Evolutionary conservation of the transcriptional netwo biosynthesis

Trends in Plant Science 15, 625-632

DOI: 10.1016/j.tplants.2010.08.007

Citation Report

#	Article	IF	Citations
1	Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication. BMC Biology, 2010, 8, 139.	3.8	87
2	Senescence-associated Barley NAC (NAM, ATAF1,2, CUC) Transcription Factor Interacts with Radical-induced Cell Death 1 through a Disordered Regulatory Domain. Journal of Biological Chemistry, 2011, 286, 35418-35429.	3.4	84
3	Overexpression of constitutively active <i>Arabidopsis</i> RabG3b promotes xylem development in transgenic poplars. Plant, Cell and Environment, 2011, 34, 2212-2224.	5.7	24
4	A NAC domain protein family contributing to the regulation of wood formation in poplar. Plant Journal, 2011, 67, 499-512.	5.7	182
5	NAC domain function and transcriptional control of a secondary cell wall master switch. Plant Journal, 2011, 68, 1104-1114.	5.7	112
6	SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biology, 2011, 11, 173.	3.6	164
7	Biotechnological improvement of lignocellulosic feedstock for enhanced biofuel productivity and processing. Plant Biotechnology Reports, 2011, 5, 1-7.	1.5	13
8	Dissection of the Transcriptional Program Regulating Secondary Wall Biosynthesis during Wood Formation in Poplar Â. Plant Physiology, 2011, 157, 1452-1468.	4.8	220
9	Transcriptional Activation of Secondary Wall Biosynthesis by Rice and Maize NAC and MYB Transcription Factors. Plant and Cell Physiology, 2011, 52, 1856-1871.	3.1	270
10	Secondary wall NAC binding element (SNBE), a key cis-acting element required for target gene activation by secondary wall NAC master switches. Plant Signaling and Behavior, 2011, 6, 1282-1285.	2.4	37
11	Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Frontiers in Plant Science, 2012, 3, 104.	3.6	286
12	Xylem cell death: emerging understanding of regulation and function. Journal of Experimental Botany, 2012, 63, 1081-1094.	4.8	179
13	Transcription Factors of Lotus: Regulation of Isoflavonoid Biosynthesis Requires Coordinated Changes in Transcription Factor Activity \hat{A} \hat{A} . Plant Physiology, 2012, 159, 531-547.	4.8	64
14	MYB46 and MYB83 Bind to the SMRE Sites and Directly Activate a Suite of Transcription Factors and Secondary Wall Biosynthetic Genes. Plant and Cell Physiology, 2012, 53, 368-380.	3.1	325
15	Transcriptional Regulation of the Lignin Biosynthetic Pathway Revisited: New Players and Insights. Advances in Botanical Research, 2012, 61, 173-218.	1.1	28
16	On–Off Switches for Secondary Cell Wall Biosynthesis. Molecular Plant, 2012, 5, 297-303.	8.3	186
17	The promoter region of the Zinnia elegans basic peroxidase isoenzyme gene contains cis-elements responsive to nitric oxide and hydrogen peroxide. Planta, 2012, 236, 327-342.	3.2	15
18	Role of recently evolved miRNA regulation of sunflower <i>HaWRKY6</i> in response to temperature damage. New Phytologist, 2012, 195, 766-773.	7. 3	118

#	Article	IF	CITATIONS
19	Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants. Biotechnology for Biofuels, 2012, 5, 84.	6.2	97
20	Progress in the biological synthesis of the plant cell wall: new ideas for improving biomass for bioenergy. Current Opinion in Biotechnology, 2012, 23, 330-337.	6.6	79
21	Natural Hypolignification Is Associated with Extensive Oligolignol Accumulation in Flax Stems \hat{A} \hat{A} . Plant Physiology, 2012, 158, 1893-1915.	4.8	82
22	Deep EST profiling of developing fenugreek endosperm to investigate galactomannan biosynthesis and its regulation. Plant Molecular Biology, 2012, 79, 243-258.	3.9	32
23	Functional characterization of the switchgrass (<i>Panicum virgatum</i>) R2R3â€MYB transcription factor <i>PvMYB4</i> for improvement of lignocellulosic feedstocks. New Phytologist, 2012, 193, 121-136.	7.3	264
24	The Class II <i>KNOX</i> gene <i>KNAT7</i> negatively regulates secondary wall formation in <i>Arabidopsis</i> and is functionally conserved in <i>Populus</i> New Phytologist, 2012, 194, 102-115.	7.3	186
25	Isolation and Partial Characterization of an R2R3MYB Transcription Factor from the Bamboo Species Fargesia fungosa. Plant Molecular Biology Reporter, 2012, 30, 131-138.	1.8	4
26	The developing xylem transcriptome and genome-wide analysis of alternative splicing in Populus trichocarpa(black cottonwood) populations. BMC Genomics, 2013, 14, 359.	2.8	76
27	Identification of molecular processes needed for vascular formation through transcriptome analysis of different vascular systems. BMC Genomics, 2013, 14, 217.	2.8	21
28	Characterization of expressed sequence tags from developing fibers of Gossypium barbadense and evaluation of insertion-deletion variation in tetraploid cultivated cotton species. BMC Genomics, 2013, 14, 170.	2.8	8
29	The interacting MYB75 and KNAT7 transcription factors modulate secondary cell wall deposition both in stems and seed coat in Arabidopsis. Planta, 2013, 237, 1199-1211.	3.2	78
30	Induced somatic sector analysis of cellulose synthase (CesA) promoter regions in woody stem tissues. Planta, 2013, 237, 799-812.	3.2	14
31	The PmNAC1 gene is induced by auxin and expressed in differentiating vascular cells in callus cultures of Passiflora. Plant Cell, Tissue and Organ Culture, 2013, 115, 275-283.	2.3	8
32	Diversity and cis-element architecture of the promoter regions of cellulose synthase genes in Eucalyptus. Tree Genetics and Genomes, 2013, 9, 989-1004.	1.6	3
33	Cellular Aspects of Wood Formation. Plant Cell Monographs, 2013, , .	0.4	32
34	The R2R3-MYB–Like Regulatory Factor EOBI, Acting Downstream of EOBII, Regulates Scent Production by Activating <i>ODO1</i> and Structural Scent-Related Genes in Petunia Â. Plant Cell, 2013, 24, 5089-5105.	6.6	114
35	Polar Auxin Transport. Signaling and Communication in Plants, 2013, , .	0.7	18
36	Xylem tissue specification, patterning, and differentiation mechanisms. Journal of Experimental Botany, 2013, 64, 11-31.	4.8	197

#	Article	IF	CITATIONS
37	Functions of rice NAC transcriptional factors, ONAC122 and ONAC131, in defense responses against Magnaporthe grisea. Plant Molecular Biology, 2013, 81, 41-56.	3.9	113
38	Hormone interactions in xylem development: a matter of signals. Plant Cell Reports, 2013, 32, 867-883.	5.6	48
39	Transcriptional Regulation of Wood Formation in Tree Species. Plant Cell Monographs, 2013, , 141-158.	0.4	7
40	<i>Post mortem</i> function of <scp>A</scp> t <scp>MC</scp> 9 in xylem vessel elements. New Phytologist, 2013, 200, 498-510.	7.3	117
41	Phytohormones in Japanese Mugwort Gall Induction by a Gall-Inducing Gall Midge. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1942-1948.	1.3	58
42	Phloem parenchyma transfer cells in Arabidopsis – an experimental system to identify transcriptional regulators of wall ingrowth formation. Frontiers in Plant Science, 2013, 4, 102.	3.6	24
43	Navigating the transcriptional roadmap regulating plant secondary cell wall deposition. Frontiers in Plant Science, 2013, 4, 325.	3.6	124
44	Regulation of secondary wall synthesis and cell death by NAC transcription factors in the monocot Brachypodium distachyon. Journal of Experimental Botany, 2013, 64, 1333-1343.	4.8	78
45	Neighboring Parenchyma Cells Contribute to <i>Arabidopsis</i> Xylem Lignification, while Lignification of Interfascicular Fibers Is Cell Autonomous. Plant Cell, 2013, 25, 3988-3999.	6.6	138
46	The Transcriptomics of Secondary Growth and Wood Formation in Conifers. Molecular Biology International, 2013, 2013, 1-12.	1.7	22
47	Functional characterization of the orthologs of $\langle i \rangle At \langle i \rangle \langle scp \rangle \langle i \rangle NST \langle i \rangle \langle scp \rangle \langle i \rangle 1/2 \langle i \rangle$ in $\langle i \rangle Glycine soja \langle i \rangle (\langle scp \rangle F \langle scp \rangle abaceae)$ and the evolutionary implications. Journal of Systematics and Evolution, 2013, 51, 693-703.	3.1	10
48	The Poplar MYB Master Switches Bind to the SMRE Site and Activate the Secondary Wall Biosynthetic Program during Wood Formation. PLoS ONE, 2013, 8, e69219.	2.5	130
49	Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis. Frontiers in Plant Science, 2013, 4, 189.	3.6	106
50	Transcriptomic Analysis of Fiber Strength in Upland Cotton Chromosome Introgression Lines Carrying Different Gossypium barbadense Chromosomal Segments. PLoS ONE, 2014, 9, e94642.	2.5	14
52	Plant biotechnology for lignocellulosic biofuel production. Plant Biotechnology Journal, 2014, 12, 1174-1192.	8.3	96
53	Databases for Bioenergy-Related Enzymes. , 2014, , 95-107.		2
54	Cellulose Synthesis and Its Regulation. The Arabidopsis Book, 2014, 12, e0169.	0.5	119
55	Genetic Determinants for Enzymatic Digestion of Lignocellulosic Biomass Are Independent of Those for Lignin Abundance in a Maize Recombinant Inbred Population. Plant Physiology, 2014, 165, 1475-1487.	4.8	51

#	Article	IF	CITATIONS
56	Xylem. Current Biology, 2014, 24, R1149.	3.9	2
57	PtrKOR1 is required for secondary cell wall cellulose biosynthesis in Populus. Tree Physiology, 2014, 34, 1289-1300.	3.1	43
58	Intron-Mediated Alternative Splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B Regulates Cell Wall Thickening during Fiber Development in <i>Populus</i> Species Â. Plant Physiology, 2014, 164, 765-776.	4.8	123
59	Spatial gradients in cell wall composition and transcriptional profiles along elongating maize internodes. BMC Plant Biology, 2014, 14, 27.	3.6	50
60	The MYB46/MYB83-mediated transcriptional regulatory programme is a gatekeeper of secondary wall biosynthesis. Annals of Botany, 2014, 114, 1099-1107.	2.9	152
61	Opposite action of R2R3-MYBs from different subgroups on key genes of the shikimate and monolignol pathways in spruce. Journal of Experimental Botany, 2014, 65, 495-508.	4.8	34
62	Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance. Plant Biotechnology Journal, 2014, 12, 1207-1216.	8.3	46
63	Aberrant phenotype and transcriptome expression during fiber cell wall thickening caused by the mutation of the Im gene in immature fiber (im) mutant in Gossypium hirsutum L. BMC Genomics, 2014, 15, 94.	2.8	25
64	Large-scale screening of transcription factor–promoter interactions in spruce reveals a transcriptional network involved in vascular development. Journal of Experimental Botany, 2014, 65, 2319-2333.	4.8	59
65	Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nature Communications, 2014, 5, 3352.	12.8	177
66	Lignin bioengineering. Current Opinion in Biotechnology, 2014, 26, 189-198.	6.6	126
67	Xylan biosynthesis. Current Opinion in Biotechnology, 2014, 26, 100-107.	6.6	249
68	The formation of wood and its control. Current Opinion in Plant Biology, 2014, 17, 56-63.	7.1	126
69	At <scp>MYB</scp> 41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types. Plant Journal, 2014, 80, 216-229.	5.7	172
70	Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 Regulates Xylem Development and Growth by a Conserved Mechanism That Modulates Hormone Signaling À Â. Plant Physiology, 2014, 164, 1991-2010.	4.8	5
71	Regulation of galactomannan biosynthesis in coffee seeds. Journal of Experimental Botany, 2014, 65, 323-337.	4.8	27
72	Complexity of the transcriptional network controlling secondary wall biosynthesis. Plant Science, 2014, 229, 193-207.	3.6	124
73	Molecular cloning, characterization, and expression analysis of LeMYB1 from Lithospermum erythrorhizon. Biologia Plantarum, 2014, 58, 436-444.	1.9	11

#	Article	IF	Citations
74	Transcriptome sequencing and profiling of expressed genes in cambial zone and differentiating xylem of Japanese cedar (Cryptomeria japonica). BMC Genomics, 2014, 15, 219.	2.8	48
75	A survey of plant and algal genomes and transcriptomes reveals new insights into the evolution and function of the cellulose synthase superfamily. BMC Genomics, 2014, 15, 260.	2.8	63
76	Comparative genomic analysis of the R2R3 MYB secondary cell wall regulators of Arabidopsis, poplar, rice, maize, and switchgrass. BMC Plant Biology, 2014, 14, 135.	3.6	74
77	Programmes of cell death and autolysis in tracheary elements: when a suicidal cell arranges its own corpse removal. Journal of Experimental Botany, 2014, 65, 1313-1321.	4.8	96
79	The NAC transcription factor family in maritime pine (Pinus Pinaster): molecular regulation of two genes involved in stress responses. BMC Plant Biology, 2015, 15, 254.	3.6	54
80	Exogenous GA3 Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla. International Journal of Molecular Sciences, 2015, 16, 22960-22975.	4.1	34
81	Functional Characterization of NAC and MYB Transcription Factors Involved in Regulation of Biomass Production in Switchgrass (Panicum virgatum). PLoS ONE, 2015, 10, e0134611.	2.5	68
82	NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. Frontiers in Plant Science, 2015, 6, 288.	3.6	344
83	Seed shattering: from models to crops. Frontiers in Plant Science, 2015, 6, 476.	3.6	114
84	Short day transcriptomic programming during induction of dormancy in grapevine. Frontiers in Plant Science, 2015, 6, 834.	3.6	48
85	Comparative proteomic analysis of Populus trichocarpa early stem from primary to secondary growth. Journal of Proteomics, 2015, 126, 94-108.	2.4	22
86	Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation. BMC Genomics, 2015, 16, 477.	2.8	72
87	Cellulose-hemicellulose interaction in wood secondary cell-wall. Modelling and Simulation in Materials Science and Engineering, 2015, 23, 085010.	2.0	71
88	A <scp>R2R3â€MYB</scp> transcription factor that is specifically expressed in cotton (<i>Gossypium) Tj ETQq1 1 <i>Arabidopsis</i>. Physiologia Plantarum, 2015, 154, 420-432.</i>	0.78431 5.2	4 rgBT /Ove 51
89	Comparative interrogation of the developing xylem transcriptomes of two woodâ€forming species: ⟨i⟩⟨scp⟩P⟨/scp⟩opulus trichocarpa⟨/i⟩ and ⟨i⟩⟨scp⟩E⟨/scp⟩ucalyptus grandis⟨/i⟩. New Phytologist, 2015, 206, 1391-1405.	7.3	47
90	Molecular control of wood formation in trees. Journal of Experimental Botany, 2015, 66, 4119-4131.	4.8	148
91	Comprehensive Analysis Suggests Overlapping Expression of Rice ONAC Transcription Factors in Abiotic and Biotic Stress Responses. International Journal of Molecular Sciences, 2015, 16, 4306-4326.	4.1	67
92	A role for OVATE FAMILY PROTEIN1 (OFP1) and OFP4 in a BLH6-KNAT7 multi-protein complex regulating secondary cell wall formation in Arabidopsis thaliana. Plant Signaling and Behavior, 2015, 10, e1033126.	2.4	50

#	Article	IF	CITATIONS
93	Phosphorylation is an on/off switch for 5-hydroxyconiferaldehyde <i>O</i> -methyltransferase activity in poplar monolignol biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8481-8486.	7.1	60
94	Poplar PdMYB221 is involved in the direct and indirect regulation of secondary wall biosynthesis during wood formation. Scientific Reports, 2015, 5, 12240.	3.3	52
95	Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property: Fig. 1 Journal of Experimental Botany, 2015, 66, 4109-4118.	4.8	197
96	Subgroup-specific intrinsic disorder profiles of arabidopsis NAC transcription factors: Identification of functional hotspots. Plant Signaling and Behavior, 2015, 10, e1010967.	2.4	12
97	Transcript profiling of Populus tomentosa genes in normal, tension, and opposite wood by RNA-seq. BMC Genomics, 2015, 16, 164.	2.8	58
98	The <i> Arabidopsis < /i > NAC transcription factor NST2 functions together with SND1 and NST1 to regulate secondary wall biosynthesis in fibers of inflorescence stems. Plant Signaling and Behavior, 2015, 10, e989746.</i>	2.4	53
99	Genome-wide analysis reveals dynamic changes in expression of microRNAs during vascular cambium development in Chinese fir, Cunninghamia lanceolata. Journal of Experimental Botany, 2015, 66, 3041-3054.	4.8	37
100	Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription factor PtrMYB152 in Arabidopsis. Scientific Reports, 2014, 4, 5054.	3.3	106
101	Editorial: An Emerging View of Plant Cell Walls as an Apoplastic Intelligent System. Plant and Cell Physiology, 2015, 56, 177-179.	3.1	18
102	Brachypodium distachyon as a Model Species to Understand Grass Cell Walls. Plant Genetics and Genomics: Crops and Models, 2015, , 197-217.	0.3	2
103	Modular organization of the white spruce (<i><scp>P</scp>icea glauca</i>) transcriptome reveals functional organization and evolutionary signatures. New Phytologist, 2015, 207, 172-187.	7.3	35
104	BEL1-LIKE HOMEODOMAIN6 and KNOTTED ARABIDOPSIS THALIANA7 Interact and Regulate Secondary Cell Wall Formation via Repression of <i>REVOLUTA</i> À Â. Plant Cell, 2015, 26, 4843-4861.	6.6	124
105	Structural, evolutionary and functional analysis of the <scp>NAC</scp> domain protein family in <i>Eucalyptus</i> . New Phytologist, 2015, 206, 1337-1350.	7.3	69
106	Bioethanol from maize cell walls: genes, molecular tools, and breeding prospects. GCB Bioenergy, 2015, 7, 591-607.	5.6	19
107	Secondary Cell Walls: Biosynthesis, Patterned Deposition and Transcriptional Regulation. Plant and Cell Physiology, 2015, 56, 195-214.	3.1	360
108	The <i><scp>E</scp>ucalyptus grandis </i> <scp>R</scp> 2 <scp>R</scp> 3â€ <scp>MYB</scp> transcription factor family: evidence for woody growthâ€related evolution and function. New Phytologist, 2015, 206, 1364-1377.	7.3	107
109	Designer Plants for Biofuels: A Review. Current Metabolomics, 2016, 4, 49-55.	0.5	10
110	Genetic Engineering for Secondary Xylem Modification: Unraveling the Genetic Regulation of Wood Formation., 2016,, 193-211.		1

#	Article	IF	CITATIONS
111	Identification of Candidate Transcriptional Regulators of Epidermal Transfer Cell Development in Vicia faba Cotyledons. Frontiers in Plant Science, 2016, 7, 717.	3.6	6
112	Biosynthesis and Metabolic Fate of Phenylalanine in Conifers. Frontiers in Plant Science, 2016, 7, 1030.	3.6	98
113	Genetic variations and miRNA–target interactions contribute to natural phenotypic variations in <i>Populus</i> . New Phytologist, 2016, 212, 150-160.	7.3	17
114	Co-localization of QTLs for pod fiber content and pod shattering in F2 and backcross populations between yardlong bean and wild cowpea. Molecular Breeding, 2016, 36, 1.	2.1	45
115	Transcriptome analyses of seed development in grape hybrids reveals a possible mechanism influencing seed size. BMC Genomics, 2016, 17, 898.	2.8	39
116	Genetic architecture of wood properties based on association analysis and coâ€expression networks in white spruce. New Phytologist, 2016, 210, 240-255.	7.3	43
117	<i>Eucalyptus</i> hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. Plant Biotechnology Journal, 2016, 14, 1381-1393.	8.3	54
118	Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function. New Phytologist, 2016, 209, 44-62.	7.3	73
119	To Have and to Hold. Current Topics in Developmental Biology, 2016, 119, 63-109.	2.2	53
120	Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs. Phytochemistry, 2016, 131, 26-43.	2.9	143
121	Silencing of the potato <i>StNAC103</i> gene enhances the accumulation of suberin polyester and associated wax in tuber skin. Journal of Experimental Botany, 2016, 67, 5415-5427.	4.8	56
123	Evolutionary and Expression Analysis Provides Evidence for the Plant Glutamate-like Receptors Family is Involved in Woody Growth-related Function. Scientific Reports, 2016, 6, 32013.	3.3	16
124	CottonÂFiberÂBiotechnology: Potential Controls and Transgenic Improvement of Elongation and Cell Wall Thickening. Sustainable Development and Biodiversity, 2016, , 127-153.	1.7	5
125	Fiber Plants. Sustainable Development and Biodiversity, 2016, , .	1.7	6
126	A stressâ€associated <scp>NAC</scp> transcription factor (<scp>SINAC35</scp>) from tomato plays a positive role in biotic and abiotic stresses. Physiologia Plantarum, 2016, 158, 45-64.	5.2	92
127	Transcriptional regulation of vascular cambium activity during the transition from juvenile to mature stages in Cunninghamia lanceolata. Journal of Plant Physiology, 2016, 200, 7-17.	3.5	19
128	Functional Analysis of Cellulose and Xyloglucan in the Walls of Stomatal Guard Cells of Arabidopsis Â. Plant Physiology, 2016, 170, 1398-1419.	4.8	75
129	Development of functional modules based on co-expression patterns for cell-wall biosynthesis related genes in rice. Journal of Plant Biology, 2016, 59, 1-15.	2.1	18

#	ARTICLE	IF	CITATIONS
130	Spatially and temporally restricted expression of PtrMYB021 regulates secondary cell wall formation in Arabidopsis. Journal of Plant Biology, 2016, 59, 16-23.	2.1	9
131	Genetics and Genomics of Brachypodium. Plant Genetics and Genomics: Crops and Models, 2016, , .	0.3	22
132	Resistance of Plants to Cu Stress. , 2016, , 69-114.		7
133	Changes in cell wall polysaccharide composition, gene transcription and alternative splicing in germinating barley embryos. Journal of Plant Physiology, 2016, 191, 127-139.	3.5	11
134	SIMYB1 and SIMYB2, two new MYB genes from tomato, transcriptionally regulate cellulose biosynthesis in tobacco. Journal of Integrative Agriculture, 2017, 16, 65-75.	3.5	13
135	Beyond Genomics: Studying Evolution with Gene Coexpression Networks. Trends in Plant Science, 2017, 22, 298-307.	8.8	96
136	EliteTreeâ,,¢: an advanced biomass tree crop technology that features greater wood density and accelerated stem growth. Biofuels, Bioproducts and Biorefining, 2017, 11, 521-533.	3.7	7
137	Identifying gene coexpression networks underlying the dynamic regulation of woodâ€forming tissues in <i>Populus</i> under diverse environmental conditions. New Phytologist, 2017, 214, 1464-1478.	7. 3	56
138	PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar. Scientific Reports, 2017, 7, 41209.	3.3	87
139	BLISS: A Bioorthogonal Dual-Labeling Strategy to Unravel Lignification Dynamics in Plants. Cell Chemical Biology, 2017, 24, 326-338.	5.2	41
140	Digital gene expression profiling of flax (Linum usitatissimum L.) stem peel identifies genes enriched in fiber-bearing phloem tissue. Gene, 2017, 626, 32-40.	2.2	23
141	Transcriptomics and proteomics reveal genetic and biological basis of superior biomass crop Miscanthus. Scientific Reports, 2017, 7, 13777.	3.3	13
142	Genetic connection between cell-wall composition and grain yield via parallel QTL analysis in indica and japonica subspecies. Scientific Reports, 2017, 7, 12561.	3.3	11
143	Regulation of secondary cell wall biosynthesis by a <scp>NAC</scp> transcription factor from <i>Miscanthus</i> . Plant Direct, 2017, 1, e00024.	1.9	19
144	QTL analysis of four main stem bark traits using a GBS-SNP-based high-density genetic map in ramie. Scientific Reports, 2017, 7, 13458.	3.3	34
145	SmMYB36, a Novel R2R3-MYB Transcription Factor, Enhances Tanshinone Accumulation and Decreases Phenolic Acid Content in Salvia miltiorrhiza Hairy Roots. Scientific Reports, 2017, 7, 5104.	3.3	97
146	Functional Characterization of Populus PsnSHN2 in Coordinated Regulation of Secondary Wall Components in Tobacco. Scientific Reports, 2017, 7, 42.	3.3	52
147	Mediator Complex Subunits MED2, MED5, MED16, and MED23 Genetically Interact in the Regulation of Phenylpropanoid Biosynthesis. Plant Cell, 2017, 29, 3269-3285.	6.6	46

#	Article	IF	CITATIONS
148	The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars. BMC Plant Biology, 2017, 17, 55.	3.6	74
149	A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.). Frontiers in Plant Science, 2017, 8, 542.	3.6	53
150	Divergent Evolutionary Patterns of NAC Transcription Factors Are Associated with Diversification and Gene Duplications in Angiosperm. Frontiers in Plant Science, 2017, 8, 1156.	3.6	14
151	Transcriptome analysis provides insights into xylogenesis formation in Moso bamboo (Phyllostachys) Tj $$ ETQq 1 1	0.784314	rgBT /Over
152	The Receptor-Like Kinase AtVRLK1 Regulates Secondary Cell Wall Thickening. Plant Physiology, 2018, 177, 671-683.	4.8	52
153	KNAT7 positively regulates xylan biosynthesis by directly activating <i>IRX9</i> expression in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2018, 60, 514-528.	8.5	38
154	Overexpression of transcription factor SINAC35 enhances the chilling tolerance of transgenic tomato. Biologia Plantarum, 2018, 62, 479-488.	1.9	14
155	Engineering abiotic stress response in plants for biomass production. Journal of Biological Chemistry, 2018, 293, 5035-5043.	3.4	43
156	Change in lignin structure, but not in lignin content, in transgenic poplar overexpressing the rice master regulator of secondary cell wall biosynthesis. Physiologia Plantarum, 2018, 163, 170-182.	5.2	19
157	ZmNST3 and ZmNST4 are master switches for secondary wall deposition in maize (Zea mays L.). Plant Science, 2018, 266, 83-94.	3.6	26
158	<i>Pp<scp>NAC</scp>1</i> , a main regulator of phenylalanine biosynthesis and utilization in maritime pine. Plant Biotechnology Journal, 2018, 16, 1094-1104.	8.3	29
159	Recent Advances in the Transcriptional Regulation of Secondary Cell Wall Biosynthesis in the Woody Plants. Frontiers in Plant Science, 2018, 9, 1535.	3.6	110
160	Genome wide characterization of barley NAC transcription factors enables the identification of grain-specific transcription factors exclusive for the Poaceae family of monocotyledonous plants. PLoS ONE, 2018, 13, e0209769.	2.5	22
161	Genes and gene clusters related to genotype and drought-induced variation in saccharification potential, lignin content and wood anatomical traits in Populus nigraâ€. Tree Physiology, 2018, 38, 320-339.	3.1	35
162	Genome-wide identification and comprehensive analysis of the NAC transcription factor family in Sesamum indicum. PLoS ONE, 2018, 13, e0199262.	2.5	29
163	Current Models for Transcriptional Regulation of Secondary Cell Wall Biosynthesis in Grasses. Frontiers in Plant Science, 2018, 9, 399.	3.6	120
164	<i><scp>SECONDARY WALL ASSOCIATED MYB</scp>1</i> is a positive regulator of secondary cell wall thickening in <i>Brachypodium distachyon</i> and is not found in the Brassicaceae. Plant Journal, 2018, 96, 532-545.	5.7	20
165	Characterization of a ripening-related transcription factor FcNAC1 from Fragaria chiloensis fruit. Scientific Reports, 2018, 8, 10524.	3.3	44

#	Article	IF	CITATIONS
166	Co-expression network of transcription factors reveal ethylene-responsive element-binding factor as key regulator of wood phenotype in Eucalyptus tereticornis. 3 Biotech, 2018, 8, 315.	2.2	5
167	NAC Transcription Factors in Woody Plants. Progress in Botany Fortschritte Der Botanik, 2018, , 195-222.	0.3	3
168	The developmental dynamics of the <i>Populus</i> stem transcriptome. Plant Biotechnology Journal, 2019, 17, 206-219.	8.3	112
169	Gene regulatory networks for lignin biosynthesis in switchgrass <i>(Panicum virgatum </i>). Plant Biotechnology Journal, 2019, 17, 580-593.	8.3	96
170	Identification and characterization of cherry (Cerasus pseudocerasus G. Don) genes responding to parthenocarpy induced by GA3 through transcriptome analysis. BMC Genetics, 2019, 20, 65.	2.7	15
171	Regulation of Cell Wall Thickening by a Medley of Mechanisms. Trends in Plant Science, 2019, 24, 853-866.	8.8	34
172	Cellulose and Hemicellulose Synthesis and Their Regulation in Plant Cells. Biologically-inspired Systems, 2019, , 303-353.	0.2	4
173	Genome-Wide Investigation of the NAC Gene Family and Its Potential Association with the Secondary Cell Wall in Moso Bamboo. Biomolecules, 2019, 9, 609.	4.0	19
174	Expression profiles of cell-wall related genes vary broadly between two common maize inbreds during stem development. BMC Genomics, 2019, 20, 785.	2.8	8
175	Genomic resources for energy cane breeding in the post genomics era. Computational and Structural Biotechnology Journal, 2019, 17, 1404-1414.	4.1	38
176	Overexpression of a serine hydroxymethyltransferase increases biomass production and reduces recalcitrance in the bioenergy crop <i>Populus</i> Sustainable Energy and Fuels, 2019, 3, 195-207.	4.9	27
177	Loss of Wood Formation Genes in Monocot Genomes. Genome Biology and Evolution, 2019, 11, 1986-1996.	2.5	20
178	Functional Analysis of the PgCesA3 White Spruce Cellulose Synthase Gene Promoter in Secondary Xylem. Frontiers in Plant Science, 2019, 10, 626.	3.6	5
179	Identification and functional evaluation of accessible chromatin associated with wood formation in <i>Eucalyptus grandis</i> . New Phytologist, 2019, 223, 1937-1951.	7. 3	10
180	Genetic Modification of Biomass to Alter Lignin Content and Structure. Industrial & Engineering Chemistry Research, 2019, 58, 16190-16203.	3.7	23
181	Lignin biosynthesis and its integration into metabolism. Current Opinion in Biotechnology, 2019, 56, 230-239.	6.6	440
182	Overexpression of MusaNAC68 reduces secondary wall thickness of xylem tissue in banana. Plant Biotechnology Reports, 2019, 13, 151-160.	1.5	17
183	Biosynthesis and Regulation of Secondary Cell Wall. Progress in Botany Fortschritte Der Botanik, 2019, , 189-226.	0.3	1

#	ARTICLE	IF	CITATIONS
184	Endoplasmic reticulum–localized UBC34 interaction with lignin repressors MYB221 and MYB156 regulates the transactivity of the transcription factors in Populus tomentosa. BMC Plant Biology, 2019, 19, 97.	3.6	20
186	The R2R3 MYB transcription factor MYB189 negatively regulates secondary cell wall biosynthesis in Populus. Tree Physiology, 2019, 39, 1187-1200.	3.1	42
187	The transcription factor \hat{I}^3 MYB2 acts as a negative regulator of secondary cell wall thickening in anther and stem. Gene, 2019, 702, 158-165.	2.2	4
188	NAC transcription factors in plant immunity. Phytopathology Research, 2019, 1, .	2.4	121
189	Exogenous Application of Phytohormones Promotes Growth and Regulates Expression of Wood Formation-Related Genes in Populus simonii × P. nigra. International Journal of Molecular Sciences, 2019, 20, 792.	4.1	19
190	Molecular Mechanism of Xylogenesis in Moso Bamboo (Phyllostachys edulis) Shoots during Cold Storage. Polymers, 2019, 11, 38.	4.5	9
191	OsKNAT7 Bridges Secondary Cell Wall Formation and Cell Growth Regulation. Plant Physiology, 2019, 181, 385-386.	4.8	9
192	Rice Homeobox Protein KNAT7 Integrates the Pathways Regulating Cell Expansion and Wall Stiffness. Plant Physiology, 2019, 181, 669-682.	4.8	44
193	Induction of PrMADS10 on the lower side of bent pine tree stems: potential role in modifying plant cell wall properties and wood anatomy. Scientific Reports, 2019, 9, 18981.	3.3	2
194	Genome-Wide Identification of R2R3-MYB Transcription Factors Regulating Secondary Cell Wall Thickening in Cotton Fiber Development. Plant and Cell Physiology, 2019, 60, 687-701.	3.1	28
195	Digging in wood: New insights in the regulation of wood formation in tree species. Advances in Botanical Research, 2019, 89, 201-233.	1.1	14
196	Vascular tissue development in plants. Current Topics in Developmental Biology, 2019, 131, 141-160.	2.2	47
197	Assessment of agronomic parameters and gene expression profiling of flax (Linum usitatissimum L.) upon treatment with brassinosteroid and its biosynthetic inhibitor. Industrial Crops and Products, 2019, 128, 270-281.	5.2	4
198	<scp>CAD</scp> 1 and <scp>CCR</scp> 2 protein complex formation in monolignol biosynthesis in <i>Populus trichocarpa</i> . New Phytologist, 2019, 222, 244-260.	7.3	43
199	Inferring biosynthetic and gene regulatory networks from Artemisia annua RNA sequencing data on a credit card-sized ARM computer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194429.	1.9	12
200	A cotton NAC domain transcription factor, GhFSN5, negatively regulates secondary cell wall biosynthesis and anther development in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2020, 146, 303-314.	5.8	24
201	NST- and SND-subgroup NAC proteins coordinately act to regulate secondary cell wall formation in cotton. Plant Science, 2020, 301, 110657.	3.6	15
202	A comprehensive review on leguminous galactomannans: structural analysis, functional properties, biosynthesis process and industrial applications. Critical Reviews in Food Science and Nutrition, 2022, 62, 443-465.	10.3	17

#	Article	IF	CITATIONS
203	Editorial: Biofuels and Bioenergy. Frontiers in Plant Science, 2020, 11, 621380.	3.6	0
204	Microanalytical techniques for phenotyping secondary xylem. IAWA Journal, 2020, 41, 356-389.	2.7	4
205	Regulation of Lignin Biosynthesis by Post-translational Protein Modifications. Frontiers in Plant Science, 2020, 11, 914.	3.6	20
206	EgPHI-1, a PHOSPHATE-INDUCED-1 gene from Eucalyptus globulus, is involved in shoot growth, xylem fiber length and secondary cell wall properties. Planta, 2020, 252, 45.	3.2	6
207	Genome-Wide Analysis of the Role of NAC Family in Flower Development and Abiotic Stress Responses in Cleistogenes songorica. Genes, 2020, 11, 927.	2.4	10
208	Weeping candidate genes screened using comparative transcriptomic analysis of weeping and upright progeny in an <scp>F1</scp> population of <scp><i>Prunus mume</i></scp> . Physiologia Plantarum, 2020, 170, 318-334.	5.2	9
209	The MYB transcription factor CiMYB42 regulates limonoids biosynthesis in citrus. BMC Plant Biology, 2020, 20, 254.	3.6	21
210	Genome wide association mapping and candidate gene analysis for pod shatter resistance in Brassica juncea and its progenitor species. Molecular Biology Reports, 2020, 47, 2963-2974.	2.3	14
211	Comparative Transcriptome Analysis Reveals Stem Secondary Growth of Grafted Rosa rugosa  Rosea' Scion and R. multiflora  Innermis' Rootstock. Genes, 2020, 11, 228.	2.4	6
212	DNA methylation of LDOX gene contributes to the floral colour variegation in peach. Journal of Plant Physiology, 2020, 246-247, 153116.	3.5	17
213	Comparative transcriptomics of stem bark reveals genes associated with bast fiber development in Boehmeria nivea L. gaud (ramie). BMC Genomics, 2020, 21, 40.	2.8	21
214	Genome-wide transcriptomic analysis during rhizome development of ginger (Zingiber officinale) Tj ETQq1 1 0.78 Horticulturae, 2020, 264, 109154.	4314 rgBT 3.6	/Overlock 9
215	Functional divergence of Populus MYB158 and MYB189 gene pair created by whole genome duplication. Journal of Systematics and Evolution, 2020, , .	3.1	2
216	Salt and Drought Stress Tolerance in Plants. Signaling and Communication in Plants, 2020, , .	0.7	24
217	AtMYB92 enhances fatty acid synthesis and suberin deposition in leaves of <i>Nicotiana benthamiana</i>). Plant Journal, 2020, 103, 660-676.	5.7	39
218	Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. Journal of Integrative Plant Biology, 2021, 63, 180-209.	8.5	509
219	Major latex protein-like encoding genes contribute to Rhizoctonia solani defense responses in sugar beet. Molecular Genetics and Genomics, 2021, 296, 155-164.	2.1	20
220	Regulation of Plant Responses to Salt Stress. International Journal of Molecular Sciences, 2021, 22, 4609.	4.1	361

#	Article	IF	CITATIONS
221	Comparative transcriptomic analysis of seed coats with high and low lignin contents reveals lignin and flavonoid biosynthesis in Brassica napus. BMC Plant Biology, 2021, 21, 246.	3.6	12
222	A Comparative Analysis of Transcription Networks Active in Juvenile and Mature Wood in Populus. Frontiers in Plant Science, 2021, 12, 675075.	3.6	7
223	An Arabidopsis expression predictor enables inference of transcriptional regulators for gene modules. Plant Journal, 2021, 107, 597-612.	5.7	11
224	Genome-Wide Transcriptomic Analysis Reveals the Gene Regulatory Network Controlled by SRL1 in Regulating Rice Leaf Rolling. Journal of Plant Growth Regulation, 2022, 41, 2292-2304.	5.1	1
225	Phylogenetic Occurrence of the Phenylpropanoid Pathway and Lignin Biosynthesis in Plants. Frontiers in Plant Science, 2021, 12, 704697.	3.6	49
226	Identification and Characterization of Secondary Wall-Associated NAC Genes and Their Involvement in Hormonal Responses in Tobacco (Nicotiana tabacum). Frontiers in Plant Science, 2021, 12, 712254.	3.6	5
227	Wood Formation under Severe Drought Invokes Adjustment of the Hormonal and Transcriptional Landscape in Poplar. International Journal of Molecular Sciences, 2021, 22, 9899.	4.1	17
228	Posttranscriptional regulation of cellulose synthase genes by small RNAs derived from cellulose synthase antisense transcripts. Plant Direct, 2021, 5, e347.	1.9	1
229	Sugarcane cell suspension reveals major metabolic changes under different nitrogen starvation regimes. Bragantia, 0, 80, .	1.3	2
230	Towards Redesigning Cellulose Biosynthesis for Improved Bioenergy Feedstocks., 2014,, 183-193.		1
231	NAC Transcription Factors in Drought and Salinity Tolerance. Signaling and Communication in Plants, 2020, , 351-366.	0.7	4
232	Auxin Transport and Signaling in Leaf Vascular Patterning. Signaling and Communication in Plants, 2013, , 129-154.	0.7	1
233	Tailoring Plant Cell Wall Composition and Architecture for Conversion to Liquid Hydrocarbon Biofuels., 2015,, 63-82.		2
234	Modifying plant cell walls for bioenergy production CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-10.	1.0	2
235	Tomato NAC Transcription Factor SISRN1 Positively Regulates Defense Response against Biotic Stress but Negatively Regulates Abiotic Stress Response. PLoS ONE, 2014, 9, e102067.	2.5	65
236	Arabidopsis NAC Domain Proteins, VND1 to VND5, Are Transcriptional Regulators of Secondary Wall Biosynthesis in Vessels. PLoS ONE, 2014, 9, e105726.	2.5	169
237	Systematic Analysis and Identification of Stress-Responsive Genes of the NAC Gene Family in Brachypodium distachyon. PLoS ONE, 2015, 10, e0122027.	2.5	61
238	Overexpression of MusaMYB31, a R2R3 type MYB transcription factor gene indicate its role as a negative regulator of lignin biosynthesis in banana. PLoS ONE, 2017, 12, e0172695.	2.5	39

#	Article	IF	CITATIONS
239	NAC Transcription Factors as Positive or Negative Regulators during Ongoing Battle between Pathogens and Our Food Crops. International Journal of Molecular Sciences, 2021, 22, 81.	4.1	46
240	ATL54, a ubiquitin ligase gene related to secondary cell wall formation, is transcriptionally regulated by MYB46. Plant Biotechnology, 2013, 30, 503-509.	1.0	10
241	Transcriptional regulatory network controlling secondary cell wall biosynthesis and biomass production in vascular plants. African Journal of Biotechnology, 2012, 11, .	0.6	8
242	In vitro Culture: A Tool for Phytoremediation Purposes. , 2014, , 46-65.		O
246	Cellulose biosynthesis in plants - the concerted action of CESA and non-CESA proteins. Biologia Plantarum, 0, 64, 363-377.	1.9	5
249	Integrated Transcriptomic and Proteomic Analysis in the Roadmap of the Xylem Development Stage in Populus tomentosa. Frontiers in Plant Science, 2021, 12, 724559.	3.6	2
250	A systems genetics approach reveals PbrNSC as a regulator of lignin and cellulose biosynthesis in stone cells of pear fruit. Genome Biology, 2021, 22, 313.	8.8	32
251	Regulation of lignin biosynthesis by an atypical bHLH protein CmHLB in <i>Chrysanthemum</i> . Journal of Experimental Botany, 2022, 73, 2403-2419.	4.8	15
252	Identification and Functional Analysis of the CgNAC043 Gene Involved in Lignin Synthesis from Citrusgrandis "San Hong― Plants, 2022, 11, 403.	3.5	11
253	Enhancement of Secondary Cell Wall Formation in Poplar Xylem Using a Self-Reinforced System of Secondary Cell Wall-Related Transcription Factors. Frontiers in Plant Science, 2022, 13, 819360.	3.6	6
254	Cell wall biology of the moss <i>Physcomitrium patens</i> Journal of Experimental Botany, 2022, 73, 4440-4453.	4.8	10
255	Genome-wide identification of MYB family genes potentially related to SCW biogenesis in Korla pear fruit. European Journal of Horticultural Science, 2021, 86, 663-673.	0.7	O
256	Down-regulation of OsMYB103L distinctively alters beta-1,4-glucan polymerization and cellulose microfibers assembly for enhanced biomass enzymatic saccharification in rice. Biotechnology for Biofuels, 2021, 14, 245.	6.2	14
257	Molecular understanding of wood formation in trees. Forestry Research, 2022, 2, 0-0.	1.1	8
261	Genome-Wide Investigation of NAC Family Genes Potentially Related to SCW Biogenesis in Korla Pear Fruit. Plant Molecular Biology Reporter, 2022, 40, 674-686.	1.8	2
262	The R2R3-MYB transcription factor VcMYB4a inhibits lignin biosynthesis in blueberry (Vaccinium) Tj ETQq1 1 0.78	34314 rgB 1.6	Г <i>[</i> Overlock
263	Single-walled carbon nanotubes promotes wood formation in Populus davidiana $\tilde{A}-$ P.bolleana. Plant Physiology and Biochemistry, 2022, 184, 137-143.	5.8	2
264	Transcriptional regulation of fleshy fruit texture. Journal of Integrative Plant Biology, 2022, 64, 1649-1672.	8.5	44

#	Article	IF	CITATIONS
265	A protoxylem pathway to evolution of pith? An hypothesis based on the Early Devonian euphyllophyte <i>Leptocentroxyla</i> . Annals of Botany, 2022, 130, 785-798.	2.9	2
266	Analyzing lignin biosynthesis pathways in rattan using improved co-expression networks of NACs and MYBs. BMC Plant Biology, 2022, 22, .	3.6	4
267	The Regulation of Xylem Development by Transcription Factors and Their Upstream MicroRNAs. International Journal of Molecular Sciences, 2022, 23, 10134.	4.1	8
268	Combinatorial analysis of transcription and metabolism reveals the regulatory network associated with antioxidant substances in waxy corn. Food Quality and Safety, 2022, 6, .	1.8	2
269	FvNST1b NAC Protein Induces Secondary Cell Wall Formation in Strawberry. International Journal of Molecular Sciences, 2022, 23, 13212.	4.1	5
270	Lignin engineering in forest trees: From gene discovery to field trials. Plant Communications, 2022, 3, 100465.	7.7	18
271	In silico analysis of key regulatory networks related to microfibril angle in Populus trichocarpa Hook , 0, , .		0
272	The PtoTCP20-miR396d-PtoGRF15 module regulates secondary vascular development in Populus. Plant Communications, 2023, 4, 100494.	7.7	6
274	HbNST1 is a positive regulator of the lignin accumulation in strawflower bracts. Horticultural Plant Journal, 2023, , .	5.0	0
275	Expression and functional analysis of NAC transcription factors under five diverse growth stages reveal their regulatory roles during wood formation in Chinese cedar (Cryptomeria fortunei) Tj ETQq $1\ 1\ 0.78431$.	4 r g.B ΣT /Ον	erlock 10 Tf
276	Transcription factors of lignin biosynthesis respond to cold and drought in Eucalyptus urograndis. Theoretical and Experimental Plant Physiology, 2023, 35, 17-30.	2.4	0
277	OsCCRL1 is Essential for Phenylpropanoid Metabolism in Rice Anthers. Rice, 2023, 16, .	4.0	3
278	CcNAC1 by Transcriptome Analysis Is Involved in Sudan Grass Secondary Cell Wall Formation as a Positive Regulator. International Journal of Molecular Sciences, 2023, 24, 6149.	4.1	1
279	Moderate Salinity Stress Increases the Seedling Biomass in Oilseed Rape (Brassica napus L.). Plants, 2023, 12, 1650.	3.5	4
280	Genetic dissection of crown root traits and their relationships with aboveground agronomic traits in maize. Journal of Integrative Agriculture, 2023, 22, 3394-3407.	3.5	3
281	Bnt05G007257, a Novel NAC Transcription Factor, Predicts Developmental and Synthesis Capabilities of Fiber Cells in Ramie (Boehmeria nivea L.). Agronomy, 2023, 13, 1575.	3.0	0
282	The OsbHLH002/OsICE1-OSH1 module orchestrates secondary cell wall formation in rice. Cell Reports, 2023, 42, 112702.	6.4	3
283	Integrating ATAC-seq and RNA-seq to identify differentially expressed genes with chromatin-accessible changes during photosynthetic establishment in Populus leaves. Plant Molecular Biology, 2023, 113, 59-74.	3.9	0

#	Article	IF	CITATIONS
284	Functional investigation of five R2R3-MYB transcription factors associated with wood development in Eucalyptus using DAP-seq-ML. Plant Molecular Biology, 2023, 113, 33-57.	3.9	0
285	Mitigating biomass recalcitrance for plantâ€based bioenergy production. , 2023, 1, 122-141.		0
286	A NAC Transcription Factor RsSND1 Regulating Secondary Cell Wall Deposition Involves in Fleshy Taproot Formation in Radish (Raphanus sativus L.). Journal of Plant Growth Regulation, 0, , .	5.1	0
287	Cloning and functional characterization of a cinnamate 4-hydroxylase gene from the hornwort Anthoceros angustus. Plant Science, 2024, 341, 111989.	3.6	0
288	Lignin Biosynthesis and Its Diversified Roles in Disease Resistance. Genes, 2024, 15, 295.	2.4	0