Nutritive value of pseudocereals and their increasing using redients

Trends in Food Science and Technology 21, 106-113

DOI: 10.1016/j.tifs.2009.10.014

Citation Report

#	Article	IF	CITATIONS
1	Amaranthus hypochondriacus and Amaranthus caudatus germplasm: Characteristics of plants, grain and flours. Food Chemistry, 2010, 123, 1227-1234.	8.2	39
2	Rheological properties of wheat flour substitutes/alternative crops assessed by Mixolab. Procedia Food Science, 2011, 1, 328-334.	0.6	53
3	Determination of Free and Bound Phenolic Compounds in Buckwheat Spaghetti by RP-HPLC-ESI-TOF-MS: Effect of Thermal Processing from Farm to Fork. Journal of Agricultural and Food Chemistry, 2011, 59, 7700-7707.	5.2	72
4	Simultaneous Determination of Phenolic Compounds and Saponins in Quinoa (<i>Chenopodium) Tj ETQq1 1 0.7 lonization–Time-of-Flight Mass Spectrometry Methodology. Journal of Agricultural and Food Chemistry, 2011, 59, 10815-10825.</i>	′84314 rgE 5.2	BT /Overloc <mark>k</mark> 112
5	Influence of breadmaking on antioxidant capacity of gluten free breads based on rice and buckwheat flours. Food Research International, 2011, 44, 2806-2813.	6.2	85
6	Proteomic analysis in allergy and intolerance to wheat products. Expert Review of Proteomics, 2011, 8, 95-115.	3.0	72
7	Quality assessment of gluten-free crackers based on buckwheat flour. LWT - Food Science and Technology, 2011, 44, 694-699.	5. 2	84
8	Impact of sourdough on buckwheat flour, batter and bread: Biochemical, rheological and textural insights. Journal of Cereal Science, 2011, 54, 195-202.	3.7	63
9	Assessment of antioxidant activity and rheological properties of wheat and buckwheat milling fractions. Journal of Cereal Science, 2011, 54, 347-353.	3.7	47
10	Pachyrhizus ahipa (Wedd.) Parodi roots and flour: Biochemical and functional characteristics. Food Chemistry, 2011, 126, 1670-1678.	8.2	22
11	Antioxidant activity of commercial buckwheat flours and their free and bound phenolic compositions. Food Chemistry, 2011, 125, 923-929.	8.2	102
12	In situ production of \hat{I}^3 -aminobutyric acid in breakfast cereals. Food Chemistry, 2011, 129, 395-401.	8.2	40
13	Buckwheat bran (Fagopyrum esculentum) as partial replacement of corn and soybean meal in the laying hen diet. Italian Journal of Animal Science, 2012, 11, e2.	1.9	5
14	Formulating breads for specific dietary requirements. , 2012, , 711-735.		4
15	Non-traditional flours: frontiers between ancestral heritage and innovation. Food and Function, 2012, 3, 606.	4.6	23
16	Bread Supplemented with Amaranth (Amaranthus cruentus): Effect of Phytates on In Vitro Iron Absorption. Plant Foods for Human Nutrition, 2012, 67, 50-56.	3. 2	49
17	Arabinan and arabinan-rich pectic polysaccharides from quinoa (Chenopodium quinoa) seeds: Structure and gastroprotective activity. Food Chemistry, 2012, 130, 937-944.	8.2	62
18	Chia Seed (<i>Salvia hispanica</i>): An Ancient Grain and a New Functional Food. Food Reviews International, 2013, 29, 394-408.	8.4	170

#	Article	IF	CITATIONS
19	Influence of Buckwheat Flour and Carboxymethyl Cellulose on Rheological Behaviour and Baking Performance of Gluten-Free Cookie Dough. Food and Bioprocess Technology, 2013, 6, 1770-1781.	4.7	57
20	In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Food Chemistry, 2013, 136, 758-764.	8.2	174
21	Antioxidant capacity, total phenolics and nutritional content in selected ethiopian staple food ingredients. International Journal of Food Sciences and Nutrition, 2013, 64, 915-920.	2.8	62
22	Spatially resolved distributions of the mineral elements in the grain of tartary buckwheat (Fagopyrum) Tj ETQq1 1	0,784314 6.2	rgBT /Oven
23	Sourdough and Gluten-Free Products. , 2013, , 245-264.		2
24	Fagopyrum esculentum., 2013,, 459-493.		2
25	Iron, zinc and calcium dialyzability from extruded product based on whole grain amaranth (<i>Amaranthus caudatus and Amaranthus cruentus</i>) and amaranth/ <i>Zea mays</i> blends. International Journal of Food Sciences and Nutrition, 2013, 64, 502-507.	2.8	11
26	Nutritional Components of Amaranth Seeds and Vegetables: A Review on Composition, Properties, and Uses. Comprehensive Reviews in Food Science and Food Safety, 2013, 12, 381-412.	11.7	261
27	What can play the role of gluten in gluten free pasta?. Trends in Food Science and Technology, 2013, 31, 63-71.	15.1	190
28	Cooking, textural, sensorial, and antioxidant properties of common and tartary buckwheat noodles. Food Science and Biotechnology, 2013, 22, 153-159.	2.6	36
29	Influence of maize flour particle size on glutenâ€free breadmaking. Journal of the Science of Food and Agriculture, 2013, 93, 924-932.	3.5	78
30	Evaluation of wheat/non-traditional flour composite. Czech Journal of Food Sciences, 2014, 32, 288-295.	1.2	10
31	Cereal-Based Gluten-Free Food: How to Reconcile Nutritional and Technological Properties of Wheat Proteins with Safety for Celiac Disease Patients. Nutrients, 2014, 6, 575-590.	4.1	101
32	Indigenous leafy vegetables (imifino, morogo, muhuro) in South Africa: A rich and unexplored source of nutrients and antioxidants. African Journal of Biotechnology, 2014, 13, 1933-1942.	0.6	24
33	Comparison of different extraction methods to determine free and bound forms of B-group vitamins in quinoa. Analytical and Bioanalytical Chemistry, 2014, 406, 7355-7366.	3.7	10
34	Processing of bottom-fermented gluten-free beer-like beverages based on buckwheat and quinoa malt with chemical and sensory characterization. Journal of the Institute of Brewing, 2014, 120, n/a-n/a.	2.3	27
35	Amaranth Seeds and Products – The Source of Bioactive Compounds. Polish Journal of Food and Nutrition Sciences, 2014, 64, 165-170.	1.7	47
36	Comparison of Aromatic Substances in Buckwheat Vinegar that Adding the Moldy Bran, Drug Koji and A.schutzenbachii during Fermentation. Advanced Materials Research, 2014, 1033-1034, 629-633.	0.3	O

3

#	Article	IF	CITATIONS
37	Cereals for developing gluten-free products and analytical tools for gluten detection. Journal of Cereal Science, 2014, 59, 354-364.	3.7	117
38	Effects of Popping on Nutrient Contents of Amaranth Seed. Plant Foods for Human Nutrition, 2014, 69, 25-29.	3.2	19
	Extrusion improved the antiâ€inflammatory effect of amaranth (<i><scp>A</scp>maranthus) Tj ETQq0 0 0 rgBT /G</i>	Overlock 1	0 Tf 50 672
39	and mouse <scp>RAW</scp> 264.7 macrophages by preventing activation of <scp>NF</scp> â€P <scp>B</scp> signaling. Molecular Nutrition and Food Research, 2014, 58, 1028-1041.	3.3	82
40	Comparing sugar components of cereal and pseudocereal flour by GC–MS analysis. Food Chemistry, 2014, 145, 743-748.	8.2	32
41	Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 587 182
	and trace elements. Food Chemistry, 2014, 148, 420-426.		
42	Increasing the utilisation of sorghum, millets and pseudocereals: Developments in the science of their phenolic phytochemicals, biofortification and protein functionality. Journal of Cereal Science, 2014, 59, 257-275.	3.7	125
43	Effect of Chia (<scp><i>S</i></scp> <i>alvia hispanica</i> â€ <scp><i>L</i></scp>) Addition on the Quality of Glutenâ€Free Bread. Journal of Food Quality, 2014, 37, 309-317.	2.6	54
44	Evaluation of Texture Differences among Varieties of Cooked Quinoa. Journal of Food Science, 2014, 79, S2337-45.	3.1	46
45	Effect of amaranth flour (Amaranthus mantegazzianus) on the technological and sensory quality of bread wheat pasta. Food Science and Technology International, 2014, 20, 127-135.	2.2	27
46	Gluten-Free Products., 2014, , 173-223.		3
47	Novel Approaches in Glutenâ€Free Breadmaking: Interface between Food Science, Nutrition, and Health. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 871-890.	11.7	183
48	Current knowledge on Amaranthus spp.: research avenues for improved nutritional value and yield in leafy amaranths in sub-Saharan Africa. Euphytica, 2014, 197, 303-317.	1.2	115
49	State of the Art in Glutenâ€Free Research. Journal of Food Science, 2014, 79, R1067-76.	3.1	86
50	Alternative Approaches Towards Gluten-Free Dough Development: Recent Trends. Food Engineering Reviews, 2014, 6, 89-104.	5.9	39
51	The influence of serial repitching of Saccharomyces pastorianus on its karyotype and protein profile during the fermentation of gluten-free buckwheat and quinoa wort. International Journal of Food Microbiology, 2014, 185, 93-102.	4.7	8
52	The Impact of Milling and Thermal Processing on Phenolic Compounds in Cereal Grains. Critical Reviews in Food Science and Nutrition, 2014, 54, 837-849.	10.3	110
53	Use of Quinoa Flour in The Production of Gluten-Free Tarhana. Food Science and Technology Research, 2014, 20, 1087-1092.	0.6	29
54	Availability, cost and nutritional composition of gluten-free products. British Food Journal, 2014, 116, 1842-1852.	2.9	43

#	Article	IF	CITATIONS
55	Chocolate Manufacturing., 2015,, 371-400.		0
56	Nutritional and Nutraceutical Features of Regular and Protein Fortifi ed Corn Tortillas. , 2015, , 332-364.		1
58	Part I: the influence of serial repitching of i>Saccharomyces pastorianus in the uptake dynamics of metal ions and fermentable carbohydrates during the fermentation of barley and gluten-free buckwheat and quinoa wort. Journal of the Institute of Brewing, 2015, 121, 356-369.	2.3	3
59	Influence of quinoa roasting on sensory and physicochemical properties of allergenâ€free, glutenâ€free cakes. International Journal of Food Science and Technology, 2015, 50, 1873-1881.	2.7	33
61	Antioxidant Capacity, Mineral Content and Sensory Properties of Gluten-Free Rice and Buckwheat Cookies. Food Technology and Biotechnology, 2015, 53, 38-47.	2.1	39
62	Compounds leached from quinoa seeds inhibit matrix metalloproteinase activity and intracellular reactive oxygenÂspecies. International Journal of Cosmetic Science, 2015, 37, 212-221.	2.6	20
63	Nutritional aspects of glutenâ€free products. Journal of the Science of Food and Agriculture, 2015, 95, 2380-2385.	3.5	164
64	Identification of Bioactive Peptide Sequences from Amaranth (<i>Amaranthus hypochondriacus</i>) Seed Proteins and Their Potential Role in the Prevention of Chronic Diseases. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 139-158.	11.7	76
65	Recent advances in the production of partially substituted wheat and wheatless bread. European Food Research and Technology, 2015, 240, 257-271.	3.3	14
66	Addition of quinoa and amaranth flour in gluten-free breads: Temporal profile and instrumental analysis. LWT - Food Science and Technology, 2015, 62, 1011-1018.	5.2	88
67	Characterization of Peptides Found in Unprocessed and Extruded Amaranth (Amaranthus) Tj ETQq0 0 0 rgBT /Ove	erlock 10 T 4.1	rf 50 347 Td 12
68	Effects of gluten-free breads, with varying functional supplements, on the biochemical parameters and antioxidant status of rat serum. Food Chemistry, 2015, 182, 268-274.	8.2	9
69	Structure and quality of pasta enriched with functional ingredients. RSC Advances, 2015, 5, 30780-30792.	3.6	81
70	Trace element concentrations in commercial gluten-free amaranth bars. Journal of Food Measurement and Characterization, 2015, 9, 426-434.	3.2	7
71	Characterization of Dietary Fiber Polysaccharides from Dehulled Common Buckwheat (<i>Fagopyrum) Tj ETQq0 0</i>	OrgBT/O	vgglock 10 T
72	High pressure processing manipulated buckwheat antioxidant activity, anti-adipogenic properties and starch digestibility. Journal of Cereal Science, 2015, 66, 31-36.	3.7	25
73	Modelling the effects of orange pomace using response surface design for gluten-free bread baking. Food Chemistry, 2015, 166, 223-230.	8.2	71
74	Understanding glutenâ€free dough for reaching breads with physical quality and nutritional balance. Journal of the Science of Food and Agriculture, 2015, 95, 653-661.	3.5	169

#	ARTICLE	IF	CITATIONS
75	Practical method for the confirmation of authentic flours of different types of cereals and pseudocereals. Food Chemistry, 2015, 172, 314-317.	8.2	7
76	Functionality of alternative protein in gluten-free product development. Food Science and Technology International, 2015, 21, 364-379.	2.2	36
77	Bread with whole quinoa flour and bifidobacterial phytases increases dietary mineral intake and bioavailability. LWT - Food Science and Technology, 2015, 60, 71-77.	5.2	85
78	Agronomic and nutritional characteristics of three buckwheat cultivars under organic farming in three environments of the Garfagnana mountain district. Italian Journal of Agronomy, 2016, 11, 188-194.	1.0	6
79	Secondary Metabolism in Amaranthus spp. $\hat{a}\in$ " A Genomic Approach to Understand Its Diversity and Responsiveness to Stress in Marginally Studied Crops with High Agronomic Potential. , 2016, , .		8
80	Calcium in Gluten-Free Life: Health-Related and Nutritional Implications. Foods, 2016, 5, 51.	4.3	15
81	Overview on the General Approaches to Improve Gluten-Free Pasta and Bread. Foods, 2016, 5, 87.	4.3	101
82	Quinoa. , 2016, , 573-579.		4
83	Effect of Pseudocereal-Based Breakfast Meals on the First and Second Meal Glucose Tolerance in Healthy and Diabetic Subjects. Open Access Macedonian Journal of Medical Sciences, 2016, 4, 565-573.	0.2	13
84	Quinoa Beverages: Formulation, Processing and Potential Health Benefits. Romanian Journal of Diabetes Nutrition and Metabolic Diseases, 2016, 23, 215-225.	0.3	14
85	Forage and grain yield of common buckwheat in Mediterranean conditions: response to sowing time and irrigation. Crop and Pasture Science, 2016, 67, 1000.	1.5	8
86	Preparation of protein and mineral rich fraction from grain amaranth and evaluation of its functional characteristics. Journal of Cereal Science, 2016, 69, 358-362.	3.7	10
87	Ancestral Andean grain quinoa as source of lactic acid bacteria capable to degrade phytate and produce B-group vitamins. Food Research International, 2016, 89, 488-494.	6.2	48
88	Assessment of the prebiotic effect of quinoa and amaranth in the human intestinal ecosystem. Food and Function, 2016, 7, 3782-3788.	4.6	41
89	Exploring the acceptability of amaranth-enriched bread to support household food security. British Food Journal, 2016, 118, 2632-2646.	2.9	3
90	Extraction methods of <i>Amaranthus</i> sp. grain oil isolation. Journal of the Science of Food and Agriculture, 2016, 96, 3552-3558.	3.5	29
91	Sensory and textural evaluation of gluten-free biscuits containing buckwheat flour. Cogent Food and Agriculture, $2016, 2, \ldots$	1.4	5
92	Phytoecdysteroids and flavonoid glycosides among Chilean and commercial sources of < > Chenopodium quinoa < i>: variation and correlation to physicoâ€chemical characteristics. Journal of the Science of Food and Agriculture, 2016, 96, 633-643.	3.5	31

#	Article	IF	CITATIONS
93	Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry, 2016, 193, 47-54.	8.2	287
94	Protein content and amino acids profile of pseudocereals. Food Chemistry, 2016, 193, 55-61.	8.2	176
95	Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Amaranth and Quinoa Seeds Grown in Ontario and Their Overall Contribution to Nutritional Quality. Journal of Agricultural and Food Chemistry, 2016, 64, 1103-1110.	5.2	72
96	Inclusion of ancient Latin-American crops in bread formulation improves intestinal iron absorption and modulates inflammatory markers. Food and Function, 2016, 7, 1096-1102.	4.6	16
97	Influence of hydrocolloids on dough handling and technological properties of gluten-free breads. Trends in Food Science and Technology, 2016, 51, 49-57.	15.1	138
98	Physical, textural, and sensory characteristics of wheat and amaranth flour blend cookies. Cogent Food and Agriculture, 2016, 2, .	1.4	61
99	Water deficit stress-induced changes in carbon and nitrogen partitioning in Chenopodium quinoa Willd Planta, 2016, 243, 591-603.	3.2	49
100	The effect of cooking methods on the mineral content of quinoa (Chenopodium quinoa), amaranth (Amaranthus sp.) and buckwheat (Fagopyrum esculentum). Journal of Food Composition and Analysis, 2016, 49, 57-64.	3.9	42
101	Nutritional improvement of corn pasta-like product with broad bean (Vicia faba) and quinoa (Chenopodium quinoa). Food Chemistry, 2016, 199, 150-156.	8.2	54
102	Production of Flours with Reduced Epitope Content Using Milling Technology. Cereal Chemistry, 2016, 93, 352-356.	2.2	4
103	Structural role of fibre addition to increase knowledge of non-gluten bread. Journal of Cereal Science, 2016, 67, 58-67.	3.7	44
104	Gluten-free breadmaking: Improving nutritional and bioactive compounds. Journal of Cereal Science, 2016, 67, 83-91.	3.7	90
105	Starch and starch derivatives in gluten-free systems – A review. Journal of Cereal Science, 2016, 67, 46-57.	3.7	107
106	Quinoa: Nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 2017, 57, 1618-1630.	10.3	251
107	Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Critical Reviews in Food Science and Nutrition, 2017, 57, 3528-3542.	10.3	131
108	Legumes as Functional Ingredients in Gluten-Free Bakery and Pasta Products. Annual Review of Food Science and Technology, 2017, 8, 75-96.	9.9	117
112	<i>In Vitro</i> Starch Digestibility of Commercial Glutenâ€Free Pasta: The Role of Ingredients and Origin. Journal of Food Science, 2017, 82, 1012-1019.	3.1	15
113	Phytochemicals in quinoa and amaranth grains and their antioxidant, antiâ€inflammatory, and potential health beneficial effects: a review. Molecular Nutrition and Food Research, 2017, 61, 1600767.	3.3	199

#	Article	IF	CITATIONS
114	Quality evaluation of gluten free protein rich broken rice pasta. Journal of Food Measurement and Characterization, 2017, 11, 1378-1385.	3.2	9
115	Nutritional and Sensorial Aspects of Gluten-Free Products. SpringerBriefs in Food, Health and Nutrition, 2017, , 59-78.	0.5	4
116	Impact of Processing on the Protein Quality of Pinto Bean (<i>Phaseolus vulgaris</i>) and Buckwheat (<i>Fagopyrum esculentum</i> Moench) Flours and Blends, As Determined by in Vitro and in Vivo Methodologies. Journal of Agricultural and Food Chemistry, 2017, 65, 3919-3925.	5.2	62
117	Influence of different flours and starches on gluten-free bread aroma. Journal of Food Science and Technology, 2017, 54, 1433-1441.	2.8	19
118	Bioaccessibility and bioavailability of phenolic compounds in bread: a review. Food and Function, 2017, 8, 2368-2393.	4.6	108
119	Shelf-life extension of semi-dried buckwheat noodles by the combination of aqueous ozone treatment and modified atmosphere packaging. Food Chemistry, 2017, 237, 553-560.	8.2	54
120	Process standardization for isolation of quinoa starch and its characterization in comparison with other starches. Journal of Food Measurement and Characterization, 2017, 11, 1919-1927.	3.2	27
121	Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents. Food Chemistry, 2017, 233, 1-10.	8.2	115
122	The Effect of Buckwheat Hull Extract on Lipid Oxidation in Frozenâ€Stored Meat Products. Journal of Food Science, 2017, 82, 882-889.	3.1	25
123	Endâ€product quality characteristics and consumer response of chickpea flourâ€based glutenâ€free muffins containing corn starch and egg white. Journal of Texture Studies, 2017, 48, 550-561.	2.5	12
124	Effect of hydrocolloids on microstructure, texture and quality characteristics of gluten-free pasta. Journal of Food Measurement and Characterization, 2017, 11, 1188-1195.	3.2	27
125	Optimization of the malting process for nutritional improvement of finger millet and amaranth flours in the infant weaning food industry. International Journal of Food Sciences and Nutrition, 2017, 68, 429-441.	2.8	21
126	Sensory characterisation of glutenâ€free bread with addition of quinoa, amaranth flour and sweeteners as an alternative for coeliac patients. International Journal of Food Science and Technology, 2017, 52, 872-879.	2.7	32
127	Development of newly enriched bread with quinoa flour and whey. IOP Conference Series: Earth and Environmental Science, 2017, 77, 012018.	0.3	3
128	Genotypic variation in nutritive and bioactive composition of foxtail millet. Cereal Research Communications, 2017, 45, 442-455.	1.6	3
129	Folates in quinoa (Chenopodium quinoa), amaranth (Amaranthus sp.) and buckwheat (Fagopyrum) Tj ETQq1 1 181-187.	0.784314 3.9	rgBT /Over
130	Lactic Acid Bacteria from Andean Grain Amaranth: A Source of Vitamins and Functional Value Enzymes. Journal of Molecular Microbiology and Biotechnology, 2017, 27, 289-298.	1.0	30
131	Comparison of the volatile profiles of the crumb of gluten-free breads by DHE-GC/MS. Journal of Cereal Science, 2017, 76, 280-288.	3.7	13

#	Article	IF	Citations
132	Effect of a new microwave-dried orange fibre ingredient vs. a commercial citrus fibre on texture and sensory properties of gluten-free muffins. Innovative Food Science and Emerging Technologies, 2017, 44, 83-88.	5.6	18
133	Complementing the dietary fiber and antioxidant potential of gluten free bread with guava pulp powder. Journal of Food Measurement and Characterization, 2017, 11, 1959-1968.	3.2	24
134	Steady, dynamic and structural deformation (three interval thixotropy test) characteristics of glutenâ€free Tarhana soup prepared with different concentrations of quinoa flour. Journal of Texture Studies, 2017, 48, 95-102.	2.5	8
135	Optimizing germination conditions to enhance the accumulation of bioactive compounds and the antioxidant activity of kiwicha (Amaranthus caudatus) using response surface methodology. LWT - Food Science and Technology, 2017, 76, 245-252.	5.2	25
136	Myo-inositol phosphates profile of buckwheat and quinoa seeds: Effects of hydrothermal processing and solid-state fermentation with Rhizopus oligosporus. International Journal of Food Properties, 2017, 20, 2088-2095.	3.0	10
137	Amaranth: Its Unique Nutritional and Health-Promoting Attributes. , 2017, , 131-159.		19
138	Use of Sourdough Fermentation and Nonwheat Flours for Enhancing Nutritional and Healthy Properties of Wheat-Based Foods., 2017,, 433-452.		2
139	Ancient Wheats and Pseudocereals for Possible use in Cereal-Grain Dietary Intolerances. , 2017, , 353-389.		13
140	Amaranth Part 1â€"Sustainable Crop for the 21st Century. , 2017, , 239-256.		16
141	Buckwheat: Its Unique Nutritional and Health-Promoting Attributes. , 2017, , 161-177.		6
142	Microbial Ecology and Process Technology of Sourdough Fermentation. Advances in Applied Microbiology, 2017, 100, 49-160.	2.4	116
143	Lactic Acid Bacteria and Fermentation of Cereals and Pseudocereals. , 0, , .		13
144	Nonwheat Cereal-Fermented-Derived Products. , 2017, , 417-432.		4
145	Essential micronutrient and toxic trace element concentrations in gluten containing and gluten-free foods. Food Chemistry, 2018, 252, 258-264.	8.2	27
146	Increasing the folate content of tuber based foods using potentially probiotic lactic acid bacteria. Food Research International, 2018, 109, 168-174.	6.2	26
147	Application of <i>Lactobacillus plantarum</i> in Functional Products Based on Fermented Buckwheat. Journal of Food Science, 2018, 83, 1053-1062.	3.1	4
148	Effect of added enzymes and quinoa flour on dough characteristics and sensory quality of a gluten-free bakery product. European Food Research and Technology, 2018, 244, 1595-1604.	3.3	23
149	A conjoint analysis to consumer choice in Brazil: Defining device attributes for recognizing customized foods characteristics. Food Research International, 2018, 109, 1-13.	6.2	18

#	ARTICLE	IF	CITATIONS
150	Evaluation of wheat flour substitution with amaranth flour on chicken nugget properties. LWT - Food Science and Technology, 2018, 91, 580-587.	5.2	39
151	Current Trends in Ancient Grainsâ€Based Foodstuffs: Insights into Nutritional Aspects and Technological Applications. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 123-136.	11.7	101
152	Amaranth, quinoa and chia protein isolates: Physicochemical and structural properties. International Journal of Biological Macromolecules, 2018, 109, 152-159.	7.5	113
153	The Functionality of Pseudocereal Starches. , 2018, , 509-542.		13
154	Designing a Score-Based Method for the Evaluation of the Nutritional Quality of the Gluten-Free Bakery Products and their Gluten-Containing Counterparts. Plant Foods for Human Nutrition, 2018, 73, 154-159.	3.2	22
155	Nutritional constituents of pseudo cereals and their potential use in food systems: A review. Trends in Food Science and Technology, 2018, 75, 170-180.	15.1	106
156	Untapped amaranth (Amaranthus spp.) genetic diversity with potential for nutritional enhancement. Genetic Resources and Crop Evolution, 2018, 65, 243-253.	1.6	16
157	Nutritional and sensory challenges of gluten-free bakery products: a review. International Journal of Food Sciences and Nutrition, 2018, 69, 427-436.	2.8	37
158	Quinoa starch: Structure, properties, and applications. Carbohydrate Polymers, 2018, 181, 851-861.	10.2	112
159	Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes. Plant Physiology and Biochemistry, 2018, 123, 192-203.	5.8	74
160	Tartary buckwheat malt as ingredient of gluten-free cookies. Journal of Cereal Science, 2018, 80, 37-43.	3.7	59
161	Smallholders' Preferences for Improved Quinoa Varieties in the Peruvian Andes. Sustainability, 2018, 10, 3735.	3.2	14
162	Trends in the Use of Plant Non-Starch Polysaccharides within Food, Dietary Supplements, and Pharmaceuticals: Beneficial Effects on Regulation and Wellbeing of the Intestinal Tract. Scientia Pharmaceutica, 2018, 86, 49.	2.0	11
163	Quality Evaluation of Gluten-free Danish Bread Employing Different Flours and Starches. Food Science and Technology Research, 2018, 24, 785-794.	0.6	2
164	Optimization of physicochemical and functional properties of corn-based snacks containing date kernel flour. Journal of Food Processing and Preservation, 2018, 42, e13821.	2.0	5
165	Review on structural, nutritional and anti-nutritional composition of Teff (<i>Eragrostis tef)</i> in comparison with Quinoa (<i>Chenopodium quinoa</i> Willd.). Cogent Food and Agriculture, 2018, 4, 1546942.	1.4	34
166	Alternative Proteins and Pseudocereals in the Development of Gluten-Free Pasta., 2018,, 433-458.		15
167	Use of Selected Lactic Acid Bacteria and Quinoa Flour for Manufacturing Novel Yogurt-Like Beverages. Foods, 2018, 7, 51.	4.3	86

#	ARTICLE	IF	CITATIONS
168	Composition, Protein Profile and Rheological Properties of Pseudocereal-Based Protein-Rich Ingredients. Foods, 2018, 7, 73.	4.3	60
169	Analysis of volatile organic compounds in crumb and crust of different baked and toasted glutenâ€free breads by direct PTRâ€ToFâ€MS and fastâ€GCâ€PTRâ€ToFâ€MS. Journal of Mass Spectrometry, 2018, 53, 893-90	2 ^{1.6}	16
170	Tailoring rice flour structure by rubbery milling for improved gluten-free baked goods. Food and Function, 2018, 9, 2951-2961.	4.6	7
171	Role of Different Polymers on the Development of Gluten-Free Baked Goods., 2018,, 693-724.		3
172	Release of multifunctional peptides from kiwicha (<i>Amaranthus caudatus</i>) protein under <i>in vitro</i> gastrointestinal digestion. Journal of the Science of Food and Agriculture, 2019, 99, 1225-1232.	3.5	41
173	Sustainable Crops for Food Security: Quinoa (Chenopodium quinoa Willd.)., 2019,, 399-402.		1
174	Functional properties of amaranth, quinoa and chia proteins and the biological activities of their hydrolyzates. Food Research International, 2019, 116, 419-429.	6.2	45
175	Effect of amaranth and quinoa seed flour on rheological and physicochemical properties of goat meat nuggets. Journal of Food Science and Technology, 2019, 56, 5027-5035.	2.8	26
176	Optimization of gluten free biscuit from foxtail, copra meal and amaranth. Food Science and Technology, 2019, 39, 43-49.	1.7	10
177	Comparative Examination of Antioxidant Capacity and Fingerprinting of Unfractionated Extracts from Different Plant Parts of Quinoa (Chenopodium quinoa) Grown under Greenhouse Conditions. Antioxidants, 2019, 8, 238.	5.1	19
178	Plant-Based Proteins., 2019,, 97-130.		16
179	The potential use of modified quinoa protein isolates in cupcakes: physicochemical properties, structure and stability of cupcakes. Food and Function, 2019, 10, 4432-4439.	4.6	11
180	Gluten-Free Cereals and Pseudocereals: Nutrition and Health. Reference Series in Phytochemistry, 2019, , 847-864.	0.4	1
181	Lactic Fermentation as a Strategy to Improve the Nutritional and Functional Values of Pseudocereals. Frontiers in Nutrition, 2019, 6, 98.	3.7	87
182	Gluten-Free Alternative Grains: Nutritional Evaluation and Bioactive Compounds. Foods, 2019, 8, 208.	4.3	37
183	Antioxidant Activity and Phenolic Composition of Amaranth (Amaranthus caudatus) during Plant Growth. Antioxidants, 2019, 8, 173.	5.1	79
184	The impact of alkaline conditions on storage proteins of cereals and pseudo-cereals. Current Opinion in Food Science, 2019, 25, 98-103.	8.0	50
185	<i>Amaranthus Cruentus</i> Taxonomy, Botanical Description, and Review of its Seed Chemical Composition. Natural Product Communications, 2019, 14, 1934578X1984414.	0.5	15

#	Article	IF	CITATIONS
186	Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. Journal of the Science of Food and Agriculture, 2019, 99, 5239-5248.	3.5	68
187	Selection of the most suitable mixture of flours and starches for the improvement of gluten-free breads through their volatile profiles. European Food Research and Technology, 2019, 245, 1755-1766.	3.3	9
188	Advances in Pseudocereals: Crop Cultivation, Food Application, and Consumer Perception. Reference Series in Phytochemistry, 2019, , 1695-1713.	0.4	10
189	Minor and Ancient Cereals: Exploitation of the Nutritional Potential Through the Use of Selected Starters and Sourdough Fermentation. , 2019, , 443-452.		2
191	Dietary fiber sources and human benefits: The case study of cereal and pseudocereals. Advances in Food and Nutrition Research, 2019, 90, 83-134.	3.0	79
192	The Gluten-Free Diet and Glycaemic Index in the Management of Coeliac Disease Associated with Type 1 Diabetes. Food Reviews International, 2019, 35, 587-608.	8.4	13
193	Investigation of the effect of pentosan addition and enzyme treatment on the rheological properties of millet flour based model dough systems. Food Hydrocolloids, 2019, 94, 381-390.	10.7	12
194	Quinoa intake reduces plasma and liver cholesterol, lessens obesity-associated inflammation, and helps to prevent hepatic steatosis in obese db/db mouse. Food Chemistry, 2019, 287, 107-114.	8.2	68
195	Consumers' attitudes towards alternative grains: a conjoint analysis study. International Journal of Food Science and Technology, 2019, 54, 1588-1596.	2.7	25
196	Nutritional quality, cost and availability of gluten-free food in England. British Food Journal, 2019, 121, 2867-2882.	2.9	18
197	Gluten-free products., 2019,, 213-237.		3
198	Structural prope rties, functional evaluation, and <i>in vitro</i> protein digestibility of black and yellow quinoa (<i>Chenopodium petiolare</i>) protein isolates. CYTA - Journal of Food, 2019, 17, 864-872.	1.9	7
199	The Nutritional Value of Non-Traditional Gluten-Free Flakes and Their Antioxidant Activity. Antioxidants, 2019, 8, 565.	5.1	4
200	Vezane fenolne spojine polnozrnatih žitnih pripravkov kot sestavina funkcionalnih živil: prvi del. Acta Agriculturae Slovenica, 2019, 114, 269.	0.3	1
201	Amaranth functional cookies exert potential antithrombotic and antihypertensive activities. International Journal of Food Science and Technology, 2019, 54, 1506-1513.	2.7	20
202	Effects of quinoa and amaranth on zinc, magnesium and calcium content in beer wort. International Journal of Food Science and Technology, 2019, 54, 1706-1712.	2.7	9
203	Complimenting gluten free bakery products with dietary fiber: Opportunities and constraints. Trends in Food Science and Technology, 2019, 83, 194-202.	15.1	60
204	Protein Derivatives From Commercial Grains and Their Antiinflammatory Activity., 2019, , 71-81.		О

#	Article	IF	CITATIONS
205	Differences in the macronutrient and dietary fibre profile of gluten-free products as compared to their gluten-containing counterparts. European Journal of Clinical Nutrition, 2019, 73, 930-936.	2.9	49
206	Effects of different souring methods on the protein quality and iron and zinc bioaccessibilities of nonâ€alcoholic beverages from sorghum and amaranth. International Journal of Food Science and Technology, 2019, 54, 798-809.	2.7	13
207	Fiber concentrates from raspberry and blueberry pomace in glutenâ€free cookie formulation: Effect on dough rheology and cookie baking properties. Journal of Texture Studies, 2019, 50, 124-130.	2.5	38
208	Technological and Nutritional Applications of Starches in Gluten-Free Products. , 2019, , 333-358.		2
209	Impact of cooking and fermentation by lactic acid bacteria on phenolic profile of quinoa and buckwheat seeds. Food Research International, 2019, 119, 886-894.	6.2	49
210	Investigation of the effects of using quinoa flour on gluten-free cake batters and cake properties. Journal of Food Science and Technology, 2019, 56, 683-694.	2.8	21
211	Influence of quinoa and zein content on the structural, rheological, and textural properties of gluten-free pasta. European Food Research and Technology, 2019, 245, 343-353.	3.3	18
212	Bioactive peptides from selected latin american food crops – A nutraceutical and molecular approach. Critical Reviews in Food Science and Nutrition, 2019, 59, 1949-1975.	10.3	50
213	Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: a review. Critical Reviews in Food Science and Nutrition, 2020, 60, 322-340.	10.3	93
214	Evaluation of the behaviour of unripe banana flour with non-conventional flours in the production of gluten-free bread. Food Science and Technology International, 2020, 26, 160-172.	2.2	11
215	Fibres of milling and fruit processing by-products in gluten-free bread making: A review of hydration properties, dough formation and quality-improving strategies. Food Chemistry, 2020, 306, 125451.	8.2	47
216	Development of gluten free breads from Colocasia esculenta flour blended with hydrocolloids and enzymes. Food Hydrocolloids, 2020, 98, 105243.	10.7	30
217	Influence of chia seeds (Salvia hispanica L.) and extra virgin olive oil addition on nutritional properties of salty crackers. Journal of Food Measurement and Characterization, 2020, 14, 378-387.	3.2	4
218	Yellowâ€coated quinoa (<scp><i>Chenopodium quinoa</i></scp> Willd) – physicochemical, nutritional, and antioxidant properties. Journal of the Science of Food and Agriculture, 2020, 100, 2035-2042.	3.5	34
219	Physicochemical and functional properties of isolated starch and their correlation with flour from the Andean Peruvian quinoa varieties. International Journal of Biological Macromolecules, 2020, 147, 997-1007.	7. 5	27
220	Effects of separation and purification on structural characteristics of polysaccharide from quinoa (Chenopodium quinoa willd). Biochemical and Biophysical Research Communications, 2020, 522, 286-291.	2.1	38
221	Amaranth as a Source of Antihypertensive Peptides. Frontiers in Plant Science, 2020, 11, 578631.	3.6	20
222	Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3825-3885.	11.7	112

#	Article	IF	CITATIONS
223	Dietary Fibre from Whole Grains and Their Benefits on Metabolic Health. Nutrients, 2020, 12, 3045.	4.1	154
224	An Ecological and Economical Assessment of Integrated Amaranth (Amaranthus hybridus) and Nile Tilapia (Oreochromis niloticus) Farming in Dar es Salaam, Tanzania. Fishes, 2020, 5, 30.	1.7	3
225	Can pseudocereals modulate microbiota by functioning as probiotics or prebiotics?. Critical Reviews in Food Science and Nutrition, 2022, 62, 1725-1739.	10.3	27
226	The Profiles of Low Molecular Nitrogen Compounds and Fatty Acids in Wort and Beer Obtained with the Addition of Quinoa (Chenopodium quinoa Willd.), Amaranth (Amaranthus cruentus L.) or Maltose Syrup. Foods, 2020, 9, 1626.	4.3	4
227	Nutritional Composition of Gluten-Free Labelled Foods in the Slovenian Food Supply. International Journal of Environmental Research and Public Health, 2020, 17, 8239.	2.6	8
228	Gluten hypersensitivities and their impact on the production of gluten-free beer. European Food Research and Technology, 2020, 246, 2147-2160.	3.3	11
229	Nutrients and antinutrient constituents of Amaranthus caudatus L. Cultivated on different soils. Saudi Journal of Biological Sciences, 2020, 27, 3570-3580.	3.8	25
230	Advanced properties of gluten-free cookies, cakes, and crackers: A review. Trends in Food Science and Technology, 2020, 103, 200-213.	15.1	118
231	Real-Time Monitoring of Volatile Compounds Losses in the Oven during Baking and Toasting of Gluten-Free Bread Doughs: A PTR-MS Evidence. Foods, 2020, 9, 1498.	4.3	13
232	Cereal-Based Nonalcoholic Beverages. , 2020, , 63-99.		10
233	The Probable Use of Genus amaranthus as Feed Material for Monogastric Animals. Animals, 2020, 10, 1504.	2.3	22
234	Characterization of the Phenolic Compounds in Different Plant Parts of Amaranthus cruentus Grown under Cultivated Conditions. Molecules, 2020, 25, 4273.	3.8	11
235	Pulp obtained after isolation of starch from red and purple potatoes (Solanum tuberosum L.) Âas an innovative ingredient in the production of gluten-free bread. PLoS ONE, 2020, 15, e0229841.	2.5	6
236	Proteomics reveals that quinoa bioester promotes replenishing effects in epidermal tissue. Scientific Reports, 2020, 10, 19392.	3.3	4
237	Physical, Textural, Rheological, and Sensory Characteristics of Amaranth-Based Wheat Flour Bread. International Journal of Food Science, 2020, 2020, 1-9.	2.0	31
238	A Review of Recent Studies on the Antioxidant Activities of a Third-Millennium Food: Amaranthus spp Antioxidants, 2020, 9, 1236.	5.1	22
239	Differences in Seed Weight, Amino Acid, Fatty Acid, Oil, and Squalene Content in \hat{I}^3 -Irradiation-Developed and Commercial Amaranth Varieties (Amaranthus spp.). Plants, 2020, 9, 1412.	3 . 5	11
240	Effect of gamma-irradiation on the thermal, rheological and antioxidant properties of three wheat cultivars grown in temperate Indian climate. Radiation Physics and Chemistry, 2020, 176, 108953.	2.8	11

#	Article	IF	Citations
241	Cereal grains and other ingredients. , 2020, , 73-96.		4
242	Osborne extractability and chromatographic separation of protein from quinoa (Chenopodium) Tj ETQq1 1 0.78	4314 rgBT 5.2	/Overlock 10
243	Health and nutritional aspect of underutilized high-value food grain of high hills and mountains of Nepal., 2020,, 195-209.		1
244	Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food and Chemical Toxicology, 2020, 137, 111178.	3.6	161
245	Trends in research on durum wheat and pasta, a bibliometric mapping approach. Cereal Chemistry, 2020, 97, 581-588.	2.2	10
246	Plant proteins as high-quality nutritional source for human diet. Trends in Food Science and Technology, 2020, 97, 170-184.	15.1	261
247	Yogurt as an Alternative Ingredient to Improve the Functional and Nutritional Properties of Gluten-Free Breads. Foods, 2020, 9, 111.	4.3	17
248	Comparison between ultraâ€homogenisation and ultrasound for extraction of phenolic compounds from teff (<i>Eragrostis tef</i> (Zucc <i>.</i>)). International Journal of Food Science and Technology, 2020, 55, 2700-2709.	2.7	11
249	A Review of Indigenous Food Crops in Africa and the Implications for more Sustainable and Healthy Food Systems. Sustainability, 2020, 12, 3493.	3.2	99
250	Bioactive peptides from amaranth seed protein hydrolysates induced apoptosis and antimigratory effects in breast cancer cells. Food Bioscience, 2020, 35, 100588.	4.4	39
251	Lactic Acid Fermentation of Cereals and Pseudocereals: Ancient Nutritional Biotechnologies with Modern Applications. Nutrients, 2020, 12, 1118.	4.1	85
252	Pseudocereals: a novel source of biologically active peptides. Critical Reviews in Food Science and Nutrition, 2021, 61, 1537-1544.	10.3	39
253	Processing, value addition and health benefits. , 2021, , 169-184.		2
254	Different drought resistance mechanisms between two buckwheat species <scp><i>Fagopyrum esculentum</i></scp> and <scp><i>Fagopyrum tataricum</i></scp> . Physiologia Plantarum, 2021, 172, 577-586.	5.2	23
255	Comparison of Plant Morphology, Yield and Nutritional Quality of Fagopyrum esculentum and Fagopyrum tataricum Grown under Field Conditions in Belgium. Plants, 2021, 10, 258.	3.5	17
256	Toward an innovative gluten-free diet. , 2021, , 131-153.		2
257	Amaranthus caudatus L. as a Potential Bioresource for Nutrition and Health., 2021,, 241-256.		0
258	Evaluation of amaranth flour processing for noodle making. Journal of Food Processing and Preservation, 2021, 45, e15270.	2.0	8

#	Article	IF	CITATIONS
259	Glycemic Index of Gluten-Free Bread and Their Main Ingredients: A Systematic Review and Meta-Analysis. Foods, 2021, 10, 506.	4.3	31
260	Comparison of the Chemical and Technological Characteristics of Wholemeal Flours Obtained from Amaranth (Amaranthus sp.), Quinoa (Chenopodium quinoa) and Buckwheat (Fagopyrum sp.) Seeds. Foods, 2021, 10, 651.	4.3	35
261	High-Resolution Transcriptome Atlas and Improved Genome Assembly of Common Buckwheat, Fagopyrum esculentum. Frontiers in Plant Science, 2021, 12, 612382.	3.6	17
262	Insights into the nutritional value and bioactive properties of quinoa (<i>Chenopodium quinoa</i>); past, present and future prospective. International Journal of Food Science and Technology, 2021, 56, 3726-3741.	2.7	17
263	Public awareness, knowledge and sensitivity towards celiac disease and gluten-free diet is insufficient: a survey from Turkey. Food Science and Technology, 2021, 41, 218-224.	1.7	5
264	A Systematic Review on Gluten-Free Bread Formulations Using Specific Volume as a Quality Indicator. Foods, 2021, 10, 614.	4.3	25
265	Perspective: A Legal and Nutritional Perspective on the Introduction of Quinoa-Based Infant and Follow-on Formula in the EU. Advances in Nutrition, 2021, 12, 1100-1107.	6.4	11
266	Bioactive and nutritional characterization of modeled and optimized consumer-ready flakes from pseudocereal (Amaranthus viridis), high-protein soymeal and modified corn starch. Food Production Processing and Nutrition, 2021, 3, .	3.5	3
267	FORMULATION OF GLUTEN-FREE BREAD WITH DIFFERENT LEVELS OF HYDROXYPROPYL METHYLCELLULOSE, RAW BANANA FLOUR AND PROOF TIME: MODELLING, PROXIMATE AND SENSORY ANALYSES. Plant Archives, 2021, 21, .	0.2	0
268	Impact of tempering process on yield and composition of quinoa flour. LWT - Food Science and Technology, 2021, 140, 110808.	5.2	5
269	The effect of variety and sowing date on the growth, development, yield and quality of common buckwheat (Fagopyrum esculentum Moench). European Journal of Agronomy, 2021, 126, 126264.	4.1	14
270	Amaranth Supplementation Improves Hepatic Lipid Dysmetabolism and Modulates Gut Microbiota in Mice Fed a High-Fat Diet. Foods, 2021, 10, 1259.	4.3	7
271	Impact of hydrothermal treatment on denaturation and aggregation of water-extractable quinoa (Chenopodium quinoa Willd.) protein. Food Hydrocolloids, 2021, 115, 106611.	10.7	15
272	Breeding Buckwheat for Nutritional Quality in the Czech Republic. Plants, 2021, 10, 1262.	3.5	11
273	Recovery of palm phytonutrients as a potential market for the by-products generated by palm oil mills and refineriesâ€'A review. Food Bioscience, 2021, 41, 100916.	4.4	17
274	Nutritional and Functional Properties of Gluten-Free Flours. Applied Sciences (Switzerland), 2021, 11, 6283.	2.5	44
275	In vitro study of the effect of quinoa and quinoa polysaccharides on human gut microbiota. Food Science and Nutrition, 2021, 9, 5735-5745.	3.4	24
276	Effect of cashew nut protein concentrate substitution on the physicochemical properties, antioxidant activity and consumer acceptability of wheat bread. Journal of Food Science and Technology, 2022, 59, 2200-2208.	2.8	1

#	Article	IF	CITATIONS
277	Nutritional facts, bio-active components and processing aspects of pseudocereals: A comprehensive review. Food Bioscience, 2021, 42, 101170.	4.4	38
278	The functional ingredients of quinoa (<i>Chenopodium quinoa</i>) and physiological effects of consuming quinoa: A review. Food Frontiers, 2021, 2, 329-356.	7.4	28
279	The effects of extruded endogenous starch on the processing properties of gluten-free Tartary buckwheat noodles. Carbohydrate Polymers, 2021, 267, 118170.	10.2	23
280	Improvement of functional couscous formulation using ancient wheat and pseudocereals. International Journal of Gastronomy and Food Science, 2021, 25, 100400.	3.0	10
281	Preparation and characterization of quinoa starch nanoparticles as quercetin carriers. Food Chemistry, 2022, 369, 130895.	8.2	35
282	Phytochemical, cytotoxic, and genotoxic evaluation of protein extract of <i>Amaranthus hypochondriacus</i> seeds. CYTA - Journal of Food, 2021, 19, 701-709.	1.9	5
283	Novel Fortification Strategies for Staple Gluten-Free Products. , 2013, , 307-320.		1
284	Amaranth: An Andean Crop with History, Its Feeding Reassessment in America. , 2016, , 217-232.		3
285	Quinoa., 2019,, 207-216.		4
286	Amaranth. , 2019, , 217-232.		7
288	POTENTIAL USE OF SOME PSEUDOCEREALS IN THE FOOD INDUSTRY. Applied Researches in Technics, Technologies and Education, 2018, 6, 54-61.	0.0	2
289	Propiedades de pasta y texturales de las mezclas de harinas de quinua (Chenopodium quinoa), kiwicha (Amaranthus caudatus) y tarwi (Lupinus mutabilis) en un sistema acuoso. Journal of High Andean Research, 2019, 21, 5-14.	0.3	3
290	FUNCTIONAL BEVERAGES ELABORATED FROM AMARANTH AND CHIA FLOURS PROCESSED BY GERMINATION AND EXTRUSION. Biotecnia, 2018, 20, 135-145.	0.3	15
291	Potential of using amaranthus leaves to fortify instant noodles in the South African context: A review. African Journal of Food, Agriculture, Nutrition and Development, 2020, 20, 16099-16111.	0.2	6
292	Buckwheat Journey to Functional Food Sector. Current Nutrition and Food Science, 2020, 16, 134-141.	0.6	21
293	Geleneksel tarhana üretiminde kinoa ununun kullanımı. Harran Tarım Ve Gıda Bilimleri Dergisi, 2019, 23 22-30.	³ ,0.5	6
294	Pseudocereals: Composition, effect on nutrition-health and usage in cereal products. Food and Health, 0, , 41-56.	0.4	7
295	Quinoa: Nutritional and Anti-Nutritional Characteristics. Journal of Food and Health Science, 0, , 104-111.	0.0	10

#	Article	IF	CITATIONS
296	Technological and Nutritional Challenges, and Novelty in Gluten-Free Breadmaking: a Review. Polish Journal of Food and Nutrition Sciences, 2019, 69, 5-21.	1.7	46
297	Characteristics of Cadmium and Lead Accumulation and Transfer by Chenopodium Quinoa Will. Sustainability, 2020, 12, 3789.	3.2	8
298	Utilisation of buckwheat flour in leavened and unleavened Turkish flat breads. Quality Assurance and Safety of Crops and Foods, 2015, 7, 207-215.	3.4	8
299	Chemical, physicochemical, pasting and microstructural properties of amaranth (<i>Amaranthus) Tj ETQq1 1 0.78 Safety of Crops and Foods, 2019, 11, 3-13.</i>	34314 rgB7 3.4	T /Overloc <mark>k 1</mark> 14
300	Nutritional Composition and Health Benefits of Golden Grain of 21st Century, Quinoa (Chenopodium) Tj ETQq0 C) 0 rgBT /O	verlock 10 T
301	Gluten-Free Bakery Products and Pasta. , 2015, , 565-604.		15
302	Market and Nutrition Issues of Gluten-Free Foodstuff., 2015,, 675-713.		9
303	Utilization of Amaranth Flour in Preparation of High Nutritional Value Bakery Products. Food and Nutrition Sciences (Print), 2020, 11 , 336-354.	0.4	4
304	POTENTIAL OF CEREALS AND PSEUDOCEREALS FOR LACTIC ACID FERMENTATIONS. Potravinarstvo, 2011, 5, .	0.6	7
305	Vegetable milks and their fermented derivative products. International Journal of Food Studies, 2014, 3, .	0.8	55
306	The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ, 2018, 6, e4442.	2.0	67
307	Understanding the Role of Additives in Gluten-Free Breads. , 2021, , 121-154.		0
308	Nutritional Quality of Gluten-Free Breads. , 2021, , 89-99.		0
309	Application of protein-polysaccharide Maillard conjugates as emulsifiers: Source, preparation and functional properties. Food Research International, 2021, 150, 110740.	6.2	74
311	Formulating breads for specific dietary requirements. , 2012, , 691-719.		0
312	Bread and Other Baked Goods. , 2012, , 67-74.		O
313	Effect of Nigella sativa Meal Protein Isolates Supplementation on the Physical and Sensory Characteristics of Cookies During Storage. Pakistan Journal of Nutrition, 2013, 12, 521-528.	0.2	0
314	New Trends in Cereal-Based Products. Contemporary Food Engineering, 2013, , .	0.2	1

#	Article	IF	CITA	ATIONS
315	WpÅ,yw warunków sÅ,odowania ziarna gryki na zawartoÅ>ć ekstraktu, barwÄ™ oraz lepkoÅ>ć brzeczek laboratoryjnych (kongresowych). Prace Naukowe Uniwersytetu Ekonomicznego We WrocÅ,awiu, 2015, ,	0.1	0	
316	ANTIOXIDANT PROPERTIES OF BUCKWHEAT GRAIN EXTRACTS AND OF PRODUCTS PRODUCED DURING THEIR PROCESSING. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2015, , .	0.1	0	
317	Buckwheat-enriched wheat bread: National market placement possibilities. Food and Feed Research, 2015, 42, 119-127.	0.5	0	
318	Gluten-Free Autochthonous Foodstuff (South America and Other Countries)., 2015,, 605-644.		O	
319	El DiseÃ \pm o Simplex-Centroide y la FunciÃ 3 n de Deseabilidad en la optimizaciÃ 3 n de la aceptabilidad sensorial de pan dulce enriquecido con Chenopodium quinoa. Enfoqute, 2016, 7, 70-81.	0.4	2	
320	A SHORT REVIEW GLUTEN FREE FOODS. International Journal of Research -GRANTHAALAYAH, 2017, 5, 1-6.	0.1	O	
321	Sensory evaluation of gluten-free chicken pasty made with cassava (Manihot esculenta Crantz). International Journal for Innovation Education and Research, 2017, 5, 54-60.	0.1	0	
322	Gluten-Free Cereals and Pseudocereals: Nutrition and Health. Reference Series in Phytochemistry, 2018, , 1-18.	0.4	1	
323	Advances in Pseudocereals: Crop Cultivation, Food Application, and Consumer Perception. Reference Series in Phytochemistry, 2018, , 1-19.	0.4	0	
325	Farklı Azot ve Fosfor Seviyelerinin Horozibiği (Amarantus mantegazzianus)'nde Tane Verimi ve Bazı Ve Özelliklerine Etkisi Üzerine Bir Ön AraÅŸtırma. Ege Üniversitesi Ziraat FakÃ⅓ltesi Dergisi, 2018, 55, 101	rim -111: ⁴	3	
326	Different formulations in gluten-free bread production: A review. International Journal of Agriculture Environment and Food Sciences, 0 , $114-118$.	0.6	1	
327	The chemistry behind amaranth grains. Journal of Nutritional Health & Food Engineering, 2018, 8, .	0.5	4	
328	التÙ,يي٠الکيÙيائي Ù^اÙ"ØØ³ÙŠ Ù"Ù"سابÙ"يه Ù^بلØ-الØ′اÙ	اÙ ე.Ìd	Ø⁻ع�Ì	ø"ø⁻ù
329	Risk/Benefits Evaluation of Acrylamide Mitigation Initiatives in Cereal Products. Food Chemistry, Function and Analysis, 2019, , 45-74.	0.2	2	
330	Nutritional Evaluation of Brioche Bread Made from Egyptian Wheat and Enriched with Garden Cress Seeds (GCS) Powder as a Functional Food. Suez Canal University Journal of Food Sciences, 2019, 6, 27-41.	0.2	2	
331	Effect of freeze-thaw on the texture of gluten-free pie crust dough. Review on Agriculture and Rural Development, 2020, 7, 98-102.	0.0	O	
332	Nutritional value of germinated quinoa seeds and their protective effects on rats' health injected by nicotine. Egyptian Journal of Food Science, 2019, .	0.1	4	
333	Vezane fenolne spojine polnozrnatih žitnih pripravkov kot sestavina funkcionalnih živil: drugi del. Acta Agriculturae Slovenica, 2019, 114, 279.	0.3	0	

#	Article	IF	Citations
334	Maş Fasulyesi (Vigna radiata L.) ve Glutensiz Gıdalarda Kullanım Potansiyeli. Akademik Gıda, 0, , 546-552.	0.8	1
335	Dietary Fiber in Cereals, Legumes, Pseudocereals and Other Seeds. Food Engineering Series, 2020, , 87-122.	0.7	5
336	Utilization of Amaranth Flour in Preparation of High Nutritional Value Bakery Products. Food and Nutrition Sciences (Print), 2020, 10, 336-354.	0.4	4
337	Investigation of Some Quinoa (Chenopodium Quinoa) Genotypes in Terms of Quality Criteria. Journal of the Institute of Science and Technology, 2020, 10, 1396-1409.	0.9	3
338	Tartary Buckwheat: A New Plant-Based Ingredient to Enrich Corn-Based Gluten-Free Formulations. Foods, 2021, 10, 2613.	4.3	10
339	Factors affecting digestibility of starches and their implications on adult dog health. Animal Feed Science and Technology, 2021, 282, 115134.	2.2	6
340	Quality of gluten-free cookies made with rice flour of different levels of amylose and cowpea beans. British Food Journal, 2021, 123, 1810-1820.	2.9	3
341	Gluten proteins: Enzymatic modification, functional and therapeutic properties. Journal of Proteomics, 2022, 251, 104395.	2.4	7
342	Deciphering the in vitro antioxidant potential and mineral analysis of Fagopyrum species from Kashmir and Ladakh regions. Journal of Reports in Pharmaceutical Sciences, 2020, 9, 235.	0.8	4
343	Rutin content in the forage and grain of common buckwheat (Fagopyrum esculentum) as affected by sowing time and irrigation in a Mediterranean environment. Crop and Pasture Science, 2020, 71, 171.	1.5	1
345	Healthy values and <i>de novo</i> domestication of sand rice (<i>Agriophyllum squarrosum</i>), a comparative view against <i>Chenopodium quinoa</i> . Critical Reviews in Food Science and Nutrition, 2023, 63, 4188-4209.	10.3	7
346	Pseudocereals proteins- A comprehensive review on its isolation, composition and quality evaluation techniques., 2022, 1, 100001.		11
347	Structural Elucidation and Immunostimulatory Activities of Quinoa Non-starch Polysaccharide Before and After Deproteinization. Journal of Polymers and the Environment, 2022, 30, 2291-2303.	5.0	7
348	Nutritional Aspects and Health Implications of Gluten-Free Products. Food Engineering Series, 2022, , 17-34.	0.7	2
350	Bioactive Compounds in Quinoa (Chenopodium quinoa) and Ka $\tilde{A}\pm$ iwa (Chenopodium pallidicaule). , 2021, , 243-264.		1
352	Extraction and characterization of starch granule-associated surface and channel lipids from small-granule starches that affect physicochemical properties. Food Hydrocolloids, 2022, 126, 107370.	10.7	19
353	Research on the morphology, biology, productivity and yields quality of the Amaranthus cruentus L. in the southern part of Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2020, 48, 1413-1425.	1.1	4
354	Effect of disulphide bonds and sulphhydryl concentrations on properties of wheat flour. Czech Journal of Food Sciences, 2021, 38, 265-272.	1.2	1

#	Article	IF	CITATIONS
355	Rheological Stability, Enzyme Activity, and Incorporation of Pseudocereal Powder as an Alternative Ingredient in Health-Related Food. , 0 , , .		0
356	Assessment of squalene variability and its enhancement in Amaranthus (Amaranthus caudatus L.) populations: With application to vaccine development. Biotechnology and Applied Biochemistry, 2022, , .	3.1	1
357	Sustaining Protein Nutrition Through Plant-Based Foods. Frontiers in Nutrition, 2021, 8, 772573.	3.7	67
359	Rheological behavior of batter and quality of gluten $\hat{a} \in \mathbf{f}$ ree bread based on nonglutinous rice flour and tartary buckwheat flour. Cereal Chemistry, 0 , , .	2.2	1
360	Effect of germination on fatty acid profile, amino acid profile and minerals of amaranth (Amaranthus) Tj ETQq0 0 0	O rgBT /Ov	erlock 10 T
361	The Role of Pseudocereals in Celiac Disease: Reducing Nutritional Deficiencies to Improve Well-Being and Health. Journal of Nutrition and Metabolism, 2022, 2022, 1-8.	1.8	11
362	Bioaccessibility of phenolic compounds, antioxidant activity, and consumer acceptability of heat-treated quinoa cookies. Food Science and Technology, 0, 42, .	1.7	7
364	Effects of pseudocereal flours addition on chemical and physical properties of gluten-free crackers. Food Science and Technology, 0, 42, .	1.7	2
365	Future foods: Alternative proteins, food architecture, sustainable packaging, and precision nutrition. Critical Reviews in Food Science and Nutrition, 2023, 63, 6423-6444.	10.3	13
366	Application of Chromatographic and Thermal Methods to Study Fatty Acids Composition and Positional Distribution, Oxidation Kinetic Parameters and Melting Profile as Important Factors Characterizing Amaranth and Quinoa Oils. Applied Sciences (Switzerland), 2022, 12, 2166.	2.5	12
367	A Systematic Review on Amaranthus-Related Research. Horticulturae, 2022, 8, 239.	2.8	10
368	Relationship between nitrogen fertilizer and structural, pasting and rheological properties on common buckwheat starch. Food Chemistry, 2022, 389, 132664.	8.2	14
369	Defining Amaranth, Buckwheat and Quinoa Flour Levels in Gluten-Free Bread: A Simultaneous Improvement on Physical Properties, Acceptability and Nutrient Composition through Mixture Design. Foods, 2022, 11, 848.	4.3	9
370	Amarant, Karabuğday ve Siyez Katkılı Tavuk Nuggetların Bazı Özelliklerinin Belirlenmesi. Journal of the Institute of Science and Technology, 0, , 267-278.	0.9	О
371	Comparative evaluation of pseudocereal peptides: A review of their nutritional contribution. Trends in Food Science and Technology, 2022, 122, 287-313.	15.1	11
372	The influence of fermented buckwheat, quinoa and amaranth flour on gluten-free bread quality. LWT - Food Science and Technology, 2022, 160, 113301.	5.2	21
373	Prospects and potentials of underutilized leafy Amaranths as vegetable use for health-promotion. Plant Physiology and Biochemistry, 2022, 182, 104-123.	5.8	38
376	Potential of lactic acid bacteria as starter cultures for food fermentation and as producers of biochemicals for value addition. , 2022, , 281-304.		3

#	ARTICLE	IF	CITATIONS
377	Cereal fermentation by LAB: From ancient to modern alimentation biotechnologies. , 2022, , 3-26.		1
378	Effects of molecular characteristics and microstructure of amaranth particle sizes on dough rheology and wheat bread characteristics. Scientific Reports, 2022, 12, 7883.	3.3	6
379	Seed Characterization of Grain Amaranthus Using Morphological and Physiological Traits. Nigerian Journal of Pure Applied Sciences, 0, , 4186-4197.	0.0	0
380	Phytonutrients, Colorant Pigments, Phytochemicals, and Antioxidant Potential of Orphan Leafy Amaranthus Species. Molecules, 2022, 27, 2899.	3.8	39
381	Utilisation and limitations of pseudocereals (quinoa, amaranth, and buckwheat) in food production: A review. Trends in Food Science and Technology, 2022, 125, 154-165.	15.1	38
382	Gluten-free bakery products: Ingredients and processes. Advances in Food and Nutrition Research, 2022, , 189-238.	3.0	8
383	Pseudocereals: Quinoa (Chenopodium quinoa Willd.)., 2023,, 141-149.		1
384	Buckwheat: Properties, Beneficial Effects and Technological Applications. , 2023, , .		0
385	Health Benefits of Amaranth. , 2023, , 120-140.		1
386	Nutritional Benefits of Cereals and Pseudo-cereals. , 2023, , .		0
387	Minor Cereals and New Crops: Tritordeum. , 2023, , 83-103.		1
388	Adapting the CROPGROâ€faba bean model to simulate the growth and development of <i>Amaranthus</i> species. Agronomy Journal, 0, , .	1.8	1
389	Comparison of Heat and Drought Stress Responses among Twelve Tartary Buckwheat (Fagopyrum) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
390	Colorant Pigments, Nutrients, Bioactive Components, and Antiradical Potential of Danta Leaves (Amaranthus lividus). Antioxidants, 2022, 11, 1206.	5.1	29
392	Effects of Germination and Popping on the Anti-Nutritional Compounds and the Digestibility of Amaranthus hypochondriacus Seeds. Foods, 2022, 11, 2075.	4.3	7
393	Simultaneous removal of ibuprofen and bisphenol A from aqueous solution by an enhanced cross-linked activated carbon and reduced graphene oxide composite. Separation and Purification Technology, 2022, 299, 121681.	7.9	10
394	Steps Toward a More Sustainable Use of Major Cereal Crops. , 2023, , .		1
395	Physicochemical properties and viscoelastic behavior of rice–mung bean composite flour systems as potential ingredients for plantâ€based foods. Cereal Chemistry, 2022, 99, 1261-1271.	2.2	1

#	Article	IF	CITATIONS
396	Optimizing quinoa growth cycle duration in northeast England by varying the sowing date. Agronomy Journal, 2022, 114, 2186-2199.	1.8	1
397	Non-starch polysaccharides in beer and brewing: A review of their occurrence and significance. Critical Reviews in Food Science and Nutrition, 2024, 64, 837-851.	10.3	3
398	The Influence of Chestnut Flour on the Quality of Gluten-Free Bread. Applied Sciences (Switzerland), 2022, 12, 8340.	2.5	3
399	Soybean bran as the fat replacer in gluten-free cookie formulation: Physicochemical properties and sensory profiles. Chemical Industry and Chemical Engineering Quarterly, 2023, 29, 179-187.	0.7	O
400	Gluten-free grains: Importance, processing and its effect on quality of gluten-free products. Critical Reviews in Food Science and Nutrition, 2024, 64, 1988-2015.	10.3	7
401	A review on amaranth protein: composition, digestibility, health benefits and food industry utilisation. International Journal of Food Science and Technology, 2023, 58, 1564-1574.	2.7	10
402	Retention of Antioxidants from Dried Carrot Pomace in Wheat Bread. Applied Sciences (Switzerland), 2022, 12, 9735.	2.5	4
403	Pseudocereals: Nutrition, Health Benefits, and Potential Applications in Gluten-free Food Product Developments. Current Nutrition and Food Science, 2023, 19, 377-385.	0.6	O
405	The Effects of Processing Technologies on Nutritional and Anti-nutritional Properties of Pseudocereals and Minor Cereal. Food and Bioprocess Technology, 2023, 16, 961-986.	4.7	4
406	Yogurt and curd cheese as alternative ingredients to improve the gluten-free breadmaking. Frontiers in Nutrition, 0, 9, .	3.7	2
409	Tahıl ve pseudotahıllar'da diyet lifi ve sağlık üzerine etkileri. Gümüşhane Üniversitesi Fen Bil Enstitüsü Dergisi, 0, , .	imleri 0.0	0
410	Nutritional and bioactive characteristics of buckwheat, and its potential for developing glutenâ€free products: An updated overview. Food Science and Nutrition, 2023, 11, 2256-2276.	3.4	16
411	Salt Eustress Induction in Red Amaranth (Amaranthus gangeticus) Augments Nutritional, Phenolic Acids and Antiradical Potential of Leaves. Antioxidants, 2022, 11, 2434.	5.1	25
412	Land Use and Management. Geography of the Physical Environment, 2022, , 295-462.	0.4	0
413	Fatty Acid Composition of Pseudocereals and Seeds Used as Functional Food Ingredients. Life, 2023, 13, 217.	2.4	7
414	Effect of chestnut flour fortification on physicoâ€chemical characteristics of glutenâ€free fresh pasta. International Journal of Food Science and Technology, 2023, 58, 3360-3370.	2.7	3
415	World Trends in Infant Formulas Composition Enhancement. Voprosy Sovremennoi Pediatrii - Current Pediatrics, 0, , .	0.4	0
416	Addition of Amaranth Flour of Different Particle Sizes at Established Doses in Wheat Flour to Achieve a Nutritional Improved Wheat Bread. Foods, 2023, 12, 133.	4.3	10

#	Article	IF	CITATIONS
417	Quinoa (Chenopodium quinoa Willd.)â€"a smart crop for food and nutritional security. , 2023, , 23-43.		0
418	Enhancing quinoa cultivation in the Andean highlands of Peru: a breeding strategy for improved yield and early maturity adaptation to climate change using traditional cultivars. Euphytica, 2023, 219, .	1.2	0
419	Phenolic Compounds and Antioxidant Status of Cookies Supplemented with Apple Pomace. Antioxidants, 2023, 12, 324.	5.1	8
420	Functional composition, physiological effect and agronomy of future food quinoa (Chenopodium) Tj ETQq $1\ 1$	0.784314 rg	gBT_/Overlock
421	Development and Statistical Optimization of Flakes from Selected Local Food Ingredients. Aksaray University Journal of Science and Engineering, 2023, 7, 40-52.	1.0	0
422	Nutritionally Improved Wheat Bread Supplemented with Quinoa Flour of Large, Medium and Small Particle Sizes at Typical Doses. Plants, 2023, 12, 698.	3 . 5	4
423	Nutritional, physicochemical, textural and sensory characterization of horsemeat patties as affected by whole germinated green buckwheat and its flour. International Journal of Food Properties, 2023, 26, 600-613.	3.0	0
424	Effect of Dietary Amaranth (Amaranthus hybridus chlorostachys) Supplemented with Enzyme Blend on Egg Quality, Serum Biochemistry and Antioxidant Status in Laying Hens. Antioxidants, 2023, 12, 456.	5.1	6
425	Developing an NIRS Prediction Model for Oil, Protein, Amino Acids and Fatty Acids in Amaranth and Buckwheat. Agriculture (Switzerland), 2023, 13, 469.	3.1	1
427	Nutritional Composition of Six Amaranth (Amaranthus caudatus) Andean Varieties. Crops, 2023, 3, 78-87.	1.4	2
428	Does quinoa (Chenopodium quinoa) consumption improve blood glucose, body weight and body mass index? A systematic review and dose-response meta-analysis of clinical trials. Current Medicinal Chemistry, 2023, 30, .	2.4	0
429	Pigmented Pseudocereals: Chemistry, Functionality, and Technological Aspects in Food Systems. , 2023, , 144-180.		0
430	Re-emergence of Pseudocereals as Superfoods for Food Security and Human Health: Current Progress and Future Prospects., 2023,, 207-236.		1
431	Review of the Health Benefits of Cereals and Pseudocereals on Human Gut Microbiota. Food and Bioprocess Technology, 0, , .	4.7	2
432	Comparison of the nutritional value of minor and pseudocereal crops to major crops and the barriers in their breeding for developing healthy grains. , 2023, , 99-133.		0
433	Field management practices for pseudocereals: Yield gains and health benefits. , 2023, , 189-201.		0
434	Adaptation to abiotic stress factors and their effects on cereal and pseudocereal grain quality. , 2023, , 339-358.		2
435	Sourdough and Gluten-Free Products. , 2023, , 325-350.		0

#	Article	IF	CITATIONS
437	Importance and nutritive value of plant proteins in human diet., 2023,, 27-49.		O
438	Role of phytases from lactic acid bacterial species in level upgradation of bioavailable micronutrients in food applications., 2023,, 219-237.		0
439	Advancement in Nutritional Value, Processing Methods, and Potential Applications of Pseudocereals in Dietary Food: A Review. Food and Bioprocess Technology, 2024, 17, 571-590.	4.7	3
440	ProteÃnas em grãos de cereais: valor nutritivo e bioatividades. , 2020, , 185-218.		0
441	Evaluation of producing gluten-free bread by utilizing amaranth and lipase and protease enzymes. Journal of Food Science and Technology, 2023, 60, 2213-2222.	2.8	0
442	Propiedades nutritivas y tecno funcionales de barras de pseudocereales adicionadas con soya, mango y granada. Archivos Latinoamericanos De Nutricion, 2023, 73, 19-31.	0.3	0
443	Influence of Quinoa Enrichment on the Formulation, Qualitative Parameters and Consumer Acceptability of Low-Gluten Foods. Biosciences, Biotechnology Research Asia, 2023, 20, 635-642.	0.5	0
444	Nutritional profiling and quantitative analysis of amino acids and vitamins using <scp>LC–MS</scp> / <scp>MS</scp> in selected raw and germinated ancient grains. JSFA Reports, 0, , .	0.8	0
445	Genetic resources and breeding approaches for improvement of amaranth (Amaranthus spp.) and quinoa (Chenopodium quinoa). Frontiers in Nutrition, $0,10,10$	3.7	3
446	Productive, Qualitative, and In Vitro Fermentation Traits of Amaranthus Grains as Potential Ingredients for Pig Diet. Agriculture (Switzerland), 2023, 13, 1445.	3.1	1
447	Protein blends and extrusion processing to improve the nutritional quality of plant proteins. Food and Function, 2023, 14, 7361-7374.	4.6	2
448	Unveiling the Aromas and Sensory Evaluation of Hakko Sobacha: A New Functional Non-Dairy Probiotic Fermented Drink. Molecules, 2023, 28, 6084.	3.8	0
449	Nutritional Value and Structure Characterization of Protein Components of Corylus mandshurica Maxim. Molecules, 2023, 28, 6355.	3.8	0
450	Effect of Germination on Fatty Acid Composition in Cereal Grains. Foods, 2023, 12, 3306.	4.3	0
451	Quinoa starch: extraction, physicochemical properties, functionality and potential applications., 2024, , 315-344.		0
452	Mapping the knowledge structure of a gluten-free diet: a global perspective. Translational Medicine Communications, 2023, 8, .	1.4	O
453	Exploring Neglected and Underutilized Plant Foods to Fight Malnutrition and Hunger in South Asia., 2023, , 51-71.		0
454	Bibliometric analysis on pseudocereals. , 2023, 6, 100062.		0

#	Article	IF	CITATIONS
455	Investigating the efficacy of purple non-sulfur bacteria (PNSB) inoculation on djulis (Chenopodium) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
456	Amaranth & Dinois Sprouts., 2023, 127-151.		0
457	Development of Functional Gluten-Free Sourdough Bread with Pseudocereals and Enriched with Moringa oleifera. Foods, 2023, 12, 3920.	4.3	1
458	General Over View of Composition, Use in Human Nutrition, Process of Sprouting, Change in Composition During Sprouting, Parameters Affecting Nutritional Quality During Sprouting, Benefits of Sprouts, Nutritional Value and Food Safety Issues of Cereals/Pseudo Cereal Sprouts., 2023, , 1-28.		0
460	Recent Advances in the Modification of Underutilized Pseudocereal Proteins for Improving Their Functionality: A Practical, Comprehensive and Up-To-Date Review. Food Reviews International, 0, , 1-29.	8.4	0
461	Optimal combination of cow and quinoa milk for manufacturing of functional fermented milk with high levels of antioxidant, essential amino acids and probiotics. Scientific Reports, 2023, 13, .	3.3	0
462	Explicating physicochemical, structural, anti-inflammatory properties and starch digestibility of buckwheat incorporated biscuit. Journal of Food Measurement and Characterization, 2024, 18, 1786-1803.	3.2	0
463	Current trends and prospects in quinoa research: An approach for strategic knowledge areas. Food Science and Nutrition, 2024, 12, 1479-1501.	3.4	0
464	The use of quinoa grain/flour instead of bulgur/wheat flour in traditional couscous production. , 0, , .		0
465	Effects of Gluten on Health. Advances in Environmental Engineering and Green Technologies Book Series, 2024, , 318-343.	0.4	0
466	Plant-Based Proteins and Their Modification and Processing for Vegan Cheese Production. Macromol, 2024, 4, 23-41.	4.4	0
467	Impact of germination pre-treatments on buckwheat and Quinoa: Mitigation of anti-nutrient content and enhancement of antioxidant properties. Food Chemistry: X, 2024, 21, 101182.	4.3	0
468	Regulating the quality and starch digestibility of buckwheat-dried noodles through steam treatment. LWT - Food Science and Technology, 2024, 195, 115826.	5.2	0
469	Physicochemical properties of esterified/crosslinked quinoa starches and their influence on bread quality. Journal of the Science of Food and Agriculture, 2024, 104, 3834-3841.	3.5	0
470	Protein quality of cereals: Digestibility determination and processing impacts. Journal of Cereal Science, 2024, 117, 103892.	3.7	0
471	Effect of Semolina Replacement with Amaranth Flour on Quality Characteristics of Functional Pasta. Journal of Food Quality, 2024, 2024, 1-10.	2.6	O