Not just a circle: flux modes in the plant TCA cycle

Trends in Plant Science 15, 462-470 DOI: 10.1016/j.tplants.2010.05.006

Citation Report

#	Article	IF	CITATIONS
1	Mild reductions in cytosolic NADP-dependent isocitrate dehydrogenase activity result in lower amino acid contents and pigmentation without impacting growth. Amino Acids, 2010, 39, 1055-1066.	1.2	34
2	Metabolic and Signaling Aspects Underpinning the Regulation of Plant Carbon Nitrogen Interactions. Molecular Plant, 2010, 3, 973-996.	3.9	616
3	Changes in the Transcriptome of 'Mor' Mandarin Flesh during Storage: Emphasis on Molecular Regulation of Fruit Flavor Deterioration. Journal of Agricultural and Food Chemistry, 2011, 59, 3819-3827.	2.4	35
4	Antisense Inhibition of the Iron-Sulphur Subunit of Succinate Dehydrogenase Enhances Photosynthesis and Growth in Tomato via an Organic Acid–Mediated Effect on Stomatal Aperture Â. Plant Cell, 2011, 23, 600-627.	3.1	221
5	The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochemical Journal, 2011, 436, 15-34.	1.7	267
6	Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development. Journal of Experimental Botany, 2011, 62, 5367-5384.	2.4	98
7	Regulation of respiration in plants: A role for alternative metabolic pathways. Journal of Plant Physiology, 2011, 168, 1434-1443.	1.6	189
8	Protein degradation – an alternative respiratory substrate for stressed plants. Trends in Plant Science, 2011, 16, 489-498.	4.3	367
9	The role of mitochondrial respiration in salinity tolerance. Trends in Plant Science, 2011, 16, 614-623.	4.3	199
10	Diel variations in the carbon isotope composition of respired CO ₂ and associated carbon sources: a review of dynamics and mechanisms. Biogeosciences, 2011, 8, 2437-2459.	1.3	93
11	Flux-Balance Modeling of Plant Metabolism. Frontiers in Plant Science, 2011, 2, 38.	1.7	124
12	Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UVâ€B light. Plant Journal, 2011, 67, 354-369.	2.8	249
13	Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga <i>Chlamydomonas reinhardtii</i> . New Phytologist, 2011, 190, 279-288.	3.5	94
14	Comparative analysis between plant species of transcriptional and metabolic responses to hypoxia. New Phytologist, 2011, 190, 472-487.	3.5	157
15	Metabolic fluxes, carbon isotope fractionation and respiration – lessons to be learned from plant biochemistry. New Phytologist, 2011, 191, 10-15.	3.5	44
16	Organization and Regulation of Mitochondrial Respiration in Plants. Annual Review of Plant Biology, 2011, 62, 79-104.	8.6	537
17	Dehydration and vernalization treatments identify overlapping molecular networks impacting endodormancy maintenance in leafy spurge crown buds. Functional and Integrative Genomics, 2011, 11, 611-626.	1.4	18
18	Alternating temperature breaks dormancy in leafy spurge seeds and impacts signaling networks associated with HY5. Functional and Integrative Genomics, 2011, 11, 637-649.	1.4	21

#	Article	IF	CITATIONS
19	A modelâ€based method for investigating bioenergetic processes in autotrophically growing eukaryotic microalgae: Application to the green algae <i>Chlamydomonas reinhardtii</i> . Biotechnology Progress, 2011, 27, 631-640.	1.3	52
20	Fumarate: Multiple functions of a simple metabolite. Phytochemistry, 2011, 72, 838-843.	1.4	75
21	The Mn-binding proteins of the photosystem II oxygen-evolving complex are decreased in date palms affected by brittle leaf disease. Plant Physiology and Biochemistry, 2011, 49, 388-394.	2.8	18
22	Capturing Metabolite Channeling in Metabolic Flux Phenotypes Â. Plant Physiology, 2011, 157, 981-984.	2.3	40
23	The aspartate-family pathway of plants. Plant Signaling and Behavior, 2011, 6, 192-195.	1.2	133
24	A Deficiency in the Flavoprotein of Arabidopsis Mitochondrial Complex II Results in Elevated Photosynthesis and Better Growth in Nitrogen-Limiting Conditions Â. Plant Physiology, 2011, 157, 1114-1127.	2.3	57
25	Combined Noninvasive Imaging and Modeling Approaches Reveal Metabolic Compartmentation in the Barley Endosperm Â. Plant Cell, 2011, 23, 3041-3054.	3.1	70
26	Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. Journal of Experimental Botany, 2011, 62, 1467-1482.	2.4	236
27	Targeting Mitochondrial Metabolism and Machinery as a Means to Enhance Photosynthesis. Plant Physiology, 2011, 155, 101-107.	2.3	105
28	Phosphonate Analogs of 2-Oxoglutarate Perturb Metabolism and Gene Expression in Illuminated Arabidopsis Leaves. Frontiers in Plant Science, 2012, 3, 114.	1.7	30
29	Functional genomics tools applied to plant metabolism: a survey on plant respiration, its connections and the annotation of complex gene functions. Frontiers in Plant Science, 2012, 3, 210.	1.7	8
30	Antisense Inhibition of the 2-Oxoglutarate Dehydrogenase Complex in Tomato Demonstrates Its Importance for Plant Respiration and during Leaf Senescence and Fruit Maturation. Plant Cell, 2012, 24, 2328-2351.	3.1	88
31	Metabolic Engineering of Tomato Fruit Organic Acid Content Guided by Biochemical Analysis of an Introgression Line Â. Plant Physiology, 2012, 161, 397-407.	2.3	42
32	Waterproofing Crops: Effective Flooding Survival Strategies. Plant Physiology, 2012, 160, 1698-1709.	2.3	358
33	The impact of impaired mitochondrial function on retrograde signalling: a meta-analysis of transcriptomic responses. Journal of Experimental Botany, 2012, 63, 1735-1750.	2.4	112
34	On the Discordance of Metabolomics with Proteomics and Transcriptomics: Coping with Increasing Complexity in Logic, Chemistry, and Network Interactions Scientific Correspondence. Plant Physiology, 2012, 158, 1139-1145.	2.3	176
35	The Response of Diatom Central Carbon Metabolism to Nitrogen Starvation Is Different from That of Green Algae and Higher Plants Â. Plant Physiology, 2012, 158, 299-312.	2.3	318
36	Changes in the Transcriptome of Dry Leafy Spurge (Euphorbia esula) Seeds Imbibed at a Constant and Alternating Temperature. Weed Science, 2012, 60, 48-56.	0.8	5

#	Article	IF	CITATIONS
37	Making sense of low oxygen sensing. Trends in Plant Science, 2012, 17, 129-138.	4.3	465
38	Leveraging metabolomics for functional investigations in sequenced marine diatoms. Trends in Plant Science, 2012, 17, 395-403.	4.3	23
39	Phosphoenolpyruvate is at the crossroads of leaf metabolic responses to ozone stress. New Phytologist, 2012, 195, 512-517.	3.5	39
40	Differential fumarate binding to Arabidopsis NAD+-malic enzymes 1 and -2 produces an opposite activity modulation. Biochimie, 2012, 94, 1421-1430.	1.3	19
41	Mitochondrial Composition, Function and Stress Response in Plants ^F . Journal of Integrative Plant Biology, 2012, 54, 887-906.	4.1	129
42	Unusual cyanobacterial TCA cycles: not broken just different. Trends in Plant Science, 2012, 17, 503-509.	4.3	97
44	Discovering the role of mitochondria in the iron deficiency-induced metabolic responses of plants. Journal of Plant Physiology, 2012, 169, 1-11.	1.6	62
45	The reconstruction and analysis of tissue specific human metabolic networks. Molecular BioSystems, 2012, 8, 663-670.	2.9	25
46	Kinetic modelling of plant metabolic pathways. Journal of Experimental Botany, 2012, 63, 2275-2292.	2.4	87
47	Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant, Cell and Environment, 2012, 35, 1-21.	2.8	267
48	lsotope labelling of Rubisco subunits provides in vivo information on subcellular biosynthesis and exchange of amino acids between compartments. Plant, Cell and Environment, 2012, 35, 1232-1244.	2.8	41
49	The role of mitochondria in leaf nitrogen metabolism. Plant, Cell and Environment, 2012, 35, 1756-1768.	2.8	40
50	Highâ€resolution plant metabolomics: from mass spectral features to metabolites and from wholeâ€cell analysis to subcellular metabolite distributions. Plant Journal, 2012, 70, 39-50.	2.8	151
51	Deciphering energyâ€associated gene networks operating in the response of Arabidopsis plants to stress and nutritional cues. Plant Journal, 2012, 70, 954-966.	2.8	29
52	Metabolic recovery of Arabidopsis thaliana roots following cessation of oxidative stress. Metabolomics, 2012, 8, 143-153.	1.4	57
53	Induction of endodormancy in crown buds of leafy spurge (Euphorbia esula L.) implicates a role for ethylene and cross-talk between photoperiod and temperature. Plant Molecular Biology, 2013, 81, 577-593.	2.0	36
54	Optimization of photosynthesis by multiple metabolic pathways involving interorganelle interactions: resource sharing and ROS maintenance as the bases. Photosynthesis Research, 2013, 117, 61-71.	1.6	50
55	Proteomic analysis of the testa from developing soybean seeds. Journal of Proteomics, 2013, 89, 265-272.	1.2	18

#	Article	IF	CITATIONS
56	Combined effects of CO2 enrichment and elevated growth temperatures on metabolites in soybean leaflets: evidence for dynamic changes of TCA cycle intermediates. Planta, 2013, 238, 369-380.	1.6	42
57	Modelling metabolic <scp><scp>CO₂</scp> evolution – a fresh perspective on respiration. Plant, Cell and Environment, 2013, 36, 1631-1640.</scp>	2.8	59
58	Modelling Metabolic Networks—The Theories of Metabolism. Advances in Botanical Research, 2013, 67, 593-621.	0.5	0
59	Investigation of the Relationship between the Metabolic Profile of Tobacco Leaves in Different Planting Regions and Climate Factors Using a Pseudotargeted Method Based on Gas Chromatography/Mass Spectrometry. Journal of Proteome Research, 2013, 12, 5072-5083.	1.8	38
60	Integrative Leaf-Level Phytotoxic Ozone Dose Assessment for Forest Risk Modelling. Developments in Environmental Science, 2013, 13, 267-288.	0.5	20
61	Low Oxygen Response Mechanisms in Green Organisms. International Journal of Molecular Sciences, 2013, 14, 4734-4761.	1.8	81
62	<scp>WRKY</scp> 46 functions as a transcriptional repressor of <i><scp>ALMT</scp>1</i> , regulating aluminumâ€induced malate secretion in <scp>A</scp> rabidopsis. Plant Journal, 2013, 76, 825-835.	2.8	163
63	Is GABA-shunt functional in endodormant grapevine buds under respiratory stress?. Plant Growth Regulation, 2013, 71, 253-260.	1.8	5
64	A new anaplerotic respiratory pathway involving lysine biosynthesis in isocitrate dehydrogenaseâ€deficient <scp>A</scp> rabidopsis mutants. New Phytologist, 2013, 199, 673-682.	3.5	23
65	Metabolomics in nutrition. , 2013, , 106-123.		0
66	Comparison of GC-MS and NMR for Metabolite Profiling of Rice Subjected to Submergence Stress. Journal of Proteome Research, 2013, 12, 898-909.	1.8	117
67	Mitochondrial Energy and Redox Signaling in Plants. Antioxidants and Redox Signaling, 2013, 18, 2122-2144.	2.5	154
68	The outer mitochondrial membrane in higher plants. Trends in Plant Science, 2013, 18, 207-217.	4.3	31
69	What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. Journal of Experimental Botany, 2013, 64, 1451-1469.	2.4	453
70	High irradiance improves ammonium tolerance in wheat plants by increasing N assimilation. Journal of Plant Physiology, 2013, 170, 758-771.	1.6	81
71	Regulation of the mitochondrial tricarboxylic acid cycle. Current Opinion in Plant Biology, 2013, 16, 335-343.	3.5	141
72	Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2013, 73, 897-909.	2.8	205
73	TCA Cycle Involved Enzymes SucA and Kgd, as well as MenD: Efficient Biocatalysts for Asymmetric C–C Bond Formation. Organic Letters, 2013, 15, 452-455.	2.4	27

#	Article	IF	CITATIONS
74	The Spatial Organization of Metabolism Within the Plant Cell. Annual Review of Plant Biology, 2013, 64, 723-746.	8.6	191
75	New insights into photorespiration obtained from metabolomics. Plant Biology, 2013, 15, 656-666.	1.8	37
76	Integration of Metabolomics and Subcellular Organelle Expression Microarray to Increase Understanding the Organic Acid Changes in Postâ€harvest Citrus Fruit. Journal of Integrative Plant Biology, 2013, 55, 1038-1053.	4.1	44
77	Plant Respiratory Metabolism: A Special Focus on the Physiology of Beetroot (Beta Vulgaris L.) Mitochondria. , 2013, , 91-104.		1
78	Comprehensive Dissection of Spatiotemporal Metabolic Shifts in Primary, Secondary, and Lipid Metabolism during Developmental Senescence in Arabidopsis Â. Plant Physiology, 2013, 162, 1290-1310.	2.3	278
79	Alteration of the Interconversion of Pyruvate and Malate in the Plastid or Cytosol of Ripening Tomato Fruit Invokes Diverse Consequences on Sugar But Similar Effects on Cellular Organic Acid, Metabolism, and Transitory Starch Accumulation Â. Plant Physiology, 2013, 161, 628-643.	2.3	78
80	Investigating the Role of Respiration in Plant Salinity Tolerance by Analyzing Mitochondrial Proteomes from Wheat and a Salinity-Tolerant Amphiploid (Wheat × <i>Lophopyrum elongatum</i>). Journal of Proteome Research, 2013, 12, 4807-4829.	1.8	65
81	Responses to Light Intensity in a Genome-Scale Model of Rice Metabolism Â. Plant Physiology, 2013, 162, 1060-1072.	2.3	117
82	The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco. Journal of Experimental Botany, 2013, 64, 553-568.	2.4	116
83	Elucidating Rice Cell Metabolism under Flooding and Drought Stresses Using Flux-Based Modeling and Analysis. Plant Physiology, 2013, 162, 2140-2150.	2.3	69
84	Carbon and Nitrogen Provisions Alter the Metabolic Flux in Developing Soybean Embryos Â. Plant Physiology, 2013, 161, 1458-1475.	2.3	87
85	Fermentation metabolism and its evolution in algae. Frontiers in Plant Science, 2013, 4, 150.	1.7	101
86	A small-scale proteomic approach reveals a survival strategy, including a reduction in alkaloid biosynthesis, in Hyoscyamus albus roots subjected to iron deficiency. Frontiers in Plant Science, 2013, 4, 331.	1.7	11
87	Flux Balance Analysis of Cyanobacterial Metabolism: The Metabolic Network of Synechocystis sp. PCC 6803. PLoS Computational Biology, 2013, 9, e1003081.	1.5	219
88	Perspectives on plant photorespiratory metabolism. Plant Biology, 2013, 15, 748-753.	1.8	43
89	Proteomics analysis of <scp>UV</scp> â€irradiated <i><scp>L</scp>onicera japonica</i> <scp>T</scp> hunb. with bioactive metabolites enhancement. Proteomics, 2013, 13, 3508-3522.	1.3	21
90	Metabolic Fluxes in an Illuminated <i>Arabidopsis</i> Rosette Â. Plant Cell, 2013, 25, 694-714.	3.1	303
91	Roots as a Source of Food 2013 476-501.		1 _

#	Article	IF	CITATIONS
92	Acetate and Bicarbonate Assimilation and Metabolite Formation in Chlamydomonas reinhardtii: A 13C-NMR Study. PLoS ONE, 2014, 9, e106457.	1.1	22
93	Respiration in Terrestrial Ecosystems. , 2014, , 613-649.		11
94	Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism. PLoS Computational Biology, 2014, 10, e1003483.	1.5	249
95	Respiratory electron transfer pathways in plant mitochondria. Frontiers in Plant Science, 2014, 5, 163.	1.7	209
96	Lipoate-Protein Ligase and Octanoyltransferase Are Essential for Protein Lipoylation in Mitochondria of Arabidopsis Â. Plant Physiology, 2014, 165, 978-990.	2.3	30
97	The Potato Tuber Mitochondrial Proteome Â. Plant Physiology, 2014, 164, 637-653.	2.3	122
98	Analysis of metabolic alterations in <i>Arabidopsis</i> following changes in the carbon dioxide and oxygen partial pressures. Journal of Integrative Plant Biology, 2014, 56, 941-959.	4.1	20
99	Jasmonoyl- <scp>l</scp> -lsoleucine Coordinates Metabolic Networks Required for Anthesis and Floral Attractant Emission in Wild Tobacco (<i>Nicotiana attenuata</i>) Â Â. Plant Cell, 2014, 26, 3964-3983.	3.1	58
100	Metabolic flux analysis using 13 C peptide label measurements. Plant Journal, 2014, 77, 476-486.	2.8	25
101	The γâ€aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in <scp><i>S</i></scp> <i>ynechocystis</i> sp. <scp>PCC</scp> 6803. Molecular Microbiology, 2014, 93, 786-796.	1.2	110
102	Phytogenic biosynthesis and emission of methyl acetate. Plant, Cell and Environment, 2014, 37, 414-424.	2.8	17
103	Evolution and Functional Implications of the Tricarboxylic Acid Cycle as Revealed by Phylogenetic Analysis. Genome Biology and Evolution, 2014, 6, 2830-2848.	1.1	82
104	Differential accumulation of soluble proteins in roots of metallicolous and nonmetallicolous populations of <i>Agrostis capillaris</i> L. exposed to Cu. Proteomics, 2014, 14, 1746-1758.	1.3	22
105	Effect of Nitric Oxide on the Interaction Between Mitochondrial Malate Dehydrogenase and Citrate Synthase. Journal of Integrative Agriculture, 2014, 13, 2616-2624.	1.7	1
106	Consequences of induced brassinosteroid deficiency in Arabidopsis leaves. BMC Plant Biology, 2014, 14, 309.	1.6	17
107	Disruption of the mitochondrial alternative oxidase (AOX) and uncoupling protein (UCP) alters rates of foliar nitrate and carbon assimilation in Arabidopsis thaliana. Journal of Experimental Botany, 2014, 65, 3133-3142.	2.4	19
108	Oxidative Stress Components Explored in Anoxic and Hypoxic Global Gene Expression Data. Plant Cell Monographs, 2014, , 19-39.	0.4	8
109	Root phosphoenolpyruvate carboxylase and NAD-malic enzymes activity increase the ammonium-assimilating capacity in tomato. Journal of Plant Physiology, 2014, 171, 49-63.	1.6	41

#	Article	IF	CITATIONS
110	Nodule performance within a changing environmental context. Journal of Plant Physiology, 2014, 171, 1076-1090.	1.6	79
111	On the role of plant mitochondrial metabolism and its impact on photosynthesis in both optimal and sub-optimal growth conditions. Photosynthesis Research, 2014, 119, 141-156.	1.6	68
112	New Insight into the Strategy for Nitrogen Metabolism in Plant Cells. International Review of Cell and Molecular Biology, 2014, 310, 1-37.	1.6	62
113	ls There a Metabolic Requirement for Photorespiratory Enzyme Activities in Heterotrophic Tissues?. Molecular Plant, 2014, 7, 248-251.	3.9	21

Osmotic stress alters the balance between organic and inorganic solutes in flax (Linum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 582 Td (us

115	Suppression of the External Mitochondrial NADPH Dehydrogenase, NDB1, in Arabidopsis thaliana Affects Central Metabolism and Vegetative Growth. Molecular Plant, 2014, 7, 356-368.	3.9	43
116	Metabolic Control of Redox and Redox Control of Metabolism in Plants. Antioxidants and Redox Signaling, 2014, 21, 1389-1421.	2.5	143
117	Plant Metabolic Modeling: Achieving New Insight into Metabolism and Metabolic Engineering. Plant Cell, 2014, 26, 3847-3866.	3.1	65
118	New Insights into the Metabolic and Molecular Mechanism of Plant Response to Anaerobiosis. International Review of Cell and Molecular Biology, 2014, 311, 231-264.	1.6	2
119	Mice In Vivo Toxicity Studies for Monohaloacetamides Emerging Disinfection Byproducts Based on Metabolomic Methods. Environmental Science & Technology, 2014, 48, 8212-8218.	4.6	64
120	Effects of Elevated CO2 on Levels of Primary Metabolites and Transcripts of Genes Encoding Respiratory Enzymes and Their Diurnal Patterns in Arabidopsis thaliana: Possible Relationships with Respiratory Rates. Plant and Cell Physiology, 2014, 55, 341-357.	1.5	75
121	Nitrogen limitation and high density responses in rice suggest a role for ethylene under high density stress. BMC Genomics, 2014, 15, 681.	1.2	14
122	Metabolite Profiling and Integrative Modeling Reveal Metabolic Constraints for Carbon Partitioning under Nitrogen Starvation in the Green Algae Haematococcus pluvialis. Journal of Biological Chemistry, 2014, 289, 30387-30403.	1.6	103
123	The complex role of mitochondrial metabolism in plant aluminum resistance. Trends in Plant Science, 2014, 19, 399-407.	4.3	66
124	Citrate and malate accumulation in banana fruit (Musa sp. AA) is highly affected by genotype and fruit age, but not by cultural practices. Scientia Horticulturae, 2014, 169, 99-110.	1.7	12
125	Systems analysis of metabolic phenotypes: what have we learnt?. Trends in Plant Science, 2014, 19, 222-230.	4.3	40
126	Root proteome of rice studied by iTRAQ provides integrated insight into aluminum stress tolerance mechanisms in plants. Journal of Proteomics, 2014, 98, 189-205.	1.2	116
127	The mitochondrial lysine acetylome of Arabidopsis. Mitochondrion, 2014, 19, 252-260.	1.6	100

	CITATION RE	PORT	
#	Article	IF	CITATIONS
128	Integrated Metabolomic and Proteomic Approaches Dissect the Effect of Metal-Resistant Bacteria on Maize Biomass and Copper Uptake. Environmental Science & Technology, 2014, 48, 1184-1193.	4.6	69
129	A Diel Flux Balance Model Captures Interactions between Light and Dark Metabolism during Day-Night Cycles in C3 and Crassulacean Acid Metabolism Leaves Â. Plant Physiology, 2014, 165, 917-929.	2.3	181
130	Choreography of Transcriptomes and Lipidomes of <i>Nannochloropsis</i> Reveals the Mechanisms of Oil Synthesis in Microalgae Â. Plant Cell, 2014, 26, 1645-1665.	3.1	311
131	METABOLIC CHANGES IN 1-METHYLCYCLOPROPENE (1-MCP)-TREATED 'EMPIRE' APPLE AT DIFFERENT STORAGE TEMPERATURES. Acta Horticulturae, 2014, , 113-119.	0.1	5
132	Metabolic architecture of the cereal grain and its relevance to maximize carbon use efficiency. Plant Physiology, 2015, 169, pp.00981.2015.	2.3	22
133	Massive gene loss in mistletoe (Viscum, Viscaceae) mitochondria. Scientific Reports, 2015, 5, 17588.	1.6	90
134	Metabolic profiling reveals ethylene mediated metabolic changes and a coordinated adaptive mechanism of †Jonagold' apple to low oxygen stress. Physiologia Plantarum, 2015, 155, 232-247.	2.6	27
135	Temperature Shift Experiments Suggest That Metabolic Impairment and Enhanced Rates of Photorespiration Decrease Organic Acid Levels in Soybean Leaflets Exposed to Supra-Optimal Growth Temperatures. Metabolites, 2015, 5, 443-454.	1.3	16
136	2-DE proteomics analysis of drought treated seedlings of Quercus ilex supports a root active strategy for metabolic adaptation in response to water shortage. Frontiers in Plant Science, 2015, 6, 627.	1.7	63
137	Plant respiration under low oxygen. Chilean Journal of Agricultural Research, 0, 75, 57-70.	0.4	23
138	Metabolite Responses to Exogenous Application of Nitrogen, Cytokinin, and Ethylene Inhibitors in Relation to Heat-Induced Senescence in Creeping Bentgrass. PLoS ONE, 2015, 10, e0123744.	1.1	39
139	Metabolic Plasticity and Inter-Compartmental Interactions in Rice Metabolism: An Analysis from Reaction Deletion Study. PLoS ONE, 2015, 10, e0133899.	1.1	3
140	Proteasome targeting of proteins in Arabidopsis leaf mesophyll, epidermal and vascular tissues. Frontiers in Plant Science, 2015, 6, 376.	1.7	46
141	Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined?. Frontiers in Plant Science, 2015, 6, 419.	1.7	215
142	Fluxes through plant metabolic networks: measurements, predictions, insights and challenges. Biochemical Journal, 2015, 465, 27-38.	1.7	43
143	Mitochondrial metabolism is regulated by thioredoxin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3180-3181.	3.3	8
144	Meeting the Global Food Demand of the Future by Engineering Crop Photosynthesis and Yield Potential. Cell, 2015, 161, 56-66.	13.5	755
145	Malate as a key carbon source of leaf dark-respired CO ₂ across different environmental conditions in potato plants. Journal of Experimental Botany, 2015, 66, 5769-5781.	2.4	29

#	Article	IF	CITATIONS
146	Flux balance analysis of genome-scale metabolic model of rice (Oryza sativa): Aiming to increase biomass. Journal of Biosciences, 2015, 40, 819-828.	0.5	6
147	Joint Transcriptomic and Metabolomic Analyses Reveal Changes in the Primary Metabolism and Imbalances in the Subgenome Orchestration in the Bread Wheat Molecular Response to <i>Fusarium graminearum</i> . G3: Genes, Genomes, Genetics, 2015, 5, 2579-2592.	0.8	45
148	Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria. Proceedings of the United States of America, 2015, 112, E1392-400.	3.3	179
149	Moving Toward a Comprehensive Map of Central Plant Metabolism. Annual Review of Plant Biology, 2015, 66, 187-210.	8.6	33
150	Allosteric substrate inhibition of Arabidopsis NAD-dependent malic enzyme 1 is released by fumarate. Phytochemistry, 2015, 111, 37-47.	1.4	39
151	Flood adaptive traits and processes: an overview. New Phytologist, 2015, 206, 57-73.	3.5	539
152	Oxygen Sensing and Signaling. Annual Review of Plant Biology, 2015, 66, 345-367.	8.6	212
153	Participation of citric acid and isocitric acid in the diurnal cycle of carboxylation and decarboxylation in the common ice plant. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	9
154	Mitochondrial Dihydrolipoyl Dehydrogenase Activity Shapes Photosynthesis and Photorespiration of <i>Arabidopsis thaliana</i> . Plant Cell, 2015, 27, 1968-1984.	3.1	139
155	The impact of sodium nitroprusside and ozone in kiwifruit ripening physiology: a combined gene and protein expression profiling approach. Annals of Botany, 2015, 116, 649-662.	1.4	65
156	Genetic Determinants of the Network of Primary Metabolism and Their Relationships to Plant Performance in a Maize Recombinant Inbred Line Population. Plant Cell, 2015, 27, 1839-1856.	3.1	149
157	Profiling of spatial metabolite distributions in wheat leaves under normal and nitrate limiting conditions. Phytochemistry, 2015, 115, 99-111.	1.4	24
159	Involvement of Reactive Oxygen Species and Mitochondrial Proteins in Biophoton Emission in Roots of Soybean Plants under Flooding Stress. Journal of Proteome Research, 2015, 14, 2219-2236.	1.8	40
160	The plasticity of cyanobacterial metabolism supports direct CO2 conversion to ethylene. Nature Plants, 2015, 1, .	4.7	119
161	Tracking the metabolic pulse of plant lipid production with isotopic labeling and flux analyses: Past, present and future. Progress in Lipid Research, 2015, 58, 97-120.	5.3	88
162	CO 2 enrichment modulates ammonium nutrition in tomato adjusting carbon and nitrogen metabolism to stomatal conductance. Plant Science, 2015, 241, 32-44.	1.7	50
163	7 Hydrogenase evolution and function in eukaryotic algae. , 2015, , 145-172.		0
164	Variation in primary metabolites in parental and near-isogenic lines of the QTL qDTY 12.1 : altered roots and flag leaves but similar spikelets of rice under drought. Molecular Breeding, 2015, 35, 138.	1.0	35

	CITATION	KEPORT	
#	Article	IF	Citations
165	Inference and prediction of metabolic network fluxes. Plant Physiology, 2015, 169, pp.01082.2015.	2.3	46
166	Crosstalk between Two bZIP Signaling Pathways Orchestrates Salt-Induced Metabolic Reprogramming in Arabidopsis Roots. Plant Cell, 2015, 27, 2244-2260.	3.1	115
167	Glutamate dehydrogenase is differentially regulated in seeded and parthenocarpic tomato fruits during crop development and postharvest storage. Scientia Horticulturae, 2015, 181, 34-42.	1.7	5
168	Metabolic profiling reveals altered pattern of central metabolism in navel orange plants as a result of boron deficiency. Physiologia Plantarum, 2015, 153, 513-524.	2.6	51
169	Increased antioxidant capacity in tomato by ectopic expression of the strawberry <scp>D</scp> â€ <i>galacturonate reductase</i> gene. Biotechnology Journal, 2015, 10, 490-500.	1.8	26
170	Transcriptome and metabolome analyses of sugar and organic acid metabolism in Ponkan (Citrus) Tj ETQq1 1	1 0.784314 rg 1.0	BT_10verloc
171	Metabolic Responses of Poplar to Apripona germari (Hope) as Revealed by Metabolite Profiling. International Journal of Molecular Sciences, 2016, 17, 923.	1.8	13
172	Flux Balance Analysis of Plant Metabolism: The Effect of Biomass Composition and Model Structure on Model Predictions. Frontiers in Plant Science, 2016, 7, 537.	1.7	32
173	Correlation-Based Network Analysis of Metabolite and Enzyme Profiles Reveals a Role of Citrate Biosynthesis in Modulating N and C Metabolism in Zea mays. Frontiers in Plant Science, 2016, 7, 1022.	1.7	20
174	Organic Acids: The Pools of Fixed Carbon Involved in Redox Regulation and Energy Balance in Higher Plants. Frontiers in Plant Science, 2016, 7, 1042.	1.7	253
175	Metabolic interplay between cytosolic phospho <i>enol</i> pyruvate carboxylase and mitochondrial alternative oxidase in thermogenic skunk cabbage, <i>Symplocarpus renifolius</i> . Plant Signaling and Behavior, 2016, 11, e1247138.	1.2	4
176	Unravelling the <i>inÂvivo</i> regulation and metabolic role of the alternative oxidase pathway in C ₃ species under photoinhibitory conditions. New Phytologist, 2016, 212, 66-79.	3.5	36
177	Physiological and proteomic analysis reveals the different responses of Cunninghamia lanceolata seedlings to nitrogen and phosphorus additions. Journal of Proteomics, 2016, 146, 109-121.	1.2	7
178	Growth inhibition by selenium is associated with changes in primary metabolism and nutrient levels in <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2016, 39, 2235-2246.	2.8	41
179	Dealing with the sulfur part of cysteine: four enzymatic steps degrade <scp>l</scp> â€cysteine to pyruvate and thiosulfate in Arabidopsis mitochondria. Physiologia Plantarum, 2016, 157, 352-366.	2.6	20
180	Extraction, purification, methylation and GC–MS analysis of short-chain carboxylic acids for metabolic flux analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1028, 165-174.	1.2	4
181	Mineral and metabolic profiles in tea leaves and flowers during flower development. Plant Physiology and Biochemistry, 2016, 106, 316-326.	2.8	51
182	Diel variations in carbon isotopic composition and concentration of organic acids and their impact on plant dark respiration in different species. Plant Biology, 2016, 18, 776-784.	1.8	18

#	Article	IF	CITATIONS
183	Citrate Accumulation-Related Gene Expression and/or Enzyme Activity Analysis Combined With Metabolomics Provide a Novel Insight for an Orange Mutant. Scientific Reports, 2016, 6, 29343.	1.6	50
184	Paclobutrazol induces tolerance in tomato to deficit irrigation through diversified effects on plant morphology, physiology and metabolism. Scientific Reports, 2016, 6, 39321.	1.6	47
185	Metabolic pathways regulated by Î ³ -aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera). Scientific Reports, 2016, 6, 30338.	1.6	130
186	A genomeâ€scale metabolic network reconstruction of tomato (<i>Solanum lycopersicum</i> L.) and its application to photorespiratory metabolism. Plant Journal, 2016, 85, 289-304.	2.8	66
187	Analysis of the sodium chlorideâ€dependent respiratory kinetics of wheat mitochondria reveals differential effects on phosphorylating and nonâ€phosphorylating electron transport pathways. Plant, Cell and Environment, 2016, 39, 823-833.	2.8	27
188	The primary mechanism of endophytic fungus Gilmaniella sp. AL12 promotion of plant growth and sesquiterpenoid accumulation in Atractylodes lancea. Plant Cell, Tissue and Organ Culture, 2016, 125, 571-584.	1.2	26
189	Regulation of poly(A) RNA retention in the nucleus as a survival strategy of plants during hypoxia. RNA Biology, 2016, 13, 531-543.	1.5	15
190	Can stable isotope mass spectrometry replace ‎radiolabelled approaches in metabolic studies?. Plant Science, 2016, 249, 59-69.	1.7	32
191	Metabolite profiling of the response to high-nitrogen fertilizer during grain development of bread wheat (Triticum aestivum L.). Journal of Cereal Science, 2016, 69, 85-94.	1.8	33
192	Flux balance analysis of primary metabolism in the diatom <i>Phaeodactylum tricornutum</i> . Plant Journal, 2016, 85, 161-176.	2.8	70
193	Enhanced fatty acid accumulation in Isochrysis galbana by inhibition of the mitochondrial alternative oxidase pathway under nitrogen deprivation. Bioresource Technology, 2016, 211, 783-786.	4.8	18
194	Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex. Journal of Experimental Botany, 2016, 67, 3079-3093.	2.4	91
195	Rethinking Guard Cell Metabolism. Plant Physiology, 2016, 172, 1371-1392.	2.3	111
196	Redox State in Plant Mitochondria and its Role in Stress Tolerance. , 2016, , 93-115.		1
197	Rice Ferredoxin-Dependent Glutamate Synthase Regulates Nitrogen–Carbon Metabolomes and Is Genetically Differentiated between japonica and indica Subspecies. Molecular Plant, 2016, 9, 1520-1534.	3.9	73
198	Proteomic analysis reveals dynamic regulation of fruit development and sugar and acid accumulation in apple. Journal of Experimental Botany, 2016, 67, 5145-5157.	2.4	84
199	Nitrogen-induced metabolic changes and molecular determinants of carbon allocation in Dunaliella tertiolecta. Scientific Reports, 2016, 6, 37235.	1.6	61
200	Transcriptomic, proteomic and metabolic changes in Arabidopsis thaliana leaves after the onset of illumination. BMC Plant Biology, 2016, 16, 43.	1.6	39

#	Article	IF	CITATIONS
201	Guard cellâ€specific upregulation of <i>sucrose synthase 3</i> reveals that the role of sucrose in stomatal function is primarily energetic. New Phytologist, 2016, 209, 1470-1483.	3.5	63
202	The origin of cytosolic <scp>ATP</scp> in photosynthetic cells. Physiologia Plantarum, 2016, 157, 367-379.	2.6	73
203	Regulation of Primary Metabolism in Response to Low Oxygen Availability as Revealed by Carbon and Nitrogen Isotope Redistribution. Plant Physiology, 2016, 170, 43-56.	2.3	105
204	Proteomic analysis of heterosis in the leaves of sorghum–sudangrass hybrids. Acta Biochimica Et Biophysica Sinica, 2016, 48, 161-173.	0.9	11
205	Decreased glycolate oxidase activity leads to altered carbon allocation and leaf senescence after a transfer from high CO ₂ to ambient air in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2016, 67, 3149-3163.	2.4	37
206	Reduced mitochondrial malate dehydrogenase activity has a strong effect on photorespiratory metabolism as revealed by ¹³ C labelling. Journal of Experimental Botany, 2016, 67, 3123-3135.	2.4	54
207	Light inhibition of fumarase in Arabidopsis leaves is phytochrome A–dependent and mediated by calcium. Plant Physiology and Biochemistry, 2016, 102, 161-166.	2.8	24
208	Can cyanobacteria serve as a model of plant photorespiration? – a comparative meta-analysis of metabolite profiles. Journal of Experimental Botany, 2016, 67, 2941-2952.	2.4	20
209	Reconstruction and analysis of a genome-scale metabolic model for Eriocheir sinensis eyestalks. Molecular BioSystems, 2016, 12, 246-252.	2.9	21
210	Linking Metabolism to Membrane Signaling: The GABA–Malate Connection. Trends in Plant Science, 2016, 21, 295-301.	4.3	104
211	The membrane proteome of male gametophyte in Solanum lycopersicum. Journal of Proteomics, 2016, 131, 48-60.	1.2	25
212	Elevated <scp>CO</scp> ₂ improves lipid accumulation by increasing carbon metabolism in <i>Chlorella sorokiniana</i> . Plant Biotechnology Journal, 2016, 14, 557-566.	4.1	72
213	Transcriptome analysis reveals the accumulation mechanism of anthocyanins in â€~Zijuan' tea (Camellia) Tj E	TQq0 0 0	rgBT /Overloo
214	The redox control of photorespiration: from biochemical and physiological aspects to biotechnological considerations. Plant, Cell and Environment, 2017, 40, 553-569.	2.8	35
215	Clarification of Photorespiratory Processes and the Role of Malic Enzyme in Diatoms. Protist, 2017, 168, 134-153.	0.6	40
216	Arbuscular Mycorrhizal Symbiosis with <i>Arundo donax</i> Decreases Root Respiration and Increases Both Photosynthesis and Plant Biomass Accumulation. Plant, Cell and Environment, 2017, 40, 1115-1126.	2.8	45
217	Variations of metabolites and proteome in Lonicera japonica Thunb. buds and flowers under UV radiation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 404-413.	1,1	12
218	Advances in Research on Fertilization Management of Vegetable Crops. Advances in Olericulture, 2017,	0.4	16

#	Article	IF	CITATIONS
219	Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle. Nature Communications, 2017, 8, 15212.	5.8	103
220	Sporobolus stapfianus: Insights into desiccation tolerance in the resurrection grasses from linking transcriptomics to metabolomics. BMC Plant Biology, 2017, 17, 67.	1.6	61
221	Plant Breeding for Improving Nutrient Uptake and Utilization Efficiency. Advances in Olericulture, 2017, , 221-246.	0.4	8
222	Variation in Leaf Respiration Rates at Night Correlates with Carbohydrate and Amino Acid Supply. Plant Physiology, 2017, 174, 2261-2273.	2.3	76
223	Identification of the missing mitochondrial methyltransferase of citrate synthase. FEBS Letters, 2017, 591, 1653-1656.	1.3	1
224	Cyanobacterial carbon metabolism: Fluxome plasticity and oxygen dependence. Biotechnology and Bioengineering, 2017, 114, 1593-1602.	1.7	83
225	Down-regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains. Journal of Experimental Botany, 2017, 68, 4595-4612.	2.4	28
226	4-Aminobutyrate (GABA): a metabolite and signal with practical significance. Botany, 2017, 95, 1015-1032.	0.5	95
227	Isolation and Structural Studies of Mitochondria from Pea Roots. Methods in Molecular Biology, 2017, 1670, 87-95.	0.4	1
228	Impaired Malate and Fumarate Accumulation Due to the Mutation of the Tonoplast Dicarboxylate Transporter Has Little Effects on Stomatal Behavior. Plant Physiology, 2017, 175, 1068-1081.	2.3	51
229	Measurement of Tricarboxylic Acid Cycle Enzyme Activities in Plants. Methods in Molecular Biology, 2017, 1670, 167-182.	0.4	6
230	Proteomic analysis on roots of Oenothera glazioviana under copper-stress conditions. Scientific Reports, 2017, 7, 10589.	1.6	15
231	Metabolic Pathways Regulated by Chitosan Contributing to Drought Resistance in White Clover. Journal of Proteome Research, 2017, 16, 3039-3052.	1.8	86
232	Connecting salt stress signalling pathways with salinityâ€induced changes in mitochondrial metabolic processes in <scp>C</scp> 3 plants. Plant, Cell and Environment, 2017, 40, 2875-2905.	2.8	72
233	Metabolic and transcriptional alternations for defense by interfering OsWRKY62 and OsWRKY76 transcriptions in rice. Scientific Reports, 2017, 7, 2474.	1.6	35
234	Expression and promoter methylation of succinate dehydrogenase and fumarase genes in maize under anoxic conditions. Journal of Plant Physiology, 2017, 216, 197-201.	1.6	18
235	Autophagy Deficiency Compromises Alternative Pathways of Respiration following Energy Deprivation in <i>Arabidopsis thaliana</i> . Plant Physiology, 2017, 175, 62-76.	2.3	98
236	Metabolomics analysis of TiO 2 nanoparticles induced toxicological effects on rice (Oryza sativa L.). Environmental Pollution, 2017, 230, 302-310.	3.7	146

#	Article	IF	CITATIONS
237	Comparative toxicity of chloro- and bromo-nitromethanes in mice based on a metabolomic method. Chemosphere, 2017, 185, 20-28.	4.2	22
238	iTRAQ analysis of the tobacco leaf proteome reveals that RNA-directed DNA methylation (RdDM) has important roles in defense against geminivirus-betasatellite infection. Journal of Proteomics, 2017, 152, 88-101.	1.2	37
239	Photoperiod Affects the Phenotype of Mitochondrial Complex I Mutants. Plant Physiology, 2017, 173, 434-455.	2.3	22
240	Metabolic pathways regulated by abscisic acid, salicylic acid and γâ€∎minobutyric acid in association with improved drought tolerance in creeping bentgrass (<i>Agrostis stolonifera</i>). Physiologia Plantarum, 2017, 159, 42-58.	2.6	150
241	Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches. Mitochondrion, 2017, 33, 72-83.	1.6	69
242	Lysine acetylation in mitochondria: From inventory to function. Mitochondrion, 2017, 33, 58-71.	1.6	71
243	Elevated CO2 Induces Root Defensive Mechanisms in Tomato Plants When Dealing with Ammonium Toxicity. Plant and Cell Physiology, 2017, 58, 2112-2125.	1.5	45
244	Mechanisms and Functions of Post-translational Enzyme Modifications in the Organization and Control of Plant Respiratory Metabolism. Advances in Photosynthesis and Respiration, 2017, , 261-284.	1.0	8
245	Interactions Between Day Respiration, Photorespiration, and N and S Assimilation in Leaves. Advances in Photosynthesis and Respiration, 2017, , 1-18.	1.0	7
246	Carbon Isotope Fractionation in Plant Respiration. Advances in Photosynthesis and Respiration, 2017, , 43-68.	1.0	11
247	Anastatica hierochuntica, an Arabidopsis Desert Relative, Is Tolerant to Multiple Abiotic Stresses and Exhibits Species-Specific and Common Stress Tolerance Strategies with Its Halophytic Relative, Eutrema (Thellungiella) salsugineum. Frontiers in Plant Science, 2016, 7, 1992.	1.7	24
248	Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativus L.). Frontiers in Plant Science, 2017, 8, 1192.	1.7	41
249	Metabolic Effects of Acibenzolar-S-Methyl for Improving Heat or Drought Stress in Creeping Bentgrass. Frontiers in Plant Science, 2017, 8, 1224.	1.7	33
250	Metabolite Profiling of Wheat Seedlings Induced by Chitosan: Revelation of the Enhanced Carbon and Nitrogen Metabolism. Frontiers in Plant Science, 2017, 8, 2017.	1.7	63
251	Reconstruction of Oryza sativa indica Genome Scale Metabolic Model and Its Responses to Varying RuBisCO Activity, Light Intensity, and Enzymatic Cost Conditions. Frontiers in Plant Science, 2017, 8, 2060.	1.7	21
252	Metabolomic Profiling of Soybeans (Glycine max L.) Reveals the Importance of Sugar and Nitrogen Metabolism under Drought and Heat Stress. Plants, 2017, 6, 21.	1.6	154
253	Rapid in situ 13C tracing of sucrose utilization in Arabidopsis sink and source leaves. Plant Methods, 2017, 13, 87.	1.9	16
254	Improving Bioenergy Crops through Dynamic Metabolic Modeling. Processes, 2017, 5, 61.	1.3	9

#	Article	IF	CITATIONS
255	Comprehensive Analysis of the Cork Oak (Quercus suber) Transcriptome Involved in the Regulation of Bud Sprouting. Forests, 2017, 8, 486.	0.9	6
256	Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice. Nature Communications, 2018, 9, 735.	5.8	82
257	The complex allosteric and redox regulation of the fumarate hydratase and malate dehydratase reactions of <i>Arabidopsis thaliana</i> Fumarase 1 and 2 gives clues for understanding the massive accumulation of fumarate. FEBS Journal, 2018, 285, 2205-2224.	2.2	25
258	Alternative Oxidase Is Positive for Plant Performance. Trends in Plant Science, 2018, 23, 588-597.	4.3	114
259	Three physiological parameters capture variation in leaf respiration of <scp><i>Eucalyptus grandis</i></scp> , as elicited by shortâ€ŧerm changes in ambient temperature, and differing nitrogen supply. Plant, Cell and Environment, 2018, 41, 1369-1382.	2.8	7
260	The metabolic (under)groundwork of the lily bulb toward sprouting. Physiologia Plantarum, 2018, 163, 436-449.	2.6	6
261	Revealing critical mechanisms of BR-mediated apple nursery tree growth using iTRAQ-based proteomic analysis. Journal of Proteomics, 2018, 173, 139-154.	1.2	13
262	Mitochondrial Energy Signaling and Its Role in the Low-Oxygen Stress Response of Plants. Plant Physiology, 2018, 176, 1156-1170.	2.3	79
263	Role of organic acids in the integration of cellular redox metabolism and mediation of redox signalling in photosynthetic tissues of higher plants. Free Radical Biology and Medicine, 2018, 122, 74-85.	1.3	68
264	<i>Os<scp>PK</scp>2</i> encodes a plastidic pyruvate kinase involved in rice endosperm starch synthesis, compound granule formation and grain filling. Plant Biotechnology Journal, 2018, 16, 1878-1891.	4.1	63
265	Sucrose breakdown within guard cells provides substrates for glycolysis and glutamine biosynthesis during lightâ€induced stomatal opening. Plant Journal, 2018, 94, 583-594.	2.8	61
266	Metabolic regulation of photosynthesis. Biochemical Society Transactions, 2018, 46, 321-328.	1.6	50
267	Nitrogen metabolism in cyanobacteria: metabolic and molecular control, growth consequences and biotechnological applications. Critical Reviews in Microbiology, 2018, 44, 541-560.	2.7	78
268	Effect of Zn deficiency and excessive bicarbonate on the allocation and exudation of organic acids in two Moraceae plants. Acta Geochimica, 2018, 37, 125-133.	0.7	4
269	A molecular approach to droughtâ€induced reduction in leaf CO 2 exchange in droughtâ€resistant Quercus ilex. Physiologia Plantarum, 2018, 162, 394-408.	2.6	18
270	Oxygen Sensing and Integrative Stress Signaling in Plants. Plant Physiology, 2018, 176, 1131-1142.	2.3	89
271	Combined enzymatic and metabolic analysis of grapevine cell responses to elicitors. Plant Physiology and Biochemistry, 2018, 123, 141-148.	2.8	20
272	Alternative Oxidase Isoforms Are Differentially Activated by Tricarboxylic Acid Cycle Intermediates. Plant Physiology, 2018, 176, 1423-1432.	2.3	68

#	ARTICLE Peduncle-girdling of Shiraz (<i>Vitis vinifera</i> L.) bunches and sugar concentration at the time of	IF	CITATIONS
273	girdling affect wine volatile compounds. Australian Journal of Grape and Wine Research, 2018, 24, 206-218.	1.0	14
274	Multiwall carbon nanotubes modulate paraquat toxicity in Arabidopsis thaliana. Environmental Pollution, 2018, 233, 633-641.	3.7	57
275	Modifications in Organic Acid Profiles During Fruit Development and Ripening: Correlation or Causation?. Frontiers in Plant Science, 2018, 9, 1689.	1.7	152
276	Raspberry. , 2018, , .		4
277	Raspberry Fruit Chemistry in Relation to Fruit Quality and Human Nutrition. , 2018, , 89-119.		6
278	Metabolic Alterations in Postharvest Pear Fruit As Influenced by 1-Methylcyclopropene and Controlled Atmosphere Storage. Journal of Agricultural and Food Chemistry, 2018, 66, 12989-12999.	2.4	22
280	Reconstruction and Analysis of a Genome-Scale Metabolic Network for Eriocheir Sinensis Hepatopancreas. IEEE Access, 2018, 6, 79235-79244.	2.6	7
281	Comparative transcriptome and metabolome analysis suggests bottlenecks that limit seed and oil yields in transgenic Camelina sativa expressing diacylglycerol acyltransferase 1 and glycerol-3-phosphate dehydrogenase. Biotechnology for Biofuels, 2018, 11, 335.	6.2	12
283	Proteomics of Heat-Stress and Ethylene-Mediated Thermotolerance Mechanisms in Tomato Pollen Grains. Frontiers in Plant Science, 2018, 9, 1558.	1.7	62
284	Effect of drought stress on metabolite adjustments in drought tolerant and sensitive thyme. Plant Physiology and Biochemistry, 2018, 132, 391-399.	2.8	57
285	Oleaginicity of the yeast strain Saccharomyces cerevisiae D5A. Biotechnology for Biofuels, 2018, 11, 258.	6.2	41
286	Real-time carbon allocation into biogenic volatile organic compounds (BVOCs) and respiratory carbon dioxide (CO2) traced by PTR-TOF-MS, 13CO2 laser spectroscopy and 13C-pyruvate labelling. PLoS ONE, 2018, 13, e0204398.	1.1	32
287	Hyper-restorative non-equilibrium state as a driving force of biological morphogenesis. BioSystems, 2018, 173, 104-113.	0.9	13
288	A Systems Analysis With "Simplified Source-Sink Model―Reveals Metabolic Reprogramming in a Pair of Source-to-Sink Organs During Early Fruit Development in Tomato by LED Light Treatments. Frontiers in Plant Science, 2018, 9, 1439.	1.7	9
289	Crop metabolomics: from diagnostics to assisted breeding. Metabolomics, 2018, 14, 148.	1.4	35
290	Silicon induced mitigation of TCA cycle and GABA synthesis in arsenic stressed wheat (Triticum) Tj ETQq1 1 0.78	4314 rgBT 1.2	Qyerlock 10
291	Comprehensive Metabolomics Analysis of Mandarins (<i>Citrus reticulata</i>) as a Tool for Variety, Rootstock, and Grove Discrimination. Journal of Agricultural and Food Chemistry, 2018, 66, 10317-10326.	2.4	31
292	Metabolomics analysis reveals that elevated atmospheric CO2 alleviates drought stress in cucumber seedling leaves. Analytical Biochemistry, 2018, 559, 71-85.	1.1	48

#	Article	IF	CITATIONS
294	The Extra-Pathway Interactome of the TCA Cycle: Expected and Unexpected Metabolic Interactions. Plant Physiology, 2018, 177, 966-979.	2.3	81
295	Chimeric Structure of Plant Malic Enzyme Family: Different Evolutionary Scenarios for NAD- and NADP-Dependent Isoforms. Frontiers in Plant Science, 2018, 9, 565.	1.7	22
296	Combined Drought and Heat Activates Protective Responses in Eucalyptus globulus That Are Not Activated When Subjected to Drought or Heat Stress Alone. Frontiers in Plant Science, 2018, 9, 819.	1.7	85
297	Nitrogen Use Efficiency in Rice. , 0, , .		24
298	Dynamic of carbohydrate metabolism and the related genes highlights PPP pathway activation during chilling induced bud dormancy release in tree peony (Paeonia suffruticosa). Scientia Horticulturae, 2018, 242, 36-43.	1.7	18
299	Gradients of adenylate nucleotides and energy charge within â€~Rocha' pear fruit. Acta Horticulturae, 2018, , 1211-1216.	0.1	Ο
300	Inhibition of α-ketoglutarate dehydrogenase activity affects adventitious root growth in poplar via changes in GABA shunt. Planta, 2018, 248, 963-979.	1.6	27
301	iTRAQ-Based Proteomic Analysis Reveals Potential Regulation Networks of IBA-Induced Adventitious Root Formation in Apple. International Journal of Molecular Sciences, 2018, 19, 667.	1.8	41
302	A toxicological, metabonomic and transcriptional analysis to investigate the property of mulberry 1-deoxynojirimycin against the growth of Samia cynthia ricini. Pesticide Biochemistry and Physiology, 2018, 152, 45-54.	1.6	11
303	Tricarboxylates Induce Defense Priming Against Bacteria in Arabidopsis thaliana. Frontiers in Plant Science, 2018, 9, 1221.	1.7	45
304	Transcriptomic study to understand thermal adaptation in a high temperature-tolerant strain of Pyropia haitanensis. PLoS ONE, 2018, 13, e0195842.	1.1	49
305	Butanediol-enhanced heat tolerance in Agrostis stolonifera in association with alteration in stress-related gene expression and metabolic profiles. Environmental and Experimental Botany, 2018, 153, 209-217.	2.0	8
306	On the role of the tricarboxylic acid cycle in plant productivity. Journal of Integrative Plant Biology, 2018, 60, 1199-1216.	4.1	112
307	Upâ€regulation of lipid biosynthesis increases the oil content in leaves of <i>Sorghum bicolor</i> . Plant Biotechnology Journal, 2019, 17, 220-232.	4.1	75
308	Metabolomic profiling reveals that natural biodiversity surrounding a banana crop may positively influence the nutritional/sensorial profile of ripe fruits. Food Research International, 2019, 124, 165-174.	2.9	13
309	Metabolite profiling of mangosteen seed germination highlights metabolic changes related to carbon utilization and seed protection. Scientia Horticulturae, 2019, 243, 226-234.	1.7	14
310	Multiparametric realâ€time sensing of cytosolic physiology links hypoxia responses to mitochondrial electron transport. New Phytologist, 2019, 224, 1668-1684.	3.5	69
311	Metabolic plasticity of the starchless mutant of Chlorella sorokiniana and mechanisms underlying its enhanced lipid production revealed by comparative metabolomics analysis. Algal Research, 2019, 42, 101587.	2.4	43

#	ARTICLE	IF	CITATIONS
312	Comparison of metabolic response between the planktonic and air-dried Escherichia coli to electrolysed water combined with ultrasound by 1H NMR spectroscopy. Food Research International, 2019, 125, 108607.	2.9	37
313	The Lack of Mitochondrial Thioredoxin TRXo1 Affects In Vivo Alternative Oxidase Activity and Carbon Metabolism under Different Light Conditions. Plant and Cell Physiology, 2019, 60, 2369-2381.	1.5	35
314	Hierarchical clustering reveals unique features in the diel dynamics of metabolites in the CAM orchid Phalaenopsis. Journal of Experimental Botany, 2019, 70, 3269-3281.	2.4	11
315	The Arabidopsis E1 subunit of the 2-oxoglutarate dehydrogenase complex modulates plant growth and seed production. Plant Molecular Biology, 2019, 101, 183-202.	2.0	16
316	Resolving subcellular plant metabolism. Plant Journal, 2019, 100, 438-455.	2.8	40
317	Physiological Aspects of Photosynthesis–Respiration Interrelations. Russian Journal of Plant Physiology, 2019, 66, 365-374.	0.5	8
318	iTRAQ-based quantitative proteomic analysis of salt stress in Spica Prunellae. Scientific Reports, 2019, 9, 9590.	1.6	14
319	Genetic Analyses of the Arabidopsis ATG1 Kinase Complex Reveal Both Kinase-Dependent and Independent Autophagic Routes during Fixed-Carbon Starvation. Plant Cell, 2019, 31, 2973-2995.	3.1	97
320	Polyploidy remodels fruit metabolism by modifying carbon source utilization and metabolic flux in Ponkan mandarin (Citrus reticulata Blanco). Plant Science, 2019, 289, 110276.	1.7	29
321	Redox-regulation of mitochondrial metabolism through thioredoxin o1 facilitates light induction of photosynthesis. Plant Signaling and Behavior, 2019, 14, 1674607.	1.2	11
322	Effects of different inhibitors such as malonic acid, Na3PO4 and HgCl2 on uptake of different forms of antimony in rice plant. Plant and Soil, 2019, 445, 259-271.	1.8	11
323	Heat stress increases the use of cytosolic pyruvate for isoprene biosynthesis. Journal of Experimental Botany, 2019, 70, 5827-5838.	2.4	20
324	Abscisic Acid Receptors Modulate Metabolite Levels and Phenotype in Arabidopsis Under Normal Growing Conditions. Metabolites, 2019, 9, 249.	1.3	6
325	Proteomics analyses revealed the reduction of carbon- and nitrogen-metabolism and ginsenoside biosynthesis in the red-skin disorder of Panax ginseng. Functional Plant Biology, 2019, 46, 1123.	1.1	5
326	An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. Planta, 2019, 250, 2009-2022.	1.6	32
327	Metabolomics and transcriptomics reveal defense mechanism of rice (Oryza sativa) grains under stress of 2,2′,4,4′-tetrabromodiphenyl ether. Environment International, 2019, 133, 105154.	4.8	66
328	Leaf metabolic signatures induced by real and simulated herbivory in black mustard (Brassica nigra). Metabolomics, 2019, 15, 130.	1.4	29
329	Association analysis of phenotypic and metabolomic changes in Arabidopsis accessions and their F ₁ hybrids affected by different photoperiod and sucrose supply. Plant Biotechnology, 2019, 36, 155-165.	0.5	3

#	Article	IF	CITATIONS
330	Multi-omic and physiologic approach to understand Lotus japonicus response upon exposure to 3,4 dimethylpyrazole phosphate nitrification inhibitor. Science of the Total Environment, 2019, 660, 1201-1209.	3.9	5
331	Change in Bitterness, Accumulation of Cucurbitacin B and Expression Patterns of CuB Biosynthesis-related Genes in Melon During Fruit Development. Horticulture Journal, 2019, 88, 253-262.	0.3	9
332	Engineering Strategies to Boost Crop Productivity by Cutting Respiratory Carbon Loss. Plant Cell, 2019, 31, 297-314.	3.1	86
333	Fruit Salad in the Lab: Comparing Botanical Species to Help Deciphering Fruit Primary Metabolism. Frontiers in Plant Science, 2019, 10, 836.	1.7	12
334	Quantitative proteomics analysis reveals proteins and pathways associated with anthocyanin accumulation in barley. Food Chemistry, 2019, 298, 124973.	4.2	21
335	Leaf Energy Balance Requires Mitochondrial Respiration and Export of Chloroplast NADPH in the Light. Plant Physiology, 2019, 180, 1947-1961.	2.3	80
336	Isotopic labelling reveals the efficient adaptation of wheat root TCA cycle flux modes to match carbon demand under ammonium nutrition. Scientific Reports, 2019, 9, 8925.	1.6	32
337	Citric Acid Cycle Regulation: Back Bone for Secondary Metabolite Production. , 2019, , 165-181.		5
338	Quantitative Proteomic Analysis Reveals Novel Insights into Intracellular Silicate Stress-Responsive Mechanisms in the Diatom Skeletonema dohrnii. International Journal of Molecular Sciences, 2019, 20, 2540.	1.8	15
339	An Integrated Analysis of the Rice Transcriptome and Metabolome Reveals Differential Regulation of Carbon and Nitrogen Metabolism in Response to Nitrogen Availability. International Journal of Molecular Sciences, 2019, 20, 2349.	1.8	80
340	Effect of CAX1a TILLING mutations and calcium concentration on some primary metabolism processes in Brassica rapa plants. Journal of Plant Physiology, 2019, 237, 51-60.	1.6	6
341	Transcriptional Analysis of Chlorella Pyrenoidosa Exposed to Bisphenol A. International Journal of Environmental Research and Public Health, 2019, 16, 1374.	1.2	26
342	Assembly of the Complexes of the Oxidative Phosphorylation System in Land Plant Mitochondria. Annual Review of Plant Biology, 2019, 70, 23-50.	8.6	68
343	Arabidopsis seedlings display a remarkable resilience under severe mineral starvation using their metabolic plasticity to remain selfâ€sufficient for weeks. Plant Journal, 2019, 99, 302-315.	2.8	10
344	New Insights on Arabidopsis thaliana Root Adaption to Ammonium Nutrition by the Use of a Quantitative Proteomic Approach. International Journal of Molecular Sciences, 2019, 20, 814.	1.8	22
345	Metabolomics Studies of Stress in Plants. , 2019, , 127-178.		1
346	Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice. Free Radical Biology and Medicine, 2019, 136, 96-108.	1.3	241
347	Tomato roots exhibit in vivo glutamate dehydrogenase aminating capacity in response to excess ammonium supply. Journal of Plant Physiology, 2019, 239, 83-91.	1.6	17

#	Article	IF	CITATIONS
348	Influence of starch deficiency on photosynthetic and post-photosynthetic carbon isotope fractionations. Journal of Experimental Botany, 2019, 70, 1829-1841.	2.4	17
349	Morpho-Physiological and Proteomic Analyses of Eucalyptus camaldulensis as a Bioremediator in Copper-Polluted Soil in Saudi Arabia. Plants, 2019, 8, 43.	1.6	11
350	Understanding carbon utilization routes between high and low starch-producing cultivars of cassava through Flux Balance Analysis. Scientific Reports, 2019, 9, 2964.	1.6	14
351	Gamma Radiation Induced Changes in the Biochemical Composition of Aquatic Primary Producers and Their Effect on Grazers. Frontiers in Environmental Science, 2019, 7, .	1.5	8
352	Proteomic and physiological responses in mangrove Kandelia candel roots under short-term high-salinity stress. Turkish Journal of Biology, 2019, 43, 314-325.	2.1	10
353	Identification and characterization of the TCA cycle genes in maize. BMC Plant Biology, 2019, 19, 592.	1.6	28
354	Global analysis of lysine succinylation in patchouli plant leaves. Horticulture Research, 2019, 6, 133.	2.9	17
355	Comparative transcriptome analysis provides comprehensive insights into the heat stress response of Marsupenaeus japonicus. Aquaculture, 2019, 502, 338-346.	1.7	22
356	The Role of Abscisic Acid Signaling in Maintaining the Metabolic Balance Required for Arabidopsis Growth under Nonstress Conditions. Plant Cell, 2019, 31, 84-105.	3.1	84
357	Core principles which explain variation in respiration across biological scales. New Phytologist, 2019, 222, 670-686.	3.5	107
358	Organic Acids. , 2019, , 207-224.		20
359	Impact of K deficiency on leaves and siliques photosynthesis via metabolomics in Brassica napus. Environmental and Experimental Botany, 2019, 158, 89-98.	2.0	13
360	Nitric oxide, γâ€aminobutyric acid, and mannose pretreatment influence metabolic profiles in white clover under water stress. Journal of Integrative Plant Biology, 2019, 61, 1255-1273.	4.1	20
361	Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C4 plant <i>Flaveria bidentis</i> . Journal of Experimental Botany, 2019, 70, 575-587.	2.4	33
362	Insights into the spatial and temporal organisation of plant metabolism from network flux analysis. Theoretical and Experimental Plant Physiology, 2019, 31, 215-226.	1.1	10
363	â€~ <i>Candidatus</i> Liberibacter asiaticus' and Its Vector, <i>Diaphorina citri</i> , Augment the Tricarboxylic Acid Cycle of Their Host via the γ-Aminobutyric Acid Shunt and Polyamines Pathway. Molecular Plant-Microbe Interactions, 2019, 32, 413-427.	1.4	24
364	Metabolomics reveals defensive mechanisms adapted by maize on exposure to high molecular weight polycyclic aromatic hydrocarbons. Chemosphere, 2019, 214, 771-780.	4.2	27
365	Alternative NAD(P)H dehydrogenase and alternative oxidase: Proposed physiological roles in animals. Mitochondrion, 2019, 45, 7-17.	1.6	45

#	Article	IF	CITATIONS
366	Transcriptomics, chromosome engineering and mapping identify a restorer-of-fertility region in the CMS wheat system msH1. Theoretical and Applied Genetics, 2020, 133, 283-295.	1.8	9
367	New Insights on â€~GALA' Apple Fruit Development: Sugar and Acid Accumulation: A Transcriptomic Approach. Journal of Plant Growth Regulation, 2020, 39, 680-702.	2.8	12
368	Thioredoxin <i>h2</i> contributes to the redox regulation of mitochondrial photorespiratory metabolism. Plant, Cell and Environment, 2020, 43, 188-208.	2.8	34
369	Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics. Plant Journal, 2020, 101, 420-441.	2.8	152
370	A comparative proteomic approach to identify defence-related proteins between resistant and susceptible rice cultivars challenged with the fungal pathogen Rhizoctonia solani. Plant Growth Regulation, 2020, 90, 73-88.	1.8	12
371	Nutritional component analyses of kiwifruit in different development stages by metabolomic and transcriptomic approaches. Journal of the Science of Food and Agriculture, 2020, 100, 2399-2409.	1.7	33
372	The novel strain <i>Desmonostoc salinum </i> <scp>CCM</scp> â€ <scp>UFV</scp> 059 shows higher salt and desiccation resistance compared to the model strain <i>Nostoc</i> sp. <scp>PCC</scp> 7120. Journal of Phycology, 2020, 56, 496-506.	1.0	10
373	Matrix Redox Physiology Governs the Regulation of Plant Mitochondrial Metabolism through Posttranslational Protein Modifications. Plant Cell, 2020, 32, 573-594.	3.1	70
374	Metabolic and transcriptional changes in seminal plasma of asthenozoospermia patients. Biomedical Chromatography, 2020, 34, e4769.	0.8	22
375	Association mapping and genetic dissection of drought-induced canopy temperature differences in rice. Journal of Experimental Botany, 2020, 71, 1614-1627.	2.4	33
376	Comparative flower metabolomics analysis in polygamodioecious Garcinia indica choisy indicates flower gender type specific metabolite accumulation. Biocatalysis and Agricultural Biotechnology, 2020, 30, 101836.	1.5	1
377	Heat Waves Change Plant Carbon Allocation Among Primary and Secondary Metabolism Altering CO2 Assimilation, Respiration, and VOC Emissions. Frontiers in Plant Science, 2020, 11, 1242.	1.7	22
378	Multiomic Analysis Elucidates the Reasons Underlying the Differential Metabolite Accumulation in Citrus Mature Leaves and Fruit Juice Sacs. Journal of Agricultural and Food Chemistry, 2020, 68, 11863-11874.	2.4	5
379	Comparative proteomic analysis of drought and high temperature response in roots of two potato cultivars. Plant Growth Regulation, 2020, 92, 345-363.	1.8	8
380	Synchronized variations in levels of essential amino acids during germination in grain Amaranth. Revista Brasileira De Botanica, 2020, 43, 481-491.	0.5	5
381	Targeted Metabolomic and Biochemical Changes During Nitrogen Stress Mediated Lipid Accumulation in Scenedesmus quadricauda CASA CC202. Frontiers in Bioengineering and Biotechnology, 2020, 8, 585632.	2.0	16
382	Exogenous Carbon Compounds Modulate Tomato Root Development. Plants, 2020, 9, 837.	1.6	7
383	Dynamic proteome changes of wheat developing grains in response to water deficit and high-nitrogen fertilizer conditions. Plant Physiology and Biochemistry, 2020, 156, 471-483	2.8	9

#	Article	IF	CITATIONS
384	Puerarin improves the bone micro-environment to inhibit OVX-induced osteoporosis via modulating SCFAs released by the gut microbiota and repairing intestinal mucosal integrity. Biomedicine and Pharmacotherapy, 2020, 132, 110923.	2.5	48
385	Characterization of In Vivo Function(s) of Members of the Plant Mitochondrial Carrier Family. Biomolecules, 2020, 10, 1226.	1.8	11
386	Metabolic Reprogramming is a Hallmark of Metabolism Itself. BioEssays, 2020, 42, e2000058.	1.2	12
387	The Physiological Responses of Escherichia coli Triggered by Phosphoribulokinase (PrkA) and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (Rubisco). Microorganisms, 2020, 8, 1187.	1.6	3
388	BTB-BACK-TAZ domain protein MdBT2-mediated MdMYB73 ubiquitination negatively regulates malate accumulation and vacuolar acidification in apple. Horticulture Research, 2020, 7, 151.	2.9	25
389	Differential Flag Leaf and Ear Photosynthetic Performance Under Elevated (CO2) Conditions During Grain Filling Period in Durum Wheat. Frontiers in Plant Science, 2020, 11, 587958.	1.7	11
390	New insights on neurotransmitters signaling mechanisms in plants. Plant Signaling and Behavior, 2020, 15, 1737450.	1.2	28
391	Enhancement and improvement of selenium in soil to the resistance of rape stem against Sclerotinia sclerotiorum and the inhibition of dissolved organic matter derived from rape straw on mycelium. Environmental Pollution, 2020, 265, 114827.	3.7	15
392	Two forms of NAD-malic enzyme in maize leaves are regulated by light in opposite ways via promoter methylation. Journal of Plant Physiology, 2020, 251, 153193.	1.6	7
393	Quantitative Metabonomic Phenotypes in Different Structures of Mung Bean (<i>Vigna radiata</i>) Seeds and Their Germination-Associated Dynamic Changes. Journal of Proteome Research, 2020, 19, 3352-3363.	1.8	6
394	Metabolomic modulations in a freshwater microbial community exposed to the fungicide azoxystrobin. Journal of Environmental Sciences, 2020, 97, 102-109.	3.2	9
395	Does the GABA Shunt Regulate Cytosolic GABA?. Trends in Plant Science, 2020, 25, 422-424.	4.3	32
396	Molecular and Biochemical Aspects of Light Regulation of 2-Oxoglutarate Dehydrogenase in Plants. Russian Journal of Plant Physiology, 2020, 67, 378-385.	0.5	2
397	Comparative Metabolites and Citrate-Degrading Enzymes Activities in Citrus Fruits Reveal the Role of Balance between ACL and Cyt-ACO in Metabolite Conversions. Plants, 2020, 9, 350.	1.6	13
398	In planta study of photosynthesis and photorespiration using NADPH and NADH/NAD+ fluorescent protein sensors. Nature Communications, 2020, 11, 3238.	5.8	85
399	iTRAQ-based quantitative proteomic analysis reveals the metabolic pathways of grain chalkiness in response to nitrogen topdressing in rice. Plant Physiology and Biochemistry, 2020, 154, 622-635.	2.8	5
400	Primary Metabolism in Fresh Fruits During Storage. Frontiers in Plant Science, 2020, 11, 80.	1.7	103
401	Water Deficit Affects the Growth and Leaf Metabolite Composition of Young Loquat Plants. Plants, 2020, 9, 274.	1.6	12

#	Article	IF	Citations
402	A wish list for synthetic biology in photosynthesis research. Journal of Experimental Botany, 2020, 71, 2219-2225.	2.4	31
403	Downregulation of a Mitochondrial NAD+ Transporter (NDT2) Alters Seed Production and Germination in Arabidopsis. Plant and Cell Physiology, 2020, 61, 897-908.	1.5	19
404	Photosynthesis and respiration. , 2020, , 129-148.		0
405	Developmental physiology. , 2020, , 199-277.		9
406	Plasticity of Leaf Respiratory and Photosynthetic Traits in Eucalyptus grandis and E. regnans Grown Under Variable Light and Nitrogen Availability. Frontiers in Forests and Global Change, 2020, 3, .	1.0	4
407	Plant Mitochondrial Carriers: Molecular Gatekeepers That Help to Regulate Plant Central Carbon Metabolism. Plants, 2020, 9, 117.	1.6	23
408	Tomato root development and N assimilation depend on C and ABA content under different N sources. Plant Physiology and Biochemistry, 2020, 148, 368-378.	2.8	8
409	Modeling Plant Metabolism: From Network Reconstruction to Mechanistic Models. Annual Review of Plant Biology, 2020, 71, 303-326.	8.6	27
410	Photorespiration—how is it regulated and how does it regulate overall plant metabolism?. Journal of Experimental Botany, 2020, 71, 3955-3965.	2.4	63
412	Citrate valve integrates mitochondria into photosynthetic metabolism. Mitochondrion, 2020, 52, 218-230.	1.6	28
413	The Oxidative Phosphorylation system of the mitochondria in plants. Mitochondrion, 2020, 53, 66-75.	1.6	78
414	Stem metabolism under drought stress – a paradox of increasing respiratory substrates and decreasing respiratory rates. Physiologia Plantarum, 2021, 172, 391-404.	2.6	12
415	Metabolomics and fluxomics studies in the medicinal plant Catharanthus roseus. , 2021, , 61-86.		2
416	Production of γ-Aminobutyric Acid and Its Supplementary Role in the TCA Cycle in Rice (Oryza sativa L.) Seedlings. Journal of Plant Growth Regulation, 2021, 40, 78-90.	2.8	7
417	Comparative proteomic analysis of Prunella vulgaris L. spica ripening. Journal of Proteomics, 2021, 232, 104028.	1.2	4
418	Influence of fuel oil on Platymonas helgolandica: An acute toxicity evaluation to amino acids. Environmental Pollution, 2021, 271, 116226.	3.7	4
419	Nitrate and ammonium differ in their impact on δ ¹³ C of plant metabolites and respired CO ₂ from tobacco leaves. Isotopes in Environmental and Health Studies, 2021, 57, 11-34.	0.5	4
420	Molecular mechanism underlying Pyropia haitanensis PhHsp22-mediated increase in the high-temperature tolerance of Chlamydomonas reinhardtii. Journal of Applied Phycology, 2021, 33, 1137-1148.	1.5	9

#	Article	IF	CITATIONS
421	Respiration \mid Plant Mitochondria â \in " Substrates, Inhibitors, Uncouplers. , 2021, , 536-544.		1
422	Darkness and low-light alter reserve mobilization during the initial growth of soybean (Glycine max) Tj ETQq1 1	0.784314 1.1	rgBJ /Overlo
423	A Multi-Species Analysis Defines Anaplerotic Enzymes and Amides as Metabolic Markers for Ammonium Nutrition. Frontiers in Plant Science, 2020, 11, 632285.	1.7	13
424	Metabolic responses to combined water deficit and salt stress in maize primary roots. Journal of Integrative Agriculture, 2021, 20, 109-119.	1.7	30
426	Ammonium supply induces differential metabolic adaptive responses in tomato according to leaf phenological stage. Journal of Experimental Botany, 2021, 72, 3185-3199.	2.4	9
427	Integrative role of plant mitochondria facing oxidative stress: The case of ozone. Plant Physiology and Biochemistry, 2021, 159, 202-210.	2.8	20
428	Cytochrome c Deficiency Differentially Affects the In Vivo Mitochondrial Electron Partitioning and Primary Metabolism Depending on the Photoperiod. Plants, 2021, 10, 444.	1.6	3
429	Thioredoxin-mediated regulation of (photo)respiration and central metabolism. Journal of Experimental Botany, 2021, 72, 5987-6002.	2.4	22
430	New insights into the role of MADS-box transcription factor gene CmANR1 on root and shoot development in chrysanthemum (Chrysanthemum morifolium). BMC Plant Biology, 2021, 21, 79.	1.6	6
431	Reduced expression of CsPH8, a P-type ATPase gene, is the major factor leading to the low citrate accumulation in citrus leaves. Plant Physiology and Biochemistry, 2021, 160, 211-217.	2.8	2
433	Inactivation of cytosolic FUMARASE2 enhances growth and photosynthesis under simultaneous copper and iron deprivation in Arabidopsis. Plant Journal, 2021, 106, 766-784.	2.8	4
434	Integrating Transcriptomics and Metabolomics to Characterize Metabolic Regulation to Elevated CO2 in Chlamydomonas Reinhardtii. Marine Biotechnology, 2021, 23, 255-275.	1.1	16
435	Downregulation of the E2 Subunit of 2-Oxoglutarate Dehydrogenase Modulates Plant Growth by Impacting Carbon–Nitrogen Metabolism in <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2021, 62, 798-814.	1.5	8
436	Metabolomicsâ€driven gene mining and genetic improvement of tolerance to saltâ€induced osmotic stress in maize. New Phytologist, 2021, 230, 2355-2370.	3.5	46
437	Asgard archaea in the haima cold seep: Spatial distribution and genomic insights. Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 170, 103489.	0.6	11
438	Effects of the intensification of soybean defects: Degradation metabolism of carbohydrates, organic acids, proteins, lipids, and phenolics. Journal of Food Processing and Preservation, 2021, 45, e15516.	0.9	3
439	High-Throughput LC-ESI-MS/MS Metabolomics Approach Reveals Regulation of Metabolites Related to Diverse Functions in Mature Fruit of Grafted Watermelon. Biomolecules, 2021, 11, 628.	1.8	6
440	First comprehensive analysis of lysine succinylation in paper mulberry (Broussonetia papyrifera). BMC Genomics, 2021, 22, 255.	1.2	11

#	Article	IF	CITATIONS
441	Associating primary and specialized metabolism with salt induced osmotic stress tolerance in maize. New Phytologist, 2021, 230, 2091-2093.	3.5	2
443	Comparison of Metabolic Profiling of Arabidopsis Inflorescences Between Landsberg erecta and Columbia, and Meiosis-Defective Mutants by 1H-NMR Spectroscopy. Phenomics, 2021, 1, 73-89.	0.9	4
444	Proteomic analysis reveals the protective role of exogenous hydrogen sulfide against salt stress in rice seedlings. Nitric Oxide - Biology and Chemistry, 2021, 111-112, 14-30.	1.2	29
445	A Balance between the Activities of Chloroplasts and Mitochondria Is Crucial for Optimal Plant Growth. Antioxidants, 2021, 10, 935.	2.2	5
446	Effects of <i>Fusarium Proliferatum</i> infection on the quality and respiratory metabolism of postharvest asparagus. New Zealand Journal of Crop and Horticultural Science, 2022, 50, 143-161.	0.7	2
448	Metabolic exchange between pathways for isoprenoid synthesis and implications for biosynthetic hydrogen isotope fractionation. New Phytologist, 2021, 231, 1708-1719.	3.5	10
449	Potential metabolic mechanisms for inhibited chloroplast nitrogen assimilation under high CO2. Plant Physiology, 2021, 187, 1812-1833.	2.3	9
450	Two mitochondrial phosphatases, PP2c63 and Sal2, are required for posttranslational regulation of the TCA cycle in Arabidopsis. Molecular Plant, 2021, 14, 1104-1118.	3.9	31
451	Melatonin elevated Sclerotinia sclerotiorum resistance via modulation of ATP and glucosinolate biosynthesis in Brassica rapa ssp. pekinensis. Journal of Proteomics, 2021, 243, 104264.	1.2	22
452	Citric Acid-Mediated Abiotic Stress Tolerance in Plants. International Journal of Molecular Sciences, 2021, 22, 7235.	1.8	85
453	Phytochemicals: Targeting Mitophagy to Treat Metabolic Disorders. Frontiers in Cell and Developmental Biology, 2021, 9, 686820.	1.8	13
454	<i>Arabidopsis thaliana</i> 2,3â€bisphosphoglycerateâ€independent phosphoglycerate mutase 2 activity requires serine 82 phosphorylation. Plant Journal, 2021, 107, 1478-1489.	2.8	3
455	Manganese facilitates cadmium stabilization through physicochemical dynamics and amino acid accumulation in rice rhizosphere under flood-associated low pe+pH. Journal of Hazardous Materials, 2021, 416, 126079.	6.5	29
456	Protein interaction patterns in Arabidopsis thaliana leaf mitochondria change in dependence to light. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148443.	0.5	11
457	The C4 cycle and beyond: diverse metabolic adaptations accompany dual-cell photosynthetic functions in Setaria. Journal of Experimental Botany, 2021, 72, 7876-7890.	2.4	3
459	Urinary metabolites of type 2 diabetes rats fed with palm oil-enriched high fat diet. Heliyon, 2021, 7, e08075.	1.4	2
460	Drought affects carbon partitioning into volatile organic compound biosynthesis in Scots pine needles. New Phytologist, 2021, 232, 1930-1943.	3.5	17
461	Plant mitochondria – past, present and future. Plant Journal, 2021, 108, 912-959.	2.8	94

#	Article	IF	CITATIONS
462	Genotype- and tissue-specific metabolic networks and hub genes involved in water-induced distinct sweet cherry fruit cracking phenotypes. Computational and Structural Biotechnology Journal, 2021, 19, 5406-5420.	1.9	11
463	Future climate CO2 can harness ROS homeostasis and improve cell wall fortification to alleviate the hazardous effect of Phelipanche infection in pea seedlings. Plant Physiology and Biochemistry, 2021, 166, 1131-1141.	2.8	7
464	Mitonuclear Interactions Produce Diverging Responses to Mild Stress in Drosophila Larvae. Frontiers in Genetics, 2021, 12, 734255.	1.1	4
465	Mass Spectrometry–Based Quantitative Cysteine Proteome Profiling of Isolated Using Differential iodoTMT Labeling. Methods in Molecular Biology, 2022, 2363, 215-234.	0.4	1
466	Association of the malate dehydrogenase-citrate synthase metabolon is modulated by intermediates of the Krebs tricarboxylic acid cycle. Scientific Reports, 2021, 11, 18770.	1.6	8
467	The versatility of plant organic acid metabolism in leaves is underpinned by mitochondrial malate–citrate exchange. Plant Cell, 2021, 33, 3700-3720.	3.1	37
468	Swapping acids: the ins and outs of plant mitochondrial metabolism. Plant Cell, 2021, 33, 3608-3609.	3.1	1
469	The knowns and unknowns of intracellular partitioning of carbon and nitrogen, with focus on the organic acid-mediated interplay between mitochondrion and chloroplast. Journal of Plant Physiology, 2021, 266, 153521.	1.6	13
470	Proteomics and Metabolomics Reveal the Regulatory Pathways of Ripening and Quality in Post-Harvest Kiwifruits. Journal of Agricultural and Food Chemistry, 2021, 69, 824-835.	2.4	20
472	MITOCHONDRIAL REGULATION AND SIGNALLING IN THE PHOTOSYNTHETIC CELL., 0,, 185-225.		1
473	Random Weighting through Linear Programming into Intracellular Transporters of Rice Metabolic Network. Lecture Notes in Computer Science, 2013, , 662-667.	1.0	2
474	Cysteine Switches and the Regulation of Mitochondrial Bioenergetics and ROS Production. Advances in Experimental Medicine and Biology, 2019, 1158, 197-216.	0.8	8
475	Primary metabolites analysis of induced citrus fruit disease resistance upon treatment with oligochitosan, salicylic acid and Pichia membranaefaciens. Biological Control, 2020, 148, 104289.	1.4	21
476	Comparative metabolic profiling of cultivated and wild black soybeans reveals distinct metabolic alterations associated with their domestication. Food Research International, 2020, 134, 109290.	2.9	15
480	Passing the Baton: Substrate Channelling in Respiratory Metabolism. Research, 2018, 2018, 1539325.	2.8	22
481	Transcriptome and Proteome Exploration to Provide a Resource for the Study of Agrocybe aegerita. PLoS ONE, 2013, 8, e56686.	1.1	56
482	Dynamic Proteomic Characteristics and Network Integration Revealing Key Proteins for Two Kernel Tissue Developments in Popcorn. PLoS ONE, 2015, 10, e0143181.	1.1	8
483	Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon. PLoS ONE, 2018, 13, e0190096.	1.1	50

#	Article	IF	CITATIONS
484	Uncovering the transcriptional response of popcorn (Zea mays L. var. everta) under long-term aluminum toxicity. Scientific Reports, 2021, 11, 19644.	1.6	4
486	Mitochondrial Respiration and Energy Production Under Some Abiotic Stresses. Journal of Plant Growth Regulation, 0, , 1.	2.8	15
487	Using Systems Approaches to Analyze Metabolic Networks Involved in Storage Reserve Synthesis in Developing Seeds. , 2012, , 387-405.		0
489	Cross-Talk of Mitochondria and Chloroplasts. Advances in Photosynthesis and Respiration, 2013, , 481-502.	1.0	1
490	The Flow of Energy. , 2013, , 94-106.		0
491	Plant Mitochondria Biogenesis and Cellular Function. , 2014, , 1-15.		0
492	MITOCHONDRIAL BIOCHEMISTRY. , 0, , 227-268.		0
493	ECOPHYSIOLOGY OF PLANT RESPIRATION. , 0, , 269-292.		0
496	Short Communication: Polymorphism of Fumarate Hydratase 1 (FUM1) gene associated with nitrogen uptake in oil palm (Elaeis guineensis). Biodiversitas, 2020, 21, .	0.2	1
498	Acetylation of conserved lysines fineâ€ŧunes mitochondrial malate dehydrogenase activity in land plants. Plant Journal, 2022, 109, 92-111.	2.8	16
499	The Multifaceted Connections Between Photosynthesis and Respiratory Metabolism. , 2020, , 55-107.		1
500	The crucial roles of mitochondria in supporting C ₄ photosynthesis. New Phytologist, 2022, 233, 1083-1096.	3.5	11
501	The GC-TOF/MS-based Metabolomic analysis reveals altered metabolic profiles in nitrogen-deficient leaves and roots of tea plants (Camellia sinensis). BMC Plant Biology, 2021, 21, 506.	1.6	19
503	A strategy for promoting carbon flux into fatty acid and astaxanthin biosynthesis by inhibiting the alternative oxidase respiratory pathway in Haematococcus pluvialis. Bioresource Technology, 2022, 344, 126275.	4.8	10
505	NMR spectroscopy analysis reveals differential metabolic responses in arabidopsis roots and leaves treated with a cytokinesis inhibitor. PLoS ONE, 2020, 15, e0241627.	1.1	2
506	Review: The case for studying mitochondrial function during plant cryopreservation. Plant Science, 2022, 315, 111134.	1.7	9
507	Comparative genomic analysis of the tricarboxylic acid cycle members in four Solanaceae vegetable crops and expression pattern analysis in Solanum tuberosum. BMC Genomics, 2021, 22, 821.	1.2	8
509	Metabolomics Analysis Reveals Potential Mechanisms in Bupleurum L. (Apiaceae) Induced by Three Levels of Nitrogen Fertilization. Agronomy, 2021, 11, 2291.	1.3	6

#	Article	IF	CITATIONS
510	Not Just a Cycle: Three <i>gab</i> Genes Enable the Non-Cyclic Flux Toward Succinate via GABA Shunt in â€~ <i>Candidatus</i> Liberibacter asiaticus'–Infected Citrus. Molecular Plant-Microbe Interactions, 2022, 35, 200-214.	1.4	4
511	Nuclear magnetic resonance-based metabolomics and cytotoxicity (HT-29 and HCT-116 cell lines) studies insight the potential of less utilized parts of Camellia sinensis (Kangra tea). Food Chemistry, 2022, 373, 131561.	4.2	5
512	Advances in proteome-wide analysis of plant lysine acetylation. Plant Communications, 2022, 3, 100266.	3.6	8
514	Melatonin promotes the normal cellular mitochondrial function of lotus seeds through stimulating nitric oxide production. Postharvest Biology and Technology, 2022, 185, 111814.	2.9	7
515	Dynamic labelling reveals central carbon metabolism responses to stepwise decreasing hypoxia and reoxygenation during postharvest in pear fruit. Postharvest Biology and Technology, 2022, 186, 111816.	2.9	6
516	Acclimation to elevated <scp>CO₂</scp> affects the C/N balance by reducing de novo Nâ€essimilation. Physiologia Plantarum, 2022, 174, e13615.	2.6	14
517	GWAS on multiple traits identifies mitochondrial ACONITASE3 as important for acclimation to submergence stress. Plant Physiology, 2022, 188, 2039-2058.	2.3	13
518	Try or Die: Dynamics of Plant Respiration and How to Survive Low Oxygen Conditions. Plants, 2022, 11, 205.	1.6	24
519	Morphological and Physiological Characteristics of Rice Cultivars with Higher Yield and Nitrogen Use Efficiency at Various Nitrogen Rates. Agronomy, 2022, 12, 358.	1.3	3
520	Distinct salinity-induced changes in wheat metabolic machinery in different root tissue types. Journal of Proteomics, 2022, 256, 104502.	1.2	10
521	Can biochemical traits bridge the gap between genomics and plant performance? A study in rice under drought. Plant Physiology, 2022, 189, 1139-1152.	2.3	8
522	Regulation strategy for nutrient-dependent carbon and nitrogen stoichiometric homeostasis in freshwater phytoplankton. Science of the Total Environment, 2022, 823, 153797.	3.9	6
523	Metabolic and DNA checkpoints for the enhancement of Al tolerance. Journal of Hazardous Materials, 2022, 430, 128366.	6.5	7
524	Alternative oxidase (AOX) 1a and 1d limit proline-induced oxidative stress and aid salinity recovery in Arabidopsis. Plant Physiology, 2022, 188, 1521-1536.	2.3	26
525	Emerging connections between gut microbiome bioenergetics and chronic metabolic diseases. Cell Reports, 2021, 37, 110087.	2.9	31
526	Infection by <i>Moniliophthora perniciosa</i> reprograms tomato Micro-Tom physiology, establishes a sink, and increases secondary cell wall synthesis. Journal of Experimental Botany, 2022, 73, 3651-3670.	2.4	2
528	Plant Proteome in Response to Abiotic Stress. Physiology, 0, , .	4.0	1
529	WHIRLY1 functions in the nucleus to regulate barley leaf development and associated metabolite profiles. Biochemical Journal, 2022, 479, 641-659.	1.7	2

#	Article	IF	CITATIONS
530	Defining key metabolic roles in osmotic adjustment and <scp>ROS</scp> homeostasis in the recretohalophyte <i>Karelinia caspia</i> under salt stress. Physiologia Plantarum, 2022, 174, e13663.	2.6	10
533	Dynamics of Energy Metabolism in Carbon Starvation-Induced Fruitlet Abscission in Litchi. Horticulturae, 2021, 7, 576.	1.2	0
534	Exogenous citric acid enhances drought tolerance in tobacco (<i>Nicotiana tabacum</i>). Plant Biology, 2022, 24, 333-343.	1.8	15
535	The Arabidopsis Circadian Clock and Metabolic Energy: A Question of Time. Frontiers in Plant Science, 2021, 12, 804468.	1.7	10
536	Clobal Metabolites Reprogramming Induced by Spermine Contributing to Salt Tolerance in Creeping Bentgrass. International Journal of Molecular Sciences, 2022, 23, 4472.	1.8	5
537	Metabolic adaptation of †Conference' pear to postharvest hypoxia: The impact of harvest time and hypoxic pre-treatments. Postharvest Biology and Technology, 2022, 189, 111937.	2.9	2
574	The interplay between bisphenol A and algae – A review. Journal of King Saud University - Science, 2022, 34, 102050.	1.6	14
575	<i>Knockâ€down</i> of phosphoenolpyruvate carboxylase 3 negatively impacts growth, productivity, and responses to salt stress in sorghum (<i>Sorghum bicolor</i> L.). Plant Journal, 2022, 111, 231-249.	2.8	8
576	Antioxidant Metabolism Underlies Different Metabolic Strategies for Primary Root Growth Maintenance under Water Stress in Cotton and Maize. Antioxidants, 2022, 11, 820.	2.2	8
577	An Arabidopsis GCMS chemical ionization technique to quantify adaptive responses in central metabolism. Plant Physiology, 2022, 189, 2072-2090.	2.3	4
579	Differential Metabolic Responses of Lettuce Grown in Soil, Substrate and Hydroponic Cultivation Systems under NH4+/NO3â ^{~?} Application. Metabolites, 2022, 12, 444.	1.3	10
580	Mitochondrial dysfunction associated with ascorbate synthesis in plants. Plant Physiology and Biochemistry, 2022, 185, 55-68.	2.8	7
581	Transcriptomic analysis reveals key genes regulating organic acid synthesis and accumulation in the pulp of Litchi chinensis Sonn. cv. Feizixiao. Scientia Horticulturae, 2022, 303, 111220.	1.7	10
582	Turning around Cycles: An Approach Based on Selected Problems/Cases to Stimulate Collaborative Learning about Krebs and His Four Metabolic Cycles. Journal of Chemical Education, 0, , .	1.1	0
583	High-energy-level metabolism and transport occur at the transition from closed to open flowers. Plant Physiology, 2022, 190, 319-339.	2.3	2
584	Differences in the metabolic and functional mechanisms used to tolerate flooding in <i>Guazuma ulmifolia</i> (Lam.) from flood-prone Amazonian and dry Cerrado savanna populations. Tree Physiology, 0, , .	1.4	1
585	On the rate of phytoplankton respiration in the light. Plant Physiology, 2022, 190, 267-279.	2.3	2
586	Facilitating Digester Recovery from Acid Inhibition at High Organic Load Rates by Limited Calcium Peroxide Addition. ACS Sustainable Chemistry and Engineering, 2022, 10, 8184-8195.	3.2	4

ARTICLE IF CITATIONS Combined transcriptome and metabolome analysis of Nerium indicum L. elaborates the key pathways 587 1.6 5 that are activated in response to witches' broom disease. BMC Plant Biology, 2022, 22, . Multi-Omics Approaches Unravel Specific Features of Embryo and Endosperm in Rice Seed Germination. 1.7 9 Frontiers in Plant Science, 0, 13, . Management of plant central metabolism by SnRK1 protein kinases. Journal of Experimental Botany, 589 2.4 26 2022, 73, 7068-7082. Inferred Subcellular Localization of Peroxisomal Matrix Proteins of Guillardia theta Suggests an Important Role of Peroxisomes in Cryptophytes. Frontiers in Plant Science, 0, 13, . Fine Mapping and Functional Analysis of Major Regulatory Genes of Soluble Solids Content in Wax 591 1.8 3 Gourd (Benincasa hispida). International Journal of Molecular Sciences, 2022, 23, 6999. Transcriptomics and metabolomics reveal the adaptive mechanisms of Gracilariopsis lemaneiformis in response to blue light. Algal Research, 2022, 66, 102760. 2.4 Putative Biosynthesis Mechanism of the Neurotoxin Î'-N-Methylamino-L-Alanine in Marine Diatoms Based 593 0.4 0 on a Transcriptomics Approach. SSRN Electronic Journal, 0, , . Amino acids profiling and transcriptomic data integration demonstrates the dynamic regulation of amino acids synthesis in the leaves of <i>Cyclocarya paliurus</i>. PeerJ, 0, 10, e13689. Strategy to enhance semi-continuous anaerobic digestion of food waste by combined use of calcium 596 5.3 34 peroxide and magnetite. Water Research, 2022, 221, 118801. Overexpression of a cotton nonspecific lipid transfer protein gene, GhLTP4, enhances drought tolerance by remodeling lipid profiles, regulating abscisic acid homeostasis and improving tricarboxylic acid cycle in cotton. Environmental and Experimental Botany, 2022, 201, 104991. Fumigation of SO2 in combination with elevated CO2 regulate sugar and energy metabolism in 598 2.9 13 postharvest strawberry fruit. Postharvest Biology and Technology, 2022, 192, 112021. Elicitation of Roots and AC-DC with PEP-13 Peptide Shows Differential Defense Responses in 599 1.8 Multi-Omics. Cells, 2022, 11, 2605. Spermine-mediated metabolic homeostasis improves growth and stress tolerance in creeping bentgrass (Agrostis stolonifera) under water or high-temperature stress. Frontiers in Plant Science, 600 1.7 1 0, 13, . Nitrous Oxide Emissions from Nitrite Are Highly Dependent on Nitrate Reductase in the Microalga 1.8 Chlamydomonas reinhardtii. International Journal of Molecular Sciences, 2022, 23, 9412. Fruit quality of Vitis vinifera: How plant metabolites are affected by genetic, environmental, and 602 1.7 5 agronomic factors. Scientia Horticulturae, 2022, 305, 111404. Recent insights into cell responses to cold stress in plants: Signaling, defence, and potential functions of phosphatidic acid. Environmental and Experimental Botany, 2022, 203, 105068. Carbon and nitrogen metabolic regulation in freshwater plant Ottelia alismoides in response to 604 1.7 2 carbon limitation: A metabolite perspective. Frontiers in Plant Science, 0, 13, . Brassinosteroids mediate moderate soilâ€drying to alleviate spikelet degeneration under high 2.8 temperature during meiosis of rice. Plant, Cell and Environment, 2023, 46, 1340-1362.

#	Article	IF	CITATIONS
606	Metabolomics Response of Wheat (<i>Triticum aestivum</i>) to "Green―and Conventional Nonionic Surfactants at Different Application Stages. ACS Agricultural Science and Technology, 2022, 2, 1042-1051.	1.0	0
607	Exogenous citrate restores the leaf metabolic profiles of navel orange plants under boron deficiency. Plant Physiology and Biochemistry, 2022, 192, 101-109.	2.8	3
608	Metabolomic analysis of rapeseed priming with H2O2 in response to germination under chilling stress. Plant Growth Regulation, 2023, 99, 477-491.	1.8	5
609	Nitric Oxide Negatively Regulates the Rapid Formation of Pleurotus ostreatus Primordia by Inhibiting the Mitochondrial aco Gene. Journal of Fungi (Basel, Switzerland), 2022, 8, 1055.	1.5	4
610	Alterations in Primary Carbon Metabolism in Cucumber Infected with Pseudomonas syringae pv lachrymans: Local and Systemic Responses. International Journal of Molecular Sciences, 2022, 23, 12418.	1.8	1
611	Nitrogen-dependent binding of the transcription factor PBF1 contributes to the balance of protein and carbohydrate storage in maize endosperm. Plant Cell, 2023, 35, 409-434.	3.1	6
612	Heat production and volatile biosynthesis are linked via alternative respiration in Magnolia denudata during floral thermogenesis. Frontiers in Plant Science, 0, 13, .	1.7	1
613	Intercropping with herbs minimizes cadmium availability through altering physicochemical dynamics and metabolite profiles in wheat rhizosphere. Soil Use and Management, 2023, 39, 645-658.	2.6	5
614	Comprehensive proteome and lysine acetylome analysis after artificial aging reveals the key acetylated proteins involved in wheat seed oxidative stress response and energy production. Journal of Food Biochemistry, 0, , .	1.2	1
615	Silicon application improves strawberry plant antioxidation ability and fruit nutrition under both full and deficit irrigation. Scientia Horticulturae, 2023, 309, 111684.	1.7	9
616	Plant Respiration and Global Climatic Changes. Russian Journal of Plant Physiology, 2022, 69, .	0.5	1
617	Acute low-dose phosphate disrupts glycerophospholipid metabolism and induces stress in juvenile turbot (Scophthalmus maximus). Science of the Total Environment, 2023, 861, 160430.	3.9	4
618	Combined physiological and metabolomic analysis reveals the effects of different biostimulants on maize production and reproduction. Frontiers in Plant Science, 0, 13, .	1.7	2
619	Mitochondria in photosynthetic cells: Coordinating redox control and energy balance. Plant Physiology, 2023, 191, 2104-2119.	2.3	12
620	Evolutionary implications of C2 photosynthesis: how complex biochemical trade-offs may limit C4 evolution. Journal of Experimental Botany, 2023, 74, 707-722.	2.4	3
621	Understanding source–sink interactions: Progress in model plants and translational research to crops. Molecular Plant, 2023, 16, 96-121.	3.9	10
622	Characterization of the action of the lipid oxidation product 4-hydroxyhexenal on Lactiplantibacillus plantarum, the dominant bacterium in dry-cured fish. Food Bioscience, 2023, 51, 102320.	2.0	1
623	Bioenergetics of pollen tube growth in Arabidopsis thaliana revealed by ratiometric genetically encoded biosensors. Nature Communications, 2022, 13, .	5.8	3

ARTICLE IF CITATIONS Metabolomics Analysis Reveals Dynamic Accumulation of Sugar and Acid during Stem Development of 624 1.3 0 Brassica juncea. Agronomy, 2022, 12, 3227. Combined Metabolome and Transcriptome Analyses Unveil the Molecular Mechanisms of Fruit Acidity 1.8 Variation in Litchi (Litchi chinensis Sonn.). International Journal of Molecular Sciences, 2023, 24, 1871. Integrating multiomics data accelerates elucidation of plant primary and secondary metabolic 627 1.8 3 pathways. ABIOTECH, 2023, 4, 47-56. Validation of carbon isotopologue distribution measurements by GC-MS and application to 13C-metabolic flux analysis of the tricarboxylic acid cycle in Brassica napus leaves. Frontiers in Plant Science, 0, 13, . Mineral nutrition, yield, and sourceâ€"sink relationships. , 2023, , 131-200. 629 3 Microhabitat-specific diurnal metabolomic responses of the intertidal limpet Cellana toreuma to winter low temperature. IScience, 2023, 26, 106128. Photosynthetic-Product–Dependent Activation of Plasma Membrane H+-ATPase and Nitrate Uptake 631 1.5 8 in<i>Arabidopsis</i>Leaves. Plant and Cell Physiology, 2023, 64, 191-203. Redox stress shortens lifespan through suppression of respiratory complex I in flies with mitonuclear incompatibilities. Experimental Gerontology, 2023, 175, 112158. 1.2 Molecular mechanism of saline-alkali stress tolerance in the green manure crop Sophora 633 2.0 0 alopecuroides. Environmental and Experimental Botany, 2023, 210, 105321. Persistence of algal toxicity induced by polystyrene nanoplastics at environmentally relevant 634 concentrations. Science of the Total Environment, 2023, 876, 162853. Ca2+-dependent oxidation of exogenous NADH and NADPH by the mitochondria of spring wheat and its relation with AOX capacity and ROS content at high temperatures. Journal of Plant Physiology, 2023, 637 0 1.6 283, 153943. PANTOTHENATE KINASE4, LOSS OF GDU2, and TRANSPOSON PROTEIN1 affect the canalization of tomato 2.3 fruit metabolism. Plant Physiology, 0, , . Supplemental light and silicon improved strawberry fruit size and sugars concentration under both 639 1.7 1 full and deficit irrigation. Scientia Horticulturae, 2023, 313, 111912. Molecular mechanisms of toxicity and detoxification in rice (Oryza sativa L.) exposed to polystyrene nanoplastics. Plant Physiology and Biochemistry, 2023, 199, 107605. 640 2.8 Aluminum and Fluoride Stresses Altered Organic Acid and Secondary Metabolism in Tea (Camellia) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 641 1.8 3 Molecular Sciences, 2023, 24, 4640. Generation and Fate of ROS in Mitochondria., 2023, , 93-106. 642 Comparative Primary Metabolite Profiling of Setaria viridis Reveals Potential Markers to Water 643 1.4 0 Limitation. Agriculture (Switzerland), 2023, 13, 660.

CITATION REPORT

644Comparative proteome profiles of Polygonatum cyrtonema Hua rhizomes (Rhizoma Ploygonati) in
response to different levels of cadmium stress. BMC Plant Biology, 2023, 23, .1.62

#	Article	IF	CITATIONS
645	How Central Carbon Metabolites of Mexican Mint (Plectranthus amboinicus) Plants Are Impacted under Different Watering Regimes. Metabolites, 2023, 13, 539.	1.3	0
646	Feature-Based Molecular Networking Facilitates the Comprehensive Identification of Differential Metabolites in Diabetic Cognitive Dysfunction Rats. Metabolites, 2023, 13, 538.	1.3	1
647	Transcriptome analysis reveals the molecular mechanisms of adaptation to high temperatures in Gracilaria bailinae. Frontiers in Plant Science, 0, 14, .	1.7	0
648	Low nitrogen stress-induced transcriptome changes revealed the molecular response and tolerance characteristics in maintaining the C/N balance of sugar beet (Beta vulgaris L.). Frontiers in Plant Science, 0, 14, .	1.7	2
652	Role of low molecular organic acids in regulating physiological and molecular aspects of plants under abiotic stress. , 2023, , 289-315.		0