Brown Fat and the Myth of Diet-Induced Thermogenesi

Cell Metabolism 11, 263-267 DOI: 10.1016/j.cmet.2010.03.009

Citation Report

#	Article	IF	CITATIONS
1	Homeostatic non-shivering thermogenesis in humans facts and hypotheses. Human Physiology, 2010, 36, 599-614.	0.1	8
2	Three years with adult human brown adipose tissue. Annals of the New York Academy of Sciences, 2010, 1212, E20-36.	1.8	145
3	The Genetics of Brown Adipose Tissue. Progress in Molecular Biology and Translational Science, 2010, 94, 75-123.	0.9	20
4	Brown adipose tissue function in short-chain acyl-CoA dehydrogenase deficient mice. Biochemical and Biophysical Research Communications, 2010, 400, 318-322.	1.0	6
5	Homeostastic and non-homeostatic functions of melanocortin-3 receptors in the control of energy balance and metabolism. Physiology and Behavior, 2011, 104, 546-554.	1.0	26
6	Melanocortin-4 Receptors Expressed by Cholinergic Neurons Regulate Energy Balance and Glucose Homeostasis. Cell Metabolism, 2011, 13, 195-204.	7.2	531
7	Playtime Prevents Obesity by Brain-Mediated Fat Browning. Cell Metabolism, 2011, 14, 287-288.	7.2	1
8	Orexin Is Required for Brown Adipose Tissue Development, Differentiation, and Function. Cell Metabolism, 2011, 14, 478-490.	7.2	225
9	Regulated expression of acyl-CoA thioesterases in the differentiation of cultured rat brown adipocytes. Biochemical and Biophysical Research Communications, 2011, 404, 74-78.	1.0	18
10	The physiological regulation of glucose flux into muscle <i>in vivo</i> . Journal of Experimental Biology, 2011, 214, 254-262.	0.8	128
11	Human Brown Fat and Obesity: Methodological Aspects. Frontiers in Endocrinology, 2011, 2, 52.	1.5	9
12	The Genetics of Brown Adipocyte Induction in White Fat Depots. Frontiers in Endocrinology, 2011, 2, 64.	1.5	37
13	Therapeutic prospects of metabolically active brown adipose tissue in humans. Frontiers in Endocrinology, 2011, 2, 86.	1.5	20
14	Brown fat biology and thermogenesis. Frontiers in Bioscience - Landmark, 2011, 16, 1233.	3.0	190
15	Predicting Changes of Body Weight, Body Fat, Energy Expenditure and Metabolic Fuel Selection in C57BL/6 Mice. PLoS ONE, 2011, 6, e15961.	1.1	53
16	Brown adipose tissue in humans. Current Opinion in Lipidology, 2011, 22, 49-54.	1.2	40
17	Differential Computed Tomographic Attenuation of Metabolically Active and Inactive Adipose Tissues. Journal of Computer Assisted Tomography, 2011, 35, 65-71.	0.5	66
18	Brown adipose tissue and aging. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 1-6.	1.3	42

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
19	Brown fat and obesity: the next big thing?. Clinical Endocrinology, 2011, 74, 661-670.	1.2	57
20	Ageâ€Related Decrease in Coldâ€Activated Brown Adipose Tissue and Accumulation of Body Fat in Healthy Humans. Obesity, 2011, 19, 1755-1760.	1.5	402
21	Does Functional Brown Adipose Tissue Play an Integral Role in Pediatric Energy Balance and Metabolism?. Journal of Pediatrics, 2011, 159, 881-883.	0.9	2
22	Implications of nonshivering thermogenesis for energy balance regulation in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R285-R296.	0.9	245
23	The Implication of Brown Adipose Tissue for Humans. Annual Review of Nutrition, 2011, 31, 33-47.	4.3	140
24	The Regulation and Physiology of Mitochondrial Proton Leak. Physiology, 2011, 26, 192-205.	1.6	335
25	Nonshivering thermogenesis and its adequate measurement in metabolic studies. Journal of Experimental Biology, 2011, 214, 242-253.	0.8	563
26	Re-patterning of Skeletal Muscle Energy Metabolism by Fat Storage-inducing Transmembrane Protein 2. Journal of Biological Chemistry, 2011, 286, 42188-42199.	1.6	28
27	An Orexinergic Projection from Perifornical Hypothalamus to Raphe Pallidus Increases Rat Brown Adipose Tissue Thermogenesis. Journal of Neuroscience, 2011, 31, 15944-15955.	1.7	199
28	Disruption of Thyroid Hormone Activation in Type 2 Deiodinase Knockout Mice Causes Obesity With Glucose Intolerance and Liver Steatosis Only at Thermoneutrality. Diabetes, 2011, 60, 1082-1089.	0.3	123
29	Inactivation of the Mitochondrial Carrier SLC25A25 (ATP-Mg2+/Pi Transporter) Reduces Physical Endurance and Metabolic Efficiency in Mice. Journal of Biological Chemistry, 2011, 286, 11659-11671.	1.6	80
30	MicroRNAs in adipogenesis and as therapeutic targets for obesity. Expert Opinion on Therapeutic Targets, 2011, 15, 623-636.	1.5	98
31	Uncoupling protein 1 expression and high-fat diets. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R1-R8.	0.9	154
32	Glucoprivation in the ventrolateral medulla decreases brown adipose tissue sympathetic nerve activity by decreasing the activity of neurons in raphé pallidus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R224-R232.	0.9	33
33	Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R459-R476.	0.9	185
34	Regulation of tissue crosstalk by skeletal muscle-derived myonectin and other myokines. Adipocyte, 2012, 1, 200-202.	1.3	53
35	The effects of early under-nutrition on the development of wBAT and obesity. Adipocyte, 2012, 1, 265-270.	1.3	2
36	Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet. FASEB Journal, 2012, 26, 2351-2362.	0.2	101

#	ARTICLE Increased Energy Expenditure in Gastric Bypass Rats Is Not Caused by Activated Brown Adipose Tissue.	IF 1.6	CITATIONS 20
38	Obesity Facts, 2012, 5, 349-358. Brown Remodeling of White Adipose Tissue by SirT1-Dependent Deacetylation of PparÎ ³ . Cell, 2012, 150, 620-632.	13.5	664
39	Brown Adipose Tissue. Circulation, 2012, 125, 2782-2791.	1.6	101
40	S6K1 in the Central Nervous System Regulates Energy Expenditure via MC4R/CRH Pathways in Response to Deprivation of an Essential Amino Acid. Diabetes, 2012, 61, 2461-2471.	0.3	41
41	The Evolution of Mammalian Adipose Tissue. , 2012, , 227-269.		9
42	Adipose Tissue Biology. , 2012, , .		16
43	Heat from calcium cycling melts fat. Nature Medicine, 2012, 18, 1458-1459.	15.2	12
44	Major Facilitator Superfamily Domain-Containing Protein 2a (MFSD2A) Has Roles in Body Growth, Motor Function, and Lipid Metabolism. PLoS ONE, 2012, 7, e50629.	1.1	82
45	Brown fat tissue – a potential target to combat obesity. Bratislava Medical Journal, 2012, 113, 52-56.	0.4	12
46	The prolonged survival of fibroblasts with forced lipid catabolism in visceral fat following encapsulation in alginate-poly-l-lysine. Biomaterials, 2012, 33, 5638-5649.	5.7	15
47	Variations in T2* and fat content of murine brown and white adipose tissues by chemical-shift MRI. Magnetic Resonance Imaging, 2012, 30, 323-329.	1.0	42
48	Adaptive thermogenesis with weight loss in humans. Obesity, 2013, 21, 218-228.	1.5	119
49	Sarcolipin trumps βâ€adrenergic receptor signaling as the favored mechanism for muscleâ€based dietâ€induced thermogenesis. FASEB Journal, 2013, 27, 3871-3878.	0.2	50
50	Epigenetics and Obesity: A Relationship Waiting to Be Explained. Human Heredity, 2013, 75, 90-97.	0.4	29
51	Novel Aspects of Brown Adipose Tissue Biology. Endocrinology and Metabolism Clinics of North America, 2013, 42, 89-107.	1.2	35
52	Brown adipose tissue activity after a high-calorie meal in humans. American Journal of Clinical Nutrition, 2013, 98, 57-64.	2.2	134
53	Melanocortin-3 Receptors and Metabolic Homeostasis. Progress in Molecular Biology and Translational Science, 2013, 114, 109-146.	0.9	31
54	The 2012 CDA-CIHR INMD Young Investigator Award Lecture: Dysfunction of Adipose Tissues and the Mechanisms of Ectopic Fat Deposition in Type 2 Diabetes. Canadian Journal of Diabetes, 2013, 37, 109-114.	0.4	3

#	Article	IF	CITATIONS
55	Prolonged diet induced obesity has minimal effects towards brain pathology in mouse model of cerebral amyloid angiopathy: Implications for studying obesity–brain interactions in mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1456-1462.	1.8	17
56	Mitochondrial Dynamics in the Regulation of Nutrient Utilization and Energy Expenditure. Cell Metabolism, 2013, 17, 491-506.	7.2	1,043
57	Integration of sensory information via central thermoregulatory leptin targets. Physiology and Behavior, 2013, 121, 49-55.	1.0	45
58	Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: A key to lean phenotype. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 986-1003.	1.2	125
59	Understanding the brown adipocyte as a contributor to energy homeostasis. Trends in Endocrinology and Metabolism, 2013, 24, 408-420.	3.1	85
60	Increased adipose tissue hypoxia and capacity for angiogenesis and inflammation in young diet-sensitive C57 mice compared with diet-resistant FVB mice. International Journal of Obesity, 2013, 37, 853-860.	1.6	32
61	Relevance of brown adipose tissue in infancy and adolescence. Pediatric Research, 2013, 73, 3-9.	1.1	74
62	Brown Adipose Tissue Thermogenesis. Cardiology in Review, 2013, 21, 265-269.	0.6	55
63	Brown adipose tissue thermogenesis in the resistance to and reversal of obesity. Adipocyte, 2013, 2, 196-200.	1.3	12
64	Thioesterase Superfamily Member 2/Acyl-CoA Thioesterase 13 (Them2/Acot13) Regulates Adaptive Thermogenesis in Mice. Journal of Biological Chemistry, 2013, 288, 33376-33386.	1.6	28
65	Brown Adipose Tissue Growth and Development. Scientifica, 2013, 2013, 1-14.	0.6	99
66	Brown Adipose Tissue: Research Milestones of a Potential Player in Human Energy Balance and Obesity. Hormone and Metabolic Research, 2013, 45, 774-785.	0.7	39
67	Effects of dietary protein to carbohydrate balance on energy intake, fat storage, and heat production in mice. Obesity, 2013, 21, 85-92.	1.5	62
68	Scientific Opinion on Dietary Reference Values for energy. EFSA Journal, 2013, 11, 3005.	0.9	157
69	Brown Adipose Tissue as a Regulator of Energy Expenditure and Body Fat in Humans. Diabetes and Metabolism Journal, 2013, 37, 22.	1.8	113
70	New Physiological Aspects of Brown Adipose Tissue. Current Obesity Reports, 2014, 3, 414-421.	3.5	6
71	Central Nervous System Regulation of Brown Adipose Tissue. , 2014, 4, 1677-1713.		110
72	Acupuncture promotes white adipose tissue browning by inducing UCP1 expression on DIO mice. BMC Complementary and Alternative Medicine, 2014, 14, 501.	3.7	37

#	Article	IF	CITATIONS
73	Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Molecular Metabolism, 2014, 3, 474-483.	3.0	126
74	Neural melanocortin receptors in obesity and related metabolic disorders. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 482-494.	1.8	94
75	Brown adipose tissue as an antiâ€obesity tissue in humans. Obesity Reviews, 2014, 15, 92-106.	3.1	71
76	Thyroid Hormone, Thyromimetics, and Metabolic Efficiency. Endocrine Reviews, 2014, 35, 35-58.	8.9	37
77	Brown fat fuel utilization and thermogenesis. Trends in Endocrinology and Metabolism, 2014, 25, 168-177.	3.1	261
78	Brown adipose tissue, thermogenesis, angiogenesis: pathophysiological aspects. Hormone Molecular Biology and Clinical Investigation, 2014, 19, 5-11.	0.3	14
79	Brown adipose tissue: endocrine determinants of function and therapeutic manipulation as a novel treatment strategy for obesity. BMC Obesity, 2014, 1, 13.	3.1	25
80	Carotenoids as a Nutraceutical Therapy for Visceral Obesity. , 2014, , 329-340.		1
81	Thermogenic adipocytes: From cells to physiology and medicine. Metabolism: Clinical and Experimental, 2014, 63, 1238-1249.	1.5	46
82	Leanness and heightened nonresting energy expenditure: role of skeletal muscle activity thermogenesis. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E635-E647.	1.8	49
83	Adipose tissue plasticity from WAT to BAT and in between. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 358-369.	1.8	166
84	Brown adipose tissue: what have we learned since its recent identification in human adults. Arquivos Brasileiros De Endocrinologia E Metabologia, 2014, 58, 889-899.	1.3	18
85	Acute Adaptation of Energy Expenditure Predicts Diet-Induced Weight Loss: Revisiting the Thrifty Phenotype: Figure 1. Diabetes, 2015, 64, 2714-2716.	0.3	4
86	IRE1α-XBP1 is a novel branch in the transcriptional regulation of Ucp1 in brown adipocytes. Scientific Reports, 2015, 5, 16580.	1.6	28
87	A New Role for Browning as a Redox and Stress Adaptive Mechanism?. Frontiers in Endocrinology, 2015, 6, 158.	1.5	40
88	Brown Adipose Tissue: A Human Perspective. Handbook of Experimental Pharmacology, 2015, 233, 301-319.	0.9	25
89	Adipose Fatty Acid Oxidation Is Required for Thermogenesis and Potentiates Oxidative Stress-Induced Inflammation. Cell Reports, 2015, 10, 266-279.	2.9	169
90	The Ontogeny of Brown Adipose Tissue. Annual Review of Nutrition, 2015, 35, 295-320.	4.3	99

#	Article	IF	CITATIONS
91	Renaissance of brown adipose tissue research: integrating the old and new. International Journal of Obesity Supplements, 2015, 5, S7-S10.	12.5	8
92	A critical appraisal of brown adipose tissue metabolism in humans. Clinical Lipidology, 2015, 10, 259-280.	0.4	20
93	Human Brown Adipose Tissue: What We Have Learned So Far. Diabetes, 2015, 64, 2352-2360.	0.3	171
94	cGMP and Brown Adipose Tissue. Handbook of Experimental Pharmacology, 2015, 233, 283-299.	0.9	20
95	Activation and recruitment of brown adipose tissue as anti-obesity regimens in humans. Annals of Medicine, 2015, 47, 133-141.	1.5	69
96	Can thermogenic adipocytes protect from obesity?. Journal of Physiology and Biochemistry, 2015, 71, 847-853.	1.3	3
97	Neuronal Control of Brown Fat Activity. Trends in Endocrinology and Metabolism, 2015, 26, 657-668.	3.1	53
98	Molecular pathways linking nonâ€shivering thermogenesis and obesity: focusing on brown adipose tissue development. Biological Reviews, 2015, 90, 77-88.	4.7	36
99	The "Skinny―on brown fat, obesity, and bone. American Journal of Physical Anthropology, 2015, 156, 98-115.	2.1	24
100	Brown, Beige, and White: The New Color Code of Fat and Its Pharmacological Implications. Annual Review of Pharmacology and Toxicology, 2015, 55, 207-227.	4.2	127
101	Adipose Tissue Remodeling During Endurance Training. Exercise and Sport Sciences Reviews, 2016, 44, 3.	1.6	2
102	Could burning fat start with a brite spark? Pharmacological and nutritional ways to promote thermogenesis. Molecular Nutrition and Food Research, 2016, 60, 18-42.	1.5	39
103	Chronic leucine supplementation improves lipid metabolism in C57BL/6J mice fed with a high-fat/cholesterol diet. Food and Nutrition Research, 2016, 60, 31304.	1.2	41
104	MECHANISMS IN ENDOCRINOLOGY: Brown adipose tissue in humans: regulation and metabolic significance. European Journal of Endocrinology, 2016, 175, R11-R25.	1.9	19
105	Thermoneutrality, Mice, and Cancer: A Heated Opinion. Trends in Cancer, 2016, 2, 166-175.	3.8	86
106	The thermogenic responses to overfeeding and cold are differentially regulated. Obesity, 2016, 24, 96-101.	1.5	30
107	Brown adipose tissue: The heat is on the heart. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1592-H1605.	1.5	34
108	Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure. Cell Metabolism, 2016, 23, 1216-1223.	7.2	274

#	Article	IF	CITATIONS
109	Immunity-Based Evolutionary Interpretation of Diet-Induced Thermogenesis. Cell Metabolism, 2016, 23, 971-979.	7.2	14
110	Tadalafil reduces visceral adipose tissue accumulation by promoting preadipocytes differentiation towards a metabolically healthy phenotype: Studies in rabbits. Molecular and Cellular Endocrinology, 2016, 424, 50-70.	1.6	22
112	The K ⁺ channel TASK1 modulates βâ€adrenergic response in brown adipose tissue through the mineralocorticoid receptor pathway. FASEB Journal, 2016, 30, 909-922.	0.2	33
113	Proximate causes for diet-induced obesity in laboratory mice: a case study. European Journal of Clinical Nutrition, 2017, 71, 306-317.	1.3	10
114	Glucocorticoids modulate human brown adipose tissue thermogenesis in vivo. Metabolism: Clinical and Experimental, 2017, 70, 125-132.	1.5	49
115	OPA1 in Lipid Metabolism: Function of OPA1 in Lipolysis and Thermogenesis of Adipocytes. Hormone and Metabolic Research, 2017, 49, 276-285.	0.7	20
116	Sexual Function, Obesity, and Weight Loss in Men and Women. Sexual Medicine Reviews, 2017, 5, 323-338.	1.5	68
117	Adipose Tissue Biology. , 2017, , .		7
118	Chronic high-fat feeding impairs adaptive induction of mitochondrial fatty acid combustion-associated proteins in brown adipose tissue of mice. Biochemistry and Biophysics Reports, 2017, 10, 32-38.	0.7	26
119	Brown Adipose Tissue as a Therapeutic Target. , 2017, , 301-317.		0
120	Causes of Severe Obesity: Genes to Environment. , 2017, , 21-36.		2
121	Induction of lipogenesis in white fat during cold exposure in mice: link to lean phenotype. International Journal of Obesity, 2017, 41, 372-380.	1.6	38
122	Hormonal factors in the control of the browning of white adipose tissue. Hormone Molecular Biology and Clinical Investigation, 2017, 31, .	0.3	12
123	Obesity-associated gene <i>TMEM18</i> has a role in the central control of appetite and body weight regulation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9421-9426.	3.3	57
124	Brown Adipose Tissue: an Update on Recent Findings. Current Obesity Reports, 2017, 6, 389-396.	3.5	144
125	Adaptive facultative diet-induced thermogenesis in wild-type but not in UCP1-ablated mice. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E515-E527.	1.8	72
126	The Significance of Epidermal Lipid Metabolism in Whole-Body Physiology. Trends in Endocrinology and Metabolism, 2017, 28, 669-683.	3.1	36
127	â€~Browning' the cardiac and peri-vascular adipose tissues to modulate cardiovascular risk. International Journal of Cardiology, 2017, 228, 265-274.	0.8	108

#	Article	IF	CITATIONS
128	Origins and early development of the concept that brown adipose tissue thermogenesis is linked to energy balance and obesity. Biochimie, 2017, 134, 62-70.	1.3	73
129	Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy. Advances in Experimental Medicine and Biology, 2017, , .	0.8	9
130	The Impact of Housing Temperature-Induced Chronic Stress on Preclinical Mouse Tumor Models and Therapeutic Responses: An Important Role for the Nervous System. Advances in Experimental Medicine and Biology, 2017, 1036, 173-189.	0.8	25
131	An emerging role for epigenetic regulation of Pgc-1α expression in environmentally stimulated brown adipose thermogenesis. Environmental Epigenetics, 2017, 3, dvx009.	0.9	32
132	Skeletal Muscle Thermogenesis and Its Role in Whole Body Energy Metabolism. Diabetes and Metabolism Journal, 2017, 41, 327.	1.8	125
133	Reducing Smad3/ATF4 was essential for Sirt1 inhibiting ER stress-induced apoptosis in mice brown adipose tissue. Oncotarget, 2017, 8, 9267-9279.	0.8	44
134	Effects of long-term sucrose overfeeding on rat brown adipose tissue: a structural and immunohistochemical study. Journal of Experimental Biology, 2018, 221, .	0.8	6
135	Disruptions in gut microbial-host co-metabolism and the development of metabolic disorders. Clinical Science, 2018, 132, 791-811.	1.8	32
136	Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nature Reviews Endocrinology, 2018, 14, 77-87.	4.3	238
137	A hot lunch for herbivores: physiological effects of elevated temperatures on mammalian feeding ecology. Biological Reviews, 2018, 93, 674-692.	4.7	34
138	Biology and pathological implications of brown adipose tissue: promises and caveats for the control of obesity and its associated complications. Biological Reviews, 2018, 93, 1145-1164.	4.7	16
139	Low-protein diet-induced hyperphagia and adiposity are modulated through interactions involving thermoregulation, motor activity, and protein quality in mice. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E139-E151.	1.8	26
140	Secretin-Activated Brown Fat Mediates Prandial Thermogenesis to Induce Satiation. Cell, 2018, 175, 1561-1574.e12.	13.5	167
141	Programming mediated by fatty acids affects uncoupling protein 1 (UCP-1) in brown adipose tissue. British Journal of Nutrition, 2018, 120, 619-627.	1.2	15
142	Glucagon-like peptide-1 regulates brown adipose tissue thermogenesis via the gut-brain axis in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R708-R720.	0.9	39
143	Decrease of Perivascular Adipose Tissue Browning Is Associated With Vascular Dysfunction in Spontaneous Hypertensive Rats During Aging. Frontiers in Physiology, 2018, 9, 400.	1.3	17
144	Global Transcriptome Analysis of Brown Adipose Tissue of Diet-Induced Obese Mice. International Journal of Molecular Sciences, 2018, 19, 1095.	1.8	17
145	A2A Receptor Activation Attenuates Hypertensive Cardiac Remodeling via Promoting Brown Adipose Tissue-Derived FGF21. Cell Metabolism, 2018, 28, 476-489.e5.	7.2	80

#	Article	IF	CITATIONS
146	Postprandial Oxidative Metabolism of Human Brown Fat Indicates Thermogenesis. Cell Metabolism, 2018, 28, 207-216.e3.	7.2	146
147	Skin temperature response to a liquid meal intake is different in men than in women. Clinical Nutrition, 2019, 38, 1339-1347.	2.3	10
148	Human brown adipose tissue: Underestimated target in metabolic disease?. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 104-112.	1.2	33
149	The role of brown and beige adipose tissue in glycaemic control. Molecular Aspects of Medicine, 2019, 68, 90-100.	2.7	33
150	Fifty shades of brown: The functions, diverse regulation and evolution of brown adipose tissue. Molecular Aspects of Medicine, 2019, 68, 1-5.	2.7	3
151	BCL6 regulates brown adipocyte dormancy to maintain thermogenic reserve and fitness. Proceedings of the United States of America, 2019, 116, 17071-17080.	3.3	17
152	Gain of Metabolic Benefit with Ablation of miR-149-3p from Subcutaneous Adipose Tissue in Diet-Induced Obese Mice. Molecular Therapy - Nucleic Acids, 2019, 18, 194-203.	2.3	10
153	Metabolic adaptation and maladaptation in adipose tissue. Nature Metabolism, 2019, 1, 189-200.	5.1	224
154	Adipocyte MTERF4 regulates non-shivering adaptive thermogenesis and sympathetic-dependent glucose homeostasis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1298-1312.	1.8	5
155	ENOblock inhibits the pathology of diet-induced obesity. Scientific Reports, 2019, 9, 493.	1.6	9
156	Metabolic response to fasting predicts weight gain during low-protein overfeeding in lean men: further evidence for spendthrift and thrifty metabolic phenotypes. American Journal of Clinical Nutrition, 2019, 110, 593-604.	2.2	29
157	Role of Mitochondria in Adipose Tissues Metabolism and Plasticity. , 2019, , 173-194.		1
158	Intact innervation is essential for diet-induced recruitment of brown adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E487-E503.	1.8	54
159	Carotenoids as a Nutraceutical Therapy for Visceral Obesity. , 2019, , 459-477.		5
160	Metabolic Benefits of MicroRNA-22 Inhibition. Nucleic Acid Therapeutics, 2020, 30, 104-116.	2.0	17
161	Metabolic regulation and the anti-obesity perspectives of brown adipose tissue (BAT); a systematic review. Obesity Medicine, 2020, 17, 100163.	0.5	6
162	Pathophysiological connections between gallstone disease, insulin resistance, and obesity. Obesity Reviews, 2020, 21, e12983.	3.1	32
163	Leptin: ls It Thermogenic?. Endocrine Reviews, 2020, 41, 232-260.	8.9	47

#	Article	IF	CITATIONS
164	Metabolic Improvement via Enhancing Thermogenic Fat-Mediated Non-shivering Thermogenesis: From Rodents to Humans. Frontiers in Endocrinology, 2020, 11, 633.	1.5	12
165	Secreted Phospholipase PLA2G2D Contributes to Metabolic Health by Mobilizing ω3 Polyunsaturated Fatty Acids in WAT. Cell Reports, 2020, 31, 107579.	2.9	42
166	Brown Adipose Tissue, Diet-Induced Thermogenesis, and Thermogenic Food Ingredients: From Mice to Men. Frontiers in Endocrinology, 2020, 11, 222.	1.5	131
167	Concurrent EPA and DHA Supplementation Impairs Brown Adipogenesis of C2C12 Cells. Frontiers in Genetics, 2020, 11, 531.	1.1	5
168	A Genetic Model to Study the Contribution of Brown and Brite Adipocytes to Metabolism. Cell Reports, 2020, 30, 3424-3433.e4.	2.9	31
169	TMAVA, a Metabolite of Intestinal Microbes, Is Increased in Plasma From Patients With Liver Steatosis, Inhibits 1³-Butyrobetaine Hydroxylase, and Exacerbates Fatty Liver in Mice. Gastroenterology, 2020, 158, 2266-2281.e27.	0.6	87
170	The gut hormone secretin triggers a gut–brown fat–brain axis in the control of food intake. Experimental Physiology, 2020, 105, 1206-1213.	0.9	13
171	Nutraceutical characteristics of the brown seaweed carotenoid fucoxanthin. Archives of Biochemistry and Biophysics, 2020, 686, 108364.	1.4	74
172	Relation of diet-induced thermogenesis to brown adipose tissue activity in healthy men. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E93-E101.	1.8	20
173	MiR-22 modulates brown adipocyte thermogenesis by synergistically activating the glycolytic and mTORC1 signaling pathways. Theranostics, 2021, 11, 3607-3623.	4.6	16
174	Berberine modulates deacetylation of PPARÎ ³ to promote adipose tissue remodeling and thermogenesis via AMPK/SIRT1 pathway. International Journal of Biological Sciences, 2021, 17, 3173-3187.	2.6	28
175	<i>Bacteroides uniformis</i> combined with fiber amplifies metabolic and immune benefits in obese mice. Gut Microbes, 2021, 13, 1-20.	4.3	81
176	Circadian control of brown adipose tissue. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158961.	1.2	6
177	Brown adipocyte ATF4 activation improves thermoregulation and systemic metabolism. Cell Reports, 2021, 36, 109742.	2.9	15
178	Isoleucine, PPAR and Uncoupling Proteins. , 2015, , 41-47.		1
179	The Evolution of Mammalian Adipose Tissues. , 2017, , 1-59.		11
180	Brown Adipose Tissue: A Seasonal Tissue in Mammals, Including Humans?. , 2012, , 447-458.		1
181	Regulation of thermogenic adipocytes during fasting and cold. Molecular and Cellular Endocrinology, 2020, 512, 110869.	1.6	23

#	Article	IF	CITATIONS
184	Thermogenic profiling using magnetic resonance imaging of dermal and other adipose tissues. JCI Insight, 2016, 1, e87146.	2.3	26
185	Yes, even human brown fat is on fire!. Journal of Clinical Investigation, 2012, 122, 486-489.	3.9	52
186	Inherent Plasticity of Brown Adipogenesis in White Fat of Mice Allows for Recovery from Effects of Post-Natal Malnutrition. PLoS ONE, 2012, 7, e30392.	1.1	25
187	The Biological Clock is Regulated by Adrenergic Signaling in Brown Fat but is Dispensable for Cold-Induced Thermogenesis. PLoS ONE, 2013, 8, e70109.	1.1	33
188	Effect of Intermittent Cold Exposure on Brown Fat Activation, Obesity, and Energy Homeostasis in Mice. PLoS ONE, 2014, 9, e85876.	1.1	110
189	Brown Adipose Tissue Activation Is Inversely Related to Central Obesity and Metabolic Parameters in Adult Human. PLoS ONE, 2015, 10, e0123795.	1.1	84
190	Anti-Obesity Therapy by Food Component: Unique Activity of Marine Carotenoid, Fucoxanthin. Obesity & Control Therapies: Open Access, 2013, 1, .	0.3	4
191	The role and possible mechanism of IncRNA AC092159.2 in modulating adipocyte differentiation. Journal of Molecular Endocrinology, 2019, 62, 137-148.	1.1	9
192	Metabolic Response to Fasting Predicts Weight Gain During Low-Protein Overfeeding: Further Evidence for Spendthrift and Thrifty Metabolic Phenotypes. SSRN Electronic Journal, 0, , .	0.4	1
193	Anti-Obesity Effect of n-3 Polyunsaturated Fatty Acids in Mice Fed High-Fat Diet Is Independent of Cold-Induced Thermogenesis. Physiological Research, 2013, 62, 153-161.	0.4	48
194	An alternative splicing program promotes adipose tissue thermogenesis. ELife, 2016, 5, .	2.8	55
195	Brown Adipose Tissue: A New Target for Antiobesity Therapy. Indonesian Biomedical Journal, 2010, 2, 4.	0.2	1
196	The Alterations of Energy Metabolism-related Protein Patterns in Brown Adipose Tissue of Rats During Cold-induced Thermogenesis. Progress in Biochemistry and Biophysics, 2010, 37, 1108-1119.	0.3	0
198	The Relationship Between High-Fat Diet and Fibronectın Type III Domaın Containing Protein 5 mRNA Expression. Anadolu Kliniği Tıp Bilimleri Dergisi, 0, , .	0.1	0
199	Adipocyte dysfunction and hypertension. American Journal of Cardiovascular Disease, 2012, 2, 143-9.	0.5	19
200	Fluvastatin Reduces Glucose Tolerance in Healthy Young Individuals Independently of Cold Induced BAT Activity. Frontiers in Endocrinology, 2021, 12, 765807.	1.5	2
201	The Physiology of Bodyweight Regulation. , 2022, , 1808-1814.		0
202	Diet-Induced Thermogenesis: Principles and Pitfalls. Methods in Molecular Biology, 2022, 2448, 177-202.	0.4	8

		CITATION REPORT		
#	Article	IF	CITATIONS	
203	Diverse and Complementary Effects of Ghrelin and Obestatin. Biomolecules, 2022, 12, 517.	1.8	13	
204	PET/MRI-evaluated brown adipose tissue activity may be related to dietary MUFA and omega-6 fatty acids intake. Scientific Reports, 2022, 12, 4112.	1.6	6	
205	Brown Adipose Tissue—A Translational Perspective. Endocrine Reviews, 2023, 44, 143-192.	8.9	49	
206	Could the ketogenic diet induce a shift in thyroid function and support a metabolic advantage in healthy participants? A pilot randomized-controlled-crossover trial. PLoS ONE, 2022, 17, e0269440.	1.1	10	
207	The Role and Regulatory Mechanism of Brown Adipose Tissue Activation in Diet-Induced Thermogenesis in Health and Diseases. International Journal of Molecular Sciences, 2022, 23, 9448.	1.8	8	
208	An obesogenic diet impairs uncoupled substrate oxidation and promotes whitening of the brown adipose tissue in rats. Journal of Physiology, 2023, 601, 69-82.	1.3	13	
209	Thermogenic Adipose Redox Mechanisms: Potential Targets for Metabolic Disease Therapies. Antioxidants, 2023, 12, 196.	2.2	2	
210	A critical assessment of the role of creatine in brown adipose tissue thermogenesis. Nature Metabolism, 2023, 5, 21-28.	5.1	8	
211	Impairment of adrenergically-regulated thermogenesis in brown fat of obesity-resistant mice is compensated by non-shivering thermogenesis in skeletal muscle. Molecular Metabolism, 2023, 69, 101683.	3.0	2	
212	Neuronal Blockade of Thyroid Hormone Signaling Increases Sensitivity to Diet-Induced Obesity in Adult Male Mice. Endocrinology, 2023, 164, .	1.4	0	
213	Brown Adipose Tissue: Activation and Metabolism in Humans. Endocrinology and Metabolism, 2023, 38, 214-222.	1.3	3	