Grainsize-sensitive viscoelastic relaxation in olivine: To model for seismological application

Physics of the Earth and Planetary Interiors 183, 151-163 DOI: 10.1016/j.pepi.2010.09.005

Citation Report

#	Article	IF	CITATIONS
1	Grain-size distribution in the mantle wedge of subduction zones. Journal of Geophysical Research, 2011, 116, .	3.3	15
2	Experimental study of attenuation and dispersion over a broad frequency range: 2. The universal scaling of polycrystalline materials. Journal of Geophysical Research, 2011, 116, .	3.3	62
3	Failure mechanism in porous materials under compression: crackling noise in mesoporous SiO ₂ . Philosophical Magazine Letters, 2011, 91, 554-560.	1.2	68
4	Dislocation Damping and Anisotropic Seismic Wave Attenuation in Earth's Upper Mantle. Science, 2012, 336, 332-335.	12.6	37
5	Mantle-driven dynamic uplift of the Rocky Mountains and Colorado Plateau and its surface response: Toward a unified hypothesis. Lithosphere, 2012, 4, 3-22.	1.4	137
6	Low seismic velocities below midâ€ocean ridges: Attenuation versus melt retention. Journal of Geophysical Research, 2012, 117, .	3.3	52
7	Low viscosity of the bottom of the Earth's mantle inferred from the analysis of Chandler wobble and tidal deformation. Physics of the Earth and Planetary Interiors, 2012, 192-193, 68-80.	1.9	34
8	On the origin of the asthenosphere. Earth and Planetary Science Letters, 2012, 321-322, 95-103.	4.4	240
9	Lithospheric structure in the Baikal–central Mongolia region from integrated geophysicalâ€petrological inversion of surfaceâ€wave data and topographic elevation. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	53
10	The Pacific lithosphereâ€asthenosphere boundary: Seismic imaging and anisotropic constraints from <i>SS</i> waveforms. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	39
11	Dissipation at tidal and seismic frequencies in a meltâ€free Moon. Journal of Geophysical Research, 2012, 117, .	3.3	55
12	Differential t* measurements via instantaneous frequency matching: observations of lower mantle shear attenuation heterogeneity beneath western Central America. Geophysical Journal International, 2012, 189, 513-523.	2.4	7
13	The effects of polybaric partial melting on density and seismic velocities of mantle restites. Lithos, 2012, 134-135, 289-303.	1.4	42
14	Structures of the oceanic lithosphereâ€asthenosphere boundary: Mineralâ€physics modeling and seismological signatures. Geochemistry, Geophysics, Geosystems, 2013, 14, 880-901.	2.5	56
15	Measuring the elastic properties of natural rocks and mineral assemblages under Earth's deep crustal and mantle conditions. Journal of Geodynamics, 2013, 71, 25-42.	1.6	8
16	Geophysical constraints on the water content of the lunar mantle and its implications for the origin of the Moon. Earth and Planetary Science Letters, 2013, 384, 144-153.	4.4	55
17	Crustal and mantle shear velocity structure of Costa Rica and Nicaragua from ambient noise and teleseismic Rayleigh wave tomography. Geophysical Journal International, 2013, 195, 1300-1313.	2.4	18
19	3â€Ð multiâ€observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. II: General methodology and resolution analysis. Journal of Geophysical Research: Solid Earth, 2013, 118, 1650-1676.	3.4	78

#	Article	IF	CITATIONS
20	Investigating seismic anisotropy beneath the Reykjanes Ridge using models of mantle flow, crystallographic evolution, and surface wave propagation. Geochemistry, Geophysics, Geosystems, 2013, 14, 3250-3267.	2.5	7
21	Title is missing!. , 2013, 9, 521.		33
22	Seismological estimates of means of isostatic support of the Sierra Nevada. , 2013, 9, 1552-1561.		11
23	Noise of collapsing minerals: Predictability of the compressional failure in goethite mines. American Mineralogist, 2013, 98, 609-615.	1.9	53
24	Highâ€resolution imaging of the melt distribution in partially molten upper mantle rocks: evidence for wetted twoâ€grain boundaries. Geochemistry, Geophysics, Geosystems, 2013, 14, 556-566.	2.5	41
25	A rootless rockies—Support and lithospheric structure of the Colorado Rocky Mountains inferred from CREST and TA seismic data. Geochemistry, Geophysics, Geosystems, 2013, 14, 2670-2695.	2.5	65
26	Seismic attenuation in the Middle America Region and the frequency dependence of intrinsic <i>Q</i> . Journal of Geophysical Research: Solid Earth, 2013, 118, 2164-2175.	3.4	6
27	Upper mantle compositional variations and discontinuity topography imaged beneath Australia from Bayesian inversion of surfaceâ€wave phase velocities and thermochemical modeling. Journal of Geophysical Research: Solid Earth, 2013, 118, 5285-5306.	3.4	33
28	3â€Ð multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: <i>a priori</i> petrological information and geophysical observables. Journal of Geophysical Research: Solid Earth, 2013, 118, 2586-2617.	3.4	121
29	Lithospheric cooling trends and deviations in oceanic <i>PPâ€P</i> and <i>SSâ€S</i> differential traveltimes. Journal of Geophysical Research: Solid Earth, 2013, 118, 996-1007.	3.4	15
30	Dissipation at tidal and seismic frequencies in a meltâ€free, anhydrous Mars. Journal of Geophysical Research E: Planets, 2013, 118, 2558-2569.	3.6	43
31	The thermochemical structure of the lithosphere and upper mantle beneath south China: Results from multiobservable probabilistic inversion. Journal of Geophysical Research: Solid Earth, 2014, 119, 8417-8441.	3.4	45
32	Seismological imaging of ridge–arc interaction beneath the Eastern Lau Spreading Center from OBS ambient noise tomography. Earth and Planetary Science Letters, 2014, 408, 194-206.	4.4	25
33	Crackling Noise in Disordered Materials. Annual Review of Condensed Matter Physics, 2014, 5, 233-254.	14.5	181
34	From underplating to delamination-retreat in the northern Apennines. Earth and Planetary Science Letters, 2014, 403, 108-116.	4.4	49
35	Upper mantle structure of the Cascades from full-wave ambient noise tomography: Evidence for 3D mantle upwelling in the back-arc. Earth and Planetary Science Letters, 2014, 390, 222-233.	4.4	73
36	Sensitivity of seismic measurements to frequencyâ€dependent attenuation and upper mantle structure: An initial approach. Journal of Geophysical Research: Solid Earth, 2014, 119, 5497-5517.	3.4	13
37	Receiver function imaging of lithospheric structure and the onset of melting beneath the Galápagos Archipelago. Earth and Planetary Science Letters, 2014, 388, 156-165.	4.4	33

#	Article	IF	CITATIONS
38	Elastically accommodated grain-boundary sliding: New insights from experiment and modeling. Physics of the Earth and Planetary Interiors, 2014, 228, 203-210.	1.9	49
39	Wave propagation in a fractional viscoelastic Andrade medium: Diffusive approximation and numerical modeling. Wave Motion, 2014, 51, 994-1010.	2.0	11
40	Predicting failure: acoustic emission of berlinite under compression. Journal of Physics Condensed Matter, 2014, 26, 275401.	1.8	44
41	Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution. Journal of Geophysical Research E: Planets, 2014, 119, 2197-2221.	3.6	89
42	The tides of Mercury and possible implications for its interior structure. Journal of Geophysical Research E: Planets, 2014, 119, 850-866.	3.6	43
43	Origins of topography in the western U.S.: Mapping crustal and upper mantle density variations using a uniform seismic velocity model. Journal of Geophysical Research: Solid Earth, 2014, 119, 2375-2396.	3.4	38
44	<scp>R</scp> ayleigh wave phase velocities in the <scp>A</scp> tlantic upper mantle. Geochemistry, Geophysics, Geosystems, 2014, 15, 4305-4324.	2.5	19
45	Reconciling mantle attenuation-temperature relationships from seismology, petrology, and laboratory measurements. Geochemistry, Geophysics, Geosystems, 2014, 15, 3521-3542.	2.5	71
46	Temperature, grain size, and chemical controls on polycrystal anelasticity over a broad frequency range extending into the seismic range. Journal of Geophysical Research: Solid Earth, 2014, 119, 5414-5443.	3.4	47
47	Lunar interior properties from the GRAIL mission. Journal of Geophysical Research E: Planets, 2014, 119, 1546-1578.	3.6	185
48	Teleseismic <i>P</i> wave spectra from USArray and implications for upper mantle attenuation and scattering. Geochemistry, Geophysics, Geosystems, 2015, 16, 3343-3361.	2.5	12
49	A randomâ€walk algorithm for modeling lithospheric density and the role of body forces in the evolution of the <scp>M</scp> idcontinent <scp>R</scp> ift. Geochemistry, Geophysics, Geosystems, 2015, 16, 4084-4107.	2.5	20
50	Constraints on shear velocity in the cratonic upper mantle from <scp>R</scp> ayleigh wave phase velocity. Geochemistry, Geophysics, Geosystems, 2015, 16, 3982-4005.	2.5	10
51	A constitutive relationship for mechanical hysteresis of sandstone materials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150369.	2.1	7
52	Linking Sierra Nevada, California, uplift to subsidence of the Tulare basin using a seismically derived density model. Tectonics, 2015, 34, 2349-2358.	2.8	6
53	An upper mantle seismic discontinuity beneath the <scp>G</scp> alápagos <scp>A</scp> rchipelago and its implications for studies of the lithosphereâ€asthenosphere boundary. Geochemistry, Geophysics, Geosystems, 2015, 16, 1070-1088.	2.5	15
54	Residues of Hydrous Peridotites in the Deep Earth's upper Mantle. Journal of Geography (Chigaku) Tj ETQq0 0 0 i	gBT /Over	lock 10 Tf 50

	Crust and upper mantle structure associated with extension in the <scp>W</scp> oodlark		
55	<pre><scp>R</scp>ift, <scp>P</scp>apua <scp>N</scp>ew <scp>G</scp>uinea from <scp>R</scp>ayleighâ€wave</pre>	2.5	24
	tomography. Geochemistry, Geophysics, Geosystems, 2015, 16, 3808-3824.		

#	Article	IF	CITATIONS
56	Imaging continental breakup using teleseismic body waves: The <scp>W</scp> oodlark <scp>R</scp> ift, <scp>P</scp> apua <scp>N</scp> ew <scp>G</scp> uinea. Geochemistry, Geophysics, Geosystems, 2015, 16, 2529-2548.	2.5	30
57	Magmatic arc structure around <scp>M</scp> ount <scp>R</scp> ainier, <scp>WA</scp> , from the joint inversion of receiver functions and surface wave dispersion. Geochemistry, Geophysics, Geosystems, 2015, 16, 178-194.	2.5	12
58	Crust and Lithospheric Structure - Seismological Constraints on the Lithosphere-Asthenosphere Boundary. , 2015, , 587-612.		13
59	Deep Earth Structure: Q of the Earth from Crust to Core. , 2015, , 789-827.		45
60	Seismological implications of a lithospheric low seismic velocity zone in Mars. Physics of the Earth and Planetary Interiors, 2015, 240, 132-141.	1.9	25
61	Seismic evidence of effects of water on melt transport in the Lau back-arc mantle. Nature, 2015, 518, 395-398.	27.8	39
62	The seismic mid-lithosphere discontinuity. Earth and Planetary Science Letters, 2015, 414, 45-57.	4.4	177
63	Mechanisms and geologic significance of the mid-lithosphere discontinuity in the continents. Nature Geoscience, 2015, 8, 509-514.	12.9	128
64	The Dynamics and Convective Evolution of the Upper Mantle. , 2015, , 319-337.		0
65	Properties of Rocks and Minerals: Physical Origins of Anelasticity and Attenuation in Rock. , 2015, , 539-571.		25
66	Transient Creep and Strain Energy Dissipation: An Experimental Perspective. Annual Review of Earth and Planetary Sciences, 2015, 43, 541-569.	11.0	74
68	Tides on the Moon: Theory and determination of dissipation. Journal of Geophysical Research E: Planets, 2015, 120, 689-724.	3.6	81
69	Thermal classification of lithospheric discontinuities beneath USArray. Earth and Planetary Science Letters, 2015, 431, 36-47.	4.4	80
70	High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere. Nature, 2016, 535, 538-541.	27.8	92
71	A MATLAB toolbox and <scp>E</scp> xcel workbook for calculating the densities, seismic wave speeds, and major element composition of minerals and rocks at pressure and temperature. Geochemistry, Geophysics, Geosystems, 2016, 17, 616-624.	2.5	115
72	Thermal structure and melting conditions in the mantle beneath the Basin and Range province from seismology and petrology. Geochemistry, Geophysics, Geosystems, 2016, 17, 1312-1338.	2.5	98
73	Grain sizeâ€ s ensitive viscoelastic relaxation and seismic properties of polycrystalline MgO. Journal of Geophysical Research: Solid Earth, 2016, 121, 4955-4976.	3.4	10
74	The crustal structure of the <scp>A</scp> rizona <scp>T</scp> ransition <scp>Z</scp> one and southern <scp>C</scp> olorado <scp>P</scp> lateau from multiobservable probabilistic inversion. Geochemistry, Geophysics, Geosystems, 2016, 17, 4308-4332.	2.5	16

	CITATION I		
#	Article	IF	CITATIONS
75	Imaging Rayleigh wave attenuation with USArray. Geophysical Journal International, 2016, 206, 241-259.	2.4	27
76	3â€D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle: III. Thermochemical tomography in the Westernâ€Central U.S Journal of Geophysical Research: Solid Earth, 2016, 121, 7337-7370.	3.4	67
77	Threeâ€dimensional attenuation model of Sierra Negra Volcano, Galápagos Archipelago. Geophysical Research Letters, 2016, 43, 6259-6266.	4.0	6
78	Representing anisotropic subduction zones with isotropic velocity models: A characterization of the problem and some steps on a possible path forward. Geochemistry, Geophysics, Geosystems, 2016, 17, 3164-3189.	2.5	40
80	Joint inversion of teleseismic and ambient noise Rayleigh waves for phase velocity maps, an application to Iceland. Journal of Geophysical Research: Solid Earth, 2016, 121, 5966-5987.	3.4	13
81	Upper mantle structure of the <scp>T</scp> ongaâ€ <scp>L</scp> auâ€ <scp>F</scp> iji region from <scp>R</scp> ayleigh wave tomography. Geochemistry, Geophysics, Geosystems, 2016, 17, 4705-4724.	2.5	15
82	Titanium-hydroxyl defect-controlled rheology of the Earth's upper mantle. Earth and Planetary Science Letters, 2016, 452, 227-237.	4.4	50
83	Thermochemical structure of the North China Craton from multi-observable probabilistic inversion: Extent and causes of cratonic lithosphere modification. Gondwana Research, 2016, 37, 252-265.	6.0	54
84	Seismic velocity structure of the Juan de Fuca and Gorda plates revealed by a joint inversion of ambient noise and regional earthquakes. Geophysical Research Letters, 2016, 43, 5194-5201.	4.0	18
85	Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms. Physics of the Earth and Planetary Interiors, 2016, 258, 28-42.	1.9	56
86	Seismic imaging of a mid-lithospheric discontinuity beneath Ontong Java Plateau. Earth and Planetary Science Letters, 2016, 450, 62-70.	4.4	40
87	Relaxation of the bulk modulus in partially molten dunite?. Geophysical Research Letters, 2016, 43, 11,644.	4.0	10
88	Questions on the existence, persistence, and mechanical effects of a very small melt fraction in the asthenosphere. Geochemistry, Geophysics, Geosystems, 2016, 17, 470-484.	2.5	56
89	The initiation of segmented buoyancy-driven melting during continental breakup. Nature Communications, 2016, 7, 13110.	12.8	47
90	Polycrystal anelasticity at nearâ€solidus temperatures. Journal of Geophysical Research: Solid Earth, 2016, 121, 7790-7820.	3.4	108
91	Low viscosity and high attenuation in MgSiO3 post-perovskite inferred from atomic-scale calculations. Scientific Reports, 2016, 6, 34771.	3.3	22
92	A test for Io's magma ocean: Modeling tidal dissipation with a partially molten mantle. Journal of Geophysical Research E: Planets, 2016, 121, 2211-2224.	3.6	40
93	Southeast Papuan crustal tectonics: Imaging extension and buoyancy of an active rift. Journal of Geophysical Research: Solid Earth, 2016, 121, 951-971.	3.4	33

#	Article	IF	CITATIONS
94	The thermal structure of cratonic lithosphere from global Rayleigh wave attenuation. Earth and Planetary Science Letters, 2017, 457, 250-262.	4.4	30
95	Imaging Pacific lithosphere seismic discontinuities—Insights from <i>SS</i> precursor modeling. Journal of Geophysical Research: Solid Earth, 2017, 122, 2131-2152.	3.4	29
96	Gravitational body forces focus North American intraplate earthquakes. Nature Communications, 2017, 8, 14314.	12.8	26
97	Anisotropy in the deep Earth. Physics of the Earth and Planetary Interiors, 2017, 269, 58-90.	1.9	70
98	Planned Products of the Mars Structure Service for the InSight Mission to Mars. Space Science Reviews, 2017, 211, 611-650.	8.1	80
99	Seafloor age dependence of Rayleigh wave phase velocities in the Indian Ocean. Geochemistry, Geophysics, Geosystems, 2017, 18, 1926-1942.	2.5	7
100	High seismic attenuation at a mid-ocean ridge reveals the distribution of deep melt. Science Advances, 2017, 3, e1602829.	10.3	55
101	Obliquity of Mercury: Influence of the precession of the pericenter and of tides. Icarus, 2017, 291, 136-159.	2.5	18
102	Evolution of the lithosphere in the Indian Ocean from combined earthquake and ambient noise tomography. Journal of Geophysical Research: Solid Earth, 2017, 122, 354-371.	3.4	10
103	Lg-wave attenuation in the Australian crust. Tectonophysics, 2017, 717, 413-424.	2.2	15
104	On Joint Modelling of Electrical Conductivity and Other Geophysical and Petrological Observables to Infer the Structure of the Lithosphere and Underlying Upper Mantle. Surveys in Geophysics, 2017, 38, 963-1004.	4.6	18
105	Effects of Partial Melting on Seismic Velocity and Attenuation: A New Insight from Experiments. Annual Review of Earth and Planetary Sciences, 2017, 45, 447-470.	11.0	86
106	Modeling of viscoelastic properties of nonpermeable porous rocks saturated with highly viscous fluid at seismic frequencies at the core scale. Journal of Geophysical Research: Solid Earth, 2017, 122, 6067-6086.	3.4	19
107	Radial anisotropy of the North American upper mantle based on adjoint tomography with USArray. Geophysical Journal International, 2017, 211, 349-377.	2.4	47
108	The importance of grain size to mantle dynamics and seismological observations. Geochemistry, Geophysics, Geosystems, 2017, 18, 3034-3061.	2.5	57
109	The role of pargasitic amphibole in the formation of major geophysical discontinuities in the shallow upper mantle. Acta Geodaetica Et Geophysica, 2017, 52, 183-204.	1.6	22
110	Anelasticity across seismic to tidal timescales: a self-consistent approach. Geophysical Journal International, 2017, 208, 368-384.	2.4	10
111	Determination of intrinsic attenuation in the oceanic lithosphere-asthenosphere system. Science, 2017, 358, 1593-1596.	12.6	24

	CHAHON R		
#	Article	IF	Citations
112	On Estimating the Dissipative Factor of the Martian Interior. Solar System Research, 2017, 51, 479-490.	0.7	12
113	An adaptive Bayesian inversion for upper-mantle structure using surface waves and scattered body waves. Geophysical Journal International, 2018, 214, 232-253.	2.4	24
114	Scattered wave imaging of the oceanic plate in Cascadia. Science Advances, 2018, 4, eaao1908.	10.3	46
115	The structure and composition of olivine grain boundaries: 40 years of studies, status and current developments. Physics and Chemistry of Minerals, 2018, 45, 139-172.	0.8	37
116	Redox-influenced seismic properties of upper-mantle olivine. Nature, 2018, 555, 355-358.	27.8	110
117	A Geophysical Perspective on the Bulk Composition of Mars. Journal of Geophysical Research E: Planets, 2018, 123, 575-611.	3.6	97
118	Moho temperature and mobility of lower crust in the western United States. Geology, 2018, 46, 219-222.	4.4	56
119	Magnitude Scales for Marsquakes. Bulletin of the Seismological Society of America, 2018, 108, 2764-2777.	2.3	18
120	Stochastic Inversion of <i>P</i> â€ŧoâ€ <i>S</i> Converted Waves for Mantle Composition and Thermal Structure: Methodology and Application. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,706.	3.4	5
121	Physical State and Structure of the Crust Beneath the Western entral United States From Multiobservable Probabilistic Inversion. Tectonics, 2018, 37, 3117-3147.	2.8	13
124	The Thermal State and Interior Structure of Mars. Geophysical Research Letters, 2018, 45, 12,198.	4.0	69
125	Mercury's Internal Structure. , 2018, , 85-113.		26
126	Seismic Evidence for Plume―and Cratonâ€Influenced Upper Mantle Structure Beneath the Northern Malawi Rift and the Rungwe Volcanic Province, East Africa. Geochemistry, Geophysics, Geosystems, 2018, 19, 3980-3994.	2.5	26
127	The Changing Face of the Lithosphereâ€Asthenosphere Boundary: Imaging Continental Scale Patterns in Upper Mantle Structure Across the Contiguous U.S. With Sp Converted Waves. Geochemistry, Geophysics, Geosystems, 2018, 19, 2593-2614.	2.5	44
128	Insights on Upper Mantle Melting, Rheology, and Anelastic Behavior From Seismic Shear Wave Tomography. Geochemistry, Geophysics, Geosystems, 2018, 19, 3892-3916.	2.5	10
130	On the Detectability and Use of Normal Modes for Determining Interior Structure of Mars. Space Science Reviews, 2018, 214, 1.	8.1	11
132	Inferences of Mantle Viscosity Based on Ice Age Data Sets: The Bias in Radial Viscosity Profiles Due to the Neglect of Laterally Heterogeneous Viscosity Structure. Journal of Geophysical Research: Solid Earth, 2018, 123, 7237-7252.	3.4	10
133	P-wave attenuation structure of the Lau back-arc basin and implications for mantle wedge processes. Earth and Planetary Science Letters, 2018, 502, 187-199.	4.4	27

#	Article	IF	CITATIONS
134	Viscoelastic Tides of Mercury and the Determination of its Inner Core Size. Journal of Geophysical Research E: Planets, 2018, 123, 2760-2772.	3.6	24
135	Lithospheric density models reveal evidence for Cenozoic uplift of the Colorado Plateau and Great Plains by lower-crustal hydration. , 2018, 14, 1150-1164.		16
136	Predictions and Observations for the Oceanic Lithosphere From <i>S</i> â€ŧoâ€∢i>P Receiver Functions and <i>SS</i> Precursors. Geophysical Research Letters, 2018, 45, 5398-5406.	4.0	15
137	Seismic Imaging of Thickened Lithosphere Resulting From Plume Pulsing Beneath Iceland. Geochemistry, Geophysics, Geosystems, 2018, 19, 1789-1799.	2.5	13
138	High-temperature internal friction and dynamic moduli in copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 730, 425-437.	5.6	8
139	Multidisciplinary Constraints on the Abundance of Diamond and Eclogite in the Cratonic Lithosphere. Geochemistry, Geophysics, Geosystems, 2018, 19, 2062-2086.	2.5	49
140	Mafic Highâ€Pressure Rocks Are Preferentially Exhumed From Warm Subduction Settings. Geochemistry, Geophysics, Geosystems, 2018, 19, 2934-2961.	2.5	78
141	Hot Upper Mantle Beneath the Tristan da Cunha Hotspot From Probabilistic Rayleighâ€Wave Inversion and Petrological Modeling. Geochemistry, Geophysics, Geosystems, 2018, 19, 1412-1428.	2.5	23
142	Shear attenuation beneath the Juan de Fuca plate: Implications for mantle flow and dehydration. Earth and Planetary Science Letters, 2018, 496, 189-197.	4.4	16
143	"Measures of Dissipation in Viscoelastic Media―Extended: Toward Continuous Characterization Across Very Broad Geophysical Time Scales. Geophysical Research Letters, 2019, 46, 9544-9553.	4.0	30
144	Laboratory measurements of the mechanical damping capacities in partially saturated sandstone. Arabian Journal of Geosciences, 2019, 12, 1.	1.3	1
145	Seismic perspectives from the western U.S. on magma reservoirs underlying large silicic calderas. Journal of Volcanology and Geothermal Research, 2019, 384, 158-178.	2.1	26
146	Tidal Response of Mars Constrained From Laboratoryâ€Based Viscoelastic Dissipation Models and Geophysical Data. Journal of Geophysical Research E: Planets, 2019, 124, 2703-2727.	3.6	43
147	The Link between the Physical and Chemical Properties of Carbon-Bearing Melts and Their Application for Geophysical Imaging of Earth's Mantle. , 2019, , 163-187.		1
148	Thin lithosphere beneath the central Appalachian Mountains: Constraints from seismic attenuation beneath the MAGIC array. Earth and Planetary Science Letters, 2019, 519, 297-307.	4.4	28
149	Experimental Study of Dislocation Damping Using a Rock Analogue. Journal of Geophysical Research: Solid Earth, 2019, 124, 6523-6541.	3.4	7
150	Synthesizing Seemingly Contradictory Seismic and Magnetotelluric Observations in the Southeastern United States to Image Physical Properties of the Lithosphere. Geochemistry, Geophysics, Geosystems, 2019, 20, 2606-2625.	2.5	10
151	Tides Between the TRAPPIST-1 Planets. Astrophysical Journal, 2019, 875, 22.	4.5	17

#	Article	IF	CITATIONS
152	A small, unextractable melt fraction as the cause for the low velocity zone. Earth and Planetary Science Letters, 2019, 517, 117-124.	4.4	27
153	The causes of spatiotemporal variations in erupted fluxes and compositions along a volcanic arc. Nature Communications, 2019, 10, 1350.	12.8	42
154	Lowâ€Frequency Measurements of Seismic Moduli and Attenuation in Antigorite Serpentinite. Geophysical Research Letters, 2019, 46, 1993-2002.	4.0	9
155	Thermal nature and resolution of the lithosphere–asthenosphere boundary under the Pacific from surface waves. Geophysical Journal International, 2019, 216, 1441-1465.	2.4	11
156	Using Ambient Noise to Image the Northern East African Rift. Geochemistry, Geophysics, Geosystems, 2019, 20, 2091-2109.	2.5	29
157	Evidence for dehydration-modulated small-scale convection in the oceanic upper mantle from seafloor bathymetry and Rayleigh wave phase velocity. Earth and Planetary Science Letters, 2019, 510, 12-25.	4.4	7
158	Amphibious surface-wave phase-velocity measurements of the Cascadia subduction zone. Geophysical Journal International, 2019, 217, 1929-1948.	2.4	41
159	Synthesizing EarthScope data to constrain the thermal evolution of the continental U.S. lithosphere. , 2019, 15, 1722-1737.		10
160	Viscoelastic Behaviour from Complementary Forced-Oscillation and Microcreep Tests. Minerals (Basel, Switzerland), 2019, 9, 721.	2.0	6
161	Deep Seated Density Anomalies Across the Iberiaâ€Africa Plate Boundary and Its Topographic Response. Journal of Geophysical Research: Solid Earth, 2019, 124, 13310-13332.	3.4	17
162	Anelasticity from seismic to tidal timescales: Theory and observations. Earth and Planetary Science Letters, 2019, 508, 18-29.	4.4	31
163	Pre-mission InSights on the Interior of Mars. Space Science Reviews, 2019, 215, 1.	8.1	85
164	Microstructures, Water Contents, and Seismic Properties of the Mantle Lithosphere Beneath the Northern Limit of the Hangay Dome, Mongolia. Geochemistry, Geophysics, Geosystems, 2019, 20, 183-207.	2.5	14
165	Age dependence and anisotropy of surface-wave phase velocities in the Pacific. Geophysical Journal International, 2019, 216, 640-658.	2.4	11
166	Bulk, shear and scattering attenuation beneath Hawaiian Volcanos and in the oceanic crust extending to the Aloha Cabled Observatory. Geophysical Journal International, 2020, 223, 543-560.	2.4	3
167	A linear viscoelasticity for decadal to centennial time scale mantle deformation. Reports on Progress in Physics, 2020, 83, 106801.	20.1	23
168	Textural and Compositional Changes in the Lithospheric Mantle Atop the Hawaiian Plume: Consequences for Seismic Properties. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009138.	2.5	9
169	Toward a Self onsistent Characterization of Lithospheric Plates Using Fullâ€5pectrum Viscoelasticity. AGU Advances, 2020, 1, e2020AV000205.	5.4	15

#	Article	IF	CITATIONS
170	Deep decoupling in subduction zones: Observations and temperature limits. , 2020, 16, 1408-1424.		30
171	Dynamic Upwelling Beneath the Salton Trough Imaged With Teleseismic Attenuation Tomography. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020347.	3.4	6
172	MSS/1: Single‣tation and Singleâ€Event Marsquake Inversion. Earth and Space Science, 2020, 7, e2020EA001118.	2.6	16
173	Quantifying the Relationship Between Shortâ€Wavelength Dynamic Topography and Thermomechanical Structure of the Upper Mantle Using Calibrated Parameterization of Anelasticity. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019062.	3.4	34
174	Structure and dynamics of the oceanic lithosphere-asthenosphere system. Physics of the Earth and Planetary Interiors, 2020, 309, 106559.	1.9	21
175	Evolution of the Oceanic Lithosphere in the Equatorial Atlantic From Rayleigh Wave Tomography, Evidence for Smallâ€Scale Convection From the Plâ€LAB Experiment. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009174.	2.5	29
176	The Nature of the Lithosphereâ€Asthenosphere Boundary. Journal of Geophysical Research: Solid Earth, 2020, 125, e2018JB016463.	3.4	56
177	A comparison of oceanic and continental mantle lithosphere. Physics of the Earth and Planetary Interiors, 2020, 309, 106600.	1.9	20
178	The deep thermochemical structure of the Dabie orogenic belt from multi-observable probabilistic inversion. Tectonophysics, 2020, 787, 228478.	2.2	8
179	Inversion of Longerâ€Period OBS Waveforms for P Structures in the Oceanic Lithosphere and Asthenosphere. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018810.	3.4	6
180	Seismic Attenuation and Velocity Measurements of the Uppermost Mantle Beneath the Central and Eastern United States and Implications for the Temperature of the North American Lithosphere. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB017728.	3.4	2
181	Experimental study of nonlinear damping characteristics on granite and red sandstone under the multi-level cyclic loading-unloading triaxial compression. Arabian Journal of Geosciences, 2020, 13, 1.	1.3	7
182	Global distribution of sediment-hosted metals controlled by craton edge stability. Nature Geoscience, 2020, 13, 504-510.	12.9	114
183	LitMod2D_2.0: An Improved Integrated Geophysicalâ€Petrological Modeling Tool for the Physical Interpretation of Upper Mantle Anomalies. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008777.	2.5	14
184	Shear attenuation and anelastic mechanisms in the central Pacific upper mantle. Earth and Planetary Science Letters, 2020, 536, 116148.	4.4	21
185	Thermochemical Modification of the Upper Mantle Beneath the Northern Malawi Rift Constrained From Shear Velocity Imaging. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008843.	2.5	19
186	Multifrequency Inversion of Ps and Sp Receiver Functions: Methodology and Application to USArray Data. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020350.	3.4	10
187	Experimental investigation of linear damping characteristics on granite and red sandstone under dynamic cyclic loading. European Journal of Environmental and Civil Engineering, 2022, 26, 5259-5278.	2.1	4

#	Article	IF	CITATIONS
188	Dynamical evidence for Phobos and Deimos as remnants of a disrupted common progenitor. Nature Astronomy, 2021, 5, 539-543.	10.1	19
189	The Effect of Pressure on Grainâ€Growth Kinetics in Olivine Aggregates With Some Geophysical Applications. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020886.	3.4	3
190	Mapping the Thermal Lithosphere and Melting Across the Continental US. Geophysical Research Letters, 2021, 48, e2020GL092197.	4.0	4
191	WINTERC-C: mapping the upper mantle thermochemical heterogeneity from coupled geophysical–petrological inversion of seismic waveforms, heat flow, surface elevation and gravity satellite data. Geophysical Journal International, 2021, 226, 146-191.	2.4	49
192	Upper Mantle Anisotropic Shear Velocity Structure at the Equatorial Midâ€Atlantic Ridge Constrained by Rayleigh Wave Group Velocity Analysis From the Pl‣AB Experiment. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009495.	2.5	17
193	Imaging upper mantle anisotropy with teleseismic <i>P</i> -wave delays: insights from tomographic reconstructions of subduction simulations. Geophysical Journal International, 2021, 225, 2097-2119.	2.4	15
194	Electrical conductivity of the lithosphere-asthenosphere system. Physics of the Earth and Planetary Interiors, 2021, 313, 106661.	1.9	10
195	A review of mechanisms generating seismic anisotropy in the upper mantle. Physics of the Earth and Planetary Interiors, 2021, 313, 106662.	1.9	16
197	Thermochemical State of the Upper Mantle Beneath South China From Multiâ€Observable Probabilistic Inversion. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021114.	3.4	12
198	Geophysical and Geochemical Constraints on Neogeneâ€Recent Volcanism in the North American Cordillera. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009637.	2.5	11
199	Inference of thermodynamic state in the asthenosphere from anelastic properties, with applications to North American upper mantle. Physics of the Earth and Planetary Interiors, 2021, 314, 106639.	1.9	20
201	Teleseismic Attenuation, Temperature, and Melt of the Upper Mantle in the Alaska Subduction Zone. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021653.	3.4	10
203	Widespread Hydration of the Back Arc and the Link to Variable Hydration of the Incoming Plate in the Lesser Antilles From Rayleigh Wave Imaging. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009707.	2.5	5
204	Tidally Heated Exomoons around Gas Giants. Planetary Science Journal, 2021, 2, 119.	3.6	7
205	Opposite Symmetry in the Lithospheric Structure of the Alboran and Algerian Basins and Their Margins (Western Mediterranean): Geodynamic Implications. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021388.	3.4	12
206	An apparatus for measuring nonlinear viscoelasticity of minerals at high temperature. Review of Scientific Instruments, 2021, 92, 073902.	1.3	0
207	Lithosphere as a constant-velocity plate: Chasing a dynamical LAB in a homogeneous mantle material. Physics of the Earth and Planetary Interiors, 2021, 316, 106710.	1.9	1
208	The effect of lateral variations in Earth structure on Last Interglacial sea level. Geophysical Journal International, 2021, 227, 1938-1960.	2.4	19

#	Article	IF	CITATIONS
209	A dynamic lithosphere–asthenosphere boundary near the equatorial Mid-Atlantic Ridge. Earth and Planetary Science Letters, 2021, 566, 116949.	4.4	35
210	Seismic Discontinuities Across the North American Caribbean Plate Boundary From Sâ€toâ€P Receiver Functions. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009723.	2.5	5
212	Frequency dependence of attenuation components including mantle leakage in Garhwal Himalaya based on a modified MLTWA method. Geophysical Journal International, 2021, 227, 2156-2179.	2.4	0
213	Shear Velocity Inversion Guided by Resistivity Structure From the Pl‣AB Experiment for Integrated Estimates of Partial Melt in the Mantle. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022202.	3.4	11
214	Lowâ€Frequency Seismic Properties of Olivineâ€Orthopyroxene Mixtures. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022504.	3.4	9
215	Effect of Lateral and Stressâ€Dependent Viscosity Variations on GIA Induced Uplift Rates in the Amundsen Sea Embayment. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009807.	2.5	14
216	Antarctic upper mantle rheology. Geological Society Memoir, 2023, 56, 267-294.	1.7	14
217	The São Francisco cratonic root beneath the Neoproterozoic Brasilia belt (Brazil): Petrophysical data from kimberlite xenoliths. Tectonophysics, 2021, 816, 229011.	2.2	5
218	Mantle temperature and density anomalies: The influence of thermodynamic formulation, melt, and anelasticity. Physics of the Earth and Planetary Interiors, 2021, 319, 106772.	1.9	5
219	Tidal Dissipation in Dual-body, Highly Eccentric, and Nonsynchronously Rotating Systems: Applications to Pluto–Charon and the Exoplanet TRAPPIST-1e. Planetary Science Journal, 2021, 2, 4.	3.6	13
220	Seismic High Attenuation Region Observed Beneath Southern New England From Teleseismic Body Wave Spectra: Evidence for High Asthenospheric Temperature Without Melt. Geophysical Research Letters, 2017, 44, 10,958.	4.0	16
221	Shear wave velocity and radial anisotropy structures beneath the central Pacific from surface wave analysis of OBS records. Earth and Planetary Science Letters, 2020, 534, 116086.	4.4	18
222	Seismic Attenuation Measurement by Cyclic Loading under High Pressure and Temperature. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2014, 24, 126-135.	0.0	1
223	Inferring lo's interior from tidal monitoring. Icarus, 2022, 373, 114737.	2.5	5
226	Notes on a compressible extended Burgers model of rheology. Geophysical Journal International, 2021, 228, 1975-1991.	2.4	11
227	Frequency Dependent Mantle Viscoelasticity via the Complex Viscosity: Cases From Antarctica. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022622.	3.4	16
228	Evidence for Stress Localization Caused by Lithospheric Heterogeneity From Seismic Attenuation. Geochemistry, Geophysics, Geosystems, 2021, 22, .	2.5	1
229	A Reduced Order Approach for Probabilistic Inversions of 3D Magnetotelluric Data II: Joint Inversion of MT and Surfaceâ€Wave Data. Journal of Geophysical Research: Solid Earth, 2021, 126, .	3.4	5

#	Article		CITATIONS
230	Grain boundary diffusion and viscous flow governed mechanical relaxation in polycrystalline materials. Science China Materials, 2022, 65, 1403.	6.3	1
231	Evidence for basalt enrichment in the mantle transition zone from inversion of triplicated P- and S-waveforms. Earth and Planetary Science Letters, 2022, 580, 117387.	4.4	8
232	The tidal–thermal evolution of the Pluto–Charon system. Icarus, 2022, 376, 114871.	2.5	5
233	Evaluation of Recent Measurements of Mercury's Moments of Inertia and Tides Using a Comprehensive Markov Chain Monte Carlo Method. Planetary Science Journal, 2022, 3, 37.	3.6	10
234	Distributed Extension Across the Ethiopian Rift and Plateau Illuminated by Joint Inversion of Surface Waves and Scattered Body Waves. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	2
235	Seismic Attenuation at the Equatorial Midâ€Atlantic Ridge Constrained by Local Rayleigh Wave Analysis From the Plâ€LAB Experiment. Geochemistry, Geophysics, Geosystems, 2021, 22, .	2.5	6
236	Imaging the seismic velocity structure of the crust and upper mantle in the northern East African Rift using Rayleigh wave tomography. Geophysical Journal International, 2022, 230, 2036-2055.	2.4	8
237	Three-dimensional seismic anisotropy in the Pacific upper mantle from inversion of a surface-wave dispersion data set. Geophysical Journal International, 2022, 231, 355-383.	2.4	7
238	Constraining the Internal Structures of Venus and Mars from the Gravity Response to Atmospheric Loading. Planetary Science Journal, 2022, 3, 164.	3.6	6
239	Constraining Upper Mantle Viscosity Using Temperature and Water Content Inferred From Seismic and Magnetotelluric Data. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	4
240	WISTFUL: Wholeâ€Rock Interpretative Seismic Toolbox for Ultramafic Lithologies. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	3
241	Solid Earth tides. , 2023, , 365-387.		0
242	Tidal insights into rocky and icy bodies: an introduction and overview. Advances in Geophysics, 2022, , 231-320.	2.8	12
243	Stress Drops of Intermediateâ€Depth and Deep Earthquakes in the Tonga Slab. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	3
244	Subâ€Lithospheric Smallâ€Scale Convection Tomographically Imaged Beneath the Pacific Plate. Geophysical Research Letters, 2022, 49, .	4.0	4
245	The structure and dynamics of the uppermost mantle of southwestern Canada from a joint analysis of geophysical observations. Journal of Geophysical Research: Solid Earth, 0, , .	3.4	2
246	Presentâ€Day Upperâ€Mantle Architecture of the Alps: Insights From Dataâ€Driven Dynamic Modeling. Geophysical Research Letters, 2022, 49, .	4.0	4
247	Tidal Constraints on the Martian Interior. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	6

#	Article	IF	CITATIONS
248	Rayleigh Wave Attenuation and Amplification Measured at Oceanâ€Bottom Seismometer Arrays Using Helmholtz Tomography. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	2
249	How does seismic attenuation correlate to rheology of crustal rocks? Results from a numerical approach. Global and Planetary Change, 2022, 219, 103978.	3.5	4
250	Joint inversion of PP and SS precursor waveforms and Rayleigh wave phase velocities for global mantle transition zone structure. Geophysical Journal International, 2022, 233, 316-337.	2.4	1
251	Mantle structure and dynamics at the eastern boundary of the northern Cascadia backarc. Journal of Geodynamics, 2023, 155, 101958.	1.6	1
252	Comparison of the Effects of Different Viscoelastic and Temperature Models on the Theoretical Tidal Response of the Moon. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	3
253	Mantle thermochemical variations beneath the continental United States through petrologic interpretation of seismic tomography. Earth and Planetary Science Letters, 2023, 602, 117965.	4.4	1
254	Joint Analysis of Seismic and Electrical Observables Beneath the Central Appalachians Requires Partial Melt in the Upper Mantle. Geochemistry, Geophysics, Geosystems, 2023, 24, .	2.5	1
255	Rapid solidification of Earth's magma ocean limits early lunar recession. Icarus, 2023, 400, 115564.	2.5	1
256	Longâ€Distance Asthenospheric Transport of Plumeâ€Influenced Mantle From Afar to Anatolia. Geochemistry, Geophysics, Geosystems, 2023, 24, .	2.5	3
258	Slab to back-arc to arc: Fluid and melt pathways through the mantle wedge beneath the Lesser Antilles. Science Advances, 2023, 9, .	10.3	5
259	Asthenospheric low-velocity zone consistent with globally prevalent partial melting. Nature Geoscience, 2023, 16, 175-181.	12.9	15
260	Inference of the Timescaleâ€Dependent Apparent Viscosity Structure in the Upper Mantle Beneath Greenland. AGU Advances, 2023, 4, .	5.4	7
261	Elastic and anelastic adjoint tomography with and full Hessian kernels. Geophysical Journal International, 2023, 234, 1205-1235.	2.4	0
262	The Midâ€Lithospheric Discontinuity Caused by Channel Flow in Protoâ€Cratonic Mantle. Journal of Geophysical Research: Solid Earth, 2023, 128, .	3.4	2
263	Tidal Heating in Io. Elements, 2022, 18, 374-378.	0.5	3
264	Mantle heterogeneity caused by trapped water in the Southwest Basin of the South China Sea. Nature Communications, 2023, 14, .	12.8	1
265	Grain size reduction by plug flow in the wet oceanic upper mantle explains the asthenosphere's low seismic Q zone. Earth and Planetary Science Letters, 2023, 616, 118232.	4.4	1
266	Is There a Semiâ€Molten Layer at the Base of the Lunar Mantle?. Journal of Geophysical Research E: Planets, 2023, 128, .	3.6	3

		CITATION REPORT		
#	Article		IF	Citations
268	Tidal Heating and the Interior Structure of Io. Astrophysics and Space Science Library, 2023,	, 95-146.	2.7	0
269	Tidally heated exomoons around <i>ïµ</i> Eridani b: Observability and prospects for charact Astronomy and Astrophysics, 2023, 675, A57.	erization.	5.1	3
270	Plate Age and Uppermost Mantle Structure Across the Juan de Fuca and Gorda Plates. Journa Geophysical Research: Solid Earth, 2023, 128, .	al of	3.4	2
271	Seismic Architecture of the Lithosphere-Asthenosphere System in the Western United State Joint Inversion of Body- and Surface-wave Observations: Distribution of Partial Melt in the Up Mantle. , 2023, 2, .	s from a oper		2
272	3D Sensitivity Kernels With Full Attenuation Computed by a Combination of the Strong Stal Preserving Rungeâ€Kutta Method and the Scatteringâ€Integral Method. Journal of Geophysi Solid Earth, 2023, 128, .		3.4	0
273	Lithospheric Structure of the Circumâ€Pannonian Region Imaged by Sâ€Toâ€P Receiver Fun Geochemistry, Geophysics, Geosystems, 2023, 24, .	ctions.	2.5	4
274	Geophysicalâ€petrological modelling of the crust and upper mantle structure across the Nor Gravity Lineament in <scp>NE</scp> China: Insights into the lithospheric thinning mechanis Nova, 2024, 36, 148-160.	thâ€ S outh m. Terra	2.1	0
275	Effect of water on seismic attenuation of the upper mantle: The origin of the sharp lithosphere–asthenosphere boundary. Proceedings of the National Academy of Sciences o States of America, 2023, 120, .	f the United	7.1	2
276	Internal Structure of Venus Based on the PREM Model. Solar System Research, 2023, 57, 41	4-425.	0.7	1
277	æœ^å¹"å⁰•部ç²~弹性结构ç"究现状. Scientia Sinica: Physica, Mechanica Et Astror	nomica, 2023, , .	0.4	0
278	Geophysical evidence for an enriched molten silicate layer above Mars's core. Nature, 20	023, 622, 712-717.	27.8	7
279	Anthropocene isostatic adjustment on an anelastic mantle. Journal of Geodesy, 2023, 97, .		3.6	0
280	GIA imaging of 3D mantle viscosity based on palaeo sea-level observations - Part I: Sensitivity for an Earth with laterally varying viscosity. Geophysical Journal International, 0, , .	y kernels	2.4	0
281	Lateral Variations in Teleseismic Attenuation of the Conterminous U.S. and New Insights Der Its Relationship to Mantle Seismic Velocity. Journal of Geophysical Research: Solid Earth, 202		3.4	0
282	Changes in grain size during the stress relaxation stage of viscoelastic firn. Philosophical Ma 2024, 104, 239-259.	gazine,	1.6	0
283	Seismic Thermography. Bulletin of the Seismological Society of America, 0, , .		2.3	0
284	The onset of anelastic behavior in fine-grained synthetic dunite. Physics of the Earth and Plai Interiors, 2024, 350, 107160.	netary	1.9	0
285	The impact of rheology model choices on tidal heating studies. Icarus, 2024, 414, 116026.		2.5	0

#	Article	IF	CITATIONS
286	Anelasticity of the lower mantle inferred from the pole and lunar monthly tides using global DORIS coordinate time series. Global and Planetary Change, 2024, 236, 104415.	3.5	0