Convergent evolution of seed dispersal by ants, and phy flowering plants: A global survey

Perspectives in Plant Ecology, Evolution and Systematics 12, 43-55

DOI: 10.1016/j.ppees.2009.08.001

Citation Report

ARTICLE

Analysis of genetic similarity detected by AFLP and PCoA among genotypes of kenaf (Hibiscus) Tj ETQq0 0 0 rgBT $|_{1.5}^{0.5}$ PCoA $|_{12}^{12}$ Tf 50 74.

2	Caesia sabulosa (Hemerocallidaceae), a new species from the Greater Cape Region of South Africa. South African Journal of Botany, 2010, 76, 524-529.	2.5	0
3	Study on Floral Structure and Diaspores of Dicentra spectabilis Lem. and Related Ants which Disperse Seeds. Journal of Korean Nature, 2011, 4, 133-138.	0.2	2
4	Dispersal vs. stochasticity: Competition for persistence in a reaction-diffusion model with strong Allee dynamics. Ecological Modelling, 2011, 222, 2891-2896.	2.5	3
5	A comparison of the autecology of two seed-taking ant genera, Rhytidoponera and Melophorus. Insectes Sociaux, 2011, 58, 115-125.	1.2	10
6	Importance of topography and topsoil selection and storage in successfully rehabilitating post-closure sand mines featuring pit lakes. Mining Technology: Transactions of the Institute of Materials, Minerals and Mining Section A, 2012, 121, 139-150.	0.8	9
7	Phylogenetic Relationships and Evolution in the Strelitziaceae (Zingiberales). Systematic Botany, 2012, 37, 606-619.	0.5	15
8	Two new mountainous species of Lactuca (Cichorieae, Asteraceae) from Iran, one presenting a new, possibly myrmecochorous achene variant. PhytoKeys, 2012, 11, 61.	1.0	7
9	Invasive acacias experience higher ant seed removal rates at the invasion edges. Web Ecology, 2012, 12, 33-37.	1.6	12
10	Functional Response TRAITS and Plant Community Strategy Indicate the Stage of Secondary Succession. Hacquetia, 2012, 11, 209-225.	0.4	9
11	Diaspore Trait Preferences of Dispersing Ants. Journal of Chemical Ecology, 2012, 38, 1093-1104.	1.8	27
12	Are Gastropods, Rather than Ants, Important Dispersers of Seeds of Myrmecochorous Forest Herbs?. American Naturalist, 2012, 179, 124-131.	2.1	29
13	Geographic variation for elaiosome–seed size ratio and its allometric relationship in two closely relatedCorydalisspecies. Plant Ecology and Diversity, 2012, 5, 395-401.	2.4	5
14	Phylogenetics and the evolution of major structural characters in the giant genus Euphorbia L. (Euphorbiaceae). Molecular Phylogenetics and Evolution, 2012, 63, 305-326.	2.7	169
15	Seed fate in the myrmecochorous Neotropical plant Turnera ulmifolia L., from plant to germination. Acta Oecologica, 2012, 40, 1-10.	1.1	12
16	Redispersal of seeds by a keystone ant augments the spread of common wildflowers. Acta Oecologica, 2012, 40, 31-39.	1.1	39
17	Spatial variation in the fatty acid composition of elaiosomes in an ant-dispersed plant: Differences within and between individuals and populations. Flora: Morphology, Distribution, Functional Ecology of Plants, 2012, 207, 497-502.	1.2	13
18	Does exogenic food benefit both partners in an ant-plant mutualism? The case of Cecropia obtusa and its guest Azteca plant-ants. Comptes Rendus - Biologies, 2012, 335, 214-219.	0.2	23

#	Article	IF	CITATIONS
19	A phylogenetic analysis of trait convergence in the spring flora ¹ This article is part of a Special Issue entitled "Pollination biology research in Canada: Perspectives on a mutualism at different scalesâ€. Botany, 2012, 90, 557-564.	1.0	3
20	Ants and the origins of plant diversity in old, climatically stable landscapes: A great role for tiny players. South African Journal of Botany, 2012, 83, 44-46.	2.5	4
21	Recovery of native grass biodiversity by sowing on former croplands: Is weed suppression a feasible goal for grassland restoration?. Journal for Nature Conservation, 2012, 20, 41-48.	1.8	38
22	A checklist of epigaeic ants (Hymenoptera: Formicidae) from the Marakele National Park, Limpopo, South Africa. Koedoe, 2012, 54, .	0.9	10
23	Geographical and interspecific variation and the nutrientâ€enrichment hypothesis as an adaptive advantage of myrmecochory. Ecography, 2012, 35, 322-332.	4.5	13
24	Differential dispersal of Chamaesyce maculata seeds by two ant species in Japan. Plant Ecology, 2013, 214, 907-915.	1.6	8
25	The diversity, ecology and evolution of extrafloral nectaries: current perspectives and future challenges. Annals of Botany, 2013, 111, 1243-1250.	2.9	132
26	Diversity and evolution of a trait mediating ant–plant interactions: insights from extrafloral nectaries in Senna (Leguminosae). Annals of Botany, 2013, 111, 1263-1275.	2.9	26
27	Hydrated mucilage reduces post-dispersal seed removal of a sand desert shrub by ants in a semiarid ecosystem. Oecologia, 2013, 173, 1451-1458.	2.0	16
28	The seed bank in soil from the nests of grassland ants in a unique limestone grassland community in Ireland. Ecological Engineering, 2013, 61, 58-64.	3.6	9
29	Fruit, Seed and Seedling Characters in Jatropha L , 2013, , 95-118.		1
30	Seed burial in eelgrass Zostera marina: the role of infauna. Marine Ecology - Progress Series, 2013, 474, 135-145.	1.9	38
31	Questioning the mutual benefits of myrmecochory: a stable isotopeâ€based experimental approach. Ecological Entomology, 2013, 38, 390-399.	2.2	14
32	The effects of the red imported fire ant on seed fate in the longleaf pine ecosystem. Plant Ecology, 2013, 214, 717-724.	1.6	9
33	Multiphase myrmecochory: the roles of different ant species and effects of fire. Oecologia, 2013, 172, 791-803.	2.0	21
34	Melampyrum Cristatum L. – A Rare River Corridor Plant in Wielkopolska and Poland. Biodiversity Research and Conservation, 2013, 32, 29-44.	0.3	1
35	Biological Flora of the British Isles: <i>Pulmonaria officinalis</i> . Journal of Ecology, 2013, 101, 1353-1368.	4.0	15
36	Are Local Filters Blind to Provenance? Ant Seed Predation Suppresses Exotic Plants More than Natives. PLoS ONE, 2014, 9, e103824.	2.5	35

#	Article	IF	CITATIONS
38	Species composition and abundance of ants and other invertebrates in stands of crested wheatgrass (Agropyron cristatum) and native grasslands in the northern Great Plains. Canadian Journal of Zoology, 2014, 92, 49-55.	1.0	5
39	Panama as a crucial centre of differentiation for the herbaceous bamboos (Poaceae: Bambusoideae:) Tj ETQq1 1	0.784314 1.6	rgBT /Overlo
40	Seed handling behaviours of native and invasive seedâ€dispersing ants differentially influence seedling emergence in an introduced plant. Ecological Entomology, 2014, 39, 66-74.	2.2	31
41	Competition as a mechanism structuring mutualisms. Journal of Ecology, 2014, 102, 486-495.	4.0	27
42	Ants, Plants and Fungi: A View on Some Patterns of Interaction and Diversity. Progress in Botany Fortschritte Der Botanik, 2014, , 3-54.	0.3	4
43	Anthropogenic disturbance reduces seed-dispersal services for myrmecochorous plants in the Brazilian Caatinga. Oecologia, 2014, 174, 173-181.	2.0	86
44	Problems Associated with Studying Spatial Distribution of Plants Through Herbarium Anthology: A Case Study of Family Berberidaceae in North West Himalaya. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2014, 84, 465-471.	1.0	2
45	Mutualism fails when climate response differs between interacting species. Global Change Biology, 2014, 20, 466-474.	9.5	53
46	Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends in Ecology and Evolution, 2014, 29, 681-691.	8.7	250
47	The Pollination of <i>Hexastylis naniflora</i> in Cleveland County, North Carolina. Castanea, 2014, 79, 74-77.	0.1	2
48	Biotic resistance to plant invasion in grassland: Does seed predation increase with resident plant diversity?. Basic and Applied Ecology, 2014, 15, 133-141.	2.7	6
49	The Luzula comosa complex (Luzula section Luzula, Juncaceae) in western North America. Phytotaxa, 2015, 192, 201.	0.3	0
50	Cryptochloa stapfii (Poaceae: Bambusoideae: Olyreae), a new neotropical herbaceous bamboo from Panama. Phytotaxa, 2015, 203, 271.	0.3	1
51	Vulnerable broom crowberry (Corema conradii) benefits from ant seed dispersal in coastal US heathlands. Plant Ecology, 2015, 216, 1091-1101.	1.6	5
52	Predicted impacts of climatic change on ant functional diversity and distributions in eastern <scp>N</scp> orth <scp>A</scp> merican forests. Diversity and Distributions, 2015, 21, 781-791.	4.1	38
53	Adaptive Advantage of Myrmecochory in the Ant-Dispersed Herb Lamium amplexicaule (Lamiaceae): Predation Avoidance through the Deterrence of Post-Dispersal Seed Predators. PLoS ONE, 2015, 10, e0133677.	2.5	12
54	Development, structure and function of bracteal nectaries in Caamembeca laureola (A.St.Hil &) Tj ETQq0 0 () rgBT /Ove	erlock 10 Tf 5

55Are seed mass and seedling size and shape related to altitude? Evidence in <i>Gymnocalycium1.01555monvillei</i> (Cactaceae). Botany, 2015, 93, 529-533.1.015

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
56	Using basic plant traits to predict ungulate seed dispersal potential. Ecography, 2015, 38, 440-449.	4.5	42
57	Putative floral brood-site mimicry, loss of autonomous selfing, and reduced vegetative growth are significantly correlated with increased diversification in Asarum (Aristolochiaceae). Molecular Phylogenetics and Evolution, 2015, 89, 194-204.	2.7	14
58	The Benefits of Myrmecochory: A Matter of Stature. Biotropica, 2015, 47, 281-285.	1.6	33
59	Egg Dispersal in the Phasmatodea: Convergence in Chemical Signaling Strategies Between Plants and Animals?. Journal of Chemical Ecology, 2015, 41, 689-695.	1.8	23
60	The critical role of ants in the extensive dispersal of Acacia seeds revealed by genetic parentage assignment. Oecologia, 2015, 179, 1123-1134.	2.0	23
61	The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. Biological Reviews, 2015, 90, 31-59.	10.4	350
62	Incorporating redispersal microsites into myrmecochory in eastern North American forests. Ecosphere, 2016, 7, e01456.	2.2	8
63	Invasive earthworms as seed predators of temperate forest plants. Biological Invasions, 2016, 18, 1567-1580.	2.4	29
64	A portrait of the C ₄ photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of Fame. Journal of Experimental Botany, 2016, 67, 4039-4056.	4.8	157
65	Interference competition among disperser ants affects their preference for seeds of an antâ€dispersed sedge <scp><i>Carex tristachya</i></scp> (<scp>C</scp> yperaceae). Plant Species Biology, 2016, 31, 11-18.	1.0	4
66	Mountain bikes as seed dispersers and their potential socio-ecological consequences. Journal of Environmental Management, 2016, 181, 326-332.	7.8	19
67	Chemical composition of diaspores of the myrmecochorous plant Stemona tuberosa Lour. Biochemical Systematics and Ecology, 2016, 64, 31-37.	1.3	11
68	Biodiversity hotspots and Ocbil theory. Plant and Soil, 2016, 403, 167-216.	3.7	146
69	Genetic diversity of Stemona parviflora : A threatened myrmecochorous medicinal plant in China. Biochemical Systematics and Ecology, 2017, 71, 193-199.	1.3	5
70	Seed reâ€dispersal of four myrmecochorous plants by a keystone ant in central China. Ecological Research, 2017, 32, 387-393.	1.5	10
71	History and Natural History of Plants and Their Associates. Structure and Function of Mountain Ecosystems in Japan, 2017, , 7-61.	0.5	1
72	The geographic distribution of seed-dispersal mutualisms in North America. Evolutionary Ecology, 2017, 31, 725-740.	1.2	12
73	The assembly of ant-farmed gardens: mutualism specialization following host broadening. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20161759.	2.6	26

#	Article	IF	CITATIONS
74	The interactions of ants with their biotic environment. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170013.	2.6	18
75	Museomics resolve the systematics of an endangered grass lineage endemic to north-western Madagascar. Annals of Botany, 2017, 119, 339-351.	2.9	34
76	How can seed removal rates of zoochoric tree species be assessed quickly and accurately?. Forest Ecology and Management, 2017, 403, 152-160.	3.2	4
77	Genetic Diversity and Structure in the Philippine <i>Rafflesia lagascae</i> Complex (Rafflesiaceae) inform its Taxonomic Delimitation and Conservation. Systematic Botany, 2017, 42, 543-553.	0.5	21
78	Seed dispersal by hornets: An unusual insectâ€plant mutualism. Journal of Integrative Plant Biology, 2017, 59, 792-796.	8.5	14
79	Does the morphology of animal foraging pits influence secondary seed dispersal by ants?. Austral Ecology, 2017, 42, 920-928.	1.5	10
80	Phenological specialisation of two antâ€dispersed sedges in relation to requirements for qualitative and quantitative dispersal effectiveness. Ecological Research, 2017, 32, 677-684.	1.5	2
81	Soil disturbance effects on the composition of seed-dispersing ants in roadside environments. Oecologia, 2017, 183, 493-503.	2.0	8
82	Invasion Biology and Ant-Plant Systems in Australia. , 2017, , 309-330.		1
83	Why Study Ant- Plant Interactions?. , 0, , 410-418.		0
84	â€~Genome' doesn't cover it: Introducing Gene Systems Hypothesis and Functional Gene Systems. Bioscience Horizons, 2017, 10, .	0.6	0
85	A portrait of the C ₄ photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of Fame. Journal of Experimental Botany, 2017, 68, 4039-4056.	4.8	58
86	Seed Dispersal Distances by Ants Increase in Response to Anthropogenic Disturbances in Australian Roadside Environments. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	12
87	Hydrocarbons mediate seed dispersal: a new mechanism of vespicochory. New Phytologist, 2018, 220, 714-725.	7.3	22
88	Differential importance of consecutive dispersal phases in two antâ€dispersed <i>Corydalis</i> species (Papaveraceae). Nordic Journal of Botany, 2018, 36, njb-01644.	0.5	9
89	The role of <i>Rhytidoponera metallica</i> (Hymenoptera, Formicidae) in facilitating postâ€fire seed germination of three antâ€dispersed legume species. Austral Ecology, 2018, 43, 128-138.	1.5	3
90	280-m.yold fossil starch reveals early plant–animal mutualism. Geology, 2018, 46, 423-426.	4.4	2
91	The Preference of Some Myrmecochorous Plants of Forest Stands by Red Wood Ant (Formica rufa) Tj ETQq1 1 C).78431 <u>4</u> r	gBŢ /Overl <mark>ock</mark>

#	Article	IF	CITATIONS
92	Ant–plant interactions evolved through increasing interdependence. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12253-12258.	7.1	71
93	Evolution of Oviposition Techniques in Stick and Leaf Insects (Phasmatodea). Frontiers in Ecology and Evolution, 2018, 6, .	2.2	85
94	Diminishing importance of elaiosomes for acacia seed removal in non-native ranges. Evolutionary Ecology, 2018, 32, 601-621.	1.2	6
95	Tasty rewards for ants: differences in elaiosome and seed metabolite profiles are consistent across species and reflect taxonomic relatedness. Oecologia, 2018, 188, 753-764.	2.0	3
96	Distinguishing Between Convergent Evolution and Violation of the Molecular Clock for Three Taxa. Systematic Biology, 2018, 67, 905-915.	5.6	3
97	Interaction between a threatened endemic plant (Anchusa crispa) and the invasive Argentine ant (Linepithema humile). Arthropod-Plant Interactions, 2018, 12, 725-731.	1.1	3
98	Response of ants to humanâ€altered habitats with reference to seed dispersal of the myrmecochore <i>Corydalis giraldii</i> Fedde (Papaveraceae). Nordic Journal of Botany, 2018, 36, e01882.	0.5	1
99	Phylogenetics of Datureae (Solanaceae), including description of the new genus <i>Trompettia</i> and re–circumscription of the tribe. Taxon, 2018, 67, 359-375.	0.7	15
100	Fire and Plant Diversification in Mediterranean-Climate Regions. Frontiers in Plant Science, 2018, 9, 851.	3.6	81
101	From dispersal to predation: A global synthesis of ant–seed interactions. Ecology and Evolution, 2018, 8, 9122-9138.	1.9	29
102	Baptism by fire: the pivotal role of ancient conflagrations in evolution of the Earth's flora. National Science Review, 2018, 5, 237-254.	9.5	58
103	Using devitalised seeds in myrmecological research. Austral Entomology, 2019, 58, 805-809.	1.4	2
104	Species Richness and Community Composition of Ants and Beetles in Bt and non-Bt Maize Fields. Environmental Entomology, 2019, 48, 1095-1103.	1.4	5
105	Invisible barriers: anthropogenic impacts on inter- and intra-specific interactions as drivers of landscape-independent fragmentation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180049.	4.0	47
106	Molecular and biochemical analysis of the castor caruncle reveals a set of unique genes involved in oil accumulation in non-seed tissues. Biotechnology for Biofuels, 2019, 12, 158.	6.2	5
107	Ecological niche modelling and genetic diversity of Anomochloa marantoidea (Poaceae): filling the gaps for conservation in the earliest-diverging grass subfamily. Botanical Journal of the Linnean Society, 0, , .	1.6	3
108	Seed Elaiosome Mediates Dispersal by Ants and Impacts Germination in Ricinus communis. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	7
109	Investment in reward by ant-dispersed plants consistently selects for better partners along a geographic gradient. AoB PLANTS, 2019, 11, plz027.	2.3	7

#	Article	IF	CITATIONS
110	A brainstorm on the systematics of Turnera (Turneraceae, Malpighiales) caused by insights from molecular phylogenetics and morphological evolution. Molecular Phylogenetics and Evolution, 2019, 137, 44-63.	2.7	11
111	The effect of gut passage by waterbirds on the seed coat and pericarp of diaspores lacking "external fleshâ€ŧ Evidence for widespread adaptation to endozoochory in angiosperms. PLoS ONE, 2019, 14, e0226551.	2.5	26
112	Evolutionary history of fireâ€stimulated resprouting, flowering, seed release and germination. Biological Reviews, 2019, 94, 903-928.	10.4	81
113	Global patterns of the double mutualism phenomenon. Ecography, 2019, 42, 826-835.	4.5	18
114	Synzoochory: the ecological and evolutionary relevance of a dual interaction. Biological Reviews, 2019, 94, 874-902.	10.4	117
115	Asynchrony between ant seed dispersal activity and fruit dehiscence of myrmecochorous plants. American Journal of Botany, 2019, 106, 71-80.	1.7	13
116	Invasive ants take and squander native seeds: implications for native plant communities. Biological Invasions, 2019, 21, 451-466.	2.4	8
117	The flip side of the coin: ecological function of the beeâ€hawking Asian hornet. Integrative Zoology, 2020, 15, 156-159.	2.6	3
118	Ant biodiversity and ecosystem services in bioenergy landscapes. Agriculture, Ecosystems and Environment, 2020, 290, 106780.	5.3	24
119	Seed dispersal by the omnivorous ant Tetramorium tsushimae Emery (Formicidae) in three common weed species. Arthropod-Plant Interactions, 2020, 14, 251-261.	1.1	1
120	When the company does not matter: Highâ€quality ant seedâ€disperser does not drive the spatial distribution of largeâ€seeded myrmecochorous plants. Austral Ecology, 2020, 45, 195-205.	1.5	1
121	Above- and below-ground effects of an ecosystem engineer ant in Mediterranean dry grasslands. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201840.	2.6	16
122	Nest substrate, more than ant activity, drives fungal pathogen community dissimilarity in seed-dispersing ant nests. Oecologia, 2020, 194, 649-657.	2.0	4
123	The effects of a myrmecochore-produced chemical on entomopathogenic fungal growth and seed-dispersing ant survival rates and foraging patterns. Insectes Sociaux, 2020, 67, 495-505.	1.2	0
124	Interactions between seedâ€dispersing ant species affect plant community composition in field mesocosms. Journal of Animal Ecology, 2020, 89, 2485-2495.	2.8	8
125	The dynamic eggs of the Phasmatodea and their apparent convergence with plants. Die Naturwissenschaften, 2020, 107, 34.	1.6	10
126	Cheaters and removalists: the influence of soil disturbance on ant–seed interactions in roadside vegetation. Insectes Sociaux, 2020, 67, 429-438.	1.2	3
127	On mutualism, models, and masting: The effects of seedâ€dispersing animals on the plants they disperse. Journal of Ecology, 2020, 108, 1775-1783.	4.0	12

#	Article	IF	CITATIONS
128	Seed Removal Rates in Forest Remnants Respond to Forest Loss at the Landscape Scale. Forests, 2020, 11, 1144.	2.1	7
129	Switching roles from antagonist to mutualist: a harvester ant as a key seed disperser of a myrmecochorous plant. Ecological Entomology, 2020, 45, 1063-1070.	2.2	10
130	Pollen adaptation to ant pollination: a case study from the Proteaceae. Annals of Botany, 2020, 126, 377-386.	2.9	18
131	Reduced dispersal at nonexpanding range margins: A matter of disperser identity. Ecology and Evolution, 2020, 10, 4665-4676.	1.9	5
132	Role of ants as dispersers of native and exotic seeds in an understudied dryland. Ecological Entomology, 2021, 46, 626-636.	2.2	8
133	Seed Dispersal by Ants. , 2021, , 783-788.		0
134	Elaiosome-bearing plants from the Iberian Peninsula and the Balearic Islands. Biodiversity and Conservation, 2021, 30, 1137-1163.	2.6	1
135	Invertebrateâ€mediated dispersal plays an important role in shaping the current distribution of a herbaceous monocot. Journal of Biogeography, 2021, 48, 1101-1111.	3.0	5
136	Ant Guild Identity Determines Seed Fate at the Post-Removal Seed Dispersal Stages of a Desert Perennial. Insects, 2021, 12, 147.	2.2	5
137	Do dispersers shape diaspore mass in vespicochory?. Ecology, 2021, 102, e03302.	3.2	3
138	The effect of fire on ant assemblages does not depend on habitat openness but does select for large, gracile predators. Ecosphere, 2021, 12, e03549.	2.2	4
139	Odor of achlorophyllous plants' seeds drives seedâ€dispersing ants. Ecology and Evolution, 2021, 11, 9308-9317.	1.9	1
140	Thermal traits predict the winners and losers under climate change: an example from North American ant communities. Ecosphere, 2021, 12, e03645.	2.2	20
141	Riparian Ecological Infrastructures: Potential for Biodiversity-Related Ecosystem Services in Mediterranean Human-Dominated Landscapes. Sustainability, 2021, 13, 10508.	3.2	8
143	How common and dispersal limited are ant-dispersed plants in eastern deciduous forests?. Plant Ecology, 2021, 222, 361-373.	1.6	6
144	Das Problem mit den Schaben sind wir. , 2021, , 163-189.		0
145	Oil-rich nonseed tissues for enhancing plant oil production CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-11.	1.0	19
146	Ant-mediated seed dispersal in a warmed world. PeerJ, 2014, 2, e286.	2.0	28

		CITATION REPORT		
#	Article		IF	CITATIONS
147	Variation in ant-mediated seed dispersal along elevation gradients. PeerJ, 2019, 7, e6686		2.0	5
148	Transcriptome analysis of <i>Chelidonium majus</i> elaiosomes and seeds provide insight acid biosynthesis. PeerJ, 2019, 7, e6871.	s into fatty	2.0	4
149	From Pests to Keystone Species: Ecosystem Influences and Human Perceptions of Harves (<i>Pogonomyrmex</i> , <i>Veromessor</i> , and <i>Messor</i> spp.). Annals of the Entom Society of America, 2022, 115, 127-140.	iter Ants ological	2.5	7
150	A Study on the Myrmecochorous Plant Species and Their Diaspore Characteristics in Kore Hwan'gyeong Saengtae Haghoeji = Korean Journal of Environment and Ecology, 2014, 28	ra(â). Han'gug 3, 419-423.	0.4	0
151	A Study on the Ant's Selection of the Diaspores of Four Corydalis Species. Han'gug Hwar Saengtae Haghoeji = Korean Journal of Environment and Ecology, 2014, 28, 495-499.	'gyeong	0.4	0
152	Diaspores of myrmecochorous plants as food for certain spiders. Arachnologische Mitteil 2019, 57, 31.	ungen,	0.3	1
153	Seed Dispersal by Ants. , 2020, , 1-6.			0
154	Diaspore Abundance Promotes more Interaction with Ants in a Brazilian Atlantic Forest. F Ambiente, 2020, 27, .	loresta E	0.4	1
155	Canopy and Litter Cover Do Not Alter Diaspore Removal by Ants in the Cerrado. Sociobio 501.	logy, 2020, 67,	0.5	0
156	Myrmecochory in Lepidosperma (Cyperaceae): perianth members provide a lipid-rich rewa Australian Journal of Botany, 2021, , .	ard for ants.	0.6	0
157	Aerial vegetative diaspores of angiosperms: Terminology, organography, and dispersal. Fl Morphology, Distribution, Functional Ecology of Plants, 2022, 287, 151989.	ora:	1.2	4
159	<i>Belenocarpa tertiara</i> (Berry) gen. et comb. nov. (Euphorbiaceae): Fossil Fruits with Seeds from the Oligocene of Peru. International Journal of Plant Sciences, 0, , 000-000.	Carunculate	1.3	3
160	Oak galls exhibit ant-dispersal convergent with myrmecochorous seeds. American Natura	list, 0, , .	2.1	1
161	Fireâ€released seed dormancy ―a global synthesis. Biological Reviews, 2022, 97, 1612-	1639.	10.4	37
162	Seed removal decrease by invasive Argentine ants in a High Nature Value farmland. Journ Conservation, 2022, , 126183.	al for Nature	1.8	2
163	Seed dispersal mechanism of Erythronium japonicum in Northeast China. Acta Oecologic 103821.	a, 2022, 114,	1.1	0
165	Seed fate in antâ€mediated dispersal: Seed dispersal effectiveness in the <i>Ectatomma (Formicidae)—<i>Zanthoxylum ekmanii</i> (Rutaceae) system. Biotropica, 2022, 54, 70</i>	ruidum 54-775.	1.6	2
171	Intact ribosomal DNA arrays of <i>Potentilla</i> origin detected in <i>Erythronium</i> nι suggest recent eudicotâ€toâ€monocot horizontal transfer. New Phytologist, 2022, 235,	ıcleus 1246-1259.	7.3	3

#	Article	IF	CITATIONS
172	Relentless Evolution., 2022,, 50-108.		0
173	The Natural History of Caterpillar-Ant Associations. Fascinating Life Sciences, 2022, , 319-391.	0.9	8
174	POST-FIRE DEMOGRAPHY OF FREMONTODENDRON CALIFORNICUM (MALVACEAE) IN A PINUS MONOPHYLLA (PINACEAE) FOREST IN THE MOJAVE DESERT. Madro \tilde{A} ±0, 2022, 69, .	0.4	0
175	Myrmecochorous plants and their ant seed dispersers through successional stages in temperate cove forests. Ecological Entomology, 0, , .	2.2	2
176	Abandoned Wood Ant Nests as Sites for Seedling Germination. Forests, 2022, 13, 764.	2.1	3
178	Variability in Functional Traits along an Environmental Gradient in the South African Resurrection Plant Myrothamnus flabellifolia. Plants, 2022, 11, 1332.	3.5	3
179	Uncovering how behavioral variation underlying mutualist partner quality is partitioned within a species complex of keystone seed-dispersing ants. Insectes Sociaux, 0, , .	1.2	2
180	Plant-defense mimicry facilitates rapid dispersal of short-lived seeds by hornets. Current Biology, 2022, 32, 3429-3435.e5.	3.9	6
181	Influence of secondary dispersal by ants on invasive processes of exotic species with fleshy fruits. Biological Invasions, 0, , .	2.4	0
182	What are elaiosomes for? Effects of elaiosomes on ant attraction, seed removal and germination in wild chaya (Cnidoscolus aconitifolius). Journal of Arid Environments, 2022, 205, 104826.	2.4	1
183	The Complete Chloroplast Genome of Endangered Species Stemona parviflora: Insight into the Phylogenetic Relationship and Conservation Implications. Genes, 2022, 13, 1361.	2.4	3
184	How to induce ant–plant interactions: Seed baiting to enhance its dispersal as a tool for restoration. Journal of Applied Entomology, 0, , .	1.8	0
185	Seed dispersal: Hungry hornets are unexpected andÂeffective vectors. Current Biology, 2022, 32, R836-R838.	3.9	1
187	Clobal change drivers synergize with the negative impacts of non-native invasive ants on native seed-dispersing ants. Biological Invasions, 2023, 25, 773-786.	2.4	3
188	Land use system, invasive species and shrub diversity of the riparian ecological infrastructure determine the specific and functional richness of ant communities in Mediterranean river valleys. Ecological Indicators, 2022, 145, 109613.	6.3	3
189	The evolution of plant cultivation by ants. Trends in Plant Science, 2023, 28, 271-282.	8.8	4
190	Extrafloral nectar as entrée and elaiosomes as main course for ant visitors to a fireprone, mediterraneanâ€climate shrub. Ecology and Evolution, 2022, 12, .	1.9	1
191	Diversity and Resilience of Seed-Removing Ant Species in Longleaf Sandhill to Frequent Fire. Diversity, 2022, 14, 1012.	1.7	0

#	Article	IF	CITATIONS
192	Gall midge pollination and ant-mediated fruit dispersal of Pinellia tripartita (Araceae). Plant Ecology, 2023, 224, 59-72.	1.6	0
193	First evidence of ants (Hymenoptera, Formicidae) in the early Pleistocene of Madeira Island (Portugal). Historical Biology, 2024, 36, 177-182.	1.4	2
194	Ants disperse seeds farther in habitat patches with corridors. Ecosphere, 2022, 13, .	2.2	1
195	Species introduction shifts a trait's function from mutualism to antagonism: elaiosomes in a myrmecochory cold spot. Oikos, 2023, 2023, .	2.7	1
196	Macroecological diversification of ants is linked to angiosperm evolution. Evolution Letters, 2023, 7, 79-87.	3.3	3
197	Evolutionary repeatability of emergent properties of ecological communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	3
199	Nature's chefs: Uniting the hidden diversity of food making and preparing species across the tree of life. BioScience, 0, , .	4.9	0
200	Life-history characteristics and climate correlates of dioecious plant species in central southern Australia. Australian Journal of Botany, 2023, , .	0.6	0
201	Can the habitat Ecological Infrastructure's Diversity Index predict ant and bat biodiversity in Mediterranean agricultural floodplains? A multi-taxon approach using hierarchical modelling. Ecological Indicators, 2023, 153, 110446.	6.3	0
202	Ant mediated dispersal of spiny stick insect (Extatosoma tiaratum) eggs and Acacia longifolia seeds is ant-species dependent. Australian Journal of Zoology, 2023, 70, 105-114.	1.0	0
203	Ecology of fear: predator avoidance reduces seed dispersal in an ant. Royal Society Open Science, 2023, 10, .	2.4	0
204	Climate and ant diversity explain the global distribution of antâ€plant mutualisms. Ecography, 2023, 2023, .	4.5	2
205	Generalized mutualisms promote range expansion in both plant and ant partners. Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	2.6	1
206	The Causes and Consequences of Seed Dispersal. Annual Review of Ecology, Evolution, and Systematics, 2023, 54, 403-427.	8.3	4
207	Divergence of Seed Mass in Riparian Plant Communities Dominated by Filtering and Random Processes. Diversity, 2023, 15, 1164.	1.7	0
208	Dispersal modes affect Rhamnaceae diversification rates in a differentiated manner. Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	2.6	0
209	Reproductive Mutualisms of Australian <i>Acacia</i> Species. , 2023, , 265-283.		0
210	Linking pollen limitation and seed dispersal effectiveness. Ecology Letters, 2024, 27, .	6.4	0

#	Article	IF	CITATIONS
212	Approaching inselberg biodiversity conservation through plant growth and dispersal strategies. Journal of Systematics and Evolution, 0, , .	3.1	0
213	Bacterial diversity in arboreal ant nesting spaces is linked to colony developmental stage. Communications Biology, 2023, 6, .	4.4	0
215	Interspecific interactions disrupted by roads. Biological Reviews, 2024, 99, 1121-1139.	10.4	0
216	Ant handling changes myrmecochore seed coat microbiomes and alters diversity of seedâ€borne plant pathogenic fungi. Functional Ecology, 2024, 38, 861-874.	3.6	0
217	Exploring the evolutionary dynamics of myrmecophytism: Perspectives from the Southeast Asian Macaranga ant-plant symbiosis. Molecular Phylogenetics and Evolution, 2024, 194, 108028.	2.7	0
218	The Angiosperm Terrestrial Revolution buffered ants against extinction. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
219	Influence of seed mass and shape on light plasticity of germination of alpine plants on the Tibetan Plateau: The role of photoblastic taxa, dispersal ability, and life history. Global Ecology and Conservation, 2024, 51, e02896.	2.1	0