2016, 6, 29608.	1.6	87
830	Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics. Frontiers in Zoology, 2016, 13, 46.	0.9	75
831	Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nature Communications, 2016, 7, 12459.	5.8	367
832	Bumble bees regulate their intake of the essential protein and lipid pollen macronutrients. Journal of Experimental Biology, 2016, 219, 3962-3970.	0.8	72
833	Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases. Scientific Reports, 2016, 6, 31153.	1.6	92
834	Optimal search patterns in honeybee orientation flights are robust against emerging infectious diseases. Scientific Reports, 2016, 6, 32612.	1.6	23
835	Forest ecosystems of temperate climatic regions: from ancient use to climate change. New Phytologist, 2016, 212, 871-887.	3.5	93
836	Drone exposure to the systemic insecticide Fipronil indirectly impairs queen reproductive potential. Scientific Reports, 2016, 6, 31904.	1.6	60
837	Decline of Bees and Other Pollinators. , 2016, , 109-118.		4
838	Features of urban green space favourable for large and diverse bee populations (Hymenoptera:) Tj ETQq0 0 0 rgB1	Γ <u> O</u> yerloc	k 10 Tf 50 18
839	Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nature Communications, 2016, 7, 11629.	5.8	211
840	Common Methods for Tallgrass Prairie Restoration and Their Potential Effects on Bee Diversity. Natural Areas Journal, 2016, 36, 400-411.	0.2	27
841	Stewardship in Action. Natural Areas Journal, 2016, 36, 538-541.	0.2	0

#	Article	IF	CITATIONS
842	Queens become workers: pesticides alter caste differentiation in bees. Scientific Reports, 2016, 6, 31605.	1.6	28
843	Assessment of the abrasion potential of pesticide-treated seeds using the Heubach test. International Journal of Pest Management, 2016, 62, 348-359.	0.9	17
844	Food Chain Restoration for Pollinators: Regional Habitat Recovery Strategies Involving Protected Areas of the Southwest. Natural Areas Journal, 2016, 36, 489-497.	0.2	12
845	Large-scale monitoring of effects of clothianidin dressed oilseed rape seeds on pollinating insects in Northern Germany: implementation of the monitoring project and its representativeness. Ecotoxicology, 2016, 25, 1630-1647.	1.1	26
846	Evidence for the effects of neonicotinoids used in arable crop production on non-target organisms and concentrations of residues in relevant matrices: a systematic map protocol. Environmental Evidence, 2016, 5, .	1.1	7
847	Nectar Production in Oilseeds: Food for Pollinators in an Agricultural Landscape. Crop Science, 2016, 56, 727-739.	0.8	27
848	Improving spatial arrangement of honeybee colonies to avoid pollination shortfall and depressed fruit set. Journal of Applied Ecology, 2016, 53, 350-359.	1.9	41
849	Flower abundance and vegetation height as predictors for nectar-feeding insect occurrence in Swedish semi-natural grasslands. Agriculture, Ecosystems and Environment, 2016, 230, 47-54.	2.5	32
850	Resources or landmarks: which factors drive homing success in Tetragonula carbonaria foraging in natural and disturbed landscapes?. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2016, 202, 701-708.	0.7	12
851	Approaches and Challenges to Managing <i>Nosema < /i> (Microspora: Nosematidae) Parasites in Honey Bee (Hymenoptera: Apidae) Colonies. Journal of Economic Entomology, 2016, 109, 1487-1503.</i>	0.8	35
852	A web-based application for beekeepers to visualise patterns of growth in floral resources using MODIS data. Environmental Modelling and Software, 2016, 83, 116-125.	1.9	17
853	Impacts of land use and land use changes on the resilience of beekeeping in Uruguay. Forest Policy and Economics, 2016, 70, 113-123.	1.5	23
854	Wild bee pollination networks in northern New England. Journal of Insect Conservation, 2016, 20, 325-337.	0.8	27
855	Pollinators and Global Food Security: the Need for Holistic Global Stewardship. Food Ethics, 2016, 1, 75-91.	1.2	96
856	Predicting plant attractiveness to pollinators with passive crowdsourcing. Royal Society Open Science, 2016, 3, 150677.	1.1	19
857	Evaluation of DISCOVAR de novo using a mosquito sample for cost-effective short-read genome assembly. BMC Genomics, 2016, 17, 187.	1.2	60
858	The Effects of Crop Intensification on the Diversity of Native Pollinator Communities. Environmental Entomology, 2016, 45, 865-872.	0.7	32
859	Generalist Behavior Describes Pollen Foraging for Perceived Oligolectic and Polylectic Bees. Environmental Entomology, 2016, 45, 909-919.	0.7	43

#	Article	IF	CITATIONS
860	Timeâ€invariant differences between plant individuals in interactions with arthropods correlate with intraspecific variation in plant phenology, morphology and floral scent. New Phytologist, 2016, 210, 1357-1368.	3.5	40
861	Multiple stressors: using the honeybee model BEEHAVE to explore how spatial and temporal forage stress affects colony resilience. Oikos, 2016, 125, 1001-1016.	1.2	57
862	Impact of managed honey bee viruses on wild bees. Current Opinion in Virology, 2016, 19, 16-22.	2.6	117
863	Macronutrient ratios in pollen shape bumble bee (<i>Bombus impatiens</i>) foraging strategies and floral preferences. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4035-42.	3.3	262
864	Recent and rapid diversification of the small carpenter bees in eastern North America. Biological Journal of the Linnean Society, 2016, 117, 633-645.	0.7	28
865	Drought and leaf herbivory influence floral volatiles and pollinator attraction. Global Change Biology, 2016, 22, 1644-1654.	4.2	114
866	Honey Bees and Colony Collapse Disorder: A Pluralistic Reframing. Geography Compass, 2016, 10, 222-236.	1.5	45
867	Bees visiting flowers of <i>Thymus longicaulis</i> (Lamiaceae). Plant Biosystems, 2016, 150, 1182-1188.	0.8	6
868	Exploring the causes of high biodiversity of Iberian dehesas: the importance of wood pastures and marginal habitats. Agroforestry Systems, 2016, 90, 87-105.	0.9	62
869	A fluorescent method for visualization of Nosema infection in whole-mount honey bee tissues. Journal of Invertebrate Pathology, 2016, 135, 10-14.	1.5	11
870	Microsporidia – Emergent Pathogens in the Global Food Chain. Trends in Parasitology, 2016, 32, 336-348.	1.5	221
871	Floral resource limitation severely reduces butterfly survival, condition and flight activity in simplified agricultural landscapes. Oecologia, 2016, 180, 421-427.	0.9	26
872	The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). Journal of Insect Physiology, 2016, 86, 40-47.	0.9	304
873	Do managed bees drive parasite spread and emergence in wild bees?. International Journal for Parasitology: Parasites and Wildlife, 2016, 5, 64-75.	0.6	134
874	Honeybee health in Africa—a review. Apidologie, 2016, 47, 276-300.	0.9	77
875	The effect of chlorpyrifos on thermogenic capacity of bank voles selected for increased aerobic exercise metabolism. Chemosphere, 2016, 149, 383-390.	4.2	15
876	Taxonomic and Behavioral Composition of an Island Fauna: A Survey of Bees (Hymenoptera: Apoidea:) Tj ETQq0 C Washington, 2016, 118, 37-92.	0 0 rgBT /O 0.0	Overlock 10 Tr 19
877	Molecular Effects of Neonicotinoids in Honey Bees (<i>Apis mellifera</i>). Environmental Science & Technology, 2016, 50, 4071-4081.	4.6	116

#	Article	IF	Citations
878	Small sweat bees (Hymenoptera: Halictidae) as potential major pollinators of melon (<i>Cucumis) Tj ETQq0 0 0 0</i>	gBŢ ĮOver	lock 10 Tf 50
879	Temporal―and densityâ€dependent impacts of an invasive plant on pollinators and pollination services to a native plant. Ecosphere, 2016, 7, e01233.	1.0	14
880	Delivery of floral resources and pollination services on farmland under three different wildlife-friendly schemes. Agriculture, Ecosystems and Environment, 2016, 220, 142-151.	2.5	22
881	Long lasting summer flowerings of Lythrum salicaria as honeybee-friendly flower spots in Mediterranean basin agricultural wetlands. Aquatic Botany, 2016, 131, 1-6.	0.8	5
882	Distribution of Croton linearisin Miami-Dade County Preserves with Potential for Supporting the Federally Endangered Butterflies Strymon acis bartramiand Anaea troglody ta floridalis. Natural Areas Journal, 2016, 36, 81-87.	0.2	7
883	Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined. Ecotoxicology and Environmental Safety, 2016, 127, 205-213.	2.9	44
884	Underestimating neonicotinoid exposure: how extent and magnitude may be affected by land-use change. Environmental Science and Pollution Research, 2016, 23, 7050-7054.	2.7	9
885	The Similarity and Appropriate Usage of Three Honey Bee (Hymenoptera: Apidae) Datasets for Longitudinal Studies. Environmental Entomology, 2016, 45, 277-282.	0.7	1
886	In vitro rearing of stingless bee queens and their acceptance rate into colonies. Apidologie, 2016, 47, 539-547.	0.9	11
887	Longan fruit farmers' demand for policies aimed at conserving native pollinating bees in Northern Thailand. Ecosystem Services, 2016, 18, 58-67.	2.3	20
888	Pressure of non-professional use of pesticides on operators, aquatic organisms and bees in Belgium. Science of the Total Environment, 2016, 550, 514-521.	3.9	18
889	Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature, 2016, 530, 85-88.	13.7	320
890	Deformed wing virus is a recent global epidemic in honeybees driven by <i>Varroa</i> mites. Science, 2016, 351, 594-597.	6.0	368
891	Europe's forest management did not mitigate climate warming. Science, 2016, 351, 597-600.	6.0	290
892	The secret pollinators: an overview of moth pollination with a focus on Europe and North America. Arthropod-Plant Interactions, 2016, 10, 21-28.	0.5	76
893	Pollination services for apple are dependent on diverse wild bee communities. Agriculture, Ecosystems and Environment, 2016, 221, 1-7.	2.5	121
894	Restricting mutualistic partners to enforce trade reliance. Nature Communications, 2016, 7, 10322.	5.8	16
895	Effects of pollen dilution on infection of Nosema ceranae in honey bees. Journal of Insect Physiology, 2016, 87, 12-19.	0.9	76

#	Article	IF	Citations
896	Parameterization of the InVEST Crop Pollination Model to spatially predict abundance of wild blueberry (Vaccinium angustifolium Aiton) native bee pollinators in Maine, USA. Environmental Modelling and Software, 2016, 79, 1-9.	1.9	46
897	Mass flowering crops in a patchy agricultural landscape can reduce bee abundance in adjacent shrublands. Agriculture, Ecosystems and Environment, 2016, 223, 22-30.	2.5	32
898	Arable weed decline in Northeast Spain: Does organic farming recover functional biodiversity?. Agriculture, Ecosystems and Environment, 2016, 223, 1-9.	2.5	39
899	Community composition of butterflies and bumblebees in fallows: niche breadth and dispersal capacity modify responses to fallow type and landscape. Journal of Insect Conservation, 2016, 20, 23-34.	0.8	17
900	Habitat management on multiple spatial scales can enhance bee pollination and crop yield in tropical homegardens. Agriculture, Ecosystems and Environment, 2016, 223, 144-151.	2.5	43
901	Varroa destructor Macula-like virus, Lake Sinai virus and other new RNA viruses in wild bumblebee hosts (Bombus pascuorum, Bombus lapidarius and Bombus pratorum). Journal of Invertebrate Pathology, 2016, 134, 6-11.	1.5	32
902	Diverse landscapes have a higher abundance and species richness of spring wild bees by providing complementary floral resources over bees' foraging periods. Landscape Ecology, 2016, 31, 1523-1535.	1.9	119
903	Divergent forms of endoplasmic reticulum stress trigger a robust unfolded protein response in honey bees. Journal of Insect Physiology, 2016, 86, 1-10.	0.9	20
904	LecoS — A python plugin for automated landscape ecology analysis. Ecological Informatics, 2016, 31, 18-21.	2.3	126
905	InÂvivo study of Dicer-2-mediated immune response of the small interfering RNA pathway upon systemic infections of virulent and avirulent viruses in Bombus terrestris. Insect Biochemistry and Molecular Biology, 2016, 70, 127-137.	1.2	50
906	Diversity and life-history traits of wild bees (Insecta: Hymenoptera) in intensive agricultural landscapes in the Rolling Pampa, Argentina. Journal of Natural History, 2016, 50, 1175-1196.	0.2	26
907	Modeling the status, trends, and impacts of wild bee abundance in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 140-145.	3.3	352
908	Degradation of soil fertility can cancel pollination benefits in sunflower. Oecologia, 2016, 180, 581-587.	0.9	21
909	Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 146-151.	3.3	618
910	Landscape genetics of a tropical rescue pollinator. Conservation Genetics, 2016, 17, 267-278.	0.8	71
911	The genetic consequences of the anthropogenic movement of social bees. Insectes Sociaux, 2016, 63, 15-24.	0.7	31
912	Lost colonies found in a data mine: Global honey trade but not pests or pesticides as a major cause of regional honeybee colony declines. Agriculture, Ecosystems and Environment, 2016, 216, 44-50.	2.5	75
913	Nectar chemistry mediates the behavior of parasitized bees: consequences for plant fitness. Ecology, 2016, 97, 325-337.	1.5	65

#	Article	IF	Citations
914	European isolates of the Microsporidia Nosema apis and Nosema ceranae have similar virulence in laboratory tests on European worker honey bees. Apidologie, 2016, 47, 57-65.	0.9	17
915	Pollen nutrition in honey bees (Apis mellifera): impact on adult health. Apidologie, 2016, 47, 15-25.	0.9	80
916	Pollinators in life cycle assessment: towards a framework for impact assessment. Journal of Cleaner Production, 2017, 140, 525-536.	4.6	38
917	Effects of fire on pollinators and pollination. Journal of Applied Ecology, 2017, 54, 313-322.	1.9	57
918	Different but the same: bumblebee species collect pollen of different plant sources but similar amino acid profiles. Apidologie, 2017, 48, 102-116.	0.9	50
919	Midgut bacterial communities in the giant Asian honeybee (<i>Apis dorsata</i>) across 4 developmental stages: A comparative study. Insect Science, 2017, 24, 81-92.	1.5	18
920	Effects of Imidacloprid and <i>Varroa destructor</i> on survival and health of European honey bees, <i>Apis mellifera</i> . Insect Science, 2017, 24, 467-477.	1.5	54
921	Using BEEHAVE to explore pesticide protection goals for European honeybee (<i>Apis melifera</i> L.) worker losses at different forage qualities. Environmental Toxicology and Chemistry, 2017, 36, 254-264.	2.2	23
922	Potential pollination maintenance by an exotic allodapine bee under climate change scenarios in the Indoâ∈Pacific region. Journal of Applied Entomology, 2017, 141, 122-132.	0.8	9
923	Impact of pollen resources drift on common bumblebees in <scp>NW</scp> Europe. Global Change Biology, 2017, 23, 68-76.	4.2	36
924	Evaluation of the toxicity of fungicides to flight muscle mitochondria of bumblebee (Bombus) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 342
925	Flight range of the Australian stingless bee <i>Tetragonula carbonaria</i> (Hymenoptera: Apidae). Austral Entomology, 2017, 56, 50-53.	0.8	48
926	Impact of landâ€use change on flowerâ€visiting insect communities on an oceanic island. Insect Conservation and Diversity, 2017, 10, 211-223.	1.4	18
927	Why Bees Are So Vulnerable to Environmental Stressors. Trends in Ecology and Evolution, 2017, 32, 268-278.	4.2	177
928	Weight of evidence evaluation of a network of adverse outcome pathways linking activation of the nicotinic acetylcholine receptor in honey bees to colony death. Science of the Total Environment, 2017, 584-585, 751-775.	3.9	45
929	A †Landscape physiology' approach for assessing bee health highlights the benefits of floral landscape enrichment and semi-natural habitats. Scientific Reports, 2017, 7, 40568.	1.6	99
930	Regulation of genes related to immune signaling and detoxification in Apis mellifera by an inhibitor of histone deacetylation. Scientific Reports, 2017, 7, 41255.	1.6	36
931	Effects of abamectin and deltamethrin to the foragers honeybee workers of Apis mellifera jemenatica (Hymenoptera: Apidae) under laboratory conditions. Saudi Journal of Biological Sciences, 2017, 24, 1007-1015.	1.8	21

#	Article	IF	CITATIONS
932	Effects of Habitat Fragmentation on the Nesting Dynamics of Desert Bees. Annals of the Entomological Society of America, 0, , saw081.	1.3	2
933	Pollen nutrients better explain bumblebee colony development than pollen diversity. Insect Conservation and Diversity, 2017, 10, 171-179.	1.4	74
934	Ecosystem restoration strengthens pollination network resilience and function. Nature, 2017, 542, 223-227.	13.7	265
935	Honeybee colony losses in Uruguay during 2013–2014. Apidologie, 2017, 48, 364-370.	0.9	35
936	A demographic approach to evaluating the impact of stressors on bumble bee colonies. Ecological Entomology, 2017, 42, 221-229.	1.1	22
937	Both landscape and local scale factors matter for the parental investment strategies of the pollinator Osmia caerulescens. Journal of Apicultural Research, 2017, 56, 1-12.	0.7	10
938	Sublethal pesticide doses negatively affect survival and the cellular responses in American foulbrood-infected honeybee larvae. Scientific Reports, 2017, 7, 40853.	1.6	49
939	How to efficiently obtain accurate estimates of flower visitation rates by pollinators. Basic and Applied Ecology, 2017, 19, 11-18.	1.2	38
940	Plantâ€"pollinator interactions and threats to pollination: perspectives from the flower to the landscape. Functional Ecology, 2017, 31, 22-25.	1.7	30
941	Food for honeybees? Pollinators and seed set of Anthyllis barba-jovis L. (Fabaceae) in arid coastal areas of the Mediterranean basin. Saudi Journal of Biological Sciences, 2017, 24, 1056-1060.	1.8	7
942	Disentangling the contributions of dispersal limitation, ecological drift, and ecological filtering to wild bee community assembly. Ecosphere, 2017, 8, e01650.	1.0	14
943	Do sown flower strips boost wild pollinator abundance and pollination services in a spring-flowering crop? A case study from UK cider apple orchards. Agriculture, Ecosystems and Environment, 2017, 239, 20-29.	2.5	105
944	Assessment of the toxic effect of pesticides on honey bee drone fertility using laboratory and semifield approaches: A case study of fipronil. Environmental Toxicology and Chemistry, 2017, 36, 2345-2351.	2.2	26
945	Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Scientific Reports, 2017, 7, 42838.	1.6	105
946	Wild pollinators enhance oilseed rape yield in small-holder farming systems in China. BMC Ecology, 2017, 17, 6.	3.0	37
947	Promoting diverse communities of wild bees and hoverflies requires a landscape approach to managing meadows. Agriculture, Ecosystems and Environment, 2017, 239, 376-384.	2.5	31
948	Introduced social bees reduce nectar availability during the breeding season of the swift parrot (Lathamus discolor). Pacific Conservation Biology, 2017, 23, 52.	0.5	4
949	Virion Structure of Black Queen Cell Virus, a Common Honeybee Pathogen. Journal of Virology, 2017, 91, .	1.5	31

#	Article	IF	Citations
950	Effects of vegetation structure and human impact on understory honey plant richness: implications for pollinator visitation. Journal of Ecology and Environment, 2017, 41, .	1.6	8
951	Melittofauna and Other Potential Pollinators in Wetland and Uplands in South Central Nebraska (Insecta: Apoidea). Zootaxa, 2017, 4242, 255.	0.2	4
952	The use of digital video recorders in pollination biology. Ecological Entomology, 2017, 42, 383-388.	1.1	23
953	Bumblebee footprints on bird's-foot trefoil uncover increasing flower visitation with land-use intensity. Agriculture, Ecosystems and Environment, 2017, 240, 77-83.	2.5	0
954	The friendship paradox in species-rich ecological networks: Implications for conservation and monitoring. Biological Conservation, 2017, 209, 245-252.	1.9	13
955	Updated list of bumblebees (Hymenoptera: Apidae) from the Spanish Pyrenees with notes on their decline and conservation statusÂ. Zootaxa, 2017, 4237, zootaxa.4237.1.3.	0.2	14
956	Risk assessment for large African hive beetles (Oplostomus spp.)—a review. Apidologie, 2017, 48, 495-503.	0.9	12
957	Covert deformed wing virus infections have long-term deleterious effects on honeybee foraging and survival. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162149.	1.2	100
958	Climate change threatens pollination services in tomato crops in Brazil. Agriculture, Ecosystems and Environment, 2017, 239, 257-264.	2.5	26
959	A novel GIS-based approach to assess beekeeping suitability of Mediterranean lands. Saudi Journal of Biological Sciences, 2017, 24, 1045-1050.	1.8	32
960	Overlooking the smallest matter: viruses impact biological invasions. Ecology Letters, 2017, 20, 524-538.	3.0	31
961	Modeling bumble bee population dynamics with delay differential equations. Ecological Modelling, 2017, 351, 14-23.	1.2	20
962	Climate change influences on pollinator, forest, and farm interactions across a climate gradient. Climatic Change, 2017, 141, 63-75.	1.7	18
963	<i>The Challenge</i> : Assessment of risks posed by systemic insecticides to hymenopteran pollinators: New perception when we move from laboratory via (semiâe)field to landscape scale testing?. Environmental Toxicology and Chemistry, 2017, 36, 17-24.	2.2	10
964	Floral abundance, richness, and spatial distribution drive urban garden bee communities. Bulletin of Entomological Research, 2017, 107, 658-667.	0.5	54
965	Agrochemical synergism imposes higher risk to Neotropical bees than toÂhoneybees. Royal Society Open Science, 2017, 4, 160866.	1.1	50
966	Landscapes with high intensive fruit cultivation reduce wild pollinator services to sweet cherry. Agriculture, Ecosystems and Environment, 2017, 239, 342-348.	2.5	37
967	Adolescents' Experience and Knowledge of, and Attitudes toward, Bees: Implications and Recommendations for Conservation. Anthrozoos, 2017, 30, 19-32.	0.7	30

#	Article	IF	CITATIONS
968	Monitoring the conservation status of bumble bee populations across an elevation gradient in the Front Range of Colorado. Journal of Insect Conservation, 2017, 21, 65-74.	0.8	5
969	Fly and wasp diversity responds to elements of both the visible and invisible fire mosaic. International Journal of Wildland Fire, 2017, 26, 434.	1.0	17
970	Replication of honey bee-associated RNA viruses across multiple bee species in apple orchards of Georgia, Germany and Kyrgyzstan. Journal of Invertebrate Pathology, 2017, 146, 14-23.	1.5	46
971	Agricultural Landscape and Pesticide Effects on Honey Bee (Hymenoptera: Apidae) Biological Traits. Journal of Economic Entomology, 2017, 110, 835-847.	0.8	33
972	Factors affecting bee communities in forest openings and adjacent mature forest. Forest Ecology and Management, 2017, 394, 111-122.	1.4	67
973	The impact of crop parameters and surrounding habitats on different pollinator group abundance on agricultural fields. Agriculture, Ecosystems and Environment, 2017, 243, 55-66.	2.5	16
974	The honeybee as a model insect for developmental genetics. Genesis, 2017, 55, e23019.	0.8	21
975	Genetic diversity of Varroa destructor parasitizing Apis mellifera unicolor in Madagascar. Apidologie, 2017, 48, 648-656.	0.9	2
976	Population genetics of wild and managed pollinators: implications for crop pollination and the genetic integrity of wild bees. Conservation Genetics, 2017, 18, 667-677.	0.8	10
977	Novel Consequences of Bird Pollination for Plant Mating. Trends in Plant Science, 2017, 22, 395-410.	4.3	92
978	Specialist nectar-yeasts decline with urbanization in Berlin. Scientific Reports, 2017, 7, 45315.	1.6	12
979	Local knowledge on native bees and their role as pollinators in agricultural communities. Journal of Insect Conservation, 2017, 21, 345-356.	0.8	12
980	Collating and validating indigenous and local knowledge to apply multiple knowledge systems to an environmental challenge: A case-study of pollinators in India. Biological Conservation, 2017, 211, 20-28.	1.9	41
981	Higher immunocompetence is associated with higher genetic diversity in feral honey bee colonies (Apis) Tj ETQq1	1.0,7843	14 rgBT /Ov
982	How hedge woody species diversity and habitat change is a function of land use history and recent management in a European agricultural landscape. Journal of Environmental Management, 2017, 196, 692-701.	3.8	7
983	Sunflower crop and climate change: vulnerability, adaptation, and mitigation potential from case-studies in Europe. OCL - Oilseeds and Fats, Crops and Lipids, 2017, 24, D102.	0.6	95
984	A theoretical basis for the study of predatory syrphid fly ecology. Theoretical Ecology, 2017, 10, 391-402.	0.4	4
986	The role of ants, birds and bats for ecosystem functions and yield in oil palm plantations. Ecology, 2017, 98, 1945-1956.	1.5	33

#	ARTICLE	IF	Citations
987	A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability. Scientific Reports, 2017, 7, 1201.	1.6	124
988	Bio-inspired hierarchical micro- and nano-wrinkles obtained via mechanically directed self-assembly on shape-memory polymers. Soft Matter, 2017, 13, 4328-4334.	1.2	41
989	Long-term yield trends of insect-pollinated crops vary regionally and are linked to neonicotinoid use, landscape complexity, and availability of pollinators. Arthropod-Plant Interactions, 2017, 11, 449-461.	0.5	13
990	Plant–floral visitor network structure in a smallholder Cucurbitaceae agricultural system in the tropics: implications for the extinction of main floral visitors. Arthropod-Plant Interactions, 2017, 11, 731-740.	0.5	4
991	Toxicity of thiametoxam on in vitro reared honey bee brood. Apidologie, 2017, 48, 635-643.	0.9	19
992	Stress response in honeybees is associated with changes in task-related physiology and energetic metabolism. Journal of Insect Physiology, 2017, 98, 47-54.	0.9	54
993	Pollinator rarity limits reintroduction sites in an endangered sexually deceptive orchid (Caladenia) Tj ETQq0 0 0 rg Linnean Society, 2017, 184, 122-136.	BT /Overlo 0.8	ock 10 Tf 50 ! 33
994	Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages. Environmental Pollution, 2017, 229, 386-393.	3.7	59
995	The effects of ingested aqueous aluminum on floral fidelity and foraging strategy in honey bees (Apis) Tj ETQq0 0	0_rgBT /O	verlock 10 Tf
996	Seasonal trends in honey bee pollen foraging revealed through DNA barcoding of bee-collected pollen. Insectes Sociaux, 2017, 64, 425-437.	0.7	24
997	Nonâ€ŧarget impacts of weed control on birds, mammals, and reptiles. Ecosphere, 2017, 8, e01804.	1.0	24
998	Effects of competition and climate on a crop pollinator community. Agriculture, Ecosystems and Environment, 2017, 246, 253-260.	2.5	38
999	A dual role for farmlands: food security and pollinator conservation. Journal of Ecology, 2017, 105, 890-899.	1.9	41
1000	Scientific note on the first report of <i>Varroa destructor</i> in Cameroon. Journal of Apicultural Research, 2017, 56, 397-399.	0.7	0
1001	Big city <i>Bombus</i> : using natural history and land-use history to find significant environmental drivers in bumble-bee declines in urban development. Royal Society Open Science, 2017, 4, 170156.	1.1	51
1002	Wild bee nutritional ecology: predicting pollinator population dynamics, movement, and services from floral resources. Current Opinion in Insect Science, 2017, 21, 83-90.	2.2	59
1003	Landscape effects on pollinator communities and pollination services in small-holder agroecosystems. Agriculture, Ecosystems and Environment, 2017, 246, 109-116.	2.5	45
1004	Invasion dynamics of Asian hornet, Vespa velutina (Hymenoptera: Vespidae): a case study of a commune in south-west France. Applied Entomology and Zoology, 2017, 52, 221-229.	0.6	36

#	ARTICLE	IF	CITATIONS
1005	Bees without Flowers: Before Peak Bloom, Diverse Native Bees Find Insect-Produced Honeydew Sugars. American Naturalist, 2017, 190, 281-291.	1.0	16
1006	Interactive effects of landscape-wide intensity of farming practices and landscape complexity on wild bee diversity. Landscape Ecology, 2017, 32, 1631-1642.	1.9	15
1007	Life-history traits of wild honey bee colonies living in forests around Ithaca, NY, USA. Apidologie, 2017, 48, 743-754.	0.9	42
1008	Applying pollen DNA metabarcoding to the study of plant–pollinator interactions. Applications in Plant Sciences, 2017, 5, 1600124.	0.8	115
1009	Host sharing by the honey bee parasites <i>Lotmaria passim</i> and <i>Nosema ceranae</i> . Ecology and Evolution, 2017, 7, 1850-1857.	0.8	27
1010	Oilseed rape (<i>Brassica napus</i>) as a resource for farmland insect pollinators: quantifying floral traits in conventional varieties and breeding systems. GCB Bioenergy, 2017, 9, 1370-1379.	2.5	42
1011	Toxicity of organophosphorus pesticides to the stingless bees Scaptotrigona bipunctata and Tetragonisca fiebrigi. Apidologie, 2017, 48, 612-620.	0.9	23
1012	Spring mortality in honey bees in northeastern Italy: detection of pesticides and viruses in dead honey bees and other matrices. Journal of Apicultural Research, 2017, 56, 239-254.	0.7	22
1013	Two ways of acquiring environmental knowledge: by encountering living animals at a beehive and by observing bees via digital tools. International Journal of Science Education, 2017, 39, 723-741.	1.0	31
1014	Local resources, linear elements and mass-flowering crops determine bumblebee occurrences in moderately intensified farmlands. Agriculture, Ecosystems and Environment, 2017, 239, 90-100.	2.5	44
1015	Bee-Rustling on the Range: Trap-Nesting for Pollinators on Public Lands. Natural Areas Journal, 2017, 37, 265-269.	0.2	5
1016	High mitochondrial DNA diversity and lack of population structure in a solitary cavity-nesting bee in an urban landscape. Biological Journal of the Linnean Society, 2017, 121, 564-575.	0.7	8
1017	A Bio-Economic Case Study of Canadian Honey Bee (Hymenoptera: Apidae) Colonies: Marker-Assisted Selection (MAS) in Queen Breeding Affects Beekeeper Profits. Journal of Economic Entomology, 2017, 110, 816-825.	0.8	18
1018	Preponderance of clonality triggers loss of sex in <i>Bulbophyllum bicolor</i> , an obligately outcrossing epiphytic orchid. Molecular Ecology, 2017, 26, 3358-3372.	2.0	26
1019	Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecology Letters, 2017, 20, 673-689.	3.0	237
1020	Effects of steel foundation wire on elemental content and hygienic removal of honey bee (Apis) Tj ETQq1 1 0.784	-314 rgBT 0.7	/Overlock 10
1021	Assessing wild bees in perennial bioenergy landscapes: effects of bioenergy crop composition, landscape configuration, and bioenergy crop area. Landscape Ecology, 2017, 32, 1023-1037.	1.9	16
1022	Stress-mediated Allee effects can cause the sudden collapse of honey bee colonies. Journal of Theoretical Biology, 2017, 420, 213-219.	0.8	42

#	Article	IF	CITATIONS
1023	Health outcomes of beekeeping: a systematic review. Journal of Apicultural Research, 2017, 56, 100-111.	0.7	11
1024	Stress responses of honey bees to organic acid and essential oil treatments against varroa mites. Journal of Apicultural Research, 2017, 56, 175-181.	0.7	20
1025	Biodiversity impacts of bioenergy production: Microalgae vs. first generation biofuels. Renewable and Sustainable Energy Reviews, 2017, 74, 1131-1146.	8.2	113
1026	An Internetâ€based platform for the estimation of outcrossing potential between cultivated and Chilean vascular plants. Ecology and Evolution, 2017, 7, 2480-2488.	0.8	1
1027	Landscape and pesticide effects on honey bees: forager survival and expression of acetylcholinesterase and brain oxidative genes. Apidologie, 2017, 48, 556-571.	0.9	22
1028	Enhancing plant diversity in agricultural landscapes promotes both rare bees and dominant cropâ€pollinating bees through complementary increase in key floral resources. Journal of Applied Ecology, 2017, 54, 1856-1864.	1.9	113
1029	Mediterranean lineage endemism, cold-adapted palaeodemographic dynamics and recent changes in population size in two solitary bees of the genus Anthophora. Conservation Genetics, 2017, 18, 521-538.	0.8	10
1030	Effect of Floral Diversity and Urbanization on Bee Species Community Composition in Phoenix, Arizona. Journal of the Arizona-Nevada Academy of Science, 2017, 47, 6-18.	0.1	4
1031	Spatial and temporal variations in floral resource availability affect bumblebee communities in heathlands. Biodiversity and Conservation, 2017, 26, 687-702.	1.2	10
1032	The eco-evolutionary impacts of domestication and agricultural practices on wild species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160033.	1.8	65
1033	Sweat bees on hot chillies: provision of pollination services by native bees in traditional slashâ€andâ€burn agriculture in the Yucatán Peninsula of tropical Mexico. Journal of Applied Ecology, 2017, 54, 1814-1824.	1.9	41
1034	Long-term effect of temperature on honey yield and honeybee phenology. International Journal of Biometeorology, 2017, 61, 1125-1132.	1.3	23
1035	Increased pollinator habitat enhances cacao fruit set and predator conservation. Ecological Applications, 2017, 27, 887-899.	1.8	39
1036	Genomics, transcriptomics and proteomics: enabling insights into social evolution and disease challenges for managed and wild bees. Molecular Ecology, 2017, 26, 718-739.	2.0	39
1037	Forested field edges support a greater diversity of wild pollinators in lowbush blueberry (Vaccinium) Tj ETQq0 0 0) rgBT /Ove	erlock 10 Tf 5
1038	Bumble bee colony growth and reproduction depend on local flower dominance and natural habitat area in the surrounding landscape. Biological Conservation, 2017, 206, 217-223.	1.9	39
1039	Does fire affect the temporal pattern of trophic resource supply to pollinators and seed-dispersing frugivores in a Brazilian savanna community?. Plant Ecology, 2017, 218, 345-357.	0.7	7
1040	Plant–Pollinator Communication. Advances in Botanical Research, 2017, 82, 225-257.	0.5	44

#	ARTICLE	IF	CITATIONS
1041	17Âyears of grassland management leads to parallel local and regional biodiversity shifts among a wide range of taxonomic groups. Biodiversity and Conservation, 2017, 26, 717-734.	1.2	28
1042	Bumble Bees (Hymenoptera: Apidae) of Montana. Annals of the Entomological Society of America, 2017, 110, 129-144.	1.3	14
1043	Modelling seasonal effects of temperature and precipitation on honey bee winter mortality in a temperate climate. Science of the Total Environment, 2017, 579, 1581-1587.	3.9	103
1044	Survey and molecular detection of Melissococcus plutonius, the causative agent of European Foulbrood in honeybees in Saudi Arabia. Saudi Journal of Biological Sciences, 2017, 24, 1327-1335.	1.8	9
1045	Euglossine bees mediate only limited longâ€distance gene flow in a tropical vine. New Phytologist, 2017, 213, 1898-1908.	3.5	17
1046	Predictive systems models can help elucidate bee declines driven by multiple combined stressors. Apidologie, 2017, 48, 328-339.	0.9	40
1047	Sublethal Effects of the Neonicotinoid Insecticide Thiamethoxam on the Transcriptome of the Honey Bees (Hymenoptera: Apidae). Journal of Economic Entomology, 2017, 110, 2283-2289.	0.8	57
1048	Urbanization-mediated context dependence in the effect of floral neighborhood on pollinator visitation. Oecologia, 2017, 185, 713-723.	0.9	9
1049	Potential use of Negramina (Siparuna guianensis Aubl.) essential oil to control wax moths and its selectivity in relation to honey bees. Industrial Crops and Products, 2017, 109, 151-157.	2.5	25
1050	Farm and landscape factors interact to affect the supply of pollination services. Agriculture, Ecosystems and Environment, 2017, 250, 113-122.	2.5	68
1051	Wild Bee Community Assemblages Across Agricultural Landscapes. Journal of Agricultural and Urban Entomology, 2017, 33, 77-104.	0.6	10
1052	Detrimental interactions of neonicotinoid pesticide exposure and bumblebee immunity. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2017, 327, 273-283.	0.9	30
1053	Apiculture knowledge transmission in a changing world: Can family-owned knowledge be opened?. Journal of Ethnic Foods, 2017, 4, 262-267.	0.8	18
1054	Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11247-11252.	3.3	225
1055	Flower resource and land management drives hoverfly communities and bee abundance in seminatural and agricultural grasslands. Ecology and Evolution, 2017, 7, 8073-8086.	0.8	33
1057	Climate drives phenological reassembly of a mountain wildflower meadow community. Ecology, 2017, 98, 2799-2812.	1.5	62
1058	Varroa sensitive hygiene contributes to naturally selected varroa resistance in honey bees. Journal of Apicultural Research, 2017, 56, 635-642.	0.7	51
1059	Agroforestry Can Enhance Food Security While Meeting Other Sustainable Development Goals. Tropical Conservation Science, 2017, 10, 194008291772066.	0.6	128

#	Article	IF	CITATIONS
1060	Using Epidemiological Methods to Improve Honey Bee Colony Health., 2017,, 125-142.		1
1061	Toward functional pollinator abundance and diversity: Comparing policy response for neonicotinoid use to demonstrate a need for cautious and well-planned policy. Biological Conservation, 2017, 215, 196-212.	1.9	7
1062	The Effect of Artificial Lights on Nocturnal Macrolepidoptera (Lepidoptera: Macroheterocera) Communities. Acta Silvatica Et Lignaria Hungarica, 2017, 13, 41-54.	0.2	2
1063	Nutritional composition of honey bee food stores vary with floral composition. Oecologia, 2017, 185, 749-761.	0.9	90
1064	People's Perceptions of the Benefits of Natural Beekeeping and Its Positive Outcomes for Forest Conservation. Tropical Conservation Science, 2017, 10, 194008291769726.	0.6	18
1065	Empirical, Metagenomic, and Computational Techniques Illuminate the Mechanisms by which Fungicides Compromise Bee Health. Journal of Visualized Experiments, 2017, , .	0.2	12
1066	Conserving Megafauna or Sacrificing Biodiversity?. BioScience, 0, , biw163.	2.2	8
1067	Editorial overview: Behavioural ecology. Current Opinion in Insect Science, 2017, 21, ix-x.	2.2	0
1068	Disruption of oxidative balance in the gut of theÂwestern honeybee <i>Apis mellifera</i> exposed to the intracellular parasite <i>Nosema ceranae</i> and to the insecticide fipronil. Microbial Biotechnology, 2017, 10, 1702-1717.	2.0	36
1069	The impact of honey bee colony quality on crop yield and farmers' profit in apples and pears. Agriculture, Ecosystems and Environment, 2017, 248, 153-161.	2.5	76
1070	Foraging traits modulate stingless bee community disassembly under forest loss. Journal of Animal Ecology, 2017, 86, 1404-1416.	1.3	37
1071	Pollinator Diversity: Distribution, Ecological Function, and Conservation. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 353-376.	3.8	424
1072	Local ecological knowledge reveals effects of policy-driven land use and cover change on beekeepers in Costa Rica. Land Use Policy, 2017, 69, 112-122.	2.5	18
1073	Trends in mean growth and stability in temperate vertebrate populations. Diversity and Distributions, 2017, 23, 1372-1380.	1.9	30
1074	Utilization of photographs taken by citizens for estimating bumblebee distributions. Scientific Reports, 2017, 7, 11215.	1.6	50
1075	Honey bees are the dominant diurnal pollinator of native milkweed in a large urban park. Ecology and Evolution, 2017, 7, 8456-8462.	0.8	19
1076	Ecological and evolutionary approaches to managing honeybee disease. Nature Ecology and Evolution, 2017, 1, 1250-1262.	3.4	73
1077	Nosema ceranae, Fipronil and their combination compromise honey bee reproduction via changes in male physiology. Scientific Reports, 2017, 7, 8556.	1.6	35

#	Article	IF	CITATIONS
1078	Fire influences the structure of plant–bee networks. Journal of Animal Ecology, 2017, 86, 1372-1379.	1.3	38
1079	Sublethal insecticide exposure affects reproduction, chemical phenotype as well as offspring development and antennae symmetry of a leaf beetle. Environmental Pollution, 2017, 230, 709-717.	3.7	37
1081	Integrative Profiling of Bee Communities from Habitats of Tropical Southern Yunnan (China). Scientific Reports, 2017, 7, 5336.	1.6	4
1082	The virulent, emerging genotype B of Deformed wing virus is closely linked to overwinter honeybee worker loss. Scientific Reports, 2017, 7, 5242.	1.6	93
1083	Pollinator population size and pollination ecosystem service responses to enhancing floral and nesting resources. Ecology and Evolution, 2017, 7, 1898-1908.	0.8	58
1084	Bumble bee use of postâ€fire chaparral in the central Sierra Nevada. Journal of Wildlife Management, 2017, 81, 1084-1097.	0.7	15
1085	The Honey Bee Initiative â€" Smart hive. , 2017, , .		3
1086	Neonicotinoids override a parasite exposure impact onÂhibernation success of a key bumblebee pollinator. Ecological Entomology, 2017, 42, 306-314.	1.1	71
1087	Learning in two butterfly species when using flowers of the tropical milkweed Asclepias curassavica : No benefits for pollination. American Journal of Botany, 2017, 104, 1168-1178.	0.8	7
1088	Pollination benefits are maximized at intermediate nutrient levels. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170729.	1.2	27
1089	Honey beeâ€collected pollen in agroâ€ecosystems reveals diet diversity, diet quality, and pesticide exposure. Ecology and Evolution, 2017, 7, 7243-7253.	0.8	53
1090	A non-parametric bootstrap-data envelopment analysis approach for environmental policy planning and management of agricultural efficiency in EU countries. Ecological Indicators, 2017, 83, 132-143.	2.6	145
1091	Temporal dynamics of whole body residues of the neonicotinoid insecticide imidacloprid in live or dead honeybees. Scientific Reports, 2017, 7, 6288.	1.6	16
1092	A common neonicotinoid pesticide, thiamethoxam, alters honey bee activity, motor functions, and movement to light. Scientific Reports, 2017, 7, 15132.	1.6	67
1093	Protein nutrition governs within-host race of honey bee pathogens. Scientific Reports, 2017, 7, 14988.	1.6	42
1094	Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation, 2017, 26, 3005-3035.	1.2	505
1095	Rapid population decline of an endemic oceanic island plant despite resilience to extensive habitat destruction and occurrence within protected areas. Plant Ecology and Diversity, 2017, 10, 293-302.	1.0	25
1096	Rapid assessment of metapopulation viability under climate and land-use change. Ecological Complexity, 2017, 31, 125-134.	1.4	O

#	Article	IF	CITATIONS
1097	Assessing Wild Bee Biodiversity in Cranberry Agroenvironments: Influence of Natural Habitats. Journal of Economic Entomology, 2017, 110, 1424-1432.	0.8	5
1098	Living on the edge: Forecasting the trends in abundance and distribution of the largest hoverfly genus (Diptera: Syrphidae) on the Balkan Peninsula under future climate change. Biological Conservation, 2017, 212, 216-229.	1.9	24
1099	Larval exposure to thiamethoxam and American foulbrood: effects on mortality and cognition in the honey bee <i>Apis mellifera</i> . Journal of Apicultural Research, 2017, 56, 475-486.	0.7	17
1100	Accessing the genetic content of Xylocopa frontalis bees (Apidae, Xylocopini) for sustainable management in pollination services of passion fruit. Apidologie, 2017, 48, 795-805.	0.9	4
1101	Indirect Effects of Landscape Spatial Structure and Plant Species Richness on Pollinator Diversity in Ozark Glades. Castanea, 2017, 82, 24-31.	0.2	4
1102	Neglected pollinators: Can enhanced pollination services improve cocoa yields? A review. Agriculture, Ecosystems and Environment, 2017, 247, 137-148.	2.5	51
1103	Effect of oxalic acid on the mite <i>Varroa destructor</i> and its host the honey bee <i>Apis mellifera</i> Journal of Apicultural Research, 2017, 56, 400-408.	0.7	15
1104	Nesting behavior and nest site preferences of the giant honey bee (<i>Apis dorsata</i> F.) in the semi-arid environment of north west India. Journal of Apicultural Research, 2017, 56, 452-466.	0.7	9
1105	Diagnosis and molecular detection of Paenibacillus larvae, the causative agent of American foulbrood in honey bees in Saudi Arabia. International Journal of Tropical Insect Science, 2017, 37, 137-148.	0.4	8
1106	Review of the invasive yellow-legged hornet, Vespa velutina nigrithorax (Hymenoptera: Vespidae), in Japan and its possible chemical control. Applied Entomology and Zoology, 2017, 52, 361-368.	0.6	30
1107	Effects of global change on insect pollinators: multiple drivers lead to novel communities. Current Opinion in Insect Science, 2017, 23, 22-27.	2.2	58
1108	Variability of bumblebee communities (Apidae, Bombini) in urban green areas. Urban Ecosystems, 2017, 20, 1339-1345.	1.1	13
1109	Exploring the predation of UK bumblebees (Apidae, Bombus spp.) by the invasive pitcher plant Sarracenia purpurea: examining the effects of annual variation, seasonal variation, plant density and bumblebee gender. Arthropod-Plant Interactions, 2017, 11, 79-88.	0.5	2
1110	Testing the relative importance of local resources and landscape connectivity on Bombus impatiens (Hymenoptera, Apidae) colonies. Apidologie, 2017, 48, 545-555.	0.9	19
1111	Farming with alternative pollinators increases yields and incomes of cucumber and sour cherry. Agronomy for Sustainable Development, 2017, 37, 1.	2.2	20
1112	A spatial framework for targeting urban planning for pollinators and people with local stakeholders: A route to healthy, blossoming communities?. Environmental Research, 2017, 158, 255-268.	3.7	37
1113	What evidence exists on the impact of agricultural practices in fruit orchards on biodiversity indicator species groups? A systematic map protocol. Environmental Evidence, 2017, 6, .	1.1	4
1114	Can the exposure of Apis mellifera (Hymenoptera, Apiadae) larvae to a field concentration of thiamethoxam affect newly emerged bees?. Chemosphere, 2017, 185, 56-66.	4.2	39

#	Article	IF	CITATIONS
1115	Towards an integrated species and habitat management of crop pollination. Current Opinion in Insect Science, 2017, 21, 105-114.	2.2	66
1116	Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science, 2017, 356, 1393-1395.	6.0	510
1117	Impacts of forest fragmentation on orchid bee (Hymenoptera: Apidae: Euglossini) communities in the $Choc\tilde{A}^3$ biodiversity hotspot of northwest Ecuador. Journal of Insect Conservation, 2017, 21, 633-643.	0.8	25
1118	Relationships among ecological traits of wild bee communities along gradients of habitat amount and fragmentation. Ecography, 2017, 40, 85-97.	2.1	74
1119	The carryâ€over effects of pollen shortage decrease the survival of honeybee colonies in farmlands. Journal of Applied Ecology, 2017, 54, 1161-1170.	1.9	97
1120	Reâ€evaluating strategies for pollinatorâ€dependent crops: How useful is parthenocarpy?. Journal of Applied Ecology, 2017, 54, 1171-1179.	1.9	33
1121	An assessment of bumblebee (Bombus spp) land use and floral preference in UK gardens and allotments cultivated for food. Urban Ecosystems, 2017, 20, 425-434.	1.1	21
1122	Impact of controlled neonicotinoid exposure on bumblebees in a realistic field setting. Journal of Applied Ecology, 2017, 54, 1199-1208.	1.9	54
1123	Quantitative conservation genetics of wild and managed bees. Conservation Genetics, 2017, 18, 689-700.	0.8	8
1124	Binary mixtures of neonicotinoids show different transcriptional changes than single neonicotinoids in honeybees (Apis mellifera). Environmental Pollution, 2017, 220, 1264-1270.	3.7	35
1125	<scp>SNP</scp> s selected by information content outperform randomly selected microsatellite loci for delineating genetic identification and introgression in the endangered dark European honeybee (<i>Apis mellifera mellifera</i>). Molecular Ecology Resources, 2017, 17, 783-795.	2.2	40
1126	The structure of flower visitor networks in relation to pollination across an agricultural to urban gradient. Functional Ecology, 2017, 31, 838-847.	1.7	85
1127	Food to some, poison to others - honeybee royal jelly and its growth inhibiting effect on European Foulbrood bacteria. MicrobiologyOpen, 2017, 6, e00397.	1.2	40
1128	The effect of fire history in shaping diversity patterns of flower-visiting insects in post-fire Mediterranean pine forests. Biodiversity and Conservation, 2017, 26, 115-131.	1.2	32
1129	Bee conservation in the age of genomics. Conservation Genetics, 2017, 18, 713-729.	0.8	50
1130	Colony impact of pesticideâ€induced sublethal effects on honeybee workers: A simulation study using BEEHAVE. Environmental Toxicology and Chemistry, 2017, 36, 831-840.	2.2	25
1131	Assessing the ecological significance of bee visual detection and colour discrimination on the evolution of flower colours. Evolutionary Ecology, 2017, 31, 153-172.	0.5	33
1132	A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biological Reviews, 2017, 92, 1539-1569.	4.7	222

#	Article	IF	CITATIONS
1133	A Tool for Selecting Plants When Restoring Habitat for Pollinators. Conservation Letters, 2017, 10, 105-111.	2.8	56
1134	Semiâ€natural habitats mitigate the effects of temperature rise on wild bees. Journal of Applied Ecology, 2017, 54, 527-536.	1.9	56
1135	A mammoth undertaking: harnessing insight from functional ecology to shape deâ€extinction priority setting. Functional Ecology, 2017, 31, 1003-1011.	1.7	36
1136	Human welfare and its connection to nature: What have we learned from crop pollination studies?. Austral Ecology, 2017, 42, 2-8.	0.7	6
1137	Is China's unparalleled and understudied bee diversity at risk?. Biological Conservation, 2017, 210, 19-28.	1.9	26
1138	Estimating resource preferences of a native bumblebee: the effects of availability and use–availability models on preference estimates. Oikos, 2017, 126, 633-641.	1.2	9
1139	Gram-Positive Bacteria with Probiotic Potential for the Apis mellifera L. Honey Bee: The Experience in the Northwest of Argentina. Probiotics and Antimicrobial Proteins, 2017, 9, 22-31.	1.9	47
1140	Effects of land use on population presence and genetic structure of an amphibian in an agricultural landscape. Landscape Ecology, 2017, 32, 147-162.	1.9	26
1141	Risks and benefits of the biological interface between managed and wild bee pollinators. Functional Ecology, 2017, 31, 47-55.	1.7	38
1142	Designing agricultural landscapes for biodiversity-based ecosystem services. Basic and Applied Ecology, 2017, 18, 1-12.	1.2	470
1143	Bigger and sweeter passion fruits: effect of pollinator enhancement on fruit production and quality. Apidologie, 2017, 48, 131-140.	0.9	27
1144	Pollination reservoirs for wild bee habitat enhancement in cropping systems: a review. Agroecology and Sustainable Food Systems, 2017, 41, 101-142.	1.0	61
1145	Trait space of rare plants in a fireâ€dependent ecosystem. Conservation Biology, 2017, 31, 903-911.	2.4	18
1146	A review of ecosystem service benefits from wild bees across social contexts. Ambio, 2017, 46, 456-467.	2.8	33
1147	The Darwin cure for apiculture? Natural selection and managed honeybee health. Evolutionary Applications, 2017, 10, 226-230.	1.5	71
1148	Honey Bee Deformed Wing Virus Structures Reveal that Conformational Changes Accompany Genome Release. Journal of Virology, 2017, 91, .	1.5	28
1149	The city as a refuge for insect pollinators. Conservation Biology, 2017, 31, 24-29.	2.4	368
1150	Multilocus species delimitation in <scp>M</scp> esoamerican <i><scp>S</scp>captotrigona</i> stingless bees (<scp>A</scp> pidae: <scp>M</scp> eliponini) supports the existence of cryptic species. Systematic Entomology, 2017, 42, 171-181.	1.7	16

#	ARTICLE	IF	CITATIONS
1151	Ecosystem services across the aquatic–terrestrial boundary: Linking ponds to pollination. Basic and Applied Ecology, 2017, 18, 13-20.	1.2	43
1152	Seasonal variation in the activity of selected antioxidant enzymes and malondialdehyde level in worker honey bees. Entomologia Experimentalis Et Applicata, 2017, 165, 120-128.	0.7	22
1153	Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa. Scientific Reports, 2017, 7, 17691.	1.6	100
1154	Management of Arthropod Pathogen Vectors in North America: Minimizing Adverse Effects on Pollinators. Journal of Medical Entomology, 2017, 54, 1463-1475.	0.9	20
1155	Effects of prey density, temperature and predator diversity on nonconsumptive predator-driven mortality in a freshwater food web. Scientific Reports, 2017, 7, 18075.	1.6	22
1156	Marked reduction in demographic rates and reduced fitness advantage for early breeding is not linked to reduced thermal matching of breeding time. Ecology and Evolution, 2017, 7, 10782-10796.	0.8	16
1157	The Bee Fauna of Inland Sand Dune and Ridge Woodland Communities in Worcester County, Maryland. Northeastern Naturalist, 2017, 24, 421-445.	0.1	7
1158	Abeilles et cultures oléoprotéagineuses : vers une meilleure compréhension de leurs interactions. OCL - Oilseeds and Fats, Crops and Lipids, 2017, 24, D601.	0.6	О
1159	Optimizing Pest Management Practices to Conserve Pollinators in Turf Landscapes: Current Practices and Future Research Needs. Journal of Integrated Pest Management, 2017, 8, .	0.9	16
1160	Regulating Ecosystem Services Delivered in Agroforestry Systems. , 2017, , 797-815.		19
1161	A case for Planetary Health/GeoHealth. GeoHealth, 2017, 1, 75-78.	1.9	22
1162	Bee Mite ID - an online resource on identification of mites associated with bees of the World. Journal of the Acarological Society of Japan, 2017, 26, 25-29.	0.4	1
1163	Pollination success following loss of a frequent pollinator: the role of compensatory visitation by other effective pollinators. AoB PLANTS, 2017, 9, plx020.	1.2	30
1164	Ecosystem restoration: recent advances in theory and practice. Rangeland Journal, 2017, 39, 417.	0.4	13
1165	A model to account for data dependency when estimating floral cover in different land use types over a season. Environmental and Ecological Statistics, 2017, 24, 505-527.	1.9	3
1166	Vegetation Management and Host Density Influence Bee–Parasite Interactions in Urban Gardens. Environmental Entomology, 2017, 46, 1313-1321.	0.7	17
1167	Tsetse flies should remain in protected areas in KwaZulu-Natal. Koedoe, 2017, 59, .	0.3	6
1168	Ecosystem Services from Edible Insects in Agricultural Systems: A Review. Insects, 2017, 8, 24.	1.0	38

#	Article	IF	CITATIONS
1169	Inside Honeybee Hives: Impact of Natural Propolis on the Ectoparasitic Mite Varroa destructor and Viruses. Insects, 2017, 8, 15.	1.0	48
1170	Cold Ambient Temperature Promotes Nosema spp. Intensity in Honey Bees (Apis mellifera). Insects, 2017, 8, 20.	1.0	35
1171	Queen Quality and the Impact of Honey Bee Diseases on Queen Health: Potential for Interactions between Two Major Threats to Colony Health. Insects, 2017, 8, 48.	1.0	99
1172	The Biology and Control of the Greater Wax Moth, Galleria mellonella. Insects, 2017, 8, 61.	1.0	161
1173	Trap Nesting Wasps and Bees in Agriculture: A Comparison of Sown Wildflower and Fallow Plots in Florida. Insects, 2017, 8, 107.	1.0	18
1174	Understanding Pollinator Habitat Conservation under Current Policy Using Economic Experiments. Land, 2017, 6, 57.	1.2	7
1175	5 Key Challenges and Solutions for Governing Complex Adaptive (Food) Systems. Sustainability, 2017, 9, 1594.	1.6	20
1176	Presence of Apis Rhabdovirus-1 in Populations of Pollinators and Their Parasites from Two Continents. Frontiers in Microbiology, 2017, 8, 2482.	1.5	27
1177	Use of costic acid, a natural extract from <i>Dittrichia viscosa</i> , for the control of <i>Varroa destructor</i> , a parasite of the European honey bee. Beilstein Journal of Organic Chemistry, 2017, 13, 952-959.	1.3	20
1178	Dietary Supplementation of Honey Bee Larvae with Arginine and Abscisic Acid Enhances Nitric Oxide and Granulocyte Immune Responses after Trauma. Insects, 2017, 8, 85.	1.0	14
1179	Neonicotinoid pesticides can reduce honeybee colony genetic diversity. PLoS ONE, 2017, 12, e0186109.	1.1	51
1180	More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE, 2017, 12, e0185809.	1.1	2,176
1181	A Checklist of the Bees (Hymenoptera: Apoidea) of St. Louis, Missouri, USA. Journal of the Kansas Entomological Society, 2017, 90, 175-188.	0.1	14
1182	Massively Introduced Managed Species and Their Consequences for Plant–Pollinator Interactions. Advances in Ecological Research, 2017, 57, 147-199.	1.4	125
1183	Do managed bees have negative effects on wild bees?: A systematic review of the literature. PLoS ONE, 2017, 12, e0189268.	1.1	217
1184	A Comparison of Wolbachia Infection Frequencies in Varroa With Prevalence of Deformed Wing Virus. Journal of Insect Science, 2017, 17, .	0.6	5
1185	Cotton Flower-visiting Insects in Small-scale Farm Fields in Mwachisompola, Zambia. Journal of the Kansas Entomological Society, 2017, 90, 122-130.	0.1	3
1186	De la concertation territoriale à l'expérimentation en plein champs, différents leviers pour accompagner les acteurs d'un territoire agricole à façonner des paysages durablement favorables à des productions oléagineuses et des productions de miel. OCL - Oilseeds and Fats, Crops and Lipids, 2017. 24. D605.	0.6	1

#	Article	IF	CITATIONS
1187	Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) NoÂ2016/429): infestation with Varroa spp. (varroosis). EFSA Journal, 2017, 15, e04997.	0.9	3
1189	High Elevation Refugia for <i>Bombus terricola</i> (Hymenoptera: Apidae) Conservation and Wild Bees of the White Mountain National Forest. Journal of Insect Science, 2017, 17, 4.	0.6	13
1190	An updated understanding of Texas bumble bee (Hymenoptera: Apidae) species presence and potential distributions in Texas, USA. PeerJ, 2017, 5, e3612.	0.9	9
1191	Tree legumes: an underexploited resource in warm-climate silvopastures. Revista Brasileira De Zootecnia, 2017, 46, 689-703.	0.3	31
1192	The native bee fauna of the Palouse Prairie (Hymenoptera: Apoidea). Journal of Melittology, 2017, , 1-20.	0.2	4
1193	Safe-Guarding Bee Diversity and Food Provisioning. , 2017, , .		1
1194	Insect conservation psychology. Journal of Insect Conservation, 2018, 22, 635-642.	0.8	36
1195	Presence-only modeling is ill-suited for a recent generalist invader, Anthidium manicatum. Ecological Indicators, 2018, 89, 56-62.	2.6	10
1196	Crop Pollination by Stingless Bees. , 2018, , 139-153.		23
1197	Cultural, Psychological, and Organoleptic Factors Related to the Use of Stingless Bees by Rural Residents of Northern Misiones, Argentina. , 2018, , 283-297.		5
1198	The Contribution of Palynological Surveys to Stingless Bee Conservation: A Case Study with Melipona subnitida., 2018,, 89-101.		9
1199	Linking obligate mutualism models in an extended consumer-resource framework. Ecological Modelling, 2018, 374, 1-13.	1.2	4
1200	Temperature and water stress affect plant–pollinator interactions in <i>Borago officinalis</i> (Boraginaceae). Ecology and Evolution, 2018, 8, 3443-3456.	0.8	92
1201	Shadow Value of Ecosystem Resilience in Complex Natural Land as a Wild Pollinator Habitat. American Journal of Agricultural Economics, 2018, 100, 829-843.	2.4	12
1202	Blue and yellow vane traps differ in their sampling effectiveness for wild bees in both open and wooded habitats. Agricultural and Forest Entomology, 2018, 20, 487-495.	0.7	38
1203	Probiotics for Honeybees' Health. , 2018, , 219-245.		8
1204	Pollinator service affects quantity but not quality of offspring in a widespread New Zealand endemic tree species. Conservation Genetics, 2018, 19, 815-826.	0.8	2
1205	Interactions between immunotoxicants and parasite stress: Implications for host health. Journal of Theoretical Biology, 2018, 445, 120-127.	0.8	7

#	Article	IF	CITATIONS
1206	Flower-strip agri-environment schemes provide diverse and valuable summer flower resources for pollinating insects. Biodiversity and Conservation, 2018, 27, 2193-2216.	1.2	64
1207	Probiotics and Prebiotics in Animal Health and Food Safety. , 2018, , .		13
1208	Trends in Global Agricultural Land Use: Implications for Environmental Health and Food Security. Annual Review of Plant Biology, 2018, 69, 789-815.	8.6	559
1209	Complementary crops and landscape features sustain wild bee communities. Ecological Applications, 2018, 28, 1093-1105.	1.8	43
1210	Stingless Bees as Potential Pollinators in Agroecosystems in Argentina: Inferences from Pot-Pollen Studies in Natural Environments. , 2018, , 155-175.		6
1211	Temporal changes in genetic variability in three bumblebee species from Rio Grande do Sul, South Brazil. Apidologie, 2018, 49, 415-429.	0.9	9
1212	Survival and health improvement of Nosema infected Apis florea (Hymenoptera: Apidae) bees after treatment with propolis extract. Journal of Asia-Pacific Entomology, 2018, 21, 437-444.	0.4	33
1213	Concentrations of imidacloprid and thiamethoxam in pollen, nectar and leaves from seed-dressed cotton crops and their potential risk to honeybees (Apis mellifera L.). Chemosphere, 2018, 201, 159-167.	4.2	65
1214	Flowering and floral visitation predict changes in community structure provided that mycorrhizas remain intact. Ecology, 2018, 99, 1480-1489.	1.5	3
1215	Imidacloprid Decreases Honey Bee Survival Rates but Does Not Affect the Gut Microbiome. Applied and Environmental Microbiology, 2018, 84, .	1.4	63
1216	Movement Patterns Differ between Sexes and Depend on Weather Conditions in the Butterfly Lycaena tityrus. Journal of Insect Behavior, 2018, 31, 309-320.	0.4	5
1217	Histone deacetylase inhibitor treatment restores memoryâ€related gene expression and learning ability in neonicotinoidâ€treated <i>Apis mellifera</i> . Insect Molecular Biology, 2018, 27, 512-521.	1.0	21
1218	Developing reduced <scp>SNP</scp> assays from wholeâ€genome sequence data to estimate introgression in an organism with complex genetic patterns, the Iberian honeybee (<i>Apis mellifera) Tj ETQq0 0</i>	Ong\$BT/Ov	ven ko ck 10 Tf
1219	City parks vs. natural areas - is it possible to preserve a natural level of bee richness and abundance in a city park?. Urban Ecosystems, 2018, 21, 599-613.	1.1	70
1220	Drought and increased <scp>CO</scp> ₂ alter floral visual and olfactory traits with contextâ€dependent effects on pollinator visitation. New Phytologist, 2018, 220, 785-798.	3.5	79
1221	Optimizing the allocation of agri-environment measures to navigate the trade-offs between ecosystem services, biodiversity and agricultural production. Environmental Science and Policy, 2018, 84, 186-196.	2.4	84
1222	Defining U.S. consumers' (mis)perceptions of pollinator friendly labels: an exploratory study. International Food and Agribusiness Management Review, 2018, 21, 365-378.	0.8	5
1223	Bee diversity in crop fields is influenced by remotely-sensed nesting resources in surrounding permanent grasslands. Ecological Indicators, 2018, 90, 606-614.	2.6	25

#	Article	IF	CITATIONS
1224	Seed dormancy and germination vary within and among species of milkweeds. AoB PLANTS, 2018, 10, ply018.	1.2	6
1225	The genetic structure of the European breeding populations of a declining farmland bird, the ortolan bunting (Emberiza hortulana), reveals conservation priorities. Conservation Genetics, 2018, 19, 909-922.	0.8	10
1226	Indirect effects of agricultural pesticide use on parasite prevalence in wild pollinators. Agriculture, Ecosystems and Environment, 2018, 258, 40-48.	2.5	25
1227	Genetic structure and diversity of a rare woodland bat, Myotis bechsteinii: comparison of continental Europe and Britain. Conservation Genetics, 2018, 19, 777-787.	0.8	12
1228	Plant species, functional assemblages and partitioning of diversity in a Mediterranean agricultural mosaic landscape. Agriculture, Ecosystems and Environment, 2018, 256, 163-172.	2.5	18
1229	De novo assembly of honey bee RNA viral genomes by tapping into the innate insect antiviral response pathway. Journal of Invertebrate Pathology, 2018, 152, 38-47.	1.5	23
1230	Landscape and crop management strategies to conserve pollination services and increase yields in tropical coffee farms. Agriculture, Ecosystems and Environment, 2018, 256, 218-225.	2.5	75
1231	Predicting the impacts of co-extinctions on phylogenetic diversity in mutualistic networks. Biological Conservation, 2018, 219, 161-171.	1.9	8
1232	Towards sustainable and multifunctional agriculture in farmland landscapes: Lessons from the integrative approach of a French LTSER platform. Science of the Total Environment, 2018, 627, 822-834.	3.9	119
1233	Crop rotation and agriâ€environment schemes determine bumblebee communities via flower resources. Journal of Applied Ecology, 2018, 55, 1714-1724.	1.9	34
1234	Global importance of vertebrate pollinators for plant reproductive success: aÂmetaâ€analysis. Frontiers in Ecology and the Environment, 2018, 16, 82-90.	1.9	98
1235	Improving our science: the evolution of butterfly sampling and surveying methods over time. Journal of Insect Conservation, 2018, 22, 1-14.	0.8	35
1236	Feedbacks between nutrition and disease in honey bee health. Current Opinion in Insect Science, 2018, 26, 114-119.	2.2	130
1237	Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172242.	1.2	153
1238	Toxicity and effects of the neonicotinoid thiamethoxam on <i>Scaptotrigona bipunctata</i> lepeletier, 1836 (Hymenoptera: Apidae). Environmental Toxicology, 2018, 33, 463-475.	2.1	22
1239	Bacterial wilt symptoms are impacted by host age and involve net downward movement of Erwinia tracheiphila in muskmelon. European Journal of Plant Pathology, 2018, 151, 803-810.	0.8	5
1240	Bees are supplementary pollinators of self-compatible chiropterophilous durian. Journal of Tropical Ecology, 2018, 34, 41-52.	0.5	15
1241	Foraging preferences of leafcutter bees in three contrasting geographical zones. Diversity and Distributions, 2018, 24, 621-628.	1.9	13

#	Article	IF	CITATIONS
1242	Genomic and transcriptomic analysis of the Asian honeybee Apis cerana provides novel insights into honeybee biology. Scientific Reports, 2018, 8, 822.	1.6	68
1243	Effects of neonicotinoid imidacloprid exposure on bumble bee (Hymenoptera: Apidae) queen survival and nest initiation. Environmental Entomology, 2018, 47, 55-62.	0.7	44
1244	Atmospheric nitrogen deposition in terrestrial ecosystems: Its impact on plant communities and consequences across trophic levels. Functional Ecology, 2018, 32, 1757-1769.	1.7	116
1245	The missing link: A case for increased consideration for plant-pollinator interactions for species at-risk recovery in Ontario. Journal for Nature Conservation, 2018, 42, 1-6.	0.8	3
1246	Primary data in pollination services mapping: potential service provision by honey bees (Apis mellifera) in Cumberland and Colchester, Nova Scotia. International Journal of Biodiversity Science, Ecosystem Services & Management, 2018, 14, 60-69.	2.9	7
1247	Pollen Foraging Differences Among Three Managed Pollinators in the Highbush Blueberry (Vaccinium) Tj ETQq $1\ 1$	0,784314	ł rgBT /Over
1248	Introducing perennial biomass crops into agricultural landscapes to address water quality challenges and provide other environmental services. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e275.	1.9	11
1249	Imidacloprid slows the development of preference for rewarding food sources in bumblebees (Bombus impatiens). Ecotoxicology, 2018, 27, 175-187.	1.1	18
1250	Patterns of flower visitor abundance and fruit set in a highly intensified cereal cropping system in a Mediterranean landscape. Agriculture, Ecosystems and Environment, 2018, 254, 255-263.	2.5	5
1251	Measuring public perception and preferences for ecosystem services: A case study of bee pollination in the UK. Land Use Policy, 2018, 71, 355-362.	2.5	22
1252	Reuse of honey jars for healthier bees: Developing a sustainable honey jars supply chain through the use of LCA. Journal of Cleaner Production, 2018, 177, 573-588.	4.6	17
1253	More than "100 worst―alien species in Europe. Biological Invasions, 2018, 20, 1611-1621.	1.2	200
1254	Influence of abandonment on syrphid assemblages in mountainous meadows. Journal of Applied Entomology, 2018, 142, 450-456.	0.8	12
1255	Investigation of temperature and its indices under climate change scenarios over different regions of Rajasthan state in India. Global and Planetary Change, 2018, 161, 82-96.	1.6	31
1256	Reproductive biology and pollination of the carnivorous <i>Genlisea violacea</i> (Lentibulariaceae). Plant Biology, 2018, 20, 591-601.	1.8	9
1257	Management practices and diversity of flower visitors and herbaceous plants in conventional and organic avocado orchards in Michoac \tilde{A}_i n, Mexico. Agroecology and Sustainable Food Systems, 2018, 42, 530-551.	1.0	11
1258	The worldwide importance of honey bees as pollinators in natural habitats. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172140.	1.2	364
1259	Lithium chloride effectively kills the honey bee parasite Varroa destructor by a systemic mode of action. Scientific Reports, 2018, 8, 683.	1.6	38

#	Article	IF	CITATIONS
1260	Stress decreases pollen foraging performance in honeybees. Journal of Experimental Biology, 2018, 221,	0.8	17
1261	Evaluating the benefits of agri-environment schemes on farmland bird communities through a common species monitoring programme. A case study in northern Italy. Agricultural Systems, 2018, 160, 60-69.	3.2	13
1262	Temporal changes in floral resource availability and flower visitation in a butterfly. Arthropod-Plant Interactions, 2018, 12, 177-189.	0.5	16
1263	Contribution of trees to the conservation of biodiversity and ecosystem services in agricultural landscapes. International Journal of Biodiversity Science, Ecosystem Services & Management, 2018, 14, 1-16.	2.9	106
1264	Ecology and Economics of Using Native Managed Bees for Almond Pollination. Journal of Economic Entomology, 2018, 111, 16-25.	0.8	51
1265	Summer Flowering Cover Crops Support Wild Bees in Vineyards. Environmental Entomology, 2018, 47, 63-69.	0.7	17
1266	What specific plant traits support ecosystem services such as pollination, bio-control and water quality protection in temperate climates? A systematic map. Environmental Evidence, 2018, 7, .	1,1	10
1267	British phenological records indicate high diversity and extinction rates among late-summer-flying pollinators. Biological Conservation, 2018, 222, 278-283.	1.9	61
1268	The signalling game between plants and pollinators. Scientific Reports, 2018, 8, 6686.	1.6	12
1269	Multiâ€user quality of floral services along a gradient of margin habitats between semiâ€natural grasslands and forests. Applied Vegetation Science, 2018, 21, 363-372.	0.9	12
1271	Detection of pollen bearing honey bees in hive entrance images. , 2018, , .		5
1272	Effects of the novel pesticide flupyradifurone (Sivanto) on honeybee taste and cognition. Scientific Reports, 2018, 8, 4954.	1.6	69
1273	An unusually large nesting aggregation of the digger bee <i>Anthophora bomboides</i> Kirby, 1838 (Hymenoptera: Apidae) in the San Juan Islands, Washington State. Pan-Pacific Entomologist, 2018, 94, 4-16.	0.1	2
1274	Pollination limitation despite managed honeybees in South African macadamia orchards. Agriculture, Ecosystems and Environment, 2018, 260, 11-18.	2.5	31
1275	A new multiplex PCR protocol to detect mixed trypanosomatid infections in species of Apis and Bombus. Journal of Invertebrate Pathology, 2018, 154, 37-41.	1.5	22
1276	Planning ground based utility scale solar energy as green infrastructure to enhance ecosystem services. Energy Policy, 2018, 117, 218-227.	4.2	64
1277	Changes in the bee fauna of a German botanical garden between 1997 and 2017, attributable to climate warming, not other parameters. Oecologia, 2018, 187, 701-706.	0.9	26
1278	The association of windmills with conservation of pollinating insects and wild plants in homogeneous farmland of western Poland. Environmental Science and Pollution Research, 2018, 25, 6273-6284.	2.7	6

#	Article	IF	CITATIONS
1279	Varroa-specific hygienic behavior of Apis mellifera scutellata in Kenya. Apidologie, 2018, 49, 439-449.	0.9	20
1280	Variation in the phylogenetic diversity of wild bees at produce farms and prairies. Agriculture, Ecosystems and Environment, 2018, 259, 168-173.	2.5	5
1281	Contribution of insect pollination to nutritional security of minerals and vitamins in Korea. Journal of Asia-Pacific Entomology, 2018, 21, 598-602.	0.4	8
1282	Effects of riverine landscape changes on pollination services: A case study on the River Minho, Portugal. Ecological Indicators, 2018, 89, 656-666.	2.6	19
1283	Buzzing on top: Linking wild bee diversity, abundance and traits with green roof qualities. Urban Ecosystems, 2018, 21, 429-446.	1.1	48
1284	Viability of honeybee colonies exposed to sunflowers grown from seeds treated with the neonicotinoids thiamethoxam and clothianidin. Chemosphere, 2018, 202, 609-617.	4.2	24
1285	Ecological factors associated with pre-dispersal predation of fig seeds and wasps by fig-specialist lepidopteran larvae. Acta Oecologica, 2018, 90, 151-159.	0.5	6
1286	Species diversity, pollinator resource value and edibility potential of woody networks in the countryside in northern Belgium. Agriculture, Ecosystems and Environment, 2018, 259, 119-126.	2.5	19
1287	How agricultural multiple ecosystem services respond to socioeconomic factors in Mengyin County, China. Science of the Total Environment, 2018, 630, 1003-1015.	3.9	32
1288	Sublethal effects of clothianidin and Nosema spp. on the longevity and foraging activity of free flying honey bees. Ecotoxicology, 2018, 27, 527-538.	1.1	28
1289	Systematic measurements of the night sky brightness at 26 locations in Eastern Austria. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 211, 144-165.	1.1	58
1290	Climate and habitat influences on bee community structure in Western Canada. Canadian Journal of Zoology, 2018, 96, 1002-1009.	0.4	5
1291	Pollination Requirements of Almond (Prunus dulcis): Combining Laboratory and Field Experiments. Journal of Economic Entomology, 2018, 111, 1006-1013.	0.8	15
1292	Honey bees are essential for pollination of Vitellaria paradoxa subsp. paradoxa (Sapotaceae) in Burkina Faso. Agroforestry Systems, 2018, 92, 23-34.	0.9	6
1293	Managing trapâ€nesting bees as crop pollinators: Spatiotemporal effects of floral resources and antagonists. Journal of Applied Ecology, 2018, 55, 195-204.	1.9	41
1294	Desynchronizations in bee–plant interactions cause severe fitness losses in solitary bees. Journal of Animal Ecology, 2018, 87, 139-149.	1.3	88
1295	How to sustainably increase students' willingness to protect pollinators. Environmental Education Research, 2018, 24, 461-473.	1.6	30
1296	Effects of landscape cover and local habitat characteristics on visiting bees in tropical orchards. Agricultural and Forest Entomology, 2018, 20, 28-40.	0.7	15

#	Article	IF	CITATIONS
1297	Managing biological control services through multiâ€trophic trait interactions: review and guidelines for implementation at local and landscape scales. Biological Reviews, 2018, 93, 306-321.	4.7	107
1298	Mutualistic interactions amplify saltmarsh restoration success. Journal of Applied Ecology, 2018, 55, 405-414.	1.9	66
1299	Specialty oilseed crops provide an abundant source of pollen for pollinators and beneficial insects. Journal of Applied Entomology, 2018, 142, 211-222.	0.8	26
1300	A proposal for integration of the ecosystem-water-food-land-energy (EWFLE) nexus concept into life cycle assessment: A synthesis matrix system for food security. Journal of Cleaner Production, 2018, 172, 3874-3889.	4.6	99
1301	Climate drives plant–pollinator interactions even along smallâ€scale climate gradients: the case of the Aegean. Plant Biology, 2018, 20, 176-183.	1.8	27
1302	Exploring an East Asian melon (Cucumis melo L.) collection for parthenocarpic ability. Genetic Resources and Crop Evolution, 2018, 65, 91-101.	0.8	9
1303	Species traits explain longâ€ŧerm population trends of Finnish cuckoo wasps (Hymenoptera:) Tj ETQq0 0 0 rgBT	/Oyerlock 1.4	10 ₉ Tf 50 502
1304	Insect pollinators collect pollen from windâ€pollinated plants: implications for pollination ecology and sustainable agriculture. Insect Conservation and Diversity, 2018, 11, 13-31.	1.4	95
1305	Conservation of hoverflies (Diptera, Syrphidae) requires complementary resources at the landscape and local scales. Insect Conservation and Diversity, 2018, 11, 72-87.	1.4	45
1306	Characterization of gut bacterial flora of Apis mellifera from north-west Pakistan. Saudi Journal of Biological Sciences, 2018, 25, 388-392.	1.8	52
1307	Influence of humic substances and iron and aluminum ions on the sorption of acetamiprid to an arable soil. Science of the Total Environment, 2018, 615, 1478-1484.	3.9	32
1308	Impact of floral nectar limitation on life-history traits in a grassland butterfly relative to nectar supply in different agricultural landscapes. Agriculture, Ecosystems and Environment, 2018, 251, 99-106.	2.5	6
1309	The species richness/abundance–area relationship of bees in an early successional tree plantation. Basic and Applied Ecology, 2018, 26, 64-70.	1.2	19
1310	Uptake and dissipation of neonicotinoid residues in nectar and foliage of systemically treated woody landscape plants. Environmental Toxicology and Chemistry, 2018, 37, 860-870.	2.2	30
1311	Mitigating effects of pollen during paraquat exposure on gene expression and pathogen prevalence in Apis mellifera L. Ecotoxicology, 2018, 27, 32-44.	1.1	10
1312	A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Science of the Total Environment, 2018, 615, 208-218.	3.9	183
1313	Post-embryonic development of the Malpighian tubules in Apis mellifera (Hymenoptera) workers: morphology, remodeling, apoptosis, and cell proliferation. Protoplasma, 2018, 255, 585-599.	1.0	14
1314	Prevalence of common honey bee pathogens at selected apiaries in Kenya, 2013/2014. International Journal of Tropical Insect Science, 2018, 38, 58-70.	0.4	12

#	Article	IF	CITATIONS
1315	Attractiveness of wildflower mixtures for wild bees and hoverflies depends on some key plant species. Insect Conservation and Diversity, 2018, 11, 32-41.	1.4	69
1316	Effects of neonicotinoid exposure on molecular and physiological indicators of honey bee immunocompetence. Apidologie, 2018, 49, 196-208.	0.9	11
1317	How does climate change affect regeneration of Mediterranean highâ€mountain plants? An integration and synthesis of current knowledge. Plant Biology, 2018, 20, 50-62.	1.8	35
1318	Synergistic interactions between a variety of insecticides and an ergosterol biosynthesis inhibitor fungicide in dietary exposures of bumble bees (Bombus terrestris L.). Pest Management Science, 2018, 74, 541-546.	1.7	50
1319	A scientific note on first detection of Kashmir bee virus in Apis mellifera (Hymenoptera: Apidae) in South America. Apidologie, 2018, 49, 220-223.	0.9	4
1320	Flower visitor communities are similar on remnant and reconstructed tallgrass prairies despite forb community differences. Restoration Ecology, 2018, 26, 751-759.	1.4	13
1321	The value of small arable habitats in the agricultural landscape: Importance for vascular plants and the provisioning of floral resources for bees. Ecological Indicators, 2018, 84, 553-563.	2.6	9
1322	Bumble bee colony growth and reproduction on reclaimed surface coal mines. Restoration Ecology, 2018, 26, 183-194.	1.4	8
1323	Supplementing small farms with native mason bees increases strawberry size and growth rate. Journal of Applied Ecology, 2018, 55, 591-599.	1.9	19
1324	Alien plants have greater impact than habitat fragmentation on native insect flower visitation networks. Diversity and Distributions, 2018, 24, 58-68.	1.9	24
1325	Local extinction of a rare plant pollinator in Southern Utah (USA) associated with invasion by Africanized honey bees. Biological Invasions, 2018, 20, 593-606.	1.2	19
1326	Effects of habitat simplification on assemblages of cavity nesting bees and wasps in a semiarid neotropical conservation area. Biodiversity and Conservation, 2018, 27, 311-328.	1.2	32
1327	Forest fragmentation and loss reduce richness, availability, and specialization in tropical hummingbird communities. Biotropica, 2018, 50, 74-83.	0.8	38
1328	Genomes of the Hymenoptera. Current Opinion in Insect Science, 2018, 25, 65-75.	2.2	63
1329	Evidence of Varroa-mediated deformed wing virus spillover in Hawaii. Journal of Invertebrate Pathology, 2018, 151, 126-130.	1.5	33
1330	Community level niche overlap and broad scale biogeographic patterns of bee communities are driven by phylogenetic history. Journal of Biogeography, 2018, 45, 461-472.	1.4	7
1331	Effects of forest loss and fragmentation on pollen diets and provision mass of the mason bee, <i>Osmia cornifrons</i> , in central Japan. Ecological Entomology, 2018, 43, 245-254.	1.1	10
1332	Organic farming promotes bee abundance in vineyards in Italy but not in South Africa. Journal of Insect Conservation, 2018, 22, 61-67.	0.8	14

#	Article	IF	CITATIONS
1333	Recyclable amitraz-ethylene vinyl acetate strips used for beehives treatment against <i>Varroa destructor</i> . Journal of Elastomers and Plastics, 2018, 50, 391-402.	0.7	1
1334	Decline of bumble bees in northeastern North America, with special focus on Bombus terricola. Biological Conservation, 2018, 217, 437-445.	1.9	96
1335	Field characteristics driving farm-scale decision-making on land allocation to primary crops in high latitude conditions. Land Use Policy, 2018, 71, 49-59.	2.5	29
1336	Nesting sites of giant honeybees modulated by landscape patterns. Journal of Applied Ecology, 2018, 55, 1230-1240.	1.9	11
1337	Fire and grazing modulate the structure and resistance of plant–floral visitor networks in a tallgrass prairie. Oecologia, 2018, 186, 517-528.	0.9	25
1338	Key environmental determinants of global and regional richness and endemism patterns for a wild bee subfamily. Biodiversity and Conservation, 2018, 27, 287-309.	1.2	20
1339	Quantitative PCR assessment of Lotmaria passim in Apis mellifera colonies co-infected naturally with Nosema ceranae. Journal of Invertebrate Pathology, 2018, 151, 76-81.	1.5	41
1340	Validation of floral food resources for pollinators in agricultural landscape in SE Poland. Journal of the Science of Food and Agriculture, 2018, 98, 2672-2680.	1.7	17
1341	Patterns and drivers of wild bee community assembly in a Mediterranean IUCN important plant area. Biodiversity and Conservation, 2018, 27, 695-717.	1.2	14
1342	The effect of removing numerically dominant, non-native honey bees on seed set of a native plant. Oecologia, 2018, 186, 281-289.	0.9	12
1343	Acute bee paralysis virus occurs in the Asian honey bee Apis cerana and parasitic mite Tropilaelaps mercedesae. Journal of Invertebrate Pathology, 2018, 151, 131-136.	1.5	21
1344	Climate change, tree pollination and conservation in the tropics: a research agenda beyond IPBES. Wiley Interdisciplinary Reviews: Climate Change, 2018, 9, e502.	3.6	10
1345	Plant-pollinator interactions and bee functional diversity are driven by agroforests in rice-dominated landscapes. Agriculture, Ecosystems and Environment, 2018, 253, 140-147.	2.5	28
1346	Ethnozoology and Animal Conservation â^—. , 2018, , 481-496.		14
1347	Selecting cost-effective plant mixes to support pollinators. Biological Conservation, 2018, 217, 195-202.	1.9	34
1348	Woody habitats promote pollinators and complexity of plant–pollinator interactions in homegardens located in rice terraces of the Philippine Cordilleras. Paddy and Water Environment, 2018, 16, 253-263.	1.0	13
1349	Slow treatment promotes control of harmful species by multiple agents. Conservation Letters, 2018, 11, e12568.	2.8	7
1350	Western honey bee management for crop pollination. African Crop Science Journal, 2018, 26, 1.	0.1	4

#	Article	IF	CITATIONS
1351	The influence of spatiotemporally decoupled land use on honey bee colony health and pollination service delivery. Environmental Research Letters, 2018, 13, 084016.	2.2	32
1352	Diagnosis of directed pollination services in apple orchards in Brazil. Revista Brasileira De Fruticultura, 2018, 40, .	0.2	1
1353	How to Measure Procedural Knowledge for Solving Biodiversity and Climate Change Challenges. Education Sciences, 2018, 8, 190.	1.4	10
1354	Photonic Monitoring of Atmospheric and Aquatic Fauna. Laser and Photonics Reviews, 2018, 12, 1800135.	4.4	41
1355	Temporal variation in pollination services to Cucurbita moschatais determined by bee gender and diversity. Ecosphere, 2018, 9, e02506.	1.0	17
1356	The relative contributions of host density and genetic diversity on prevalence of a multi-host parasite in bumblebees. Biological Journal of the Linnean Society, 2018, 125, 900-910.	0.7	11
1357	Reconhecimento de padrões sazonais em colônias de abelhas Apis mellifera via clusterização. Revista Brasileira De Computação Aplicada, 2018, 10, 74-88.	0.1	1
1358	A Review of Research Needs for Pollinators in Managed Conifer Forests. Journal of Forestry, 2018, 116, 563-572.	0.5	29
1359	RNA profile diversity across arthropoda: guidelines, methodological artifacts, and expected outcomes. Biology Methods and Protocols, 2018, 3, bpy012.	1.0	12
1360	Interference of weeds in vegetable crop cultivation, in the changing climate of Southern Europe with emphasis on drought and elevated temperatures: a review. Journal of Agricultural Science, 2018, 156, 1175-1185.	0.6	18
1361	Sociologijski aspekti urbanih vrtova: trendovi i dosezi proizvodnje hrane u gradovima. Socijalna Ekologija, 2018, 27, 141-164.	0.1	1
1362	Home sick: impacts of migratory beekeeping on honey bee (<i>Apis mellifera</i>) pests, pathogens, and colony size. PeerJ, 2018, 6, e5812.	0.9	29
1363	Habitat and landscape factors influence pollinators in a tropical megacity, Bangkok, Thailand. PeerJ, 2018, 6, e5335.	0.9	35
1364	The Role of Ecosystem Services in Community Well-Being. , 0, , .		6
1365	Multi-dimensional modelling tools supporting decision-making for the beekeeping sector. IFAC-PapersOnLine, 2018, 51, 144-149.	0.5	5
1366	Consequences of clonal growth on pollinator visitation in flowering plants. Biodiversity Science, 2018, 26, 468-475.	0.2	0
1367	Climate change impact on coffee and the pollinator bee suitable area interaction in Raya Azebo, Ethiopia. Cogent Food and Agriculture, 2018, 4, 1564538.	0.6	6
1368	Do honeybees (Apis mellifera) differentiate between different pollen types?. PLoS ONE, 2018, 13, e0205821.	1.1	13

#	Article	IF	Citations
1369	Honey Norisoprenoids Attract Bumble Bee, <i>Bombus terrestris</i> , in New Zealand Mountain Beech Forests. Journal of Agricultural and Food Chemistry, 2018, 66, 13065-13072.	2.4	8
1370	Identifying Bee Species by Means of the Foraging Pattern Using Machine Learning. , 2018, , .		8
1371	Distribution of Cranberry Blue Butterflies (Agriades optilete) and Their Responses to Forest Disturbance from In Situ Oil Sands and Wildfires. Diversity, 2018, 10, 112.	0.7	11
1372	A Review of Native Wild Bee Nutritional Health. International Journal of Ecology, 2018, 2018, 1-10.	0.3	25
1373	Quantitative Assessment of Nectar Microbe-Produced Volatiles. ACS Symposium Series, 2018, , 127-142.	0.5	3
1374	Effectiveness of camera traps for quantifying daytime and nighttime visitation by vertebrate pollinators. Ecology and Evolution, 2018, 8, 9304-9314.	0.8	28
1375	Transcriptome Analysis of Newly Emerged Honeybees Exposure to Sublethal Carbendazim During Larval Stage. Frontiers in Genetics, 2018, 9, 426.	1.1	15
1376	Environmental Stress Responses of DnaJA1, DnaJB12 and DnaJC8 in Apis cerana cerana. Frontiers in Genetics, 2018, 9, 445.	1.1	15
1377	Quantifying bee assemblages and attractiveness of flowering woody landscape plants for urban pollinator conservation. PLoS ONE, 2018, 13, e0208428.	1.1	57
1378	Study of fruit set and fruit quality of â€~Conference' pears and â€~Jonagold' apples in orchards supplemented with bumblebee hives. Acta Horticulturae, 2018, , 331-340.	0.1	2
1379	Nontimber forest products as ecological and biocultural keystone species. Ecology and Society, 2018, 23, .	1.0	41
1380	North American Crop Wild Relatives, Volume 1., 2018, , .		8
1381	Practical Considerations for Increasing Seed Samples of Wild Species. , 2018, , 281-309.		2
1382	Different cutting regimes improve species and functional diversity of insectâ€pollinated plants in powerâ€line clearings. Ecosphere, 2018, 9, e02509.	1.0	10
1383	Flower strip networks offer promising long term effects on pollinator species richness in intensively cultivated agricultural areas. BMC Ecology, 2018, 18, 55.	3.0	57
1384	Effects of model choice, network structure, and interaction strengths on knockout extinction models of ecological robustness. Ecology and Evolution, 2018, 8, 10794-10804.	0.8	10
1385	Phenology determines the robustness of plant–pollinator networks. Scientific Reports, 2018, 8, 14873.	1.6	25
1386	Realâ€time evolution supports a unique trajectory for generalized pollination*. Evolution; International Journal of Organic Evolution, 2018, 72, 2653-2668.	1.1	21

#	Article	IF	CITATIONS
1387	The molecular and phenotypic characterization of fructophilic lactic acid bacteria isolated from the guts of Apis mellifera L. derived from a Polish apiary. Journal of Applied Genetics, 2018, 59, 503-514.	1.0	23
1388	Pesticidal Plant Extracts Improve Yield and Reduce Insect Pests on Legume Crops Without Harming Beneficial Arthropods. Frontiers in Plant Science, 2018, 9, 1425.	1.7	85
1389	Ecological Intensification in Asian Rice Production Systems. Sustainable Agriculture Reviews, 2018, , 1-23.	0.6	2
1390	Local and landscape factors affect sunflower pollination in a Mediterranean agroecosystem. PLoS ONE, 2018, 13, e0203990.	1.1	15
1391	Non-Native Invasive Species as Ecosystem Service Providers. , 0, , .		5
1392	The prevalence of olfactory- versus visual-signal encounter by searching bumblebees. Scientific Reports, 2018, 8, 14590.	1.6	17
1393	Supplemental carbohydrates influence abiotic stress resistance in honey bees. Journal of Apicultural Research, 2018, 57, 682-689.	0.7	9
1394	Challenges to the conservation of stingless bees in Atlantic Forest patches: old approaches, new applications. Journal of Insect Conservation, 2018, 22, 627-633.	0.8	3
1395	Synergistic effects of pathogen and pesticide exposure on honey bee (Apis mellifera) survival and immunity. Journal of Invertebrate Pathology, 2018, 159, 78-86.	1.5	66
1396	The Science Policy Field Tour Concept: A New Platform for Communicating Science for Public Policy. Journal of Integrated Pest Management, 2018, 9, .	0.9	2
1397	Antimicrobial Activity of Essential Oils Against the Fungal Pathogens Ascosphaera apis and Pseudogymnoascus destructans. Mycopathologia, 2018, 183, 921-934.	1.3	23
1398	Pathogenicity of Serratia marcescens Strains in Honey Bees. MBio, 2018, 9, .	1.8	90
1399	Pollination networks from natural and anthropogenic-novel communities show high structural similarity. Oecologia, 2018, 188, 1155-1165.	0.9	10
1400	Impact of inundation regime on wild bee assemblages and associated bee–flower networks. Apidologie, 2018, 49, 817-826.	0.9	2
1401	Distance Effects on Diversity and Abundance of the Flower Visitors of (i) Ocimum kilimandscharicum (i) in the Kakamega Forest Ecosystem. International Journal of Biodiversity, 2018, 2018, 1-7.	0.7	5
1402	Complementarity and redundancy in the functional niche of cider apple pollinators. Apidologie, 2018, 49, 789-802.	0.9	24
1403	The role of flowering plants, Hibiscus sabdariffa and Crotalaria juncea in coffee ecosystem to diversity of insect pollinators and coffee fruit set. AIP Conference Proceedings, 2018, , .	0.3	1
1404	Glyphosate affects the larval development of honey bees depending on the susceptibility of colonies. PLoS ONE, 2018, 13, e0205074.	1.1	74

#	Article	IF	CITATIONS
1405	Evaluation of Highly Detectable Pesticides Sprayed in Brassica napus L.: Degradation Behavior and Risk Assessment for Honeybees. Molecules, 2018, 23, 2482.	1.7	11
1406	Multiple uncertainties require a change of conservation practices for saproxylic beetles in managed temperate forests. Scientific Reports, 2018, 8, 14964.	1.6	10
1407	New Research and BMPs in Natural Areas: A Synthesis of the Pollinator Management Symposium from the 44th Natural Areas Conference, October 2017. Natural Areas Journal, 2018, 38, 334-346.	0.2	1
1408	The Effect of Neonicotinoid Insecticide and Fungicide on Sugar Responsiveness and Orientation Behavior of Honey Bee (Apis mellifera) in Semi-Field Conditions. Insects, 2018, 9, 130.	1.0	9
1409	Climate-driven declines in arthropod abundance restructure a rainforest food web. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10397-E10406.	3.3	491
1410	Restoration increases bee abundance and richness but not pollination in remnant and postâ€agricultural woodlands. Ecosphere, 2018, 9, e02435.	1.0	23
1411	Impacts of Insecticides on Pollinators of Different Food Plants. Entomology, Ornithology, & Herpetology: Current Research, 2018, 07, .	0.1	11
1412	Bee Assemblages in Managed Early-Successional Habitats in Southeastern New Hampshire. Northeastern Naturalist, 2018, 25, 437-459.	0.1	10
1413	Stressful conditions reveal decrease in size, modification of shape but relatively stable asymmetry in bumblebee wings. Scientific Reports, 2018, 8, 15169.	1.6	44
1414	Low trophic niche overlap among trap-nesting bee species (Hymenoptera: Anthophila) in a semideciduous forest fragment. Apidologie, 2018, 49, 759-772.	0.9	3
1415	Quantifying resilience of humans and other animals. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11883-11890.	3.3	204
1416	Identifying regions of risk to honey bees from Zika vector control in the USA. Journal of Apicultural Research, 2018, 57, 709-719.	0.7	3
1417	SOLATINA: A Latin-American Society for Bee Research to Foster the Interactions Between Scientists and Coordinate Large-Scale Research Programs. Bee World, 2018, 95, 124-127.	0.3	2
1418	A missing piece in the puzzle: the presence of Euglossa viridissima in the Baja California Peninsula (Hymenoptera, Apidae). ZooKeys, 2018, 726, 15-23.	0.5	2
1419	Climate change-driven range losses among bumblebee species are poised to accelerate. Scientific Reports, 2018, 8, 14464.	1.6	61
1420	Pollinator Abundance in Semiarid Pastures as Affected by Forage Species. Crop Science, 2018, 58, 2665-2671.	0.8	21
1421	Pollination biology of melittophilous legume tree species in the Atlantic Forest in Southeast Brazil. Acta Botanica Brasilica, 2018, 32, 410-425.	0.8	11
1422	Early warning signals for critical transitions in cardiopulmonary health, related to air pollution in an urban Chinese population. Environment International, 2018, 121, 240-249.	4.8	12

#	Article	IF	CITATIONS
1423	Potential landscapeâ€scale pollinator networks across Great Britain: structure, stability and influence of agricultural land cover. Ecology Letters, 2018, 21, 1821-1832.	3.0	48
1424	Limited phenological and dietary overlap between bee communities in spring flowering crops and herbaceous enhancements. Ecological Applications, 2018, 28, 1924-1934.	1.8	18
1425	Multiple-scale approach for evaluating the occupation of stingless bees in Atlantic forest patches. Forest Ecology and Management, 2018, 430, 509-516.	1.4	9
1426	Insect pollination is at least as important for marketable crop yield as plant quality in a seed crop. Ecology Letters, 2018, 21, 1704-1713.	3.0	69
1427	Solving Problems without Borders. American Entomologist, 2018, 64, 165-175.	0.1	0
1428	Nesting ecology and the cultural importance of stingless bees to speakers of Yolox \tilde{A}^3 chitl Mixtec, an endangered language in Guerrero, Mexico. Apidologie, 2018, 49, 625-636.	0.9	29
1429	At the beginning and at the end: Combined mechanisms of prior and delayed self-pollination interact to make a "winner―species. Flora: Morphology, Distribution, Functional Ecology of Plants, 2018, 249, 24-30.	0.6	4
1430	Dominance of cropland reduces the pollen deposition from bumble bees. Scientific Reports, 2018, 8, 13873.	1.6	13
1431	A facultative mutualistic feedback enhances the stability of tropical intertidal seagrass beds. Scientific Reports, 2018, 8, 12988.	1.6	20
1432	Influence of bioenergy crops on pollinator activity varies with crop type and distance. GCB Bioenergy, 2018, 10, 960-971.	2.5	5
1433	Potential associations between the mite Varroa destructor and other stressors in honeybee colonies (Apis mellifera L.) in temperate and subtropical climate from Argentina. Preventive Veterinary Medicine, 2018, 159, 143-152.	0.7	9
1434	Brood Affects Hygienic Behavior in the Honey Bee (Hymenoptera: Apidae). Journal of Economic Entomology, 2018, 111, 2520-2530.	0.8	26
1435	Insect Conservation for the Twenty-First Century. , 0, , .		10
1436	European bee-eaters (Merops apiaster) and apiculture: understanding their interactions and the usefulness of nonlethal techniques to prevent damage at apiaries. European Journal of Wildlife Research, 2018, 64, 1.	0.7	4
1437	Measurement of species associations in mixedâ€species bird flocks across environmental and human disturbance gradients. Ecosphere, 2018, 9, e02324.	1.0	21
1438	Single and interactive effects of <i>Varroa destructor</i> , <i>Nosema</i> spp., and imidacloprid on honey bee colonies (<i>Apis mellifera</i>). Ecosphere, 2018, 9, e02378.	1.0	31
1439	Caste-Specific Demography and Phenology in Bumblebees: Modelling BeeWalk Data. Journal of Agricultural, Biological, and Environmental Statistics, 2018, 23, 427-445.	0.7	7
1440	Wild bee diversity is enhanced by experimental removal of timber harvest residue within intensively managed conifer forest. GCB Bioenergy, 2018, 10, 766-781.	2.5	25

#	Article	IF	CITATIONS
1441	Pollinator habitat: A cooperative project between the landfill industry and blueberry growers. Journal of Agricultural Extension and Rural Development, 2018, 10, 89-98.	0.2	3
1442	Indigenous climate change adaptation strategies used by Honey Producers in rural communities of Enugu State, Nigeria. Journal of Agricultural Extension, 2018, 22, .	0.1	5
1443	Farming for bees: annual variation in pollinator populations across agricultural landscapes. Agricultural and Forest Entomology, 2018, 20, 541-548.	0.7	19
1444	Wild bee species abundance and richness across an urban–rural gradient. Journal of Insect Conservation, 2018, 22, 391-403.	0.8	30
1445	A land classification protocol for pollinator ecology research: An urbanization case study. Ecology and Evolution, 2018, 8, 5598-5610.	0.8	9
1446	Ecology for Sustainable and Multifunctional Agriculture. Sustainable Agriculture Reviews, 2018, , 1-46.	0.6	8
1447	The intertwined effects of natural vegetation, local flower community, and pollinator diversity on the production of almond trees. Agriculture, Ecosystems and Environment, 2018, 264, 34-43.	2.5	34
1448	Saproxylic Bees and Wasps. Zoological Monographs, 2018, , 217-235.	1.1	16
1449	Extremely Low Frequency Electromagnetic Fields impair the Cognitive and Motor Abilities of Honey Bees. Scientific Reports, 2018, 8, 7932.	1.6	42
1450	Imidacloprid intensifies its impact on honeybee and bumblebee cellular immune response when challenged with LPS (lippopolysacharide) of Escherichia coli. Journal of Insect Physiology, 2018, 108, 17-24.	0.9	22
1451	Adaptive Foraging of Pollinators Can Promote Pollination of a Rare Plant Species. American Naturalist, 2018, 192, E81-E92.	1.0	16
1452	Global Transcriptomic Effects of Environmentally Relevant Concentrations of the Neonicotinoids Clothianidin, Imidacloprid, and Thiamethoxam in the Brain of Honey Bees (<i>Apis mellifera</i>). Environmental Science & Echnology, 2018, 52, 7534-7544.	4.6	68
1453	Effects of Plant Diversity, Vegetation Composition, and Habitat Type on Different Functional Trait Groups of Wild Bees in Rural Beijing. Journal of Insect Science, 2018, 18, .	0.6	12
1455	Early steps of cryopreservation of day one honeybee (Apis mellifera) embryos treated with low-frequency sonophoresis. Cryobiology, 2018, 83, 27-33.	0.3	3
1456	Firm Efficiency and Returns-to-Scale in the Honey Bee Pollination Services Industry. Journal of Economic Entomology, 2018, 111, 1014-1022.	0.8	20
1457	The origins of global invasions of the German wasp (Vespula germanica) and its infection with four honey bee viruses. Biological Invasions, 2018, 20, 3445-3460.	1.2	21
1458	Plant and Insect Viruses in Managed and Natural Environments: Novel and Neglected Transmission Pathways. Advances in Virus Research, 2018, 101, 149-187.	0.9	45
1459	Developmental characterization and environmental stress responses of Y-box binding protein 1 gene (AccYB-1) from Apis cerana cerana. Gene, 2018, 674, 37-48.	1.0	9

#	Article	IF	CITATIONS
1460	Past role and future outlook of the Conservation Reserve Program for supporting honey bees in the Great Plains. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7629-7634.	3.3	49
1461	Reflections on, and visions for, the changing field of pollination ecology. Ecology Letters, 2018, 21, 1282-1295.	3.0	50
1462	Environment and <i>Varroa destructor</i> management as determinant of colony losses in apiaries under temperate and subtropical climate. Journal of Apicultural Research, 2018, 57, 551-564.	0.7	15
1463	Changes in interaction network topology and species composition of flowerâ€visiting insects across three land use types. African Journal of Ecology, 2018, 56, 964-971.	0.4	5
1464	Reduction by half: the impact on bees of 34Âyears of urbanization. Urban Ecosystems, 2018, 21, 943-949.	1.1	53
1465	High sample throughput genotyping for estimating C-lineage introgression in the dark honeybee: an accurate and cost-effective SNP-based tool. Scientific Reports, 2018, 8, 8552.	1.6	27
1466	Pollination partial recovery across monospecific plantations of a native tree (Inga vera, Leguminosae) in the Atlantic forest: Lessons for restoration. Forest Ecology and Management, 2018, 427, 383-391.	1.4	10
1467	A Nonlethal Method to Examine Non-Apis Bees for Mark-Capture Research. Journal of Insect Science, 2018, 18, .	0.6	17
1468	Floral sources used by the orchid bee <i>Euglossa cordata</i> (Linnaeus, 1758) (Apidae: Euglossini) in an urban area of south-eastern Brazil. Grana, 2018, 57, 471-480.	0.4	9
1469	Low dose of neonicotinoid insecticide reduces foraging motivation of bumblebees. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180506.	1.2	53
1470	Mixed-species versus monocultures in plantation forestry: Development, benefits, ecosystem services and perspectives for the future. Global Ecology and Conservation, 2018, 15, e00419.	1.0	210
1471	Pollination ecology in China from 1977 to 2017. Plant Diversity, 2018, 40, 172-180.	1.8	12
1472	Past and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host–parasitoid networks. Nature Ecology and Evolution, 2018, 2, 1408-1417.	3.4	83
1473	The Effects of Repeated Prescribed Fire and Thinning on Bees, Wasps, and Other Flower Visitors in the Understory and Midstory of a Temperate Forest in North Carolina. Forest Science, 2018, 64, 299-306.	0.5	40
1474	A salience index for integrating multiple user perspectives in cultural ecosystem service assessments. Ecosystem Services, 2018, 32, 182-192.	2.3	26
1475	Using Nectar-Related Traits to Enhance Crop-Pollinator Interactions. Frontiers in Plant Science, 2018, 9, 812.	1.7	47
1476	Associations Between Blooming Plants and their Bee Visitors in a Riparian Ecosystem in Eastern Oregon. Northwest Science, 2018, 92, 119.	0.1	14
1477	Increasing the conservation value of powerline corridors for wild bees through vegetation management: an experimental approach. Biodiversity and Conservation, 2018, 27, 2541-2565.	1.2	22

#	Article	IF	CITATIONS
1478	Rapid evolution of insects to global environmental change: conceptual issues and empirical gaps. Current Opinion in Insect Science, 2018, 29, 93-101.	2.2	35
1479	No deaths in the desert: predicted responses of an aridâ€adapted bee and its two nesting trees suggest resilience in the face of warming climates. Insect Conservation and Diversity, 2018, 11, 449-463.	1.4	12
1480	Advancing Biogeography Through Population Genomics. Population Genomics, 2018, , 539-585.	0.2	7
1481	Managing and Preserving Stingless Bees. , 2018, , 193-242.		1
1482	Bees increase oilseed rape yield under real field conditions. Agriculture, Ecosystems and Environment, 2018, 266, 39-48.	2.5	54
1483	Pollen Use by Osmia lignaria (Hymenoptera: Megachilidae) in Highbush Blueberry Fields. Annals of the Entomological Society of America, 0, , .	1.3	4
1484	Everyday, Local, Nearby, Healthy Childhoodnature Settings as Sites for Promoting Children's Health and Well-Being. Springer International Handbooks of Education, 2018, , 1-26.	0.1	1
1485	The Wisdom of Honeybee Defenses Against Environmental Stresses. Frontiers in Microbiology, 2018, 9, 722.	1.5	50
1486	A mechanistic framework to explain the immunosuppressive effects of neurotoxic pesticides on bees. Functional Ecology, 2018, 32, 1921-1930.	1.7	23
1487	Don't Know Much about Bumblebees?—A Study about Secondary School Students' Knowledge and Attitude Shows Educational Demand. Insects, 2018, 9, 40.	1.0	17
1488	Assessment of Land Cover Change in Peri-Urban High Andean Environments South of Bogot \tilde{A}_i , Colombia. Land, 2018, 7, 75.	1.2	21
1489	A Sustainable Agricultural Future Relies on the Transition to Organic Agroecological Pest Management. Sustainability, 2018, 10, 2023.	1.6	57
1490	Garden Pollinators and the Potential for Ecosystem Service Flow to Urban and Peri-Urban Agriculture. Sustainability, 2018, 10, 2047.	1.6	26
1491	Effects of Field-Realistic Concentrations of Carbendazim on Survival and Physiology in Forager Honey Bees (Hymenoptera: Apidae). Journal of Insect Science, 2018, 18, .	0.6	11
1492	Flexible pollination system in an unpalatable shrub <i>Daphne miyabeana</i> (Thymelaeaceae). Plant Species Biology, 2018, 33, 239-247.	0.6	4
1493	Mist-Netting of Migrating Bee-Eaters Positively Influences Honey Bee Colony Performance. Journal of Apicultural Science, 2018, 62, 67-78.	0.1	3
1494	The dilemma of agricultural pollination in Brazil: Beekeeping growth and insecticide use. PLoS ONE, 2018, 13, e0200286.	1.1	25
1495	Effects of fragments and landscape characteristics on the orchid bee richness (Apidae: Euglossini) in an urban matrix, southwestern Amazonia. Journal of Insect Conservation, 2018, 22, 475-486.	0.8	18

#	ARTICLE	IF	CITATIONS
1496	A Better Understanding of Bee Nutritional Ecology Is Needed to Optimize Conservation Strategies for Wild Beesâ€"The Application of Ecological Stoichiometry. Insects, 2018, 9, 85.	1.0	35
1497	In Vitro Rearing of Solitary Bees: A Tool for Assessing Larval Risk Factors. Journal of Visualized Experiments, 2018, , .	0.2	7
1498	Apis mellifera (Insecta: Hymenoptera) in the target of neonicotinoids: A one-way ticket? Bioinsecticides can be an alternative. Ecotoxicology and Environmental Safety, 2018, 163, 28-36.	2.9	18
1499	A Specialist in an Urban Area: Are Cities Suitable to Harbour Populations of the Oligolectic Bee <i>Centris</i> (i) (<i>Melacentris</i>) <i>collaris</i> (Apidae: Centridini)?. Annales Zoologici Fennici, 2018, 55, 135-149.	0.2	17
1500	Effects of herbicide and nitrogen fertilizer on non-target plant reproduction and indirect effects on pollination in Tanacetum vulgare (Asteraceae). Agriculture, Ecosystems and Environment, 2018, 262, 76-82.	2.5	31
1501	Vulnerability of specialty crops to short-term climatic variability and adaptation strategies in the Midwestern USA. Climatic Change, 2018, 146, 145-158.	1.7	55
1502	Bumblebee olfactory learning affected by task allocation but not by a trypanosome parasite. Scientific Reports, 2018, 8, 5809.	1.6	6
1503	Evaluation of Nasonov Pheromone Dispensers for Pollinator Attraction in Apple, Blueberry, and Cherry. Journal of Economic Entomology, 2018, 111, 1658-1663.	0.8	3
1504	Next-generation sequence data demonstrate several pathogenic bee viruses in Middle East and African honey bee subspecies (Apis mellifera syriaca, Apis mellifera intermissa) as well as their cohabiting pathogenic mites (Varroa destructor). Virus Genes, 2018, 54, 694-705.	0.7	7
1505	Non-native plants are a seasonal pollen source for native honeybees in suburban ecosystems. Urban Ecosystems, 2018, 21, 1113-1122.	1.1	17
1506	Social bees are fitter in more biodiverse environments. Scientific Reports, 2018, 8, 12353.	1.6	72
1507	Changes in social behavior are induced by pesticide ingestion in a Neotropical stingless bee. Ecotoxicology and Environmental Safety, 2018, 164, 548-553.	2.9	29
1508	Review on Apiary Management and Antimicrobial Compounds as Alternative Prevention or Treatment for Honeybee Diseases. OnLine Journal of Biological Sciences, 2018, 18, 46-61.	0.2	0
1509	Wild bees respond complementarily to †high-quality†perennial and annual habitats of organic farms in a complex landscape. Journal of Insect Conservation, 2018, 22, 551-562.	0.8	15
1510	Role of colour and volatile in foraging behaviour of honeybee Apis cerana on Jacquemontia pentanthos. Journal of Asia-Pacific Entomology, 2018, 21, 1122-1128.	0.4	15
1511	Asymmetric evolutionary responses to sexâ€specific selection in a hermaphrodite. Evolution; International Journal of Organic Evolution, 2018, 72, 2181-2201.	1.1	10
1512	Multi-scale considerations for grassland butterfly conservation in agroecosystems. Biological Conservation, 2018, 226, 196-204.	1.9	18
1513	The effects of raw propolis on Varroa-infested honey bee (Apis mellifera) workers. Parasitology Research, 2018, 117, 3527-3535.	0.6	11

#	Article	IF	CITATIONS
1514	Bee Diversity and Current Status of Beekeeping in Thailand. , 2018, , 269-285.		2
1515	Floral Resource Competition Between Honey Bees and Wild Bees: Is There Clear Evidence and Can We Guide Management and Conservation?. Environmental Entomology, 2018, 47, 822-833.	0.7	59
1516	Linking pollinator efficiency to patterns of pollen limitation: small bees exploit the plant–pollinator mutualism. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180635.	1.2	46
1517	Asian Beekeeping in the 21st Century., 2018, , .		13
1518	Effects of neonicotinoid insecticide exposure and monofloral diet on nest-founding bumblebee queens. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180761.	1.2	51
1519	Pollinator Decline – An Ecological Calamity in the Making?. Science Progress, 2018, 101, 121-160.	1.0	76
1520	Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria. PLoS ONE, 2018, 13, e0191256.	1.1	30
1521	Observations of native bumble bees inside of commercial colonies of <i>Bombus impatiens </i> (Hymenoptera: Apidae) and the potential for pathogen spillover. Canadian Entomologist, 2018, 150, 520-531.	0.4	10
1522	Monitoring bee populations: are eusocial bees attracted to different colours of pan trap than other bees?. Journal of Insect Conservation, 2018, 22, 433-441.	0.8	18
1523	Investigating the viral ecology of global bee communities with high-throughput metagenomics. Scientific Reports, 2018, 8, 8879.	1.6	58
1524	Impact of human disturbance on bee pollinator communities in savanna and agricultural sites in Burkina Faso, West Africa. Ecology and Evolution, 2018, 8, 6827-6838.	0.8	23
1525	Evaluating European Food Safety Authority Protection Goals for Honeybees (<i>Apis mellifera</i>): What Do They Mean for Pollination?. Integrated Environmental Assessment and Management, 2018, 14, 750-758.	1.6	9
1526	Land-use history drives contemporary pollinator community similarity. Landscape Ecology, 2018, 33, 1335-1351.	1.9	22
1527	Effects of Seasonality, Forest Structure, and Understory Plant Richness on Bee Community Assemblage in a Southern Rocky Mountain Mixed Conifer Forest. Annals of the Entomological Society of America, 0, , .	1.3	5
1528	Disappearing edge: the flowering period changes the distribution of insect pollinators in invasive goldenrod patches. Insect Conservation and Diversity, 2019, 12, 98-108.	1.4	7
1529	Effects of longâ€term variation in pollinator abundance and diversity on reproduction of a generalist plant. Journal of Ecology, 2019, 107, 491-502.	1.9	23
1530	A stakeholder approach, door opener for farmland and multifunctionality in urban green infrastructure. Urban Forestry and Urban Greening, 2019, 40, 73-83.	2.3	32
1531	Bee communities in forestry production landscapes: interactive effects of local-level management and landscape context. Landscape Ecology, 2019, 34, 1015-1032.	1.9	17

#	Article	IF	CITATIONS
1532	The evolvability of animalâ€pollinated flowers: towards predicting adaptation to novel pollinator communities. New Phytologist, 2019, 221, 1128-1135.	3.5	37
1533	Domestic gardens as favorable pollinator habitats in impervious landscapes. Science of the Total Environment, 2019, 647, 420-430.	3.9	46
1534	Acoustically Tracking the Comings and Goings of Bumblebees. , 2019, , .		3
1535	Metabolomics-based biomarker discovery for bee health monitoring: A proof of concept study concerning nutritional stress in Bombus terrestris. Scientific Reports, 2019, 9, 11423.	1.6	15
1536	Neonicotinoids in excretion product of phloem-feeding insects kill beneficial insects. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16817-16822.	3.3	99
1537	Global warming promotes biological invasion of a honey bee pest. Global Change Biology, 2019, 25, 3642-3655.	4.2	64
1538	The critical role of honeyeaters in the pollination of the catspaw Anigozanthos humilis (Haemodoraceae). Australian Journal of Botany, 2019, 67, 281.	0.3	4
1539	The Year of the Honey Bee (Apis mellifera L.) with Respect to Its Physiology and Immunity: A Search for Biochemical Markers of Longevity. Insects, 2019, 10, 244.	1.0	30
1540	Insecticidal activity of indole derivatives against Plutella xylostella and selectivity to four non-target organisms. Ecotoxicology, 2019, 28, 973-982.	1.1	10
1541	An Ecological Loop: Host Microbiomes across Multitrophic Interactions. Trends in Ecology and Evolution, 2019, 34, 1118-1130.	4.2	88
1542	An Evaluation of Studies on the Potential Threats Contributing to the Decline of Eastern Migratory North American Monarch Butterflies (Danaus plexippus). Frontiers in Ecology and Evolution, 2019, 7, .	1.1	21
1543	The Consequences of Biodiversity Loss for Human Well-Being. , 2019, , 285-308.		0
1544	The influence of garden flowers on pollinator visits to forest flowers: comparison of bumblebee habitat use between urban and natural areas. Urban Ecosystems, 2019, 22, 1097-1112.	1.1	6
1545	Road verges support pollinators in agricultural landscapes, but are diminished by heavy traffic and summer cutting. Journal of Applied Ecology, 2019, 56, 2316-2327.	1.9	53
1546	Applying ecosystem services for preâ€market environmental risk assessments of regulated stressors. EFSA Journal, 2019, 17, e170705.	0.9	7
1547	An IoT solution for measuring bee pollination efficacy. , 2019, , .		4
1548	Landscape structure shapes the diversity of beneficial insects in coffee producing landscapes. Biological Conservation, 2019, 238, 108193.	1.9	30
1549	Impact of Biotic and Abiotic Stressors on Managed and Feral Bees. Insects, 2019, 10, 233.	1.0	76

#	Article	IF	CITATIONS
1550	Abundance of weeds and seeds but not of arthropods differs between arable habitats in an extensive Mediterranean farming system. Ecological Research, 2019, 34, 624-636.	0.7	9
1551	Comparative pesticide exposure to <i>Apis mellifera</i> via honey bee-collected pollen in agricultural and non-agricultural areas of Northern Thailand. Journal of Apicultural Research, 2019, 58, 720-729.	0.7	13
1552	Industrial bees: The impact of apicultural intensification on local disease prevalence. Journal of Applied Ecology, 2019, 56, 2195-2205.	1.9	20
1553	Semiâ€quantitative characterisation of mixed pollen samples using MinION sequencing and Reverse Metagenomics (RevMet). Methods in Ecology and Evolution, 2019, 10, 1690-1701.	2.2	29
1554	Impacts of Agricultural Management Systems on Biodiversity and Ecosystem Services in Highly Simplified Dryland Landscapes. Sustainability, 2019, 11, 3223.	1.6	14
1555	Combined nutritional stress and a new systemic pesticide (flupyradifurone, Sivanto \hat{A}^{0}) reduce bee survival, food consumption, flight success, and thermoregulation. Chemosphere, 2019, 237, 124408.	4.2	66
1556	A computer vision system to monitor the infestation level of Varroa destructor in a honeybee colony. Computers and Electronics in Agriculture, 2019, 164, 104898.	3.7	40
1557	Pattern of population structuring between Belgian and Estonian bumblebees. Scientific Reports, 2019, 9, 9651.	1.6	12
1558	Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Global Change Biology, 2019, 25, 3516-3527.	4.2	206
1559	Evaluating the ability of citizen scientists to identify bumblebee (Bombus) species. PLoS ONE, 2019, 14, e0218614.	1.1	46
1560	The Bio-Evolutionary Anthropocene Hypothesis: Rethinking the Role of Human-Induced Novel Organisms in Evolution. Biological Theory, 2019, 14, 141-150.	0.8	2
1561	Impact of nutritional stress on the honeybee colony health. Scientific Reports, 2019, 9, 10156.	1.6	64
1562	Size, age and surrounding semi-natural habitats modulate the effectiveness of flower-rich agri-environment schemes to promote pollinator visitation in crop fields. Agriculture, Ecosystems and Environment, 2019, 284, 106590.	2.5	46
1563	Nanopesticide based on botanical insecticide pyrethrum and its potential effects on honeybees. Chemosphere, 2019, 236, 124282.	4.2	38
1564	Community regulation models as a framework for direct and indirect effects of climate change on species distributions. Ecosphere, 2019, 10, e02790.	1.0	9
1565	Small but critical: semi-natural habitat fragments promote bee abundance in cotton agroecosystems across both Brazil and the United States. Landscape Ecology, 2019, 34, 1825-1836.	1.9	19
1566	Short-Term Response of Two Beneficial Invertebrate Groups to Wildfire in an Arid Grassland System, United States. Rangeland Ecology and Management, 2019, 72, 551-560.	1.1	12
1567	Comparative survival and fitness of bumble bee colonies in natural, suburban, and agricultural landscapes. Agriculture, Ecosystems and Environment, 2019, 284, 106594.	2.5	17

#	Article	IF	CITATIONS
1568	Belgian case study on flumethrin residues in beeswax: Possible impact on honeybee and prediction of the maximum daily intake for consumers. Science of the Total Environment, 2019, 687, 712-719.	3.9	15
1569	Wildflower Seed Sales as Incentive for Adopting Flower Strips for Native Bee Conservation: A Cost-Benefit Analysis. Journal of Economic Entomology, 2019, 112, 2534-2544.	0.8	7
1570	Genomeâ€skimming provides accurate quantification for pollen mixtures. Molecular Ecology Resources, 2019, 19, 1433-1446.	2.2	31
1571	Evidence for multiple drivers of aerial insectivore declines in North America. Condor, 2019, 121, .	0.7	7 3
1572	Contrasting effects of natural shrubland and plantation forests on bee assemblages at neighboring apple orchards in Beijing, China. Biological Conservation, 2019, 237, 456-462.	1.9	28
1573	Toward the protection of bees and pollination under global change: present and future perspectives in a challenging applied science. Current Opinion in Insect Science, 2019, 35, 123-131.	2.2	53
1574	Linden (Tilia cordata) associated bumble bee mortality: Metabolomic analysis of nectar and bee muscle. PLoS ONE, 2019, 14, e0218406.	1.1	8
1575	Floral reward and insect visitors in six ornamental Lonicera species – Plants suitable for urban bee-friendly gardens. Urban Forestry and Urban Greening, 2019, 44, 126390.	2.3	19
1576	Wildlife Refuges Support High Bee Diversity on the Southern Great Plains. Environmental Entomology, 2019, 48, 968-976.	0.7	3
1577	Effects of Chlorella sp. on biological characteristics of the honey bee Apis mellifera. Apidologie, 2019, 50, 564-577.	0.9	19
1578	Disentangling the diversity of definitions for the pollination ecosystem service and associated estimation methods. Ecological Indicators, 2019, 107, 105576.	2.6	27
1579	Are there risks to wild European bumble bees from using commercial stocks of domesticated <i>Bombus terrestris</i> for crop pollination?. Journal of Apicultural Research, 2019, 58, 665-681.	0.7	9
1580	The complementarity between ecological infrastructure types benefits natural enemies and pollinators in a Mediterranean vineyard agroecosystem. Annals of Applied Biology, 2019, 175, 193-201.	1.3	18
1581	Progressive deterioration of pollination service detected in a 17â€year study vanishes in a 26â€year study. New Phytologist, 2019, 224, 1151-1159.	3.5	21
1582	RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus spp.). PLoS ONE, 2019, 14, e0217822.	1.1	105
1583	Oral acute toxicity and impact of neonicotinoids on Apis mellifera L. and Scaptotrigona postica Latreille (Hymenoptera: Apidae). Ecotoxicology, 2019, 28, 744-753.	1.1	29
1584	Pollinator parasites and the evolution of floral traits. Ecology and Evolution, 2019, 9, 6722-6737.	0.8	6
1585	The transition from bee-to-fly dominated communities with increasing elevation and greater forest canopy cover. PLoS ONE, 2019, 14, e0217198.	1.1	33

#	Article	IF	CITATIONS
1586	The Welfare of Invertebrate Animals. Animal Welfare, 2019, , .	1.0	21
1587	Welfare of Managed Honey Bees. Animal Welfare, 2019, , 69-104.	1.0	14
1588	Geographic Biases in Bee Research Limits Understanding of Species Distribution and Response to Anthropogenic Disturbance. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	23
1589	The impact of the invasive species Vespa velutina on honeybees: A new approach based on oxidative stress. Science of the Total Environment, 2019, 689, 709-715.	3.9	32
1590	Optimizing sampling of flying insects using a modified window trap. Methods in Ecology and Evolution, 2019, 10, 1820-1825.	2.2	33
1591	Anthropogenic noise and the bioacoustics of terrestrial invertebrates. Journal of Experimental Biology, 2019, 222, .	0.8	30
1592	Unique features of flight muscles mitochondria of honey bees (<i>Apis mellifera</i> L.). Archives of Insect Biochemistry and Physiology, 2019, 102, e21595.	0.6	10
1593	Be a Professional: Attend to the Insects. American Entomologist, 2019, 65, 176-179.	0.1	5
1594	Mobilizing the community of biodiversity specimen collectors to effectively detect and document outliers in the Anthropocene. American Journal of Botany, 2019, 106, 1052-1058.	0.8	4
1595	Vegetation development in a stormwater management system designed to enhance ecological qualities. Urban Forestry and Urban Greening, 2019, 46, 126463.	2.3	7
1596	Evidence of presence and replication of honey bee viruses among wild bee pollinators in subtropical environments. Journal of Invertebrate Pathology, 2019, 168, 107256.	1.5	20
1597	Benefits for multiple ecosystem services in Peruvian coffee agroforestry systems without reducing yield. Ecosystem Services, 2019, 40, 101033.	2.3	23
1598	Long-term large-scale decline in relative abundances of butterfly and burnet moth species across south-western Germany. Scientific Reports, 2019, 9, 14921.	1.6	81
1599	Economic Valuation of Bee Pollination Services for Passion Fruit (Malpighiales: Passifloraceae) Cultivation on Smallholding Farms in São Paulo, Brazil, Using the Avoided Cost Method. Journal of Economic Entomology, 2019, 112, 2049-2054.	0.8	8
1600	Effect of Abscisic Acid (ABA) Combined with Two Different Beekeeping Nutritional Strategies to Confront Overwintering: Studies on Honey Bees' Population Dynamics and Nosemosis. Insects, 2019, 10, 329.	1.0	13
1601	Bombus (Hymenoptera: Apidae) Microcolonies as a Tool for Biological Understanding and Pesticide Risk Assessment. Environmental Entomology, 2019, 48, 1249-1259.	0.7	35
1602	Pollinators enhance crop yield and shorten the growing season by modulating plant functional characteristics: A comparison of 23 canola varieties. Scientific Reports, 2019, 9, 14208.	1.6	24
1603	Role of conspecifics and personal experience on behavioral avoidance of contaminated flowers by bumblebees. Environmental Epigenetics, 2019, 65, 447-455.	0.9	2

#	Article	IF	CITATIONS
1604	Effects of the Herbicide Glyphosate on Honey Bee Sensory and Cognitive Abilities: Individual Impairments with Implications for the Hive. Insects, 2019, 10, 354.	1.0	76
1605	Diversity matters: Effects of density compensation in pollination service during rainfall shift. Ecology and Evolution, 2019, 9, 9701-9711.	0.8	12
1606	Personalized Pain Goals and Responses in Advanced Cancer Patients. Pain Medicine, 2019, 21, e215-e221.	0.9	3
1607	Foodborne Transmission of Deformed Wing Virus to Ants (Myrmica rubra). Insects, 2019, 10, 394.	1.0	21
1608	MALDI–MS Profiling to Address Honey Bee Health Status under Bacterial Challenge through Computational Modeling. Proteomics, 2019, 19, e1900268.	1.3	10
1609	The Landscape Genetic Signature of Pollination by Trapliners: Evidence From the Tropical Herb, Heliconia tortuosa. Frontiers in Genetics, 2019, 10, 1206.	1.1	16
1610	Biodiversity Decline as a Consequence of an Inappropriate Environmental Risk Assessment of Pesticides. Frontiers in Environmental Science, 2019, 7, .	1.5	184
1611	Investigating combined toxicity of binary mixtures in bees: Meta-analysis of laboratory tests, modelling, mechanistic basis and implications for risk assessment. Environment International, 2019, 133, 105256.	4.8	54
1612	How does timing of flowering affect competition for pollinators, flower visitation and seed set in an early spring grassland plant? Scientific Reports, 2019, 9, 15593.	1.6	28
1613	Nutritional status of honey bee (Apis mellifera L.) workers across an agricultural land-use gradient. Scientific Reports, 2019, 9, 16252.	1.6	30
1614	Richness of Wild Bees (Hymenoptera: Apidae) in a Forest Remnant in a Transition Region of Eastern Amazonia. Psyche: Journal of Entomology, 2019, 2019, 1-11.	0.4	2
1615	Risk and Toxicity Assessment of a Potential Natural Insecticide, Methyl Benzoate, in Honey Bees (Apis) Tj ETQq1 1	. 0.784314 1.0	rgBT /Ove
1616	Towards Precision Nutrition: A Novel Concept Linking Phytochemicals, Immune Response and Honey Bee Health. Insects, 2019, 10, 401.	1.0	31
1617	Prioritising sites for pollinators in a fragmented coastal nectar habitat network in Western Europe. Landscape Ecology, 2019, 34, 2791-2805.	1.9	2
1618	Time since fire strongly and variously influences anthophilous insects in a fireâ€prone landscape. Ecosphere, 2019, 10, e02849.	1.0	10
1619	A novel application of the Price equation reveals that landscape diversity promotes the response of bees to regionally rare plant species. Ecology Letters, 2019, 22, 2103-2110.	3.0	8
1620	Improvement of almond production using <i>Bombus terrestris</i> (Hymenoptera: Apidae) in Mediterranean conditions. Journal of Applied Entomology, 2019, 143, 1132-1142.	0.8	8
1621	Quality Control of Bee-Collected Pollen Using Bumblebee Microcolonies and Molecular Approaches Reveals No Correlation Between Pollen Quality and Pathogen Presence. Journal of Economic Entomology, 2019, 112, 49-59.	0.8	4

#	Article	IF	CITATIONS
1622	Reproductive Senescence in Drones of the Honey Bee (Apis mellifera). Insects, 2019, 10, 11.	1.0	33
1623	Colony Collapse and the Consequences of Bee Disease: Market Adaptation to Environmental Change. Journal of the Association of Environmental and Resource Economists, 2019, 6, 927-960.	1.0	12
1624	The Richness and Diversity of Plant Pollinator (Ordo: Lepidoptera) in Cigeulis District, Banten, Indonesia. Journal of Physics: Conference Series, 2019, 1175, 012008.	0.3	0
1625	Effect of transient exposure to carbaryl wettable powder on the gut microbial community of honey bees. Applied Biological Chemistry, 2019, 62, .	0.7	15
1626	Effects of the North Atlantic Oscillation (NAO) and meteorological variables on the annual Alcarria honey production in Spain. Journal of Apicultural Research, 2019, 58, 788-791.	0.7	7
1627	Influence of chronic exposure to thiamethoxam and chronic bee paralysis virus on winter honey bees. PLoS ONE, 2019, 14, e0220703.	1.1	27
1628	Economic value of regulating ecosystem services: a comprehensive at the global level review. Environmental Monitoring and Assessment, 2019, 191, 616.	1.3	22
1629	Influence of microhabitat on Honduran Emerald (Amazilia luciae) abundance in tropical dry forest remnants. Avian Conservation and Ecology, 2019, 14, .	0.3	2
1630	The risk of threshold responses, tipping points, and cascading failures in pollination systems. Biodiversity and Conservation, 2019, 28, 3389-3406.	1.2	11
1631	Honey bees as bioindicators of changing global agricultural landscapes. Current Opinion in Insect Science, 2019, 35, 132-137.	2.2	41
1632	Feeding by Tropilaelaps mercedesae on pre- and post-capped brood increases damage to Apis mellifera colonies. Scientific Reports, 2019, 9, 13044.	1.6	12
1633	Acute exposure to urban air pollution impairs olfactory learning and memory in honeybees. Ecotoxicology, 2019, 28, 1056-1062.	1.1	24
1634	A holistic study of neonicotinoids neuroactive insecticidesâ€"properties, applications, occurrence, and analysis. Environmental Science and Pollution Research, 2019, 26, 34723-34740.	2.7	63
1635	Flowers as viral hot spots: Honey bees (Apis mellifera) unevenly deposit viruses across plant species. PLoS ONE, 2019, 14, e0221800.	1.1	49
1636	PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Scientific Data, 2019, 6, 170.	2.4	168
1637	Contrasting patterns of genetic and morphological diversity in the bumblebee Bombus lucorum (Hymenoptera: Apidae: Bombus) along a European gradient. Journal of Insect Conservation, 2019, 23, 933-943.	0.8	1
1638	Chronic oral exposure to field-realistic pesticide combinations via pollen and nectar: effects on feeding and thermal performance in a solitary bee. Scientific Reports, 2019, 9, 13770.	1.6	60
1639	Flexible PET/ITO/Ag SERS Platform for Label-Free Detection of Pesticides. Biosensors, 2019, 9, 111.	2.3	22

#	Article	IF	CITATIONS
1640	Viral infections alter antennal epithelium ultrastructure in honey bees. Journal of Invertebrate Pathology, 2019, 168, 107252.	1.5	5
1641	Quantifying the effectiveness of agri-environment schemes for a grassland butterfly using individual-based models. Ecological Modelling, 2019, 411, 108798.	1.2	7
1642	Benchmarking nesting aids for cavity-nesting bees and wasps. Biodiversity and Conservation, 2019, 28, 3831-3849.	1.2	16
1643	Plant–pollinator networks in grassland working landscapes reveal seasonal shifts in network structure and composition. Ecosphere, 2019, 10, e02569.	1.0	24
1644	Ground cover management with mixtures of flowering plants to enhance insect pollinators and natural enemies of pests in olive groves. Agriculture, Ecosystems and Environment, 2019, 274, 76-89.	2.5	38
1645	Artificial Domicile Use by Bumble Bees (<i>Bombus</i> ; Hymenoptera: Apidae) in Ontario, Canada. Journal of Insect Science, 2019, 19, .	0.6	2
1646	Effects of radiofrequency electromagnetic radiation (RF-EMF) on honey bee queen development and mating success. Science of the Total Environment, 2019, 661, 553-562.	3.9	47
1647	The Use of the Predatory Mite Stratiolaelaps scimitus (Mesostigmata: Laelapidae) to Control Varroa destructor (Mesostigmata: Varroidae) in Honey Bee Colonies in Early and Late Fall. Journal of Economic Entomology, 2019, 112, 534-542.	0.8	3
1648	Minimising Risks of Global Change by Enhancing Resilience of Pollinators in Agricultural Systems. , 2019, , 105-111.		6
1649	Vertical and temporal distribution of spottedâ€wing drosophila (Drosophila suzukii) and pollinators within cultivated raspberries. Pest Management Science, 2019, 75, 2188-2194.	1.7	18
1650	Reproductive strategy and the effect of floral pillagers on fruit production of the passion flower Passiflora setacea cultivated in Brazil. Revista Brasileira De Botanica, 2019, 42, 63-71.	0.5	5
1651	Local and landscape habitat influences on bee diversity in agricultural landscapes in Anolaima, Colombia. Journal of Insect Conservation, 2019, 23, 133-146.	0.8	17
1652	Towards the development of an index for the holistic assessment of the health status of a honey bee colony. Ecological Indicators, 2019, 101, 341-347.	2.6	11
1654	Climate Change-Resilient Agriculture and Agroforestry. Climate Change Management, 2019, , .	0.6	30
1655	Past tree influence and prescribed fire exert strong controls on reassembly of mountain grasslands after tree removal. Ecological Applications, 2019, 29, e01860.	1.8	4
1656	Agricultural intensification may create an attractive sink for Dolichopodidae, a ubiquitous but understudied predatory fly family. Journal of Insect Conservation, 2019, 23, 453-465.	0.8	8
1657	A Preliminary Assessment of Bumble Bee (Hymenoptera: Apidae) Habitat Suitability Across Protected and Unprotected Areas in the Philippines. Annals of the Entomological Society of America, 2019, 112, 44-49.	1.3	6
1658	Advances in population ecology and species interactions in mammals. Journal of Mammalogy, 2019, 100, 965-1007.	0.6	25

#	Article	IF	CITATIONS
1659	Extinction-induced community reorganization in bipartite networks. Applied Network Science, 2019, 4, .	0.8	1
1660	Transcriptomic responses to diet quality and viral infection in Apis mellifera. BMC Genomics, 2019, 20, 412.	1.2	29
1661	Agroforestry and Biodiversity. Sustainability, 2019, 11, 2879.	1.6	113
1662	Networking of Mutagens in Environmental Toxicology. Environmental Science and Engineering, 2019, ,	0.1	3
1663	Pollen on Stigmas of Herbarium Specimens: A Window into the Impacts of a Century of Environmental Disturbance on Pollen Transfer. American Naturalist, 2019, 194, 405-413.	1.0	15
1664	Preference of Peponapis pruinosa (Hymenoptera: Apoidea) for Tilled Soils Regardless of Soil Management System. Environmental Entomology, 2019, 48, 961-967.	0.7	9
1665	The Long Arm of Species Loss: How Will Defaunation Disrupt Ecosystems Down to the Microbial Scale?. BioScience, 2019, 69, 443-454.	2.2	8
1667	The landscape ecology of pollination. Landscape Ecology, 2019, 34, 961-966.	1.9	22
1668	Pollen-borne microbes shape bee fitness. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182894.	1.2	67
1669	Varietal and seasonal differences in the effects of commercial bumblebees on fruit quality in strawberry crops. Agriculture, Ecosystems and Environment, 2019, 281, 124-133.	2.5	19
1670	Estructura funcional y patrones de especializaci \tilde{A}^3 n en las relaciones planta-polinizador de un agroecosistema en el Valle del Cauca, Colombia. Acta Biologica Colombiana, 2019, 24, 331-342.	0.1	2
1671	Intersections between rural livelihood security and animal pollination in Anolaima, Colombia. Geoforum, 2019, 104, 13-24.	1.4	3
1672	Crucifer-legume cover crop mixtures for biocontrol: Toward a new multi-service paradigm. Advances in Agronomy, 2019, , 55-139.	2.4	33
1673	Stock-specific chemical brood signals are induced by Varroa and Deformed Wing Virus, and elicit hygienic response in the honey bee. Scientific Reports, 2019, 9, 8753.	1.6	36
1674	From plant fungi to bee parasites: mycorrhizae and soil nutrients shape floral chemistry and bee pathogens. Ecology, 2019, 100, e02801.	1.5	20
1675	Urban bumblebees are smaller and more phenotypically diverse than their rural counterparts. Journal of Animal Ecology, 2019, 88, 1522-1533.	1.3	51
1676	When Are Adverse Outcome Pathways and Associated Assays "Fit for Purpose―for Regulatory Decisionâ€Making and Management of Chemicals?. Integrated Environmental Assessment and Management, 2019, 15, 633-647.	1.6	25
1677	Role of AccMGST1 in oxidative stress resistance in Apis cerana cerana. Cell Stress and Chaperones, 2019, 24, 793-805.	1.2	9

#	Article	IF	CITATIONS
1678	Neonicotinoids and ectoparasitic mites synergistically impact honeybees. Scientific Reports, 2019, 9, 8159.	1.6	49
1679	Comparative analysis of mitochondrial genomes of the honey bee subspecies A. m. caucasica and A. m. carpathica and refinement of their evolutionary lineages. Journal of Apicultural Research, 2019, 58, 567-579.	0.7	12
1680	Fresh "Pollen Adhesive―Weakens Humidity-Dependent Pollen Adhesion. ACS Applied Materials & Interfaces, 2019, 11, 24691-24698.	4.0	18
1681	Contamination Links Between Terrestrial and Aquatic Ecosystems: The Neonicotinoid Case. Environmental Science and Engineering, 2019, , 145-157.	0.1	O
1682	Ecotoxicological Effects of Heavy Metal Pollution on Economically Important Terrestrial Insects. Environmental Science and Engineering, 2019, , 137-144.	0.1	14
1683	An optimized approach for extraction and quantification of energy reserves in differentially fed bumble bees (<i>Bombus</i>). Journal of Apicultural Research, 2019, 58, 531-541.	0.7	3
1684	Nesting biology and niche modelling of Tetragonula iridipennis (Smith) (Hymenoptera: Apidae,) Tj ETQq0 0 0 rgB	Γ /Overlock 0.7	R 10 Tf 50 50
1685	Insights into the impacts of rural honey hunting in Zambia. African Journal of Ecology, 2019, 57, 610-614.	0.4	2
1686	Light Pollution Is a Driver of Insect Declines. SSRN Electronic Journal, 2019, , .	0.4	2
1687	Plant species roles in pollination networks: an experimental approach. Oikos, 2019, 128, 1446-1457.	1.2	22
1688	Connectedness of habitat fragments boosts conservation benefits for butterflies, but only in landscapes with little cropland. Landscape Ecology, 2019, 34, 1045-1056.	1.9	13
1689	Effect of timing and exposure of sunflower pollen on a common gut pathogen of bumble bees. Ecological Entomology, 2019, 44, 702-710.	1.1	9
1690	Polycultures, pastures and monocultures: Effects of land use intensity on wild bee diversity in tropical landscapes of southeastern Mexico. Biological Conservation, 2019, 236, 269-280.	1.9	22
1691	Butterfly richness and abundance in flower strips and field margins: the role of local habitat quality and landscape context. Heliyon, 2019, 5, e01636.	1.4	24
1692	A global synthesis of fire effects on pollinators. Global Ecology and Biogeography, 2019, 28, 1487-1498.	2.7	81
1693	Seasonal variation of pollen collected by honey bees (Apis mellifera) in developed areas across four regions in the United States. PLoS ONE, 2019, 14, e0217294.	1.1	71
1694	Interactive effects of urbanization and local habitat characteristics influence bee communities and flower visitation rates. Oecologia, 2019, 190, 715-723.	0.9	35
1695	Infection Outcomes are Robust to Thermal Variability in a Bumble Bee Host–Parasite System. Integrative and Comparative Biology, 2019, 59, 1103-1113.	0.9	5

#	Article	IF	CITATIONS
1696	Exposure of the wild bee <i>Osmia bicornis</i> to the honey bee pathogen <i>Nosema ceranae</i> Agricultural and Forest Entomology, 2019, 21, 363-371.	0.7	21
1697	Pollination Services from Insects in Homegardens in the Chengdu Plain will be Confronted with Crises. Sustainability, 2019, 11, 2169.	1.6	6
1698	RNAseq Analysis Reveals Virus Diversity within Hawaiian Apiary Insect Communities. Viruses, 2019, 11, 397.	1.5	28
1699	Low maize pollen collection and low pesticide risk to honey bees in heterogeneous agricultural landscapes. Apidologie, 2019, 50, 379-390.	0.9	16
1700	Field-level characteristics influence wild bee functional guilds on public lands managed for conservation. Global Ecology and Conservation, 2019, 17, e00598.	1.0	5
1701	The Conservation of Native Honey Bees Is Crucial. Trends in Ecology and Evolution, 2019, 34, 789-798.	4.2	110
1702	Repellency of insecticides and the effect of thiacloprid on bumble bee colony development in red clover (<i>Trifolium pratense</i> L.) seed crops. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2019, 69, 439-451.	0.3	5
1703	Intraspecific Variation in Worker Body Size Makes North American Bumble Bees (<i>Bombus</i> spp.) Less Susceptible to Decline. American Naturalist, 2019, 194, 381-394.	1.0	18
1704	Habitat fragmentation reduces plant progeny quality: a global synthesis. Ecology Letters, 2019, 22, 1163-1173.	3.0	118
1705	Gene Disruption of Honey Bee Trypanosomatid Parasite, Lotmaria passim, by CRISPR/Cas9 System. Frontiers in Cellular and Infection Microbiology, 2019, 9, 126.	1.8	10
1706	The power and efficiency of brood incubation in queenless microcolonies of bumble bees (Bombus) Tj ETQq0 0 () rgBT /Ove	erlock 10 Tf !
1707	Critical factors limiting pollination success in oil palm: A systematic review. Agriculture, Ecosystems and Environment, 2019, 280, 152-160.	2.5	27
1708	Mitigating the biodiversity footprint of energy crops $\hat{a}\in$ A case study on arthropod diversity. Biomass and Bioenergy, 2019, 125, 180-187.	2.9	11
1709	Compositional Shifts in Forb and Butterfly Communities Associated with Kentucky Bluegrass Invasions. Rangeland Ecology and Management, 2019, 72, 301-309.	1.1	18
1710	Botanical and synthetic pesticides alter the flower visitation rates of pollinator bees in Neotropical melon fields. Environmental Pollution, 2019, 251, 591-599.	3.7	47
1711	DWV-A Lethal to Honey Bees (Apis mellifera): A Colony Level Survey of DWV Variants (A, B, and C) in England, Wales, and 32 States across the US. Viruses, 2019, 11, 426.	1.5	62
1712	No guts, no glory: Gut content metabarcoding unveils the diet of a flowerâ€associated coastal sage scrub predator. Ecosphere, 2019, 10, e02712.	1.0	8
1713	Diverse yet endangered: pollen dispersal and mating system reveal inbreeding in a narrow endemic plant. Plant Ecology and Diversity, 2019, 12, 169-180.	1.0	15

#	Article	IF	CITATIONS
1714	A new, practicable and economical cage design for experimental studies on small honey bee colonies. Journal of Experimental Biology, 2019, 222, .	0.8	3
1715	Incorporating citizen science, museum specimens, and field work into the assessment of extinction risk of the American Bumble bee (Bombus pensylvanicus De Geer 1773) in Canada. Journal of Insect Conservation, 2019, 23, 597-611.	0.8	28
1716	Prickly pear crops as bee diversity reservoirs and the role of bees in Opuntia fruit production. Agriculture, Ecosystems and Environment, 2019, 279, 80-88.	2.5	2
1717	Are orchid bees useful indicators of the impacts of human disturbance?. Ecological Indicators, 2019, 103, 745-755.	2.6	15
1718	Priority areas for conservation of orchid bees (Apidae, Euglossini) in the Atlantic Forest. Journal of Insect Conservation, 2019, 23, 613-621.	0.8	9
1719	Conserving bees in destroyed landscapes: The potentials of reclaimed sand mines. Global Ecology and Conservation, 2019, 19, e00642.	1.0	8
1720	Approaches for the isolation and identification of hydrophilic, light-sensitive, volatile and minor natural products. Natural Product Reports, 2019, 36, 981-1004.	5.2	15
1721	Ecosystem services by birds and bees to coffee in a changing climate: A review of coffee berry borer control and pollination. Agriculture, Ecosystems and Environment, 2019, 280, 53-67.	2.5	50
1722	The Integrated Monarch Monitoring Program: From Design to Implementation. Frontiers in Ecology and Evolution, $2019, 7, \dots$	1.1	23
1723	Uncertainties in the value and opportunity costs of pollination services. Journal of Applied Ecology, 2019, 56, 1549-1559.	1.9	5
1724	Visitor or vector? The extent of rove beetle (Coleoptera: Staphylinidae) pollination and floral interactions. Arthropod-Plant Interactions, 2019, 13, 685-701.	0.5	16
1725	Influence of grazing intensity on patterns and structuring processes in plant–pollinator networks in a subtropical grassland. Arthropod-Plant Interactions, 2019, 13, 757-770.	0.5	18
1726	Pollination by sexual deception of fungus gnats (Keroplatidae and Mycetophilidae) in two clades of Pterostylis (Orchidaceae). Botanical Journal of the Linnean Society, 2019, 190, 101-116.	0.8	22
1727	Determining the value of ecosystem services in agriculture. , 2019, , 60-89.		2
1728	Building resilience into agricultural pollination using wild pollinators. , 2019, , 109-134.		8
1729	Status changes in the wild bees of northâ€eastern North America over 125Âyears revealed through museum specimens. Insect Conservation and Diversity, 2019, 12, 278-288.	1.4	41
1730	In vitro larval rearing protocol for the stingless bee species Melipona scutellaris for toxicological studies. PLoS ONE, 2019, 14, e0213109.	1.1	20
1731	Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy. Biodiversity and Conservation, 2019, 28, 1343-1360.	1.2	159

#	Article	IF	CITATIONS
1732	A neonicotinoid pesticide impairs foraging, but not learning, in free-flying bumblebees. Scientific Reports, 2019, 9, 4764.	1.6	64
1733	Evaluation of nest-site selection of ground-nesting bees and wasps (Hymenoptera) using emergence traps. Canadian Entomologist, 2019, 151, 260-271.	0.4	17
1734	Urbanization predicts infection risk by a protozoan parasite in non-migratory populations of monarch butterflies from the southern coastal U.S. and Hawaii. Landscape Ecology, 2019, 34, 649-661.	1.9	13
1735	Reproductive Proteomics Comes of Age. Molecular and Cellular Proteomics, 2019, 18, S1-S5.	2.5	8
1736	Psychophysics of the hoverfly: categorical or continuous color discrimination?. Environmental Epigenetics, 2019, 65, 483-492.	0.9	35
1737	A century of local changes in bumblebee communities and landscape composition in Belgium. Journal of Insect Conservation, 2019, 23, 489-501.	0.8	24
1738	Honey bee (Apis mellifera) exposomes and dysregulated metabolic pathways associated with Nosema ceranae infection. PLoS ONE, 2019, 14, e0213249.	1.1	15
1739	The novel pesticide flupyradifurone (Sivanto) affects honeybee motor abilities. Ecotoxicology, 2019, 28, 354-366.	1.1	44
1740	Environmental Impacts on Human Health and Well-Being. , 2019, , 477-499.		18
1741	Natural biocide disrupts nestmate recognition in honeybees. Scientific Reports, 2019, 9, 3171.	1.6	25
1742	An Examination of Exposure Routes of Fluvalinate to Larval and Adult Honey Bees (<i>Apis) Tj ETQq0 0 0 rgBT /O</i>	verlock 10) Tf 50 342 T
1743	Widespread losses of pollinating insects in Britain. Nature Communications, 2019, 10, 1018.	5.8	415
1744	Evaluating nextâ€generation sequencing (NGS) methods for routine monitoring of wild bees: Metabarcoding, mitogenomics or NGS barcoding. Molecular Ecology Resources, 2019, 19, 847-862.	2.2	26
1745	Landscape genomics to the rescue of a tropical bee threatened by habitat loss and climate change. Evolutionary Applications, 2019, 12, 1164-1177.	1.5	41
1746	Do native and invasive herbivores have an effect on Brassica rapa pollination?. Plant Biology, 2019, 21, 927-934.	1.8	1
1747	Manure application improves both bumblebee flower visitation and crop yield in intensive farmland. Basic and Applied Ecology, 2019, 36, 26-33.	1.2	10
1748	Changes in adult sex ratio in wild bee communities are linked to urbanization. Scientific Reports, 2019, 9, 3767.	1.6	33
1749	Spatial ecology of a rangeâ€expanding bumble bee pollinator. Ecology and Evolution, 2019, 9, 986-997.	0.8	16

#	Article	IF	CITATIONS
1750	Ecological traits predict population changes in moths. Biological Conservation, 2019, 233, 213-219.	1.9	52
1751	Range expansion of an already widespread bee under climate change. Global Ecology and Conservation, 2019, 17, e00584.	1.0	20
1752	Preinfection Effects of Nectar Secondary Compounds on a Bumble Bee Gut Pathogen. Environmental Entomology, 2019, 48, 685-690.	0.7	10
1753	Hygroregulation, a key ability for eusocial insects: Native Western European honeybees as a case study. PLoS ONE, 2019, 14, e0200048.	1.1	7
1754	Evaluating the effects of turf-replacement programs in Los Angeles. Landscape and Urban Planning, 2019, 185, 210-221.	3.4	31
1755	Narrow habitat breadth and late-summer emergence increases extinction vulnerability in Central European bees. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190316.	1.2	24
1756	A review of the factors that influence pesticide residues in pollen and nectar: Future research requirements for optimising the estimation of pollinator exposure. Environmental Pollution, 2019, 249, 236-247.	3.7	64
1757	Seasonal timing in honey bee colonies: phenology shifts affect honey stores and varroa infestation levels. Oecologia, 2019, 189, 1121-1131.	0.9	27
1758	Pollen from multiple sunflower cultivars and species reduces a common bumblebee gut pathogen. Royal Society Open Science, 2019, 6, 190279.	1.1	42
1759	Lethal and sublethal synergistic effects of a new systemic pesticide, flupyradifurone (Sivanto) Tj ETQq1 1 0.7843 20190433.	314 rgBT /0 1.2	Overlock 10 103
1760	Loss of top-down biotic interactions changes the relative benefits for obligate mutualists. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182501.	1.2	13
1760 1761	Loss of top-down biotic interactions changes the relative benefits for obligate mutualists. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182501. A DNA barcode library for 5,200 German flies and midges (Insecta: Diptera) and its implications for metabarcodingâ€based biomonitoring. Molecular Ecology Resources, 2019, 19, 900-928.	2.2	13
	Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182501. A DNA barcode library for 5,200 German flies and midges (Insecta: Diptera) and its implications for		
1761	Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182501. A DNA barcode library for 5,200 German flies and midges (Insecta: Diptera) and its implications for metabarcodingâ€based biomonitoring. Molecular Ecology Resources, 2019, 19, 900-928. Long-term monitoring of Menorcan butterfly populations reveals widespread insular biogeographical	2.2	77
1761 1762	Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182501. A DNA barcode library for 5,200 German flies and midges (Insecta: Diptera) and its implications for metabarcodingâ€based biomonitoring. Molecular Ecology Resources, 2019, 19, 900-928. Long-term monitoring of Menorcan butterfly populations reveals widespread insular biogeographical patterns and negative trends. Biodiversity and Conservation, 2019, 28, 1837-1851. Effects of three common pesticides on survival, food consumption and midgut bacterial communities	2.2	77
1761 1762 1763	Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182501. A DNA barcode library for 5,200 German flies and midges (Insecta: Diptera) and its implications for metabarcodingâ€based biomonitoring. Molecular Ecology Resources, 2019, 19, 900-928. Long-term monitoring of Menorcan butterfly populations reveals widespread insular biogeographical patterns and negative trends. Biodiversity and Conservation, 2019, 28, 1837-1851. Effects of three common pesticides on survival, food consumption and midgut bacterial communities of adult workers Apis cerana and Apis mellifera. Environmental Pollution, 2019, 249, 860-867. Analysis of insecticide exposure in California hummingbirds using liquid chromatography-mass	2.2 1.2 3.7	77 7 35
1761 1762 1763 1764	Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182501. A DNA barcode library for 5,200 German flies and midges (Insecta: Diptera) and its implications for metabarcodingâ€based biomonitoring. Molecular Ecology Resources, 2019, 19, 900-928. Long-term monitoring of Menorcan butterfly populations reveals widespread insular biogeographical patterns and negative trends. Biodiversity and Conservation, 2019, 28, 1837-1851. Effects of three common pesticides on survival, food consumption and midgut bacterial communities of adult workers Apis cerana and Apis mellifera. Environmental Pollution, 2019, 249, 860-867. Analysis of insecticide exposure in California hummingbirds using liquid chromatography-mass spectrometry. Environmental Science and Pollution Research, 2019, 26, 15458-15466.	2.2 1.2 3.7 2.7	77 7 35 26

#	Article	IF	CITATIONS
1768	The co-occurrence of different grassland communities increases the stability of pollination networks. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 255, 11-17.	0.6	9
1769	Assessing the resilience of biodiversity-driven functions in agroecosystems under environmental change. Advances in Ecological Research, 2019, , 59-123.	1.4	32
1770	Scientific note: first global report of a bee nest built only with plastic. Apidologie, 2019, 50, 230-233.	0.9	23
1771	Learning of monochromatic stimuli in Apis cerana and Apis mellifera by means of PER conditioning. Journal of Insect Physiology, 2019, 114, 30-34.	0.9	8
1772	Environmental DNA metabarcoding of wild flowers reveals diverse communities of terrestrial arthropods. Ecology and Evolution, 2019, 9, 1665-1679.	0.8	126
1773	Bee diversity and abundance on flowers of industrial hemp (Cannabis sativa L.). Biomass and Bioenergy, 2019, 122, 331-335.	2.9	23
1774	A review of 250 years of South African bee taxonomy and exploration (Hymenoptera: Apoidea:) Tj ETQq0 0 0 rgB	T /Overloo	:k 10 Tf 50 50
1775	The effect of within-crop floral resources on pollination, aphid control and fruit quality in commercial strawberry. Agriculture, Ecosystems and Environment, 2019, 275, 112-122.	2.5	18
1776	Inbreeding depression and differential maladaptation shape the fitness trajectory of two co-occurring Eucalyptus species. Annals of Forest Science, 2019, 76, 1.	0.8	32
1777	Little evidence of a roadâ€effect zone for nocturnal, flying insects. Ecology and Evolution, 2019, 9, 65-72.	0.8	7
1778	Environmental and Ecosystem Services, Tree Diversity and Knowledge of Family Farmers. Floresta E Ambiente, 2019, 26, .	0.1	4
1779	The Phylogeny and Pathogenesis of Sacbrood Virus (SBV) Infection in European Honey Bees, Apis mellifera. Viruses, 2019, 11, 61.	1.5	28
1780	Grassland Management Affects Delivery of Regulating and Supporting Ecosystem Services. Crop Science, 2019, 59, 441-459.	0.8	104
1781	Fluorescent Pan Traps Affect the Capture Rate of Insect Orders in Different Ways. Insects, 2019, 10, 40.	1.0	31
1782	The Dynamics of Deformed Wing Virus Concentration and Host Defensive Gene Expression after Varroa Mite Parasitism in Honey Bees, Apis mellifera. Insects, 2019, 10, 16.	1.0	18
1783	The impact of four widely used neonicotinoid insecticides on Tetragonisca angustula (Latreille) (Hymenoptera: Apidae). Chemosphere, 2019, 224, 65-70.	4.2	45
1784	The effects of rainfall on plant–pollinator interactions. Arthropod-Plant Interactions, 2019, 13, 561-569.	0.5	96
1785	Relationships between multi-scale factors, plant and pollinator diversity, and composition of park lawns and other herbaceous vegetation in a fast growing megacity of China. Landscape and Urban Planning, 2019, 185, 117-126.	3.4	22

#	Article	IF	CITATIONS
1786	Ancient Egyptians' Atypical Relationship with Invertebrates. Society and Animals, 2019, 27, 716-732.	0.1	4
1787	Inconsistent Relationships of Primary Consumer N Stable Isotope Values to Gradients of Sheep/Beef Farming Intensity and Flow Reduction in Streams. Water (Switzerland), 2019, 11, 2239.	1.2	3
1788	DeepBees - Building and Scaling Convolutional Neuronal Nets For Fast and Large-Scale Visual Monitoring of Bee Hives. , 2019 , , .		22
1789	First record of the genus <i>Spilomyia</i> (Diptera, Syrphidae) from the Oriental region. Turkish Journal of Zoology, 2019, 43, 239-242.	0.4	4
1790	Grain by Grain. , 2019, , .		4
1791	Level of Genetic Diversity in European Bumblebees is Not Determined by Local Species Abundance. Frontiers in Genetics, 2019, 10, 1262.	1.1	4
1792	Abundance and diversity of pollinators on green roofs are affected by environmental factors. IOP Conference Series: Earth and Environmental Science, 2019, 358, 022053.	0.2	2
1793	Benefits and limitations of isolated floral patches in a pollinator restoration project in Arizona. Restoration Ecology, 2019, 27, 1282-1290.	1.4	3
1794	Quantitative and qualitative consequences of reduced pollen loads in a mixedâ€mating plant. Ecology and Evolution, 2019, 9, 14253-14260.	0.8	11
1795	Pollen Resources Used by Two Species of Stingless Bees (Meliponini) in a Tropical Dry Forest of Southern Ecuador. Journal of Insect Science, 2019, 19, .	0.6	5
1796	Stability and changes in the distribution of Pipiza hoverflies (Diptera, Syrphidae) in Europe under projected future climate conditions. PLoS ONE, 2019, 14, e0221934.	1.1	11
1797	Spatial Relation of Bumblebees (Hymenoptera-Apidae) with Host-Plant and their Conservation Issues: An Outlook from Urban Ecosystem of Kathmandu Valley, Nepal. European Journal of Ecology, 2019, 5, 1-7.	0.1	2
1798	Nesting success of woodâ€cavityâ€nesting bees declines with increasing time since wildfire. Ecology and Evolution, 2019, 9, 12436-12445.	0.8	19
1799	Reproduction of Distinct Varroa destructor Genotypes on Honey Bee Worker Brood. Insects, 2019, 10, 372.	1.0	11
1800	The Role of Linked Social-Ecological Systems in a Mobile Agent-Based Ecosystem Service from Giant Honey Bees (Apis dorsata) in an Indigenous Community Forest in Palawan, Philippines. Human Ecology, 2019, 47, 905-915.	0.7	3
1801	Exposure of Larvae of the Solitary Bee Osmia bicornis to the Honey Bee Pathogen Nosema ceranae Affects Life History. Insects, 2019, 10, 380.	1.0	19
1802	Consequences of a short time exposure to a sublethal dose of Flupyradifurone (Sivanto) pesticide early in life on survival and immunity in the honeybee (Apis mellifera). Scientific Reports, 2019, 9, 19753.	1.6	42
1803	4. Merging microbial and plant profiling to understand the impact of human-generated extreme environments on natural and agricultural systems., 2019,, 57-92.		2

#	ARTICLE	IF	CITATIONS
1804	Size of the Canadian Breeding Population of Monarch Butterflies Is Driven by Factors Acting During Spring Migration and Recolonization. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	16
1805	Floral Traits Predict Frequency of Defecation on Flowers by Foraging Bumble Bees. Journal of Insect Science, 2019, 19, .	0.6	16
1806	Global-scale drivers of crop visitor diversity and the historical development of agriculture. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192096.	1.2	21
1807	Native habitat mitigates feast–famine conditions faced by honey bees in an agricultural landscape. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25147-25155.	3.3	88
1808	Pollinator restoration in Brazilian ecosystems relies on a small but phylogenetically-diverse set of plant families. Scientific Reports, 2019, 9, 17383.	1.6	20
1809	Temperate Agroforestry Systems and Insect Pollinators: A Review. Forests, 2019, 10, 981.	0.9	54
1810	Nesting habitat enhancement for wild bees within soybean fields increases crop production. Apidologie, 2019, 50, 833-844.	0.9	22
1811	Risk of potential pesticide use to honeybee and bumblebee survival and distribution: A countryâ€wide analysis for The Netherlands. Diversity and Distributions, 2019, 25, 1709-1720.	1.9	14
1812	Microsatellite Marker Discovery in the Stingless Bee Uruçu-Amarela (Melipona rufiventris Group,) Tj ETQq0 0 0 r	gBT/Over	lock 10 Tf 50
1813	Internet of Things: Low Cost Monitoring BeeHive System using Wireless Sensor Network., 2019,,.		10
1814	Biotic and Abiotic Factors Associated with Colonies Mortalities of Managed Honey Bee (Apis) Tj ETQq0 0 0 rgBT	Overlock	10 ₅ 5 50 342
1815	The Roles of Four Novel P450 Genes in Pesticides Resistance in Apis cerana cerana Fabricius: Expression Levels and Detoxification Efficiency. Frontiers in Genetics, 2019, 10, 1000.	1.1	12
1816	Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature, 2019, 574, 671-674.	13.7	760
1817	The effect of carbohydrate sources: Sucrose, invert sugar and components of mÄnuka honey, on core bacteria in the digestive tract of adult honey bees (Apis mellifera). PLoS ONE, 2019, 14, e0225845.	1.1	26
1818	Fungicides, herbicides and bees: A systematic review of existing research and methods. PLoS ONE, 2019, 14, e0225743.	1.1	125
1819	Diversified Floral Resource Plantings Support Bee Communities after Apple Bloom in Commercial Orchards. Scientific Reports, 2019, 9, 17232.	1.6	15
1821	The effects of post-wildfire salvage logging on plant reproductive success and pollination in Symphoricarpos albus, a fire-tolerant shrub. Forest Ecology and Management, 2019, 432, 157-163.	1.4	6
1822	Effects of urbanisation and management practices on pollinators in tropical Africa. Journal of Applied Ecology, 2019, 56, 214-224.	1.9	46

#	Article	IF	CITATIONS
1823	Construction, validation, and application of nocturnal pollen transport networks in an agroâ€ecosystem: a comparison using light microscopy and DNA metabarcoding. Ecological Entomology, 2019, 44, 17-29.	1.1	55
1824	Isolation from natural habitat reduces yield and quality of passion fruit. Plant Biology, 2019, 21, 142-149.	1.8	11
1825	Responses of grassland arthropods to an invasion by nonnative grasses. Biological Invasions, 2019, 21, 405-416.	1.2	17
1826	Pesticides affect pollinator abundance and productivity of sunflower (<i>Helianthus annuus</i> L.). Journal of Apicultural Research, 2019, 58, 2-8.	0.7	13
1827	Identification of a metallothionein gene in honey bee <i>Apis mellifera</i> and its expression profile in response to Cd, Cu and Pb exposure. Molecular Ecology, 2019, 28, 731-745.	2.0	20
1828	Simultaneous Recordings of Insect Visitors to Flowers Show Spatial and Temporal Heterogeneity. Annals of the Entomological Society of America, 2019, 112, 93-98.	1.3	4
1829	Resource-Based Models of Mutualism. Environmental Modeling and Assessment, 2019, 24, 405-420.	1.2	5
1830	Traitâ€based ecology of terrestrial arthropods. Biological Reviews, 2019, 94, 999-1022.	4.7	151
1831	Annual cover crops for managed and wild bees: Optimal plant mixtures depend on pollinator enhancement goals. Agriculture, Ecosystems and Environment, 2019, 273, 107-116.	2.5	44
1832	<i>Bombus terrestris</i> in a massâ€flowering pollinatorâ€dependent crop: A mutualistic relationship?. Ecology and Evolution, 2019, 9, 609-618.	0.8	13
1833	Effect of Sub-lethal Doses of Imidacloprid on Learning and Memory Formation of Indigenous Arabian Bee (Apis mellifera jemenitica Ruttner) Adult Foragers. Neotropical Entomology, 2019, 48, 373-380.	0.5	23
1834	Trees for bees. Agriculture, Ecosystems and Environment, 2019, 270-271, 79-83.	2.5	52
1835	Novel approaches to sampling pollinators in whole landscapes: a lesson for landscape-wide biodiversity monitoring. Landscape Ecology, 2019, 34, 1057-1067.	1.9	26
1836	Exposure to thiamethoxam during the larval phase affects synapsin levels in the brain of the honey bee. Ecotoxicology and Environmental Safety, 2019, 169, 523-528.	2.9	40
1837	The effect of management practices on bumblebee densities in hedgerow and grassland habitats. Basic and Applied Ecology, 2019, 35, 28-33.	1.2	13
1838	Harvesting effects on wild bee communities in bioenergy grasslands depend on nesting guild. Ecological Applications, 2019, 29, e01828.	1.8	4
1839	A metaâ€analysis of the agents of selection on floral traits. Evolution; International Journal of Organic Evolution, 2019, 73, 4-14.	1.1	140
1840	Evaluating the dependence of urban pollinators on ornamental, non-native, and †weedy†floral resources. Urban Ecosystems, 2019, 22, 293-302.	1.1	66

#	Article	IF	CITATIONS
1841	Emerging Themes from the ESA Symposium Entitled "Pollinator Nutrition: Lessons from Bees at Individual to Landscape Levels― Bee World, 2019, 96, 3-9.	0.3	11
1842	Historical collections as a tool for assessing the global pollination crisis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20170389.	1.8	58
1843	Management tradeâ€offs on ecosystem services in apple orchards across Europe: Direct and indirect effects of organic production. Journal of Applied Ecology, 2019, 56, 802-811.	1.9	59
1844	Coupled land use and ecological models reveal emergence and feedbacks in socioâ€ecological systems. Ecography, 2019, 42, 814-825.	2.1	21
1845	Where have all the flowers gone? Honey bee declines and exclusions from floral resources. Journal of Rural Studies, 2019, 65, 161-171.	2.1	47
1846	Effect of the climate change on honey bee colonies in a temperate Mediterranean zone assessed through remote hive weight monitoring system in conjunction with exhaustive colonies assessment. Science of the Total Environment, 2019, 653, 1111-1119.	3.9	84
1847	Predation of the invasive Asian hornet affects foraging activity and survival probability of honey bees in Western Europe. Journal of Pest Science, 2019, 92, 567-578.	1.9	66
1848	Distance models as a tool for modelling detection probability and density of native bumblebees. Journal of Applied Entomology, 2019, 143, 225-235.	0.8	8
1849	Structural landscape changes in urban and peri-urban agricultural systems of two West African cities and their relations to ecosystem services provided by woody plant communities. Urban Ecosystems, 2019, 22, 397-408.	1.1	8
1850	Maizeâ€dominated landscapes reduce bumblebee colony growth through pollen diversity loss. Journal of Applied Ecology, 2019, 56, 294-304.	1.9	38
1851	The response of wild bees to tree cover and rural land use is mediated by species' traits. Biological Conservation, 2019, 231, 1-12.	1.9	52
1852	Finding the bees knees: A conceptual framework and systematic review of the mechanisms of pollinator-mediated facilitation. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 36, 33-40.	1.1	40
1853	Insect pollinator conservation policy innovations at subnational levels: Lessons for lawmakers. Environmental Science and Policy, 2019, 93, 118-128.	2.4	59
1854	Do more bees imply higher fees? Honey bee colony strength as a determinant of almond pollination fees. Food Policy, 2019, 83, 150-160.	2.8	36
1855	Reproductive trade-offs maintain bract color polymorphism in Scarlet Indian paintbrush (Castilleja) Tj ETQq0 0 0 r	gBT/Over	logk 10 Tf 50
1856	Decades of native bee biodiversity surveys at Pinnacles National Park highlight the importance of monitoring natural areas over time. PLoS ONE, 2019, 14, e0207566.	1.1	33
1857	No evidence that seed predators constrain pollinatorâ€mediated trait evolution in a tropical vine. American Journal of Botany, 2019, 106, 145-153.	0.8	2
1858	Agricultural landscape generators for simulation models: A review of existing solutions and an outline of future directions. Ecological Modelling, 2019, 393, 135-151.	1.2	27

#	ARTICLE	IF	CITATIONS
1859	Phoretic mites associated to <i>Bombus pauloensis </i> and <i>Bombus bellicosus </i> (Hymenoptera:) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
1860	Honeybees. , 2019, , 100-108.		2
1861	Longâ€ŧerm risk assessment on noneffective and effective toxic doses of imidacloprid to honeybee workers. Journal of Applied Entomology, 2019, 143, 118-128.	0.8	9
1862	From stream to land: Ecosystem services provided by stream insects to agriculture. Agriculture, Ecosystems and Environment, 2019, 270-271, 32-40.	2.5	38
1863	Dryland organic farming increases floral resources and bee colony success in highly simplified agricultural landscapes. Agriculture, Ecosystems and Environment, 2019, 270-271, 9-18.	2.5	15
1864	Bacterial community structure and succession in nests of two megachilid bee genera. FEMS Microbiology Ecology, 2019, 95, .	1.3	40
1865	Using Crop Diversity and Conservation Cropping to Develop More Sustainable Arable Cropping Systems., 2019,, 93-108.		5
1866	Complex longâ€ŧerm dynamics of pollinator abundance in undisturbed Mediterranean montane habitats over two decades. Ecological Monographs, 2019, 89, e01338.	2.4	51
1867	Importance of national or regional specificity in the relationship between pollinator dependence and production stability. Sustainability Science, 2019, 14, 139-146.	2.5	6
1868	Agricultural area losses and pollinator mismatch due to climate changes endanger passion fruit production in the Neotropics. Agricultural Systems, 2019, 169, 49-57.	3.2	14
1869	Pollination efficiency of artificial and bee pollination practices in kiwifruit. Scientia Horticulturae, 2019, 246, 1017-1021.	1.7	36
1870	The importance of hidden diversity for insect conservation: a case study in hoverflies (the Merodon) Tj ETQq $1\ 1\ 0$.	784314 rş	gBT /Overloc
1871	The Optimal Supply of Crop Pollination and Honey From Wild and Managed Bees: An Analytical Framework for Diverse Socio-Economic and Ecological Settings. Ecological Economics, 2019, 157, 278-290.	2.9	16
1872	Pharmacokinetics of Three Neonicotinoid Insecticides upon Contact Exposure in the Western Honey Bee, <i>Apis mellifera</i> Chemical Research in Toxicology, 2019, 32, 35-37.	1.7	22
1873	Intensive management reduces butterfly diversity over time in urban green spaces. Urban Ecosystems, 2019, 22, 335-344.	1.1	34
1874	How do toxicants affect epidemiological dynamics?. Oikos, 2019, 128, 729-740.	1.2	2
1875	Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. Ecology, 2019, 100, e02569.	1.5	31
1876	Invasive range expansion of the small carpenter bee, Ceratina dentipes (Hymenoptera: Apidae) into Hawaii with implications for native endangered species displacement. Biological Invasions, 2019, 21, 1155-1166.	1.2	11

#	Article	IF	Citations
1877	Explaining the variability in the response of annual eusocial insects to massâ€flowering events. Journal of Animal Ecology, 2019, 88, 178-188.	1.3	6
1878	Potential feedback between coral presence and farmerfish collective behavior promotes coral recovery. Oikos, 2019, 128, 482-492.	1.2	7
1879	Amphibian diversity in farmlands: Combined influences of breeding-site and landscape attributes in western France. Agriculture, Ecosystems and Environment, 2019, 269, 51-61.	2.5	36
1880	Wild bee abundance in temperate agroforestry landscapes: Assessing effects of alley crop composition, landscape configuration, and agroforestry area. Agroforestry Systems, 2019, 93, 837-850.	0.9	8
1881	The resilience of pollination interactions: importance of temporal phases. Journal of Plant Ecology, 2019, 12, 157-162.	1.2	17
1882	Apple grower pollination practices and perceptions of alternative pollinators in New York and Pennsylvania. Renewable Agriculture and Food Systems, 2020, 35, 1-14.	0.8	32
1883	Sublethal effects of chronic exposure to CdO or PbO nanoparticles or their binary mixture on the honey bee (Apis millefera L.). Environmental Science and Pollution Research, 2020, 27, 19004-19015.	2.7	36
1884	Agroforestry can enhance foraging and nesting resources for pollinators with focus on solitary bees at the landscape scale. Agroforestry Systems, 2020, 94, 379-387.	0.9	19
1885	Butterflies provide pollination services to macadamia in northeastern Brazil. Scientia Horticulturae, 2020, 259, 108818.	1.7	14
1886	The perils of forcing a generalist to be a specialist: lack of dietary essential amino acids impacts honey bee pollen foraging and colony growth. Journal of Apicultural Research, 2020, 59, 95-103.	0.7	9
1887	Spatial associations among avian diversity, regulating and provisioning ecosystem services in Italy. Ecological Indicators, 2020, 108, 105742.	2.6	10
1888	Land use effect on butterfly alpha and beta diversity in the Eastern Himalaya, India. Ecological Indicators, 2020, 110, 105605.	2.6	36
1889	Determinants of Bee Visitation in an Economically Important Vegetable Crop Along an Agricultural Intensification Gradient. Proceedings of the Zoological Society, 2020, 73, 265-271.	0.4	0
1890	Why Shouldn't Veterinary Pathologists Be Interested in Honeybee Pathology?. Veterinary Pathology, 2020, 57, 200-201.	0.8	4
1891	Managing grazing in forage–livestock systems. , 2020, , 77-100.		4
1892	Reduced species richness of native bees in field margins associated with neonicotinoid concentrations in non-target soils. Agriculture, Ecosystems and Environment, 2020, 287, 106693.	2.5	47
1893	Global Trends in Bumble Bee Health. Annual Review of Entomology, 2020, 65, 209-232.	5.7	189
1894	Insect Declines in the Anthropocene. Annual Review of Entomology, 2020, 65, 457-480.	5.7	703

#	Article	IF	CITATIONS
1895	Acute and chronic toxicity of acetamiprid, carbaryl, cypermethrin and deltamethrin to <i>Apis mellifera</i> larvae reared <i>in vitro</i> . Pest Management Science, 2020, 76, 978-985.	1.7	39
1896	Textâ€analysis reveals taxonomic and geographic disparities in animal pollination literature. Ecography, 2020, 43, 44-59.	2.1	26
1897	Using Malaise traps to assess aculeate Hymenoptera associated with farmland linear habitats across a range of farming intensities. Insect Conservation and Diversity, 2020, 13, 229-238.	1.4	7
1898	Network modelling, citizen science and targeted interventions to predict, monitor and reverse bee decline. Plants People Planet, 2020, 2, 111-120.	1.6	11
1899	Pesticide comparison of <i>Phylloneta impressa</i> (Araneae: Theridiidae) females, cocoons and webs with prey remnants collected from a rape field before the harvest. Pest Management Science, 2020, 76, 1128-1133.	1.7	2
1900	Occurrence, prevalence and viral load of deformed wing virus variants in <i>Apis mellifera</i> colonies in Chile. Journal of Apicultural Research, 2020, 59, 63-68.	0.7	10
1901	Environmental impacts of reduced-risk and conventional pesticide programs differ in commercial apple orchards, but similarly influence pollinator community. Chemosphere, 2020, 240, 124926.	4.2	14
1902	When context matters: Spatial prediction models of environmental conditions can identify target areas for wild bee habitat management interventions. Landscape and Urban Planning, 2020, 193, 103673.	3.4	6
1903	Flumethrin at sublethal concentrations induces stresses in adult honey bees (Apis mellifera L.). Science of the Total Environment, 2020, 700, 134500.	3.9	28
1904	Pesticide residues in beehive matrices are dependent on collection time and matrix type but independent of proportion of foraged oilseed rape and agricultural land in foraging territory. Chemosphere, 2020, 238, 124555.	4.2	40
1905	Which moths might be pollinators? Approaches in the search for the flowerâ€visiting needles in the Lepidopteran haystack. Ecological Entomology, 2020, 45, 13-25.	1.1	16
1906	Telling times: More-than-human temporalities in beekeeping. Geoforum, 2020, 108, 315-324.	1.4	21
1907	Impact of enhanced Osmia bicornis (Hymenoptera: Megachilidae) populations on pollination and fruit quality in commercial sweet cherry (Prunus avium L.) orchards. Journal of Apicultural Research, 2020, 59, 77-87.	0.7	14
1908	A biodiversity-friendly method to mitigate the invasive Asian hornet's impact on European honey bees. Journal of Pest Science, 2020, 93, 1-9.	1.9	18
1909	Response of wild bee communities to beekeeping, urbanization, and flower availability. Urban Ecosystems, 2020, 23, 39-54.	1.1	23
1910	A Pediococcus strain to rescue honeybees by decreasing Nosema ceranae- and pesticide-induced adverse effects. Pesticide Biochemistry and Physiology, 2020, 163, 138-146.	1.6	23
1911	Historical changes in bumble bee body size and range shift of declining species. Biodiversity and Conservation, 2020, 29, 451-467.	1.2	39
1912	Arid grassland bee communities: associated environmental variables and responses to restoration. Restoration Ecology, 2020, 28, A54.	1.4	10

#	Article	IF	CITATIONS
1913	Chronic exposure to a neonicotinoid pesticide and a synthetic pyrethroid in full-sized honey bee colonies. Journal of Apicultural Research, 2020, 59, 2-11.	0.7	10
1914	Pollinator diversity and density measures: survey and indexing standard to model, detect, and assess pollinator deficits. Modeling Earth Systems and Environment, 2020, 6, 363-371.	1.9	1
1915	Translocation of pharmaceuticals from wastewater into beehives. Environment International, 2020, 134, 105248.	4.8	10
1916	Using hierarchical joint models to study reproductive interactions in plant communities. Journal of Ecology, 2020, 108, 485-495.	1.9	6
1917	Including rewiring in the estimation of the robustness of mutualistic networks. Methods in Ecology and Evolution, 2020, 11, 106-116.	2.2	47
1918	Ignoring biotic interactions overestimates climate change effects: The potential response of the spotted nutcracker to changes in climate and resource plants. Journal of Biogeography, 2020, 47, 143-154.	1.4	28
1919	Canopy thinning, not agricultural history, determines early responses of wild bees to longleaf pine savanna restoration. Restoration Ecology, 2020, 28, 138-146.	1.4	18
1920	Climate change and invasion may synergistically affect native plant reproduction. Ecology, 2020, 101, e02913.	1.5	44
1921	Lowâ€intensity management benefits solitary bees in olive groves. Journal of Applied Ecology, 2020, 57, 111-120.	1.9	24
1922	Including indigenous and local knowledge in climate research: an assessment of the opinion of Spanish climate change researchers. Climatic Change, 2020, 160, 67-88.	1.7	27
1923	Effects of grazing intensity, habitat area and connectivity on snail-shell nesting bees. Biological Conservation, 2020, 242, 108406.	1.9	11
1924	Effects of Wetland Presence and Upland Land Use on Wild Hymenopteran and Dipteran Pollinators in the Rainwater Basin of Nebraska, USA. Wetlands, 2020, 40, 1017-1031.	0.7	4
1925	A method for mining combined data from in-hive sensors, weather and apiary inspections to forecast the health status of honey bee colonies. Computers and Electronics in Agriculture, 2020, 169, 105161.	3.7	50
1926	Seasonal variation of flavonoid content in bee bread: Potential impact on hypopharyngeal gland development in <i>Apis mellifera </i> honey bees. Journal of Apicultural Research, 2020, 59, 170-177.	0.7	6
1927	Influence of land use on chlorpyrifos and persistent organic pollutant levels in honey bees, bee bread and honey: Beehive exposure assessment. Science of the Total Environment, 2020, 713, 136554.	3.9	45
1928	Modelling the climate suitability of green carpenter bee (Xylocopa aerata) and its nesting hosts under current and future scenarios to guide conservation efforts. Austral Ecology, 2020, 45, 271-282.	0.7	6
1929	Influence of Nesting Characteristics on Health of Wild Bee Communities. Annual Review of Entomology, 2020, 65, 39-56.	5.7	87
1930	Rangeland sharing by cattle and bees: moderate grazing does not impair bee communities and resource availability. Ecological Applications, 2020, 30, e02066.	1.8	15

#	Article	IF	CITATIONS
1931	Toxicity of insecticides on Neotropical stingless bees Plebeia emerina (Friese) and Tetragonisca fiebrigi (Schwarz) (Hymenoptera: Apidae: Meliponini). Ecotoxicology, 2020, 29, 119-128.	1.1	19
1932	Effect of fullerenol nanoparticles on oxidative stress induced by paraquat in honey bees. Environmental Science and Pollution Research, 2020, 27, 6603-6612.	2.7	10
1933	Foraging of honey bees in agricultural landscapes with changing patterns of flower resources. Agriculture, Ecosystems and Environment, 2020, 291, 106792.	2.5	40
1934	Seed mixture strongly affects species-richness and quality of perennial flower strips on fertile soil. Basic and Applied Ecology, 2020, 42, 62-72.	1.2	30
1935	Flumethrin at honey-relevant levels induces physiological stresses to honey bee larvae (Apis mellifera) Tj ETQq0 0	O.zgBT /O	verlock 10 Tf
1936	Science communication is needed to inform risk perception and action of stakeholders. Journal of Environmental Management, 2020, 257, 109983.	3.8	13
1937	Phenological shifts alter the seasonal structure of pollinator assemblages in Europe. Nature Ecology and Evolution, 2020, 4, 115-121.	3.4	55
1938	Conservation of solitary bees in power-line clearings: Sustained increase in habitat quality through woody debris removal. Global Ecology and Conservation, 2020, 21, e00823.	1.0	13
1939	High-severity wildfire limits available floral pollen quality and bumble bee nutrition compared to mixed-severity burns. Oecologia, 2020, 192, 489-499.	0.9	11
1940	Life history tradeâ€offs are more pronounced for a noninvasive, native butterfly compared to its invasive, exotic congener. Population Ecology, 2020, 62, 119-133.	0.7	1
1941	Labels of insecticides to which Oregon honey bee (<scp><i>Apis mellifera</i></scp> L.) hives could be exposed do not align with federal recommendations in their communication of acute and residual toxicity to honey bees. Pest Management Science, 2020, 76, 1664-1672.	1.7	4
1942	Light pollution is a driver of insect declines. Biological Conservation, 2020, 241, 108259.	1.9	231
1943	Beyond flowers: including non-floral resources in bee conservation schemes. Journal of Insect Conservation, 2020, 24, 5-16.	0.8	73
1944	Substituting ecological intensification of agriculture for conventional agricultural practices increased yield and decreased nitrogen losses in North China. Applied Soil Ecology, 2020, 147, 103395.	2.1	28
1945	Fine scale population structure of hoverfly pollinator, Eristalis arbustorum: an integrative study. Journal of Insect Conservation, 2020, 24, 49-63.	0.8	3
1946	Seasonal variation in exploitative competition between honeybees and bumblebees. Oecologia, 2020, 192, 351-361.	0.9	28
1947	Honeybee survival and flight capacity are compromised by insecticides used for controlling melon pests in Brazil. Ecotoxicology, 2020, 29, 97-107.	1.1	24
1948	Automated monitoring of bee behaviour using connected hives: Towards a computational apidology. Apidologie, 2020, 51, 356-368.	0.9	27

#	Article	IF	CITATIONS
1949	Limitation of complementary resources affects colony growth, foraging behavior, and reproduction in bumble bees. Ecology, 2020, 101, e02946.	1.5	25
1950	Relevance of the ecological traits of parasitoid wasps and nectariferous plants for conservation biological control: a hybrid metaâ€analysis. Pest Management Science, 2020, 76, 1881-1892.	1.7	9
1951	Grassland management for meadow birds in the Netherlands is unfavourable to pollinators. Basic and Applied Ecology, 2020, 43, 52-63.	1.2	7
1952	Global transcriptome analysis reveals relevant effects at environmental concentrations of cypermethrin in honey bees (Apis mellifera). Environmental Pollution, 2020, 259, 113715.	3.7	15
1953	Climate change enforces to look beyond the plant $\hat{a}\in$ " the example of pollinators. Current Opinion in Plant Biology, 2020, 56, 162-167.	3. 5	5
1954	Simulated pollinator declines intensify selection on floral traits that facilitate selfing and outcrossing in <i>Impatiens capensis</i> i>. American Journal of Botany, 2020, 107, 148-154.	0.8	18
1955	Predicted thresholds for natural vegetation cover to safeguard pollinator services in agricultural landscapes. Agriculture, Ecosystems and Environment, 2020, 290, 106785.	2.5	6
1956	Standardization of in vitro nervous tissue culture for honeybee: A high specificity toxicological approach. Ecotoxicology and Environmental Safety, 2020, 189, 110040.	2.9	5
1957	Influence of the Conservation Reserve Program (CRP) and playa wetlands on pollinator communities in the Southern High Plains, USA. Journal of Environmental Management, 2020, 256, 109910.	3.8	12
1958	How urbanization is driving pollinator diversity and pollination – A systematic review. Biological Conservation, 2020, 241, 108321.	1.9	195
1959	Do the Quality and Quantity of Honey Bee-Collected Pollen Vary Across an Agricultural Land-Use Gradient?. Environmental Entomology, 2020, 49, 189-196.	0.7	13
1960	Contribution of European forests to safeguard wild honeybee populations. Conservation Letters, 2020, 13, e12693.	2.8	18
1961	Impacts of dietary supplementation with p-coumaric acid and indole-3-acetic acid on survival and biochemical response of honey bees treated with tau-fluvalinate. Ecotoxicology and Environmental Safety, 2020, 189, 109917.	2.9	14
1962	Neglected and Underutilized Fruit Species in Sri Lanka: Prioritisation and Understanding the Potential Distribution under Climate Change. Agronomy, 2020, 10, 34.	1.3	25
1963	Population genomics of Bombus terrestris reveals high but unstructured genetic diversity in a potential glacial refugium. Biological Journal of the Linnean Society, 2020, 129, 259-272.	0.7	10
1964	Longâ€term effects of global change on occupancy and flight period of wild bees in Belgium. Global Change Biology, 2020, 26, 6753-6766.	4.2	36
1965	Histopathological Findings in Testes from Apparently Healthy Drones of Apis mellifera ligustica. Veterinary Sciences, 2020, 7, 124.	0.6	5
1966	An Economic Valuation and Mapping of Pollination Services in Ethiopia. , 2020, , .		0

#	Article	IF	CITATIONS
1967	Gas chromatography – Mass spectrometry as a preferred method for quantification of insect hemolymph sugars. Journal of Insect Physiology, 2020, 127, 104115.	0.9	13
1968	An overview of the Syrphidae (Diptera) of Saudi Arabia. Zootaxa, 2020, 4855, zootaxa.4855.1.1.	0.2	5
1969	Suitability of resampled multispectral datasets for mapping flowering plants in the Kenyan savannah. PLoS ONE, 2020, 15, e0232313.	1.1	0
1970	Pollen specialists are more endangered than non-specialised bees even though they collect pollen on flowers of non-endangered plants. Arthropod-Plant Interactions, 2020, 14, 759-769.	0.5	18
1971	Using ITS2 metabarcoding and microscopy to analyse shifts in pollen diets of honey bees and bumble bees along a massâ€flowering crop gradient. Molecular Ecology, 2020, 29, 5003-5018.	2.0	24
1972	Mixed-Species Gardens Increase Monarch Oviposition without Increasing Top-Down Predation. Insects, 2020, 11, 648.	1.0	8
1973	Virion structures and genome delivery of honeybee viruses. Current Opinion in Virology, 2020, 45, 17-24.	2.6	13
1974	Bark beetle outbreak enhances biodiversity and foraging habitat of native bees in alpine landscapes of the southern Rocky Mountains. Scientific Reports, 2020, 10, 16400.	1.6	15
1975	Experimental evidence of harmful effects of Crithidia mellificae and Lotmaria passim on honey bees. International Journal for Parasitology, 2020, 50, 1117-1124.	1.3	39
1976	Changes in the Summer Wild Bee Community Following a Bark Beetle Outbreak in a Douglas-fir Forest. Environmental Entomology, 2020, 49, 1437-1448.	0.7	12
1977	Invasive bees and their impact on agriculture. Advances in Ecological Research, 2020, 63, 49-92.	1.4	42
1978	Pollination Services to <i>Impatiens capensis</i> (Balsaminaceae) Are Maintained across an Urbanization Gradient. International Journal of Plant Sciences, 2020, 181, 937-944.	0.6	5
1979	Effects of residual doses of neonicotinoid (imidacloprid) on metabolic rate of queen honey bees Apis mellifera (Hymenoptera: Apidae). Apidologie, 2020, 51, 1091-1099.	0.9	11
1980	Transcriptomic and metabolomic landscape of the molecular effects of glyphosate commercial formulation on Apis mellifera ligustica and Apis cerana cerana. Science of the Total Environment, 2020, 744, 140819.	3.9	39
1981	Distribution modeling of <i>Apis florea</i> Fabricius (Hymenoptera, Apidae) in different climates of Iran. Journal of Apicultural Research, 2022, 61, 469-480.	0.7	9
1982	Providing urban birds nutritious food to feed chicks reduces urban versus rural breeding success disparities. Journal of Animal Ecology, 2020, 89, 1546-1548.	1.3	2
1983	Pollination structures plant and nectarâ€feeding bird communities in Cape fynbos, South Africa: Implications for the conservation of plant–bird mutualisms. Ecological Research, 2020, 35, 838-856.	0.7	12
1985	Exploring global food system shocks, scenarios and outcomes. Futures, 2020, 123, 102601.	1.4	42

#	Article	IF	Citations
1986	A "plan bee―for cities: Pollinator diversity and plant-pollinator interactions in urban green spaces. PLoS ONE, 2020, 15, e0235492.	1.1	45
1987	Dispersal patterns of an introduced wild bee, Megachile sculpturalis Smith, 1853 (Hymenoptera:) Tj ETQq1 1 0.784	1314 rgBT 1.1	l <mark> O</mark> verlock
1988	Significance of Apoidea as Main Pollinators. Ecological and Economic Impact and Implications for Human Nutrition. Diversity, 2020, 12, 280.	0.7	37
1989	Managed honey bees as a radar for wild bee decline?. Apidologie, 2020, 51, 1100-1116.	0.9	58
1990	Phenology of a bee (Hymenoptera: Apoidea) community over a 10 year period in southâ€eastern Australia. Austral Entomology, 2020, 59, 602-611.	0.8	14
1991	Longitudinal analysis on parasite diversity in honeybee colonies: new taxa, high frequency of mixed infections and seasonal patterns of variation. Scientific Reports, 2020, 10, 10454.	1.6	18
1992	An Economic Approach to Assess the Annual Stock in Beekeeping Farms: The Honey Bee Colony Inventory Tool. Sustainability, 2020, 12, 9258.	1.6	9
1993	On the Importance of the Sound Emitted by Honey Bee Hives. Veterinary Sciences, 2020, 7, 168.	0.6	46
1994	Lethal and Sublethal Effects of Pyriproxyfen on Apis and Non-Apis Bees. Toxics, 2020, 8, 104.	1.6	9
1995	Examining the public's awareness of bee (Hymenoptera: Apoidae: Anthophila) conservation in Canada. Conservation Science and Practice, 2020, 2, e293.	0.9	10
1996	Effects of abamectin and acetamiprid pesticides on the survival and behavior of Scaptotrigona aff. xanthotricha (Apidae, Meliponini). Journal of Apicultural Research, 2020, , 1-8.	0.7	4
1997	Perceptions of keepers of stingless bees (<i>Tetragonula</i> , <i>Austroplebeia</i>) regarding Aboriginal beliefs and practices in Australia. Journal of Apicultural Research, 2021, 60, 665-677.	0.7	4
1998	Advances and perspectives in selecting resistance traits against the parasitic mite Varroa destructor in honey bees. Genetics Selection Evolution, 2020, 52, 71.	1.2	36
1999	Physiological Analysis and Transcriptome Analysis of Asian Honey Bee (Apis cerana cerana) in Response to Sublethal Neonicotinoid Imidacloprid. Insects, 2020, 11, 753.	1.0	26
2000	Arthropod spatial cognition. Animal Cognition, 2020, 23, 1041-1049.	0.9	8
2001	Contribution of Extensive Farming Practices to the Supply of Floral Resources for Pollinators. Insects, 2020, 11, 818.	1.0	9
2002	Ecosystem services at risk: integrating spatiotemporal dynamics of supply and demand to promote long-term provision. One Earth, 2020, 3, 704-713.	3.6	51
2003	Wooded Semi-Natural Habitats Complement Permanent Grasslands in Supporting Wild Bee Diversity in Agricultural Landscapes. Insects, 2020, 11, 812.	1.0	17

#	Article	IF	CITATIONS
2004	Kindergarten Children's Perception about the Ecological Roles of Living Organisms. Sustainability, 2020, 12, 9565.	1.6	9
2005	Reproduction of ectoparasitic mites in a coevolved system: <i>Varroa</i> spp.â€"Eastern honey bees, <i>Apis cerana</i> . Ecology and Evolution, 2020, 10, 14359-14371.	0.8	10
2006	The Process and Outcome of the Africanization of Honey Bees in Mexico: Lessons and Future Directions. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	19
2007	Effect of pesticide use on weeds, pollinators and microbial activity in Nzoia Sugar Basin of Western Kenya. International Journal of Biodiversity and Conservation, 2020, 12, 283-290.	0.4	O
2008	Facial area and hairiness of pollinators visiting semiâ€natural grassland wild plants predict their facial pollen load. Ecological Entomology, 2020, 45, 1296-1306.	1.1	9
2009	Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nature Communications, 2020, 11, 3999.	5.8	84
2010	Secondary Metabolites Produced by Honey Bee-Associated Bacteria for Apiary Health: Potential Activity of Platynecine. Current Microbiology, 2020, 77, 3441-3449.	1.0	5
2011	Crystal structure of the N-terminal domain of ryanodine receptor from the honeybee, Apis mellifera. Insect Biochemistry and Molecular Biology, 2020, 125, 103454.	1.2	4
2012	Effect of age on insecticide susceptibility and enzymatic activities of three detoxification enzymes and one invertase in honey bee workers (Apis mellifera). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 238, 108844.	1.3	20
2013	Pollinator biodiversity and crop pollination in temperate ecosystems, implications for national pollinator conservation strategies: Mini review. Science of the Total Environment, 2020, 744, 140880.	3.9	28
2014	Disentangling the effects of local resources, landscape heterogeneity and climatic seasonality on bee diversity and plant-pollinator networks in tropical highlands. Oecologia, 2020, 194, 333-344.	0.9	27
2015	Pesticide and veterinary drug residues in Belgian beeswax: Occurrence, toxicity, and risk to honey bees. Science of the Total Environment, 2020, 745, 141036.	3.9	45
2016	Bumblebee Re-Identification Dataset. , 2020, , .		1
2017	Sperm Quality Assessment in Honey Bee Drones. Biology, 2020, 9, 174.	1.3	19
2018	Seeding is not always necessary to restore native early successional plant communities. Restoration Ecology, 2020, 28, 1485-1494.	1.4	7
2019	The population density of arthropods in the rice field ecosystem with insecticide application. IOP Conference Series: Earth and Environmental Science, 2020, 486, 012163.	0.2	1
2020	Crop production in the USA is frequently limited by a lack of pollinators. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200922.	1.2	165
2021	Text mining the food security literature reveals substantial spatial bias and thematic broadening over time. Global Food Security, 2020, 26, 100392.	4.0	14

#	Article	IF	CITATIONS
2022	Assessment of the Resilience of a Tartary Buckwheat (Fagopyrum tataricum) Cultivation System in Meigu, Southwest China. Sustainability, 2020, 12, 5683.	1.6	5
2023	Linking pollinators and city flora: How vegetation composition and environmental features shapes pollinators composition in urban environment. Urban Forestry and Urban Greening, 2020, 56, 126795.	2.3	19
2024	Biocultural Diversity Loss: the Decline of Native Stingless Bees (Apidae: Meliponini) and Local Ecological Knowledge in Michoacán, Western México. Human Ecology, 2020, 48, 411-422.	0.7	18
2025	Differential Feeding Responses of Several Bee Species to Sugar Sources Containing Iridomyrmecin, an Argentine Ant Trail Pheromone Component. Journal of Insect Behavior, 2020, 33, 83-90.	0.4	1
2026	An agro-environmental mowing regime favors the number of inflorescences and flower-visiting insects but not ground beetles of herbaceous boundaries of arable fields. Basic and Applied Ecology, 2020, 48, 1-10.	1.2	9
2027	Exposure to acetamiprid influences the development and survival ability of worker bees (Apis) Tj ETQq1 1 0.7843	14.rgBT/0	Dvgrlock 10
2028	Predator Effects on Plant-Pollinator Interactions, Plant Reproduction, Mating Systems, and Evolution. Annual Review of Ecology, Evolution, and Systematics, 2020, 51, 319-340.	3.8	16
2029	The effect of temperature on candidate gene expression in the brain of honey bee Apis mellifera (Hymenoptera: Apidae) workers exposed to neonicotinoid imidacloprid. Journal of Thermal Biology, 2020, 93, 102696.	1.1	6
2030	Biodiversity and community composition of native bee populations vary among human-dominated land uses within the seasonally dry tropics. Journal of Insect Conservation, 2020, 24, 1045-1059.	0.8	4
2031	Investigation of pesticides on honey bee carbonic anhydrase inhibition. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1923-1927.	2.5	9
2032	Effects of Chinese Privet on Bees and Their Vertical Distribution in Riparian Forests. Forest Science, 2020, 66, 416-423.	0.5	10
2033	Bumble Bees (Hymenoptera: Apidae) Respond to Moth (Lepidoptera: Noctuidae) Pheromone Components, Leading to Bee Bycatch in Monitoring Traps Targeting Moth Pests. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	10
2034	Validating Morphometrics with DNA Barcoding to Reliably Separate Three Cryptic Species of Bombus Cresson (Hymenoptera: Apidae). Insects, 2020, 11, 669.	1.0	7
2035	How does pasture size alter plant–herbivore interactions among grazing cattle?. Grass and Forage Science, 2020, 75, 438-446.	1.2	2
2036	Native and agricultural grassland use by stable and declining bumble bees in Midwestern North America. Insect Conservation and Diversity, 2020, 13, 585-594.	1.4	6
2037	Effects of the Neonicotinoid Acetamiprid in Pollen on <i>Bombus impatiens</i> Microcolony Development. Environmental Toxicology and Chemistry, 2020, 39, 2560-2569.	2.2	12
2038	Hydrogel baits pose minimal risk to nonâ€ŧarget insects and beneficial species. Entomologia Experimentalis Et Applicata, 2020, 168, 948-955.	0.7	7
2039	Pollen tube growth from multiple pollinator visits more accurately quantifies pollinator performance and plant reproduction. Scientific Reports, 2020, 10, 16958.	1.6	16

#	ARTICLE	IF	CITATIONS
2040	Assessment of lethal and sublethal effects of imidacloprid, ethion, and glyphosate on aversive conditioning, motility, and lifespan in honey bees (Apis mellifera L.). Ecotoxicology and Environmental Safety, 2020, 204, 111108.	2.9	36
2041	Zygomorphic flowers have fewer potential pollinator species. Biology Letters, 2020, 16, 20200307.	1.0	18
2042	Agroforestry Benefits and Challenges for Adoption in Europe and Beyond. Sustainability, 2020, 12, 7001.	1.6	56
2043	A One-Health Model for Reversing Honeybee (Apis mellifera L.) Decline. Veterinary Sciences, 2020, 7, 119.	0.6	16
2044	Characterizing the nectar microbiome of the non-native tropical milkweed, Asclepias curassavica, in an urban environment. PLoS ONE, 2020, 15, e0237561.	1.1	6
2045	Introduced cats eating a continental fauna: invertebrate consumption by feral cats (Felis catus) in Australia. Wildlife Research, 2020, 47, 610.	0.7	16
2046	Thug life: bramble (<scp><i>Rubus fruticosus</i></scp> L. agg.) is a valuable foraging resource for honeybees and diverse flowerâ€visiting insects. Insect Conservation and Diversity, 2020, 13, 543-557.	1.4	14
2047	Addressing global challenges with unconventional insect ecosystem services: Why should humanity care about insect larvae?. People and Nature, 2020, 2, 582-595.	1.7	9
2048	Beyond the Decline of Wild Bees: Optimizing Conservation Measures and Bringing Together the Actors. Insects, 2020, 11, 649.	1.0	37
2049	In Vitro Antagonistic Effect of Gut Bacteriota Isolated from Indigenous Honey Bees and Essential Oils against Paenibacillus Larvae. International Journal of Molecular Sciences, 2020, 21, 6736.	1.8	21
2050	Larval pesticide exposure impacts monarch butterfly performance. Scientific Reports, 2020, 10, 14490.	1.6	22
2051	A National Survey of Managed Honey Bee Colony Winter Losses (Apis mellifera) in China (2013–2017). Diversity, 2020, 12, 318.	0.7	14
2052	Coupling spatial pollination supply models with local demand mapping to support collaborative management of ecosystem services. Ecosystems and People, 2020, 16, 212-229.	1.3	8
2053	Local and Landscape-Scale Features Influence Bumble Bee (Hymenoptera: Apidae) Bycatch in Bertha Armyworm Mamestra configurata (Lepidoptera: Noctuidae) Pheromone-Baited Monitoring Traps. Environmental Entomology, 2020, 49, 1127-1136.	0.7	6
2054	Agricultural landscape composition affects the development and life expectancy of colonies of <i>Bombus impatiens</i> . Ecosphere, 2020, 11, e03142.	1.0	4
2055	Interactions of local habitat type, landscape composition and flower availability moderate wild bee communities. Landscape Ecology, 2020, 35, 2209-2224.	1.9	24
2056	Surveys of the bee (Hymenoptera: Apiformes) community in a Neotropical savanna using pan traps. Papeis Avulsos De Zoologia, 0, 60, e20206031.	0.4	3
2057	Effects on Some Therapeutical, Biochemical, and Immunological Parameters of Honey Bee (Apis) Tj ETQq1 1 0.78	34314 rgBT 1.0	/Overlock 1

#	ARTICLE	IF	CITATIONS
2058	Conservation Wildflower Plantings Do Not Enhance On-Farm Abundance of Amblyomma americanum (Ixodida: Ixodidae). Insects, 2020, 11, 617.	1.0	0
2059	Detailed Review on Pesticidal Toxicity to Honey Bees and Its Management. , 0, , .		6
2060	Do surveys of adult dragonflies and damselflies yield repeatable data? Variation in monthly counts of abundance and species richness. Journal of Insect Conservation, 2020, 24, 877-889.	0.8	6
2061	Digging into the Genomic Past of Swiss Honey Bees by Whole-Genome Sequencing Museum Specimens. Genome Biology and Evolution, 2020, 12, 2535-2551.	1.1	26
2062	Pollination in the Anthropocene: a Moth Can Learn Ozone-Altered Floral Blends. Journal of Chemical Ecology, 2020, 46, 987-996.	0.9	25
2063	Integrative Biological Control. Progress in Biological Control, 2020, , .	0.5	6
2064	Population genetic variation characterization of the boreal tree Acer ginnala in Northern China. Scientific Reports, 2020, 10, 13515.	1.6	1
2065	Climateâ€induced distribution dynamics of <i>Plebeia flavocincta</i> , a stingless bee from Brazilian tropical dry forests. Ecology and Evolution, 2020, 10, 10130-10138.	0.8	4
2066	A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems. Land, 2020, 9, 238.	1.2	18
2067	Gene reuse facilitates rapid radiation and independent adaptation to diverse habitats in the Asian honeybee. Science Advances, 2020, 6, .	4.7	42
2068	Estimating possible bumblebee range shifts in response to climate and land cover changes. Scientific Reports, 2020, 10, 19622.	1.6	9
2069	Deformed wing virus: using reverse genetics to tackle unanswered questions about the most important viral pathogen of honey bees. FEMS Microbiology Reviews, 2020, 45, .	3.9	9
2070	Hummingbird-Plant Network in a Lowland Dry Forest in Yucatan, Mexico. Tropical Conservation Science, 2020, 13, 194008292097383.	0.6	1
2071	Local and Landscape Compositions Influence Stingless Bee Communities and Pollination Networks in Tropical Mixed Fruit Orchards, Thailand. Diversity, 2020, 12, 482.	0.7	10
2072	The Forest Line Mapper: A Semi-Automated Tool for Mapping Linear Disturbances in Forests. Remote Sensing, 2020, 12, 4176.	1.8	3
2073	Commercial Pollination of Apple Orchards: Val di Non Case Study. , 0, , .		1
2074	Exposure to a biopesticide interferes with sucrose responsiveness and learning in honey bees. Scientific Reports, 2020, 10, 19929.	1.6	13
2075	Ameliorative Effects of Phytochemical Ingestion on Viral Infection in Honey Bees. Insects, 2020, 11, 698.	1.0	11

#	Article	IF	CITATIONS
2076	Soil Nitrogen in Response to Interseeded Cover Crops in Maize–Soybean Production Systems. Agronomy, 2020, 10, 1439.	1.3	9
2077	Towards a U.S. national program for monitoring native bees. Biological Conservation, 2020, 252, 108821.	1.9	54
2078	Climate Change, Agriculture, and Energy Transition: What Do the Thirty Most-Cited Articles Tell Us?. Sustainability, 2020, 12, 8015.	1.6	3
2079	How Does Improve Farmers' Attitudes toward Ecosystem Services to Support Sustainable Development of Agriculture? Based on Environmental Kuznets Curve Theory. Sustainability, 2020, 12, 8655.	1.6	3
2080	Detecting landscape scale consequences of insecticide use on invertebrate communities. Advances in Ecological Research, 2020, 63, 93-126.	1.4	4
2081	Sugar content of diet does not buffer against chronic oral imidacloprid exposure in the alfalfa leafcutting bee (Hymenoptera: Megachilidae). Journal of Economic Entomology, 2020, 113, 2705-2712.	0.8	4
2082	Hummingbird–Plant Interactions Are More Specialized in Forest Compared to Coffee Plantations. Diversity, 2020, 12, 126.	0.7	13
2083	Cold storage of diapausing larvae and post-storage performance of adults in the blowfly Lucilia sericata (Diptera: Calliphoridae). Applied Entomology and Zoology, 2020, 55, 321-327.	0.6	4
2084	Urbanization Affects Composition but Not Richness of Flower Visitors in the Yungas of Argentina. Neotropical Entomology, 2020, 49, 568-577.	0.5	9
2085	Global priorities of environmental issues to combat food insecurity and biodiversity loss. Science of the Total Environment, 2020, 730, 139096.	3.9	39
2086	Chronic bee paralysis as a serious emerging threat to honey bees. Nature Communications, 2020, 11, 2164.	5.8	23
2087	Cuticular pheromones stimulate hygienic behavior in the honey bee (Apis mellifera). Scientific Reports, 2020, 10, 7132.	1.6	20
2088	Infestation by pollination-disrupting alien ants varies temporally and spatially and is worsened by alien plant invasion. Biological Invasions, 2020, 22, 2573-2585.	1.2	8
2089	Companion planting to attract pollinators increases the yield and quality of strawberry fruit in gardens and allotments. Ecological Entomology, 2020, 45, 1025-1034.	1.1	16
2090	Green roof and ground-level invertebrate communities are similar and are driven by building height and landscape context. Journal of Urban Ecology, 2020, 6, .	0.6	14
2091	Differences in pre-imaginal development of the honey bee Apis mellifera between in vitro and in-hive contexts. Apidologie, 2020, 51, 861-875.	0.9	6
2092	Pollination ecosystem services: A comprehensive review of economic values, research funding and policy actions. Food Security, 2020, 12, 1425-1442.	2.4	114
2093	Measuring ontogenetic shifts in centralâ€place foragers: A case study with honeybees. Journal of Animal Ecology, 2020, 89, 1860-1871.	1.3	9

#	Article	IF	CITATIONS
2094	Drastic shifts in the Belgian bumblebee community over the last century. Biodiversity and Conservation, 2020, 29, 2553-2573.	1.2	18
2095	Oneâ€size does not fit all: atâ€risk bumble bee habitat management requires speciesâ€specific local and landscape considerations. Insect Conservation and Diversity, 2020, 13, 558-570.	1.4	14
2096	Using Manual and Computer-Based Text-Mining to Uncover Research Trends for Apis mellifera. Veterinary Sciences, 2020, 7, 61.	0.6	3
2097	The invasive hornet Vespa velutina affects pollination of a wild plant through changes in abundance and behaviour of floral visitors. Biological Invasions, 2020, 22, 2609-2618.	1.2	31
2098	The relative importance of green infrastructure as refuge habitat for pollinators increases with local landâ€use intensity. Journal of Applied Ecology, 2020, 57, 1494-1503.	1.9	15
2099	The Effect of Pesticides on the Microbiome of Animals. Agriculture (Switzerland), 2020, 10, 79.	1.4	33
2100	The Effectiveness of Varroa destructor Infestation Classification Using an E-Nose Depending on the Time of Day. Sensors, 2020, 20, 2532.	2.1	14
2101	Bees and the Environmental Impact of the Rupture of the Fund \tilde{A} \hat{E} Dam. Integrated Environmental Assessment and Management, 2020, 16, 631-635.	1.6	2
2102	Effects of community composition on plant–pollinator interaction networks across a spatial gradient of oak-savanna habitats. Oecologia, 2020, 193, 211-223.	0.9	10
2103	Orchid conservation: from theory to practice. Annals of Botany, 2020, 126, 345-362.	1.4	63
2104	Urban heavy metal contamination limits bumblebee colony growth. Journal of Applied Ecology, 2020, 57, 1561-1569.	1.9	23
2105	Plant-pollinator interactions on green roofs are mediated by substrate characteristics and plant community composition. Acta Oecologica, 2020, 105, 103559.	0.5	9
2106	Connectivity modelling with automatic determination of landscape resistance values. A new approach tested on butterflies and burnet moths. Ecological Indicators, 2020, 116, 106480.	2.6	3
2107	Model approaches to estimate spatial distribution of bee species richness and soybean production in the Brazilian Cerrado during 2000 to 2015. Science of the Total Environment, 2020, 737, 139674.	3.9	5
2108	Putative determinants of virulence in <i>Melissococcus plutonius</i> , the bacterial agent causing European foulbrood in honey bees. Virulence, 2020, 11, 554-567.	1.8	36
2109	Localâ€scale tree and shrub diversity improves pollination services to shea trees in tropical West African parklands. Journal of Applied Ecology, 2020, 57, 1504-1513.	1.9	14
2110	Pesticide–Virus Interactions in Honey Bees: Challenges and Opportunities for Understanding Drivers of Bee Declines. Viruses, 2020, 12, 566.	1.5	34
2111	Comparative analysis of viruses in four bee species collected from agricultural, urban, and natural landscapes. PLoS ONE, 2020, 15, e0234431.	1.1	11

#	Article	IF	CITATIONS
2112	Open forest ecosystems: An excluded state. Forest Ecology and Management, 2020, 472, 118256.	1.4	45
2113	The potential for wildflower interventions to enhance natural enemies and pollinators in commercial apple orchards is limited by other management practices. Agriculture, Ecosystems and Environment, 2020, 301, 107034.	2.5	25
2114	Comparing Prophylactic Versus Threshold-Based Insecticide Programs for Striped Cucumber Beetle (Coleoptera: Chrysomelidae) Management in Watermelon. Journal of Economic Entomology, 2020, 113, 872-881.	0.8	15
2115	Temperate agroforestry systems provide greater pollination service than monoculture. Agriculture, Ecosystems and Environment, 2020, 301, 107031.	2.5	40
2116	A cluster-classification method for accurate mining of seasonal honey bee patterns. Ecological Informatics, 2020, 59, 101107.	2.3	9
2117	Mating strategies dictate the importance of insect visits to native plants in urban fragments. Australian Journal of Botany, 2020, 68, 26.	0.3	3
2118	Pollinator Activity and the Fecundity of a Rare and Highly Threatened Honeybush Species along a Highway in the Cape Floristic Region. International Journal of Plant Sciences, 2020, 181, 581-593.	0.6	5
2119	Relationship Between Body Mass and Forewing Length in Neotropical Ichneumonidae (Insecta:) Tj ETQq1 1 0.784	314 rgBT /	/Qverlock 1
2120	Forest proximity rather than local forest cover affects bee diversity and coffee pollination services. Landscape Ecology, 2020, 35, 1841-1855.	1.9	27
2121	Mustard plants distant from forest fragments receive a lower diversity of flower-visiting insects. Basic and Applied Ecology, 2020, 47, 35-43.	1.2	6
2122	Flower traits associated with the visitation patterns of bees. Oecologia, 2020, 193, 511-522.	0.9	23
2123	Intertwined effects of defaunation, increased tree mortality and density compensation on seed dispersal. Ecography, 2020, 43, 1352-1363.	2.1	16
2124	Honey Bee Queen Production: Canadian Costing Case Study and Profitability Analysis. Journal of Economic Entomology, 2020, 113, 1618-1627.	0.8	14
2125	Prevention and Control of American Foulbrood in South America with Essential Oils: Review. , 0, , .		0
2126	Decline of native bees (Apidae: Euglossa) in a tropical forest of Panama. Apidologie, 2020, 51, 1038-1050.	0.9	11
2127	Wind and obstacle motion affect honeybee flight strategies in cluttered environments. Journal of Experimental Biology, 2020, 223, .	0.8	16
2128	Pesticide Contamination of Milkweeds Across the Agricultural, Urban, and Open Spaces of Low-Elevation Northern California. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	28
2129	Using a toxicoproteomic approach to investigate the effects of thiamethoxam into the brain of Apis mellifera. Chemosphere, 2020, 258, 127362.	4.2	7

#	Article	IF	CITATIONS
2130	Susceptibility of Red Mason Bee Larvae to Bacterial Threats Due to Microbiome Exchange with Imported Pollen Provisions. Insects, 2020, 11, 373.	1.0	23
2131	Characterizing honey bee exposure and effects from pesticides for chemical prioritization and life cycle assessment. Environment International, 2020, 138, 105642.	4.8	40
2132	Effects of Herbicides on Flowering. Environmental Toxicology and Chemistry, 2020, 39, 1244-1256.	2.2	13
2133	Pollen limitation in a single year is not compensated by future reproduction. Oecologia, 2020, 192, 989-997.	0.9	2
2134	Vegetation composition and structure determine wild bee communities in a tropical dry forest. Journal of Insect Conservation, 2020, 24, 487-498.	0.8	7
2135	Immunosuppression response to the neonicotinoid insecticide thiacloprid in females and males of the red mason bee Osmia bicornis L Scientific Reports, 2020, 10, 4670.	1.6	23
2136	Phacelia tanacetifolia can enhance conservation of honey bees and wild bees in the drastic hot-arid subtropical Central Arabia. Journal of Apicultural Research, 2020, 59, 569-582.	0.7	5
2137	Total Brood Removal and Other Biotechniques for the Sustainable Control of Varroa Mites in Honey Bee Colonies: Economic Impact in Beekeeping Farm Case Studies in Northwestern Italy. Sustainability, 2020, 12, 2302.	1.6	18
2138	Natural enemies and pollinators in traditional cherry orchards: Functionally important taxa respond differently to farming system. Agriculture, Ecosystems and Environment, 2020, 295, 106920.	2.5	12
2139	Population Growth and Insecticide Residues of Honey Bees in Tropical Agricultural Landscapes. Diversity, 2020, 12, 1.	0.7	31
2140	Imidacloprid impairs performance on a model flower handling task in bumblebees (Bombus impatiens). Ecotoxicology, 2020, 29, 359-374.	1.1	9
2141	Distribution of ecosystem services within oilseed rape fields: Effects of field defects on pest and weed seed predation rates. Agriculture, Ecosystems and Environment, 2020, 295, 106894.	2.5	15
2142	Transcriptomic analysis to elucidate the response of honeybees (Hymenoptera: Apidae) to amitraz treatment. PLoS ONE, 2020, 15, e0228933.	1.1	6
2143	Forest restoration scenarios produce synergies for agricultural production in southern Ethiopia. Agriculture, Ecosystems and Environment, 2020, 295, 106888.	2.5	12
2144	Flower visitation and land cover associations of above ground- and below ground-nesting native bees in an agricultural region of south-east Australia. Agriculture, Ecosystems and Environment, 2020, 295, 106895.	2.5	27
2145	Opening a can of worms: Can the availability of soil invertebrates be indicated by birds?. Ecological Indicators, 2020, 113, 106222.	2.6	10
2146	Assessing the acute toxicity of insecticides to the buff-tailed bumblebee (Bombus terrestris audax). Pesticide Biochemistry and Physiology, 2020, 166, 104562.	1.6	18
2147	Application of Metarhizium anisopliae as a potential biological control of Varroa destructor in Italy. Journal of Apicultural Research, 2020, 59, 528-538.	0.7	6

#	Article	IF	CITATIONS
2148	Foodborne Transmission and Clinical Symptoms of Honey Bee Viruses in Ants Lasius spp Viruses, 2020, 12, 321.	1.5	11
2149	Equivocal Evidence for Colony Level Stress Effects on Bumble Bee Pollination Services. Insects, 2020, 11, 191.	1.0	14
2150	Resource partitioning among a pollinator guild: A case study of monospecific flower crops under high honeybee pressure. Acta Oecologica, 2020, 104, 103527.	0.5	6
2151	Evaluating Native Bee Communities and Nutrition in Managed Grasslands. Environmental Entomology, 2020, 49, 717-725.	0.7	8
2152	Habitat fragmentation changes topâ€down and bottomâ€up controls of food webs. Ecology, 2020, 101, e03062.	1.5	14
2153	Vulnerability of honey bee queens to heat-induced loss of fertility. Nature Sustainability, 2020, 3, 367-376.	11.5	59
2154	Pollination of cycads in an urban environment. Botany, 2020, 98, 333-339.	0.5	0
2155	Urban bumble bees are unaffected by the proportion of intensely developed land within urban environments of the industrial Midwestern USA. Urban Ecosystems, 2020, 23, 703-711.	1.1	8
2156	Are cities hotspots for bees? Local and regional diversity patterns lead to different conclusions. Urban Ecosystems, 2020, 23, 713-722.	1.1	21
2157	Detecting varroosis using a gas sensor system as a way to face the environmental threat. Science of the Total Environment, 2020, 722, 137866.	3.9	10
2158	From antagonism to synergism: Extreme differences in stressor interactions in one species. Scientific Reports, 2020, 10, 4667.	1.6	6
2159	Insect Pollination, More than Plant Nutrition, Determines Yield Quantity and Quality in Apple and Pear. Neotropical Entomology, 2020, 49, 525-532.	0.5	19
2160	Small-sized protected areas contribute more per unit area to tropical crop pollination than large protected areas. Ecosystem Services, 2020, 44, 101137.	2.3	2
2161	Landscape-Level Effects of Forest on Pollinators and Fruit Set of Guava (Psidium guajava L.) in Orchards across Southern Thailand. Diversity, 2020, 12, 259.	0.7	9
2162	Limited Effect of Management on Apple Pollination: A Case Study from an Oceanic Island. Insects, 2020, 11, 351.	1.0	7
2163	Cofactor-enabled functional expression of fruit fly, honeybee, and bumblebee nicotinic receptors reveals picomolar neonicotinoid actions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16283-16291.	3.3	61
2164	Bumble Bee Traffic Monitoring Using Acoustics. , 2020, , .		2
2165	Fineâ€scale spatial genetic structure, mating, and gene dispersal patterns in <i>Parkia biglobosa</i> populations with different levels of habitat fragmentation. American Journal of Botany, 2020, 107, 1041-1053.	0.8	8

#	Article	IF	CITATIONS
2166	Urban green areas retain just a small fraction of tree reproductive diversity of the Atlantic forest. Urban Forestry and Urban Greening, 2020, 54, 126779.	2.3	11
2167	Environment Shapes the Microbiome of the Blue Orchard Bee, Osmia lignaria. Microbial Ecology, 2020, 80, 897-907.	1.4	33
2168	Landscape composition and local floral resources influence foraging behavior but not the size of Bombus impatiens Cresson (Hymenoptera: Apidae) workers. PLoS ONE, 2020, 15, e0234498.	1.1	11
2169	The natural capital framework for sustainably efficient and equitable decision making. Nature Sustainability, 2020, 3, 776-783.	11.5	92
2170	A spatially extended model to assess the role of landscape structure on the pollination service of Apis mellifera. Ecological Modelling, 2020, 431, 109201.	1.2	9
2171	Entomovectoring for Precision Biocontrol and Enhanced Pollination of Crops., 2020,,.		4
2172	Agriâ€environment schemes enhance pollinator richness and abundance but bumblebee reproduction depends on field size. Journal of Applied Ecology, 2020, 57, 1818-1828.	1.9	39
2173	Optimizing yield and flower resources for pollinators in intensively managed multi-species grasslands. Agriculture, Ecosystems and Environment, 2020, 302, 107062.	2.5	15
2174	Relative attractiveness of ruderals and ornamental plants to flower-visiting insects in a tropical anthropogenic landscape. Urban Forestry and Urban Greening, 2020, 51, 126657.	2.3	1
2175	Resistance of mound-building termites to anthropogenic land-use change. Environmental Research Letters, 2020, 15, 094038.	2.2	17
2176	Floral trait functional diversity is related to soil characteristics and positively influences pollination function in semi-natural grasslands. Agriculture, Ecosystems and Environment, 2020, 301, 107033.	2.5	17
2177	Bee foraging preferences on three willow (Salix) species: Effects of species, plant sex, sampling day and time of day. Annals of Applied Biology, 2020, 177, 333-345.	1.3	11
2178	Climate change contributes to widespread declines among bumble bees across continents. Science, 2020, 367, 685-688.	6.0	381
2179	The Role of Annual Flowering Plant Strips on a Melon Crop in Central Spain. Influence on Pollinators and Crop. Insects, 2020, $11,66$.	1.0	18
2180	Pesticides use, practice and its effect on honeybee in Ethiopia: a review. International Journal of Tropical Insect Science, 2020, 40, 473-481.	0.4	19
2181	Climate change in the Eastern Amazon: crop-pollinator and occurrence-restricted bees are potentially more affected. Regional Environmental Change, 2020, 20, 1.	1.4	54
2182	Environment as provider. , 2020, , 33-54.		0
2183	Worldwide importance of insect pollination in apple orchards: A review. Agriculture, Ecosystems and Environment, 2020, 293, 106839.	2.5	7 5

#	Article	IF	CITATIONS
2184	Pollen Protein: Lipid Macronutrient Ratios May Guide Broad Patterns of Bee Species Floral Preferences. Insects, 2020, 11, 132.	1.0	128
2185	Fitness consequences of the combined effects of veterinary and agricultural pesticides on a non-target insect. Chemosphere, 2020, 250, 126271.	4.2	11
2186	Bees increase crop yield in an alleged pollinator-independent almond variety. Scientific Reports, 2020, 10, 3177.	1.6	31
2187	Limiting resources on the reproductive success of a cavity-nesting bee species in a grassland agroecosystem. Journal of Apicultural Research, 2020, 59, 583-591.	0.7	9
2188	Cell Lines for Honey Bee Virus Research. Viruses, 2020, 12, 236.	1.5	27
2189	Queen honey bee (Apis mellifera) pheromone and reproductive behavior are affected by pesticide exposure during development. Behavioral Ecology and Sociobiology, 2020, 74, 1.	0.6	28
2190	Effect of pan trap size on the diversity of sampled bees and abundance of bycatch. Journal of Insect Conservation, 2020, 24, 409-420.	0.8	14
2191	A comparison of bee communities between primary and mature secondary forests in the longleaf pine ecosystem. Scientific Reports, 2020, 10, 2916.	1.6	15
2192	Gradual replacement of wild bees by honeybees in flowers of the Mediterranean Basin over the last 50 years. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192657.	1.2	49
2193	Exploring the importance of floral resources and functional trait compatibility for maintaining bee fauna in tropical agricultural landscapes. Journal of Insect Conservation, 2020, 24, 431-443.	0.8	13
2194	Grazing reduces bee abundance and diversity in saltmarshes by suppressing flowering of key plant species. Agriculture, Ecosystems and Environment, 2020, 291, 106760.	2.5	18
2195	Direct and sensitive detection of a microsporidian parasite of bumblebees using loop-mediated isothermal amplification (LAMP). Scientific Reports, 2020, 10, 1118.	1.6	5
2196	Asynchronous range shifts drive alpine plant–pollinator interactions and reduce plant fitness. Global Change Biology, 2020, 26, 3052-3064.	4.2	37
2197	Quantifying the relative predation pressure on bumblebee nests by the European badger (<i>Meles) Tj ETQq$1\ 1$</i>	0.784314	rg&T /Overlo
2198	Wild Bee Conservation within Urban Gardens and Nurseries: Effects of Local and Landscape Management. Sustainability, 2020, 12, 293.	1.6	41
2199	Occurrence of honey bee-associated pathogens in Varroa-free pollinator communities. Journal of Invertebrate Pathology, 2020, 171, 107344.	1.5	19
2200	Characterization of wild bee communities in apple and blueberry orchards. Agricultural and Forest Entomology, 2020, 22, 157-168.	0.7	5
2201	Contrasting latitudinal patterns in diversity and stability in a high″atitude speciesâ€rich moth community. Global Ecology and Biogeography, 2020, 29, 896-907.	2.7	32

#	Article	IF	CITATIONS
2202	A botanic garden as a tool to combine public perception of nature and life-science investigations on native/exotic plants interactions with local pollinators. PLoS ONE, 2020, 15, e0228965.	1.1	14
2203	Floral Species Richness Correlates with Changes in the Nutritional Quality of Larval Diets in a Stingless Bee. Insects, 2020, 11, 125.	1.0	28
2204	Student Teachers' Knowledge to Enable Problem-Solving for Sustainable Development. Sustainability, 2020, 12, 79.	1.6	9
2205	Inadequate pollination services limit watermelon yields in northern Tanzania. Basic and Applied Ecology, 2020, 44, 35-45.	1.2	10
2206	Is a strobilurin fungicide capable of inducing histopathological effects on the midgut and Malpighian tubules of honey bees?. Journal of Apicultural Research, 2020, 59, 834-843.	0.7	18
2207	Diet diversity and pesticide risk mediate the negative effects of land use change on solitary bee offspring production. Journal of Applied Ecology, 2020, 57, 1031-1042.	1.9	27
2208	Loss of dominant caterpillar genera in a protected tropical forest. Scientific Reports, 2020, 10, 422.	1.6	68
2209	Mapping habitat suitability at rangeâ€wide scales: Spatiallyâ€explicit distribution models to inform conservation and research for marsh birds. Conservation Science and Practice, 2020, 2, e178.	0.9	11
2210	Determination and uptake of abamectin and difenoconazole in the stingless bee Melipona scutellaris Latreille, 1811 via oral and topic acute exposure. Environmental Pollution, 2020, 265, 114313.	3.7	13
2211	Fewer butterflies and a different composition of bees, wasps and hoverflies on recently burned compared to unburned clear-cuts, regardless of burn severity. Forest Ecology and Management, 2020, 463, 118033.	1.4	9
2212	Critical Transitions in Plant-Pollinator Systems Induced by Positive Inbreeding-Reward-Pollinator Feedbacks. IScience, 2020, 23, 100819.	1.9	8
2213	Chronic exposure to glyphosate induces transcriptional changes in honey bee larva: A toxicogenomic study. Environmental Pollution, 2020, 261, 114148.	3.7	36
2214	More Than Meets the Eye? The Role of Annual Ornamental Flowers in Supporting Pollinators. Environmental Entomology, 2020, 49, 178-188.	0.7	30
2215	The impacts of bioenergy pine plantation management practices on bee communities. Journal of Applied Ecology, 2020, 57, 952-962.	1.9	13
2216	Analyses of the function of DnaJ family proteins reveal an underlying regulatory mechanism of heat tolerance in honeybee. Science of the Total Environment, 2020, 716, 137036.	3.9	17
2217	Factors contributing to the decline of an endangered flightless longhorn beetle: A 20â€year study. Insect Conservation and Diversity, 2020, 13, 175-186.	1.4	12
2218	Do honey bee (Apis mellifera) foragers recruit their nestmates to native forbs in reconstructed prairie habitats?. PLoS ONE, 2020, 15, e0228169.	1.1	25
2219	Don't forget the flies: dipteran diversity and its consequences for floral ecology and evolution. Applied Entomology and Zoology, 2020, 55, 1-7.	0.6	57

#	Article	IF	CITATIONS
2220	County-level analysis reveals a rapidly shifting landscape of insecticide hazard to honey bees (Apis) Tj ETQq0 0 0 r	gBT/Overl	ock 10 Tf 50
2221	Does an invader have a bright side? Floral reward in two Solidago species. Journal of Apicultural Research, 2020, 59, 599-608.	0.7	11
2222	What evidence exists on the impact of agricultural practices in fruit orchards on biodiversity? A systematic map. Environmental Evidence, 2020, 9, .	1.1	12
2223	Seasonal abundance and diversity of native bees in a patchy agricultural landscape in Southern Mexico. Agriculture, Ecosystems and Environment, 2020, 292, 106807.	2.5	5
2224	An Amazon stingless bee foraging activity predicted using recurrent artificial neural networks and attribute selection. Scientific Reports, 2020, 10, 9.	1.6	22
2225	Best be(e) on low fat: linking nutrient perception, regulation and fitness. Ecology Letters, 2020, 23, 545-554.	3.0	62
2226	Policy content analysis: Qualitative method for analyzing sub-national insect pollinator legislation. MethodsX, 2020, 7, 100787.	0.7	44
2227	Impact of extreme events on pollinator assemblages. Current Opinion in Insect Science, 2020, 38, 34-39.	2.2	8
2228	Characterization of Arylalkylamine $\langle i \rangle N \langle i \rangle$ -Acyltransferase from $\langle i \rangle$ Tribolium castaneum $\langle i \rangle$: An Investigation into a Potential Next-Generation Insecticide Target. ACS Chemical Biology, 2020, 15, 513-523.	1.6	7
2229	Contrasting trends between species and catchments in diadromous fish counts over the last 30 years in France. Knowledge and Management of Aquatic Ecosystems, 2020, , 7.	0.5	8
2230	The impact of lowbush blueberry (Vaccinium angustifolium Ait.) and cranberry (Vaccinium) Tj ETQq0 0 0 rgBT /Ove e0227970.	erlock 10 1 1.1	Гf 50 347 Td 8
2231	Varroa mite evolution: a neglected aspect of worldwide bee collapses?. Current Opinion in Insect Science, 2020, 39, 21-26.	2.2	23
2232	Thermal tolerance varies with dimâ€light foraging and elevation in large carpenter bees (Hymenoptera:) Tj ETQq0	0,0 rgBT /0	Overlock 10
2233	Engineered symbionts activate honey bee immunity and limit pathogens. Science, 2020, 367, 573-576.	6.0	161
2234	The economic cost of losing native pollinator species for orchard production. Journal of Applied Ecology, 2020, 57, 599-608.	1.9	39
2235	A novel non-invasive radar to monitor honey bee colony health. Computers and Electronics in Agriculture, 2020, 170, 105241.	3.7	19
2236	Native honeybees as flower visitors and pollinators in wild plant communities in a biodiversity hotspot. Ecosphere, 2020, 11, e02957.	1.0	23
2237	Gone with the wind: effects of wind on honey bee visit rate and foraging behaviour. Animal Behaviour, 2020, 161, 23-31.	0.8	43

#	Article	IF	CITATIONS
2238	Control of Varroa destructor Mite Infestations at Experimental Apiaries Situated in Croatia. Diversity, 2020, 12, 12.	0.7	7
2239	Functional and transcriptomic analyses of the NF-Y family provide insights into the defense mechanisms of honeybees under adverse circumstances. Cellular and Molecular Life Sciences, 2020, 77, 4977-4995.	2.4	6
2240	Conserving focal insect groups in woodland remnants: The role of landscape context and habitat structure on cross-taxonomic congruence. Ecological Indicators, 2020, 115, 106391.	2.6	7
2241	A mathematical model to see the effects of increasing environmental temperature on plant–pollinator interactions. Modeling Earth Systems and Environment, 2020, 6, 1315-1329.	1.9	4
2242	Arthropod biodiversity patterns point to the Mesovoid Shallow Substratum (MSS) as a climate refugium. Zoology, 2020, 141, 125771.	0.6	19
2243	Year-round temporal stability of a tropical, urban plant-pollinator network. PLoS ONE, 2020, 15, e0230490.	1.1	17
2244	Bee community response to local and landscape factors along an urban-rural gradient. Urban Ecosystems, 2020, 23, 689-702.	1.1	22
2245	Insects associated with sweet fennel: beneficial visitors attracted by a generalist plant. Arthropod-Plant Interactions, 2020, 14, 399-407.	0.5	11
2246	Effects of future agricultural change scenarios on beneficial insects. Journal of Environmental Management, 2020, 265, 110550.	3.8	27
2247	Pollen adaptation to ant pollination: a case study from the Proteaceae. Annals of Botany, 2020, 126, 377-386.	1.4	18
2248	Diversified Farming in a Monoculture Landscape: Effects on Honey Bee Health and Wild Bee Communities. Environmental Entomology, 2020, 49, 753-764.	0.7	38
2249	From a free gift of nature to a precarious commodity: Bees, pollination services, and industrial agriculture. Journal of Agrarian Change, 2020, 20, 437-459.	0.8	23
2250	Genetic Strain Diversity of Multi-Host RNA Viruses that Infect a Wide Range of Pollinators and Associates is Shaped by Geographic Origins. Viruses, 2020, 12, 358.	1.5	16
2251	Sequencing the Movements of Honey Bee Colonies between the Forage Sites with the Microeconomic Model of the Migratory Beekeeper. , 2020, , .		1
2252	A dataset of multi-functional ecological traits of Brazilian bees. Scientific Data, 2020, 7, 120.	2.4	25
2253	Shifts in food plant abundance for flowerâ€visiting insects between 1900 and 2017 in the canton of Zurich, Switzerland. Ecological Applications, 2020, 30, e02138.	1.8	14
2254	Cyclic Synthetic Peroxides Inhibit Growth of Entomopathogenic Fungus Ascosphaera apis without Toxic Effect on Bumblebees. Molecules, 2020, 25, 1954.	1.7	19
2255	Habitat amount mediates the effect of fragmentation on a pollinator's reproductive performance, but not on its foraging behaviour. Oecologia, 2020, 193, 523-534.	0.9	11

#	Article	IF	CITATIONS
2256	Wildflower-pollinator interactions: Which phytochemicals are involved?. Basic and Applied Ecology, 2020, 45, 62-75.	1.2	2
2257	Genetic diversity and species differentiation of medicinal plant Persian Poppy (Papaver bracteatum L.) using AFLP and ISSR markers. Ecological Genetics and Genomics, 2020, 16, 100058.	0.3	9
2258	Occurrence of virus, microsporidia, and pesticide residues in three species of stingless bees (Apidae:) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 27
2259	Distribution of recently identified bee-infecting viruses in managed honey bee (Apis mellifera) populations in the USA. Apidologie, 2020, 51, 736-745.	0.9	9
2260	Monitoring tropical insects in the 21st century. Advances in Ecological Research, 2020, 62, 295-330.	1.4	15
2261	Pollinator exposure to systemic insecticides and fungicides applied in the previous fall and pre-bloom period in apple orchards. Environmental Pollution, 2020, 265, 114589.	3.7	29
2262	Exposure of Foraging Bees (Hymenoptera) to Neonicotinoids in the U.S. Southern High Plains. Environmental Entomology, 2020, 49, 528-535.	0.7	17
2263	Analyzing the Dietary Diary of Bumble Bee. Frontiers in Plant Science, 2020, 11, 287.	1.7	16
2264	Mitigating the Effects of Habitat Loss on Solitary Bees in Agricultural Ecosystems. Agriculture (Switzerland), 2020, 10, 115.	1.4	35
2265	The force of Varroa: Anticipatory experiences in beekeeping biosecurity. Journal of Rural Studies, 2020, 76, 58-66.	2.1	11
2266	Investigating bee dietary preferences along a gradient of floral resources: how does resource use align with resource availability?. Insect Science, 2021, 28, 555-565.	1.5	8
2267	Assessing the impact of complimentary wildflower seed packets as an outreach tool for promoting pollinator conservation at a zoo. Applied Environmental Education and Communication, 2021, 20, 92-106.	0.6	1
2268	The melittofauna and its floral associations in a natural riparian forest in Buenos Aires province, Argentina. Journal of Apicultural Research, 2021, 60, 241-254.	0.7	4
2269	More losses than gains in ground-nesting bees over 60 years of urbanization. Urban Ecosystems, 2021, 24, 233-242.	1.1	24
2270	Tomato (<i>Solanum lycopersicum</i>) pollinators and their effect on fruit set and quality. Journal of Horticultural Science and Biotechnology, 2021, 96, 1-13.	0.9	19
2271	Addressing behavior in pollinator conservation policies to combat the implementation gap. Conservation Biology, 2021, 35, 610-622.	2.4	24
2272	If You Build It, They Will Comeâ€"Agroecosystem-Based Management Practices Support Pollinators. Annals of the Entomological Society of America, 2021, 114, 322-328.	1.3	3
2273	Viral impacts on honey bee populations: A review. Saudi Journal of Biological Sciences, 2021, 28, 523-530.	1.8	42

#	Article	IF	CITATIONS
2274	Time-cumulative effects of neonicotinoid exposure, heatwaves and food limitation on stream mayfly nymphs: A multiple-stressor experiment. Science of the Total Environment, 2021, 754, 141941.	3.9	23
2275	The relevance of ecosystem services to land reform policies: Insights from South Africa. Land Use Policy, 2021, 100, 104939.	2.5	13
2276	Anthropogenic influence on seasonal and spatial variation in bioelements and non-essential elements in honeybees and their hemolymph. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2021, 239, 108852.	1.3	15
2277	A three-year large scale study on the risk of honey bee colony exposure to blooming sunflowers grown from seeds treated with thiamethoxam and clothianidin neonicotinoids. Chemosphere, 2021, 262, 127735.	4.2	12
2278	The relationship between pollinator community and pollination services is mediated by floral abundance in urban landscapes. Urban Ecosystems, 2021, 24, 275-290.	1.1	33
2279	Plant protection services mediated by extrafloral nectaries decline with aridity but are not influenced by chronic anthropogenic disturbance in Brazilian Caatinga. Journal of Ecology, 2021, 109, 260-272.	1.9	11
2280	Results of 2â€Year Ring Testing of a Semifield Study Design to Investigate Potential Impacts of Plant Protection Products on the Solitary Bees <i>Osmia Bicornis</i> and <i>Osmia Cornuta</i> and a Proposal for a Suitable Test Design. Environmental Toxicology and Chemistry, 2021, 40, 236-250.	2.2	14
2281	Apis mellifera and Melipona scutellaris exhibit differential sensitivity to thiamethoxam. Environmental Pollution, 2021, 268, 115770.	3.7	18
2282	Bee pollination services and the enhancement of fruit yield associated with seed number in self-incompatible tangelos. Scientia Horticulturae, 2021, 276, 109743.	1.7	7
2283	Prioritizing changes in management practices associated with reduced winter honey bee colony losses for US beekeepers. Science of the Total Environment, 2021, 753, 141629.	3.9	42
2284	Influence of neonicotinoids on pollinators: A review. Journal of Apicultural Research, 2021, 60, 19-32.	0.7	14
2285	Bee abundance and soil nitrogen availability interactively modulate apple quality and quantity in intensive agricultural landscapes of China. Agriculture, Ecosystems and Environment, 2021, 305, 107168.	2.5	10
2286	Conservation in postâ€industrial cities: How does vacant land management and landscape configuration influence urban bees?. Journal of Applied Ecology, 2021, 58, 58-69.	1.9	27
2287	The novel insecticides flupyradifurone and sulfoxaflor do not act synergistically with viral pathogens in reducing honey bee (<i>Apis mellifera</i>) survival but sulfoxaflor modulates host immunocompetence. Microbial Biotechnology, 2021, 14, 227-240.	2.0	33
2288	Detection, replication and quantification of deformed wing virus-A, deformed wing virus-B, and black queen cell virus in the endemic stingless bee, Melipona colimana, from Jalisco, Mexico. International Journal of Tropical Insect Science, 2021, 41, 1285-1292.	0.4	9
2289	The effects of drought on plant–pollinator interactions: What to expect?. Environmental and Experimental Botany, 2021, 182, 104297.	2.0	52
2290	Differential effects of fertilisers on pollination and parasitoid interaction networks. Journal of Animal Ecology, 2021, 90, 404-414.	1.3	4
2291	Diversity of Culicidae and Tabanidae (Diptera) and new record of Uranotaenia sapphirina from the archaeological site of X'cambó, Yucatan, Mexico. International Journal of Tropical Insect Science, 2021, 41, 1355-1363.	0.4	4

#	Article	IF	CITATIONS
2292	Interactions among global change pressures act in a nonâ€additive way on bumblebee individuals and colonies. Functional Ecology, 2021, 35, 420-434.	1.7	23
2293	Assessing the conservation and enhancement value of revegetated strips on arthropod assemblages in a pasture landscape. Journal of Environmental Management, 2021, 278, 111522.	3.8	1
2294	Wildflower plantings on fruit farms provide pollen resources and increase nesting by stem nesting bees. Agricultural and Forest Entomology, 2021, 23, 222-231.	0.7	2
2295	Biotic and abiotic drivers of plant–pollinator community assembly across wildfire gradients. Journal of Ecology, 2021, 109, 1000-1013.	1.9	8
2296	Maximising the benefits of regulatory ecosystem services via spatial optimisation. Journal of Cleaner Production, 2021, 291, 125272.	4.6	8
2297	Opposing pressures of climate and landâ€use change on a native bee. Global Change Biology, 2021, 27, 1017-1026.	4.2	17
2298	Relative effects of anthropogenic pressures, climate, and sampling design on the structure of pollination networks at the global scale. Global Change Biology, 2021, 27, 1266-1280.	4.2	27
2299	Plant–pollinator interactions in urban ecosystems worldwide: A comprehensive review including research funding and policy actions. Ambio, 2021, 50, 884-900.	2.8	14
2300	Potential regional declines in species richness of tomato pollinators in North America under climate change. Ecological Applications, 2021, 31, e02259.	1.8	4
2301	Revisiting the economic valuation of agricultural losses due to large-scale changes in pollinator populations. Ecological Economics, 2021, 180, 106860.	2.9	22
2302	Review: Plant eco-evolutionary responses to climate change: Emerging directions. Plant Science, 2021, 304, 110737.	1.7	31
2303	Impact of landscape fragmentation and climate change on body size variation of bumblebees during the last century. Ecography, 2021, 44, 255-264.	2.1	25
2304	Impacts of Neonicotinoids on the Bumble Bees <i>Bombus terrestris</i> and <i>Bombus impatiens</i> Examined through the Lens of an Adverse Outcome Pathway Framework. Environmental Toxicology and Chemistry, 2021, 40, 309-322.	2.2	17
2305	Mating under climate change: Impact of simulated heatwaves on the reproduction of model pollinators. Functional Ecology, 2021, 35, 739-752.	1.7	29
2306	Parasites and pesticides act antagonistically on honey bee health. Journal of Applied Ecology, 2021, 58, 997-1005.	1.9	20
2307	Influence of land use change on rove beetle diversity: A systematic review and global meta-analysis of a mega-diverse insect group. Ecological Indicators, 2021, 122, 107239.	2.6	28
2308	Human Dimensions of Pollinator Conservation: The Development and Testing of Survey Measures for Best Management Practice Adoption. Society and Natural Resources, 2021, 34, 467-483.	0.9	3
2309	Agricultural land use disrupts biodiversity mediation of virus infections in wild plant populations. New Phytologist, 2021, 230, 2447-2458.	3.5	26

#	Article	IF	Citations
2310	Native bees in Mediterranean semi-arid agroecosystems: Unravelling the effects of biophysical habitat, floral resource, and honeybees. Agriculture, Ecosystems and Environment, 2021, 307, 107188.	2.5	17
2311	Facultative mutualisms: A doubleâ€edged sword for foundation species in the face of anthropogenic global change. Ecology and Evolution, 2021, 11, 29-44.	0.8	14
2312	Changes in innate immune response and detoxification in Melipona quadrifasciata (Apinae: Meliponini) on oral exposure to azadirachtin and spinosad. Apidologie, 2021, 52, 252-261.	0.9	7
2313	Bee communities in restored prairies are structured by landscape and management, not local floral resources. Basic and Applied Ecology, 2021, 50, 144-154.	1.2	18
2314	Cascading extinctions as a hidden driver ofÂinsect decline. Ecological Entomology, 2021, 46, 743-756.	1.1	49
2315	Bumble bee communities in powerâ€ine clearings: Effects of experimental management practices. Insect Conservation and Diversity, 2021, 14, 377-392.	1.4	3
2316	The influence of climate and seasonality on bee communities: a complementary method for bee sampling in forest patches of an anthropic matrix. International Journal of Tropical Insect Science, 2021, 41, 711-723.	0.4	2
2317	The effect of using imidacloprid and chlorpyrifos and their nanoforms on certain characteristics of honeybee Apis mellifera L International Journal of Tropical Insect Science, 2021, 41, 1037-1042.	0.4	2
2318	Landscape degradation and restoration. , 2021, , 125-159.		9
2319	Grassland-to-crop conversion in agricultural landscapes has lasting impact on the trait diversity of bees. Landscape Ecology, 2021, 36, 281-295.	1.9	8
2320	Glyphosate commercial formulation negatively affects the reproductive success of solitary wild bees in a Pampean agroecosystem. Apidologie, 2021, 52, 272-281.	0.9	12
2321	Short-term lab assessments and microcolonies are insufficient for the risk assessment of insecticides for bees. Chemosphere, 2021, 273, 128518.	4.2	18
2322	Population assessment and foraging ecology of the rare solitary bee Anthophora retusa at Seaford Head Nature reserve. Journal of Insect Conservation, 2021, 25, 49-63.	0.8	2
2323	Large-scale monoculture reduces honey yield: The case of soybean expansion in Argentina. Agriculture, Ecosystems and Environment, 2021, 306, 107203.	2.5	19
2324	Do farmers care about pollinators? A cross-site comparison of farmers' perceptions, knowledge, and management practices for pollinator-dependent crops. International Journal of Agricultural Sustainability, 2021, 19, 1-15.	1.3	27
2325	Genus-Wide Characterization of Bumblebee Genomes Provides Insights into Their Evolution and Variation in Ecological and Behavioral Traits. Molecular Biology and Evolution, 2021, 38, 486-501.	3.5	58
2326	Use of colored pan traps method for monitoring insect (Diptera and Hymenoptera) diversity in the Southern Tropical Andes of Ecuador. International Journal of Tropical Insect Science, 2021, 41, 643-652.	0.4	3
2327	Crop wild phylorelatives (CWPs): phylogenetic distance, cytogenetic compatibility and breeding system data enable estimation of crop wild relative gene pool classification. Botanical Journal of the Linnean Society, 2021, 195, 1-33.	0.8	23

#	Article	IF	CITATIONS
2328	Nesting biology of <i>Megachile</i> (<i>Eutricharea</i>) <i>studiosa</i> Bingham, a leafcutter bee. Journal of Apicultural Research, 2021, 60, 491-502.	0.7	3
2329	Wild Bee Conservation in North American Roadside Rights of Way. , 2021, , .		0
2330	Floral Plantings in Large-Scale Commercial Agroecosystems Support Both Pollinators and Arthropod Predators. Insects, 2021, 12, 91.	1.0	6
2331	Foraging trip duration of honeybee increases during a poor air quality episode and the increase persists thereafter. Ecology and Evolution, 2021, 11, 1492-1500.	0.8	10
2332	Temporal and spatial foraging patterns of three Asian honey bee species in Bangalore, India. Apidologie, 2021, 52, 503-523.	0.9	9
2333	Balancing Bees and Livestock: Pastoralist Knowledge, Perceptions and Implications for Pollinator Conservation in Rangelands, Northern Tanzania. Tropical Conservation Science, 2021, 14, 194008292110281.	0.6	7
2334	Response mechanisms to heat stress in bees. Apidologie, 2021, 52, 388-399.	0.9	25
2335	Nocturnal Pollinators Significantly Contribute to Apple Production. Journal of Economic Entomology, 2021, 114, 2155-2161.	0.8	11
2336	The geographical origin, refugia, and diversification of honey bees (Apis spp.) based on biogeography and niche modeling. Apidologie, 2021, 52, 367-377.	0.9	9
2337	Edible Fruit Plant Species in the Amazon Forest Rely Mostly on Bees and Beetles as Pollinators. Journal of Economic Entomology, 2021, 114, 710-722.	0.8	14
2338	Bee and Flowering Plant Communities in a Riparian Corridor of the Lower Rio Grande River (Texas,) Tj ETQq0 0 0 0	gBT/Over	logk 10 Tf 50
2339	Ecological Intensification for Sustainable Agriculture in South Asia. , 2021, , 171-213.		2
2340	Plant-Mediated Above- Belowground Interactions: A Phytobiome Story. , 2021, , 205-231.		5
2341	Practices to Conserve Pollinators and Natural Enemies in Agro-Ecosystems. Insects, 2021, 12, 31.	1.0	6
2342	Bees and crops in Spain: an update for melon, watermelon and almond. Annales De La Societe Entomologique De France, 2021, 57, 12-28.	0.4	5
2343	Ecological correlates of crop yield growth and interannual yield variation at a global scale. Web Ecology, 2021, 21, 15-43.	0.4	6
2344	Pollination Systems in the Atlantic Forest: Characterisation, Threats, and Opportunities. , 2021, , 325-344.		3
2346	Legislation and pollination: Recommendations for policymakers and scientists. Perspectives in Ecology and Conservation, 2021, 19, 1-9.	1.0	9

#	Article	IF	CITATIONS
2347	Surfing the Sweet Wave: Migrating Giant Honey Bees (Hymenoptera: Apidae: <i>Apis dorsata </i>) Display Spatial and Temporal Fidelity to Annual Stopover Site in Thailand. Journal of Insect Science, 2021, 21, .	0.6	2
2348	Classification of Germination Images of Pear Pollen Using Random Forest and Convolution Neural Network Models. IEEE Access, 2021, 9, 45993-45999.	2.6	3
2349	Toxicity of new fungicides for eukaryotic microorganisms isolated from the gut of the food-important vegetable pollinator Bombus terrestris L Vestnik Voronežskogo Gosudarstvennogo Universiteta inženernyh Tehnologij, 2021, 82, 54-59.	0.1	1
2350	Social Insects of the Atlantic Forest., 2021, , 151-183.		4
2352	Richness and distribution of the meliponine fauna (Hymenoptera: Apidae: Meliponini) in the State of Cear \tilde{A}_i , Brazil. Anais Da Academia Brasileira De Ciencias, 2021, 93, .	0.3	2
2353	Pollinators on Cowpea Vigna unguiculata: Implications for Intercropping to Enhance Biodiversity. Insects, 2021, 12, 54.	1.0	7
2354	Insect biomass decline scaled to species diversity: General patterns derived from a hoverfly community. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	73
2355	Evaluating predictive performance of statistical models explaining wild bee abundance in a massâ€flowering crop. Ecography, 2021, 44, 525-536.	2.1	11
2356	Climate Change Extent and Dipteran Pollinators Diversity in Africa. , 2021, , 1-20.		0
2357	Production Analysis of the Beekeeping Chain in Vichada, Colombia. A System Dynamics Approach. Studies in Computational Intelligence, 2021, , 97-117.	0.7	0
2358	Spatial allocation without spatial recruitment in bumblebees. Behavioral Ecology, 2021, 32, 265-276.	1.0	3
2359	Powerline right-of-way management and flower-visiting insects: How vegetation management can promote pollinator diversity. PLoS ONE, 2021, 16, e0245146.	1.1	6
2361	Effectiveness of floral enhancement in reducing honeybee exposure to insecticides. Applied Entomology and Zoology, 2021, 56, 207-215.	0.6	3
2363	Getting the Most From Surveys: How Method Selection and Method Modification Impact Butterfly Survey Data. Annals of the Entomological Society of America, 2021, 114, 719-726.	1.3	4
2364	Biosafety of bee pollinators in genetically modified agroâ€ecosystems: Current approach and further development in the <scp>EU</scp> . Pest Management Science, 2021, 77, 2659-2666.	1.7	13
2365	Review on Sublethal Effects of Environmental Contaminants in Honey Bees (Apis mellifera), Knowledge Gaps and Future Perspectives. International Journal of Environmental Research and Public Health, 2021, 18, 1863.	1.2	29
2366	Caterpillar survival in the city: attack rates on model lepidopteran larvae along an urban-rural gradient show no increase in predation with increasing urban intensity. Urban Ecosystems, 2021, 24, 1129-1140.	1.1	9
2367	Reduced nest development of reared Bombus terrestris within apiary dense human-modified landscapes. Scientific Reports, 2021, 11, 3755.	1.6	7

#	Article	IF	CITATIONS
2368	Market Dependency as Prohibitive of Agroecology and Food Sovereigntyâ€"A Case Study of the Agrarian Transition in the Scottish Highlands. Sustainability, 2021, 13, 1927.	1.6	4
2369	Persistent effects of management history on honeybee colony virus abundances. Journal of Invertebrate Pathology, 2021, 179, 107520.	1.5	9
2370	Further Insights on the Migration Biology of Monarch Butterflies, Danaus plexippus (Lepidoptera:) Tj ETQq0 0 0	rgBT/Ove 1.0	rlock 10 Tf 50
2371	Competition between a native and introduced pollinator in unmanaged urban meadows. Biological Invasions, 2021, 23, 1697-1705.	1.2	11
2372	Pollenâ€feeding bees in Uebelmannia pectinifera subsp. pectinifera – reproductive biology of an endemic cactus from the campo rupestre of eastern Brazil. Nordic Journal of Botany, 2021, 39, .	0.2	1
2373	Weather Variables Affecting the Behaviour of Insect Flower Visitors and Main Pollinators of Erythroxylum myrsinites Martius (Erythroxylaceae). Sociobiology, 2021, 68, e5451.	0.2	1
2374	Agronomic Traits in Oilseed Rape (Brassica napus) Can Predict Foraging Resources for Insect Pollinators. Agronomy, 2021, 11, 440.	1.3	5
2375	Organic winter cereals benefit bumblebee colonies in agricultural landscapes with massâ€flowering crops. Insect Conservation and Diversity, 2021, 14, 504-514.	1.4	3
2376	Preliminary report of honeybee physiological changes pre- and post-hybrid lavender season in high and low weight gain colonies. Apidologie, 2021, 52, 463-472.	0.9	1
2377	Honey bees (Hymenoptera: Apidae) outnumber native bees in Tasmanian apple orchards: Perspectives for balancing crop production and native bee conservation. Austral Entomology, 2021, 60, 422-435.	0.8	14
2379	Honey bee colony losses: Why are honey bees disappearing?. Sociobiology, 2021, 68, e5851.	0.2	21
2381	Quantifying temporal variation in dietary niche to reveal drivers of past population declines. Functional Ecology, 2021, 35, 930-941.	1.7	8
2382	Pollination by Non-Apis Bees and Potential Benefits in Self-Pollinating Crops. Annals of the Entomological Society of America, 2021, 114, 257-266.	1.3	15
2383	Review: ecosystem services in permaculture systems. Agroecology and Sustainable Food Systems, 2021, 45, 794-816.	1.0	8
2384	Floral resource diversification promotes solitary bee reproduction and may offset insecticide effects – evidence from a semiâ€field experiment. Ecology Letters, 2021, 24, 668-675.	3.0	58
2385	Contribution of honeybees towards the net environmental benefits of food. Science of the Total Environment, 2021, 756, 143880.	3.9	22
2386	Connectivity and edge effects increase bee colonization in an experimentally fragmented landscape. Ecography, 2021, 44, 919-927.	2.1	9
2387	Supporting Bees in Cities: How Bees Are Influenced by Local and Landscape Features. Insects, 2021, 12, 128.	1.0	62

#	Article	IF	Citations
2388	Weed–Insect Interactions in Annual Cropping Systems. Annals of the Entomological Society of America, 2021, 114, 276-291.	1.3	12
2389	Nutritional composition of Apis mellifera adansonii L. (Hymenoptera: Apidae) from three ecological zones of Nigeria. Journal of Apicultural Research, 2021, 60, 445-456.	0.7	1
2390	RNA Interference-Mediated Knockdown of Genes Encoding Spore Wall Proteins Confers Protection against Nosema ceranae Infection in the European Honey Bee, Apis mellifera. Microorganisms, 2021, 9, 505.	1.6	13
2391	Agricultural management and local knowledge: key factors for the conservation of socio-ecosystems in the face of the pollinator world crisis. Botanical Sciences, 2021, 99, 305-320.	0.3	7
2392	Eating versus heating: a study of the allocation of workers between foraging and nest incubation in bumble bees. Ecological Entomology, 2021, 46, 844-855.	1.1	6
2394	A model of infection in honeybee colonies with social immunity. PLoS ONE, 2021, 16, e0247294.	1.1	10
2395	Authoritative subspecies diagnosis tool for European honey bees based on ancestry informative SNPs. BMC Genomics, 2021, 22, 101.	1.2	34
2396	A DNA barcode-based survey of wild urban bees in the Loire Valley, France. Scientific Reports, 2021, 11, 4770.	1.6	18
2397	Pesticide risk assessment at the molecular level using honey bee cytochrome P450 enzymes: A complementary approach. Environment International, 2021, 147, 106372.	4.8	40
2398	Phosphorus fertilization induces nectar secretion for honeybee visitation and cross-pollination of almond trees. Journal of Experimental Botany, 2021, 72, 3307-3319.	2.4	9
2399	Seasonal variation of viral infections between the eastern honey bee (<i>Apis cerana</i>) and the western honey bee (<i>Apis mellifera</i>). MicrobiologyOpen, 2021, 10, e1162.	1.2	16
2400	Evidence for multiple introductions of an invasive wild bee species currently under rapid range expansion in Europe. Bmc Ecology and Evolution, 2021, 21, 17.	0.7	15
2401	Transferrin-mediated iron sequestration suggests a novel therapeutic strategy for controlling Nosema disease in the honey bee, Apis mellifera. PLoS Pathogens, 2021, 17, e1009270.	2.1	22
2402	A Visual Tracking System for Honey Bee (Hymenoptera: Apidae) 3D Flight Trajectory Reconstruction and Analysis. Journal of Insect Science, 2021, 21, .	0.6	9
2403	OBSERVATIONS OF ORANGE-CROWNED WARBLERS IN VINE MAPLE. , 2021, 102, .		0
2404	Impact of Varroa destructor and associated pathologies on the colony collapse disorder affecting honey bees. Research in Veterinary Science, 2021, 135, 85-95.	0.9	24
2405	Differential Viral Distribution Patterns in Reproductive Tissues of Apis mellifera and Apis cerana Drones. Frontiers in Veterinary Science, 2021, 8, 608700.	0.9	3
2406	Wild solitary bees and their use of bee hotels in southwest Spain. Journal of Apicultural Research, 2021, 60, 862-870.	0.7	3

#	Article	IF	CITATIONS
2407	Rediscovering the eusocial sweat bee Lasioglossum marginatum (Hymenoptera: Halictidae) in Sicily through DNA barcoding. Journal of Apicultural Research, 0, , 1-3.	0.7	0
2408	Using the Lonsdorf model for estimating habitat loss and fragmentation effects on pollination service. Ecological Processes, 2021, 10, .	1.6	7
2409	Recent climate change is creating hotspots of butterfly increase and decline across North America. Global Change Biology, 2021, 27, 2702-2714.	4.2	36
2410	Diversity of Eusocial Bees in Natural and Anthropized Areas of a Tropical Dry Forest in the Parque da Sapucaia (Montes Claros, Minas Gerais, Brazil). Sociobiology, 2021, 68, 5305.	0.2	1
2411	Red and white clover provide food resources for honeybees and wild bees in urban environments. Nordic Journal of Botany, 2021, 39, .	0.2	9
2412	Do plant ploidy and pollinator tongue length interact to cause low seed yield in red clover?. Ecosphere, 2021, 12, e03416.	1.0	4
2413	Variation in Insect Richness on Six Prairie Plant Species. Southeastern Naturalist, 2021, 20, .	0.2	0
2414	Rapid measurement of the adult worker population size in honey bees. Ecological Indicators, 2021, 122, 107313.	2.6	12
2415	Larvae of stingless bee Scaptotrigona bipunctata exposed to organophosphorus pesticide develop into lighter, smaller and deformed adult workers. Environmental Pollution, 2021, 272, 116414.	3.7	11
2416	A hierarchical framework for mapping pollination ecosystem service potential at the local scale. Ecological Modelling, 2021, 444, 109484.	1.2	14
2417	Bucking the trend of pollinator decline: the population genetics of a range expanding bumblebee. Evolutionary Ecology, 2021, 35, 413-442.	0.5	5
2418	Estudo comparativo da biologia floral de variedades comerciais de melancieira em cultivo org $ ilde{A}^{\varphi}$ nico. Journal of Environmental Analysis and Progress, 2021, 6, 071-078.	0.0	O
2419	Pollen diversity and protein content in differentially degraded semi-arid landscapes in Kenya. Journal of Apicultural Research, 2021, 60, 828-841.	0.7	4
2420	Low Concentration of Quercetin Reduces the Lethal and Sublethal Effects of Imidacloprid on <i>Apis cerana</i> (Hymenoptera: Apidae). Journal of Economic Entomology, 2021, 114, 1053-1064.	0.8	5
2421	Are there differences in the diversity of bees between organic and conventional agroecosystems in the Pampa biome?. Journal of Apicultural Research, 0, , 1-13.	0.7	4
2422	Stored pollen of Frieseomelitta meadewaldoi (Cockerell, 1915) (Apidae, Meliponini) in the Atlantic Forest of the Northern Coast of Bahia, Brazil. Journal of Apicultural Research, 0, , 1-10.	0.7	1
2423	Changes in Land Use and Land Cover Along an Urban-Rural Gradient Influence Floral Resource Availability. Current Landscape Ecology Reports, 2021, 6, 46-70.	1.1	8
2424	A Qualitative Analysis of Beekeepers' Perceptions and Farm Management Adaptations to the Impact of Climate Change on Honey Bees. Insects, 2021, 12, 228.	1.0	45

#	Article	IF	CITATIONS
2425	Host specificity and species colouration mediate the regional decline of nocturnal moths in central European forests. Ecography, 2021, 44, 941-952.	2.1	20
2426	Investigation of Fungal Strains Composition in Fruit Pollens for Artificial Pollination. Mycobiology, 2021, 49, 249-257.	0.6	2
2427	Genetic diversity and population structure of orchid bees from the Brazilian savanna. Journal of Apicultural Research, 2021, 60, 385-395.	0.7	7
2428	Community and Species-Level Changes of Insect Species Visiting Mangifera indica Flowers Following Hurricane MarÃa: "The Devil Is in the Detailsâ€, Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
2429	Color pan traps often catch less when there are more flowers around. Ecology and Evolution, 2021, 11, 3830-3840.	0.8	16
2430	Improving Habitat Quality at the Local and Landscape Scales Increases Wild Bee Assemblages and Associated Pollination Services in Apple Orchards in China. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	12
2431	Pollinator Communities in Some Selected Hungarian Conventional, Organic and Permaculture Horticultures. , 0, , .		0
2432	Will predicted positive effects of climate change be enough to reverse declines of the regionally Endangered Natterjack toad in Ireland?. Ecology and Evolution, 2021, 11, 5049-5064.	0.8	4
2433	Postharvest Bee Diversity is High but Declines Rapidly with Stand Age in Regenerating Douglas-Fir Forest. Forest Science, 2021, 67, 275-285.	0.5	15
2434	Long-term effects of abandonment and restoration of Mediterranean meadows on butterfly-plant interactions. Journal of Insect Conservation, 2021, 25, 383-393.	0.8	15
2435	Cold stress induces specific antioxidant responses in honey bee brood. Apidologie, 2021, 52, 596-607.	0.9	7
2436	Macroecological patterns of resource use in resident and migratory hummingbirds. Basic and Applied Ecology, 2021, 51, 71-82.	1.2	8
2437	Development and evaluation of a core genome multilocus sequence typing scheme for Paenibacillus larvae, the deadly American foulbrood pathogen of honeybees. Environmental Microbiology, 2021, 23, 5042-5051.	1.8	5
2438	Studies on the influence of natural resource utilization by humans on foraging behavior of honey bees at rural ecosystems. Environmental Science and Pollution Research, 2021, 28, 33942-33956.	2.7	O
2439	Survival rate and changes in foraging performances of solitary bees exposed to a novel insecticide. Ecotoxicology and Environmental Safety, 2021, 211, 111869.	2.9	19
2440	Quantifying environmental implications of surplus food redistribution to reduce food waste. Journal of Cleaner Production, 2021, 289, 125813.	4.6	23
2441	Ecosystem services provided by aculeate wasps. Biological Reviews, 2021, 96, 1645-1675.	4.7	75
2442	Bloom evenness modulates the influence of bloom abundance on insect community structure in suburban gardens. PeerJ, 2021, 9, e11132.	0.9	4

#	Article	IF	CITATIONS
2443	Pollinators mediate floral microbial diversity and microbial network under agrochemical disturbance. Molecular Ecology, 2021, 30, 2235-2247.	2.0	23
2444	Landscape structure affects the sunflower visiting frequency of insect pollinators. Scientific Reports, 2021, 11, 8147.	1.6	7
2445	Histomorphological description of the reproductive system in mated honey bee queens. Journal of Apicultural Research, 2022, 61, 114-126.	0.7	2
2446	Presence of pollinatorâ€friendly habitat on pollinator communities in managed turfgrass systems. Itsrj, 0, , .	0.1	2
2448	Effects of prescribed fire timing on vigor of the invasive forb sericea lespedeza (<i>Lespedeza) Tj ETQq0 0 0 rgBT / tallgrass prairie in the Kansas Flint Hills. Translational Animal Science, 2021, 5, txab079.</i>	Overlock 0.4	10 Tf 50 587 7
2449	The impact of planting buckwheat strips along lowbush blueberry fields on beneficial insects. Canadian Journal of Plant Science, 2021, 101, 166-176.	0.3	0
2450	Insect Decline—A Forensic Issue?. Insects, 2021, 12, 324.	1.0	7
2451	Counting Bees: Learning Outcomes from Participation in the Dutch National Bee Survey. Sustainability, 2021, 13, 4703.	1.6	9
2452	Is being green what matters? Functional diversity of cavityâ€nesting bees and wasps and their interaction networks with parasites in different reforestation types in Amazonia. Insect Conservation and Diversity, 2021, 14, 620-634.	1.4	2
2453	Limited Economic-Ecological Trade-Offs in a Shifting Agricultural Landscape: A Case Study From Kern County, California. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	2
2454	Protection of honeybees and other pollinators: one global study. Apidologie, 2021, 52, 535-547.	0.9	3
2455	The Power of Drosophila melanogaster for Modeling Neonicotinoid Effects on Pollinators and Identifying Novel Mechanisms. Frontiers in Physiology, 2021, 12, 659440.	1.3	15
2456	A New Strain of Virus Discovered in China Specific to the Parasitic Mite Varroa destructor Poses a Potential Threat to Honey Bees. Viruses, 2021, 13, 679.	1.5	10
2457	The Effects of Exposure to Flupyradifurone on Survival, Development, and Foraging Activity of Honey Bees (Apis mellifera L.) under Field Conditions. Insects, 2021, 12, 357.	1.0	9
2458	Planning considerations of green corridors for the improvement of biodiversity resilience in suburban areas. Journal of Infrastructure Preservation and Resilience, 2021, 2, 6.	1.5	4
2459	A Robust Prediction Model for Species Distribution Using Bagging Ensembles with Deep Neural Networks. Remote Sensing, 2021, 13, 1495.	1.8	18
2460	How to Save Endangered Magnolias? From Population Biology to Conservation Action: The Case of Allopatric Radiation in Western Mexico. , 0 , , .		7
2461	Landscape Context Influences the Bee Conservation Value of Wildflower Plantings. Environmental Entomology, 2021, 50, 821-831.	0.7	4

#	Article	IF	CITATIONS
2462	Ozone Pollution Alters Olfaction and Behavior of Pollinators. Antioxidants, 2021, 10, 636.	2.2	22
2463	Antimicrobial activity of camphor tree silver nano-particles against foulbrood diseases and finding out new strain of Serratia marcescens as a secondary infection on honeybee larvae. Saudi Journal of Biological Sciences, 2021, 28, 2067-2075.	1.8	14
2464	First application of an Integrated Biological Response index to assess the ecotoxicological status of honeybees from rural and urban areas. Environmental Science and Pollution Research, 2021, 28, 47418-47428.	2.7	5
2465	Assessing the potential for deep learning and computer vision to identify bumble bee species from images. Scientific Reports, 2021, 11, 7580.	1.6	41
2466	Antiviral Activities of a Medicinal Plant Extract Against Sacbrood Virus in Honeybees. Virology Journal, 2021, 18, 83.	1.4	8
2467	Parasites and RNA viruses in wild and laboratory reared bumble bees Bombus pauloensis (Hymenoptera:) Tj ETQq1	1.0.7843 1.1	14 rgBT /0
2468	Landscape characterization of floral resources for pollinators in the Prairie Pothole Region of the United States. Biodiversity and Conservation, 2021, 30, 1991-2015.	1.2	9
2469	Next-gen plant clonal ecology. Perspectives in Plant Ecology, Evolution and Systematics, 2021, 49, 125601.	1.1	15
2470	Relative bee abundance varies by collection method and flowering richness: Implications for understanding patterns in bee community data. Ecological Solutions and Evidence, 2021, 2, e12071.	0.8	11
2471	Spiromesifen induces histopathological and cytotoxic changes in the midgut of the honeybee Apis mellifera (Hymenoptera: Apidae). Chemosphere, 2021, 270, 129439.	4.2	15
2472	<i>Bracon</i> wasps for ecological pest control–a laboratory experiment. PeerJ, 2021, 9, e11540.	0.9	2
2474	A Survey of Wild Bees (Hymenoptera: Anthophila) in Thunder Bay, Ontario, and Their Floral Associations. Journal of the Kansas Entomological Society, 2021, 93, .	0.1	O
2475	Optimizing pollinator conservation and crop yield among perennial bioenergy crops. GCB Bioenergy, 2021, 13, 1030-1042.	2.5	5
2476	A systemsâ€based approach to the environmental risk assessment of multiple stressors in honey bees. EFSA Journal, 2021, 19, e06607.	0.9	21
2477	Enhancing flowering plant functional richness improves wild bee diversity in vineyard interâ€rows in different floral kingdoms. Ecology and Evolution, 2021, 11, 7927-7945.	0.8	9
2478	Corbiculate Bees (Hymenoptera: Apidae): Exploring the Limits of Morphological Data to Solve a Hard Phylogenetic Problem. Insect Systematics and Diversity, 2021, 5, .	0.7	8
2479	The contribution of land cover change to the decline of honey yields in the Northern Great Plains. Environmental Research Letters, 2021, 16, 064050.	2.2	11
2480	DNA barcodes and new primers for nature's pest controllers: the social wasps. Genome, 2021, 64, 581-590.	0.9	O

#	Article	IF	CITATIONS
2481	An Evaluation of Habitat Uses and Their Implications for the Conservation of the Chinese Bumblebee Bombus pyrosoma (Hymenoptera: Apidae). Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
2482	Biodiversity Loss: Threats and Conservation Strategies. International Journal of Pharmaceutical Sciences Review and Research, 2021, 68, .	0.1	1
2483	Monitoring bee health in European agro-ecosystems using wing morphology and fat bodies. One Ecosystem, $0, 6, .$	0.0	10
2484	Nest density, spatial distribution, and bionomy of <i>Trigona spinipes</i> (Apidae: Meliponini). Journal of Apicultural Research, 2023, 62, 680-691.	0.7	2
2486	Phylogeny, Phenology, and Foraging Breadth of Ashmeadiella (Hymenoptera: Megachilidae). Insect Systematics and Diversity, 2021, 5, .	0.7	2
2487	Network analysis highlights increased generalisation and evenness of plant-pollinator interactions after conservation measures. Acta Oecologica, 2021, 110, 103689.	0.5	1
2488	Extrapolating Acute Contact Bee Sensitivity to Insecticides Based on Body Weight Using a Phylogenetically Informed Interspecies Scaling Framework. Environmental Toxicology and Chemistry, 2021, 40, 2042-2050.	2.2	12
2489	Seasonal and vertical distribution of floral resources and its implications for the conservation of pollinators. Flora: Morphology, Distribution, Functional Ecology of Plants, 2021, 278, 151787.	0.6	2
2490	A comprehensive approach for agroecosystem services and disservices valuation. Science of the Total Environment, 2021, 768, 144859.	3.9	37
2491	Longâ€term surveys support declines in early season forest plants used by bumblebees. Journal of Applied Ecology, 2021, 58, 1431-1441.	1.9	32
2492	Land conversion and pesticide use degrade forage areas for honey bees in America's beekeeping epicenter. PLoS ONE, 2021, 16, e0251043.	1,1	6
2493	Landscape Enhancements in Apple Orchards: Higher Bumble Bee Queen Species Richness, but No Effect on Apple Quality. Insects, 2021, 12, 421.	1.0	9
2494	Temporal Trends in Pollination Deficits and Its Potential Impacts on Chinese Agriculture. Journal of Economic Entomology, 2021, 114, 1431-1440.	0.8	7
2495	Bee and Beekeeping Research in a Rapidly Changing World: Advancements and Challenges. Molecules, 2021, 26, 3066.	1.7	1
2496	Estimating abundance and phenology from transect count data with GLMs. Oikos, 2021, 130, 1335-1345.	1.2	8
2498	Global effects of land-use intensity on local pollinator biodiversity. Nature Communications, 2021, 12, 2902.	5.8	87
2499	Bees and pesticides: the research impact and scientometrics relations. Environmental Science and Pollution Research, 2021, 28, 32282-32298.	2.7	29
2500	Molecular mechanisms of mutualistic and antagonistic interactions in a plant–pollinator association. Nature Ecology and Evolution, 2021, 5, 974-986.	3.4	30

#	ARTICLE	IF	CITATIONS
2501	Effects of urban greenspace configuration and native vegetation on bee and wasp reproduction. Conservation Biology, 2021, 35, 1755-1765.	2.4	8
2502	Ant community responses to farmland use and revegetation in a fragmented agricultural landscape. Agriculture, Ecosystems and Environment, 2021, 311, 107316.	2.5	6
2503	Pollen Sources in Honey Bee (Apis mellifera) Diet in Ellis County, Kansas. Transactions of the Kansas Academy of Science, 2021, 124, .	0.0	1
2504	Regional differences in farmers' preferences for a native bee conservation policy: The case of farming communities in Northern and Eastern Thailand. PLoS ONE, 2021, 16, e0251206.	1.1	1
2505	Trends in science on glyphosate toxicity: a scientometric study. Environmental Science and Pollution Research, 2021, 28, 56432-56448.	2.7	8
2506	Habitat Quality and Social Behavioral Association Network in a Wintering Waterbirds Community. Sustainability, 2021, 13, 6044.	1.6	10
2507	Ten Years of Deformed Wing Virus (DWV) in Hawaiian Honey Bees (Apis mellifera), the Dominant DWV-A Variant Is Potentially Being Replaced by Variants with a DWV-B Coding Sequence. Viruses, 2021, 13, 969.	1.5	13
2508	The direct and indirect effects of extreme climate events on insects. Science of the Total Environment, 2021, 769, 145161.	3.9	34
2509	A systematic scoping review of the methodological approaches and effects of pesticide exposure on solitary bees. PLoS ONE, 2021, 16, e0251197.	1.1	19
2510	Bombus Arılarında Tarlacı İşçi Arıların Entomopatojen Funguslara Maruz Kalması Kolonideki Diğ Bireyleri Nasıl Etkiler?. Journal of Animal Science and Products, 0, , .	er 0.3	1
2511	Special Issue "Pollinator Diversity and Pollination in Agricultural Systems― Agronomy, 2021, 11, 1075.	1.3	0
2512	Geographic variation in the robustness of pollination networks is mediated by modularity. Global Ecology and Biogeography, 2021, 30, 1447-1460.	2.7	17
2513	Warming and elevated CO2 induces changes in the reproductive dynamics of a tropical plant species. Science of the Total Environment, 2021, 768, 144899.	3.9	15
2514	Early prediction of bumblebee flight task using machine learning. Computers and Electronics in Agriculture, 2021, 184, 106065.	3.7	1
2515	A New Approach to Inform Restoration and Management Decisions for Sustainable Apiculture. Sustainability, 2021, 13, 6109.	1.6	2
2516	Genetic analysis and screening of pyrethroid resistance mutations in Varroa destructor populations from Turkey. Experimental and Applied Acarology, 2021, 84, 433-444.	0.7	9
2517	Are Honey Bees at Risk from Microplastics?. Toxics, 2021, 9, 109.	1.6	29
2518	Identity of mass-flowering crops moderates functional trait composition of pollinator communities. Landscape Ecology, 2021, 36, 2657-2671.	1.9	14

#	Article	IF	CITATIONS
2520	Vulnerability of bat–plant pollination interactions due to environmental change. Global Change Biology, 2021, 27, 3367-3382.	4.2	17
2521	Adaptive population structure shifts in invasive parasitic mites, <i>Varroa destructor</i> . Ecology and Evolution, 2021, 11, 5937-5949.	0.8	9
2522	Comparison of wild bee communities of three semi-natural meadow habitats at Harghita–Covasna Region, Transylvania, Romania. Acta Zoologica Academiae Scientiarum Hungaricae, 2021, 67, 161-175.	0.1	2
2523	Main Data Analysis of Control and Positive Reference for the Test Validity of Honeybee Brood Test under Semi-field Conditions in Korea. Nong'yag Gwahag Hoeji, 2021, 25, 99-110.	0.1	0
2524	Increased Insect Pollinator Service Overcomes Barriers in Reproductive Success of Aesculus indica Colebr. (Hippocastanaceae) in the Temperate Himalaya. Proceedings of the Zoological Society, 2021, 74, 313-326.	0.4	0
2526	Comparison of floral traits in Calibrachoa cultivars and assessment of their impacts on attractiveness to flower-visiting insects. Arthropod-Plant Interactions, 2021, 15, 517-534.	0.5	1
2527	Honey Bee Colony Population Daily Loss Rate Forecasting and an Early Warning Method Using Temporal Convolutional Networks. Sensors, 2021, 21, 3900.	2.1	8
2528	The role of climate change in pollinator decline across the Northern Hemisphere is underestimated. Science of the Total Environment, 2021, 775, 145788.	3.9	46
2529	Human health outcomes of a restored ecological balance in African agro-landscapes. Science of the Total Environment, 2021, 775, 145872.	3.9	10
2530	Using Citizen Science to Scout Honey Bee Colonies That Naturally Survive Varroa destructor Infestations. Insects, 2021, 12, 536.	1.0	10
2531	Effects of native pollinator communities on the physiological and chemical parameters of loquat tree (Eriobotrya japonica) under open field condition. Saudi Journal of Biological Sciences, 2021, 28, 3235-3241.	1.8	12
2532	Progress in ecosystem services research: A guide for scholars and practitioners. Ecosystem Services, 2021, 49, 101267.	2.3	45
2533	Glyphosate-Based Herbicides Alter the Reproductive Morphology of Rosa acicularis (Prickly Rose). Frontiers in Plant Science, 2021, 12, 698202.	1.7	5
2534	Public perceptions of Ireland's pollinators: A case for more inclusive pollinator conservation initiatives. Journal for Nature Conservation, 2021, 61, 125999.	0.8	6
2535	Impact of managed stingless bee and western honey bee colonies on native pollinators and yield of watermelon: A comparative study. Annals of Agricultural Sciences, 2021, 66, 38-45.	1,1	22
2536	Can Colony Size of Honeybees (Apis mellifera) Be Used as Predictor for Colony Losses Due to Varroa destructor during Winter?. Agriculture (Switzerland), 2021, 11, 529.	1.4	6
2537	Leveraging Agri-food IoT Solutions to Connect Apiary Owners and Farmers. , 2021, , .		0
2538	Sublethal doses of glyphosate impair olfactory memory retention, but not learning in the honey bee (Apis mellifera scutellata). Journal of Insect Conservation, 2021, 25, 683-694.	0.8	9

#	Article	IF	CITATIONS
2539	Spatiotemporal Variation in Pollination Deficits in an Insect-Pollinated Dioecious Crop. Plants, 2021, 10, 1273.	1.6	9
2540	An Easy Mixed-Method Analysis Tool to Support Rural Development Strategy Decision-Making for Beekeeping. Land, 2021, 10, 675.	1.2	14
2541	The development of the solitary bee Osmia bicornis is affected by some insecticide agrochemicals at environmentally relevant concentrations. Science of the Total Environment, 2021, 775, 145588.	3.9	22
2542	Effects of native forest and human-modified land covers on the accumulation of toxic metals and metalloids in the tropical bee Tetragonisca angustula. Ecotoxicology and Environmental Safety, 2021, 215, 112147.	2.9	3
2543	Factors Affecting Immune Responses in Honey Bees: An Insight. Journal of Apicultural Science, 2021, 65, 25-47.	0.1	3
2545	Sensorial, physicist-chemistries and microbiological analyses of samples of honeys produced for Apis mellifera in the region of the Cocais Maranhenses, Maranh $ ilde{A}$ £0 State, Brazil. Research, Society and Development, 2021, 10, e21510716495.	0.0	0
2546	Distribution and Habitat Preferences of a Frosted Elfin Subspecies (Callophrys irus hadros,) Tj ETQq0 0 0 rgBT /O	verlock 10) Tf 50 502 To
2547	Plasticity in life features, parasitism and super-parasitism behavior of Bracon hebetor, an important natural enemy of Galleria mellonella and other lepidopteran host species. Saudi Journal of Biological Sciences, 2021, 28, 3351-3361.	1.8	1
2548	Monofloral Honeys as a Potential Source of Natural Antioxidants, Minerals and Medicine. Antioxidants, 2021, 10, 1023.	2,2	49
2549	Essential oils as sustainable control agents against <i>Varroa destructor</i> (Acari, Varroidae), an ectoparasitic mite of the western honeybees <i>Apis mellifera</i> (Hymenoptera: Apidae): Review of recent literature (2010-onwards). International Journal of Acarology, 2021, 47, 436-445.	0.3	1
2550	The composition of bacteria in gut and beebread of stingless bees (Apidae: Meliponini) from tropics Yunnan, China. Antonie Van Leeuwenhoek, 2021, 114, 1293-1305.	0.7	21
2551	Neonicotinoid Pesticides Cause Mass Fatalities of Native Bumble Bees: A Case Study From Wilsonville, Oregon, United States. Environmental Entomology, 2021, 50, 1095-1104.	0.7	13
2553	Pollination in the Tropics: Role of Pollinator in Guava Production. International Journal of Life Sciences and Biotechnology, 0, , .	0.2	1
2554	Toxicity of chlorpyrifos, cyflumetofen, and difenoconazole on Tetragonisca angustula (Latreille, 1811) under laboratory conditions. International Journal of Tropical Insect Science, 2022, 42, 435-443.	0.4	7
2555	Evaluation of four different methods for assessing bee diversity as ecological indicators of agro-ecosystems. Ecological Indicators, 2021, 125, 107573.	2.6	22
2556	Elevated CO2 Impacts on Plant–Pollinator Interactions: A Systematic Review and Free Air Carbon Enrichment Field Study. Insects, 2021, 12, 512.	1.0	3
2557	Bee (Apoidea) community response to perennial grass treatments managed for livestock production and conservation. Agriculture, Ecosystems and Environment, 2021, 313, 107391.	2.5	1
2558	Changes in the wing-beat frequency of bees and wasps depending on environmental conditions: a study with optical sensors. Apidologie, 2021, 52, 731-748.	0.9	13

#	Article	IF	CITATIONS
2559	The First Detection and Genetic Characterization of Four Different Honeybee Viruses in Wild Bumblebees from Croatia. Pathogens, 2021, 10, 808.	1.2	9
2560	Low fruit set in an endangered tree: pollination by exotic bumblebees and pollen resource for relictual native bees. Arthropod-Plant Interactions, 2021, 15, 491.	0.5	1
2562	Bumble bee (Bombus impatiens) survival, pollen usage, and reproduction are not affected by oxalate oxidase at realistic concentrations in American chestnut (Castanea dentata) pollen. Transgenic Research, 2021, 30, 751-764.	1.3	1
2563	Phylogenetic Relationships among Honey Bee Subspecies Apis mellifera caucasia and Apis mellifera carpathica Based on the Sequences of the Mitochondrial Genome. Russian Journal of Genetics, 2021, 57, 711-723.	0.2	2
2564	Decline in symbiont-dependent host detoxification metabolism contributes to increased insecticide susceptibility of insects under high temperature. ISME Journal, 2021, 15, 3693-3703.	4.4	46
2565	Chicago Bees: Urban Areas Support Diverse Bee Communities but With More Non-Native Bee Species Compared to Suburban Areas. Environmental Entomology, 2021, 50, 982-994.	0.7	7
2566	Non-native plants rarely provide suitable habitat for native gall-inducing species. Biodiversity and Conservation, 2021, 30, 2797-2805.	1.2	1
2567	Wild non-eusocial bees learn a colour discrimination task in response to simulated predation events. Die Naturwissenschaften, 2021, 108, 28.	0.6	10
2568	Impacts of beekeeping on wild bee diversity and pollination networks in the Aegean Archipelago. Ecography, 2021, 44, 1353-1365.	2.1	15
2569	Pollen DNA metabarcoding identifies regional provenance and high plant diversity in Australian honey. Ecology and Evolution, 2021, 11, 8683-8698.	0.8	22
2570	No evidence of topâ€down effects by ants on litter decomposition in a temperate grassland. Ecosphere, 2021, 12, e03638.	1.0	4
2571	Technological Advances to Reduce Apis mellifera Mortality: A Bibliometric Analysis. Sustainability, 2021, 13, 8305.	1.6	6
2572	Why a landscape view is important: nearby urban and agricultural land affects bird abundances in protected areas. PeerJ, 2021, 9, e10719.	0.9	2
2573	An Investigation of Honey Bee Viruses Prevalence in Managed Honey Bees (Apis mellifera and Apis) Tj ETQq $1\ 1\ 0$.784314 rg	gBŢ /Overloc
2574	Context-Dependent Effect of Dietary Phytochemicals on Honey Bees Exposed to a Pesticide, Thiamethoxam. Journal of Insect Science, 2021, 21, .	0.6	6
2575	Tropilaelaps mercedesae parasitism changes behavior and gene expression in honey bee workers. PLoS Pathogens, 2021, 17, e1009684.	2.1	5
2576	Horizontal Honey-Bee Larvae Rearing Plates Can Increase the Deformation Rate of Newly Emerged Adult Honey Bees. Insects, 2021, 12, 603.	1.0	3
2577	Changes in the structure and composition of the  Mexical' scrubland bee community along an elevational gradient. PLoS ONE, 2021, 16, e0254072.	1.1	5

#	ARTICLE	IF	CITATIONS
2578	Distribution and pollination services of wild bees and hoverflies along an altitudinal gradient in mountain hay meadows. Ecology and Evolution, 2021, 11, 11345-11351.	0.8	8
2579	Impact of intraspecific variation on measurements of thermal tolerance in bumble bees. Journal of Thermal Biology, 2021, 99, 103002.	1.1	17
2580	Wild Bee Response to Application of the Douglas-fir Beetle Anti-Aggregation Pheromone, 3-Methylcyclohex-2-En-1-One. Journal of Economic Entomology, 2021, 114, 2121-2126.	0.8	1
2581	Genetic Diversity and Reproductive Biology of Two Species of Vaccinium (Ericaceae) in the Dominican Republic. Caribbean Journal of Science, 2021, 51, .	0.2	O
2582	Non-insecticide pesticide impacts on bees: A review of methods and reported outcomes. Agriculture, Ecosystems and Environment, 2021, 314, 107423.	2.5	29
2583	Interaction between warming and landscape foraging resource availability on solitary bee reproduction. Journal of Animal Ecology, 2021, 90, 2536-2546.	1.3	9
2584	A novel method for the detection and diagnosis of virus infections in honey bees. Journal of Virological Methods, 2021, 293, 114163.	1.0	6
2585	Floral resource selection by wild bees and honey bees in the Midwest United States: implications for designing pollinator habitat. Restoration Ecology, 0, , e13456.	1.4	10
2586	Specialist Bee Species Are Larger and Less Phylogenetically Distinct Than Generalists in Tropical Plant–Bee Interaction Networks. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	5
2587	Temperature sensitive effects of the neonicotinoid clothianidin on bumblebee (<i>Bombus) Tj ETQq1 1 0.78</i>	4314 rgBT 0.5	/2verlock
2588	Large variability in response to projected climate and landâ€use changes among European bumblebee species. Global Change Biology, 2021, 27, 4530-4545.	4.2	12
2589	Early successional riparian vegetation is important for western Yellowâ€billed Cuckoo nesting habitat. Restoration Ecology, 2021, 29, e13376.	1.4	2
2590	Genetic and ecological consequences of recent habitat fragmentation in a narrow endemic plant species within an urban context. Biodiversity and Conservation, 2021, 30, 3457-3478.	1.2	5
2591	A SNP assay for assessing diversity in immune genes in the honey bee (Apis mellifera L.). Scientific Reports, 2021, 11, 15317.	1.6	4
2592	Analysis of geographic centrality and genetic diversity in the declining grasshopper species Bryodemella tuberculata (Orthoptera: Oedipodinae). Biodiversity and Conservation, 2021, 30, 2773-2796.	1.2	3
2593	The Orchid Bee Fauna (Hymenoptera: Apidae: Euglossini) of a Neotropical Savanna: an Efficient Protocol to Assess Bee Community and Diversity Along Elevational and Habitat Complexity Gradients. Neotropical Entomology, 2021, 50, 748-758.	0.5	3
2594	Diversity of coâ€flowering plants at field margins potentially sustains an abundance of insects visiting buckwheat, Fagopyrum esculentum, in an agricultural landscape. Ecological Research, 2021, 36, 882-891.	0.7	3
2595	Novel pollen analogue technique shows bumblebees display low floral constancy and prefer sites with high floral diversity. Landscape Ecology, 2021, 36, 3231-3247.	1.9	7

#	Article	IF	CITATIONS
2596	Effects of glyphosate spray-drift on plant flowering. Environmental Pollution, 2021, 280, 116953.	3.7	16
2597	Expanding insect pollinators in the <scp>A</scp> nthropocene. Biological Reviews, 2021, 96, 2755-2770.	4.7	35
2598	Sublethal neonicotinoid exposure attenuates the effects of electromagnetic fields on honey bee flight and learning. Environmental Advances, 2021, 4, 100051.	2.2	8
2599	Opportunities to enhance pollinator biodiversity in solar parks. Renewable and Sustainable Energy Reviews, 2021, 145, 111065.	8.2	31
2600	Arable wildflowers have potential as living mulches for sustainable agriculture. Plant Ecology and Diversity, 2021, 14, 93-104.	1.0	3
2602	Reproductive fitness of honey bee queens exposed to thiamethoxam during development. Veterinary Pathology, 2021, 58, 1107-1118.	0.8	3
2603	A test of new trapping methods for honey bees using odor attractants and a dry trap. Journal of Apicultural Research, 2024, 63, 38-40.	0.7	0
2604	Using Matching Traits to Study the Impacts of Land-Use Intensification on Plant–Pollinator Interactions in European Grasslands: A Review. Insects, 2021, 12, 680.	1.0	8
2605	Methylene blue can act as an antidote to pesticide poisoning of bumble bee mitochondria. Scientific Reports, 2021, 11, 14710.	1.6	7
2606	Conservation planning for pollinators in the U.S. Great Plains: considerations of context, treatments, and scale. Ecosphere, 2021, 12, e03556.	1.0	5
2607	Pesticide Impact on Honeybees Declines and Emerging Food Security Crisis. , 0, , .		3
2608	Cattle and sheep differentially alter floral resources and the native bee communities in working landscapes. Ecological Applications, 2021, 31, e02406.	1.8	7
2609	The role of soils on pollination and seed dispersal. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200171.	1.8	17
2610	How protection of honey bees can help and hinder bee conservation. Current Opinion in Insect Science, 2021, 46, 112-118.	2.2	25
2611	Effect of climate seasonality and vegetation cover on floral resource selection by two stingless bee species. Apidologie, 2021, 52, 974-989.	0.9	4
2612	Analyzing growers' pest management decisions in the U.S. ornamental horticulture industry. Journal of Cleaner Production, 2021, 312, 127788.	4.6	0
2613	Does Counting Different Life Stages Impact Estimates for Extinction Probabilities for Tsetse (Glossina) Tj ETQq0 (0 0 rgBT /C)verlock 10 T
2614	The earliest record of fossil solid-wood-borer larvaeâ€"immature beetles in 99 million-year-old Myanmar amber. Palaeoentomology, 2021, 4, .	0.4	11

#	Article	IF	CITATIONS
2615	Nectar Production and Spectrum of Insect Visitors in Six Varieties of Highbush Blueberry (Vaccinium) Tj ETQq0 0	0 rgBT /Ov	verJock 10 Tf
2616	Source–sink dynamics assists the maintenance of a pollinating wasp. Molecular Ecology, 2021, 30, 4695-4707.	2.0	2
2617	UAV-Based Land Cover Classification for Hoverfly (Diptera: Syrphidae) Habitat Condition Assessment: A Case Study on Mt. Stara Planina (Serbia). Remote Sensing, 2021, 13, 3272.	1.8	2
2620	Mineral-Ecological Cropping Systems—A New Approach to Improve Ecosystem Services by Farming without Chemical Synthetic Plant Protection. Agronomy, 2021, 11, 1710.	1.3	25
2621	Habitat heterogeneity helps to mitigate pollinator nectar sugar deficit and discontinuity in an agricultural landscape. Science of the Total Environment, 2021, 782, 146909.	3.9	19
2622	A Regional, Honey Bee-Centered Approach Is Needed to Incentivize Grower Adoption of Bee-Friendly Practices in the Almond Industry. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	7
2623	Pollinator decline: what do we know about the drivers of solitary bee declines?. Current Opinion in Insect Science, 2021, 46, 106-111.	2.2	34
2624	Best practice for protecting pollinators. Nature Ecology and Evolution, 2021, 5, 1336-1337.	3.4	1
2625	Effect of thiamethoxam on the survival of brood in Apis mellifera L. colonies placed in mustard fields. Journal of Apicultural Research, 0, , 1-6.	0.7	0
2626	Enhancement of the Diversity of Pollinators and Beneficial Insects in Intensively Managed Vineyards. Insects, 2021, 12, 740.	1.0	5
2627	Criteria to select vegetal species for restoration of plant-pollinator interactions in agricultural landscapes of the Pampa grassland (Argentina). Acta Oecologica, 2021, 111, 103710.	0.5	4
2628	A farm-level ecological-economic approach of the inclusion of pollination services in arable crop farms. Land Use Policy, 2021, 107, 105462.	2.5	6
2629	Capabilities and limitations of using DNA metabarcoding to study plant–pollinator interactions. Molecular Ecology, 2021, 30, 5266-5297.	2.0	22
2630	The importance of small natural features in forestsâ€"How the overgrowth of forest gaps affects indigenous flower supply and flowerâ€visiting insects and seed sets of six <i>Campanula</i> species. Ecology and Evolution, 2021, 11, 11991-12002.	0.8	2
2631	Parallel evolution of <i>Varroa </i> resistance in honey bees: a common mechanism across continents?. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211375.	1.2	17
2632	Eristalis flower flies can be mechanical vectors of the common trypanosome bee parasite, Crithidia bombi. Scientific Reports, 2021, 11, 15852.	1.6	9
2633	Socioecological Factors and Farmer Perceptions Impacting Pesticide Use and Pollinator Conservation on Cucurbit Farms. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	5
2634	The Native Bees of Texas: Evaluating the Benefits of a Public Engagement Course. Insects, 2021, 12, 702.	1.0	1

#	Article	IF	Citations
2635	Breeding systems of the Japanese â€endemic carnivorous sundew species Drosera makinoi and Drosera toyoakensis (Droseraceae). Plant Species Biology, 0, , .	0.6	1
2636	Negative effects of neonicotinoids on male honeybee survival, behaviour and physiology in the field. Journal of Applied Ecology, 2021, 58, 2515-2528.	1.9	13
2637	Combined Effects of Pesticides and Electromagnetic-Fields on Honeybees: Multi-Stress Exposure. Insects, 2021, 12, 716.	1.0	12
2638	Improved mitochondrial function corrects immunodeficiency and impaired respiration in neonicotinoid exposed bumblebees. PLoS ONE, 2021, 16, e0256581.	1.1	7
2639	Moths as potential pollinators in avocado (Persea americana) orchards in temperate regions. New Zealand Journal of Crop and Horticultural Science, 0, , 1-12.	0.7	2
2640	Biologically Active Extracts from Different Medicinal Plants Tested as Potential Additives against Bee Pathogens. Antibiotics, 2021, 10, 960.	1.5	5
2641	Contribution to the knowledge of the bee fauna (Hymenoptera, Apoidea, Anthophila) in Serbia. ZooKeys, 2021, 1053, 43-105.	0.5	2
2642	Biodiversity and Stage of the Art of Three Pollinators Taxa in Mexico: An Overview. Sustainability, 2021, 13, 9051.	1.6	1
2643	Proximity to natural habitat and flower plantings increases insect populations and pollination services in South African apple orchards. Journal of Applied Ecology, 2021, 58, 2540-2551.	1.9	11
2644	Local ecological knowledge of beekeeping with stingless bees (Apidae: Meliponini) in Central Veracruz, Mexico. Journal of Apicultural Research, 2022, 61, 717-729.	0.7	5
2645	Apple pollination is ensured by wild bees when honey bees are drawn away from orchards by a mass co-flowering crop, oilseed rape. Agriculture, Ecosystems and Environment, 2021, 315, 107383.	2.5	34
2646	A simple method for ex vivo honey bee cell culture capable of in vitro gene expression analysis. PLoS ONE, 2021, 16, e0257770.	1.1	4
2647	Negative Effects of the Neonicotinoid Clothianidin on Foraging Behavior and Antennal Sensitivity in Two Common Pollinator Species, Osmia bicornis and Bombus terrestris. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	13
2648	Decline in body size and female fraction in the grass snake (Natrix natrix, Linnaeus 1758) population after 40 years (Southern Poland). Environmental Science and Pollution Research, 2022, 29, 8334-8340.	2.7	0
2649	An Innate Preference of Bumblebees for Volatile Organic Compounds Emitted by Phaseolus vulgaris Plants Infected With Three Different Viruses. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	6
2650	Real-time monitoring of deformed wing virus-infected bee foraging behavior following histone deacetylase inhibitor treatment. IScience, 2021, 24, 103056.	1.9	1
2651	Beescape: Characterizing user needs for environmental decision support in beekeeping. Ecological Informatics, 2021, 64, 101366.	2.3	5
2652	Physiological and Immunological Status of Adult Honeybees (Apis mellifera) Fed Sugar Syrup Supplemented with Pentadecapeptide BPC 157. Biology, 2021, 10, 891.	1.3	13

#	Article	IF	CITATIONS
2653	Bees on the flowers of Solanum mauritianum Scop. (Solanaceae) in Southern Brazil: visitation frequency and topological networks from body and leg pollen analysis. Arthropod-Plant Interactions, 2021, 15, 907-916.	0.5	0
2654	Seasonal Appearance, Abundance, and Host Preference of <i>Philaenus spumarius</i> and <i>Neophilaenus campestris</i> (Hemiptera: Aphrophoridae) in Olive Groves in Greece. Environmental Entomology, 2021, 50, 1474-1482.	0.7	7
2655	Feed the bees and shade the streams: riparian shrubs planted for restoration provide forage for native bees. Restoration Ecology, 0 , , e13525.	1.4	3
2656	Impacts of COVID-19 on Canadian Beekeeping: Survey Results and a Profitability Analysis. Journal of Economic Entomology, 2021, 114, 2245-2254.	0.8	3
2657	Flower colour and size signals differ depending on geographical location and altitude region. Plant Biology, 2021, 23, 905-914.	1.8	6
2658	Pollen limitation and xenia effects in a cultivated mass-flowering tree, <i>Macadamia integrifolia</i> (Proteaceae). Annals of Botany, 2022, 129, 135-146.	1.4	16
2659	The cell invasion preference of Varroa destructor between the original and new honey bee hosts. International Journal for Parasitology, 2021, 52, 125-125.	1.3	2
2660	How effective are artificial nests in attracting bees? A review. Journal of Ecology and Environment, 2021, 45, .	1.6	4
2661	Impacts of management at a local and landscape scale on pollinators in semiâ€natural grasslands. Journal of Applied Ecology, 2021, 58, 2505-2514.	1.9	12
2662	Ecosystem complexity enhances the resilience of plant-pollinator systems. One Earth, 2021, 4, 1286-1296.	3.6	9
2663	Vulnerability of island insect pollinator communities to pathogens. Journal of Invertebrate Pathology, 2021, 186, 107670.	1.5	2
2664	Neglected diversity of crop pollinators: Lessons from the world's largest tropical country. Perspectives in Ecology and Conservation, 2021, 19, 500-504.	1.0	3
2665	Promoting Forage Legume–Pollinator Interactions: Integrating Crop Pollination Management, Native Beekeeping and Silvopastoral Systems in Tropical Latin America. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	2
2666	Patterns of pollination interactions at the community level are related to the type and quantity of floral resources. Functional Ecology, 2021, 35, 2461-2471.	1.7	11
2667	Prevalence of potato viruses on potato (Solanum tuberosum L.) grown in the Western Highlands of Cameroon. Journal of Agriculture and Food Research, 2021, 5, 100192.	1.2	5
2668	Do <i>Apis</i> and <scp>nonâ€<i>Apis</i> </scp> bees provide a similar contribution to crop production with different levels of pollination dependency? A review using metaâ€analysis. Ecological Entomology, 2022, 47, 76-83.	1.1	6
2669	Pesticide residues in the pollen and nectar of oilseed rape (Brassica napus L.) and their potential risks to honey bees. Science of the Total Environment, 2021, 786, 147443.	3.9	38
2670	Varroa destructor from the Laboratory to the Field: Control, Biocontrol and IPM Perspectives—A Review. Insects, 2021, 12, 800.	1.0	28

#	Article	IF	Citations
2671	Burning for grassland pollination: Recently burned patches promote plant flowering and insect pollinators. Austral Ecology, 2022, 47, 491-506.	0.7	7
2672	Spatiotemporal dynamics of insect pollinator communities in sagebrush steppe associated with weather and vegetation. Global Ecology and Conservation, 2021, 29, e01691.	1.0	4
2673	Resampling of wild bees across fifteen years reveals variable species declines and recoveries after extreme weather. Agriculture, Ecosystems and Environment, 2021, 317, 107470.	2.5	11
2674	Pollinators of the Great Plains: Disturbances, Stressors, Management, and Research Needs. Rangeland Ecology and Management, 2021, 78, 220-234.	1.1	15
2675	Maine's Bumble Bees (Hymenoptera: Apidae)â€"Part 2: Comparisons of a Common (Bombus ternarius) and a Rare (Bombus terricola) Species. Environmental Entomology, 2021, , .	0.7	2
2676	A Comprehensive Review on Synthetic Insecticides: Toxicity to Pollinators, Associated Risk to Food Security, and Management Approaches. Journal of Biosystems Engineering, 2021, 46, 254-272.	1.2	10
2677	Resistance and Vulnerability of Honeybee (Apis mellifera) Gut Bacteria to Commonly Used Pesticides. Frontiers in Microbiology, 2021, 12, 717990.	1.5	16
2678	Crop genetic erosion: understanding and responding to loss of crop diversity. New Phytologist, 2022, 233, 84-118.	3.5	137
2679	Pollinators contribute to the maintenance of flowering plant diversity. Nature, 2021, 597, 688-692.	13.7	57
2680	Dissipation and cross-contamination of miticides in apiculture. Evaluation by APIStrip-based sampling. Chemosphere, 2021, 280, 130783.	4.2	8
2681	Habitat quality and connectivity in kettle holes enhance bee diversity in agricultural landscapes. Agriculture, Ecosystems and Environment, 2021, 319, 107525.	2.5	10
2682	Pestisit Kullanımının Bal Verimi Üzerine Etkisi; Panel Veri Analizi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 0, , .	0.2	0
2683	Contrasting effects of past and present mass-flowering crop cultivation on bee pollinators shaping yield components in oilseed rape. Agriculture, Ecosystems and Environment, 2021, 319, 107537.	2.5	10
2684	Presence, persistence and distribution of thymol in honeybees and beehive compartments by high resolution mass spectrometry. Environmental Advances, 2021, 5, 100085.	2.2	6
2685	Impact of low temperatures on the immune system of honeybees. Journal of Thermal Biology, 2021, 101, 103082.	1.1	2
2686	Comparison of grassland plant-pollinator networks on dairy farms in three contrasting French landscapes. Acta Oecologica, 2021, 112, 103763.	0.5	6
2687	Proportion of commodity crop pollens and pesticide contamination in honey bee diets in two different landscapes. Environmental Advances, 2021, 5, 100116.	2.2	8
2688	Assessment of Woody Taxa Used in Urban Landscape in terms of Bee Plants Attributes; Artvin City Example. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 2022, 25, 986-998.	0.2	2

#	ARTICLE	IF	CITATIONS
2689	Role of floral strips and semi-natural habitats as enhancers of wild bee functional diversity in intensive agricultural landscapes. Agriculture, Ecosystems and Environment, 2021, 319, 107544.	2.5	11
2690	Improving the pollinator pantry: Restoration and management of open farmland ponds enhances the complexity of plant-pollinator networks. Agriculture, Ecosystems and Environment, 2021, 320, 107611.	2.5	6
2691	Can landscape level semi-natural habitat compensate for pollinator biodiversity loss due to farmland consolidation?. Agriculture, Ecosystems and Environment, 2021, 319, 107519.	2.5	25
2692	Species-specific landscape characterisation method in agro-ecosystems. Ecological Indicators, 2021, 129, 107894.	2.6	4
2693	Asynchrony between solitary bee emergence and flower availability reduces flower visitation rate and may affect offspring size. Basic and Applied Ecology, 2021, 56, 345-357.	1.2	4
2694	Chronic contact with imidacloprid during development may decrease female solitary bee foraging ability and increase male competitive ability for mates. Chemosphere, 2021, 283, 131177.	4.2	14
2695	Hand pollination of global crops – A systematic review. Basic and Applied Ecology, 2021, 56, 299-321.	1.2	32
2696	Traditional rangeland management can conserve insect pollinators in a semi-arid rangeland, northern Tanzania. Acta Oecologica, 2021, 113, 103790.	0.5	1
2697	Beemon: An IoT-based beehive monitoring system. Computers and Electronics in Agriculture, 2021, 190, 106427.	3.7	35
2698	Solar energy development impacts flower-visiting beetles and flies in the Mojave Desert. Biological Conservation, 2021, 263, 109336.	1.9	16
2699	A common fungicide, Pristine®, impairs olfactory associative learning performance in honey bees (Apis) Tj ETQq	0 <u>9.9</u> rgBT	-/Qyerlock 1
2700	High population density of bee pollinators increasing Camelina sativa (L.) Crantz seed yield: Implications on the potential risk for insect-mediated gene flow. Industrial Crops and Products, 2021, 172, 114001.	2.5	2
2701	Spatial configuration and landscape context of wildflower areas determine their benefits to pollinator \hat{l}_{\pm} - and \hat{l}^{2} -diversity. Basic and Applied Ecology, 2021, 56, 335-344.	1.2	14
2702	Native flower strips increase visitation by non-bee insects to avocado flowers and promote yield. Basic and Applied Ecology, 2021, 56, 369-378.	1.2	13
2703	Landscape heterogeneity and forest cover shape cavity-nesting hymenopteran communities in a multi-scale perspective. Basic and Applied Ecology, 2021, 56, 239-249.	1.2	22
2704	Farmland heterogeneity is associated with gains in some ecosystem services but also potential trade-offs. Agriculture, Ecosystems and Environment, 2021, 322, 107661.	2.5	20
2705	Global trends in the number and diversity of managed pollinator species. Agriculture, Ecosystems and Environment, 2021, 322, 107653.	2.5	72
2706	Risk and protective indicators of beekeeping management practices. Science of the Total Environment, 2021, 799, 149381.	3.9	13

#	Article	IF	CITATIONS
2707	Environmental exposures associated with honey bee health. Chemosphere, 2022, 286, 131948.	4.2	9
2710	Sectoral Impacts of Invasive Species in the United States and Approaches to Management., 2021,, 203-229.		6
2711	Effects of Natural Habitat Loss and Edge Effects on Wild Bees and Pollination Services in Remnant Prairies. Environmental Entomology, 2021, 50, 732-743.	0.7	17
2712	Nexus on climate change: agriculture and possible solution to cope future climate change stresses. Environmental Science and Pollution Research, 2021, 28, 14211-14232.	2.7	135
2713	Shifts in honeybee foraging reveal historical changes in floral resources. Communications Biology, 2021, 4, 37.	2.0	31
2714	Invader–pollinator paradox: Invasive goldenrods benefit from large size pollinators. Diversity and Distributions, 2021, 27, 632-641.	1.9	6
2715	Do Viruses From Managed Honey Bees (Hymenoptera: Apidae) Endanger Wild Bees in Native Prairies?. Environmental Entomology, 2021, 50, 455-466.	0.7	16
2716	Worldwide occurrence records suggest a global decline in bee species richness. One Earth, 2021, 4, 114-123.	3.6	246
2717	Pollination and Ecological Intensification: A Way Towards Green Revolution., 2021,, 381-427.		0
2718	Shrubs as magnets for pollination: A test of facilitation and reciprocity in a shrub-annual facilitation system. Current Research in Insect Science, 2021, 1, 100008.	0.8	4
2719	Conservation of Social Insects. , 2021, , 294-298.		0
2720	Supplying honey bees with waterers: a precautionary measure to reduce exposure to pesticides. Environmental Science and Pollution Research, 2021, 28, 17573-17586.	2.7	6
2721	Environmental conditions and beekeeping practices associated with Nosema ceranae presence in Argentina. Apidologie, 2021, 52, 400-417.	0.9	3
2722	Uncovering the potential for exurban properties and small working farms in the Midwestern United States to provide food and refuge for pollinators. Urban Ecosystems, 2021, 24, 1047-1060.	1.1	2
2723	OUP accepted manuscript. Annals of the Entomological Society of America, 2022, 115, 69-94.	1.3	4
2724	Wild bees as winners and losers: Relative impacts of landscape composition, quality, and climate. Global Change Biology, 2021, 27, 1250-1265.	4.2	48
2725	Vulnerability of Crop Pollination Ecosystem Services to Climate Change. Springer Water, 2020, , 223-247.	0.2	2
2726	Wild Pollinators in Arable Habitats: Trends, Threats and Opportunities., 2020,, 187-201.		1

#	Article	IF	Citations
2727	Stingless Bees: An Overview. Fascinating Life Sciences, 2020, , 1-42.	0.5	5
2728	Invertebrates on Green Roofs. Ecological Studies, 2015, , 333-355.	0.4	24
2729	Environmental Impactsâ€"Terrestrial Ecosystems. Regional Climate Studies, 2016, , 341-372.	1.2	2
2731	Plant-Pollinator Interactions: A Highly Evolved Synchrony at Risk Due to Climate Change. , 2013, , 295-302.		3
2733	Diseases and Enemies. , 2013, , 761-809.		1
2734	Manipulating Alien Plant Species Propagule Pressure as a Prevention Strategy for Protected Areas., 2013,, 473-486.		5
2735	Ecological Novelty: Towards an Interdisciplinary Understanding of Ecological Change in the Anthropocene., 2015,, 19-37.		11
2736	Indicators of Pollinator Decline and Pollen Limitation. , 2015, , 103-115.		4
2737	Beekeeping in Mongolia. , 2018, , 199-221.		1
2738	Honey: Types, Composition and Antimicrobial Mechanisms. , 2020, , 193-214.		1
2739	A world review of reported mylases caused by flower flies (Diptera: Syrphidae), including the first case of human mylasis from Palpada scutellaris (Fabricius, 1805). Parasitology Research, 2020, 119, 815-840.	0.6	9
2740	Influence of landscape context on the abundance of native bee pollinators in tomato crops in Central Brazil. Journal of Insect Conservation, 2017, 21, 715-726.	0.8	21
2741	Evaluation of the importance of ornamental plants for pollinators in urban and suburban areas in Stuttgart, Germany. Urban Ecosystems, 2021, 24, 811-825.	1.1	14
2742	Understanding how changing soil nitrogen affects plant–pollinator interactions. Arthropod-Plant Interactions, 2019, 13, 671-684.	0.5	35
2743	Pollinators, Role of â~†., 2017, , .		4
2744	Increasing plant functional diversity is not the key for supporting pollinators in wildflower strips. Agriculture, Ecosystems and Environment, 2017, 249, 144-155.	2.5	31
2745	Near-natural habitats near almond orchards with presence of empty gastropod shells are important for solitary shell-nesting bees and wasps. Agriculture, Ecosystems and Environment, 2020, 299, 106949.	2.5	5
2746	Forest fragments and natural vegetation patches within crop fields contribute to higher oilseed rape yields in Brazil. Agricultural Systems, 2020, 180, 102768.	3.2	14

#	Article	IF	Citations
2747	Forest patch isolation drives local extinctions of Amazonian orchid bees in a 26 years old archipelago. Biological Conservation, 2017, 214, 270-277.	1.9	42
2748	Are All Colonies Created Equal? The Role of Honey Bee Colony Strength in Almond Pollination Contracts. Ecological Economics, 2020, 177, 106744.	2.9	13
2749	Unmanned aerial vehicles for biodiversity-friendly agricultural landscapes - A systematic review. Science of the Total Environment, 2020, 732, 139204.	3.9	67
2750	Citizen science data reveals the need for keeping garden plant recommendations up-to-date to help pollinators. Scientific Reports, 2020, 10, 20483.	1.6	3
2751	Bumble bees in landscapes with abundant floral resources have lower pathogen loads. Scientific Reports, 2020, 10, 22306.	1.6	46
2752	GloPL, a global data base on pollen limitation of plant reproduction. Scientific Data, 2018, 5, 180249.	2.4	39
2753	Nocturnal pollination: an overlooked ecosystem service vulnerable to environmental change. Emerging Topics in Life Sciences, 2020, 4, 19-32.	1,1	43
2754	Landscape context affects the sustainability of organic farming systems. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2870-2878.	3.3	55
2755	Forest fragmentation and biodiversity conservation in human-dominated landscapes, 2014, , 28-49.		6
2756	The positive contribution of invertebrates to sustainable agriculture and food security CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-27.	0.6	31
2757	Bee colony health indicators: synthesis and future directions CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-12.	0.6	13
2758	Does organic farming affect biodiversity?. , 2015, , 108-132.		3
2759	Landscape Composition and Fungicide Exposure Influence Host–Pathogen Dynamics in a Solitary Bee. Environmental Entomology, 2021, 50, 107-116.	0.7	9
2760	Honeybee lifespan: the critical role of pre-foraging stage. Royal Society Open Science, 2020, 7, 200998.	1.1	26
2761	Pollination by hoverflies in the Anthropocene. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200508.	1.2	110
2762	Pesticide and resource stressors additively impair wild bee reproduction. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201390.	1.2	47
2763	The discovery of Halictivirus resolves the Sinaivirus phylogeny. Journal of General Virology, 2017, 98, 2864-2875.	1.3	31
2764	The virome of an endangered stingless bee suffering from annual mortality in southern Brazil. Journal of General Virology, 2019, 100, 1153-1164.	1.3	23

#	Article	IF	Citations
2765	Advances in actinomycete research: an ActinoBase review of 2019. Microbiology (United Kingdom), 2020, 166, 683-694.	0.7	20
2778	Grasshopper country before and after: a resurvey of Ken Key's collecting expeditions in New South Wales, Australia, 70Âyears on. Austral Entomology, 2021, 60, 52-65.	0.8	8
2779	Development of a wing-beat-modulation scanning lidar system for insect studies. , 2017, , .		4
2780	Wild bee distribution near forested landscapes is dependent on successional state. Forest Ecosystems, 2020, 7, .	1.3	15
2782	The Smell of Selfless Love: Sharing Vulnerability with Bees in Alternative Apiculture. Environmental Humanities, 2014, 4, 149-170.	0.4	15
2783	Food Systems Resilience: Towards an Interdisciplinary Research Agenda. Emerald Open Research, 0, 1, 4.	0.0	25
2784	Ecological implications of reduced pollen supply in the alpine: a case study using a dominant cushion plant species. F1000Research, 0, 3, 130.	0.8	1
2785	Variable effects of nicotine and anabasine on parasitized bumble bees. F1000Research, 2015, 4, 880.	0.8	21
2786	Variable effects of nicotine, anabasine, and their interactions on parasitized bumble bees. F1000Research, 2015, 4, 880.	0.8	26
2787	Insect pollinator diversity along a habitat quality gradient on Mount Slamet, Central Java, Indonesia. Biodiversitas, 2016, 17, .	0.2	4
2788	Investigating Eusociality in Bees while Trusting the Uncertainty. Sociobiology, 2015, 61, .	0.2	13
2789	Network of Bee-plant Interactions and Recognition of Key Species in Semideciduous Forest. Sociobiology, 2016, 62, .	0.2	6
2790	Diversity of flower visiting bees of Eugenia uniflora L. (Myrtaceae) in fragments of Atlantic Forest in South Brazil. Sociobiology, 2016, 63, 982.	0.2	5
2791	Effects of Sublethal Concentrations of Chlorpyrifos on Olfactory Learning and Memory Performances in Two Bee Species, Apis mellifera and Apis cerana. Sociobiology, 2017, 64, 174.	0.2	20
2792	Interaction Network and Niche Analysis of Natural Enemy Communities and their Host Bees (Hymenoptera: Apoidea) in fragments of Cerrado and Atlantic Forest. Sociobiology, 2018, 65, 591.	0.2	3
2793	An Overview on Honeybee Colony Losses in Buenos Aires Province, Argentina. Sociobiology, 2019, 66, 75.	0.2	4
2794	Emerging vistas of Remote Sensing Tools in Pollination Studies. Sociobiology, 2019, 66, 394.	0.2	4
2795	Contribution of the Cerrado as Habitat for Sunflower Pollinating Bees. Sociobiology, 2020, 67, 281.	0.2	5

#	Article	IF	Citations
2796	Soundscape Indices: New Features for Classifying Beehive Audio Samples. Sociobiology, 2020, 67, 566-571.	0.2	16
2797	Field demonstration of a wing-beat modulation lidar for the 3D mapping of flying insects. OSA Continuum, 2019, 2, 332.	1.8	18
2798	Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biology, 2017, 15, e2001861.	2.6	367
2799	Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biology, 2017, 15, e2003467.	2.6	270
2800	Contribution of Pollinator-Mediated Crops to Nutrients in the Human Food Supply. PLoS ONE, 2011, 6, e21363.	1.1	251
2801	Quantitative Historical Change in Bumblebee (Bombus spp.) Assemblages of Red Clover Fields. PLoS ONE, 2011, 6, e25172.	1.1	89
2802	The Influence of Climatic Seasonality on the Diversity of Different Tropical Pollinator Groups. PLoS ONE, 2011, 6, e27115.	1.1	52
2803	Micro-CT Imaging of Denatured Chitin by Silver to Explore Honey Bee and Insect Pathologies. PLoS ONE, 2011, 6, e27448.	1.1	7
2804	Winter Survival of Individual Honey Bees and Honey Bee Colonies Depends on Level of Varroa destructor Infestation. PLoS ONE, 2012, 7, e36285.	1.1	127
2805	The Whereabouts of Flower Visitors: Contrasting Land-Use Preferences Revealed by a Country-Wide Survey Based on Citizen Science. PLoS ONE, 2012, 7, e45822.	1.1	106
2806	The Prevalence of Parasites and Pathogens in Asian Honeybees Apis cerana in China. PLoS ONE, 2012, 7, e47955.	1.1	99
2807	Assessing Insecticide Hazard to Bumble Bees Foraging on Flowering Weeds in Treated Lawns. PLoS ONE, 2013, 8, e66375.	1.1	83
2808	Comparative Toxicities and Synergism of Apple Orchard Pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS ONE, 2013, 8, e72587.	1.1	127
2809	Fearful Foragers: Honey Bees Tune Colony and Individual Foraging to Multi-Predator Presence and Food Quality. PLoS ONE, 2013, 8, e75841.	1.1	34
2810	Transcriptome Analyses of the Honeybee Response to Nosema ceranae and Insecticides. PLoS ONE, 2014, 9, e91686.	1.1	208
2811	Cephalaria transsylvanica-Based Flower Strips as Potential Food Source for Bees during Dry Periods in European Mediterranean Basin Countries. PLoS ONE, 2014, 9, e93153.	1.1	24
2812	Waggle Dance Distances as Integrative Indicators of Seasonal Foraging Challenges. PLoS ONE, 2014, 9, e93495.	1.1	154
2813	Multilevel Spatial Structure Impacts on the Pollination Services of Comarum palustre (Rosaceae). PLoS ONE, 2014, 9, e99295.	1.1	15

#	Article	IF	CITATIONS
2814	Why Some Plant Species Are Rare. PLoS ONE, 2014, 9, e102674.	1.1	26
2815	Decreasing Abundance, Increasing Diversity and Changing Structure of the Wild Bee Community (Hymenoptera: Anthophila) along an Urbanization Gradient. PLoS ONE, 2014, 9, e104679.	1.1	241
2816	Do Pollinators Contribute to Nutritional Health?. PLoS ONE, 2015, 10, e114805.	1.1	77
2817	Olfactory Attraction of the Hornet Vespa velutina to Honeybee Colony Odors and Pheromones. PLoS ONE, 2014, 9, e115943.	1.1	41
2818	Dynamical Transitions in a Pollination–Herbivory Interaction: A Conflict between Mutualism and Antagonism. PLoS ONE, 2015, 10, e0117964.	1.1	14
2819	Bees for Development: Brazilian Survey Reveals How to Optimize Stingless Beekeeping. PLoS ONE, 2015, 10, e0121157.	1.1	122
2820	Tropical Forest Fragmentation Affects Floral Visitors but Not the Structure of Individual-Based Palm-Pollinator Networks. PLoS ONE, 2015, 10, e0121275.	1.1	21
2821	Roles of Spatial Scale and Rarity on the Relationship between Butterfly Species Richness and Human Density in South Africa. PLoS ONE, 2015, 10, e0124327.	1.1	8
2822	Weight Watching and the Effect of Landscape on Honeybee Colony Productivity: Investigating the Value of Colony Weight Monitoring for the Beekeeping Industry. PLoS ONE, 2015, 10, e0132473.	1.1	43
2823	Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps. PLoS ONE, 2015, 10, e0136928.	1.1	236
2824	Do Not Divide Count Data with Count Data; A Story from Pollination Ecology with Implications Beyond. PLoS ONE, 2016, 11, e0149129.	1.1	33
2825	Conservation of Pollinators in Traditional Agricultural Landscapes – New Challenges in Transylvania (Romania) Posed by EU Accession and Recommendations for Future Research. PLoS ONE, 2016, 11, e0151650.	1.1	35
2826	Food for Pollinators: Quantifying the Nectar and Pollen Resources of Urban Flower Meadows. PLoS ONE, 2016, 11, e0158117.	1.1	233
2827	Life-Long Radar Tracking of Bumblebees. PLoS ONE, 2016, 11, e0160333.	1.1	106
2828	Go East for Better Honey Bee Health: Apis cerana Is Faster at Hygienic Behavior than A. mellifera. PLoS ONE, 2016, 11, e0162647.	1.1	31
2829	Importance of Ecological Factors and Colony Handling for Optimizing Health Status of Apiaries in Mediterranean Ecosystems. PLoS ONE, 2016, 11, e0164205.	1.1	13
2830	Unbiased RNA Shotgun Metagenomics in Social and Solitary Wild Bees Detects Associations with Eukaryote Parasites and New Viruses. PLoS ONE, 2016, 11, e0168456.	1.1	46
2831	Nutrient enrichment is associated with altered nectar and pollen chemical composition in Succisa pratensis Moench and increased larval mortality of its pollinator Bombus terrestris L PLoS ONE, 2017, 12, e0175160.	1.1	35

#	Article	IF	CITATIONS
2832	Comparing bee species responses to chemical mixtures: Common response patterns?. PLoS ONE, 2017, 12, e0176289.	1.1	54
2833	Insights into the biochemical defence and methylation of the solitary bee Osmia rufa L: A foundation for examining eusociality development. PLoS ONE, 2017, 12, e0176539.	1.1	24
2834	Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera). PLoS ONE, 2017, 12, e0176837.	1.1	74
2835	Feeding toxicity and impact of imidacloprid formulation and mixtures with six representative pesticides at residue concentrations on honey bee physiology (Apis mellifera). PLoS ONE, 2017, 12, e0178421.	1.1	51
2836	Individual perception of bees: Between perceived danger and willingness to protect. PLoS ONE, 2017, 12, e0180168.	1.1	55
2837	Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera) worker castes. PLoS ONE, 2017, 12, e0184108.	1.1	29
2838	New evidence showing that the destruction of gut bacteria by antibiotic treatment could increase the honey bee $\hat{a} \in \mathbb{N}$ s vulnerability to Nosema infection. PLoS ONE, 2017, 12, e0187505.	1.1	79
2839	Genetic diversity and differentiation among insular honey bee populations in the southwest Indian Ocean likely reflect old geographical isolation and modern introductions. PLoS ONE, 2017, 12, e0189234.	1.1	15
2840	Livestock grazing is associated with seasonal reduction in pollinator biodiversity and functional dispersion but cheatgrass invasion is not: Variation in bee assemblages in a multi-use shortgrass prairie. PLoS ONE, 2020, 15, e0237484.	1.1	12
2841	The suitability of native flowers as pollen sources for Chrysoperla lucasina (Neuroptera:) Tj ETQq1 1 0.784314 r	gBT/Overlo	ock ₈ 10 Tf 50
2842	Strips of prairie vegetation placed within row crops can sustain native bee communities. PLoS ONE, 2020, 15, e0240354.	1.1	20
2843	Effects of the neonicotinoid acetamiprid in syrup on Bombus impatiens (Hymenoptera: Apidae) microcolony development. PLoS ONE, 2020, 15, e0241111.	1.1	8
2844	Identification of 37 microsatellite loci for Anthophora plumipes (Hymenoptera: Apidae) using next generation sequencing and their utility in related species. European Journal of Entomology, 2012, 109, 155-160.	1.2	3
2845	Bumblebee (Hymenoptera: Apidae) sample storage for a posteriori molecular studies: Interactions between sample storage and DNA-extraction techniques. European Journal of Entomology, 2013, 110, 419-425.	1.2	6
2846	Genome-wide discovery and characterization of microsatellite markers from Melipona fasciculata (Hymenoptera: Apidae), cross-amplification and a snapshot assessment of the genetic diversity in two stingless bee populations. European Journal of Entomology, 0, 115, 614-619.	1.2	3
2847	Sampling of flower-visiting insects: Poor correspondence between the catches of colour pan-trap and sweep netting. European Journal of Entomology, 0, 116, 425-431.	1.2	7
2848	European database of the life-history, morphological and habitat characteristics of dragonflies (Odonata). European Journal of Entomology, 0, 117, 302-308.	1.2	6
2849	Arguments in Favor of Moving to a Sustainable Business Model in the Apiary Industry. Studies in Business and Economics, 2017, 12, 159-170.	0.3	3

#	Article	IF	CITATIONS
2850	Automatic detection of bumblebees using video analysis. DYNA (Colombia), 2014, 81, 81-84.	0.2	5
2851	The importance of plant diversity in maintaining the pollinator bee, Eulaema nigrita (Hymenoptera:) Tj ETQq $1\ 1\ 0$.	784314 rg 0.1	gBT/Overloc
2852	Efecto letal agudo de los insecticidas en formulaci \tilde{A}^3 n comercial Imidacloprid, Spinosad y Thiocyclam hidrogenoxalato en obreras de Bombus atratus (Hymenoptera: Apidae). Revista De Biologia Tropical, 2016, 64, .	0.1	4
2853	CORRELATING THE POLLENS GATHERED BY APIS MELLIFERA WITH THE LANDSCAPE FEATURES IN WESTERN FRANCE. Applied Ecology and Environmental Research, 2014, 12, 423-439.	0.2	10
2854	HONEYBEE (APIS MELLIFERA) MEDIATED INCREASED REPRODUCTIVE SUCCESS OF A RARE DECEPTIVE ORCHID. Applied Ecology and Environmental Research, 2015, 13, .	0.2	6
2855	INCREASED POLLINATOR ACTIVITY IN URBAN GARDENS WITH MORE NATIVE FLORA. Applied Ecology and Environmental Research, 2016, 14, 297-310.	0.2	39
2856	ANALYSIS OF HABITAT CHANGES OF CASPIAN RED DEER (CERVUS ELAPHUS MARAL GRAY, 1850) BASED ON TEMPORAL CHANGES OF EFFECTIVE AREA AND FUNCTIONAL CONNECTIVITY â€' A CASE STUDY OF LISAR PROTECTED AREA. Applied Ecology and Environmental Research, 2016, 14, 71-83.	0.2	2
2857	Scenario-modelling for the sustainable management of non-timber forest products in tropical ecosystems. Biota Neotropica, 2020, 20, .	0.2	6
2858	Effects of Farmland and Seasonal Phenology on Wild Bees in Blueberry Orchards. Northeastern Naturalist, 2020, 27, .	0.1	3
2859	Grassland Bird and Butterfly Responses to Sericea Lespedeza Control via Late-Season Grazing Pressure. American Midland Naturalist, 2019, 181, 147.	0.2	7
2860	The role of local and landscape level factors in determining bumblebee abundance and richness. Acta Zoologica Academiae Scientiarum Hungaricae, 2016, 62, 387-407.	0.1	7
2861	Species diversity of wild bees (Hymenoptera: Apoidea) in parks of Kyiv. Bulletin of Taras Shevchenko National University of Kyiv Series Biology, 2019, 78, 40-49.	0.1	5
2862	Assessing Wild Pollinators in Conventional Agriculture: A Case Study From Maine's Blueberry Industry. Human Ecology Review, 2018, 24, .	0.6	6
2863	Climate change impacts on biodiversity and ecosystems in Sri Lanka: a review. Nature Conservation Research, 2017, 2, .	0.4	14
2864	Economic Value of Pollination Service of Agricultural Crops in Ethiopia: Biological Pollinators. Journal of Apicultural Science, 2018, 62, 265-273.	0.1	9
2865	Up-regulated pathways in response to Deformed Wing Virus infection in Apis mellifera (Hymenoptera:) Tj ETQq1 I	l 0.78431	4 _{[g} BT /Ove
2867	Floral visitors of <i>Ananas comosus</i> in Ghana: A preliminary assessment. Journal of Pollination Ecology, 0, , 27-32.	0.5	6
2868	Pollination ecology in the 21st Century: Key questions for future research. Journal of Pollination Ecology, 0, , 8-23.	0.5	98

#	ARTICLE	IF	CITATIONS
2869	How Pollination Ecology research can help answer important questions. Journal of Pollination Ecology, 0, , 68-73.	0.5	3
2870	A method for under-sampled ecological network data analysis: plant-pollination as case study. Journal of Pollination Ecology, 0, 6, .	0.5	12
2871	Insect pollination: commodity values, trade and policy considerations using coffee as an example. Journal of Pollination Ecology, 0, 7, .	0.5	1
2872	Experimental pollinator decline affects plant reproduction and is mediated by plant mating system. Journal of Pollination Ecology, 0, 11, 46-56.	0.5	21
2873	Humming along or buzzing off? The elusive consequences of plant-pollinator mismatches. Journal of Pollination Ecology, 0, 13, 129-145.	0.5	4
2874	Stingless bees further improve apple pollination and production. Journal of Pollination Ecology, 0, 14, 261-269.	0.5	28
2875	Pollination deficits in UK apple orchards. Journal of Pollination Ecology, 0, 12, 9-14.	0.5	50
2876	Long-term time-lapse video provides near complete records of floral visitation. Journal of Pollination Ecology, 0, 16, 91-100.	0.5	22
2877	Native and non-native plants attract diverse bees to urban gardens in California. Journal of Pollination Ecology, 0, 25, .	0.5	12
2878	Insect pollinators of conference pear (<i>Pyrus communis</i> L.) and their contribution to fruit quality. Journal of Pollination Ecology, 0, 25, .	0.5	7
2879	Using Density-Based Fishery Management Strategies to Respond to Mass Mortality Events. Journal of Shellfish Research, 2019, 38, 485.	0.3	12
2880	Importance of Non-Native Honeybees (Apis mellifera) as Flower Visitors to the Hawaiian Tree  Ōhi a Lehua (Metrosideros polymorpha) Across an Elevation Gradient1. Pacific Science, 2019, 73, 345.	0.2	6
2881	The potential management of the drone fly (<i>Eristalis tenax</i>) as a crop pollinator in New Zealand. New Zealand Plant Protection, 0, 72, 221-230.	0.3	25
2882	Landscape Structure Effects on Bee and Wasp Assemblages in a Semiarid Buffer Zone. Landscape Online, 0, 76, 1-17.	0.0	10
2883	Neonikotinoidlerin Zehir Etkilerini Belirlemede LD50 DeÄŸerleri Farklı Arı TÃ⅓rleri İçin Yanıltıcı Bir Öngösterge Olabilir. Uludag Aricilik Dergisi, 0, , 19-33.	0.6	5
2884	Bumblebee Communities (Apidae, Bombini) in Urban Parks in Relation to Park Area and Other Characteristics. Polish Journal of Ecology, 2019, 67, 84.	0.2	7
2885	The Influence of Species Richness and Forb Seed Density on Grassland Restoration in the Badlands of North Dakota, USA. Ecological Restoration, 2019, 37, 123-130.	0.5	4
2886	Successfully storing milkweed taproots for habitat restoration. Native Plants Journal, 2019, 20, 48-58.	0.0	3

#	Article	IF	CITATIONS
2887	Grooming Behavior in Naturally Varroa-Resistant Apis mellifera Colonies From North-Central Argentina. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	18
2888	Plant-Pollinator Networks in Savannas of Burkina Faso, West Africa. Diversity, 2021, 13, 1.	0.7	11
2889	How Bees Respond Differently to Field Margins of Shrubby and Herbaceous Plants in Intensive Agricultural Crops of the Mediterranean Area. Insects, 2020, 11, 26.	1.0	15
2890	The Relict Ecosystem of Maytenus senegalensis subsp. europaea in an Agricultural Landscape: Past, Present and Future Scenarios. Land, 2021, 10, 1.	1.2	29
2891	Ecologies of Scale: Multifunctionality Connects Conservation and Agriculture across Fields, Farms, and Landscapes. Land, 2014, 3, 739-769.	1.2	26
2892	Hawkmoth Pollination Facilitates Long-distance Pollen Dispersal and Reduces Isolation Across a Gradient of Land-use Change. Annals of the Missouri Botanical Garden, 2019, 104, 495-511.	1.3	31
2893	Orchestrated Flowering and Interspecific Facilitation: Key Factors in the Maintenance of the Main Pollinator of Coexisting Threatened Species of Andean Wax Palms (Ceroxylon spp.). Annals of the Missouri Botanical Garden, 2020, 105, 281-299.	1.3	7
2894	The diversity of wild bees (Hymenoptera: Apoidea) in the M. M. Gryshko National Botanic Gardens of the NAS of Ukraine. Issn 1726-8028, 2018, 26, 33-42.	0.2	4
2895	O furto como um fator limitante na criação de abelhas. Pesquisa Agropecuária Gaúcha, 2020, 26, 82-91.	0.2	3
2896	New records and range extensions of several species of native bees (Hymenoptera: Apoidea) from Mississippi. Biodiversity Data Journal, 2018, 6, e25230.	0.4	6
2897	A list of bees from three locations in the Northern Rockies Ecoregion (NRE) of western Montana. Biodiversity Data Journal, 2018, 6, e27161.	0.4	13
2898	Checklist of bees (Hymenoptera: Apoidea) from small diversified vegetable farms in south-western Montana. Biodiversity Data Journal, 2019, 7, e30062.	0.4	11
2899	Changes in bee community structure (Hymenoptera, Apoidea) under three different land-use conditions. Journal of Hymenoptera Research, 0, 66, 23-38.	0.8	7
2900	One-year-old flower strips already support a quarter of a city's bee species. Journal of Hymenoptera Research, 0, 75, 87-95.	0.8	9
2901	An updated checklist of the bees (Hymenoptera, Apoidea, Anthophila) of Pennsylvania, United States of America. Journal of Hymenoptera Research, 0, 77, 1-86.	0.8	13
2902	Pollination services mapping and economic valuation from insect communities: a case study in the Azores (Terceira Island). Nature Conservation, 0, 18, 1-25.	0.0	19
2903	A review of regulation ecosystem services and disservices from faunal populations and potential impacts of agriculturalisation on their provision, globally. Nature Conservation, 0, 30, 1-39.	0.0	24
2904	Mapping the dependency of crops on pollinators in Belgium. One Ecosystem, 0, 2, e13738.	0.0	10

#	Article	IF	CITATIONS
2905	Ailanthus altissima and Amorpha fruticosa $\hat{a}\in$ invasive arboreal alien plants as cheap sources of valuable essential oils. Pharmacia, 2020, 67, 71-81.	0.4	7
2906	The wild bees (Hymenoptera, Apoidea) of the island of Cyprus. ZooKeys, 2020, 924, 1-114.	0.5	20
2907	Environmental policies to protect pollinators: attributes and actions needed to avert climate borne crisis of oil seed agriculture in Pakistan. AIMS Agriculture and Food, 2017, 2, 233-250.	0.8	3
2908	Farming-Biodiversity Segregation or Integration? Revisiting Land Sparing versus Land Sharing Debate. Journal of Environmental Protection, 2016, 07, 1016-1032.	0.3	19
2909	Chlorantraniliprole: Reduced-risk Insecticide for Controlling Insect Pests of Woody Ornamentals with Low Hazard to Bees. Arboriculture and Urban Forestry, 2017, 43, .	0.2	4
2911	POLLEN BEARING HONEY BEE DETECTION IN HIVE ENTRANCE VIDEO RECORDED BY REMOTE EMBEDDED SYSTEM FOR POLLINATION MONITORING. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, III-7, 51-57.	0.0	23
2912	Data Quality and Participant Engagement in Citizen Science: Comparing Two Approaches for Monitoring Pollinators in France and South Korea. Citizen Science: Theory and Practice, 2019, 4, 22.	0.6	14
2913	Identifying Barriers to Citizen Scientist Retention When Measuring Pollination Services. Citizen Science: Theory and Practice, 2018, 3, 2.	0.6	12
2914	Floral phenology and pollen production in the five nocturnal Oenothera species (Onagraceae). Acta Agrobotanica, 2018, 71, .	1.0	6
2915	Utilization of Indian Dammar Bee (Tetragonula iridipennis Smith) as a Pollinator of Bitter Gourd. Acta Agrobotanica, 2020, 73, .	1.0	10
2916	Pollination biology of the urban populations of an ancient forest, spring ephemeral plant. Acta Societatis Botanicorum Poloniae, 2016, 85, .	0.8	5
2918	Desaparecimento de abelhas polinizadoras nos sistemas naturais e agrÃcolas: Existe uma explicação?. Revista De Ciencias Agroveterinarias, 2019, 18, .	0.0	8
2919	Factors Influencing Quality Honey Production. International Journal of Academic Research in Business and Social Sciences, 2017, 7, .	0.0	6
2921	Rarity is a more reliable indicator of land-use impacts on soil invertebrate communities than other diversity metrics. ELife, 2020, 9, .	2.8	20
2922	West Nile Virus in Hummingbirds in California, USA, 2005–17. Journal of Wildlife Diseases, 2019, 55, 903.	0.3	3
2923	A meta-analysis contrasting active versus passive restoration practices in dryland agricultural ecosystems. Peerl, 2020, 8, e10428.	0.9	17
2924	Use of video surveillance to measure the influences of habitat management and landscape composition on pollinator visitation and pollen deposition in pumpkin (<i>Cucurbita pepo</i>) agroecosystems. Peerl, 2015, 3, e1342.	0.9	22
2925	No effect of low-level chronic neonicotinoid exposure on bumblebee learning and fecundity. PeerJ, 2016, 4, e1808.	0.9	27

#	Article	IF	CITATIONS
2926	The effect of blow flies (Diptera: Calliphoridae) on the size and weight of mangos (<i>Mangifera) Tj ETQq0 0 0 rgE</i>	3T/Qverloo	։k 10 Tf 50 7
2927	Scarcity of ecosystem services: an experimental manipulation of declining pollination rates and its economic consequences for agriculture. PeerJ, 2016, 4, e2099.	0.9	14
2928	A horizon scan of future threats and opportunities for pollinators and pollination. PeerJ, 2016, 4, e2249.	0.9	115
2929	An energetics-based honeybee nectar-foraging model used to assess the potential for landscape-level pesticide exposure dilution. Peerl, 2016, 4, e2293.	0.9	25
2930	Assessing pollinators' use of floral resource subsidies in agri-environment schemes: An illustration using <i>Phacelia tanacetifolia</i> and honeybees. PeerJ, 2016, 4, e2677.	0.9	15
2931	Landscape fragmentation and pollinator movement within agricultural environments: a modelling framework for exploring foraging and movement ecology. PeerJ, 2014, 2, e269.	0.9	13
2932	Disentangling urban habitat and matrix effects on wild bee species. PeerJ, 2016, 4, e2729.	0.9	55
2933	Most ornamental plants on sale in garden centres are unattractive to flower-visiting insects. PeerJ, 2017, 5, e3066.	0.9	40
2934	Urbanization alters communities of flying arthropods in parks and gardens of a medium-sized city. PeerJ, 2017, 5, e3620.	0.9	51
2935	Planting of neonicotinoid-coated corn raises honey bee mortality and sets back colony development. PeerJ, 2017, 5, e3670.	0.9	43
2936	Effects of chronic exposure to thiamethoxam on larvae of the hoverfly <i>Eristalis tenax</i> (Diptera,) Tj ETQq0 0 C) rgBT /Ove	erlack 10 Tf !
2937	The neglected bee trees: European beech forests as a home for feral honey bee colonies. Peerl, 2018, 6, e4602.	0.9	42
2938	Variation in the diversity and richness of parasitoid wasps based on sampling effort. PeerJ, 2018, 6, e4642.	0.9	10
2939	Assessment of spatial and temporal variations in trace element concentrations using honeybees (<i>Apis mellifera</i>) as bioindicators. PeerJ, 2018, 6, e5197.	0.9	26
2940	The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ, 2014, 2, e522.	0.9	82
2941	Assessing the role of dispersed floral resources for managed bees in providing supporting ecosystem services for crop pollination. PeerJ, 2018, 6, e5654.	0.9	7
2942	Toward an integrated approach to crop production and pollination ecology through the application of remote sensing. Peerl, 2018, 6, e5806.	0.9	8
2943	Wild bees of Grand Staircase-Escalante National Monument: richness, abundance, and spatio-temporal beta-diversity. PeerJ, 2018, 6, e5867.	0.9	21

#	Article	IF	CITATIONS
2944	Along urbanization sprawl, exotic plants distort native bee (Hymenoptera: Apoidea) assemblages in high elevation Andes ecosystem. PeerJ, 2018, 6, e5916.	0.9	7
2945	Reducing protected lands in a hotspot of bee biodiversity: bees of Grand Staircase-Escalante National Monument. PeerJ, 2018, 6, e6057.	0.9	4
2946	Potential surrogate plants for use in semi-field pesticide risk assessment with Megachile rotundata. PeerJ, 2019, 6, e6278.	0.9	2
2947	The nectar report: quantitative review of nectar sugar concentrations offered by bee visited flowers in agricultural and non-agricultural landscapes. Peerl, 2019, 7, e6329.	0.9	46
2948	High-resolution maps of Swiss apiaries and their applicability to study spatial distribution of bacterial honey bee brood diseases. Peerl, 2019, 7, e6393.	0.9	12
2949	Exotic urban trees conserve similar natural enemy communities to native congeners but have fewer pests. PeerJ, 2019, 7, e6531.	0.9	18
2950	Garden centre customer attitudes to pollinators and pollinator-friendly planting. PeerJ, 2019, 7, e7088.	0.9	12
2951	Pollen report: quantitative review of pollen crude protein concentrations offered by bee pollinated flowers in agricultural and non-agricultural landscapes. PeerJ, 2019, 7, e7394.	0.9	15
2952	Abundance of arthropods as food for meadow bird chicks in response to short- and long-term soil wetting in Dutch dairy grasslands. PeerJ, 2019, 7, e7401.	0.9	6
2953	Native bees of high Andes of Central Chile (Hymenoptera: Apoidea): biodiversity, phenology and the description of a new species of <i>Xeromelissa</i> Cockerell (Hymenoptera: Colletidae:) Tj ETQq1 1 0.784314 rg	gBTo/. © verlo	ock 10 Tf 50
2954	Using Bumble Bee Watch to investigate the accuracy and perception of bumble bee (<i>Bombus</i> spp.) identification by community scientists. Peerl, 2020, 8, e9412.	0.9	9
2956	Extremes: understanding flower-visitor interactions in a changing climate. , 2012, , 99-106.		8
2957	Corporate bee accountability among Swedish companies. , 0, , 260-276.		4
2958	Toxicity of Neonicotinoids to Honey Bees and Detoxification Mechanism in Honey Bees. IOSR Journal of Environmental Science, Toxicology and Food Technology, 2017, 11, 102-110.	0.1	12
2959	The Role of Temperate Agroforestry Practices in Supporting Pollinators., 2021,, 275-304.		1
2960	Agroforestry for Biodiversity Conservation. , 2021, , 245-274.		6
2961	Assessing Repeated Oxalic Acid Vaporization in Honey Bee (Hymenoptera: Apidae) Colonies for Control of the Ectoparasitic Mite <i>Varroa destructor</i>). Journal of Insect Science, 2022, 22, .	0.6	7
2962	Effects of Provision Type and Pesticide Exposure on the Larval Development of (i) Osmia lignaria (i) (Hymenoptera: Megachilidae). Environmental Entomology, 2022, 51, 240-251.	0.7	5

#	Article	IF	CITATIONS
2963	Sustratos de nidificación y densidad de nidos de abejas sin aguijón en la Reserva de la Biósfera de los Petenes, México Acta Biologica Colombiana, 2021, 27, .	0.1	0
2964	Dissipation kinetics of imidacloprid in cotton flower, nectariferous tissue, pollen and Apis mellifera products using QuEChERS method. Pest Management Science, 2021, 78, 662.	1.7	4
2965	Mass-flowering monoculture attracts bees, amplifying parasite prevalence. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211369.	1.2	14
2966	The Airflow Field Characteristics of the Unmanned Agricultural Aerial System on Oilseed Rape (Brassica napus) Canopy for Supplementary Pollination. Agronomy, 2021, 11, 2035.	1.3	9
2967	The multidimensional (and contrasting) effects of environmental warming on a group of montane tropical lizards. Functional Ecology, 2022, 36, 419-431.	1.7	8
2968	A fully automatic classification of bee species from wing images. Apidologie, 2021, 52, 1060-1074.	0.9	5
2970	Effects of agricultural landscape structure, insecticide residues, and pollen diversity on the life-history traits of the red mason bee Osmia bicornis. Science of the Total Environment, 2022, 809, 151142.	3.9	14
2971	Field evaluation of Varroa-resistance traits in surviving Apis mellifera colonies in Argentina. Parasitology Research, 2021, 120, 4013-4021.	0.6	0
2972	Fragmented landscapes affect honey bee colony strength at diverse spatial scales in agroecological landscapes in Kenya. Ecological Applications, 2022, 32, e02483.	1.8	3
2973	Varying impact of neonicotinoid insecticide and acute bee paralysis virus across castes and colonies of black garden ants, Lasius niger (Hymenoptera: Formicidae). Scientific Reports, 2021, 11, 20500.	1.6	5
2974	Understanding social resilience in honeybee colonies. Current Research in Insect Science, 2021, 1, 100021.	0.8	6
2975	Climate Change–Induced Stress Reduce Quantity and Alter Composition of Nectar and Pollen From a Bee-Pollinated Species (Borago officinalis, Boraginaceae). Frontiers in Plant Science, 2021, 12, 755843.	1.7	23
2976	A Survey of Common Pathogens of Apis spp. in Wild Non-Cave Honeybees in Southwest China. Journal of Wildlife Diseases, 2021, 57, 932-935.	0.3	3
2977	Tenâ€year trends reveal declining quality of seeded pollinator habitat on reclaimed mines regardless of seed mix diversity. Ecological Applications, 2022, 32, e02467.	1.8	1
2978	Comparison of arthropod communities between high and low input maize farms in Mexico. CABI Agriculture and Bioscience, 2021, 2, .	1.1	1
2979	Bee surveys in Brazil in the last six decades: a review and scientometrics. Apidologie, 2021, 52, 1152-1168.	0.9	5
2980	IPM reduces insecticide applications by 95% while maintaining or enhancing crop yields through wild pollinator conservation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	34
2981	Bee occurrence data collected in citizen science program " Hanamaruâ€Maruhana national census―in Japan. Ecological Research, 0, , .	0.7	1

#	ARTICLE	IF	Citations
2982	Effectiveness of Multifunctional Margins in Insect Biodiversity Enhancement and RTE Species Conservation in Intensive Agricultural Landscapes. Agronomy, 2021, 11, 2093.	1.3	1
2983	Pesticide residues in honeybee-collected pollen: does the EU regulation protect honeybees from pesticides?. Environmental Science and Pollution Research, 2022, 29, 18225-18244.	2.7	10
2984	Honeybee pollination benefits could inform solar park business cases, planning decisions and environmental sustainability targets. Biological Conservation, 2021, 263, 109332.	1.9	8
2985	Pollinator sampling methods influence community patterns assessments by capturing species with different traits and at different abundances. Ecological Indicators, 2021, 132, 108284.	2.6	11
2986	Seasonal and Altitudinal Variation in Pollinator Communities in Grand Teton National Park. Annual Report, 0, 34, 5-11.	0.0	2
2987	Bumblebees as potential indicators for the evaluation of habitat quality. WIT Transactions on Ecology and the Environment, $2011, , .$	0.0	0
2988	Simulation of honeybee nectar foraging for determining effects on local flora. , 0, , .		2
2991	Do abundance and proximity of the alien <i>Impatiens glandulifera</i> affect pollination and reproductive success of two sympatric co-flowering native species?. Journal of Pollination Ecology, 0, 10, 130-139.	0.5	10
2992	Main pollinators and their foraging behaviors on a sand-fixing legume, <i>Thermopsis lanceolata</i> , in Mu Us Sandland. Biodiversity Science, 2013, 20, 354-359.	0.2	2
2993	The Importance of Flowers for Beetle Biodiversity and Abundance. , 2013, , 275-288.		0
2994	Plant Pollination and Dispersal. , 2013, , 1-26.		0
2995	Mobilizing digitized museum specimen records to highlight important animal pollinators in East Africa. Collection Forum, 2014, 28, 21-34.	0.0	0
2996	An Assessment of the Effects of Climate Change on Horticulture. , 2014, , 817-857.		3
2997	Seedling Recruitment., 2014,, 145-162.		2
2999	Role of Pollinators in Sustainable Farming and Livelihood Security. , 2014, , 379-411.		1
3000	Spring foraging resources and the behaviour of pollinating insects in fixed dune ecosystems. Journal of Pollination Ecology, 0, 13, 161-173.	0.5	5
3001	Ecological implications of reduced pollen deposition in alpine plants: a case study using a dominant cushion plant species. F1000Research, 2014, 3, 130.	0.8	1
3002	Mobilizing digitized museum specimen records to highlight important animal pollinators in East Africa. Collection Forum, 2014, 28, 21-34.	0.0	1

#	ARTICLE	IF	CITATIONS
3003	Influencing Factors of the Export of Romanian Bee Products. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 2014, 71, .	0.2	0
3004	Geographic Distribution, Key Challenges and Prospects for the Conservation of Threatened Stingless Bee Melipona capixaba Moure e Camargo (Hymenoptera: Apidae). Sociobiology, 2015, 61, .	0.2	1
3006	Genetic diversity of two stingless bees, Trigona nigerrima (Cresson 1878) and Trigona corvina (Cockerell 1913), in coffee dominated landscapes in southern Mexico. Acta ZoolÁ³gica Mexicana, 2015, 31, 74-79.	1.1	3
3008	Pollinator dependency, pollen limitation and pollinator visitation rates to six vegetable crops in southern India. Journal of Pollination Ecology, 0, 16, 51-57.	0.5	4
3010	Bazı Önemli Bombus Arısı (Bombus Terrestris L.) Parazitlerinin Moleküler Yöntemlerle Tanımlanması Uludag Aricilik Dergisi, 2015, 14, 88-98.	6.0 [±]	0
3011	Variation in Insect Assemblage and Functional Groups along a Grazing Gradient in an Arid Environment. Entomology, Ornithology, & Herpetology: Current Research, 2016, 5, .	0.1	2
3012	Assessment of pollination and China's implementation strategies within the IPBES framework. Biodiversity Science, 2016, 24, 1084-1090.	0.2	2
3013	The effect of oxalic acid applied by sublimation on honey bee colony fitness: a comparison with amitraz. Acta Veterinaria Brno, 2016, 85, 255-260.	0.2	1
3014	BAL ARILARINDA KOLONİ KAYBI. Adnan Menderes Üniversitesi Ziraat Fakýltesi Dergisi, 2016, 13, 151-151.	0.1	2
3017	Effects of Some Insecticides on the Midgut of the Foragers Honeybee Worker Apis mellifera jemenatica. Journal of King Abdulaziz University-Meteorology Environment and Arid Land Agriculture Sciences, 2020, 27, 59-66.	0.1	0
3018	The medicinal value of phytochemicals is hindered by pathogen evolution of resistance. Peer Community in Evolutionary Biology, 2018, , .	0.0	0
3019	Biodiversity and Human Health \hat{a}^{-} , , 2017, , .		1
3020	Case study on forage plants of the heath bumblebee (Bombus jonellus) in southwest Iceland. Icelandic Agricultural Sciences, 0, 30, 39-42.	0.0	1
3021	Bee Pollination. Advances in Educational Technologies and Instructional Design Book Series, 2017, , 164-182.	0.2	0
3022	Towards a More Holistic Approach to Pollination. Agricultural Research & Technology: Open Access Journal, 2017, 3, .	0.1	0
3023	An Integrated Study on Effect of Climate Change on Biodiversity and Visit of Insect Pollinators and the Seed Germination in Clitoria Ternatea, An Ornamental and Medicinal Plant. Journal of Medical Science and Clinical Research, 2017, 05, 18331-18336.	0.0	О
3025	Mangan(III)asetat EÅŸliÄŸinde 2-(3-Bromo-1,2,3,4-tetrahidro-1,4-epoksinaftalen-2-il)-3-hidroksi-5,5-dimetilsiklohekze-2-enon'un Sentezi ve Gümüğ Tuzları İle Reaksiyonu. Journal of Natural and Applied Sciences, 2017, 21, 956.	0.1	O
3026	Insect Pollinators' Contribution to Crop Production. Journal of Rural Planning Association, 2017, 36, 53-58.	0.1	О

#	Article	IF	CITATIONS
3027	Monitoring on impact of insecticides on mortality of honey bees (Apis mellifera L.) in front of beehives. Journal of Applied and Natural Science, 2017, 9, 905-911.	0.2	2
3031	Thiamethoxam'ın Yaban Arısı (Vespa sp.) Üzerine Etkisi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2017, 8, 221-227.	0.4	3
3032	Lively Cuckoo Bee (suggested common name) Nomada fervida Smith (Insecta: Hymenoptera: Apidae). Edis, 2018, 2017, .	0.0	0
3033	Estimating pollinator performance of visitors to the self-incompatible crop-plant l_i ; Brassica rapa l_i ; by single visit deposition and pollen germination: a comparison of methods Journal of Pollination Ecology, 0, 21, .	0.5	1
3034	Effects of Thiamethoxam on Vespula Germanica (F.) (Hymenoptera: Vespidae). International Journal of Agriculture Environment and Food Sciences, 2017, 1, 49-55.	0.2	1
3035	DeclÃnio de polinizadores como questão sociocientÃfica no ensino de biologia. , 2018, , 145-172.		О
3036	Does nonreproductive swarming adapt to pathogens?. PLoS Pathogens, 2018, 14, e1006742.	2.1	3
3038	Transgênicos, leis e a ciência trazendo a legislação para a sala de aula de biologia. , 2018, , 277-302.		2
3039	Potentials of Pesticidal Plants in Enhancing Diversity of Pollinators in Cropped Fields. American Journal of Plant Sciences, 2018, 09, 2659-2675.	0.3	0
3040	Terrestrische und semiterrestrische Ökosysteme. , 2018, , 109-145.		O
3041	Trenger samspillet mellom blomster ogÂbier en egen politisk strategi?., 2018, 35, 32-43.	0.1	0
3043	Global Change and Terrestrial Ecosystems. , 2019, , 865-899.		0
3046	Hotele dla owad \tilde{A}^3 w - dobra praktyka czy wielka pomy \mathring{A} ,ka?. Cosmos: Problems of Biological Sciences, 2018, 67, 287-298.	0.0	0
3049	RE-ESTABLISHING POLLINATOR HABITAT ON MINED LANDS USING THE FORESTRY RECLAMATION APPROACH. Journal of Environmental Solutions for Oil Gas and Mining, 2018, 4, 20-30.	0.2	O
3052	The â€~Sixth Mass Extinction Crisis' and Its Impact on Flowering Plants. Sustainable Development and Biodiversity, 2019, , 15-42.	1.4	1
3053	Floral Diversity in Different Types of Honey. Brazilian Archives of Biology and Technology, 0, 62, .	0.5	1
3054	Perceiving, Raising Awareness and Policy Action to Address Pollinator Decline in Nigeria. Climate Change Management, 2019, , 431-454.	0.6	0
3055	Bee Pollination. , 2019, , 929-943.		О

#	Article	IF	CITATIONS
3056	Provisioning Ecosystem Services at Risk: Pollination Benefits and Pollination Dependency of Cropping Systems at the Global Scale., 2019,, 97-104.		1
3057	Pollination biology and reproductive phenology of the federally endangered endemic Physaria globosa (Brassicaceae) in Tennessee1. Journal of the Torrey Botanical Society, 2019, 146, 27.	0.1	2
3058	Impact of Selected Insecticides on Apis mellifera L. (Hymenoptera: Apidae) under Controlled Conditions. Pakistan Journal of Zoology, 2019, 52, .	0.1	1
3059	Foraging Behaviour of <i>Apis mellifera</i> L. and <i>Scaptotrigona bipunctata</i> on <i>Dombeya wallichii</i> Flowers in Southern Brazil. Agricultural Sciences, 2019, 10, 1124-1134.	0.2	1
3060	Coviability as a Scientific Paradigm for an Ecological Transition, from an Overview to a Definition. , 2019, , 693-728.		0
3063	Kent Ekolojisine Farklı Bir Yaklaşım: Tozlaşma Bahçeleri. İnönü Üniversitesi Sanat Ve Tasarım Der	glisii, O, , .	2
3066	Attractiveness of Species of Vitex (Chastetree) to Pollinators. Journal of Environmental Horticulture, 2019, 37, 24-29.	0.3	1
3067	Future of beekeeping in Northwestern Ethiopia: Scenarios, local adaptation measures and its implications for farmers' livelihoods. Biodiversitas, 2019, 20, .	0.2	O
3068	Effects of winter and spring rape seed treatment with neonicotinoids on honey bees. Zemdirbyste, 2019, 106, 173-182.	0.3	1
3070	Leaf beetle decline in Central Europe (Coleoptera: Chrysomelidae s.l.)?*. ZooKeys, 2019, 856, 115-135.	0.5	2
3072	Levantamento de fauna silvestre no Terra Parque, municipio de Pirapozinho, estado de São Paulo. Colloquium Agrariae, 2019, 15, 90-99.	0.1	0
3073	Occupation and Emergence of Solitary Bees in Different Types of Trap Nests. Sociobiology, 2019, 66, 316.	0.2	О
3075	A Survey of the Insects of the Southern High Plains (Llano Estacado) of Texas, with Particular Reference to Pollinators and Other Anthophiles. Journal of the Kansas Entomological Society, 2019, 91, 255.	0.1	2
3081	Are moths the missing pollinators in Subantarctic New Zealand?. Polar Research, 2019, 38, .	1.6	3
3082	Nationwide Spatiotemporal Distribution of Some Selected Aculeata (Hymenoptera) in South Korea, based on Materials Collected with Malaise Trap in 2017 and 2018. Han'gug Hwan'gyeong Saengtae Haghoeji = Korean Journal of Environment and Ecology, 2019, 33, 654-663.	0.1	0
3083	Pesticides' Impact on Pollinators. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-11.	0.0	3
3085	Solitary Bees As Pollinators. , 2020, , 63-79.		1
3086	Farmers' Varieties and Ecosystem Services with Reference to Eastern India. , 2020, , 421-443.		2

#	Article	IF	CITATIONS
3087	Asetamipridin Fare Kemik İliği Hýcrelerinde KA (Kromozomal Aberasyon) ve MN (Mikronükleus) Test Yöntemleri ile Genotoksik Etkisinin Araştırılması. Ataturk Universitesi Veteriner Bilimleri Dergisi, 0, , .	0.0	0
3088	Bal Arılarında (Apis mellifera L.) Beslenmenin Hastalık ve Zararlılarla İlişkisi. Anadolu Ege Tarımsal Araştırma Enstitļsü Dergisi, 0, , 103-116.	0.3	0
3090	Are Reproductive Traits Related to Pollen Limitation in Plants? A Case Study from a Central European Meadow. Plants, 2020, 9, 640.	1.6	4
3093	Insect diversity over 36 years at a protected Sierra Nevada (California) site: towards an evaluation of the insect apocalypse hypothesis. Ecological Entomology, 2020, 45, 1490-1494.	1.1	5
3095	Lotmaria Passim As Third Parasite Gastrointestinal Tract of Honey Bees Living in Tree Trunk. Journal of Apicultural Science, 2020, 64, 143-151.	0.1	5
3098	Nocturnal vs. Diurnal Pollination of Self-Fertile Peaches and Muscadine Grapes. Florida Entomologist, 2020, 103, 302.	0.2	2
3101	"Farming with Alternative Pollinators―approach increases pollinator abundance and diversity in faba bean fields. Journal of Insect Conservation, 2022, 26, 401-414.	0.8	10
3102	Dwarf White Clover Supports Pollinators, Augments Nitrogen in Clover–Turfgrass Lawns, and Suppresses Root-Feeding Grubs in Monoculture but Not in Mixed Swards. Sustainability, 2021, 13, 11801.	1.6	4
3103	Landscape floral resources provided by rapeseed correlate with next-year reproduction of cavity-nesting pollinators in a national participatory monitoring program. Landscape Ecology, 0, , 1.	1.9	1
3104	Climate change effects on multi-taxa pollinator diversity and distribution along the elevation gradient of Mount Olympus, Greece. Ecological Indicators, 2021, 132, 108335.	2.6	13
3107	Agroecosystem Design Supports the Activity of Pollinator Networks. , 2020, , 1-17.		1
3108	Discovery and molecular characterisation of the first ambidensovirus in honey bees. Acta Agriculturae Slovenica, 2020, 116, .	0.2	0
3109	Effects of hillside aspect, landscape features, and kleptoparasitism on the reproductive success of the solitary bee <scp><i>Osmia caerulescens</i></scp> . Ecological Entomology, 2021, 46, 541-551.	1.1	2
3110	A preliminary evaluation of the effects of pollinator enhancement and gibberellins on the fruit set and fruit shape of 'Conference' pears - Short Communication. Zahradnictvi (Prague, Czech Republic:) Tj ETQq1 1	0.084314	rgBT /Overlo
3111	Procruste analysis of forewing shape in two endemic honeybee subspecies Apis mellifera intermissa and A. m. sahariensis from the Northwest of Algeria. Biodiversitas, 2020, 22, .	0.2	1
3113	From Aamoo (Bees) To Memengwaa (Butterflies), Living Well with Manidoons (Insect Pollinators) and Ninwish (Milkweed): Indigenous Peoples and Insect Pollinators on Turtle Island (North America). American Entomologist, 2020, 66, 42-47.	0.1	1
3114	Increase in humidity widens heat tolerance range of tropical <i>Ceratosolen</i> fig wasps. Ecological Entomology, 2021, 46, 573-581.	1.1	3
3115	Preliminary Illinois Bee Species Checklist (Hymenoptera: Apoidea) and use of Museum Collections. Journal of the Kansas Entomological Society, 2020, 93, .	0.1	6

#	Article	IF	CITATIONS
3116	The Buzz about Bee Campuses: Student Thoughts Regarding Pollinator Conservation. American Entomologist, 2020, 66, 54-61.	0.1	2
3117	Hymenoptera functional groups' shifts in disturbance gradients at Andean forests in Southern Ecuador. Journal of Hymenoptera Research, 0, 80, 1-15.	0.8	1
3118	The Effect of Different Dietary Practices on Workers and Queen Bee Formations in Honeybee (Apis) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf 5
3119	An overview of anthropogenic electromagnetic radiations as risk to pollinators and pollination. Journal of Applied and Natural Science, 2020, 12, 675-681.	0.2	1
3120	Sienestystöohjoisilla puupelloilla: metsien moninaiset taloudet ja plantaasiosentrismin ongelma. Alue Ja YmpĀĦstö, 2020, 49, 22-43.	0.1	6
3121	Non-Apis bee diversity in an experimental pollinator garden in Bengaluru – a Silicon Valley of India. Sociobiology, 2020, 67, 593.	0.2	2
3122	Assessing the impacts of land use and climate interactions on beekeeping livelihoods in the Taita Hills, Kenya. Development in Practice, 2021, 31, 446-461.	0.6	6
3123	Climate Change Extent and Dipteran Pollinators Diversity in Africa. , 2021, , 305-324.		0
3124	Dominance of honey bees is negatively associated with wild bee diversity in commercial apple orchards regardless of management practices. Agriculture, Ecosystems and Environment, 2022, 323, 107697.	2.5	25
3125	High resolution prediction maps of solitary bee diversity can guide conservation measures. Landscape and Urban Planning, 2022, 217, 104267.	3.4	5
3126	The value of biotic pollination and dense forest for fruit set of Arabica coffee: A global assessment. Agriculture, Ecosystems and Environment, 2022, 323, 107680.	2.5	21
3127	Managed and wild bees contribute to alfalfa (Medicago sativa) pollination. Agriculture, Ecosystems and Environment, 2022, 324, 107711.	2.5	9
3128	GMOs – Impact on Non-target Arthropods. Topics in Biodiversity and Conservation, 2020, , 87-127.	0.3	2
3129	Importance for Pollination. Fascinating Life Sciences, 2020, , 323-339.	0.5	1
3130	Chapitre 9. Paysages, pollinisateurs et niveaux de pollinisation., 2019, , 145-164.		0
3131	Conservation of Social Insects. , 2020, , 1-6.		0
3132	Bee Pollination of Crops: A Natural and Cost-Free Ecological Service., 2020,, 53-62.		0
3133	Everyday, Local, Nearby, Healthy Childhoodnature Settings as Sites for Promoting Children's Health and Well-Being. Springer International Handbooks of Education, 2020, , 1155-1180.	0.1	1

#	Article	IF	CITATIONS
3134	Nature and agriculture: a future of divergence or convergence?. Biology and Environment, 2020, 120B, 83.	0.2	0
3135	Bees and Medicinal Plants – Prospective for Entomovectoring. Progress in Biological Control, 2020, , 231-248.	0.5	O
3136	Insect Pollinators, Threats For Survival and Ecosystem Service: An Outlook From Hindu-Kush Himalaya Region., 2020,, 565-576.		O
3137	Pollination Behavior of Cotton Crop and Its Management. , 2020, , 163-175.		5
3139	Pesticides' Impact on Pollinators. Encyclopedia of the UN Sustainable Development Goals, 2020, , 634-644.	0.0	0
3140	â€~Global Pollinator Crisis' and Its Impact on Crop Productivity and Sustenance of Plant Diversity. , 2020, , 395-413.		2
3141	Accediendo al pasado: uso de especÃmenes de colección como fuentes de información genética para el género Bombus (Hymenoptera: Apidae). Revista De Biologia Tropical, 2020, 68, .	0.1	2
3142	Partitioning of Bee Diversity at a Small Spatial Scale in an Urban Arboretum. Southeastern Naturalist, 2020, 19, 22.	0.2	1
3143	Integration of 5.8GHz Doppler Radar and Machine Learning for Automated Honeybee Hive Surveillance and Logging., 2021,,.		4
3146	Pollinator Communities of Restored Sandhills: a Comparison of Insect Visitation Rates to Generalist and Specialist Flowering Plants in Sandhill Ecosystems of Central Florida. Natural Areas Journal, 2020, 40, 168.	0.2	2
3147	Short communication: Molecular detection of honeybee viruses in Ecuador. Spanish Journal of Agricultural Research, 2020, 18, e05SC02.	0.3	4
3150	KENT PARKLARINDA KULLANILAN BAZI ODUNSU SÜS BİTKİLERİNİN POLİNASYON DEĞERLERİ BAKIMINİRDELENMESİ. Turkish Journal of Forest Science, 2021, 5, 562-577.	NB.AN	3
3151	Ozone Induces Distress Behaviors in Fig Wasps with a Reduced Chance of Recovery. Insects, 2021, 12, 995.	1.0	10
3152	Plant- pollinator interaction network among the scrubland weed flora from foothills of north-western Indian Himalaya. International Journal of Tropical Insect Science, 2022, 42, 1593-1603.	0.4	3
3153	Local Actions to Tackle a Global Problem: A Multidimensional Assessment of the Pollination Crisis in Chile. Diversity, 2021, 13, 571.	0.7	14
3154	Identifying the climatic drivers of honey bee disease in England and Wales. Scientific Reports, 2021, 11, 21953.	1.6	15
3155	CSI Pollen: Diversity of Honey Bee Collected Pollen Studied by Citizen Scientists. Insects, 2021, 12, 987.	1.0	9
3156	Adult body size measurement redundancies in <i>Osmia lignaria</i> and <i>Megachile rotundata</i> (Hymenoptera: Megachilidae). PeerJ, 2021, 9, e12344.	0.9	1

#	Article	IF	Citations
3158	Bingöl İlinde Yaşanan Koloni Kayıpları (Arı Ölümleri), Nedenleri ve Öneriler. Turkish Journal of Agricultural and Natural Sciences, 0, , .	0.1	4
3159	Commentary: Engineered symbionts activate honey bee immunity and limit pathogens. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	1
3160	Apparent Resilience to Fire of Native Bee (Hymenoptera: Apoidea) Communities from Upland Longleaf Pine Forests in Louisiana and Mississippi. Southeastern Naturalist, 2020, 19, .	0.2	7
3161	Occurrence and ecological data on an exotic solitary bee accidentally introduced in Brazil. EntomoBrasilis, 0, 13, e891.	0.2	0
3162	Impact of Wild Bees (Apis cerana) and Stingless Bees (Tetragonula laeviceps) to Some Crops of Small-Scale Farm in West Java. IOP Conference Series: Earth and Environmental Science, 0, 593, 012031.	0.2	0
3163	Nests of some representatives of hymenoptera (Hymenoptera, Aculeata) in stationary artificial nesting structures on the territory of the botanical garden NUBIP of Ukraine. Biological Systems Theory and Innovation, 2020, 11, .	0.1	0
3165	OUP accepted manuscript. Journal of Insect Science, 2022, 22, .	0.6	0
3166	Impacts of Climate Change on Biodiversity and Ecosystem Services. , 2022, , 1554-1571.		0
3167	Impact of local practices and landscape on the diversity and abundance of pollinators in an insect-dependent crop. Agriculture, Ecosystems and Environment, 2022, 326, 107804.	2.5	3
3168	Crop yield mediated by honeybees in a star fruit orchard exhibiting atypical distyly. Acta Botanica Brasilica, 2021, 35, 486-490.	0.8	1
3169	Elucidating plant-pollinator interactions in South Brazilian grasslands: What do we know and where are we going?. Acta Botanica Brasilica, 2021, 35, 323-338.	0.8	3
3170	Evaluating the Efficacy of 30 Different Essential Oils against Varroa destructor and Honey Bee Workers (Apis mellifera). Insects, 2021, 12, 1045.	1.0	20
3171	Past insecticide exposure reduces bee reproduction and population growth rate. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	35
3172	Moth biomass and diversity in coniferous plantation woodlands. Forest Ecology and Management, 2021, 505, 119881.	1.4	0
3173	Variation in Plant–Pollinator Network Structure along the Elevational Gradient of the San Francisco Peaks, Arizona. Insects, 2021, 12, 1060.	1.0	5
3174	Clover in agriculture: combined benefits for bees, environment, and farmer. Journal of Insect Conservation, 2022, 26, 339-357.	0.8	8
3175	Effects of different types of lowâ€intensity management on plantâ€pollinator interactions in Estonian grasslands. Ecology and Evolution, 2021, 11, 16909-16926.	0.8	6
3177	Ongoing decline in insect-pollinated plants across Danish grasslands. Biology Letters, 2021, 17, 20210493.	1.0	10

#	Article	IF	CITATIONS
3178	More than the usual suspect: diversity of pollinators of chayote (Sechium edule) at high elevations in Chiapas, Mexico. Apidologie, 0 , 1 .	0.9	0
3179	The impact of habitat loss on pollination services for a threatened dune endemic plant. Oecologia, 2022, 198, 279-293.	0.9	5
3180	Decreased bee emergence along an elevation gradient: Implications for climate change revealed by a transplant experiment. Ecology, 2022, 103, e03598.	1.5	11
3181	Relationships among generalized positive feedback loops determine possible community outcomes in plant-pollinator interaction networks. Physical Review E, 2021, 104, 054304.	0.8	4
3182	Nectar Chemistry or Flower Morphology—What Is More Important for the Reproductive Success of Generalist Orchid Epipactis palustris in Natural and Anthropogenic Populations?. International Journal of Molecular Sciences, 2021, 22, 12164.	1.8	3
3183	Quality matters. A commentary on: Pollen limitation and xenia effects in a cultivated mass-flowering tree, <i>Macadamia integrifolia</i> (Proteaceae). Annals of Botany, 2022, 129, iii-iv.	1.4	0
3184	Temperature drives variation in flying insect biomass across a German malaise trap network. Insect Conservation and Diversity, 2022, 15, 168-180.	1.4	26
3185	Checklist of bee species (Hymenoptera: Apoidea: Anthophila) in the urban areas of Cerrado in Barreiras, Bahia, Brazil. EntomoBrasilis, 0, 14, e978.	0.2	O
3186	Exploring the Potential Role of Ants as Pollinators in a Tallgrass Prairie Following Varied Prescribed Burns. Transactions of the Kansas Academy of Science, 2021, 124, .	0.0	0
3187	Assessing the Toxic Effects of Insecticides on Honey Bees in the West Gonja District of the Savannah Region of Ghana. International Journal of Plant & Soil Science, 0, , 226-245.	0.2	0
3188	Even small forest patches increase bee visits to flowers in an oil palm plantation landscape. Biotropica, 2022, 54, 18-30.	0.8	5
3189	Antioxidant Properties of Bee Products Derived from Medicinal Plants as Beekeeping Sources. Agriculture (Switzerland), 2021, 11, 1136.	1.4	12
3190	Honey bee sHSP are responsive to diverse proteostatic stresses and potentially promising biomarkers of honey bee stress. Scientific Reports, 2021, 11, 22087.	1.6	15
3191	Overwintering honeybees maintained dynamic and stable intestinal bacteria. Scientific Reports, 2021, 11, 22233.	1.6	5
3192	Antibiotic treatment (Tetracycline) effect on bio-efficiency of the larvae honey bee (Apis mellifera) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50
3193	Niche complementarity among pollinators increases community-level plant reproductive success. , 0, 1, \cdot		10
3194	Two common bee-sampling methods reflect different assemblages of the bee (Hymenoptera: Apoidea) community in mixed-grass prairie systems and are dependent on surrounding floral resource availability. Journal of Insect Conservation, 2022, 26, 69-83.	0.8	6
3196	Variation of Small and Large Wild Bee Communities Under Honeybee Pressure in Highly Diverse Natural Habitats. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3

#	Article	IF	CITATIONS
3197	Sublethal pesticide exposure induces larval removal behavior in honeybees through chemical cues. Ecotoxicology and Environmental Safety, 2021, 228, 113020.	2.9	2
3198	Observation of Flower Visitors to Determine their Potential Role as Pollinators of Ixora coccinae and Ruellia simplex. Journal of Research Management and Governance, 2020, 2, 61-70.	0.1	2
3199	Visiting Plants of <i>Mamestra brassicae</i> (Lepidoptera: Noctuidae) Inferred From Identification of Adhering Pollen Grains. Environmental Entomology, 2022, 51, 505-512.	0.7	4
3200	Honey Bees (Hymenoptera: Apidae) Decrease Foraging But Not Recruitment After Neonicotinoid Exposure. Journal of Insect Science, 2022, 22, .	0.6	8
3201	Sunflower pollen induces rapid excretion in bumble bees: Implications for host-pathogen interactions. Journal of Insect Physiology, 2022, 137, 104356.	0.9	8
3202	COVID-19 pandemic: impacts on bees, beekeeping, and potential role of bee products as antiviral agentsÂand immune enhancers. Environmental Science and Pollution Research, 2022, 29, 9592-9605.	2.7	11
3203	Non-linear effects of landscape on pollination service and plant species richness in a peri-urban territory with urban and agricultural land use. Urban Forestry and Urban Greening, 2022, 68, 127454.	2.3	4
3204	Effects of glyphosate exposure on honeybees. Environmental Toxicology and Pharmacology, 2022, 90, 103792.	2.0	12
3205	Characterization of HSP70 expression in drones of Apis cerana (Hymenoptera: Apidae). Journal of Asia-Pacific Entomology, 2022, 25, 101855.	0.4	1
3206	Stable coexistence in plant-pollinator-herbivore communities requires balanced mutualistic vs antagonistic interactions. Ecological Modelling, 2022, 465, 109857.	1.2	3
3207	Proteomic profiling of royal jelly produced by Apis mellifera L. exposed to food containing herbicide-based glyphosate. Chemosphere, 2022, 292, 133334.	4.2	7
3208	Priority maps for pollinator habitat enhancement schemes in semi-natural grasslands. Landscape and Urban Planning, 2022, 220, 104354.	3.4	4
3209	Agroecosystem landscape diversity shapes wild bee communities independent of managed honey bee presence. Agriculture, Ecosystems and Environment, 2022, 327, 107826.	2.5	9
3210	Acute oral exposure to imidacloprid induces apoptosis and autophagy in the midgut of honey bee Apis mellifera workers. Science of the Total Environment, 2022, 815, 152847.	3.9	24
3211	Ruderal Plants Providing Bees Diversity on Rural Properties. Sociobiology, 2020, 67, 388.	0.2	2
3212	Traditional and novel proposals for the protection of endangered pollinating insects. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 0, , 177-193.	0.0	O
3213	A Review of Bee Captures in Pest Monitoring Traps and Future Directions for Research and Collaboration. Journal of Integrated Pest Management, 2021, 12, .	0.9	3
3214	Wild Bees Benefit from Low Urbanization Levels and Suffer from Pesticides in a Tropical Megacity. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
3215	Investigating pollination strategies in a changing world. Botany Letters, 2021, 168, 311-315.	0.7	O
3216	Native Bees are Important and Need Immediate Conservation Measures: A Review. , 0, , .		5
3217	Pollinator efficiency in openly grown eggplants: can non-vibrating bees produce high-quality fruits?. Arthropod-Plant Interactions, 2022, 16, 159-170.	0.5	3
3218	Virome Analysis Reveals Diverse and Divergent RNA Viruses in Wild Insect Pollinators in Beijing, China. Viruses, 2022, 14, 227.	1.5	4
3219	Beekeeping and Managed Bee Diversity in Indonesia: Perspective and Preference of Beekeepers. Diversity, 2022, 14, 52.	0.7	7
3220	Effects of land use type and seasonal climate on ground nesting wild bees. Agricultural and Forest Entomology, 0, , .	0.7	2
3221	Timing of prescribed burns impacts plant diversity but not investment in pollinator recruitment in a tallgrass prairie. Ecosphere, 2022, 13, .	1.0	6
3222	Cloning and expression studies on glutathione S-transferase like-gene in honey bee for its role in oxidative stress. Cell Stress and Chaperones, 2022, 27, 121-134.	1.2	5
3223	A Systematic Review on Opuntia (Cactaceae; Opuntioideae) Flower-Visiting Insects in the World with Emphasis on Mexico: Implications for Biodiversity Conservation. Plants, 2022, 11, 131.	1.6	4
3224	Presence and distribution of pesticides in apicultural products: A critical appraisal. TrAC - Trends in Analytical Chemistry, 2022, 146, 116506.	5.8	26
3225	Molecular histoproteomy by MALDI mass spectrometry imaging to uncover markers of the impact of Nosema on Apis mellifera. Proteomics, 2022, , 2100224.	1.3	5
3226	Evaluating CAP wildflower strips: Highâ€quality seed mixtures significantly improve plant diversity and related pollen and nectar resources. Journal of Applied Ecology, 2022, 59, 860-871.	1.9	11
3227	From pastures to forests: Changes in Mediterranean wild bee communities after rural land abandonment. Insect Conservation and Diversity, 2022, 15, 325-336.	1.4	8
3228	Seasonal dynamics of competition between honey bees and wild bees in a protected Mediterranean scrubland. Oikos, 2022, 2022, .	1.2	11
3230	The effects of pollinator diversity on pollination function. Ecology, 2022, 103, e3631.	1.5	2
3231	Interaction of Insecticides and Fungicides in Bees. Frontiers in Insect Science, 2022, 1, .	0.9	14
3232	OUP accepted manuscript. Journal of Insect Science, 2022, 22, .	0.6	0
3233	Cattle grazing results in greater floral resources and pollinators than sheep grazing in lowâ€diversity grasslands. Ecology and Evolution, 2022, 12, e8396.	0.8	12

#	ARTICLE	IF	CITATIONS
3234	Longâ€term comparison of the orchid bee community in the tropical dry forest of Costa Rica. Biotropica, 2022, 54, 467-477.	0.8	1
3235	Identification of the AccCDK1 gene in Apis cerana cerana and its relationship with the oxidative stress response. Pesticide Biochemistry and Physiology, 2022, 182, 105048.	1.6	5
3236	The Native Bees of Lolland (Denmark) Revisited after 100 Years: The Demise of the Specialists. Insects, 2022, 13, 153.	1.0	1
3237	Amount, distance-dependent and structural effects of forest patches on bees in agricultural landscapes. Agriculture and Food Security, 2022, 11, .	1.6	7
3238	The widespread trade in stingless beehives may introduce them into novel places and could threaten species. Journal of Applied Ecology, 2022, 59, 965-981.	1.9	10
3239	Fragmentation of forest-steppe predicts functional community composition of wild bee and wasp communities. Global Ecology and Conservation, 2022, 33, e01988.	1.0	7
3240	The Life Span and Levels of Oxidative Stress in Foragers Between Feral and Managed Honey Bee Colonies. Journal of Insect Science, 2022, 22, .	0.6	3
3242	Pollen–insect interaction metaâ€networks identify key relationships for conservation in mosaic agricultural landscapes. Ecological Applications, 2022, 32, e2537.	1.8	4
3243	OUP accepted manuscript. Briefings in Bioinformatics, 2022, , .	3.2	8
3244	Preference of Pollinators over Various Forage Mixtures and Microelement Treatments. Agronomy, 2022, 12, 370.	1.3	0
3245	Semi-natural habitats promote winter survival of wild-living honeybees in an agricultural landscape. Biological Conservation, 2022, 266, 109450.	1.9	12
3246	Pollination efficiency of bumblebee, honeybee, and hawkmoth in kabocha squash, Cucurbita maxima, production in Kagoshima, Japan. Applied Entomology and Zoology, 2022, 57, 119-129.	0.6	4
3247	Effective pollination of greenhouse Galia musk melon (<i>Cucumis melo</i> L.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 561, 664-674.	50 267 Td 0.7	l (var. <i>retio</i>
3248	Pollinator diversity benefits natural and agricultural ecosystems, environmental health, and human welfare. Plant Diversity, 2022, 44, 429-435.	1.8	28
3249	Repeated short-term exposure to diesel exhaust reduces honey bee colony fitness. Environmental Pollution, 2022, 300, 118934.	3.7	2
3250	Can novel seed mixes provide a more diverse, abundant, earlier, and longer-lasting floral resource for bees than current mixes?. Basic and Applied Ecology, 2022, 60, 34-47.	1.2	11
3251	Towards a multisensor station for automated biodiversity monitoring. Basic and Applied Ecology, 2022, 59, 105-138.	1.2	34
3252	Distinct molecular impact patterns of abamectin on Apis mellifera ligustica and Apis cerana cerana. Ecotoxicology and Environmental Safety, 2022, 232, 113242.	2.9	5

#	Article	IF	CITATIONS
3253	Biodiversity and Human Health. , 2024, , 377-393.		1
3254	Land-Use and Climate Drive Shifts in <i>Bombus</i> Assemblage Composition. SSRN Electronic Journal, 0, , .	0.4	O
3255	Major land use and vegetation influences on potential pollinator communities in the High Plains of Texas. Journal of Insect Conservation, 0 , 1 .	0.8	1
3256	Invasive predators affect communityâ€wide pollinator visitation. Ecological Applications, 2022, 32, e2522.	1.8	9
3257	A global review of determinants of native bee assemblages in urbanised landscapes. Insect Conservation and Diversity, 2022, 15, 385-405.	1.4	39
3258	Response of honeybee colony size to flower strips in agricultural landscapes depends on areal proportion, spatial distribution and plant composition. Basic and Applied Ecology, 2022, 60, 123-138.	1.2	15
3259	The role of adult noctuid moths (Lepidoptera: Noctuidae) and their food plants in a nocturnal pollen-transport network on a Mediterranean island. Journal of Insect Conservation, 2022, 26, 243-255.	0.8	9
3260	Independent, but not synergistic, effects of climate and landscape structure drive pollination and subsequent reproduction in a tropical plant,ÂHeliconia tortuosa. Landscape Ecology, 2022, 37, 1059.	1.9	0
3261	Sensitivity of Buff-Tailed Bumblebee (Bombus terrestris L.) to Insecticides with Different Mode of Action. Insects, 2022, 13, 184.	1.0	2
3262	Bee (Hymenoptera: Apoidea) Fauna of Shivapuri–Nagarjun National Park, Nepal. Journal of Asia-Pacific Biodiversity, 2022, , .	0.2	0
3263	Knowledge Gleaned From the First Great Georgia Pollinator Census. Journal of Entomological Science, 2022, 57, 39-63.	0.2	4
3266	Pollination, seed predation, and seed dispersal. , 2022, , 623-665.		1
3267	Temperature Sensing and Honey Bee Colony Strength. Journal of Economic Entomology, 2022, 115, 715-723.	0.8	6
3268	1H NMR Profiling of Honey Bee Bodies Revealed Metabolic Differences between Summer and Winter Bees. Insects, 2022, 13, 193.	1.0	3
3269	Temporal and spatial heterogeneity of semiâ€natural habitat, but not crop diversity, is correlated with landscape pollinator richness. Journal of Applied Ecology, 2022, 59, 1258-1267.	1.9	13
3270	Chemical and genetic evidences that multiple hornet colonies attack honeybee colonies. Insectes Sociaux, 2022, 69, 159-168.	0.7	1
3271	Mardin ili organik kiraz bahçelerinden toplanan Hymenoptera türleri üzerinde faunistik bir çalışma. Türkiye Tarımsal Araştırmalar Dergisi, 0, , .	0.5	0
3272	Long-Term Sustainability Implications of Diverse Commercial Pollinator Mixtures for the Conservation Reserve Program. Agronomy, 2022, 12, 549.	1.3	0

#	Article	IF	Citations
3274	Insect "Bee&Bees―and pollinator penthouses: teaching students about pollinators and their services in an urban environment. Urban Ecosystems, 0, , 1.	1.1	4
3275	SAD but True: Species Awareness Disparity in Bees Is a Result of Bee-Less Biology Lessons in Germany. Sustainability, 2022, 14, 2604.	1.6	9
3276	Settling moths are the vital component of pollination in Himalayan ecosystem of North-East India, pollen transfer network approach revealed. Scientific Reports, 2022, 12, 2716.	1.6	4
3277	Stakeholder-driven adaptive research (SDAR): better research products. Renewable Agriculture and Food Systems, 0, , 1-10.	0.8	1
3278	Investigation of the efficacy of some biopesticides by food exposure on <i>Bombus terrestris</i> L. (Hymenoptera: Apidae). Journal of Apicultural Research, 2023, 62, 1153-1157.	0.7	5
3279	Proximity to wildflower strips did not boost crop pollination on small, diversified farms harboring diverse wild bees. Basic and Applied Ecology, 2022, 62, 22-32.	1.2	10
3280	Pollinators: Their Relevance in Conservation and Sustainable Agro-Ecosystem. , 0, , .		1
3281	Positive effects of low grazing intensity on East African bee assemblages mediated by increases in floral resources. Biological Conservation, 2022, 267, 109490.	1.9	6
3282	B-GOOD: Giving Beekeeping Guidance by cOmputatiOnal-assisted Decision making. Research Ideas and Outcomes, 0, 8, .	1.0	3
3283	Effective and feasible mechanisms to support native invertebrate pollinators in agricultural landscapes: A metaâ€analysis. Ecosphere, 2022, 13, .	1.0	2
3284	A review of management actions on insect pollinators on public lands in the United States. Biodiversity and Conservation, 2022, 31, 1995-2016.	1.2	9
3285	Different Distribution Patterns of Hoverflies (Diptera: Syrphidae) and Bees (Hymenoptera: Anthophila) Along Altitudinal Gradients in Dolomiti Bellunesi National Park (Italy). Insects, 2022, 13, 293.	1.0	3
3286	Comparison of Chemical and Biological Wireworm Control Options in Serbian Sunflower Fields and a Proposition for a Refined Wireworm Damage Assessment. Agronomy, 2022, 12, 758.	1.3	4
3287	Urban greenery for air pollution control: a meta-analysis of current practice, progress, and challenges. Environmental Monitoring and Assessment, 2022, 194, 235.	1.3	11
3288	Side effects of imidacloprid, ethion, and hexaflumuron on adult and larvae of honey bee Apis mellifera (Hymenoptera, Apidae). Apidologie, 2022, 53, 1.	0.9	6
3290	Comparative Analysis of Knowledge of Concepts of Pollination and Bee Pollinators Among Elementary School Students. Society and Animals, 2022, 31, 431-450.	0.1	1
3291	Community structure of pollinating insects and its driving factors in different habitats of Shivapuriâ€Nagarjun National Park, Nepal. Ecology and Evolution, 2022, 12, e8653.	0.8	2
3292	Different landscape features within a simplified agroecosystem support diverse pollinators and their service to crop plants. Landscape Ecology, 2022, 37, 1787-1799.	1.9	8

#	Article	IF	Citations
3293	The Diversity Decline in Wild and Managed Honey Bee Populations Urges for an Integrated Conservation Approach. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	21
3294	Bees in the six: Determinants of bumblebee habitat quality in urban landscapes. Ecology and Evolution, 2022, 12, e8667.	0.8	7
3295	Effects of Landscape and Local Factors on the Diversity of Flower-Visitor Groups under an Urbanization Gradient, a Case Study in Wuhan, China. Diversity, 2022, 14, 208.	0.7	6
3296	Plant Extracts as Potential Acaricides for the Management of Red Spider Mite, Oligonychus coffeae Nietner (Acarina: Tetranychidae), in the Tea Ecosystem: An Eco-Friendly Strategy. Frontiers in Agronomy, 2022, 4, .	1.5	3
3297	Bee Trackerâ€"an openâ€source machine learningâ€based video analysis software for the assessment of nesting and foraging performance of cavityâ€nesting solitary bees. Ecology and Evolution, 2022, 12, e8575.	0.8	3
3298	Impact of the "Farming With Alternative Pollinators―Approach on Crop Pollinator Pollen Diet. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	6
3299	Functional Properties and Antimicrobial Activity from Lactic Acid Bacteria as Resources to Improve the Health and Welfare of Honey Bees. Insects, 2022, 13, 308.	1.0	26
3300	Forbs included in conservation seed mixes exhibit variable blooming detection rates and costâ€effectiveness: implications for pollinator habitat design. Restoration Ecology, 2022, 30, .	1.4	4
3301	Seasonality and Landscape Composition Drive the Diversity of Pollen Collected by Managed Honey Bees. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	7
3302	Seasonal progression and differences in major floral resource use by bees and hoverflies in a diverse horticultural and agricultural landscape revealed by DNA metabarcoding. Journal of Applied Ecology, 2022, 59, 1484-1495.	1.9	10
3303	The Role of Nosema ceranae (Microsporidia: Nosematidae) in Honey Bee Colony Losses and Current Insights on Treatment. Veterinary Sciences, 2022, 9, 130.	0.6	14
3304	Estimating bee abundance: can mark-recapture methods validate common sampling protocols?. Apidologie, 2022, 53, 1.	0.9	9
3305	Impacts of Imidacloprid and Flupyradifurone Insecticides on the Gut Microbiota of Bombus terrestris. Agriculture (Switzerland), 2022, 12, 389.	1.4	7
3306	Simple Mechanisms of Plant Reproductive Benefits Yield Different Dynamics in Pollination and Seed Dispersal Mutualisms. American Naturalist, 2022, 200, 202-216.	1.0	2
3307	Effects of farmland consolidation in southern China on wild bee species composition, nesting location and body size variations. Agricultural and Forest Entomology, 2022, 24, 371-379.	0.7	5
3308	Solar park management and design to boost bumble bee populations. Environmental Research Letters, 2022, 17, 044002.	2.2	4
3309	Phylogenetic, functional and taxonomic responses of wild bee communities along urbanisation gradients. Science of the Total Environment, 2022, 832, 154926.	3.9	8
3310	Assessing Climate Change Impacts on Island Bees: The Aegean Archipelago. Biology, 2022, 11, 552.	1.3	7

#	Article	IF	CITATIONS
3311	Managed honeybees decrease pollination limitation in self-compatible but not in self-incompatible crops. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220086.	1.2	17
3312	Buffered fitness components: Antagonism between malnutrition and an insecticide in bumble bees. Science of the Total Environment, 2022, 833, 155098.	3.9	6
3313	Gut Bacterial Flora of Open Nested Honeybee, Apis florea. Frontiers in Ecology and Evolution, 2022, 10,	1.1	7
3314	Exposure of Larvae to Sublethal Thiacloprid Delays Bee Development and Affects Transcriptional Responses of Newly Emerged Honey Bees. Frontiers in Insect Science, 2022, 2, .	0.9	4
3315	The Significance of Pollination for Global Food Production and the Guarantee of Nutritional Security: A Literature Review. , 2022, 15, .		1
3316	A metaâ€enalysis of the effects of habitat aridity, evolutionary history of grazing and grazing intensity on bee and butterfly communities worldwide. Ecological Solutions and Evidence, 2022, 3, .	0.8	1
3317	Plasticity in floral longevity and sexâ€phase duration of <i>Lobelia siphilitica</i> in response to simulated pollinator declines. American Journal of Botany, 2022, 109, 526-534.	0.8	4
3318	Precision glycerine jelly swab for removing pollen from small and fragile insect specimens. Methods in Ecology and Evolution, 2023, 14, 340-346.	2.2	1
3319	Wildfire and forest thinning shift floral resources and nesting substrates to impact native bee biodiversity in ponderosa pine forests of the Colorado Front Range. Forest Ecology and Management, 2022, 510, 120087.	1.4	15
3320	Sacred church forests as sources of wild pollinators for the surrounding smallholder agricultural farms in Lake Tana Basin, Ethiopia. Ecological Indicators, 2022, 137, 108739.	2.6	4
3321	A geographic approach for determining honey bee conservation areas for sustainable ecosystem services. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	1
3322	Cellulose acetate/organoclay nanocomposites as controlled release matrices for pest control applications. Cellulose, 0 , 1 .	2.4	7
3323	Evaluating the success of functional restoration after reintroduction of a lost avian pollinator. Conservation Biology, 2022, 36, .	2.4	5
3324	Stingless bees (Apidae: Meliponini) at risk in western Mexico. Biotropica, 0, , .	0.8	3
3325	Understanding effects of floral products on bee parasites: Mechanisms, synergism, and ecological complexity. International Journal for Parasitology: Parasites and Wildlife, 2022, 17, 244-256.	0.6	7
3326	Frontiers in effective control of problem parasites in beekeeping. International Journal for Parasitology: Parasites and Wildlife, 2022, 17, 263-272.	0.6	7
3327	Critical links between biodiversity and health in wild bee conservation. Trends in Ecology and Evolution, 2022, 37, 309-321.	4.2	48
3328	On the road: Anthropogenic factors drive the invasion risk of a wild solitary bee species. Science of the Total Environment, 2022, 827, 154246.	3.9	17

#	Article	IF	CITATIONS
3329	Hormesis and insects: Effects and interactions in agroecosystems. Science of the Total Environment, 2022, 825, 153899.	3.9	74
3330	Nest preference and ecology of cavity-nesting bees (Hymenoptera: Apoidea) in Punjab, Pakistan. Journal of Asia-Pacific Entomology, 2022, 25, 101907.	0.4	5
3331	Honey bees cannot sense harmful concentrations of metal pollutants in food. Chemosphere, 2022, 297, 134089.	4.2	9
3332	Chronic anthropogenic disturbances and aridity negatively affect specialized reproductive traits and strategies of edible fruit plant assemblages in a Caatinga dry forest. Forest Ecology and Management, 2022, 514, 120214.	1.4	6
3333	The importance and value of insect pollination to apples: A regional case study of key cultivars. Agriculture, Ecosystems and Environment, 2022, 331, 107911.	2.5	10
3334	Intercropping of insect-pollinated crops supports a characteristic pollinator assemblage. Agriculture, Ecosystems and Environment, 2022, 332, 107930.	2.5	6
3335	Pesticide exposure of wild bees and honey bees foraging from field border flowers in intensively managed agriculture areas. Science of the Total Environment, 2022, 831, 154697.	3.9	24
3336	Can biodiverse streetscapes mitigate the effects of noise and air pollution on human wellbeing?. Environmental Research, 2022, 212, 113154.	3.7	5
3337	Risk assessment of social insect bumblebees. Japanese Journal of Pesticide Science, 2021, 46, 106-111.	0.0	0
3338	Distribution, diversity and abundance of some insects around a telecommunication mast in Ilorin, Kwara State, Nigeria. Bulletin of the National Research Centre, 2021, 45, .	0.7	2
3339	Nitrogen fertilization and high plant growing temperature increase herbivore performance. Ecosphere, 2021, 12, .	1.0	3
3340	Inventorying and monitoring crop pollinating bees: Evaluating the effectiveness of common sampling methods. Insect Conservation and Diversity, 2022, 15, 299-311.	1.4	11
3341	Deployment of Embedded Edge-AI for Wildlife Monitoring in Remote Regions., 2021,,.		4
3342	Acute Contact and Oral Toxicity of Dimethoate for Osmia pedicornis. Nong'yag Gwahag Hoeji, 2021, 25, 305-315.	0.1	0
3343	Imidacloprid activates ROS and causes mortality in honey bees (Apis mellifera) by inducing iron overload. Ecotoxicology and Environmental Safety, 2021, 228, 112709.	2.9	13
3344	Urban Bees Benefit from a Native Forest Species Grown in a City Environment–A Case Study of <i>Geranium Phaeum</i> L Journal of Apicultural Science, 2021, 65, 331-343.	0.1	0
3345	Local and landscape features constrain the trait and taxonomic diversity of urban bees. Landscape Ecology, 2022, 37, 583-599.	1.9	8
3346	The effects of betaâ€cypermethrin, chlorbenzuron, chlorothalonil, and pendimethalin on <scp><i>Apis mellifera ligustica</i></scp> and <scp><i>Apis cerana cerana</i></scp> larvae reared <scp><i>in vitro</i></scp> . Pest Management Science, 2022, 78, 1407-1416.	1.7	11

#	Article	IF	CITATIONS
3347	Are Bumblebees Relevant Models for Understanding Wild Bee Decline?. Frontiers in Conservation Science, 2021, 2, .	0.9	9
3348	Weeds Enhance Pollinator Diversity and Fruit Yield in Mango. Insects, 2021, 12, 1114.	1.0	6
3349	The effect of a novel dietary supplement based on fishery industry waste hydrolysate, essential fatty acids and phytochemicals on honey bee nuclei development. Journal of Apicultural Research, 0, , 1-7.	0.7	1
3350	Duck Nest Density and Survival in Postâ€Conservation Reserve Program Lands. Wildlife Society Bulletin, 2021, 45, 630-637.	0.4	2
3352	Genetic Variation in Antimicrobial Activity of Honey Bee (Apis mellifera) Seminal Fluid. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	2
3353	Effects of sexual dimorphism on pollinator behaviour in a dioecious species. Oikos, 2022, 2022, .	1.2	5
3354	The Use of Honeybee Hives May Boost Yields of Some Crops in Nepal. Psyche: Journal of Entomology, 2021, 2021, 1-6.	0.4	3
3355	Reproductive Success of an Endangered Plant after Invasive Bees Supplant Native Pollinator Services. Diversity, 2022, 14, 1.	0.7	0
3356	Global metaâ€network of legume crops and floral visitors reveals abundance of exotic bees. Journal of Applied Entomology, 2022, 146, 252-261.	0.8	2
3357	Beekeeping Livelihood Development in Nepal: Value-Added Opportunities and Professional Support Needs. Journal of Economic Entomology, 2022, 115, 706-714.	0.8	3
3358	Effects of Thiamethoxam-Dressed Oilseed Rape Seeds and Nosema ceranae on Colonies of Apis mellifera iberiensis, L. under Field Conditions of Central Spain. Is Hormesis Playing a Role?. Insects, 2022, 13, 371.	1.0	2
3359	Eco-evolutionary dynamics further weakens mutualistic interaction and coexistence under population decline. Evolutionary Ecology, 2022, 36, 373-387.	0.5	7
3360	Floral shape predicts bee–parasite transmission potential. Ecology, 2022, 103, e3730.	1. 5	7
3361	Analysis of current beekeeping conditions for the sustainable forest management: the case of Ordu province. Anadolu Orman AraAŸtırmaları Dergisi, 0, , .	0.2	0
3362	Assessing the toxicological interaction effects of imidacloprid, thiamethoxam, and chlorpyrifos on Bombus terrestris based on the combination index. Scientific Reports, 2022, 12, 6301.	1.6	4
3363	The contribution of canopy samples to assessments of forestry effects on native bees. Conservation Science and Practice, 2022, 4, .	0.9	5
3365	The Impact of Fire on Nectar Quality and Quantity for Insect Pollinator Communities. American Midland Naturalist, 2022, 187, .	0.2	2
3366	Pollinator richness, pollination networks, and diet adjustment along local and landscape gradients of resource diversity. Ecological Applications, 2022, 32, e2634.	1.8	11

#	Article	IF	CITATIONS
3367	Systemic Assessment of the Chiral Insecticide Pyriproxyfen in a Citrus Nectar Source System: Stereoselective Degradation, Biological Effect and Exposure Risk. Pest Management Science, 2022, , .	1.7	1
3368	Natural habitat cover and fragmentation per se influence orchid-bee species richness in agricultural landscapes in the Brazilian Cerrado. Apidologie, 2022, 53, 1.	0.9	6
3369	Biofilm formation as an extra gear for <i>Apilactobacillus kunkeei</i> to counter the threat of agrochemicals in honeybee crop. Microbial Biotechnology, 2022, 15, 2160-2175.	2.0	5
3370	Mapping nectar-rich pollinator floral resources using airborne multispectral imagery. Journal of Environmental Management, 2022, 313, 114942.	3.8	4
3371	Pollen diet mediates how pesticide exposure impacts brain gene expression in nest-founding bumble bee queens. Science of the Total Environment, 2022, 833, 155216.	3.9	6
3372	Acute and chronic ingestion of polyethylene (PE) microplastics has mild effects on honey bee health and cognition. Environmental Pollution, 2022, 305, 119318.	3.7	26
3414	Worker bees (Apis mellifera) deprived of pollen in the first week of adulthood exhibit signs of premature aging. Insect Biochemistry and Molecular Biology, 2022, 146, 103774.	1.2	3
3415	Honey as a bioindicator of environmental organochlorine insecticides contamination. Brazilian Journal of Biology, 2021, 83, e250373.	0.4	4
3416	The Interactions between Hygienic Behavior, Immune Response, and Virus Infection in Honeybees. SSRN Electronic Journal, O, , .	0.4	0
3417	The Effectiveness of Wildlife-Friendly Farming Practices in the Reduction of Pest Presence in Coffee Plants. SSRN Electronic Journal, 0, , .	0.4	0
3418	A Review of Habitat and Distribution of Common Stingless Bees and Honeybees Species in African Savanna Ecosystems. Tropical Conservation Science, 2022, 15, 194008292210996.	0.6	12
3419	Pollinators of Lavandula angustifolia Mill., an important factor for optimal production of lavender essential oil. BioRisk, 0, 17, 297-307.	0.2	4
3420	Monitoring bumblebee pollinator visits to the medicinal plant Gentiana asclepiadea L. (Gentianacese) – a comparison between the periods 1990–1994 and 2017–2020. BioRisk, 0, 17, 317-327.	0.2	0
3421	Current and future distributions of a native Andean bumble bee. Journal of Insect Conservation, 2022, 26, 559-569.	0.8	6
3422	Low toxicity crop fungicide (fenbuconazole) impacts reproductive male quality signals leading to a reduction of mating success in a wild solitary bee. Journal of Applied Ecology, 2022, 59, 1596-1607.	1.9	11
3423	Division of foraging behaviour: Assessments of pollinator traits when visiting a model plant species. Animal Behaviour, 2022, 188, 169-179.	0.8	4
3424	Chronic exposure to a field-realistic concentration of Closer \hat{A}^{\otimes} SC (24% sulfoxaflor) insecticide impacted the growth and foraging activity of honey bee colonies. Apidologie, 2022, 53, 1.	0.9	5
3425	Local Weather Conditions Affect Forager Size and Visitation Rate on Bramble Flowers (Rubus) Tj ETQq1 1 0.784.	314 rgBT /	Overlock 10

#	Article	IF	CITATIONS
3426	Uniting RNAi Technology and Conservation Biocontrol to Promote Global Food Security and Agrobiodiversity. Frontiers in Bioengineering and Biotechnology, 2022, 10, 871651.	2.0	7
3427	Species-Enriched Grass-Clover Mixtures Can Promote Bumblebee Abundance Compared with Intensively Managed Conventional Pastures. Agronomy, 2022, 12, 1080.	1.3	7
3428	Flower plantings promote insect pollinator abundance and wild bee richness in Canadian agricultural landscapes. Journal of Insect Conservation, 2022, 26, 375-386.	0.8	6
3429	Differential Expression Characterisation of the Heat Shock Proteins DnaJB6, DnaJshv, DnaJB13, and DnaJB14 in Apis cerana cerana Under Various Stress Conditions. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	3
3430	Adjacent crop type impacts potential pollinator communities and their pollination services in remnants of natural vegetation. Diversity and Distributions, 2022, 28, 1269-1281.	1.9	4
3431	Influence of some insecticides on the abundance and foraging activates of broad bean bee pollinators. Uludag Aricilik Dergisi, 0, , .	0.6	O
3432	Population genomics and phylogeography of <i>Colletes gigas</i> , a wild bee specialized on winter flowering plants. Ecology and Evolution, 2022, 12, e8863.	0.8	5
3433	Lethal and sublethal effects of different biopesticides on Bombus terrestris (Hymenoptera: Apidae). Apidologie, 2022, 53, .	0.9	4
3434	Landscape-scale drivers of pollinator communities may depend on land-use configuration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210172.	1.8	3
3435	Exploring connections between pollinator health and human health. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210158.	1.8	13
3436	Dream Team for Honey Bee Health: Pollen and Unmanipulated Gut Microbiota Promote Worker Longevity and Body Weight. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	3
3437	Reducing overall herbicide use may reduce risks to humans but increase toxic loads to honeybees, earthworms and birds. Environmental Sciences Europe, 2022, 34, .	2.6	15
3438	Biopesticides and insect pollinators: Detrimental effects, outdated guidelines, and future directions. Science of the Total Environment, 2022, 837, 155714.	3.9	26
3439	Canopy cover and seasonality are associated with variation in native bee assemblages across a mixed pineâ \in juniper woodland. Agricultural and Forest Entomology, 0 , , .	0.7	2
3440	Natural processes influencing pollinator health. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210154.	1.8	6
3441	Assessing pollen nutrient content: a unifying approach for the study of bee nutritional ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210510.	1.8	21
3442	Temporal Patterns of Honeybee Foraging in a Diverse Floral Landscape Revealed Using Pollen DNA Metabarcoding of Honey. Integrative and Comparative Biology, 2022, 62, 199-210.	0.9	8
3443	Lack of evidence for trans-generational immune priming against the honey bee pathogen Melissococcus plutonius. PLoS ONE, 2022, 17, e0268142.	1.1	8

#	Article	IF	CITATIONS
3444	Identification and antioxidant capacity of 4-hydroxyphenylpyruvate dioxygenase (HPPD), a new favored herbicide target, in Apis cerana cerana. Pesticide Biochemistry and Physiology, 2022, , 105110.	1.6	2
3445	Consistent signals of a warming climate in occupancy changes of three insect taxa over 40 years in central Europe. Global Change Biology, 2022, 28, 3998-4012.	4.2	21
3446	Methodological approach to spatial analysis of agricultural pest dispersal in olive landscapes. Environmental Monitoring and Assessment, 2022, 194, 411.	1.3	4
3447	A Checklist of the Bees of Massachusetts (Hymenoptera: Apoidea: Anthophila). Journal of the Kansas Entomological Society, 2022, 94, .	0.1	3
3448	Ecological, environmental, and management data indicate apple production is driven by wild bee diversity and management practices. Ecological Indicators, 2022, 139, 108880.	2.6	13
3449	Honeybees are far too insufficient to supply optimum pollination services in agricultural systems worldwide. Agriculture, Ecosystems and Environment, 2022, 335, 108003.	2.5	23
3450	Role of management in the long-term provision of floral resources on farmland. Agriculture, Ecosystems and Environment, 2022, 335, 108004.	2.5	5
3451	Pollination ecology of lowbush blueberry (<i>Vaccinium angustifolium</i> Aiton) in an island ecosystem. Canadian Journal of Plant Science, 0, , 1-12.	0.3	0
3452	Using acoustics and artificial intelligence to monitor pollination by insects and tree use by woodpeckers. Science of the Total Environment, 2022, 838, 155883.	3.9	11
3453	Grassy–herbaceous land moderates regional climate effects on honey bee colonies in the Northcentral US. Environmental Research Letters, 2022, 17, 064036.	2.2	8
3454	Diets maintained in a changing world: Does landâ€use intensification alter wild bee communities by selecting for flexible generalists?. Ecology and Evolution, 2022, 12, .	0.8	15
3455	Status and trends of pollination services in Amazon agroforestry systems. Agriculture, Ecosystems and Environment, 2022, 335, 108012.	2.5	8
3456	The pest control and pollinator protection dilemma: The case of thiamethoxam prophylactic applications in squash crops. PLoS ONE, 2022, 17, e0267984.	1.1	3
3459	Declining honey production and beekeeper adaptation to climate change in Chile. Progress in Physical Geography, 2022, 46, 737-756.	1.4	13
3460	Melatonin enhances the antioxidant capacity to rescue the honey bee Apis mellifera from the ecotoxicological effects caused by environmental imidacloprid. Ecotoxicology and Environmental Safety, 2022, 239, 113622.	2.9	12
3461	Weeds from non-flowering crops as potential contributors to oilseed rape pollination. Agriculture, Ecosystems and Environment, 2022, 336, 108026.	2.5	9
3462	Wild bees benefit from low urbanization levels and suffer from pesticides in a tropical megacity. Agriculture, Ecosystems and Environment, 2022, 336, 108019.	2.5	6
3463	Symptomatic Infection with Vairimorpha Bombi Decreases Diapause Survival in a Wild Bumble Bee Species (Bombus Griseocollis). SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	Citations
3464	Identifying Fertilizer Regimes Needed to Optimize Insect Ecosystem Services and Livestock Production. SSRN Electronic Journal, 0, , .	0.4	0
3465	Effects of small-scale anthropogenic alterations in Euglossini bees at eastern Amazon forest. Iheringia - Serie Zoologia, 0, 112, .	0.5	0
3466	Bringing back the Manchester Argus <i>Coenonympha tullia</i> ssp. <i>davus</i> (Fabricius, 1777): Quantifying the habitat resource requirements to inform the successful reintroduction of a specialist peatland butterfly. Ecological Solutions and Evidence, 2022, 3, .	0.8	1
3467	Evaluating the foraging performance of individual honey bees in different environments with automated field <scp>RFID </scp> systems. Ecosphere, 2022, 13, .	1.0	8
3468	Interaction between Thiamethoxam and Deformed Wing Virus Type A on Wing Characteristics and Expression of Immune and Apoptosis Genes in Apis mellifera. Insects, 2022, 13, 515.	1.0	2
3469	Availability and proximity of natural habitat influence cropland biodiversity in forest biomes globally. Global Ecology and Biogeography, 2022, 31, 1589-1602.	2.7	5
3470	Identification of the cuticle protein <i>AccCPR2</i> gene in <i>Apis cerana cerana</i> and its response to environmental stress. Insect Molecular Biology, 2022, 31, 634-646.	1.0	4
3471	No effect of dual exposure to sulfoxaflor and a trypanosome parasite on bumblebee olfactory learning. Scientific Reports, 2022, 12, .	1.6	7
3472	<scp>DNA</scp> metabarcoding unveils the effects of habitat fragmentation on pollinator diversity, plantâ€pollinator interactions, and pollination efficiency in Maldive islands. Molecular Ecology, 2023, 32, 6394-6404.	2.0	7
3473	Pursuing best practices for minimizing wild bee captures to support biological research. Conservation Science and Practice, 2022, 4, .	0.9	8
3474	Camera traps are an effective tool for monitoring insect–plant interactions. Ecology and Evolution, 2022, 12, .	0.8	9
3475	Open habitats in a tropical biodiversity hotspot support pollinator diversity in both protected and unprotected areas. Biotropica, 2022, 54, 947-957.	0.8	1
3477	Smart Bee Houses: Designing to Support Urban Pollination. , 2021, , .		2
3478	Complex floral traits shape pollinator attraction to ornamental plants. Annals of Botany, 2022, 130, 561-577.	1.4	9
3479	Larval Exposure to Parasitic Varroa destructor Mites Triggers Specific Immune Responses in Different Honey Bee Castes and Species. Molecular and Cellular Proteomics, 2022, 21, 100257.	2.5	3
3480	Why do we find dead bumblebees under linden trees?. Ecological Entomology, 0, , .	1.1	0
3481	Do pesticide and pathogen interactions drive wild bee declines?. International Journal for Parasitology: Parasites and Wildlife, 2022, 18, 232-243.	0.6	10
3482	Methoxyfenozide has minimal effects on replacement queens but may negatively affect sperm storage. Apidologie, 2022, 53, .	0.9	3

#	Article	IF	CITATIONS
3483	Philosophy of science in practice in ecological model building. Biology and Philosophy, 2022, 37, .	0.7	4
3484	A model of wild bee populations accounting for spatial heterogeneity and climateâ€induced temporal variability of food resources at the landscape level. Ecology and Evolution, 2022, 12, .	0.8	0
3485	The effect of pollination on the growth and reproduction of oilseed rape (Brassica napus). Basic and Applied Ecology, 2022, 63, 164-174.	1.2	3
3486	What Are the Best Pollinator Candidates for Camelia oleifera: Do Not Forget Hoverflies and Flies. Insects, 2022, 13, 539.	1.0	2
3487	Towards Ecological Management and Sustainable Urban Planning in Seoul, South Korea: Mapping Wild Pollinator Habitat Preferences and Corridors Using Citizen Science Data. Animals, 2022, 12, 1469.	1.0	2
3488	Bee species diversity and nesting sites in cultivated savannah, northern Zimbabwe. International Journal of Environmental Studies, 2023, 80, 581-590.	0.7	0
3490	Pollen use by the solitary bee <i>Osmia caerulescens</i> in cherry orchard agroecosystems in Spain. Journal of Apicultural Research, 0, , 1-10.	0.7	0
3491	Can't see the flowers for the trees: factors driving floral abundance within early-successional forests in the central Appalachian Mountains. Canadian Journal of Forest Research, 2022, 52, 1002-1013.	0.8	5
3492	Insect pollination services in actively and spontaneously restored quarries converge differently to natural reference ecosystem. Journal of Environmental Management, 2022, 318, 115450.	3.8	3
3493	Efficiency and effectiveness of native bees and honey bees as pollinators of apples in New South Wales orchards. Agriculture, Ecosystems and Environment, 2022, 337, 108063.	2.5	14
3494	The other face of pollinating insects and their relationship to geminivirus transmission. , 2022, , 253-259.		0
3495	Global Land-Use Development Trends: Traditional Cultural Landscapes Under Threat. Landscape Series, 2022, , 129-199.	0.1	2
3496	Inter-Annual Changes in Abundance of Native and Exotic Pollinators of V. Faba Crops and Their Relationship with Landscape Variables. SSRN Electronic Journal, 0, , .	0.4	0
3497	A New Isolated Fungus and its Pathogenicity to Brood of Apis Mellifera L. In China. SSRN Electronic Journal, 0, , .	0.4	0
3499	High Pollination Deficit and Strong Dependence on Honeybees in Pollination of Korla Fragrant Pear, Pyrus sinkiangensis. Plants, 2022, 11, 1734.	1.6	6
3500	Honeybee iflaviruses pack specific tRNA fragments from host cells in their virions. ChemBioChem, 0, , .	1.3	2
3501	Functional diversity of farmland bees across rural–urban landscapes in a tropical megacity. Ecological Applications, 2022, 32, .	1.8	9
3502	Colonisation Patterns of Nosema ceranae in the Azores Archipelago. Veterinary Sciences, 2022, 9, 320.	0.6	6

#	Article	IF	CITATIONS
3503	Anthropogenic Induced Beta Diversity in Plant–Pollinator Networks: Dissimilarity, Turnover, and Predictive Power. Frontiers in Ecology and Evolution, 0, 10, .	1.1	3
3504	Climate change and altered fire regimes: impacts on plant populations, species, and ecosystems in both hemispheres. Plant Ecology, 0, , .	0.7	1
3505	Elevated inbreeding in <i>Heliconia tortuosa</i> is determined by tropical forest stand age, isolation and loss of hummingbird functional diversity. Molecular Ecology, 2022, 31, 4465-4477.	2.0	0
3506	Intraâ€seasonal and daily variations in nectar availability affect bee assemblage in a monodominant afforested Brazilian Cerrado. Austral Ecology, 2022, 47, 1315-1328.	0.7	7
3507	Toxicity of Formulated Systemic Insecticides Used in Apple Orchard Pest Management Programs to the Honey Bee (Apis mellifera (L.)). Environments - MDPI, 2022, 9, 90.	1.5	4
3508	Floral visitors in the crop Phaseolus coccineus (Fabaceae) on the Altiplano of Puebla, Mexico: importance of agricultural management and flower color. Acta Botanica Mexicana, 2022, , .	0.1	0
3509	Optimization of in vitro culture of honeybee nervous tissue for pesticide risk assessment. Toxicology in Vitro, 2022, 84, 105437.	1.1	1
3510	Alterations in the Microbiota of Caged Honeybees in the Presence of Nosema ceranae Infection and Related Changes in Functionality. Microbial Ecology, 2023, 86, 601-616.	1.4	7
3511	A new fluorescent method to determine honey bee sperm motility parameters with computer-aided sperm analysis. Journal of Apicultural Research, 2023, 62, 944-952.	0.7	4
3512	The cuckoo bumble bee, Bombus chinensis, has a fragmented habitat, as revealed using the maximum entropy approach (Hymenoptera: Apidae). Apidologie, 2022, 53, .	0.9	1
3513	Use of botanical gardens as arks for conserving pollinators and plant-pollinator interactions: A case study from the United States Northern Great Plains. Journal of Pollination Ecology, 0, 31, 53-69.	0.5	5
3514	Geographic distribution, diversity and conservation status of giant millipedes in southern Cameroon rainforest. African Journal of Ecology, 0, , .	0.4	0
3515	Potential tradeoffs between effects of arbuscular mycorrhizal fungi inoculation, soil organic matter content and fertilizer application in raspberry production. PLoS ONE, 2022, 17, e0269751.	1.1	2
3516	Effects of Land-Use Change on the Pollination Services for Litchi and Longan Orchards: A Case Study of Huizhou, China. Land, 2022, 11, 1073.	1.2	2
3517	Results of Ringâ€Testing of a Semifield Study Design to Investigate Potential Impacts of Crop Protection Products on Bumblebees (Hymenoptera, Apidae) and a Proposal of a Potential Test Design. Environmental Toxicology and Chemistry, 2022, 41, 2548-2564.	2.2	3
3518	The local environmental factors impact the infestation of bee colonies by mite Varroa destructor. Ecological Indicators, 2022, 141, 109104.	2.6	9
3519	Bumblebee queen mortality along roads increase with traffic. Biological Conservation, 2022, 272, 109643.	1.9	6
3520	Passive acoustic monitoring for estimating human-wildlife conflicts: The case of bee-eaters and apiculture. Ecological Indicators, 2022, 142, 109158.	2.6	3

#	Article	IF	CITATIONS
3521	Multiple benefits of breeding honey bees for hygienic behavior. Journal of Invertebrate Pathology, 2022, 193, 107788.	1.5	3
3522	Combination of organic farming and flower strips in agricultural landscapes – A feasible method to maximise functional diversity of plant traits related to pollination. Global Ecology and Conservation, 2022, 38, e02229.	1.0	4
3523	Pollination service and soybean yields. Acta Oecologica, 2022, 116, 103846.	0.5	2
3524	Critical role of native forest and savannah habitats in retaining neotropical pollinator diversity in highly mechanized agricultural landscapes. Agriculture, Ecosystems and Environment, 2022, 338, 108084.	2.5	5
3525	Recent progress on the recovery of bioactive compounds obtained from propolis as a natural resource: Processes, and applications. Separation and Purification Technology, 2022, 298, 121640.	3.9	10
3526	Towards a real-time tracking of an expanding alien bee species in Southeast Europe through citizen science and floral host monitoring. Environmental Research Communications, 2022, 4, 085001.	0.9	3
3527	Bumblebees can be Exposed to the Herbicide Glyphosate when Foraging. Environmental Toxicology and Chemistry, 2022, 41, 2603-2612.	2.2	13
3528	The effects of changes in flowering plant composition caused by nitrogen and phosphorus enrichment on plant–pollinator interactions in a Tibetan alpine grassland. Frontiers in Plant Science, 0, 13, .	1.7	2
3529	Demographic Analysis of the Endangered Plant Pectis imberbis Highlights Tradeoffs between Deer Browse and Interspecific Competition. Natural Areas Journal, 2022, 42, .	0.2	0
3530	Applications of environmental DNA (eDNA) in agricultural systems: Current uses, limitations and future prospects. Science of the Total Environment, 2022, 847, 157556.	3.9	18
3531	Competition for pollinators destabilizes plant coexistence. Nature, 2022, 607, 721-725.	13.7	18
3532	Stingless bees in tropical dry forests: global context and challenges of an integrated conservation management. Journal of Apicultural Research, 2022, 61, 642-653.	0.7	3
3533	A Rapid and Easy Bioassay Method for Stingless Bees, <i>Tetragonula travancorica</i> Shanas and Faseeh. Indian Journal of Entomology, 0, , 1-4.	0.1	0
3535	Reâ€evaluation of a method used to study nutritional effects on bumble bees. Ecological Entomology, 2022, 47, 959-966.	1.1	4
3536	Expanded range of eight orchid bee species (Hymenoptera, Apidae, Euglossini) in Costa Rica. Biodiversity Data Journal, 0, 10, .	0.4	0
3537	Effect Of Fenvalerate, λ-cyhalothrin, Quinalphos And Thiamethoxam On Larval Survival In Honey Bee <i>Apis mellifera</i> L Indian Journal of Entomology, 0, , 49-53.	0.1	1
3538	Design and Planning of a Transdisciplinary Investigation into Farmland Pollinators: Rationale, Co-Design, and Lessons Learned. Sustainability, 2022, 14, 10549.	1.6	7
3539	Citizen science monitoring reveals links between honeybee health, pesticide exposure and seasonal availability of floral resources. Scientific Reports, 2022, 12, .	1.6	1

#	Article	IF	CITATIONS
3540	Urban Prairie Plots and Gardens Can Sustain Plant-Pollinator Interactions Similar to Established Rural Prairies. American Midland Naturalist, 2022, 188, .	0.2	0
3541	Effects of Temperature and Wildflower Strips on Survival and Macronutrient Stores of the Alfalfa Leafcutting Bee (Hymenoptera: Megachilidae) Under Extended Cold Storage. Environmental Entomology, 0, , .	0.7	1
3542	Temperature and not landscape composition shapes wild bee communities in an urban environment. Insect Conservation and Diversity, 2023, 16, 65-76.	1.4	11
3543	Access to prairie pollen affects honey bee queen fecundity in the field and lab. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	2
3544	Overwintering in North American domesticated honeybees (<i>Apis mellifera</i>) causes mitochondrial reprogramming while enhancing cellular immunity. Journal of Experimental Biology, 2022, 225, .	0.8	3
3545	Landscape influences genetic diversity but does not limit gene flow in a Neotropical pollinator. Apidologie, 2022, 53, .	0.9	2
3546	First detection of Lake Sinai virus in the Czech Republic: a potential member of a new species. Archives of Virology, 0, , .	0.9	3
3547	Leucas aspera (Willd.) A potential refuge for pollinators. Journal of Insect Conservation, 0, , .	0.8	0
3548	Wild vegetation and †farming with alternative pollinators' approach support pollinator diversity in farmland. Journal of Applied Entomology, 0, , .	0.8	1
3549	Insect herbivores drive sex allocation in angiosperm flowers. Ecology Letters, 2022, 25, 2177-2188.	3.0	2
3551	Assessment of the Potential of the Invasive Arboreal Plant Ailanthus altissima (Simaroubaceae) as an Economically Prospective Source of Natural Pesticides. Diversity, 2022, 14, 680.	0.7	2
3552	Six years of wild bee monitoring shows changes in biodiversity within and across years and declines in abundance. Ecology and Evolution, 2022, 12, .	0.8	17
3553	Stability of crop pollinator occurrence is influenced by bee community composition. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	3
3555	Selection to attract pollinators and to confuse antagonists specializes fig–pollinator chemical communications. Journal of Systematics and Evolution, 2023, 61, 454-464.	1.6	2
3556	Artificial Nesting Hills Promote Wild Bees in Agricultural Landscapes. Insects, 2022, 13, 726.	1.0	4
3557	Stable pollination service in a generalist high Arctic community despite the warming climate. Ecological Monographs, 2023, 93, .	2.4	6
3558	Influence of Flowering Characteristics, Local Environment, and Daily Temperature on the Visits Paid by Apis mellifera to the Exotic Crop Phacelia tanacetifolia. Sustainability, 2022, 14, 10186.	1.6	0
3560	Local diversification enhances pollinator visitation to strawberry and may improve pollination and marketability. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	2

#	Article	IF	CITATIONS
3561	Seasonal Dynamics of Fruit Flies (Diptera: Drosophilidae) in Forests of the European Russia. Insects, 2022, 13, 751.	1.0	3
3562	Bumble Bee Breeding on Artificial Pollen Substitutes. Journal of Economic Entomology, 2022, 115, 1423-1431.	0.8	4
3563	Matrix dominance and landscape resistance affect genetic variability and differentiation of an Atlantic Forest pioneer tree. Landscape Ecology, $0, \dots$	1.9	0
3564	Effects of neonicotinoid seed treatments on wild bee populations in soybean and corn fields in eastern Ontario. Agricultural and Forest Entomology, 0, , .	0.7	0
3565	Artificial intelligence versus natural selection: Using computer vision techniques to classify bees and bee mimics. IScience, 2022, 25, 104924.	1.9	1
3566	What are the plant reproductive consequences of losing a nectar robber?. Journal of Pollination Ecology, 0, 32, 97-109.	0.5	0
3567	Assessing local farmer's perspectives on the role of bat in providing ecosystem services in the Batang Toru ecosystem, North Sumatra, Indonesia. Biodiversitas, 2022, 23, .	0.2	0
3568	Acute toxicity of sublethal concentrations of thiacloprid and clothianidin to immune response and oxidative status of honey bees. Apidologie, 2022, 53, .	0.9	7
3569	Crushing corn pollen grains increased diet digestibility and hemolymph protein content while decreasing honey bee consumption. Apidologie, 2022, 53, .	0.9	5
3570	<i>Varroa destructor</i> in Portugal: an exploratory assessment of pyrethroids resistance status. Journal of Apicultural Research, 0, , 1-4.	0.7	0
3571	Genetic diversity of honeybee colonies predicts gut bacterial diversity of individual colony members. Environmental Microbiology, 2022, 24, 5643-5653.	1.8	1
3572	Greater bee diversity is needed to maintain crop pollination over time. Nature Ecology and Evolution, 2022, 6, 1516-1523.	3.4	8
3573	Stem-nesting Hymenoptera in Irish farmland: empirical evaluation of artificial trap nests as tools for fundamental research and pollinator conservation. Journal of Pollination Ecology, 0, 32, 110-123.	0.5	1
3574	Ecological livelihoods of farmers and pollinators in the Himalayas: Doing critical physical geography using citizen science. Canadian Geographer / Geographie Canadien, 2023, 67, 35-51.	1.0	2
3575	The Birds and the Bees: Producing Beef and Conservation Benefits on Working Grasslands. Agronomy, 2022, 12, 1934.	1.3	5
3576	Floral resources predict the local bee community: Implications for conservation. Biological Conservation, 2022, 273, 109679.	1.9	6
3577	Hierarchical classification of pollinating flying insects under changing environments. Ecological Informatics, 2022, 70, 101751.	2.3	3
3578	Land cover and climate drive shifts in Bombus assemblage composition. Agriculture, Ecosystems and Environment, 2022, 339, 108113.	2.5	2

#	Article	IF	CITATIONS
3579	Landscape-level effects on pollination networks and fruit-set of crops in tropical small-holder agroecosystems. Agriculture, Ecosystems and Environment, 2022, 339, 108112.	2.5	3
3580	Transcriptomic analysis of Malpighian tubules from the stingless bee Melipona scutellaris reveals thiamethoxam-induced damages. Science of the Total Environment, 2022, 850, 158086.	3.9	0
3582	Backyard buzz: human population density modifies the value of vegetation cover for insect pollinators in a subtropical city. Urban Ecosystems, 0, , .	1.1	0
3583	Review on effects of some insecticides on honey bee health. Pesticide Biochemistry and Physiology, 2022, 188, 105219.	1.6	14
3584	Are really Nature-Based Solutions sustainable solutions to design future cities in a context of global change? Discussion about the vulnerability of these new solutions and their probable unsustainable implementation. Science of the Total Environment, 2022, 853, 158535.	3.9	1
3585	Biodiversity of Agriculturally Important Insects: Status, Issues, and Challenges. , 2022, , 243-283.		2
3586	speciesLink: rich data and novel tools for digital assessments of biodiversity. Biota Neotropica, 2022, 22, .	0.2	4
3587	Mounting evidence that managed and introduced bees have negative impacts on wild bees: an updated review. Current Research in Insect Science, 2022, 2, 100043.	0.8	25
3588	Estudiando los polinizadores en el contexto del huerto ecodid \tilde{A}_i ctico universitario: presentaci \tilde{A}^3 n de una SEA. , 2022, 19, .		0
3589	Effect of heavy metals on insects. , 2022, , 361-390.		0
3590	Pollinator research provides conservation management implications in North Dakota. Agricultural and Environmental Letters, 2022, 7, .	0.8	1
3592	Effects of dietary supplementation with abscisic acid on Apis mellifera colonies confined in overwintering nucleus: studies on the adult honey bee population, nosemosis, and expression of nutrition- and immune-related genes., 2022, 1, 16-26.		0
3593	Modern approaches for leveraging biodiversity collections to understand change in plant-insect interactions. Frontiers in Ecology and Evolution, 0, 10 , .	1.1	4
3594	The FloRes Database: A floral resources trait database for pollinator habitat-assessment generated by a multistep workflow. Biodiversity Data Journal, 0, 10, .	0.4	3
3595	Extremely Low-Frequency Electromagnetic Field Impairs the Development of Honeybee (Apis cerana). Animals, 2022, 12, 2420.	1.0	4
3596	In vitro larval rearing method of eusocial bumblebee Bombus terrestris for toxicity test. Scientific Reports, 2022, 12, .	1.6	1
3597	The Role of Biodiversity in Ecosystem Resilience. IOP Conference Series: Earth and Environmental Science, 2022, 1072, 012012.	0.2	1
3598	Assessment of acute and chronic toxicity of cyantraniliprole and sulfoxaflor on honey bee ($\langle i \rangle$ Apis) Tj ETQq $1\ 1\ 0$.	784314 rg	BT /Overlock

#	Article	IF	CITATIONS
3599	Natural diversity of the honey bee (Apis mellifera) gut bacteriome in various climatic and seasonal states. PLoS ONE, 2022, 17, e0273844.	1.1	15
3600	Evaluating the effects of observation period, floral density, and weather conditions on the consistency and accuracy of timed pollinator counts. Journal of Pollination Ecology, 0, 32, 124-138.	0.5	2
3601	Rising temperatures threaten pollinators of fig treesâ€"Keystone resources of tropical forests. Ecology and Evolution, 2022, 12, .	0.8	3
3602	Plants, pollinators and their interactions under global ecological change: The role of pollen <scp>DNA</scp> metabarcoding. Molecular Ecology, 2023, 32, 6345-6362.	2.0	15
3603	The potential for floral evolution in response to competing selection pressures following the loss of hawkmoth pollination in <i>Ruellia humilis</i> . American Journal of Botany, 2022, 109, 1875-1892.	0.8	5
3604	Impact of climate change on parasite infection of an important pollinator depends on host genotypes. Global Change Biology, 2023, 29, 69-80.	4.2	8
3605	Dietary phytochemicals alter hypopharyngeal gland size in honey bee (Apis mellifera L.) workers. Heliyon, 2022, 8, e10452.	1.4	4
3607	Does IPPM bear fruit? Evaluating reducedâ€risk insecticide programmes on pests, pollinators and marketable yield. Journal of Applied Ecology, 2022, 59, 2993-3002.	1.9	3
3608	Sperm characteristics of Africanized honey bee (<i>Apis mellifera</i> L.) drones during dry and wet seasons in the Caatinga biome. Journal of Apicultural Research, 0, , 1-8.	0.7	4
3609	Unexpectedly, Creation of Temporary Water Bodies Has Increased the Availability of Food and Nesting Sites for Bees (Apiformes). Forests, 2022, 13, 1410.	0.9	1
3610	Measuring changes in financial and ecosystems service outcomes with simulated grassland restoration in a Corn Belt watershed. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	1
3611	An insectâ€pollinated species in a windâ€pollinated genus: case study of the endemic plant, Laramie chickensage <i>Artemisia simplex</i> . Nordic Journal of Botany, 2022, 2022, .	0.2	3
3612	Landscape Diversity Enhances Climate Change Resilience: A Review. International Research Journal of Multidisciplinary Technovation, 0, , 8-17.	0.0	1
3613	Apple orchards feed honey bees during, but even more so after, bloom. Ecosphere, 2022, 13, .	1.0	4
3614	Current status of meliponiculture and its cultural importance in the Western Ghats, India. Journal of Apicultural Research, 0, , 1-11.	0.7	2
3615	Fertility costs of cryptic viral infections in a model social insect. Scientific Reports, 2022, 12, .	1.6	O
3617	Agricultural intensification with seasonal fallow land promotes high bee diversity in Afrotropical drylands. Journal of Applied Ecology, 2022, 59, 3014-3026.	1.9	5
3618	The Effects of Climate Change on Animal Nutrition, Production and Product Quality and Solution Suggestions. Black Sea Journal of Agriculture, 2022, 5, 491-509.	0.1	0

#	Article	IF	CITATIONS
3619	Harmful Effects of Pyraclostrobin on the Fat Body and Pericardial Cells of Foragers of Africanized Honey Bee. Toxics, 2022, 10, 530.	1.6	9
3620	Floral resource distribution and fitness consequences for two solitary bee species in agricultural landscapes. Basic and Applied Ecology, 2022, 65, 1-15.	1.2	5
3621	Protected areas and the future of insect conservation. Trends in Ecology and Evolution, 2023, 38, 85-95.	4.2	44
3622	Environmental stochasticity increases extinction risk to a greater degree in pollination specialists than in generalists. Oikos, 2022, 2022, .	1.2	2
3623	Field-realistic acute exposure to glyphosate-based herbicide impairs fine-color discrimination in bumblebees. Science of the Total Environment, 2023, 857, 159298.	3.9	10
3624	High outcrossing rates in a selfâ€compatible and highly aggregated hostâ€generalist mistletoe. Molecular Ecology, 0, , .	2.0	2
3625	Editorial: The decline of wild bees: Causes and consequences. Frontiers in Ecology and Evolution, 0, 10, .	1.1	4
3626	Suitable areas for the invasion expansion of <i>Xylocopa</i> bees in South America. Journal of Applied Entomology, 2023, 147, 23-35.	0.8	1
3627	The Resilience of Plant–Pollinator Networks. Annual Review of Entomology, 2023, 68, 363-380.	5.7	17
3628	A global review demonstrating the importance of nocturnal pollinators for crop plants. Journal of Applied Ecology, 0, , .	1.9	11
3629	A matter of the beehive sound: Can honey bees alert the pollution out of their hives?. Environmental Science and Pollution Research, 2023, 30, 16266-16276.	2.7	2
3630	Diet and pheromones interact to shape honey bee (Apis mellifera) worker physiology. Journal of Insect Physiology, 2022, 143, 104442.	0.9	4
3631	Farmers' varieties to increase nutritional security, eco-system resiliency and farmers' income. , 2021, 91, .		0
3632	Effects of Climate Change on Insect Pollinators and Implications for Food Security—ÂEvidence and Recommended Actions. , 2022, , 143-163.		1
3633	Insect Pollinators and Hybrid Seed Production: Relevance to Climate Change and Sustainability., 2022, , 265-283.		0
3634	Supplemental artificial pollination can improve fruit set in tree fruit. Acta Horticulturae, 2022, , 121-128.	0.1	1
3635	<pre><scp>BeeDNA</scp>: Microfluidic environmental <scp>DNA</scp> metabarcoding as a tool for connecting plant and pollinator communities. Environmental DNA, 2023, 5, 191-211.</pre>	3.1	11
3636	Effects of trunk injection with emamectin benzoate on arthropod diversity. Pest Management Science, 2023, 79, 935-946.	1.7	4

#	Article	IF	CITATIONS
3637	Defining the Biologically Plausible Taxonomic Domain of Applicability of an Adverse Outcome Pathway: A Case Study Linking Nicotinic Acetylcholine Receptor Activation to Colony Death. Environmental Toxicology and Chemistry, 2023, 42, 71-87.	2.2	4
3638	A Flashforward Look into Solutions for Fruit and Vegetable Production. Genes, 2022, 13, 1886.	1.0	0
3640	First Detection of Honeybee Pathogenic Viruses in Butterflies. Insects, 2022, 13, 925.	1.0	1
3642	Pollinator biological traits and ecological interactions mediate the impacts of mosquito-targeting malathion application. Scientific Reports, 2022, 12, .	1.6	1
3643	Review on the sublethal effects of pure and formulated glyphosate on bees: Emphasis on social bees. Journal of Applied Entomology, 2023, 147, 1-18.	0.8	1
3644	Biotic interactions prior to seed dispersal determine recruitment probability of peyote (Lophophora) Tj ETQq $1\ 1$	0.784314 0.7	rgBT /Overlo
3645	The Impact of the Honeybee Apis mellifera on the Organization of Pollination Networks Is Positively Related with Its Interactive Role throughout Its Geographic Range. Diversity, 2022, 14, 917.	0.7	3
3646	Double-blind validation of alternative wild bee identification techniques: DNA metabarcoding and in vivo determination in the field. Journal of Hymenoptera Research, 0, 93, 189-214.	0.8	4
3647	Historical records of plant-insect interactions in subarctic Finland. BMC Research Notes, 2022, 15, .	0.6	1
3648	Honey Bee Pathogen Prevalence and Interactions within the Marmara Region of Turkey. Veterinary Sciences, 2022, 9, 573.	0.6	3
3649	Land Use Impacts on Diversity and Abundance of Insect Species. , 0, , .		0
3651	Effects of landscape composition on hoverflies (Diptera: Syrphidae) in mass-flowering crop fields within forest-dominated landscapes. Journal of Insect Conservation, 2022, 26, 907-918.	0.8	1
3652	Ternary network models for disturbed ecosystems. Royal Society Open Science, 2022, 9, .	1.1	3
3653	Installing Flower Strips to Promote Pollinators in Simplified Agricultural Landscapes: Comprehensive Viability Assessment in Sunflower Fields. Land, 2022, 11, 1720.	1.2	0
3654	European beewolf (Philanthus triangulum) will expand its geographic range as a result of climate warming. Regional Environmental Change, 2022, 22, .	1.4	5
3655	Toward evidence-based decision support systems to optimize pollination and yields in highbush blueberry. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	7
3657	Effect of ozone exposure on the foraging behaviour of Bombus terrestris. Environmental Pollution, 2023, 316, 120573.	3.7	9
3658	Response of bee and hoverfly populations to a land-use gradient in a Quebec floodplain. Journal of Insect Conservation, 2022, 26, 919-932.	0.8	2

#	Article	IF	CITATIONS
3659	Revisiting the hymenopteran diploid male vortex: a review of avoidance mechanisms and incidence. Entomologia Experimentalis Et Applicata, 2022, 170, 1010-1031.	0.7	2
3660	Conservation value of traditional meadow irrigation for carabid beetles. Ecological Indicators, 2022, 144, 109553.	2.6	0
3661	Honey Bee Genome Editing. , 2022, , 359-374.		0
3662	Characterizing user needs for Beescape: A spatial decision support tool focused on pollinator health. Journal of Environmental Management, 2023, 325, 116416.	3.8	2
3663	Landscape structure shapes the diversity of plant reproductive traits in agricultural landscapes in the Brazilian Cerrado. Agriculture, Ecosystems and Environment, 2023, 341, 108216.	2.5	9
3664	Favourite plants of wild bees. Agriculture, Ecosystems and Environment, 2023, 342, 108266.	2.5	10
3665	The economic value of a coastal protected area: an assessment of theÂShell Beach Area in Guyana. Journal of Coastal Conservation, 2022, 26, .	0.7	0
3666	A large-scale dataset reveals taxonomic and functional specificities of wild bee communities in urban habitats of Western Europe. Scientific Reports, 2022, 12, .	1.6	9
3667	A review of the effects of agricultural intensification and the use of pesticides on honey bees and their products and possible palliatives. Spanish Journal of Agricultural Research, 2022, 20, e03R02.	0.3	2
3668	Field-realistic concentrations of a neonicotinoid insecticide influence socially regulated brood development in a bumblebee. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	3
3669	The adverse impact on lifespan, immunity, and forage behavior of worker bees (Apis mellifera Linnaeus) Tj ETQq0	0 0 ggBT /0	Oyerlock 10
3670	Complex urban environments provide <i>Apis mellifera</i> with a richer plant forage than suburban and more rural landscapes. Ecology and Evolution, 2022, 12, .	0.8	3
3671	Ornamental roses for conservation of leafcutter bee pollinators. Scientific Reports, 2022, 12, .	1.6	1
3672	A short exposure to a semi-natural habitat alleviates the honey bee hive microbial imbalance caused by agricultural stress. Scientific Reports, 2022, 12, .	1.6	5
3673	Uses and benefits of algae as a nutritional supplement for honey bees. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	2
3674	Population Genomics for Insect Conservation. Annual Review of Animal Biosciences, 2023, 11, 115-140.	3.6	13
3675	Distance and Regional Effects on the Value of Wild Bee Conservation. Environmental and Resource Economics, 2023, 84, 37-63.	1.5	2
3676	Ecological Drivers and Consequences of Bumble Bee Body Size Variation. Environmental Entomology, 0, , .	0.7	3

#	Article	IF	CITATIONS
3677	Does diatomaceous earth (DE) cause mortality on <i>Apis mellifera</i> and <i>Bombus terrestris</i> ?. Journal of Apicultural Research, 0, , 1-7.	0.7	2
3678	The Influence of Plant Species, Origin and Color of Garden Nursery Flowers on the Number and Composition of Pollinating Insect Visitors. Journal of Agricultural and Urban Entomology, 2022, 38, .	0.6	2
3679	Attractiveness of Drought-tolerant Plants to Insect Pollinators in the Southern High Plains Region. Journal of the Kansas Entomological Society, 2022, 94, .	0.1	0
3680	Timing and mulching frequency affected the number of nests of cavity-nesting wasps that hunt for aphids in forest meadows. Journal of Insect Conservation, 2022, 26, 973-981.	0.8	0
3681	Can resin extraction have an effect on the reproductive biology in burseraceae species?: A global analysis. Trees, Forests and People, 2022, 10, 100353.	0.8	0
3683	Sociality is a key driver of foraging ranges in bees. Current Biology, 2022, 32, 5390-5397.e3.	1.8	20
3684	Intercrops as foraging habitats for bees: Bees do not prefer sole legume crops over legume-cereal mixtures. Agriculture, Ecosystems and Environment, 2023, 343, 108268.	2.5	7
3685	Strategies for the attraction and conservation of natural pollinators in agroecosystems: a systematic review. International Journal of Environmental Science and Technology, 2023, 20, 4499-4512.	1.8	2
3686	A global assessment of the species composition and effectiveness of watermelon pollinators and the management strategies to inform effective pollination service delivery. Basic and Applied Ecology, 2023, 66, 50-62.	1.2	3
3687	Simulated pollinator decline has similar effects on seed production of female and hermaphrodite $\langle i \rangle$ Lobelia siphilitica $\langle i \rangle$, but different effects on selection on floral traits. American Journal of Botany, 2023, 110, .	0.8	3
3688	Pollen meta-barcoding reveals different community structures of foraged plants by honeybees (Apis) Tj ETQq0 0	0 r <u>g</u> gT /Ον	verlock 10 Tf
3689	Population genetic diversity and dynamics of the honey bee brood pathogen Melissococcus plutonius in a region with high prevalence. Journal of Invertebrate Pathology, 2023, 196, 107867.	1.5	2
3690	Negative but antagonistic effects of neonicotinoid insecticides and ectoparasitic mites Varroa destructor on Apis mellifera honey bee food glands. Chemosphere, 2023, 313, 137535.	4.2	3
3691	Aridity mediates the effect of wood extraction on the reproductive output of an endemic disturbanceâ€adapted woody species (<i>Cenostigma microphyllum</i> , Leguminosae) in the Caatinga dry forest. Austral Ecology, 2023, 48, 251-265.	0.7	1
3692	From diverse to simple: butterfly communities erode from extensive grasslands to intensively used farmland and urban areas. Biodiversity and Conservation, 2023, 32, 867-882.	1.2	4
3694	Better Forests, Better Cities. , 0, , .		5
3695	Pollen metabarcoding reveals the floral resources and niche overlap of honeybees in forest areas. Entomological Research, 2022, 52, 515-521.	0.6	0
3696	Risk assessment of persistent pesticide pollution: Development of an indicator integrating site-specific characteristics. Science of the Total Environment, 2022, , 160555.	3.9	O

#	Article	IF	CITATIONS
3697	Interspecific variation in resistance and tolerance to herbicide drift reveals potential consequences for plant community co-flowering interactions and structure at the agro-eco interface. Annals of Botany, 2022, 130, 1015-1028.	1.4	1
3698	Smaller, more diverse and on the way to the top: Rapid community shifts of montane wild bees within an extraordinary hot decade. Diversity and Distributions, 2023, 29, 272-288.	1.9	3
3699	When less is more: Visitation by generalist pollinators can have neutral or negative effects on plant reproduction. Frontiers in Ecology and Evolution, $0,10,10$	1.1	3
3700	The effect of annual flower strips on pollinator visitation and fruit set of avocado (Persea americana) Tj ETQq1 1 C	.784314 0.5	rgBT /Overlo
3701	A checklist of South Dakota bumble bees (Hymenoptera, Apidae). Journal of Hymenoptera Research, 0, 94, 271-286.	0.8	1
3702	A metabarcoding framework for wild bee assessment in Luxembourg. Journal of Hymenoptera Research, 0, 94, 215-246.	0.8	1
3703	Analyzing the Beehive's Sound to Monitor the Presence of the Queen Bee. , 2022, , .		0
3704	Ecosystem services assessment from capacity to flow: A review. , 2023, 1, 80-93.		3
3705	The ecological drivers and consequences of wildlife trade. Biological Reviews, 2023, 98, 775-791.	4.7	10
3706	Can Molecularly Engineered Plant Galls Help to Ease the Problem of World Food Shortage (and Our) Tj ETQq1 1 0	.784314 1.9	rgBT /Overlo
3707	A comparative transcriptome analysis of the head of 1 and 9 days old worker honeybees (<i>Apis) Tj ETQq0 0 0 rg</i>	BŢ ĹOver	lock 10 Tf 50
3709	Effects of larval exposure to the insecticide flumethrin on the development of honeybee (Apis) Tj ETQq $1\ 1\ 0.7843$	14 rgBT /	Overlock 10
3710	Historic DNA uncovers genetic effects of climate change and landscape alteration in two wild bee species. Conservation Genetics, 2023, 24, 85-98.	0.8	3
3711	Uptrend in global managed honey bee colonies and production based on a six-decade viewpoint, $1961\hat{a}\in 2017$. Scientific Reports, 2022, 12, .	1.6	7
3712	Habitat preference influences response to changing agricultural landscapes in two long-horned bees. Journal of Apicultural Research, 0 , , 1 -8.	0.7	0
3713	Program Evaluation of a Workshop on Prairie Strips for Farm Advisors: Framing the Co-Occurring Outcomes of Low Knowledge Acquisition and High Confidence. Horticulturae, 2022, 8, 1215.	1.2	1
3714	Landscape or local? Distinct responses of flower visitor diversity and interaction networks to different land use scales in agricultural tropical highlands. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	3
3715	Insects as Crop Pollinators. , 2023, , 37-64.		0

#	Article	IF	CITATIONS
3716	â€~Farming with alternative pollinators' approach supports diverse and abundant pollinator community in melon fields in a semi-arid landscape. Renewable Agriculture and Food Systems, 0, , 1-12.	0.8	1
3717	Fine-scale assessment of Chlorella syrup as a nutritional supplement for honey bee colonies. Frontiers in Ecology and Evolution, $0,10,10$	1.1	1
3718	Comprehensive investigation and regulatory function of lncRNAs engaged in western honey bee larval immune response to Ascosphaera apis invasion. Frontiers in Physiology, 0, 13, .	1.3	5
3719	Characterisation of the heat shock protein Tid and its involvement in stress response regulation in Apis cerana. Frontiers in Physiology, $0,13,.$	1.3	1
3720	Mediating a host cell signaling pathway linked to overwinter mortality offers a promising therapeutic approach for improving bee health. Journal of Advanced Research, 2023, 53, 99-114.	4.4	0
3722	Physiochemical parameters of Apis cerana indica honey as an indicator of bee nutritional status in an anthropogenically managed urban habitat. International Journal of Tropical Insect Science, 0, , .	0.4	0
3723	Plant species richness and sunlight exposure increase pollinator attraction to pollinator gardens. Ecosphere, 2022, 13, .	1.0	0
3724	When should bees be flower constant? An agentâ€based model highlights the importance of social information and foraging conditions. Journal of Animal Ecology, 2023, 92, 580-593.	1.3	6
3725	The Influence of Body Weight on Semen Parameters in Apis mellifera Drones. Insects, 2022, 13, 1141.	1.0	4
3726	The effects of some insecticides on honeybees (Apis mellifera). Israel Journal of Ecology and Evolution, 2022, 69, 37-43.	0.2	1
3727	Pollinator interaction with selected â€~weeds' flora, Asteraceae, in the context of land use. Oriental Insects, 2023, 57, 935-950.	0.1	2
3728	Climate Change and Global Insect Dynamics. , 2022, , 335-351.		0
3729	ArcHivesâ€"combined palynological, genomic and lipid analysis of medieval wax seals. Heritage Science, 2023, 11, .	1.0	0
3730	Nationwide genomic surveillance reveals the prevalence and evolution of honeybee viruses in China. Microbiome, 2023, 11 , .	4.9	12
3731	Insect biomass density: measurement of seasonal and daily variations using an entomological optical sensor. Applied Physics B: Lasers and Optics, 2023, 129, .	1.1	6
3732	Intercropping with Pigeonpea (Cajanus cajan L. Millsp.): An Assessment of Its Influence on the Assemblage of Pollinators and Yield of Neighbouring Non-Leguminous Crops. Life, 2023, 13, 193.	1.1	2
3733	A national survey of managed honey bee colony losses in the USA: results from the Bee Informed Partnership for 2017–18, 2018–19, and 2019–20. Journal of Apicultural Research, 2023, 62, 429-443.	0.7	21
3734	Bumblebees sense rootstock-mediated nutrition and fertilization regime in tomato. Plant and Soil, 2023, 486, 293-306.	1.8	0

#	Article	IF	CITATIONS
3735	Microbial Community Structure among Honey Samples of Different Pollen Origin. Antibiotics, 2023, 12, 101.	1.5	2
3737	Bumble Bee Avoidance of Argentine Ants and Associated Chemical Cues. Journal of Insect Behavior, 2023, 36, 20-32.	0.4	1
3738	Cascading effects of livestock grazing on insect functional groups associated to flowers in arid lands. Agricultural and Forest Entomology, 0 , , .	0.7	1
3739	Using physiology to better support wild bee conservation. , 2023, 11, .		1
3740	The Grassland Fragmentation Experiment in the Swiss Jura Mountains: A Synthesis. Diversity, 2023, 15, 130.	0.7	2
3741	Impact of land use patterns on bee communities in the north of CÃ'te d'Ivoire (West Africa). African Journal of Ecology, 0, , .	0.4	1
3742	Plant–pollinator network change across a century in the subarctic. Nature Ecology and Evolution, 2023, 7, 102-112.	3.4	4
3743	The native - exotic plant choice in green roof design: Using a multicriteria decision framework to select plant tolerant species that foster beneficial arthropods. Ecological Engineering, 2023, 187, 106871.	1.6	6
3744	Protected areas support more species than unprotected areas in Great Britain, but lose them equally rapidly. Biological Conservation, 2023, 278, 109884.	1.9	9
3745	Semi-natural habitat of gullies mediates the spatiotemporal pattern of beneficial insects in an agricultural watershed in Northeast China. Agriculture, Ecosystems and Environment, 2023, 345, 108340.	2.5	O
3746	Hedgerows have contrasting effects on pollinators and natural enemies and limited spillover effects on apple production. Agriculture, Ecosystems and Environment, 2023, 346, 108364.	2.5	9
3747	Entomopatojen Fungusların Bombus terrestris Arılarının Besin Tercihi Üzerine Etkisi. , 0, , .		O
3748	Molecular Diagnostic Survey of Honey Bee, <i>Apis mellifera</i> L., Pathogens and Parasites from Arkansas, USA. Journal of Apicultural Science, 2022, 66, 149-158.	0.1	1
3749	Spatio-Temporal Variations in Pollen Limitation and Floral Traits of an Alpine Lousewort (Pedicularis) Tj $$ ETQq $$ 1 $$ 0	.784314 r 1.6	ggT /Overlo
3751	The nonlinear change in pollinator assemblages and self-mating syndromes of <i>Primula atrodentata</i> along elevation gradients. Journal of Plant Ecology, 0, , .	1.2	1
3752	A novel farmland wildflower seed mix attracts a greater abundance and richness of pollinating insects than standard mixes. Insect Conservation and Diversity, 2023, 16, 190-204.	1.4	6
3753	Recent and future declines of a historically widespread pollinator linked to climate, land cover, and pesticides. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	30
3754	A checklist of the bees (Hymenoptera: Apoidea) of Manitoba, Canada. Canadian Entomologist, 2023, 155, .	0.4	6

#	Article	IF	CITATIONS
3755	Stingless bees: uses and management by meliponiculturist women in the Chaco region of Bolivia. Journal of Ethnobiology and Ethnomedicine, 2023, 19, .	1.1	2
3756	Pollination by Wild and Managed Animal Vectors. , 2023, , 527-548.		0
3757	Quality Influencing Factors and Disease Resistance in Queen of Apis mellifera (Hymenoptera: Apidae)., 2023,, 83-110.		0
3758	Crude Extracts of Talaromyces Strains (Ascomycota) Affect Honey Bee (Apis mellifera) Resistance to Chronic Bee Paralysis Virus. Viruses, 2023, 15, 343.	1.5	1
3759	Toxicology, histophysiological and nutritional changes in <i>Apis mellifera</i> (Hymenoptera: Apidae) submitted to limonene and natural pesticides in comparison to synthetic pesticides. Journal of Apicultural Research, 0, , 1-12.	0.7	2
3761	Using environmental <scp>DNA</scp> to investigate avian interactions with flowering plants. Environmental DNA, 2023, 5, 462-475.	3.1	4
3762	Cuphea hyssopifolia Kunth: A Potential Plant for Conserving Insect Pollinators in Shivalik Foot Hills of Himalaya. The National Academy of Sciences, India, 2023, 46, 137-142.	0.8	1
3763	Meta-analysis of genetic diversity and intercolony relatedness among reproductives in commercial honey bee populations. Frontiers in Insect Science, 0, 3, .	0.9	0
3764	A Low-Cost, Low-Power, Multisensory Device and Multivariable Time Series Prediction for Beehive Health Monitoring. Sensors, 2023, 23, 1407.	2.1	3
3765	Spatiotemporal distancing of crops reduces pest pressure while maintaining conservation biocontrol in oilseed rape. Pest Management Science, 0, , .	1.7	7
3766	Linear scaling – negative effects of invasive Spiraea tomentosa (Rosaceae) on wetland plants and pollinator communities. NeoBiota, 0, 81, 63-90.	1.0	0
3767	Increased survival of honey bees consuming pollen and beebread is associated with elevated biomarkers of oxidative stress. Frontiers in Ecology and Evolution, $0,11,1$	1.1	2
3768	Long-term spatiotemporal patterns in the number of colonies and honey production in Mexico. Scientific Reports, 2023, 13 , .	1.6	2
3769	Climate Change Impact on Honeybees (Apis spp.) and Their Pollination Services. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 147-173.	0.3	0
3770	Economic Benefits of Using Essential Oils in Food Stimulation Administrated to Bee Colonies. Agriculture (Switzerland), 2023, 13, 594.	1.4	2
3771	Crop-Specific Effects on Pan-Trap Sampling of Potential Pollinators as Influenced by Trap Color and Location. Agronomy, 2023, 13, 552.	1.3	1
3772	Do Patches of Flowering Plants Enhance Insect Pollinators in Apple Orchards?. Insects, 2023, 14, 208.	1.0	3
3773	Completeness analysis for over 3000 United States bee species identifies persistent data gap. Ecography, 2023, 2023, .	2.1	15

#	Article	IF	CITATIONS
3774	Does Reproductive Success in Natural and Anthropogenic Populations of Generalist Epipactis helleborine Depend on Flower Morphology and Nectar Composition?. International Journal of Molecular Sciences, 2023, 24, 4276.	1.8	2
3775	Behavioural impairments, foraging behaviour and brood development of <i>Apis mellifera</i> L. (Hymenoptera: Apidae) driven by air pollutants particulate matter in agro-industrial ecosystem. Journal of Apicultural Research, 2024, 63, 189-198.	0.7	1
3776	Presence and distribution of pests and diseases of <i>Apis mellifera</i> (Hymenoptera: Apidae) in Mexico: a review. , 2023, 90, 224-236.		3
3777	Urbanization and abundance of floral resources affect bee communities in mediumâ€sized neotropical cities. Austral Ecology, 2024, 49, .	0.7	2
3778	The Neonicotinoid Imidacloprid Impairs Learning, Locomotor Activity Levels, and Sucrose Solution Consumption in Bumblebees (<i>Bombus terrestris</i>). Environmental Toxicology and Chemistry, 2023, 42, 1337-1345.	2.2	1
3780	Diverse urban pollinators and where to find them. Biological Conservation, 2023, 281, 110036.	1.9	7
3781	Impact of Seed Treatment with Imidacloprid, Clothianidin and Thiamethoxam on Soil, Plants, Bees and Hive Products. Agriculture (Switzerland), 2023, 13, 830.	1.4	1
3782	Co-producing agricultural policy with beekeepers: Obstacles and opportunities. Land Use Policy, 2023, 128, 106603.	2.5	6
3783	Spatiotemporal availability of pollinator attractive trees in a tropical streetscape: unequal distribution for pollinators and people. Urban Forestry and Urban Greening, 2023, 83, 127900.	2.3	5
3784	Evolutionarily inspired solutions to the crop pollination crisis. Trends in Ecology and Evolution, 2023, 38, 435-445.	4.2	1
3785	A combination of the frequent fungicides boscalid and dimoxystrobin with the neonicotinoid acetamiprid in field-realistic concentrations does not affect sucrose responsiveness and learning behavior of honeybees. Ecotoxicology and Environmental Safety, 2023, 256, 114850.	2.9	2
3786	Wild plants in hedgerows and weeds in crop fields are important floral resources for wild flower-visiting insects, independently of the presence of intercrops. Agriculture, Ecosystems and Environment, 2023, 348, 108410.	2.5	4
3787	Managed and unmanaged floral margins for the conservation of bee communities in intensive agricultural areas. Journal for Nature Conservation, 2023, 73, 126396.	0.8	1
3788	Effectiveness landscape of crop pollinator assemblages: Implications to pollination service management. Agriculture, Ecosystems and Environment, 2023, 348, 108417.	2.5	3
3789	Bats and birds control tortricid pest moths in South African macadamia orchards. Agriculture, Ecosystems and Environment, 2023, 352, 108527.	2.5	2
3790	Impact of oilseed rape coverage and other agricultural landscape characteristics on two generations of the red mason bee Osmia bicornis. Agriculture, Ecosystems and Environment, 2023, 352, 108514.	2.5	2
3791	Cascading effects of management and landscape on insect pollinators, pollination services and yield in apple orchards. Agriculture, Ecosystems and Environment, 2023, 352, 108509.	2.5	2
3792	Fostering pollination through agroforestry: A global review. Agriculture, Ecosystems and Environment, 2023, 351, 108478.	2.5	5

#	Article	IF	CITATIONS
3793	Population status and habitat suitability of <i>Vatica chinensis</i> L., an endangered Dipterocarp from the Western Ghats, India. Biodiversity Research and Conservation, 2022, 67, 21-32.	0.2	0
3794	Considering variation in bee responses to stressors can reveal potential for resilience. Journal of Applied Ecology, 2023, 60, 1435-1445.	1.9	2
3795	Pollination of urban meadows – Plant reproductive success and urban-related factors influencing frequency of pollinators visits. Urban Forestry and Urban Greening, 2023, 84, 127944.	2.3	1
3796	Perception and adaptation strategies of forest dwellers to climate variability in the tropical rainforest in eastern Cameroon: The case of the inhabitants of the Belabo-Diang Communal Forest. Heliyon, 2023, 9, e15544.	1.4	1
3797	Role of the tyrosine aminotransferase AccTATN gene in the response to pesticide and heavy metal stress in Apis cerana cerana. Pesticide Biochemistry and Physiology, 2023, 191, 105372.	1.6	1
3798	Mixture toxic effects of thiacloprid and cyproconazole on honey bees (Apis mellifera L.). Science of the Total Environment, 2023, 870, 161700.	3.9	9
3799	Effect of selected botanical compounds on Ascosphaera apis and Apis mellifera. Industrial Crops and Products, 2023, 197, 116649.	2.5	1
3800	Nocturnal pollination is equally important as, and complementary to, diurnal pollination for strawberry fruit production. Agriculture, Ecosystems and Environment, 2023, 350, 108475.	2.5	4
3801	Changes in light pollution in the Pan-Third Pole's protected areas from 1992 to 2021. Ecological Informatics, 2023, 75, 102016.	2.3	3
3803	Turnover., 2024,, 739-753.		0
3804	Potential emerging constraints and management strategies of different honeybee species in Pakistan: A review. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	1
3805	You Reap What You Sow: A Botanical and Economic Assessment of Wildflower Seed Mixes Available in Ireland. Conservation, 2023, 3, 73-86.	0.8	3
3806	Honeybee queen exposure to a widely used fungicide disrupts reproduction and colony dynamic. Environmental Pollution, 2023, 322, 121131.	3.7	2
3807	Economic benefits of animal pollination to Indian agriculture. , 2017, 87, .		9
3808	The Effect of Plant Nutrition on Bee Flower Visitation. Journal of the Kansas Entomological Society, 2023, 94, .	0.1	2
3809	Rising temperature drives tipping points in mutualistic networks. Royal Society Open Science, 2023, 10, .	1.1	3
3810	Successional and phenological effects on plantâ€floral visitor interaction networks of a tropical dry forest. Journal of Ecology, 2023, 111, 927-942.	1.9	2
3811	Honey Bees as Environmental Biomonitors and Effects of Climate Change on Their Population. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 174-205.	0.3	O

#	Article	IF	Citations
3813	The global challenge of improving bee protection and health. , 0, 1, .		1
3814	Commercial <i>Bombus impatiens</i> colonies function as ecological traps for wild queens. Journal of Applied Ecology, 2023, 60, 592-600.	1.9	1
3815	Preliminary Survey of Pathogens in the Asian Honey Bee (Apis cerana) in Thailand. Life, 2023, 13, 438.	1.1	0
3816	30 years brings changes to the arthropod community of Kibale National Park, Uganda. Biotropica, 2023, 55, 529-539.	0.8	5
3817	La miel de abejas sin aguij \tilde{A}^3 n: una medicina diferente. Epistemus, 2023, 17, .	0.0	0
3818	High species turnover and unique plant–pollinator interactions make a hyperdiverse mountain. Journal of Animal Ecology, 2023, 92, 1001-1015.	1.3	4
3819	Agricultural margins could enhance landscape connectivity for pollinating insects across the Central Valley of California, U.S.A PLoS ONE, 2023, 18, e0267263.	1.1	1
3820	Cuticular hydrocarbons of alpine bumble bees (Hymenoptera: Bombus) are species-specific, but show little evidence of elevation-related climate adaptation. Frontiers in Ecology and Evolution, $0,11,1$	1.1	3
3822	Characterization Factors to Assess Land Use Impacts on Pollinator Abundance in Life Cycle Assessment. Environmental Science &	4.6	2
3823	Mulching time of forest meadows influences insect diversity. Insect Conservation and Diversity, 2023, 16, 368-378.	1.4	0
3824	Phenological imbalance in the supply and demand of floral resources: Half the pollen and nectar produced by the main autumn food source, <i>Hedera helix</i> , is uncollected by insects. Ecological Entomology, 2023, 48, 371-383.	1.1	1
3825	Four-Year Overview of Winter Colony Losses in Greece: Citizen Science Evidence That Transitioning to Organic Beekeeping Practices Reduces Colony Losses. Insects, 2023, 14, 193.	1.0	3
3826	Putative Signals of Generalist Plant Species Adaptation to Local Pollinator Communities and Abiotic Factors. Molecular Biology and Evolution, 2023, 40, .	3.5	4
3827	The Role of Uncultivated Habitats in Supporting Wild Bee Communities in Mediterranean Agricultural Landscapes. Diversity, 2023, 15, 294.	0.7	3
3828	ANALYSIS OF PESTICIDE AND HEAVY METAL RESIDUES IN HONEY BY GC/ECD AND GF-AAS: COMPARISON OF DIFFERENT PRODUCTION AREAS FROM ROMANIA. , 2022, , .		0
3829	Meta-Analysis of the Effects of Insect Pathogens: Implications for Plant Reproduction. Pathogens, 2023, 12, 347.	1.2	2
3831	The degree of urbanisation reduces wild bee and butterfly diversity and alters the patterns of flower-visitation in urban dry grasslands. Scientific Reports, 2023, 13, .	1.6	14
3832	Hexanic extract of Achyrocline satureioides: antimicrobial activity and in vitro inhibitory effect on mechanisms related to the pathogenicity of Paenibacillus larvae. Veterinary Research Communications, 0, , .	0.6	1

#	Article	IF	CITATIONS
3833	Comparative transcriptome analysis of adult worker bees under short-term heat stress. Frontiers in Ecology and Evolution, $0,11,.$	1.1	0
3834	Sublethal exposure to imidacloprid in commercial Apis mellifera colonies in early spring: performance of honey bees and insecticide transference between in-hive products. Apidologie, 2023, 54, .	0.9	0
3835	Biased pollen transfer by bumblebees favors the paternity of virus-infected plants in cross-pollination. IScience, 2023, 26, 106116.	1.9	1
3836	Historical and citizen-reported data show shifts in bumblebee phenology over the last century in Sweden. Biodiversity and Conservation, 2023, 32, 1523-1547.	1.2	2
3837	Floral Scents in Bee-Pollinated Buckwheat and Oilseed Rape under a Global Warming Scenario. Insects, 2023, 14, 242.	1.0	2
3838	Virus transmission via honey bee prey and potential impact on cocoon-building in labyrinth spiders (Agelena labyrinthica). PLoS ONE, 2023, 18, e0282353.	1.1	0
3839	Are Botanical Biopesticides Safe for Bees (Hymenoptera, Apoidea)?. Insects, 2023, 14, 247.	1.0	2
3840	Metabolic profiling of Apis mellifera larvae treated with sublethal acetamiprid doses. Ecotoxicology and Environmental Safety, 2023, 254, 114716.	2.9	1
3841	Contrasting effects of fungicide and herbicide active ingredients and their formulations on bumblebee learning and behaviour. Journal of Experimental Biology, 2023, 226, .	0.8	4
3842	High Sensitivity of the Tiger Beetle, Cicindela circumpicta, to Toxicity from Pyrethroids and Neonicotinoids, and Implications for Ecosystem Function and Species Extinctions. Conservation, 2023, 3, 191-198.	0.8	0
3843	A Machine Learning Integrated 5.8-GHz Continuous-Wave Radar for Honeybee Monitoring and Behavior Classification. IEEE Transactions on Microwave Theory and Techniques, 2023, , 1-11.	2.9	2
3844	Local Plant and Insect Conservation Evaluated with Organizational Identity Theory. Journal of Zoological and Botanical Gardens, 2023, 4, 214-230.	1.0	1
3845	Prescribed fire is associated with increased floral richness and promotes shortâ€term increases in bee biodiversity in the ponderosa pine forest of the Southern Rocky Mountains. Agricultural and Forest Entomology, 2023, 25, 435-448.	0.7	0
3846	Potential risk to pollinators from neonicotinoid applications to host trees for management of spotted lanternfly, <i>Lycorma delicatula</i> (Hemiptera: Fulgoridae). Journal of Economic Entomology, 2023, 116, 368-378.	0.8	4
3847	The Impacts of Early-Life Experience on Bee Phenotypes and Fitness. Integrative and Comparative Biology, 2023, 63, 808-824.	0.9	1
3848	Honeys from Patagonia revealed notable pesticide residues in small-scale agricultural landscapes in the past decade. International Journal of Pest Management, 0, , 1-9.	0.9	0
3849	Monitoring the birds and the bees: Environmental <scp>DNA</scp> metabarcoding of flowers detects plantâ€"animal interactions. Environmental DNA, 2023, 5, 488-502.	3.1	14
3850	Not just flowering time: a resurrection approach shows floral attraction traits are changing over time. Evolution Letters, 2023, 7, 88-98.	1.6	3

#	Article	IF	CITATIONS
3851	Developing Trusted Voices for Planetary Health: Findings from a Clinicians for Planetary Health (C4PH) Workshop. Challenges, 2023, 14, 17.	0.9	0
3852	Visitors to a University pollinator event have positive attitudes towards honey bees. Bios, 2022, 93, .	0.0	0
3853	Large Remaining Forest Habitat Patches Help Preserve Wild Bee Diversity in Cultivated Blueberry Bush. Diversity, 2023, 15, 405.	0.7	2
3854	Ternary Mixture of Azoxystrobin, Boscalid and Pyraclostrobin Disrupts the Gut Microbiota and Metabolic Balance of Honeybees (Apis cerana cerana). International Journal of Molecular Sciences, 2023, 24, 5354.	1.8	4
3855	Patchâ€burn management affects grassland butterfly communities in cattleâ€grazed rangelands. Insect Conservation and Diversity, 2023, 16, 508-520.	1.4	0
3856	Spermidine dietary supplementation and polyamines level in reference to survival and lifespan of honey bees. Scientific Reports, 2023, 13, .	1.6	7
3857	How do neonicotinoids affect social bees? Linking proximate mechanisms to ecological impacts. Advances in Insect Physiology, 2023, , 191-253.	1.1	2
3858	Traitâ€based effects of plant invasion on floral resources, hoverflies and bees. Insect Conservation and Diversity, 2023, 16, 483-496.	1.4	1
3859	Effects of Managed and Unmanaged Floral Margins on Pollination Services and Production in Melon Crops. Insects, 2023, 14, 296.	1.0	3
3860	Floral enhancement of turfgrass lawns benefits wild bees and honey bees (Apis mellifera). Urban Ecosystems, 2023, 26, 361-375.	1.1	1
3861	¿Qué sabemos de las abejas sin aguijón (Hymenoptera: Apidae, Meliponini) en México?: Diversidad, EcologÃa y polinización. Acta Zoológica Mexicana, 0, , 1-17.	1.1	1
3862	Native solitary bee reproductive success depends on early season precipitation and host plant richness. Oecologia, 2023, 201, 965-978.	0.9	1
3863	Birds Visiting Flowers of Erythrina suberosa: Their Abundance, Frequency of Visits and Role as Pollinators in a Sub-Tropical Montane Forest of Garhwal Himalaya. Polish Journal of Ecology, 2023, 70, .	0.2	0
3864	Habitat–trait interactions that control response to climate change: North American ground beetles (Carabidae). Global Ecology and Biogeography, 2023, 32, 987-1001.	2.7	4
3865	The intersection of bee and flower sexes: pollen presence shapes sex-specific bee foraging associations in sunflower. Environmental Entomology, 0, , .	0.7	0
3866	Management linked to ecological intensification supports insect pollinators in Iberian wood-pastures. Landscape Ecology, 2023, 38, 3389-3403.	1.9	0
3867	Discovery of SNP Molecular Markers and Candidate Genes Associated with Sacbrood Virus Resistance in Apis cerana cerana Larvae by Whole-Genome Resequencing. International Journal of Molecular Sciences, 2023, 24, 6238.	1.8	0
3868	Pollen as Bee Medicine: Is Prevention Better than Cure?. Biology, 2023, 12, 497.	1.3	2

#	Article	IF	CITATIONS
3869	Little evidence for land-use filters on intraspecific trait variation in three arthropod groups. Web Ecology, 2023, 23, 35-49.	0.4	0
3870	Optimizing low-cost sampling of pollinator insects in oilseed rape fields. Frontiers in Sustainable Food Systems, 0, 7, .	1.8	1
3871	Honey bee viruses in solitary bees in South America: simultaneous detection and prevalence. Journal of Apicultural Research, 2024, 63, 122-127.	0.7	1
3872	Marvellous moths! pollen deposition rate of bramble (Rubus futicosus L. agg.) is greater at night than day. PLoS ONE, 2023, 18, e0281810.	1.1	1
3873	Taxonomy, behavior, and intelligence of bees Bumblebees of Europe and Neighbouring Regions By Rasmont, P., Ghisbain, G. and Terzo, M.2021. NAP Editions, Verrieres le Buisson, France. 632 pp. â,¬87. (hardback). ISBN 978â€2â€913688384.The Mind of a Bee By Chittka, L.2022. Princeton University Press, Princeton, NJ, U.S.A. 272 pp. US\$29–95 (hardcover). ISBN 978â€0â€691â€18047â€2 Conservation Biology, 2	2.4 2023, 37, .	0
3875	Evaluating the Impact of Commonly Used Pesticides on Honeybees (Apis mellifera) in North Gonder of Amhara Region, Ethiopia. Journal of Toxicology, 2023, 2023, 1-13.	1.4	1
3876	Neotropical Gradients of Insect Groups in Brazilian Mountains. , 2023, , 309-343.		0
3877	DISSEMINAÇÃO DE HORTAS ORGÃ,NICAS E CULTIVO DE HORTALIÇAS EM SUBSTRATO ORGÃ,NICO ALTERNATIVO , 2020, 2, 38-44.		O
3878	Collation of a century of soil invertebrate abundance data suggests long-term declines in earthworms but not tipulids. PLoS ONE, 2023, 18, e0282069.	1.1	3
3879	Bee functional traits and their relationship to pollination services depend on many factors: A metaâ€regression analysis. Insect Conservation and Diversity, 2023, 16, 313-323.	1.4	3
3880	Does pollinator dependence decrease along elevational gradients?. Plant Diversity, 2023, 45, 446-455.	1.8	4
3881	Tailoring your bee sampling protocol: Comparing three methods reveals the best approaches to capturing bees. Agricultural and Forest Entomology, 0, , .	0.7	1
3882	Novel Additive Manufactured Multielectrode Electrochemical Cell with Honeycomb Inspired Design for the Detection of Methyl Parathion in Honey Samples. ACS Measurement Science Au, 2023, 3, 217-225.	1.9	6
3883	<i> <scp>AccsHSP21</scp> .7 </i> enhances the antioxidant capacity of <i>Apis cerana cerana</i> Journal of the Science of Food and Agriculture, 0, , .	1.7	0
3884	Building composite indices in the age of big data $\hat{a}\in$ Application to honey bee exposure to infectious and parasitic agents. Heliyon, 2023, 9, e15244.	1.4	0
3885	Bee diversity decreases rapidly with time since harvest in intensively managed conifer forests. Ecological Applications, 2023, 33, .	1.8	6
3886	Hoverflies provide pollination and biological pest control in greenhouse-grown horticultural crops. Frontiers in Plant Science, 0, 14, .	1.7	5
3887	PRELIMINARY EXAMINATION OF THE EXOSKELETAL MICROBIOTA OF ARMADILLIDIUM VULGARE (THE) Tj ETQq1 1	0,784314	1 gBT /Over

#	Article	IF	CITATIONS
3888	Tropilaelaps mercedesae Infestation Is Correlated with Injury Numbers on the Brood and the Population Size of Honey Bee Apis mellifera. Animals, 2023, 13, 1318.	1.0	1
3889	Mixed-species system and native vegetation cover shape bee community in tomato crops. Landscape Ecology, 2023, 38, 4403-4417.	1.9	0
3890	Association of excessive precipitation and agricultural land use with honey bee colony performance. Landscape Ecology, 0 , , .	1.9	1
3891	Insect pollination in deep time. Trends in Ecology and Evolution, 2023, 38, 749-759.	4.2	11
3892	Microplastics and Nanoplastics Effects on Plant–Pollinator Interaction and Pollination Biology. Environmental Science & Env	4.6	5
3893	Floral resources in Swedish grasslands remain relatively stable under an experimental drought and are enhanced by soil amendments if regularly mown. Ecological Solutions and Evidence, 2023, 4, .	0.8	1
3894	The Effect of Pollen Diet Composition And Quantity on Diapause Survival And Performance in An Annual Pollinator (<i>Bombus Impatiens</i>). Integrative Organismal Biology, 0, , .	0.9	0
3895	Evading tipping points in socio-mutualistic networks via structure mediated optimal strategy. Journal of Theoretical Biology, 2023, , 111494.	0.8	O
3896	A global metaâ€analysis reveals contrasting impacts of air, light, and noise pollution on pollination. Ecology and Evolution, 2023, 13, .	0.8	2
3897	Applications of environmental DNA (eDNA) to detect subterranean and aquatic invasive species: A critical review on the challenges and limitations of eDNA metabarcoding. Environmental Advances, 2023, 12, 100370.	2.2	10
3898	The need for a (non-destructive) method revolution in entomology. Biological Conservation, 2023, 282, 110075.	1.9	3
3899	Insecticide Residues Associated with Apple Orchard Treatments in the Mason Bee, <i>Osmia cornifrons</i> , and their Nests. Environmental Toxicology and Chemistry, 2023, 42, 1564-1574.	2.2	1
3928	Effect of Extreme Climatic Events on Plant-Pollinator Interactions in Blueberry. Climate Change Management, 2023, , 165-181.	0.6	0
3943	Roadside Restoration with Native Plants: Partnering for Success in the Pacific Northwest of the USA., 2023,, 325-368.		2
3980	The Current Status of Population Extinction and Biodiversity Crisis of Medicinal Plants. Sustainable Development and Biodiversity, 2023, , 3-38.	1.4	0
3983	Turner Boxes and Bees: From Ambivalence to Diffraction. , 2023, , .		O
3986	The Robot Who Wants To Be A Pollinator. , 2023, , .		1
3993	Organic farming is indispensable in addressing key future challenges. , 2023, , 317-342.		O

#	Article	IF	CITATIONS
4057	Editorial: Insect pollinators in the Anthropocene: how multiple environmental stressors are shaping pollinator health. Frontiers in Ecology and Evolution, $0,11,.$	1.1	0
4070	Impact of Climate Change on Biomass. , 2023, , 1-18.		0
4072	Detrimental Effects of Agrochemical-Based Agricultural Intensification on Biodiversity: Evidence from Some Past Studies. Sustainable Development and Biodiversity, 2023, , 275-298.	1.4	0
4078	The insect decline syndrome. , 2024, , 47-89.		0
4079	From trade regulations to socio-ecological solutions: Present and future actions to promote insect conservation., 2024,, 315-326.		0
4096	Editorial: Insects as a model in behavioral ecology. Frontiers in Insect Science, 0, 3, .	0.9	0
4097	A primer on Insect Declines. , 2024, , 622-644.		0
4110	Pollinators, Role of. , 2024, , 185-195.		0
4141	The effects of anthropogenic toxins on honey bee learning: Research trends and significance. Apidologie, 2023, 54, .	0.9	0
4148	Habitat Loss and Fragmentation. , 2013, , 546-555.		0
4153	Editorial: The forgotten pollinators: the importance and conservation of wild pollinators. Frontiers in Sustainable Food Systems, 0, 7, .	1.8	0
4155	Biodiversity-Friendly Farming. , 2013, , 27-40.		0
4161	Exploring the database, methods. , 2022, , 103-141.		0
4164	Ground beetle fauna of the Netherlands. , 2022, , 143-325.		0
4167	Database work and pitfall traps. , 2022, , 77-102.		0
4168	General summary and conclusions. , 2022, , 389-389.		0
4169	Trend analysis. , 2022, , 327-346.		0
4170	Carabidology. , 2022, , 21-75.		0

#	Article	IF	CITATIONS
4172	Introduction to the chapters. , 2022, , 17-19.		0
4179	Diversity, Distribution, Nesting, and Foraging Behavior of Stingless Bees and Recent Meliponiculture in Indonesia. , 0, , .		1
4253	Impact of Illegal Mining Activities on Cocoa Pollinator Abundance in Ghana., 0, , .		0
4281	Ureases as pesticides. , 2024, , 375-400.		O
4282	Flowers strips and herbal living mulch as an innovative approach to the design of farming systems for sustainable crop production. Advances in Agronomy, 2024, , 119-151.	2.4	0
4291	Role of Secondary Metabolites in Pollination. Reference Series in Phytochemistry, 2023, , 1-33.	0.2	0
4292	Landscape approaches for biodiversity conservation and utilization in agricultural landscape. , 2024, , 97-120.		0
4325	Impact of Climate Change on Honeybees and Crop Production. , 2024, , 211-224.		0