Pluripotency and Cellular Reprogramming: Facts, Hypo

Cell 143, 508-525 DOI: 10.1016/j.cell.2010.10.008

Citation Report

#	Article	IF	CITATIONS
1	Tinkering with Transcription Factors Uncovers Plasticity of Somatic Cells. Genes and Cancer, 2010, 1, 1089-1099.	0.6	6
2	Dynamic physical properties of dissociated tumor cells revealed by dielectrophoretic field-flow fractionation. Integrative Biology (United Kingdom), 2011, 3, 850.	0.6	58
3	Regulation of embryonic stem cell self-renewal and pluripotency by leukaemia inhibitory factor. Biochemical Journal, 2011, 438, 11-23.	1.7	164
4	Nonthrombogenic Approaches to Cardiovascular Bioengineering. Annual Review of Biomedical Engineering, 2011, 13, 451-475.	5.7	105
5	Genomic Approaches to Deconstruct Pluripotency. Annual Review of Genomics and Human Genetics, 2011, 12, 165-185.	2.5	33
6	The quantitative proteomes of humanâ€induced pluripotent stem cells and embryonic stem cells. Molecular Systems Biology, 2011, 7, 550.	3.2	125
7	Cell Fate Plug and Play: Direct Reprogramming and Induced Pluripotency. Cell, 2011, 145, 827-830.	13.5	113
8	The Impact of Developmental Biology on Pluripotent Stem Cell Research: Successes and Challenges. Developmental Cell, 2011, 21, 20-23.	3.1	19
9	Impact of induced pluripotent stem cells on the study of central nervous system disease. Current Opinion in Genetics and Development, 2011, 21, 354-361.	1.5	33
10	Choreographing pluripotency and cell fate with transcription factors. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 337-349.	0.9	15
11	Reprogramming Factor Expression Initiates Widespread Targeted Chromatin Remodeling. Cell Stem Cell, 2011, 8, 96-105.	5.2	345
12	iPSCs: Induced Back to Controversy. Cell Stem Cell, 2011, 8, 347-348.	5.2	61
13	Rewiring the brain with cell transplantation in Parkinson's disease. Trends in Neurosciences, 2011, 34, 124-133.	4.2	56
14	Embryonic and induced pluripotent stem cell staining and sorting with the live-cell fluorescence imaging probe CDy1. Nature Protocols, 2011, 6, 1044-1052.	5.5	49
15	A Concise Review on Epigenetic Regulation: Insight into Molecular Mechanisms. International Journal of Molecular Sciences, 2011, 12, 8661-8694.	1.8	59
16	Reprogramming Mediated by Cell Fusion Technology. International Review of Cell and Molecular Biology, 2011, 291, 155-190.	1.6	10
17	The Coupling of X-Chromosome Inactivation to Pluripotency. Annual Review of Cell and Developmental Biology, 2011, 27, 611-629.	4.0	35
18	A WNTer Revisit: New Faces of \hat{l}^2 -Catenin and TCFs in Pluripotency. Science Signaling, 2011, 4, pe41.	1.6	20

#	Article	IF	Citations
19	Factors Regulating Pluripotency and Differentiation in Early Mammalian Embryos and Embryo-derived Stem Cells. Vitamins and Hormones, 2011, 87, 1-37.	0.7	11
20	Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes and Development, 2011, 25, 2248-2253.	2.7	444
21	Progress in stem cell research and the role of law. Medical Journal of Australia, 2011, 194, 156-157.	0.8	1
22	Embryonic Stem Cells and the Germ Cell Lineage. , 2011, , .		4
23	1980-2011: Parkinson's Disease and Advance in Stem Cell Research. , 0, , .		1
24	Generation of induced pluripotent stem cell lines from 3 distinct laminopathies bearing heterogeneous mutations in lamin A/C. Aging, 2011, 3, 380-390.	1.4	98
25	Red blood cells from induced pluripotent stem cells: hurdles and developments. Current Opinion in Hematology, 2011, 18, 249-253.	1.2	40
26	From skin to the treatment of diseases - the possibilities of iPS cell research in dermatology. Experimental Dermatology, 2011, 20, 523-528.	1.4	27
27	Ex vivo gene transfer and correction for cell-based therapies. Nature Reviews Genetics, 2011, 12, 301-315.	7.7	340
28	Mechanisms of nuclear reprogramming by eggs and oocytes: a deterministic process?. Nature Reviews Molecular Cell Biology, 2011, 12, 453-459.	16.1	109
29	Dynamic control of endogenous retroviruses during development. Virology, 2011, 411, 273-287.	1.1	236
30	TRIM8 regulates Nanog via Hsp90β-mediated nuclear translocation of STAT3 in embryonic stem cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1784-1792.	1.9	31
31	mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: A roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle, 2011, 10, 3658-3677.	1.3	132
32	Epigenomics of human embryonic stem cells and induced pluripotent stem cells: insights into pluripotency and implications for disease. Genome Medicine, 2011, 3, 36.	3.6	49
33	Transcriptional control of embryonic and induced pluripotent stem cells. Epigenomics, 2011, 3, 323-343.	1.0	13
34	Control of the Embryonic Stem Cell State. Cell, 2011, 144, 940-954.	13.5	1,050
35	Stem cell-based therapies in Parkinson's disease: future hope or current treatment option?. Journal of Neurology, 2011, 258, 346-353.	1.8	11
36	Mechanism and methods to induce pluripotency. Protein and Cell, 2011, 2, 792-799.	4.8	13

#	Article	IF	CITATIONS
37	Cardiac regeneration: different cells same goal. Medical and Biological Engineering and Computing, 2011, 49, 723-732.	1.6	14
38	Review and application of group theory to molecular systems biology. Theoretical Biology and Medical Modelling, 2011, 8, 21.	2.1	26
39	Optic Vesicle-like Structures Derived from Human Pluripotent Stem Cells Facilitate a Customized Approach to Retinal Disease Treatment. Stem Cells, 2011, 29, 1206-1218.	1.4	413
40	Concise Review: Managing Genotoxicity in the Therapeutic Modification of Stem Cells. Stem Cells, 2011, 29, 1479-1484.	1.4	40
41	Two-Phase Analysis of Molecular Pathways Underlying Induced Pluripotent Stem Cell Induction. Stem Cells, 2011, 29, 1963-1974.	1.4	15
42	Translating the Lessons From Gene Therapy to the Development of Regenerative Medicine. Molecular Therapy, 2011, 19, 439-441.	3.7	8
43	Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14169-14174.	3.3	187
44	Cells for Treating Organ Damage: How Long Will We Need Them?. Journal of the American Society of Nephrology: JASN, 2011, 22, 590-592.	3.0	0
45	Maintaining embryonic stem cell pluripotency with Wnt signaling. Development (Cambridge), 2011, 138, 4341-4350.	1.2	211
46	Mouse pluripotent stem cells at a glance. Journal of Cell Science, 2011, 124, 3727-3732.	1.2	31
47	Stem cells and the endocrine pancreas. British Medical Bulletin, 2011, 100, 123-135.	2.7	5
48	Induced Pluripotent Stem Cells from Human Kidney. Journal of the American Society of Nephrology: JASN, 2011, 22, 1179-1180.	3.0	6
49	Pluripotent Stem Cells for the Study of CNS Development. Frontiers in Molecular Neuroscience, 2011, 4, 30.	1.4	40
50	Kinetic profiling of the c-Myc transcriptome and bioinformatic analysis of repressed gene promoters. Cell Cycle, 2011, 10, 2184-2196.	1.3	38
51	Potential applications of germline cell-derived pluripotent stem cells in organ regeneration. Organogenesis, 2011, 7, 116-122.	0.4	12
52	Recent advances in chemically induced reprogramming. Cell Cycle, 2011, 10, 871-872.	1.3	5
53	Bayesian design of synthetic biological systems. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15190-15195.	3.3	82
54	Self-renewal induced efficiently, safely, and effective therapeutically with one regulatable gene in a human somatic progenitor cell. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4876-4881.	3.3	32

#	Article	IF	CITATIONS
55	Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18714-18719.	3.3	137
56	FBXW5 controls centrosome number. Nature Cell Biology, 2011, 13, 888-890.	4.6	10
57	esBAF safeguards Stat3 binding to maintain pluripotency. Nature Cell Biology, 2011, 13, 886-888.	4.6	7
58	Clobal epigenetic changes during somatic cell reprogramming to iPS cells. Journal of Molecular Cell Biology, 2011, 3, 341-350.	1.5	110
59	Revisiting Heterochromatin in Embryonic Stem Cells. PLoS Genetics, 2011, 7, e1002093.	1.5	10
60	Experimental Limitations Using Reprogrammed Cells for Hematopoietic Differentiation. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-7.	3.0	4
61	Epigenetic Regulation of Cell Type–Specific Expression Patterns in the Human Mammary Epithelium. PLoS Genetics, 2011, 7, e1001369.	1.5	96
62	Postmyocardial Infarct Remodeling and Heart Failure: Potential Contributions from Pro- and Antiaging Factors. Cardiology Research and Practice, 2011, 2011, 1-9.	0.5	9
63	Culture Environment-Induced Pluripotency of SACK-Expanded Tissue Stem Cells. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-12.	3.0	5
64	Genomic Prevalence of Heterochromatic H3K9me2 and Transcription Do Not Discriminate Pluripotent from Terminally Differentiated Cells. PLoS Genetics, 2011, 7, e1002090.	1.5	119
65	Two-factor reprogramming of somatic cells to pluripotent stem cells reveals partial functional redundancy of Sox2 and Klf4. Cell Death and Differentiation, 2012, 19, 1268-1276.	5.0	20
66	Reprogramming to Pluripotency Can Conceal Somatic Cell Chromosomal Instability. PLoS Genetics, 2012, 8, e1002913.	1.5	14
67	Human Pluripotent Stem Cells: Applications and Challenges in Neurological Diseases. Frontiers in Physiology, 2012, 3, 267.	1.3	35
68	Toward Personalized Cell Therapies by Using Stem Cells. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-2.	3.0	3
69	Mesenchymal Stem Cell-Derived Hepatocytes for Functional Liver Replacement. Frontiers in Immunology, 2012, 3, 168.	2.2	24
70	Induced Pluripotent Stem Cells Show Metabolomic Differences to Embryonic Stem Cells in Polyunsaturated Phosphatidylcholines and Primary Metabolism. PLoS ONE, 2012, 7, e46770.	1.1	68
71	Diverse functions of ATP-dependent chromatin remodeling complexes in development and cancer. Acta Biochimica Et Biophysica Sinica, 2012, 44, 54-69.	0.9	88
72	Human induced pluripotent stem cells and neurodegenerative disease. Current Opinion in Neurology, 2012, 25, 125-130.	1.8	64

#	Article	IF	CITATIONS
73	Human Amnion–Derived Cells as a Reliable Source of Stem Cells. Current Molecular Medicine, 2012, 12, 1340-1349.	0.6	20
74	Converting Scar to Muscle in the Injured Heart. Molecular Therapy, 2012, 20, 1294-1296.	3.7	1
75	Signaling Networks Regulating Tooth Organogenesis and Regeneration, and the Specification of Dental Mesenchymal and Epithelial Cell Lineages. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008425-a008425.	2.3	212
76	Upregulation of nestin in proximal tubules may participate in cell migration during renal repair. American Journal of Physiology - Renal Physiology, 2012, 303, F1534-F1544.	1.3	21
77	Zscan4 transiently reactivates early embryonic genes during the generation of induced pluripotent stem cells. Scientific Reports, 2012, 2, 208.	1.6	78
78	Rat Embryonic Fibroblasts Improve Reprogramming of Human Keratinocytes into Induced Pluripotent Stem Cells. Stem Cells and Development, 2012, 21, 965-976.	1.1	58
79	Skeletogenic phenotype of human Marfan embryonic stem cells faithfully phenocopied by patient-specific induced-pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 215-220.	3.3	68
80	Cell Therapy Using Induced Pluripotent Stem Cells or Somatic Stem Cells: This is the Question. Current Stem Cell Research and Therapy, 2012, 7, 191-196.	0.6	17
82	Standardization of pluripotent stem cell cultures for toxicity testing. Expert Opinion on Drug Metabolism and Toxicology, 2012, 8, 239-257.	1.5	42
83	Regulation of mammalian cell differentiation by long nonâ€coding RNAs. EMBO Reports, 2012, 13, 971-983.	2.0	292
84	Model systems for studying trophoblast differentiation from human pluripotent stem cells. Cell and Tissue Research, 2012, 349, 809-824.	1.5	53
85	Stem cell-derived cell cultures and organoids for protozoan parasite propagation and studying host–parasite interaction. International Journal of Medical Microbiology, 2012, 302, 203-209.	1.5	50
86	Cardiomyocyte reprogramming and the new age of cellular alchemy. Journal of Molecular and Cellular Cardiology, 2012, 53, 311-313.	0.9	9
87	Reprogramming and the mammalian germline: the Weismann barrier revisited. Current Opinion in Cell Biology, 2012, 24, 716-723.	2.6	43
88	Zinc-finger nuclease-mediated correction of $\hat{I}\pm$ -thalassemia in iPS cells. Blood, 2012, 120, 3906-3914.	0.6	90
89	Single-Cell Expression Analyses during Cellular Reprogramming Reveal an Early Stochastic and a Late Hierarchic Phase. Cell, 2012, 150, 1209-1222.	13.5	769
89 90	Single-Cell Expression Analyses during Cellular Reprogramming Reveal an Early Stochastic and a Late Hierarchic Phase. Cell, 2012, 150, 1209-1222. Reprogramming chromatin. Critical Reviews in Biochemistry and Molecular Biology, 2012, 47, 464-482.	13.5 2.3	769 14

ARTICLE IF CITATIONS Embryonic Stem Cells Induce Pluripotency in Somatic Cell Fusion through Biphasic Reprogramming. 4.5 49 Molecular Cell, 2012, 46, 159-170. Aging, Rejuvenation, and Epigenetic Reprogramming: Resetting the Aging Clock. Cell, 2012, 148, 46-57. 13.5 New perspectives on the biology of fragile X syndrome. Current Opinion in Genetics and Development, 1.5 107 2012, 22, 256-263. Concise Review: Chromatin and Genome Organization in Reprogramming. Stem Cells, 2012, 30, 1793-1799. ZO-1 Regulates Erk, Smad1/5/8, Smad2, and RhoA Activities to Modulate Self-Renewal and Differentiation 1.4 23 of Mouse Embryonic Stem Cells. Stem Cells, 2012, 30, 1885-1900. Jak/Stat3 Signaling Promotes Somatic Cell Reprogramming by Epigenetic Regulation. Stem Cells, 2012, 1.4 30, 2645-2656. Conversion of Human Bone Marrow-Derived Mesenchymal Stem Cells into Tendon Progenitor Cells by 1.1 127 Ectopic Expression of Scleraxis. Stem Cells and Development, 2012, 21, 846-858. Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature, 2012, 489, 13.7 339 304-308. Molecular Roadblocks for Cellular Reprogramming. Molecular Cell, 2012, 47, 827-838. 4.5 171 EpCAM and its potential role in tumor-initiating cells. Cell Adhesion and Migration, 2012, 6, 30-38. 1.1 Lentiviral vectors and cardiovascular diseases: a genetic tool for manipulating cardiomyocyte 2.327 differentiation and function. Gene Therapy, 2012, 19, 642-648. Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early 4.6 166 inÂreprogramming. Nature Cell Biology, 2012, 14, 457-466. Renal stem cells: fact or science fiction?. Biochemical Journal, 2012, 444, 153-168. 1.7 59 Dental Pulp of the Third Molar: A New Source of Pluripotent-like Stem Cells. Journal of Cell Science, 2012, 125, 3343-56. 1.2 Increased Reprogramming Capacity of Mouse Liver Progenitor Cells, Compared With Differentiated 0.6 47 Liver Cells, Requires the BAF Complex. Gastroenterology, 2012, 142, 907-917. Conceptus elongation in cattle: Genes, models and questions. Animal Reproduction Science, 2012, 134, 48 19-28. Identification and Regulation of a Molecular Module for Bleb-Based Cell Motility. Developmental Cell, 3.161 2012, 23, 210-218.

CITATION REPORT

109	Capturing epidermal stemness for regenerative medicine. Seminars in Cell and Developmental Biology, 2012, 23, 937-944.	2.3	54
-----	--	-----	----

#

92

94

95

96

98

90

100

102

104

106

#	Article	IF	CITATIONS
110	Biobanks for Pluripotent Stem Cells. , 2012, , 105-125.		3
111	Molecular Mechanisms of Pluripotency. SpringerBriefs in Stem Cells, 2012, , 21-31.	0.1	Ο
113	Aging and reprogramming: a two-way street. Current Opinion in Cell Biology, 2012, 24, 744-756.	2.6	136
115	Strategies of Regenerative Medicine. , 2012, , 229-260.		0
116	Induced Pluripotent Stem Cells. SpringerBriefs in Stem Cells, 2012, , .	0.1	2
117	Pluripotency of induced pluripotent stem cells. Journal of Animal Science and Biotechnology, 2012, 3, 5.	2.1	15
118	The state of the art for pluripotent stem cells derivation in domestic ungulates. Theriogenology, 2012, 78, 1749-1762.	0.9	48
120	Stem Cells and Cancer Stem Cells, Volume 4. , 2012, , .		2
121	Patterns of globalized reproduction: Egg cells regulation in Israel and Austria. Israel Journal of Health Policy Research, 2012, 1, 15.	1.4	22
123	Ethical challenges for using human cells in clinical cell therapy. Progress in Brain Research, 2012, 200, 17-40.	0.9	4
124	Dynamic Status of REST in the Mouse ESC Pluripotency Network. PLoS ONE, 2012, 7, e43659.	1.1	9
125	Concise Review: Induced Pluripotent Stem Cells Versus Embryonic Stem Cells: Close Enough or Yet Too Far Apart?. Stem Cells, 2012, 30, 33-41.	1.4	184
126	Concise Review: Induced Pluripotent Stem Cellâ€Derived Mesenchymal Stem Cells: Progress Toward Safe Clinical Products. Stem Cells, 2012, 30, 42-47.	1.4	242
127	The molecular circuitry underlying pluripotency in embryonic stem cells. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 443-456.	6.6	12
128	Contribution of Hepatic Lineage Stage‣pecific Donor Memory to the Differential Potential of Induced Mouse Pluripotent Stem Cells. Stem Cells, 2012, 30, 997-1007.	1.4	47
129	Regulation of Embryonic Stem Cell Pluripotency by Heat Shock Protein 90. Stem Cells, 2012, 30, 1624-1633.	1.4	59
130	Maintaining differentiated cellular identity. Nature Reviews Genetics, 2012, 13, 429-439.	7.7	145
131	Stem Cell Therapy for the Inner Ear. Trends in Amplification, 2012, 16, 4-18.	2.4	63

#	Article	IF	CITATIONS
132	O-GlcNAc Regulates Pluripotency and Reprogramming by Directly Acting on Core Components of the Pluripotency Network. Cell Stem Cell, 2012, 11, 62-74.	5.2	268
133	â€~Hearts and bones': the ups and downs of â€~plasticity' in stem cell biology. EMBO Molecular Medicine, 2012, 4, 353-361.	3.3	28
134	Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development (Cambridge), 2012, 139, 15-31.	1.2	355
135	Pluripotency and Nuclear Reprogramming. Annual Review of Biochemistry, 2012, 81, 737-765.	5.0	37
136	Generation of Induced Pluripotent Stem Cells from the Prairie Vole. PLoS ONE, 2012, 7, e38119.	1.1	20
137	The promise of induced pluripotent stem cells in research and therapy. Nature, 2012, 481, 295-305.	13.7	976
138	Redefining Parkinson's Disease Research Using Induced Pluripotent Stem Cells. Current Neurology and Neuroscience Reports, 2012, 12, 392-398.	2.0	17
139	Liver tissue engineering: Recent advances in the development of a bio-artificial liver. Biotechnology and Bioprocess Engineering, 2012, 17, 427-438.	1.4	31
140	Humanized murine model for HBV and HCV using human induced pluripotent stem cells. Archives of Pharmacal Research, 2012, 35, 261-269.	2.7	15
141	Yolk sac tumours revisited. A review of their many faces and names. Histopathology, 2012, 60, 1023-1033.	1.6	110
142	Stem cell technology for drug discovery and development. Drug Discovery Today, 2012, 17, 336-342.	3.2	21
143	Epigenetic rejuvenation. Genes To Cells, 2012, 17, 337-343.	0.5	32
144	Development of pluripotent stem cells for vascular therapy. Vascular Pharmacology, 2012, 56, 288-296.	1.0	29
145	Direct reprogramming of human astrocytes into neural stem cells and neurons. Experimental Cell Research, 2012, 318, 1528-1541.	1.2	143
146	Induced Pluripotent Stem Cells from Pigs and Other Ungulate Species: An Alternative to Embryonic Stem Cells?. Reproduction in Domestic Animals, 2012, 47, 92-97.	0.6	44
147	Recent Advances in Stem and Germ Cell Research: Implications for the Derivation of Pig Pluripotent Cells. Reproduction in Domestic Animals, 2012, 47, 98-106.	0.6	12
148	Prospects for pluripotent stem cell therapies: Into the clinic and back to the bench. Journal of Cellular Biochemistry, 2012, 113, 381-387.	1.2	34
149	Closing the circle of germline and stem cells: the Primordial Stem Cell hypothesis. EvoDevo, 2013, 4, 2.	1.3	81

#	Article	IF	CITATIONS
150	Reevaluation of the safety of induced pluripotent stem cells: a call from somatic mosaicism. Protein and Cell, 2013, 4, 83-85.	4.8	3
151	The Transcription Factor FOXM1 (Forkhead box M1). Advances in Cancer Research, 2013, 118, 97-398.	1.9	135
152	Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nature Communications, 2013, 4, 2183.	5.8	299
153	Induction of apoptotic death and retardation of neuronal differentiation of human neural stem cells by sodium arsenite treatment. Experimental Cell Research, 2013, 319, 875-887.	1.2	35
154	Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydrate Polymers, 2013, 98, 665-676.	5.1	178
155	Mitochondrial DNA, Mitochondria, Disease and Stem Cells. , 2013, , .		3
157	Adhesion, but not a specific cadherin code, is indispensable for ES cell and induced pluripotency. Stem Cell Research, 2013, 11, 1250-1263.	0.3	25
158	Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnology Advances, 2013, 31, 1600-1623.	6.0	80
159	The Effects of Nuclear Reprogramming on Mitochondrial DNA Replication. Stem Cell Reviews and Reports, 2013, 9, 1-15.	5.6	48
160	Anti-aging effects of vitamin C on human pluripotent stem cell-derived cardiomyocytes. Age, 2013, 35, 1545-1557.	3.0	20
161	Four recombinant pluripotency transcriptional factors containing a protein transduction domain maintained the in vitro pluripotency of chicken embryonic stem cells. Science China Life Sciences, 2013, 56, 40-50.	2.3	7
162	Theoretical Considerations for Reprogramming Multicellular Systems. , 2013, , 81-99.		Ο
163	FOXM1 (Forkhead box M1) in Tumorigenesis. Advances in Cancer Research, 2013, 119, 191-419.	1.9	146
164	Induction of hepatocyte-like cells from mouse embryonic stem cells by lentivirus-mediated constitutive expression of Foxa2/Hnf4a. Journal of Cellular Biochemistry, 2013, 114, 2531-2541.	1.2	14
165	Inhibition of MEK and CSK3 Supports ES Cell-like Domed Colony Formation from Avian and Reptile Embryos. Zoological Science, 2013, 30, 543.	0.3	9
166	Visualization of multivalent histone modification in a single cell reveals highly concerted epigenetic changes on differentiation of embryonic stem cells. Nucleic Acids Research, 2013, 41, 7231-7239.	6.5	33
167	ΔNp63 regulates select routes of reprogramming via multiple mechanisms. Cell Death and Differentiation, 2013, 20, 1698-1708.	5.0	22
168	The nexus of chromatin regulation and intermediary metabolism. Nature, 2013, 502, 489-498.	13.7	341

	CITATION R	CITATION REPORT		
#	Article	IF	Citations	
169	Derivation of novel human ground state naive pluripotent stem cells. Nature, 2013, 504, 282-286.	13.7	924	
170	Epigenetic Reprogramming in Cancer. Science, 2013, 339, 1567-1570.	6.0	629	
171	Distinguishable Epidemics of Multidrug-Resistant <i>Salmonella</i> Typhimurium DT104 in Different Hosts. Science, 2013, 341, 1514-1517.	6.0	310	
172	Transient Activation of Autophagy via Sox2-Mediated Suppression of mTOR Is an Important Early Step in Reprogramming to Pluripotency. Cell Stem Cell, 2013, 13, 617-625.	5.2	187	
173	The Advent of the Golden Era of Animal Alternatives. , 2013, , 49-73.	_	2	
174	Derivation of Putative Porcine Embryonic Germ Cells and Analysis of Their Multi-Lineage Differentiation Potential. Journal of Genetics and Genomics, 2013, 40, 453-464.	1.7	11	
175	Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3281-90.	3.3	217	
176	Epigenetic Alterations in Oncogenesis. Advances in Experimental Medicine and Biology, 2013, 754, v-vii.	0.8	10	
177	Neural induction and early patterning in vertebrates. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 479-498.	5.9	71	
178	Mouse and human embryonic stem cells. Russian Journal of Genetics: Applied Research, 2013, 3, 426-434.	0.4	0	
179	Deterministic direct reprogramming of somatic cells to pluripotency. Nature, 2013, 502, 65-70.	13.7	471	
180	Pluripotent cells in farm animals: state of the art and future perspectives. Reproduction, Fertility and Development, 2013, 25, 103.	0.1	41	
181	Interference with the mitochondrial bioenergetics fuels reprogramming to pluripotency via facilitation of the glycolytic transition. International Journal of Biochemistry and Cell Biology, 2013, 45, 2512-2518.	1.2	30	
182	H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nature Genetics, 2013, 45, 34-42.	9.4	440	
183	A Hierarchy in Reprogramming Capacity in Different Tissue Microenvironments: What We Know and What We Need to Know. Stem Cells and Development, 2013, 22, 695-706.	1.1	22	
184	Mouse Primed Embryonic Stem Cells Could Be Maintained and Reprogrammed on Human Amnion Epithelial Cells. Stem Cells and Development, 2013, 22, 320-329.	1.1	10	
185	How Genetic Transmission Works. , 2013, , 17-55.		0	
186	The transcriptional regulation of pluripotency. Cell Research, 2013, 23, 20-32.	5.7	110	

#	Article	IF	CITATIONS
188	Functions of BMP signaling in embryonic stem cell fate determination. Experimental Cell Research, 2013, 319, 113-119.	1.2	29
189	Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation. Cell Research, 2013, 23, 92-106.	5.7	124
190	Otx2 is an intrinsic determinant of the embryonic stem cell state and is required for transition to a stable epiblast stem cell condition. Development (Cambridge), 2013, 140, 43-55.	1.2	147
191	Sodium arsenite exposure inhibits AKT and Stat3 activation, suppresses self-renewal and induces apoptotic death of embryonic stem cells. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 188-200.	2.2	18
192	Small Molecule–Based Approaches to Adult Stem Cell Therapies. Annual Review of Pharmacology and Toxicology, 2013, 53, 107-125.	4.2	27
193	Direct reprogramming by oncogenic Ras and Myc. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3937-3942.	3.3	90
194	Stem Cell Models for Drug Discovery and Toxicology Studies. Journal of Biochemical and Molecular Toxicology, 2013, 27, 17-27.	1.4	67
195	Switch Enhancers Interpret TCF-β and Hippo Signaling to Control Cell Fate in Human Embryonic Stem Cells. Cell Reports, 2013, 5, 1611-1624.	2.9	250
196	An improved method for the derivation of high quality iPSCs in the absence of c-Myc. Experimental Cell Research, 2013, 319, 3190-3200.	1.2	11
197	Epigenetic alterations by NuRD and PRC2 in the neonatal mouse cochlea. Hearing Research, 2013, 304, 167-178.	0.9	24
198	Generation of Naive-Like Porcine-Induced Pluripotent Stem Cells Capable of Contributing to Embryonic and Fetal Development. Stem Cells and Development, 2013, 22, 473-482.	1.1	124
199	Dynamic Migration and Cell-Cell Interactions of Early Reprogramming Revealed by High-Resolution Time-Lapse Imaging. Stem Cells, 2013, 31, 895-905.	1.4	28
200	TGF-β family signaling in stem cells. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2280-2296.	1.1	134
201	How induced pluripotent stem cells are redefining personalized medicine. Gene, 2013, 520, 1-6.	1.0	51
202	Mitochondrial DNA Haplotypes Define Gene Expression Patterns in Pluripotent and Differentiating Embryonic Stem Cells. Stem Cells, 2013, 31, 703-716.	1.4	65
203	Derivation of human embryonic stem cells using a post–inner cell mass intermediate. Nature Protocols, 2013, 8, 254-264.	5.5	23
204	The TGFβ superfamily in stem cell biology and early mammalian embryonic development. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2268-2279.	1.1	64
205	Current Methods for Inducing Pluripotency in Somatic Cells. Advanced Materials, 2013, 25, 2765-2771.	11.1	10

# 206	ARTICLE The Warburg effect version 2.0: Metabolic reprogramming of cancer stem cells. Cell Cycle, 2013, 12, 1166-1179.	IF 1.3	CITATIONS
207	Biological and Quantitative Models for Stem Cell Self-Renewal and Differentiation. , 2013, , 427-441.		0
208	Self-Correction of Chromosomal Abnormalities in Human Preimplantation Embryos and Embryonic Stem Cells. Stem Cells and Development, 2013, 22, 2449-2456.	1.1	79
209	MicroRNAs in pluripotency, reprogramming and cell fate induction. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1894-1903.	1.9	51
210	Induced pluripotency and direct reprogramming: a new window for treatment of neurodegenerative diseases. Protein and Cell, 2013, 4, 415-424.	4.8	5
211	New Balance in Pluripotency: Reprogramming with Lineage Specifiers. Cell, 2013, 153, 939-940.	13.5	9
212	Subtelomeric hotspots of aberrant 5-hydroxymethylcytosine-mediated epigenetic modifications during reprogramming to pluripotency. Nature Cell Biology, 2013, 15, 700-711.	4.6	87
213	A blueprint for engineering cell fate: current technologies to reprogram cell identity. Cell Research, 2013, 23, 33-48.	5.7	108
214	Adaptation of a Commonly Used, Chemically Defined Medium for Human Embryonic Stem Cells to Stable Isotope Labeling with Amino Acids in Cell Culture. Journal of Proteome Research, 2013, 12, 3233-3245.	1.8	10
215	Epigenetic Reprogramming of Mesenchymal Stem Cells. Advances in Experimental Medicine and Biology, 2013, 754, 195-211.	0.8	16
216	Klf4 Organizes Long-Range Chromosomal Interactions with the Oct4 Locus in Reprogramming and Pluripotency. Cell Stem Cell, 2013, 13, 36-47.	5.2	189
217	Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells. Neuron, 2013, 78, 785-798.	3.8	1,209
218	Learning the molecular mechanisms of the reprogramming factors: let's start from microRNAs. Molecular BioSystems, 2013, 9, 10-17.	2.9	31
219	The Histone Methyltransferase Inhibitor BIX01294 Enhances the Cardiac Potential of Bone Marrow Cells. Stem Cells and Development, 2013, 22, 654-667.	1.1	29
220	Sleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in in in induced pluripotent stem cells. Nucleic Acids Research, 2013, 41, 1829-1847.	6.5	75
221	Molecular Mechanisms Underlying Pluripotency. , 0, , .		0
222	Analysis of epigenetic stability and conversions in Saccharomyces cerevisiae reveals a novel role of CAF-I in position-effect variegation. Nucleic Acids Research, 2013, 41, 8475-8488.	6.5	13
223	Oct4 shuffles Sox partners to direct cell fate. EMBO Journal, 2013, 32, 917-919.	3.5	4

		CITATION R	EPORT	
#	Article		IF	CITATIONS
224	Stem cell $\hat{a} \in \hat{a}$ based gene therapy. Biopolymers and Cell, 2013, 29, 21-32.		0.1	0
225	In vitro-differentiated neural cell cultures progress towards donor-identical brain tissue. H Molecular Genetics, 2013, 22, 3534-3546.	luman	1.4	19
226	Safeguards for Cell Cooperation in Mouse Embryogenesis Shown by Genome-Wide Cheat Science, 2013, 341, 1511-1514.	ter Screen.	6.0	76
227	A new genetics or an epiphenomenon? Variations in the discourse of epigenetics research Genetics and Society, 2013, 32, 366-384.	ners. New	0.7	29
228	Zell- und Gewebekultur. , 2013, , .			33
229	Reprogramming Cells for Brain Repair. Brain Sciences, 2013, 3, 1215-1228.		1.1	5
231	Neurons generated by direct conversion of fibroblasts reproduce synaptic phenotype cau autism-associated neuroligin-3 mutation. Proceedings of the National Academy of Scienc United States of America, 2013, 110, 16622-16627.		3.3	61
232	SMAD7 Directly Converts Human Embryonic Stem Cells to Telencephalic Fate by a Defaul Stem Cells, 2013, 31, 35-47.	lt Mechanism.	1.4	35
233	Transcription Elongation Factor <i>Tcea3</i> Regulates the Pluripotent Differentiation Po Mouse Embryonic Stem Cells Via the <i>Lefty1</i> -Nodal-Smad2 Pathway. Stem Cells, 20	otential of)13, 31, 282-292.	1.4	30
234	Stem cell therapy for chronic heart failure: an updated appraisal. Expert Opinion on Biolog Therapy, 2013, 13, 503-516.	gical	1.4	10
235	MicroRNAs in regulation of pluripotency and somatic cell reprogramming. RNA Biology, 2 1255-1261.	013, 10,	1.5	24
236	Disputing the boundary of pluripotency. The Italian public debate on amniotic fluid-derive New Genetics and Society, 2013, 32, 385-404.	d stem cells.	0.7	3
237	JAK-STAT3 and somatic cell reprogramming. Jak-stat, 2013, 2, e24935.		2.2	30
238	Androgen receptor-mediated apoptosis in bovine testicular induced pluripotent stem cell to phthalate esters. Cell Death and Disease, 2013, 4, e907-e907.	s in response	2.7	51
239	Reprogramming somatic cells to pluripotency: A fresh look at Yamanaka's model. Cel 3594-3598.	l Cycle, 2013, 12,	1.3	8
241	Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing stem-like cellular states harboring transcriptional activation of the mTOR pathway. Cell C 12, 3109-3124.	cancer ycle, 2013,	1.3	90
242	Induction of Functional Mesenchymal Stem Cells from Rabbit Embryonic Stem Cells by Ex Severe Hypoxic Conditions. Cell Transplantation, 2013, 22, 309-329.	(posure to	1.2	9
244	Molecular Mechanisms of Embryonic Stem Cell Pluripotency. , 2013, , .			1

#	Article	IF	CITATIONS
245	Primed Pluripotent Cell Lines Derived from Various Embryonic Origins and Somatic Cells in Pig. PLoS ONE, 2013, 8, e52481.	1.1	64
246	Functional Impacts of NRXN1 Knockdown on Neurodevelopment in Stem Cell Models. PLoS ONE, 2013, 8, e59685.	1.1	63
247	Flk1+ and VE-Cadherin+ Endothelial Cells Derived from iPSCs Recapitulates Vascular Development during Differentiation and Display Similar Angiogenic Potential as ESC-Derived Cells. PLoS ONE, 2013, 8, e85549.	1.1	27
248	Stem cells made with near-perfect efficiency. Nature, 2013, , .	13.7	0
249	A Distinct Expression Pattern of Cyclin K in Mammalian Testes Suggests a Functional Role in Spermatogenesis. PLoS ONE, 2014, 9, e101539.	1.1	19
250	Efficient Reprogramming of NaÃ ⁻ ve-Like Induced Pluripotent Stem Cells from Porcine Adipose-Derived Stem Cells with a Feeder-Independent and Serum-Free System. PLoS ONE, 2014, 9, e85089.	1.1	45
251	A New Tumorsphere Culture Condition Restores Potentials of Self-Renewal and Metastasis of Primary Neuroblastoma in a Mouse Neuroblastoma Model. PLoS ONE, 2014, 9, e86813.	1.1	16
252	Skin Fibroblasts from Patients with Type 1 Diabetes (T1D) Can Be Chemically Transdifferentiated into Insulin-Expressing Clusters: A Transgene-Free Approach. PLoS ONE, 2014, 9, e100369.	1.1	15
253	KSR-Based Medium Improves the Generation of High-Quality Mouse iPS Cells. PLoS ONE, 2014, 9, e105309.	1.1	19
254	Recapitulating Inner Ear Development with Pluripotent Stem Cells. , 2014, , 213-247.		2
255	Cloning Primates. , 2014, , 299-310.		0
256	H3.3 replacement facilitates epigenetic reprogramming of donor nuclei in somatic cell nuclear transfer embryos. Nucleus, 2014, 5, 369-375.	0.6	32
257	RNA-binding proteins in pluripotency, differentiation, and reprogramming. Frontiers in Biology, 2014, 9, 389-409.	0.7	31
258	Increased Genomic Integrity of an Improved Protein-Based Mouse Induced Pluripotent Stem Cell Method Compared With Current Viral-Induced Strategies. Stem Cells Translational Medicine, 2014, 3, 599-609.	1.6	21
259	Nanomedicine-Based Neuroprotective Strategies in Patient Specific-iPSC and Personalized Medicine. International Journal of Molecular Sciences, 2014, 15, 3904-3925.	1.8	15
260	Bovine Induced Pluripotent Stem Cells Are More Resistant to Apoptosis than Testicular Cells in Response to Mono-(2-ethylhexyl) Phthalate. International Journal of Molecular Sciences, 2014, 15, 5011-5031.	1.8	22
261	Concise Review: Parthenote Stem Cells for Regenerative Medicine: Genetic, Epigenetic, and Developmental Features. Stem Cells Translational Medicine, 2014, 3, 290-298.	1.6	41
262	Xenopatients 2.0: Reprogramming the epigenetic landscapes of patient-derived cancer genomes. Cell Cycle, 2014, 13, 358-370.	1.3	14

#	Article	IF	CITATIONS
263	Reprogramming to a pluripotent state modifies mesenchymal stem cell resistance to oxidative stress. Journal of Cellular and Molecular Medicine, 2014, 18, 824-831.	1.6	14
264	Energy Metabolism and Metabolic Sensors in Stem Cells: The Metabostem Crossroads of Aging and Cancer. Advances in Experimental Medicine and Biology, 2014, 824, 117-140.	0.8	24
265	Imagine a world without cancer. BMC Cancer, 2014, 14, 186.	1.1	12
266	Comparing SCNT-Derived ESCs and iPSCs. , 2014, , 465-471.		3
267	Metabostemness: A New Cancer Hallmark. Frontiers in Oncology, 2014, 4, 262.	1.3	95
268	Conserved Two-Step Regulatory Mechanism of Human Epithelial Differentiation. Stem Cell Reports, 2014, 2, 180-188.	2.3	18
269	Generation and characterization of bat-induced pluripotent stem cells. Theriogenology, 2014, 82, 283-293.	0.9	22
270	Reprogramming antitumor immunity. Trends in Immunology, 2014, 35, 178-185.	2.9	39
271	Micro-management of pluripotent stem cells. Protein and Cell, 2014, 5, 36-47.	4.8	16
272	Genome-wide CNV analysis in mouse induced pluripotent stem cells reveals dosage effect of pluripotent factors on genome integrity. BMC Genomics, 2014, 15, 79.	1.2	8
273	Potentially immunogenic proteins expressed similarly in human embryonic stem cells and induced pluripotent stem cells. Experimental Biology and Medicine, 2014, 239, 484-488.	1.1	4
275	Reconstructing and Reprogramming the Tumor-Propagating Potential of Glioblastoma Stem-like Cells. Cell, 2014, 157, 580-594.	13.5	751
276	Stem Cells and Cell Therapy. Cell Engineering, 2014, , .	0.4	4
277	Signaling Roadmap Modulating Naive and Primed Pluripotency. Stem Cells and Development, 2014, 23, 193-208.	1.1	48
278	How Cell Division Facilitates Nuclear Reprogramming. , 2014, , 393-406.		0
279	Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nature Biotechnology, 2014, 32, 171-178.	9.4	415
280	Activation-Induced Deaminase-Coupled DNA Demethylation Is Not Crucial for the Generation of Induced Pluripotent Stem Cells. Stem Cells and Development, 2014, 23, 209-218.	1.1	10
281	Myogenic Differentiation of Muscular Dystrophy-Specific Induced Pluripotent Stem Cells for Use in Drug Discovery. Stem Cells Translational Medicine, 2014, 3, 149-160.	1.6	100

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
282	Nonstochastic Reprogramming from a Privileged Somatic Cell State. Cell, 2014, 156, 649	-662.	13.5	168
283	Snail1-dependent control of embryonic stem cell pluripotency and lineage commitment. Communications, 2014, 5, 3070.	Nature	5.8	58
284	Human Pluripotent Stem Cell Culture: Considerations for Maintenance, Expansion, and T Cell Stem Cell, 2014, 14, 13-26.	nerapeutics.	5.2	297
285	Reversing DNA Methylation: Mechanisms, Genomics, and Biological Functions. Cell, 2014	, 156, 45-68.	13.5	914
286	A census of human RNA-binding proteins. Nature Reviews Genetics, 2014, 15, 829-845.		7.7	1,671
287	The Polycomb Protein Ezh2 Impacts on Induced Pluripotent Stem Cell Generation. Stem O Development, 2014, 23, 931-940.	Cells and	1.1	52
288	Reprogramming by lineage specifiers: blurring the lines between pluripotency and differen Current Opinion in Genetics and Development, 2014, 28, 57-63.	ntiation.	1.5	6
289	Reptin Regulates Pluripotency of Embryonic Stem Cells and Somatic Cell Reprogramming Oct4-Dependent Mechanism. Stem Cells, 2014, 32, 3126-3136.	Through	1.4	10
291	Nonviral Minicircle Generation of Induced Pluripotent Stem Cells Compatible with Produc Chimeric Chickens. Cellular Reprogramming, 2014, 16, 366-378.	tion of	0.5	19
292	Oxidative Stress and Inflammation in Non-communicable Diseases - Molecular Mechanism Perspectives in Therapeutics. Advances in Experimental Medicine and Biology, 2014, , .	ns and	0.8	16
293	Efficient germ-line transmission obtained with transgene-free induced pluripotent stem c Proceedings of the National Academy of Sciences of the United States of America, 2014,	ells. 111, 10678-10683.	3.3	21
294	Concise Review: Generation of Neurons From Somatic Cells of Healthy Individuals and Ne Patients Through Induced Pluripotency or Direct Conversion. Stem Cells, 2014, 32, 2811	urological -2817.	1.4	38
295	Epigenetic regulation leading to induced pluripotency drives cancer development in vivo. and Biophysical Research Communications, 2014, 455, 10-15.	Biochemical	1.0	25
296	Modified Lentiviral LTRs Allow Flp Recombinase–mediated Cassette Exchange and In Vi "Factor-free―Induced Pluripotent Stem Cells. Molecular Therapy, 2014, 22, 919-928		3.7	24
297	Nanofibrous Electrospun Polymers for Reprogramming Human Cells. Cellular and Molecu Bioengineering, 2014, 7, 379-393.	lar	1.0	18
298	Sox2 acts as a transcriptional repressor in neural stem cells. BMC Neuroscience, 2014, 15	5, 95.	0.8	36
299	β-Catenin in Pluripotency. International Review of Cell and Molecular Biology, 2014, 312	, 53-78.	1.6	24
300	From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cel and Molecular Life Sciences, 2014, 71, 2917-2930.	ls. Cellular	2.4	23

#	Article	IF	Citations
" 301	The Generation of Definitive Endoderm from Human Embryonic Stem Cells is Initially Independent from Activin A but Requires Canonical Wnt-Signaling. Stem Cell Reviews and Reports, 2014, 10, 480-493.	5.6	56
302	Role of Tet proteins in enhancer activity and telomere elongation. Genes and Development, 2014, 28, 2103-2119.	2.7	226
303	X Chromosome of Female Cells Shows Dynamic Changes in Status during Human Somatic Cell Reprogramming. Stem Cell Reports, 2014, 2, 896-909.	2.3	33
304	A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells. Biomaterials, 2014, 35, 2816-2826.	5.7	72
305	Platform for Induction and Maintenance of Transgene-free hiPSCs Resembling Ground State Pluripotent Stem Cells. Stem Cell Reports, 2014, 2, 366-381.	2.3	142
306	De- and re-differentiation of the melanocytic lineage. European Journal of Cell Biology, 2014, 93, 30-35.	1.6	18
307	Chromatin features and the epigenetic regulation of pluripotency states in ESCs. Development (Cambridge), 2014, 141, 2376-2390.	1.2	79
308	Decellularized kidney scaffold-mediated renal regeneration. Biomaterials, 2014, 35, 6822-6828.	5.7	92
309	Role of cell–cell adhesion complexes in embryonic stem cell biology. Journal of Cell Science, 2014, 127, 2603-2613.	1.2	115
310	Reprogramming Approaches in Cardiovascular Regeneration. Current Treatment Options in Cardiovascular Medicine, 2014, 16, 327.	0.4	5
311	Neural stem cells derived from epiblast stem cells display distinctive properties. Stem Cell Research, 2014, 12, 506-516.	0.3	13
312	Reprogramming cell fate: a changing story. Frontiers in Cell and Developmental Biology, 2014, 2, 46.	1.8	14
313	Time-resolved gene expression profiling during reprogramming of C/EBPα-pulsed B cells into iPS cells. Scientific Data, 2014, 1, 140008.	2.4	3
314	A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer. SAGE Open Medicine, 2014, 2, 205031211455037.	0.7	6
315	The development of a malignant tumor is due to a desperate asexual self-cloning process in which cancer stem cells develop the ability to mimic the genetic program of germline cells. Intrinsically Disordered Proteins, 2014, 2, e29997.	1.9	29
316	Regulation of Zygotic Genome and Cellular Pluripotency. Biochemistry (Moscow), 2015, 80, 1723-1733.	0.7	4
317	Histone deacetylase inhibition protects hearing against acute ototoxicity by activating the Nf-κB pathway. Cell Death Discovery, 2015, 1, .	2.0	34
318	Comparison of American mink embryonic stem and induced pluripotent stem cell transcriptomes. BMC Genomics, 2015, 16, S6.	1.2	26

#	Article	IF	CITATIONS
319	Human Induced Pluripotent Stem Cell and Nanotechnology-Based Therapeutics. Cell Transplantation, 2015, 24, 2185-2195.	1.2	15
320	Core Pluripotency Factors Directly Regulate Metabolism in Embryonic Stem Cell to Maintain Pluripotency. Stem Cells, 2015, 33, 2699-2711.	1.4	89
321	Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges. International Journal of Molecular Sciences, 2015, 16, 28614-28634.	1.8	19
322	Epigenetic regulation in the inner ear and its potential roles in development, protection, and regeneration. Frontiers in Cellular Neuroscience, 2014, 8, 446.	1.8	44
323	Generation of NaÃ ⁻ ve Bovine Induced Pluripotent Stem Cells Using PiggyBac Transposition of Doxycycline-Inducible Transcription Factors. PLoS ONE, 2015, 10, e0135403.	1.1	54
324	Physical Interactions and Functional Coordination between the Core Subunits of Set1/Mll Complexes and the Reprogramming Factors. PLoS ONE, 2015, 10, e0145336.	1.1	26
325	Metabolic control of cancer cell stemness: Lessons from iPS cells. Cell Cycle, 2015, 14, 3801-3811.	1.3	37
326	Selective cell elimination in vitro and in vivo from tissues and tumors using antibodies conjugated with a near infrared phthalocyanine. RSC Advances, 2015, 5, 25105-25114.	1.7	34
327	Mechanisms of pluripotency and epigenetic reprogramming in primordial germ cells: lessons for the conversion of other cell types into the stem cell lineage. Turkish Journal of Biology, 2015, 39, 187-193.	2.1	4
328	Dynamic Regulation of Adherens Junctions: Implication in Cell Differentiation and Tumor Development. , 2015, , 53-149.		2
329	Bacterial-induced cell reprogramming to stem cell-like cells: new premise in host–pathogen interactions. Current Opinion in Microbiology, 2015, 23, 179-188.	2.3	21
330	Ex Uno Plures: Molecular Designs for Embryonic Pluripotency. Physiological Reviews, 2015, 95, 245-295.	13.1	30
331	Xenogeneic-free defined conditions for derivation and expansion of human embryonic stem cells with mesenchymal stem cells. Regenerative Therapy, 2015, 1, 18-29.	1.4	40
332	Zic2 Is an Enhancer-Binding Factor Required for Embryonic Stem Cell Specification. Molecular Cell, 2015, 57, 685-694.	4.5	92
333	The evolving cancer stem cell paradigm: Implications in veterinary oncology. Veterinary Journal, 2015, 205, 154-160.	0.6	24
334	Pediatric solid tumor genomics and developmental pliancy. Oncogene, 2015, 34, 5207-5215.	2.6	53
335	Regenerative medicine for oesophageal reconstruction after cancer treatment. Lancet Oncology, The, 2015, 16, e84-e92.	5.1	30
336	Autophagy and cell reprogramming. Cellular and Molecular Life Sciences, 2015, 72, 1699-1713.	2.4	49

#	Article	IF	CITATIONS
337	Mitochondrial and Metabolic Remodeling During Reprogramming and Differentiation of the Reprogrammed Cells. Stem Cells and Development, 2015, 24, 1366-1373.	1.1	49
338	The unforeseen challenge: from genotype-to-phenotype in cell populations. Reports on Progress in Physics, 2015, 78, 036602.	8.1	59
339	Signaling in Tooth, Hair, and Mammary Placodes. Current Topics in Developmental Biology, 2015, 111, 421-459.	1.0	37
340	Reprogramming patient-derived cells to study the epilepsies. Nature Neuroscience, 2015, 18, 360-366.	7.1	46
341	Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer. Cell Reports, 2015, 11, 1549-1563.	2.9	57
342	Cell totipotency: molecular features, induction, and maintenance. National Science Review, 2015, 2, 217-225.	4.6	66
343	Integrative Analyses of Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency. Cell, 2015, 162, 412-424.	13.5	206
344	Explanation in Biology. History, Philosophy and Theory of the Life Sciences, 2015, , .	0.4	19
345	Quantification of Retinogenesis in 3D Cultures Reveals Epigenetic Memory and Higher Efficiency in iPSCs Derived from Rod Photoreceptors. Cell Stem Cell, 2015, 17, 101-115.	5.2	88
346	Effective gene delivery into adipose-derived stem cells: transfection of cells in suspension with the use of a nuclear localization signal peptide–conjugated polyethylenimine. Cytotherapy, 2015, 17, 536-542.	0.3	27
347	Concise Review: Energy Metabolites: Key Mediators of the Epigenetic State of Pluripotency. Stem Cells, 2015, 33, 2374-2380.	1.4	40
348	Preimplantation Embryo Development and Primordial Germ Cell Lineage Specification. , 2015, , 233-265.		3
349	NF1 loss induces senescence during human melanocyte differentiation in an <scp>iPSC</scp> â€based model. Pigment Cell and Melanoma Research, 2015, 28, 407-416.	1.5	52
350	Generation of an LncRNA Gtl2-GFP Reporter for Rapid Assessment of Pluripotency in Mouse Induced Pluripotent Stem Cells. Journal of Genetics and Genomics, 2015, 42, 125-128.	1.7	6
351	Tracing Dynamic Changes of DNA Methylation at Single-Cell Resolution. Cell, 2015, 163, 218-229.	13.5	120
352	A stochastic model dissects cell states in biological transition processes. Scientific Reports, 2014, 4, 3692.	1.6	24
353	Verification of chicken Nanog as an epiblast marker and identification of chicken PouV as Pou5f3 by newly raised antibodies. Development Growth and Differentiation, 2015, 57, 251-263.	0.6	14
354	Recent advances in Echinococcus genomics and stem cell research. Veterinary Parasitology, 2015, 213, 92-102.	0.7	39

#	Article	IF	CITATIONS
355	Establishing the human naÃ⁻ve pluripotent state. Current Opinion in Genetics and Development, 2015, 34, 35-45.	1.5	23
356	Human Neuropsychiatric Disease Modeling using Conditional Deletion Reveals Synaptic Transmission Defects Caused by Heterozygous Mutations in NRXN1. Cell Stem Cell, 2015, 17, 316-328.	5.2	187
357	Cyclin-dependent Kinase-mediated Sox2 Phosphorylation Enhances the Ability of Sox2 to Establish the Pluripotent State. Journal of Biological Chemistry, 2015, 290, 22782-22794.	1.6	40
358	Targeted Gene Correction in Osteopetrotic-Induced Pluripotent Stem Cells for the Generation of Functional Osteoclasts. Stem Cell Reports, 2015, 5, 558-568.	2.3	21
359	Induced Pluripotency and Epigenetic Reprogramming. Cold Spring Harbor Perspectives in Biology, 2015, 7, a019448.	2.3	84
360	Minicircle DNA vectors for gene therapy: advances and applications. Expert Opinion on Biological Therapy, 2015, 15, 353-379.	1.4	73
361	Pluripotent States of Human Embryonic Stem Cells. Cellular Reprogramming, 2015, 17, 1-6.	0.5	15
362	CRISPR/Cas9 Nuclease-Mediated Gene Knock-In in Bovine-Induced Pluripotent Cells. Stem Cells and Development, 2015, 24, 393-402.	1.1	66
363	Pharmacological and Therapeutic Targeting of Epigenetic Regulators. , 2016, , 387-401.		0
364	Use of the Nephrogenic Niche in Xeno-Embryos for Kidney Regeneration. , 2016, , 521-529.		0
365	Gingival Mesenchymal Stem/Progenitor Cells: A Unique Tissue Engineering Gem. Stem Cells International, 2016, 2016, 1-16.	1.2	143
366	Describing the Stem Cell Potency: The Various Methods of Functional Assessment and In silico Diagnostics. Frontiers in Cell and Developmental Biology, 2016, 4, 134.	1.8	58
367	A Compendium of Preparation and Application of Stem Cells in Parkinson's Disease: Current Status and Future Prospects. Frontiers in Aging Neuroscience, 2016, 8, 117.	1.7	20
368	p120 Catenin-Mediated Stabilization of E-Cadherin Is Essential for Primitive Endoderm Specification. PLoS Genetics, 2016, 12, e1006243.	1.5	26
369	Reactivation of Endogenous Genes and Epigenetic Remodeling Are Barriers for Generating Transgene-Free Induced Pluripotent Stem Cells in Pig. PLoS ONE, 2016, 11, e0158046.	1.1	24
370	Enrichment of Pluripotent Stem Cell-Derived Hepatocyte-Like Cells by Ammonia Treatment. PLoS ONE, 2016, 11, e0162693.	1.1	7
371	Positive Feedback Loop of OCT4 and c-JUN Expedites Cancer Stemness in Liver Cancer. Stem Cells, 2016, 34, 2613-2624.	1.4	43
372	OTX2 impedes self–renewal of porcine iPS cells through downregulation of NANOG expression. Cell Death Discovery, 2016, 2, 16090.	2.0	4

#	Article	IF	CITATIONS
373	Pluripotent Stem Cell-Derived Hepatocyte-like Cells: A Tool to Study Infectious Disease. Current Pathobiology Reports, 2016, 4, 147-156.	1.6	11
374	The acetyllysine reader BRD3R promotes human nuclear reprogramming and regulates mitosis. Nature Communications, 2016, 7, 10869.	5.8	28
375	Distinct and Shared Determinants of Cardiomyocyte Contractility in Multi-Lineage Competent Ethnically Diverse Human iPSCs. Scientific Reports, 2016, 6, 37637.	1.6	20
376	Distinct Enhancer Activity of Oct4 in Naive and Primed Mouse Pluripotency. Stem Cell Reports, 2016, 7, 911-926.	2.3	63
377	Evolution and functions of Oct4 homologs in non-mammalian vertebrates. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 770-779.	0.9	16
378	Zygotic Genome Activators, Developmental Timing, and Pluripotency. Current Topics in Developmental Biology, 2016, 116, 273-297.	1.0	26
379	Enhanced direct conversion of fibroblasts into hepatocyte-like cells by Kdm2b. Biochemical and Biophysical Research Communications, 2016, 474, 97-103.	1.0	10
380	SOX2, OCT3/4 and NANOG expression and cellular plasticity in rare human somatic cells requires CD73. Cellular Signalling, 2016, 28, 1923-1932.	1.7	7
381	Transdifferentiation: A Plant Perspective. , 2016, , 298-319.		2
383	Jun-Mediated Changes in Cell Adhesion Contribute to Mouse Embryonic Stem Cell Exit from Ground State Pluripotency. Stem Cells, 2016, 34, 1213-1224.	1.4	14
384	Singleâ€cell <scp>RNA</scp> sequencing: revealing human preâ€implantation development, pluripotency and germline development. Journal of Internal Medicine, 2016, 280, 252-264.	2.7	11
385	Pluripotent Stem Cells From Livestock. , 2016, , 312-354.		Ο
386	Long non-coding RNAs in human early embryonic development and their potential in ART. Human Reproduction Update, 2016, 23, 19-40.	5.2	108
387	Pluripotent stem cells as a model for embryonic patterning: From signaling dynamics to spatial organization in a dish. Developmental Dynamics, 2016, 245, 976-990.	0.8	27
388	Efficient long-term cryopreservation of pluripotent stem cells at â^80 °C. Scientific Reports, 2016, 6, 34476.	1.6	42
389	Derivation of Porcine Embryonic Stem-Like Cells from In Vitro-Produced Blastocyst-Stage Embryos. Scientific Reports, 2016, 6, 25838.	1.6	50
390	Selective Cell Elimination from Mixed 3D Culture Using a Near Infrared Photoimmunotherapy Technique. Journal of Visualized Experiments, 2016, , .	0.2	14
391	Resetting Human NaÃ ⁻ ve Pluripotency. Genetics & Epigenetics, 2016, 8, GEG.S38093.	2.5	6

#	Article	IF	CITATIONS
393	Quiescence Loosens Epigenetic Constraints in Bovine Somatic Cells and Improves Their Reprogramming into Totipotency. Biology of Reproduction, 2016, 95, 16-16.	1.2	20
394	Pairwise comparison of mammalian transcriptomes associated with the effect of polyploidy on the expression activity of developmental gene modules. Cell and Tissue Biology, 2016, 10, 122-132.	0.2	2
395	Loss of the Otx2-Binding Site in the Nanog Promoter Affects the Integrity of Embryonic Stem Cell Subtypes and Specification of Inner Cell Mass-Derived Epiblast. Cell Reports, 2016, 15, 2651-2664.	2.9	59
396	Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications. Stem Cell Reviews and Reports, 2016, 12, 394-420.	5.6	65
397	Decreased N-TAF1 expression in X-Linked Dystonia-Parkinsonism patient-specific neural stem cells. DMM Disease Models and Mechanisms, 2016, 9, 451-62.	1.2	36
398	Understanding the molecular mechanisms of reprogramming. Biochemical and Biophysical Research Communications, 2016, 473, 693-697.	1.0	13
399	Pluripotent Stem Cells from Domesticated Mammals. Annual Review of Animal Biosciences, 2016, 4, 223-253.	3.6	85
400	Modeling Alzheimer's disease with human induced pluripotent stem (iPS) cells. Molecular and Cellular Neurosciences, 2016, 73, 13-31.	1.0	100
401	Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nature Reviews Molecular Cell Biology, 2016, 17, 155-169.	16.1	490
402	Transcriptomics analysis of iPSC-derived neurons and modeling of neuropsychiatric disorders. Molecular and Cellular Neurosciences, 2016, 73, 32-42.	1.0	33
403	Prospects for gene-engineered T cell immunotherapy for solid cancers. Nature Medicine, 2016, 22, 26-36.	15.2	296
404	Putative embryonic stem cells derived from porcine cloned blastocysts using induced pluripotent stem cells as donors. Theriogenology, 2016, 85, 601-616.	0.9	19
405	Epigenesis and plasticity of mouse trophoblast stem cells. Cellular and Molecular Life Sciences, 2016, 73, 757-774.	2.4	13
407	Signaling Control of Differentiation of Embryonic Stem Cells toward Mesendoderm. Journal of Molecular Biology, 2016, 428, 1409-1422.	2.0	47
408	Glycosphingolipids of human embryonic stem cells. Glycoconjugate Journal, 2017, 34, 713-723.	1.4	23
409	Current status of treating neurodegenerative disease with induced pluripotent stem cells. Acta Neurologica Scandinavica, 2017, 135, 57-72.	1.0	29
410	Exploring early differentiation and pluripotency in domestic animals. Reproduction, Fertility and Development, 2017, 29, 101.	0.1	4
411	A Blueprint for a Synthetic Genetic Feedback Controller to Reprogram Cell Fate. Cell Systems, 2017, 4, 109-120.e11.	2.9	65

#	Article	IF	CITATIONS
412	Transcriptional regulatory networks underlying the reprogramming of spermatogonial stem cells to multipotent stem cells. Experimental and Molecular Medicine, 2017, 49, e315-e315.	3.2	13
413	Multilayer Nanofilms via Inkjet Printing for Stabilizing Growth Factor and Designing Desired Cell Developments. Advanced Healthcare Materials, 2017, 6, 1700216.	3.9	8
414	Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling. Neurobiology of Disease, 2017, 99, 84-120.	2.1	11
415	TET-mediated active DNA demethylation: mechanism, function and beyond. Nature Reviews Genetics, 2017, 18, 517-534.	7.7	1,109
416	Tissue Engineering Functional Gastrointestinal Regions: The Importance of Stem and Progenitor Cells. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a025700.	2.9	6
417	Autophagic homeostasis is required for the pluripotency of cancer stem cells. Autophagy, 2017, 13, 264-284.	4.3	108
418	HLA and Histo-Blood Group Antigen Expression in Human Pluripotent Stem Cells and their Derivatives. Scientific Reports, 2017, 7, 13072.	1.6	13
419	Shrimp miR-S8 Suppresses the Stemness of Human Melanoma Stem-like Cells by Targeting the Transcription Factor YB-1. Cancer Research, 2017, 77, 5543-5553.	0.4	32
420	Stem Cells in Spinal Fusion. Global Spine Journal, 2017, 7, 801-810.	1.2	21
421	Trib2 regulates the pluripotency of embryonic stem cells and enhances reprogramming efficiency. Experimental and Molecular Medicine, 2017, 49, e401-e401.	3.2	17
422	Efficient Encapsulation and Sustained Release of Basic Fibroblast Growth Factor in Nanofilm: Extension of the Feeding Cycle of Human Induced Pluripotent Stem Cell Culture. ACS Applied Materials & Interfaces, 2017, 9, 25087-25097.	4.0	23
423	Markers of the basal cell layer of prostate are effective indicators of its malignant transformation. Cell and Tissue Biology, 2017, 11, 205-212.	0.2	0
424	A Combined Epithelial Odontogenic Tumor? A 7-Year Follow-Up Case. Head and Neck Pathology, 2017, 11, 519-524.	1.3	7
425	Genomic and molecular control of cell type and cell type conversions. Cell Regeneration, 2017, 6, 1-7.	1.1	12
426	Adult Stem Cells and Anticancer Therapy. Advances in Molecular Toxicology, 2017, 11, 123-202.	0.4	9
427	Models of global gene expression define major domains of cell type and tissue identity. Nucleic Acids Research, 2017, 45, 2354-2367.	6.5	50
428	Advances in the Knowledge about Kidney Decellularization and Repopulation. Frontiers in Bioengineering and Biotechnology, 2017, 5, 34.	2.0	46
429	Effect of leukocyte inhibitory factor on neuron differentiation from human induced pluripotent stem cell-derived neural precursor cells. International Journal of Molecular Medicine, 2018, 41, 2037-2049.	1.8	7

#	Article	IF	CITATIONS
430	Down-Regulation of H3K4me3 by MM-102 Facilitates Epigenetic Reprogramming of Porcine Somatic Cell Nuclear Transfer Embryos. Cellular Physiology and Biochemistry, 2018, 45, 1529-1540.	1.1	46
431	The role of the reprogramming method and pluripotency state in gamete differentiation from patient-specific human pluripotent stem cells. Molecular Human Reproduction, 2018, 24, 173-184.	1.3	14
432	Autophagy in stem cells: repair, remodelling and metabolic reprogramming. Development (Cambridge), 2018, 145, .	1.2	143
433	Mitochondria structural reorganization during mouse embryonic stem cell derivation. Protoplasma, 2018, 255, 1373-1386.	1.0	6
434	Epigenetic states of donor cells significantly affect the development of somatic cell nuclear transfer (SCNT) embryos in pigs. Molecular Reproduction and Development, 2018, 85, 26-37.	1.0	25
435	Distinct role of autophagy on angiogenesis: highlights on the effect of autophagy in endothelial lineage and progenitor cells. Stem Cell Research and Therapy, 2018, 9, 305.	2.4	53
436	MTCH2-mediated mitochondrial fusion drives exit from naÃ⁻ve pluripotency in embryonic stem cells. Nature Communications, 2018, 9, 5132.	5.8	53
437	Differentiation of human iPSCs into functional podocytes. PLoS ONE, 2018, 13, e0203869.	1.1	44
438	Determining Relative Dynamic Stability of Cell States Using Boolean Network Model. Scientific Reports, 2018, 8, 12077.	1.6	43
439	FGF2 Signaling Plays an Important Role in Maintaining Pluripotent State of Pig Embryonic Germ Cells. Cellular Reprogramming, 2018, 20, 301-311.	0.5	4
440	Leukemia inhibitory factor regulates marmoset induced pluripotent stem cell proliferation via a PI3K/‌Akt‑dependent Tbx‑3 activation pathway. International Journal of Molecular Medicine, 2018, 42, 131-140.	1.8	10
441	Computational identification of specific genes for glioblastoma stem-like cells identity. Scientific Reports, 2018, 8, 7769.	1.6	48
442	Single Cell Genetics and Epigenetics in Early Embryo: From Oocyte to Blastocyst. Advances in Experimental Medicine and Biology, 2018, 1068, 103-117.	0.8	5
444	The fragile X mutation impairs homeostatic plasticity in human neurons by blocking synaptic retinoic acid signaling. Science Translational Medicine, 2018, 10, .	5.8	79
445	Discovery of cell-type specific DNA motif grammar in cis-regulatory elements using random Forest. BMC Genomics, 2018, 19, 929.	1.2	16
446	Mitochondrial plasticity in cell fate regulation. Journal of Biological Chemistry, 2019, 294, 13852-13863.	1.6	98
447	Rinf Regulates Pluripotency Network Genes and Tet Enzymes in Embryonic Stem Cells. Cell Reports, 2019, 28, 1993-2003.e5.	2.9	18
448	Personalized Medicine in Healthcare Systems. Europeanization and Globalization, 2019, , .	0.1	2

#	ARTICLE	IF	CITATIONS
449	Downâ€regulation of ATF1 leads to early neuroectoderm differentiation of human embryonic stem cells by increasing the expression level of SOX2. FASEB Journal, 2019, 33, 10577-10592.	0.2	4
450	A systems biology pipeline identifies regulatory networks for stem cell engineering. Nature Biotechnology, 2019, 37, 810-818.	9.4	18
451	Chemically Defined Media Can Maintain Pig Pluripotency Network InÂVitro. Stem Cell Reports, 2019, 13, 221-234.	2.3	59
452	Induced Pluripotent Stem Cell-Derived T Cells for Cancer Immunotherapy. Surgical Oncology Clinics of North America, 2019, 28, 489-504.	0.6	7
453	Generation of Mouse Parthenogenetic Epiblast Stem Cells and Their Imprinting Patterns. International Journal of Molecular Sciences, 2019, 20, 5428.	1.8	3
454	At Home among Strangers: Is It Possible to Create Hypoimmunogenic Pluripotent Stem Cell Lines?. Molecular Biology, 2019, 53, 638-652.	0.4	2
455	Clinical implications of drug-screening assay for recurrent metastatic hormone receptor-positive, human epidermal receptor 2-negative breast cancer using conditionally reprogrammed cells. Scientific Reports, 2019, 9, 13405.	1.6	6
456	Derivation of novel naiveâ€like porcine embryonic stem cells by a reprogramming factorâ€assisted strategy. FASEB Journal, 2019, 33, 9350-9361.	0.2	12
457	Functional roles of hnRNPA2/B1 regulated by METTL3 in mammalian embryonic development. Scientific Reports, 2019, 9, 8640.	1.6	42
458	An Autaptic Culture System for Standardized Analyses of iPSC-Derived Human Neurons. Cell Reports, 2019, 27, 2212-2228.e7.	2.9	42
459	Engineering Tissues from Induced Pluripotent Stem Cells. Tissue Engineering - Part A, 2019, 25, 707-710.	1.6	11
460	Identification and Characterization of the <i>OCT4</i> Upstream Regulatory Region in <i>Sus scrofa</i> . Stem Cells International, 2019, 2019, 1-11.	1.2	5
461	Hepatocyte Transplantation: Quo Vadis?. International Journal of Radiation Oncology Biology Physics, 2019, 103, 922-934.	0.4	15
462	Loss of Emp2 compromises cardiogenic differentiation in mouse embryonic stem cells. Biochemical and Biophysical Research Communications, 2019, 511, 173-178.	1.0	4
463	Reprogramming: identifying the mechanisms that safeguard cell identity. Development (Cambridge), 2019, 146, .	1.2	45
464	Engineering the niche for hair regeneration — A critical review. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 15, 70-85.	1.7	32
465	TAp73 Modifies Metabolism and Positively Regulates Growth of Cancer Stem–Like Cells in a Redox-Sensitive Manner. Clinical Cancer Research, 2019, 25, 2001-2017.	3.2	25
466	LncRNAs regulating stemness in aging. Aging Cell, 2019, 18, e12870.	3.0	27

#	Article	IF	CITATIONS
467	Full of potential: Pluripotent stem cells for the systems biology of embryonic patterning. Developmental Biology, 2020, 460, 86-98.	0.9	17
469	Cellular reprogramming by single ell fusion with mouse embryonic stem cells in pig. Journal of Cellular Physiology, 2020, 235, 3558-3568.	2.0	4
470	Livestock pluripotency is finally captured in vitro. Reproduction, Fertility and Development, 2020, 32, 11.	0.1	25
471	Stem Cells and Spinal Fusion. Neurosurgery Clinics of North America, 2020, 31, 65-72.	0.8	2
472	Essential Current Concepts in Stem Cell Biology. Learning Materials in Biosciences, 2020, , .	0.2	2
473	Xenoâ€regenerative medicine: A novel concept for donor kidney fabrication. Xenotransplantation, 2020, 27, e12622.	1.6	16
474	Microscopic Chromosomal Structural and Dynamical Origin of Cell Differentiation and Reprogramming. Advanced Science, 2020, 7, 2001572.	5.6	16
475	Human Embryonic-Derived Mesenchymal Progenitor Cells (hES-MP Cells) are Fully Supported in Culture with Human Platelet Lysates. Bioengineering, 2020, 7, 75.	1.6	3
476	Silencing and Transcriptional Regulation of Endogenous Retroviruses: An Overview. Viruses, 2020, 12, 884.	1.5	101
477	Antitumor Drugs and Their Targets. Molecules, 2020, 25, 5776.	1.7	39
477 478	Antitumor Drugs and Their Targets. Molecules, 2020, 25, 5776. Robustness and parameter geography in post-translational modification systems. PLoS Computational Biology, 2020, 16, e1007573.	1.7 1.5	39 16
	Robustness and parameter geography in post-translational modification systems. PLoS Computational		
478	Robustness and parameter geography in post-translational modification systems. PLoS Computational Biology, 2020, 16, e1007573.	1.5	16
478 479	Robustness and parameter geography in post-translational modification systems. PLoS Computational Biology, 2020, 16, e1007573. Calcium regulation of stem cells. EMBO Reports, 2020, 21, e50028.	1.5 2.0	16 25
478 479 480	Robustness and parameter geography in post-translational modification systems. PLoS Computational Biology, 2020, 16, e1007573. Calcium regulation of stem cells. EMBO Reports, 2020, 21, e50028. Cellular Reprogramming and Aging. Learning Materials in Biosciences, 2020, , 73-91. STAT3 modulates reprogramming efficiency of human somatic cells; Insights from autosomal	1.5 2.0 0.2	16 25 1
478 479 480 481	Robustness and parameter geography in post-translational modification systems. PLoS Computational Biology, 2020, 16, e1007573. Calcium regulation of stem cells. EMBO Reports, 2020, 21, e50028. Cellular Reprogramming and Aging. Learning Materials in Biosciences, 2020, , 73-91. STAT3 modulates reprogramming efficiency of human somatic cells; Insights from autosomal dominant Hyper IgE syndrome caused by STAT3 mutations. Biology Open, 2020, 9,. Embryo-derived and induced pluripotent stem cells: Towards naive pluripotency and chimeric	1.5 2.0 0.2 0.6	16 25 1 3
478 479 480 481 483	Robustness and parameter geography in post-translational modification systems. PLoS Computational Biology, 2020, 16, e1007573. Calcium regulation of stem cells. EMBO Reports, 2020, 21, e50028. Cellular Reprogramming and Aging. Learning Materials in Biosciences, 2020, , 73-91. STAT3 modulates reprogramming efficiency of human somatic cells; Insights from autosomal dominant Hyper IgE syndrome caused by STAT3 mutations. Biology Open, 2020, 9,. Embryo-derived and induced pluripotent stem cells: Towards naive pluripotency and chimeric competency in rabbits. Experimental Cell Research, 2020, 389, 111908. A cytokine screen using CRISPR-Cas9 knock-in reporter pig IPS cells reveals that Activin A regulates	1.5 2.0 0.2 0.6 1.2	16 25 1 3 4

#	Article	IF	CITATIONS
487	Direct Differentiation of Functional Neurons from Human Pluripotent Stem Cells (hPSCs). Methods in Molecular Biology, 2021, 2352, 117-126.	0.4	1
488	Optically superior fluorescent probes for selective imaging of cells, tumors, and reactive chemical species. Organic and Biomolecular Chemistry, 2021, 19, 5208-5236.	1.5	4
489	Porcine iPSCs. , 2021, , 93-127.		0
490	Combining bioscaffolds and iPSCs in the treatment of neural trauma and Alzheimer's disease. , 2021, , 123-162.		0
491	Asymmetric Cell Division of Fibroblasts is An Early Deterministic Step to Generate Elite Cells during Cell Reprogramming. Advanced Science, 2021, 8, 2003516.	5.6	7
493	Derivation of Thyroid Follicular Cells From Pluripotent Stem Cells: Insights From Development and Implications for Regenerative Medicine. Frontiers in Endocrinology, 2021, 12, 666565.	1.5	10
494	Induced Pluripotent Stem Cells from Animal Models: ApplicationsÂon Translational Research. , 0, , .		1
495	Current Developments in Cell Replacement Therapy for Parkinson's Disease. Neuroscience, 2021, 463, 370-382.	1.1	17
496	Porcine <i>OCT4</i> Reporter System Can Monitor Species-Specific Pluripotency During Somatic Cell Reprogramming. Cellular Reprogramming, 2021, 23, 168-179.	0.5	5
497	Multivariate meta-analysis reveals global transcriptomic signatures underlying distinct human naive-like pluripotent states. PLoS ONE, 2021, 16, e0251461.	1.1	3
498	Porcine Primordial Germ Cell-Like Cells Generated from Induced Pluripotent Stem Cells Under Different Culture Conditions. Stem Cell Reviews and Reports, 2022, 18, 1639-1656.	1.7	14
499	Single-Cell Transcriptome Analysis as a Promising Tool to Study Pluripotent Stem Cell Reprogramming. International Journal of Molecular Sciences, 2021, 22, 5988.	1.8	3
500	SOX2 plays a crucial role in cell proliferation and lineage segregation during porcine preâ€implantation embryo development. Cell Proliferation, 2021, 54, e13097.	2.4	12
501	Efficient generation of dopaminergic induced neuronal cells with midbrain characteristics. Stem Cell Reports, 2021, 16, 1763-1776.	2.3	21
502	Metabostemness in cancer: Linking metaboloepigenetics and mitophagy in remodeling cancer stem cells. Stem Cell Reviews and Reports, 2022, 18, 198-213.	1.7	8
503	Induced pluripotent stem cells. Obtaining, properties and application prospects in biology and medicine. Vestsi Natsyianal'nai Akademii Navuk Belarusi Seryia Biialahichnykh Navuk, 2021, 66, 345-356.	0.2	0
505	Principles of signaling pathway modulation for enhancing human naive pluripotency induction. Cell Stem Cell, 2021, 28, 1549-1565.e12.	5.2	78
506	Application of hiPSCs in tooth regeneration via cellular modulation. Journal of Oral Biosciences, 2021, 63, 225-231.	0.8	4

#	Article	IF	CITATIONS
507	Synthetic tissue engineering with smart, cytomimetic protocells. Biomaterials, 2021, 276, 120941.	5.7	15
508	Induced pluripotency and intrinsic reprogramming factors. , 2022, , 117-145.		0
509	Efficient and Safe Method of Generating Induced Pluripotent Stem Cells from Human Skin Fibroblasts and Subsequent Differentiation into Functional Cardiomyocytes. Methods in Molecular Biology, 2021, , 197-212.	0.4	1
510	Regulation of Eukaryotic Cell Differentiation by Long Non-coding RNAs. , 2013, , 15-67.		4
511	3D Nanochannel Electroporation for Macromolecular Nucleotide Delivery. Methods in Molecular Biology, 2020, 2050, 69-77.	0.4	3
512	Isolation and Culture of Porcine Embryonic Stem Cells. Methods in Molecular Biology, 2013, 1074, 85-95.	0.4	5
517	Evolving principles underlying neural lineage conversion and their relevance for biomedical translation. F1000Research, 2019, 8, 1548.	0.8	12
518	Serum Starvation Induced Cell Cycle Synchronization Facilitates Human Somatic Cells Reprogramming. PLoS ONE, 2012, 7, e28203.	1.1	95
519	Uncoupled Embryonic and Extra-Embryonic Tissues Compromise Blastocyst Development after Somatic Cell Nuclear Transfer. PLoS ONE, 2012, 7, e38309.	1.1	29
520	Establishment of LIF-Dependent Human iPS Cells Closely Related to Basic FGF-Dependent Authentic iPS Cells. PLoS ONE, 2012, 7, e39022.	1.1	16
521	Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion. PLoS ONE, 2016, 11, e0156491.	1.1	7
522	Recent Advances in Induced Pluripotent Stem Cell (iPSC) based Therapeutics. Journal of Stem Cell Research & Therapeutics, 2017, 3, .	0.1	3
523	Biology and clinical relevance of EpCAM. Cell Stress, 2019, 3, 165-180.	1.4	127
524	Long-Term Effects of Chromatin Remodeling and DNA Damage in Stem Cells Induced by Environmental and Dietary Agents. Journal of Environmental Pathology, Toxicology and Oncology, 2013, 32, 307-327.	0.6	7
525	Metabostemness: Metaboloepigenetic reprogramming of cancer stem-cell functions. Oncoscience, 2014, 1, 803-806.	0.9	31
526	Generation of <i>in vivo</i> neural stem cells using partially reprogrammed cells defective in <i>in vitro</i> differentiation potential. Oncotarget, 2017, 8, 16456-16462.	0.8	4
527	STB-HO, a novel mica fine particle, inhibits the teratoma-forming ability of human embryonic stem cells after in vivo transplantation. Oncotarget, 2016, 7, 2684-2695.	0.8	2
528	Pluripotent Stem Cell-Derived Somatic Stem Cells as Tool to Study the Role of MicroRNAs in Early Human Neural Development. Current Molecular Medicine, 2013, 13, 707-722.	0.6	34

		ATION REPORT	
#	Article	IF	Citations
529	What Makes a Pluripotency Reprogramming Factor?. Current Molecular Medicine, 2013, 13, 806-814.	0.6	10
530	Physiological Microenvironmental Conditions in Different Scalable Culture Systems for Pluripotent Stem Cell Expansion and Differentiation. Open Biomedical Engineering Journal, 2019, 13, 41-54.	0.7	6
531	Recent Progress on Chemical Biology of Pluripotent Stem Cell Selfrenewal, Reprogramming and Cardiomyogenesis. Recent Patents on Regenerative Medicine, 2011, 1, 263-274.	0.4	8
532	Human Induced Pluripotent Stem Cells : Clinical Significance and Applications in Neurologic Diseases. Journal of Korean Neurosurgical Society, 2019, 62, 493-501.	0.5	20
533	Reprogramming cells with synthetic proteins. Asian Journal of Andrology, 2015, 17, 394.	0.8	7
534	Types of Human Stem Cells and Their Therapeutic Applications. Stem Cell Discovery, 2014, 04, 13-26.	0.5	3
535	Reprogramming somatic cells by fusion with embryonic stem cells does not cause silencing of theDlk1-Dio3region in mice. World Journal of Stem Cells, 2012, 4, 87.	1.3	8
536	Title is missing!. Journal of Medical and Biological Engineering, 2014, 34, 101.	1.0	8
537	Hdac6 regulates Tip60-p400 function in stem cells. ELife, 2013, 2, e01557.	2.8	53
538	Hurdles for the wide implementation of photoimmunotherapy. Immunotherapy, 2021, 13, 1427-1438.	1.0	8
539	Human Amnion-derived Pluripotent Stem Cells as a Promising Source for Regenerative Medicine and Tissue Engineering. Journal of Bioengineering & Biomedical Science, 2011, 01, .	0.2	1
540	Disease modeling using pluripotent stem cells: making sense of disease from bench to bedside. Swiss Medical Weekly, 2011, 141, w13144.	0.8	10
541	The Role of SOX2 in Maintaining Pluripotency and Differentiation of Human Embryonic Stem Cells. , 0, .	,	2
542	Progress and Future Challenges of Human Induced Pluripotents Stem Cell in Regenerative Medicine. Indonesian Biomedical Journal, 2011, 3, 76.	0.2	0
543	Reprogramming: A New Era in Regenerative Medicine. SpringerBriefs in Neuroscience, 2012, , 1-25.	0.1	0
544	A Strategy Using Pluripotent Stem Cell-Derived Hepatocytes for Stem Cell-Based Therapies. , 0, , .		0
545	Challenges to Therapeutic Potential of hiPSCs. SpringerBriefs in Stem Cells, 2012, , 51-56.	0.1	0
546	Science and Ethics: Bridge to the Future for Regenerative Medicine. International Journal of Stem Cells, 2011, 4, 79-84.	0.8	2

#	Article	IF	CITATIONS
547	Induced Pluripotent Stem Cell Production and Characterization: An Overview of Somatic Cell Reprogramming. , 2012, , 125-137.		0
548	Technical and Bioethical Challenges Associated with using Stem Cells for Research and Therapy. , 2012, , 154-188.		0
549	From Pluripotency to Differentiation: The Role of mtDNA in Stem Cell Models of Mitochondrial Diseases. , 2013, , 87-118.		0
550	Early Embryo Development in Large Animals. SpringerBriefs in Stem Cells, 2013, , 1-19.	0.1	0
551	Stammzellen und Tissue Engineering. , 2013, , 243-261.		0
552	Generation of Anterior Foregut Derivatives from Pluripotent Stem Cells. , 2013, , 161-175.		0
553	iPS Cell Technology and Disease Research: Issues To Be Resolved. Research and Perspectives in Neurosciences, 2013, , 1-7.	0.4	0
554	基于å°é¼æ¨¡åž‹çš"干细胞ç"ç©¶. å®žéªŒææ–™å'Œæ–¹æ³•, 0, cn3, .	0.0	0
555	Immunogenicity of Stem Cells. Advances in Medical Technologies and Clinical Practice Book Series, 2013, , 96-111.	0.3	0
556	Stem Cell Research Using Mouse Models. Materials and Methods, 0, 3, .	0.0	1
557	Genomic-Epigenomic Signaling Pathways Changes in Cellular Differentiation Process. American Journal of Biomedical Research, 2013, 1, 35-42.	0.2	1
558	Main Phenotype Subphases in Reprogramming Somatic Cells as a Model of Cellular Differentiation Process. American Journal of Biomedical Research, 2013, 1, 48-56.	0.2	0
559	Blood Cell Bioprocessing: The Haematopoietic System and Current Status of In-Vitro Production of Red Blood Cells. Cell Engineering, 2014, , 97-128.	0.4	0
560	A Concise Review on Epigenetic Regulation. , 2013, , 23-64.		0
561	Senescent-Derived Pluripotent Stem Cells Are Able to Redifferentiate into Fully Rejuvenated Cells. , 2014, , 265-276.		0
562	Explanatory Interdependence: The Case of Stem Cell Reprogramming. History, Philosophy and Theory of the Life Sciences, 2015, , 387-412.	0.4	3
563	Directed Differentiation of Human Pluripotent Stem Cells into Lung and Airway Epithelial Cells. Pancreatic Islet Biology, 2015, , 265-285.	0.1	0
564	Rostro-caudal gradient in the expression of transcriptional factor SOX2 in the fetal human brain. Varnenski Medicinski Forum, 2015, 4, 10.	0.0	0

#	ARTICLE	IF	CITATIONS
566	Stem Cells and Organ Transplantation: Resetting Our Biological Clocks. Science and Fiction, 2016, , 429-466.	0.0	0
568	Induced Pluripotent Stem Cells (iPSCs) and Nuclear Reprogramming. , 2017, , 71-91.		0
569	Spatial Peculiarities of Stem Cells in Plants and Animals. Journal of Stem Cell and Regenerative Biology, 2017, 3, 140-144.	0.2	0
571	Polyploidy activates biological pathways related to morphogenesis in mammalian tissues. MOJ Immunology, 2018, 6, .	11.0	2
572	The Molecular and Functional Foundations of Conducive Somatic Cell Reprogramming to Ground State Pluripotency. SSRN Electronic Journal, 0, , .	0.4	0
573	Neutralizing Gatad2a-Chd4-Mbd3 Axis within the NuRD Complex Facilitates Deterministic Induction of Naive Pluripotency. SSRN Electronic Journal, 0, , .	0.4	0
574	Nanotechnology Approaches for Autologous Stem Cell Manipulation in Personalized Regenerative Medicine. Europeanization and Globalization, 2019, , 45-54.	0.1	2
578	Gene Therapy Approaches for Cochlear Repair. , 2020, , 962-984.		0
580	Expression Profiles of MicroRNAs in Stem Cells Differentiation. Current Pharmaceutical Biotechnology, 2020, 21, 906-918.	0.9	3
581	Somatic Reprogramming—Above and Beyond Pluripotency. Cells, 2021, 10, 2888.	1.8	11
582	Mesenchymal Stem Cells. Learning Materials in Biosciences, 2020, , 21-39.	0.2	4
583	GSL Signaling Regulation. , 2020, , 119-139.		0
587	Cell Therapy: Types, Regulation, and Clinical Benefits. Frontiers in Medicine, 2021, 8, 756029.	1.2	61
588	WWOX-Related Neurodevelopmental Disorders: Models and Future Perspectives. Cells, 2021, 10, 3082.	1.8	8
589	Twist2-Driven Chromatin Remodeling Governs the Postnatal Maturation of Dermal Fibroblasts. SSRN Electronic Journal, 0, , .	0.4	0
590	Structurally-discovered KLF4 variants accelerate and stabilize reprogramming to pluripotency. IScience, 2022, 25, 103525.	1.9	4
591	Advancement in Cancer Stem Cell Biology and Precision Medicine—Review Article Head and Neck Cancer Stem Cell Plasticity and the Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 2021, 9, 660210.	1.8	9
592	Patient-Specific iPSCs-Based Models of Neurodegenerative Diseases: Focus on Aberrant Calcium Signaling. International Journal of Molecular Sciences, 2022, 23, 624.	1.8	8

#	ARTICLE The DNA dioxygenase Tet1 regulates H3K27 modification and embryonic stem cell biology independent	IF	CITATIONS
593	of its catalytic activity. Nucleic Acids Research, 2022, 50, 3169-3189.	6.5	27
594	Defining the Pluripotent Marker Genes for Identification of Teleost Fish Cell Pluripotency During Reprogramming. Frontiers in Genetics, 2022, 13, 819682.	1.1	2
595	Oral biosciences: The annual review 2021. Journal of Oral Biosciences, 2022, , .	0.8	1
597	Porcine OCT4 reporter system as a tool for monitoring pluripotency states. Journal of Animal Reproduciton and Biotechnology, 2021, 36, 175-182.	0.3	1
598	Machine Learning Approaches to Single-Cell Data Integration and Translation. Proceedings of the IEEE, 2022, 110, 557-576.	16.4	2
599	Twist2-driven chromatin remodeling governs the postnatal maturation of dermal fibroblasts. Cell Reports, 2022, 39, 110821.	2.9	12
600	Effects of KnockOut Serum Replacement on Differentiation of Mouse-Induced Pluripotent Stem Cells into Odontoblasts. Bulletin of Tokyo Dental College, The, 2022, 63, 75-83.	0.1	1
601	Genipin-crosslinked decellularized scaffold induces regeneration of defective rat kidneys. Journal of Biomaterials Applications, 2022, 37, 415-428.	1.2	2
603	M ⁶ A reader hnRNPA2/B1 is essential for porcine embryo development via gene expression regulation. Journal of Animal Reproduciton and Biotechnology, 2022, 37, 121-129.	0.3	1
604	Species-Specific Enhancer Activity of OCT4 in Porcine Pluripotency: The Porcine OCT4 Reporter System Could Monitor Pluripotency in Porcine Embryo Development and Embryonic Stem Cells. Stem Cells International, 2022, 2022, 1-18.	1.2	2
605	The role of BMP4 signaling in trophoblast emergence from pluripotency. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	12
606	Acquisition and maintenance of pluripotency are influenced by fibroblast growth factor, leukemia inhibitory factor, and 2i in bovine-induced pluripotent stem cells. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
607	Dynamic gelatin-based hydrogels promote the proliferation and self-renewal of embryonic stem cells in long-term 3D culture. Biomaterials, 2022, 289, 121802.	5.7	17
608	Murine Embryonic Stem Cells as Platform for Toxicity Studies: Use of Human Survivin Promoter with Green Fluorescent Protein Reporter for High-Throughput Screening. Biomarkers in Disease, 2022, , 1-23.	0.0	0
609	LncRNA affects epigenetic reprogramming of porcine embryo development by regulating global epigenetic modification and the downstream gene SIN3A. Frontiers in Physiology, 0, 13, .	1.3	1
610	Autophagy regulation combined with stem cell therapy for treatment of spinal cord injury. Neural Regeneration Research, 2023, .	1.6	1
611	Label-free and non-destructive identification of naÃ ⁻ ve and primed embryonic stem cells based on differences in cellular metabolism. Biomaterials, 2023, 293, 121939.	5.7	3
613	Emerging pointâ€ofâ€care autologous cellular therapy using adiposeâ€derived stromal vascular fraction for neurodegenerative diseases. Clinical and Translational Medicine, 2022, 12, .	1.7	2

CITATION	DEDODT
CITATION	KEPORT

#	Article	IF	CITATIONS
614	Reprogramming stem cells in regenerative medicine. , 2022, 1, .		11
615	Murine Embryonic Stem Cells as Platform for Toxicity Studies: Use of Human Survivin Promoter with Green Fluorescent Protein Reporter for High-Throughput Screening. Biomarkers in Disease, 2023, , 515-537.	0.0	0
617	Neurotransmitter release progressively desynchronizes in induced human neurons during synapse maturation and aging. Cell Reports, 2023, 42, 112042.	2.9	3
618	Transition from Animal-Based to Human Induced Pluripotent Stem Cells (iPSCs)-Based Models of Neurodevelopmental Disorders: Opportunities and Challenges. Cells, 2023, 12, 538.	1.8	1
620	Pluripotent Stem Cells of Order Carnivora: Technical Perspective. International Journal of Molecular Sciences, 2023, 24, 3905.	1.8	0
621	To not love thy neighbor: mechanisms of cell competition in stem cells and beyond. Cell Death and Differentiation, 2023, 30, 979-991.	5.0	3
622	Pluripotent, germ cell competent adult stem cells underlie cnidarian regenerative ability and clonal growth. Current Biology, 2023, 33, 1883-1892.e3.	1.8	11
625	Transcription Factor-Directed Dopaminergic Neuron Differentiation from Human Pluripotent Stem Cells. Methods in Molecular Biology, 2023, , 39-51.	0.4	0
632	Epigenetic modification: key regulator of reprogramming in cancer stem cells. , 2024, , 227-242.		0