MicroRNA Regulatory Networks in Cardiovascular Deve

Developmental Cell 18, 510-525

DOI: 10.1016/j.devcel.2010.03.010

Citation Report

#	Article	IF	CITATIONS
1	Novel regulators and drug targets of cardiac hypertrophy. Journal of Hypertension, 2010, 28, S33-S38.	0.3	32
2	MicroRNAs: Redefining Mechanisms in Cardiac Disease. Journal of Cardiovascular Pharmacology, 2010, 56, 589-595.	0.8	14
3	Context-dependent functions of specific microRNAs in neuronal development. Neural Development, 2010, 5, 25.	1.1	139
4	MicroRNAs in skeletal muscle: their role and regulation in development, disease and function. Journal of Physiology, 2010, 588, 4075-4087.	1.3	226
5	Analysis of microRNA knockouts in mice. Human Molecular Genetics, 2010, 19, R169-R175.	1.4	186
6	Making Muscle. Circulation Research, 2010, 107, 575-578.	2.0	2
7	Circulating MicroRNAs As Potential Biomarkers of Coronary Artery Disease. Circulation Research, 2010, 107, 573-574.	2.0	40
8	miR-21: a miRaculous Socratic paradox. Cardiovascular Research, 2010, 87, 397-400.	1.8	16
9	Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3ζ. Genes and Development, 2010, 24, 1614-1619.	2.7	156
10	MicroRNAs in a Cardiac Loop: Progenitor or Myocyte?. Developmental Cell, 2010, 19, 787-788.	3.1	2
11	Resveratrol induces p53 and suppresses myocardin-mediated vascular smooth muscle cell differentiation. Toxicology Letters, 2010, 199, 115-122.	0.4	16
12	High-content affinity-based proteomics: unlocking protein biomarker discovery. Expert Review of Molecular Diagnostics, 2010, 10, 1013-1022.	1.5	64
13	MicroRNAs in cardiac disease. Translational Research, 2011, 157, 226-235.	2.2	67
14	Dicer activity in neural crest cells is essential for craniofacial organogenesis and pharyngeal arch artery morphogenesis. Mechanisms of Development, 2011, 128, 200-207.	1.7	61
15	Profiling the miRNome: Detecting Global miRNA Expression Levels with DNA Microarrays. Neuromethods, $2011, 91-111$.	0.2	0
16	microRNAs in hypertrophy and heart failure. Experimental Biology and Medicine, 2011, 236, 125-131.	1.1	43
18	MicroRNAs and their roles in mammalian stem cells. Journal of Cell Science, 2011, 124, 1775-1783.	1.2	93
19	MicroRNA Function in Seed Biology. , 2011, , 339-357.		3

#	Article	IF	Citations
20	Plaque rupture is not the cause of takotsubo cardiomyopathy. Medical Hypotheses, 2011, 76, 305-306.	0.8	1
21	Possible involvement of microRNAs (miR-135aâ^—) in heart failure associated with 25bp deletion in MYBPC3 (cardiac myosin binding protein C) gene. Medical Hypotheses, 2011, 76, 306.	0.8	5
22	Human Cardiac Stem Cell Differentiation Is Regulated by a Mircrine Mechanism. Circulation, 2011, 123, 1287-1296.	1.6	193
23	New Directions in Biology and Disease of Skeletal Muscle, Meeting Report, 5–8 May 2010, Ottawa, Canada. Neuromuscular Disorders, 2011, 21, 157-159.	0.3	2
24	MicroRNA-133 Controls Vascular Smooth Muscle Cell Phenotypic Switch In Vitro and Vascular Remodeling In Vivo. Circulation Research, 2011, 109, 880-893.	2.0	280
25	Remyelination in Multiple Sclerosis. , 2011, , 193-223.		1
26	MicroRNAs e seu papel no desenvolvimento embrion $ ilde{A}_i$ rio. Ciencia Rural, 2011, 41, 85-93.	0.3	3
27	MicroRNA-1 and -133 Increase Arrhythmogenesis in Heart Failure by Dissociating Phosphatase Activity from RyR2 Complex. PLoS ONE, 2011, 6, e28324.	1.1	134
28	Polyphenols and Cardiovascular Disease: A Critical Summary of the Evidence. Mini-Reviews in Medicinal Chemistry, 2011, 11, 1186-1190.	1.1	1
29	Molecular mechanisms of cardiomyocyte aging. Clinical Science, 2011, 121, 315-329.	1.8	76
30	MicroRNA, Emerging Role as a Biomarker of Heart Failure. Circulation Journal, 2011, 75, 268-269.	0.7	16
31	MicroRNAs and cardiovascular diseases. FEBS Journal, 2011, 278, 1619-1633.	2.2	148
32	Pervasive roles of microRNAs in cardiovascular biology. Nature, 2011, 469, 336-342.	13.7	1,076
33	Molecular markers of cardiomyopathy in cyanotic pediatric heart disease. Progress in Pediatric Cardiology, 2011, 32, 19-23.	0.2	3
34	MicroRNAs and vascular (dys)function. Vascular Pharmacology, 2011, 55, 92-105.	1.0	53
35	"Fishing―for endothelial microRNA functions and dysfunction. Vascular Pharmacology, 2011, 55, 60-68.	1.0	10
36	New insights in the mechanism of microRNA-mediated target repression. Nature Structural and Molecular Biology, 2011, 18, 1181-1182.	3.6	18
37	The miR-143/145 Cluster Is a Novel Transcriptional Target of Jagged-1/Notch Signaling in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2011, 286, 28312-28321.	1,6	123

#	Article	IF	Citations
38	Cell-specific detection of microRNA expression during cardiomyogenesis by combined in situ hybridization and immunohistochemistry. Journal of Molecular Histology, 2011, 42, 289-299.	1.0	37
39	MicroRNAs as biomarkers of disease onset. Analytical and Bioanalytical Chemistry, 2011, 401, 2051-2061.	1.9	86
40	Epigenetics: an Expanding New Piece of the Stroke Puzzle. Translational Stroke Research, 2011, 2, 243-247.	2.3	10
41	MicroRNAs in Cardiometabolic Disease. Current Atherosclerosis Reports, 2011, 13, 202-207.	2.0	37
42	Regulation of microRNA expression and function by nuclear receptor signaling. Cell and Bioscience, 2011, 1, 31.	2.1	101
43	Synthetic sulfonyl-hydrazone-1 positively regulates cardiomyogenic microRNA expression and cardiomyocyte differentiation of induced pluripotent stem cells. Journal of Cellular Biochemistry, 2011, 112, 2006-2014.	1.2	20
44	MicroRNA expression signature in atrial fibrillation with mitral stenosis. Physiological Genomics, 2011, 43, 655-664.	1.0	87
45	The MyomiR Network in Skeletal Muscle Plasticity. Exercise and Sport Sciences Reviews, 2011, 39, 150-154.	1.6	145
46	Regulation of endoderm formation and left-right asymmetry by miR-92 during early zebrafish development. Development (Cambridge), 2011, 138, 1817-1826.	1.2	39
47	Profile of MicroRNAs Differentially Produced in Hearts from Patients with Hypertrophic Cardiomyopathy and Sarcomeric Mutations. Clinical Chemistry, 2011, 57, 1614-1616.	1.5	28
48	Vascular Smooth Muscle Progenitor Cells. Circulation Research, 2011, 108, 365-377.	2.0	170
49	Genetic analysis of specific and redundant roles for p38 \hat{l} ± and p38 \hat{l} 2 MAPKs during mouse development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12764-12769.	3.3	53
50	FXR1P But Not FMRP Regulates the Levels of Mammalian Brain-Specific microRNA-9 and microRNA-124. Journal of Neuroscience, 2011, 31, 13705-13709.	1.7	52
51	RISC RNA Sequencing for Context-Specific Identification of In Vivo MicroRNA Targets. Circulation Research, 2011, 108, 18-26.	2.0	99
53	miR-155 Inhibits Expression of the MEF2A Protein to Repress Skeletal Muscle Differentiation. Journal of Biological Chemistry, 2011, 286, 35339-35346.	1.6	91
54	Label-free high-throughput microRNA expression profiling from total RNA. Nucleic Acids Research, 2011, 39, e154-e154.	6.5	97
55	MicroRNAsâ€Control of Essential Genes: Implications for Pulmonary Vascular Disease. Pulmonary Circulation, 2011, 1, 357-364.	0.8	37
56	Essential Role for miR-196a in Brown Adipogenesis of White Fat Progenitor Cells. PLoS Biology, 2012, 10, e1001314.	2.6	209

#	Article	IF	CITATIONS
57	Reciprocal regulation controlling the expression of CPI-17, a specific inhibitor protein for the myosin light chain phosphatase in vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 2012, 303, C58-C68.	2.1	23
58	Cytoplasmic Polyadenylation Element Binding Protein Deficiency Stimulates PTEN and Stat3 mRNA Translation and Induces Hepatic Insulin Resistance. PLoS Genetics, 2012, 8, e1002457.	1.5	46
59	miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. Journal of Cell Biology, 2012, 197, 509-521.	2.3	215
60	MicroRNAs and fibrosis. Current Opinion in Nephrology and Hypertension, 2012, 21, 410-416.	1.0	151
61	How do microRNAs affect vascular smooth muscle cell biology?. Current Opinion in Lipidology, 2012, 23, 405-411.	1.2	29
62	Direct and Indirect Involvement of MicroRNA-499 in Clinical and Experimental Cardiomyopathy. Circulation Research, 2012, 111, 521-531.	2.0	133
63	miR-218 Directs a Wnt Signaling Circuit to Promote Differentiation of Osteoblasts and Osteomimicry of Metastatic Cancer Cells. Journal of Biological Chemistry, 2012, 287, 42084-42092.	1.6	251
64	Role of microRNAs in the reperfused myocardium towards post-infarct remodelling. Cardiovascular Research, 2012, 94, 284-292.	1.8	146
65	Harnessing adult neurogenesis by cracking the epigenetic code. Future Neurology, 2012, 7, 65-79.	0.9	3
66	Unwrapping Myelination by MicroRNAs. Neuroscientist, 2012, 18, 45-55.	2.6	41
68	The E2F6 repressor activates gene expression in myocardium resulting in dilated cardiomyopathy. FASEB Journal, 2012, 26, 2569-2579.	0.2	15
69	A Human 3′ miR-499 Mutation Alters Cardiac mRNA Targeting and Function. Circulation Research, 2012, 110, 958-967.	2.0	83
70	Alteration of Cardiac Progenitor Cell Potency in GRMD Dogs. Cell Transplantation, 2012, 21, 1945-1967.	1.2	19
71	microRNA expression profiling of the developing mouse heart. International Journal of Molecular Medicine, 2012, 30, 1095-1104.	1.8	52
72	Distinct microRNA expression signatures in human right atrial and ventricular myocardium. Molecular and Cellular Biochemistry, 2012, 371, 23-29.	1.4	3
73	A miR Image of Stem Cells and Their Lineages. Current Topics in Developmental Biology, 2012, 99, 175-199.	1.0	16
74	Autophagy and cardiovascular aging. Cell Cycle, 2012, 11, 2092-2099.	1.3	71
75	Long Noncoding RNAs in Cardiac Development and Pathophysiology. Circulation Research, 2012, 111, 1349-1362.	2.0	220

#	Article	IF	Citations
76	<i>Drosophila</i> miRâ€5 suppresses Hedgehog signaling by directly targeting Smoothened. FEBS Letters, 2012, 586, 4052-4060.	1.3	7
77	A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells. Journal of Molecular and Cellular Cardiology, 2012, 53, 323-332.	0.9	193
78	Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart, 2012, 98, 5-10.	1.2	218
79	A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2012, 52, 13-20.	0.9	104
80	Regulation of microRNA expression in the heart by the ATF6 branch of the ER stress response. Journal of Molecular and Cellular Cardiology, 2012, 52, 1176-1182.	0.9	82
81	More Than Just an Engine. Circulation Research, 2012, 111, 513-515.	2.0	6
82	Cross Talk Between the Notch Signaling and Noncoding RNA on the Fate of Stem Cells. Progress in Molecular Biology and Translational Science, 2012, 111, 175-193.	0.9	13
83	MicroRNA control of bone formation and homeostasis. Nature Reviews Endocrinology, 2012, 8, 212-227.	4.3	503
84	From genomes to functions in aquatic biology. Marine Genomics, 2012, 5, 1-6.	0.4	8
85	MicroRNAs Regulate Renal Tubule Maturation through Modulation of Pkd1. Journal of the American Society of Nephrology: JASN, 2012, 23, 1941-1948.	3.0	81
86	Roles of MicroRNAs and Myocardial Cell Differentiation. Progress in Molecular Biology and Translational Science, 2012, 111, 139-152.	0.9	15
87	Regulation of Skeletal Muscle Development and Function by microRNAs., 2012,, 871-880.		0
88	Transcriptional Control of Cardiogenesis. , 2012, , 35-46.		0
89	A Novel YY1-miR-1 Regulatory Circuit in Skeletal Myogenesis Revealed by Genome-Wide Prediction of YY1-miRNA Network. PLoS ONE, 2012, 7, e27596.	1.1	88
90	Complexity of Murine Cardiomyocyte miRNA Biogenesis, Sequence Variant Expression and Function. PLoS ONE, 2012, 7, e30933.	1.1	76
91	Fine-Tuning Oligodendrocyte Development by microRNAs. Frontiers in Neuroscience, 2012, 6, 13.	1.4	53
92	Thermodynamic basis of selectivity in guideâ€ŧargetâ€mismatched rna interference. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1283-1298.	1.5	6
93	Targeted Deletion of MicroRNA-22 Promotes Stress-Induced Cardiac Dilation and Contractile Dysfunction. Circulation, 2012, 125, 2751-2761.	1.6	161

#	ARTICLE	IF	CITATIONS
94	Noncoding RNA Expression in Myocardium From Infants With Tetralogy of Fallot. Circulation: Cardiovascular Genetics, 2012, 5, 279-286.	5.1	106
95	Behavioral plasticity in honey bees is associated with differences in brain microRNA transcriptome. Genes, Brain and Behavior, 2012, 11, 660-670.	1.1	87
96	MicroRNAs in pulmonary arterial remodeling. Cellular and Molecular Life Sciences, 2013, 70, 4479-4494.	2.4	61
97	The admiR-able advances in cardiovascular biology through the zebrafish model system. Cellular and Molecular Life Sciences, 2013, 70, 2489-2503.	2.4	5
98	Heavy and light roles: myosin in the morphogenesis of the heart. Cellular and Molecular Life Sciences, 2013, 70, 1221-1239.	2.4	153
99	Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nature Reviews Molecular Cell Biology, 2013, 14, 529-541.	16.1	431
100	Regulation of miRNAs in human skeletal muscle following acute endurance exercise and shortâ€ŧerm endurance training. Journal of Physiology, 2013, 591, 4637-4653.	1.3	207
101	MicroRNAs in skeletal muscle biology and exercise adaptation. Free Radical Biology and Medicine, 2013, 64, 95-105.	1.3	105
102	MiR-133a Modulates Osteogenic Differentiation of Vascular Smooth Muscle Cells. Endocrinology, 2013, 154, 3344-3352.	1.4	119
103	MicroRNA-205 controls neonatal expansion of skin stem cells by modulating the PI(3)K pathway. Nature Cell Biology, 2013, 15, 1153-1163.	4.6	145
104	Cardiac reprogramming: from mouse toward man. Current Opinion in Genetics and Development, 2013, 23, 574-578.	1.5	12
105	Biochemistry of Development: Striated Muscle. , 2013, , 179-186.		0
106	Oxidative stress in atherosclerosis: The role of microRNAs in arterial remodeling. Free Radical Biology and Medicine, 2013, 64, 69-77.	1.3	68
107	MicroRNA transcriptome profiling in cardiac tissue of hypertrophic cardiomyopathy patients with MYBPC3 mutations. Journal of Molecular and Cellular Cardiology, 2013, 65, 59-66.	0.9	49
109	Cellular Reprogramming. Circulation: Heart Failure, 2013, 6, 1102-1107.	1.6	2
110	Circulating microRNA expression profile and systemic right ventricular function in adults after atrial switch operation for complete transposition of the great arteries. BMC Cardiovascular Disorders, 2013, 13, 73.	0.7	30
111	Assessing the impact of human genome annotation choice on RNA-seq expression estimates. BMC Bioinformatics, 2013, 14, S8.	1.2	49
112	Regulation of the MIR155 host gene in physiological and pathological processes. Gene, 2013, 532, 1-12.	1.0	405

#	Article	IF	CITATIONS
113	Circulating miRNAs: novel biomarkers of acute coronary syndrome?. Biomarkers in Medicine, 2013, 7, 287-305.	0.6	22
114	Regulation of immune responses and tolerance: the micro <scp>RNA</scp> perspective. Immunological Reviews, 2013, 253, 112-128.	2.8	144
115	Getting to the heart of the matter: long non-coding RNAs in cardiac development and disease. EMBO Journal, 2013, 32, 1805-1816.	3.5	101
116	MicroRNA: Function, Detection, and Bioanalysis. Chemical Reviews, 2013, 113, 6207-6233.	23.0	1,006
117	Effects of miR-19b Overexpression on Proliferation, Differentiation, Apoptosis and Wnt/ \hat{l}^2 -Catenin Signaling Pathway in P19 Cell Model of Cardiac Differentiation In Vitro. Cell Biochemistry and Biophysics, 2013, 66, 709-722.	0.9	47
118	Embryonic Heart Progenitors and Cardiogenesis. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a013847-a013847.	2.9	187
119	A Helm model for microRNA regulation in cell fate decision and conversion. Science China Life Sciences, 2013, 56, 897-906.	2.3	14
120	Two novel and functional DNA sequence variants within an upstream enhancer of the human NKX2-5 gene in ventricular septal defects. Gene, 2013, 524, 152-155.	1.0	13
121	miRNAs as Modulators of Angiogenesis. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a006643-a006643.	2.9	155
122	Dendrimeric Bowties Featuring Hemispheric-Selective Decoration of Ligands for microRNA-Based Therapy. Biomacromolecules, 2013, 14, 101-109.	2.6	14
123	Haemodynamically dependent valvulogenesis of zebrafish heart is mediated by flow-dependent expression of miR-21. Nature Communications, 2013, 4, 1978.	5.8	76
124	microRNAs in cardiac development and regeneration. Clinical Science, 2013, 125, 151-166.	1.8	85
125	Integrated Analysis of Dysregulated IncRNA Expression in Fetal Cardiac Tissues with Ventricular Septal Defect. PLoS ONE, 2013, 8, e77492.	1.1	41
126	Comparative Analyses of MicroRNA Microarrays during Cardiogenesis: Functional Perspectives. Microarrays (Basel, Switzerland), 2013, 2, 81-96.	1.4	7
127	MicroRNAs as Molecular Targets for Cancer Therapy: On the Modulation of MicroRNA Expression. Pharmaceuticals, 2013, 6, 1195-1220.	1.7	55
128	Emerging Molecular Targets for Brain Repair after Stroke. Stroke Research and Treatment, 2013, 2013, 1-13.	0.5	10
129	MicroRNAs 185, 96, and 223 Repress Selective High-Density Lipoprotein Cholesterol Uptake through Posttranscriptional Inhibition. Molecular and Cellular Biology, 2013, 33, 1956-1964.	1.1	144
130	The microRNA miR-7 regulates Tramtrack69 in a developmental switch in <i>Drosophila</i> follicle cells. Development (Cambridge), 2013, 140, 897-905.	1.2	24

#	Article	IF	CITATIONS
131	From life to death: microRNA s in the fine tuning of heart. MicroRNAs in Cardiovascular Research, 2013, $1, \dots$	0.5	0
133	Vascular Smooth Muscle. , 2013, , 25-42.		3
134	MicroRNA in the Diseased Pulmonary Vasculature: Implications for the Basic Scientist and Clinician. Journal of the Korean Society of Hypertension, 2013, 19, 1.	0.2	2
135	Expression Profile of microRNAs Regulating Proliferation and Differentiation in Mouse Adult Cardiac Stem Cells. PLoS ONE, 2013, 8, e63041.	1.1	17
136	microRNA-22 Promotes Heart Failure through Coordinate Suppression of PPAR/ERR-Nuclear Hormone Receptor Transcription. PLoS ONE, 2013, 8, e75882.	1.1	72
137	Differentially Expressed Wound Healing-Related microRNAs in the Human Diabetic Cornea. PLoS ONE, 2013, 8, e84425.	1.1	74
139	Gene Silencing Mediated by Endogenous MicroRNAs under Heat Stress Conditions in Mammalian Cells. PLoS ONE, 2014, 9, e103130.	1.1	15
140	miRNA Transcriptome of Hypertrophic Skeletal Muscle with Overexpressed Myostatin Propeptide. BioMed Research International, 2014, 2014, 1-19.	0.9	12
141	From life to death: microRNAs in the fine tuning of the heart. MicroRNA Diagnostics and Therapeutics, 2014, 1 , \dots	0.0	0
142	MicroRNA Biomarkers for Early Detection of Embryonic Malformations in Pregnancy. Journal of Biomolecular Research & Therapeutics, 2014, 03, .	0.2	4
143	Gene- and Cell-Based Therapy for Cardiovascular Disease. , 2014, , 783-833.		0
144	MiRâ€133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO Journal, 2014, 33, 1565-1581.	3.5	272
145	miRNA signature of unfolded protein response in H9c2 rat cardiomyoblasts. Cell and Bioscience, 2014, 4, 56.	2.1	32
146	Molecular Determinants of Congenital Heart Disease., 2014,, 151-179.		1
147	Epigenetics and Cardiovascular Disease. , 2014, , 747-782.		0
148	MicroRNAs in cardiac arrhythmia: DNA sequence variation of MiR-1 and MiR-133A in long QT syndrome. Scandinavian Journal of Clinical and Laboratory Investigation, 2014, 74, 485-491.	0.6	11
149	Effect of Aerobic Exercise on miRNA-TLR4 Signaling in Atherosclerosis. International Journal of Sports Medicine, 2014, 35, 344-350.	0.8	55
150	Clinical Usefulness of Novel Serum and Imaging Biomarkers in Risk Stratification of Patients with Stable Angina. Disease Markers, 2014, 2014, 1-14.	0.6	6

#	Article	IF	Citations
151	Heart Regeneration., 2014,, 457-477.		0
152	Role of miR-195 in Aortic Aneurysmal Disease. Circulation Research, 2014, 115, 857-866.	2.0	93
153	Evolution and genomic organization of muscle microRNAs in fish genomes. BMC Evolutionary Biology, 2014, 14, 196.	3.2	22
154	Development of the Heart., 2014, , .		O
155	Non-coding RNAs in epithelial immunity to <i>Cryptosporidium</i> infection. Parasitology, 2014, 141, 1233-1243.	0.7	38
156	MicroRNA-421 Dysregulation is Associated with Tetralogy of Fallot. Cells, 2014, 3, 713-723.	1.8	46
157	MiRiad Roles for MicroRNAs in Cardiac Development and Regeneration. Cells, 2014, 3, 724-750.	1.8	21
158	microRNAs and Cardiac Cell Fate. Cells, 2014, 3, 802-823.	1.8	38
159	Regulation of Cardiac Cell Fate by microRNAs: Implications for Heart Regeneration. Cells, 2014, 3, 996-1026.	1.8	25
160	Reversine induces multipotency of lineage-committed cells through epigenetic silencing of miR-133a. Biochemical and Biophysical Research Communications, 2014, 445, 255-262.	1.0	15
161	Surface plasmon resonance applications in clinical analysis. Analytical and Bioanalytical Chemistry, 2014, 406, 2303-2323.	1.9	165
162	Concise Review: MicroRNAs as Modulators of Stem Cells and Angiogenesis. Stem Cells, 2014, 32, 1059-1066.	1.4	63
163	Missing links in cardiology: long non-coding RNAs enter the arena. Pflugers Archiv European Journal of Physiology, 2014, 466, 1177-1187.	1.3	16
164	Optimizing the purification and analysis of miRNAs from urinary exosomes. Clinical Chemistry and Laboratory Medicine, 2014, 52, 345-354.	1.4	48
165	Identification of the microRNA Expression Profile in the Regenerative Neonatal Mouse Heart by Deep Sequencing. Cell Biochemistry and Biophysics, 2014, 70, 635-642.	0.9	23
166	MiR-10a and MiR-10b Target the $3\hat{a}\in^2$ -Untranslated Region of TBX5 to Repress Its Expression. Pediatric Cardiology, 2014, 35, 1072-1079.	0.6	33
167	MicroRNAs regulate bone metabolism. Journal of Bone and Mineral Metabolism, 2014, 32, 221-231.	1.3	71
168	HypoxamiR Regulation and Function in Ischemic Cardiovascular Diseases. Antioxidants and Redox Signaling, 2014, 21, 1202-1219.	2.5	79

#	ARTICLE	IF	CITATIONS
169	Direct Reprogramming of Fibroblasts into Myocytes to Reverse Fibrosis. Annual Review of Physiology, 2014, 76, 21-37.	5.6	30
170	Expression of Cx43-related microRNAs in patients with tetralogy of Fallot. World Journal of Pediatrics, 2014, 10, 138-144.	0.8	25
171	Long Noncoding RNAs Expression Profile of the Developing Mouse Heart. Journal of Cellular Biochemistry, 2014, 115, 910-918.	1.2	34
172	Cardiomyogenesis is controlled by the miR-99a/let-7c cluster and epigenetic modifications. Stem Cell Research, 2014, 12, 323-337.	0.3	57
173	MicroRNAs in myocardial ischemia: identifying new targets and tools for treating heart disease. New frontiers for miR-medicine. Cellular and Molecular Life Sciences, 2014, 71, 1439-1452.	2.4	34
174	Computational Prediction of MicroRNA Function and Activity. Methods in Molecular Biology, 2014, 1107, 243-256.	0.4	1
175	Molecular Determinants of Cardiac Development. , 2014, , 115-149.		1
176	Morphogenesis and molecular considerations on congenital cardiac septal defects. Annals of Medicine, 2014, 46, 640-652.	1.5	51
177	The Path to Personalized Cardiovascular Medicine. , 2014, , 837-871.		0
178	Functional Evolution of Cardiac MicroRNAs in Heart Development and Functions. Molecular Biology and Evolution, 2014, 31, 2722-2734.	3. 5	21
179	Autophagy eliminates cytoplasmic \hat{l}^2 -catenin and NICD to promote the cardiac differentiation of P19CL6 cells. Cellular Signalling, 2014, 26, 2299-2305.	1.7	53
180	Ultrasensitive Electrochemical Detection of MicroRNA Based on an Arched Probe Mediated Isothermal Exponential Amplification. Analytical Chemistry, 2014, 86, 8200-8205.	3.2	149
181	No Association of Pri-miR-143 rs41291957 Polymorphism with the Risk of Congenital Heart Disease in a Chinese Population. Pediatric Cardiology, 2014, 35, 1057-1061.	0.6	7
182	Silencing of TERT decreases levels of miRâ€1, miRâ€21, miRâ€29a and miRâ€208a in cardiomyocytes. Cell Biochemistry and Function, 2014, 32, 565-570.	1.4	12
183	Contractile protein expression is upregulated by reactive oxygen species in aorta of Goto-Kakizaki rat. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H214-H224.	1.5	39
184	Small RNA expression and deep sequencing analyses of the nucleolus reveal the presence of nucleolusâ€associated microRNAs. FEBS Open Bio, 2014, 4, 441-449.	1.0	48
185	mi <scp>RNA</scp> â€940 reduction contributes to human Tetralogy of Fallot development. Journal of Cellular and Molecular Medicine, 2014, 18, 1830-1839.	1.6	47
186	MicroRNAs in normal and psoriatic skin. Physiological Genomics, 2014, 46, 113-122.	1.0	28

#	Article	IF	Citations
187	Small Engine, Big Power: MicroRNAs as Regulators of Cardiac Diseases and Regeneration. International Journal of Molecular Sciences, 2014, 15, 15891-15911.	1.8	47
188	Sevoflurane anesthesia persistently downregulates muscle-specific microRNAs in rat plasma. International Journal of Molecular Medicine, 2014, 34, 291-298.	1.8	18
189	MicroRNAs play a role in chondrogenesis and osteoarthritis (Review). International Journal of Molecular Medicine, 2014, 34, 13-23.	1.8	101
190	Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease. World Journal of Biological Chemistry, 2015, 6, 162.	1.7	128
191	Tetralogy of Fallot and Hypoplastic Left Heart Syndrome – Complex Clinical Phenotypes Meet Complex Genetic Networks. Current Genomics, 2015, 16, 141-158.	0.7	21
192	Noncoding RNAs, Emerging Regulators of Skeletal Muscle Development and Diseases. BioMed Research International, 2015, 2015, 1-17.	0.9	82
193	The role of microRNAs in skeletal muscle health and disease. Frontiers in Bioscience - Landmark, 2015, 20, 37-77.	3.0	56
194	MicroRNA in Breast Cancer — Gene Regulators and Targets for Novel Therapies. , 0, , .		3
195	Role of microRNAs in hepatocellular carcinoma. Frontiers in Bioscience - Landmark, 2015, 20, 1056-1067.	3.0	14
196	Cardioprotective Signature of Short-Term Caloric Restriction. PLoS ONE, 2015, 10, e0130658.	1.1	47
197	Regulation of Connective Tissue Growth Factor and Cardiac Fibrosis by an SRF/MicroRNA-133a Axis. PLoS ONE, 2015, 10, e0139858.	1,1	44
198	MicroRNA Clusters in the Adult Mouse Heart: Age-Associated Changes. BioMed Research International, 2015, 2015, 1-12.	0.9	15
199	Functions of miR-1 and miR-133a during the postnatal development of masseter and gastrocnemius muscles. Molecular and Cellular Biochemistry, 2015, 407, 17-27.	1.4	7
200	Genomic Control Processes in Adult Body Part Formation. , 2015, , 133-200.		3
201	Genomic Strategies for Terminal Cell Fate Specification. , 2015, , 201-263.		0
202	Regulation of Skeletal Muscle Development and Disease by microRNAs. Results and Problems in Cell Differentiation, 2015, 56, 165-190.	0.2	15
204	Regulation of cardiac microRNAs induced by aerobic exercise training during heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1629-H1641.	1.5	42
205	microRNA and Cardiac Regeneration. Advances in Experimental Medicine and Biology, 2015, 887, 119-141.	0.8	14

#	Article	IF	CITATIONS
206	The Genome in Development., 2015,, 1-40.		4
207	Serum microRNA profiles in cats with hypertrophic cardiomyopathy. Molecular and Cellular Biochemistry, 2015, 402, 171-180.	1.4	21
208	MicroRNAs with Mega Functions in Cardiac Remodeling and Repair. , 2015, , 569-600.		13
209	scaRNAs regulate splicing and vertebrate heart development. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1619-1629.	1.8	22
210	Current applications of biomarkers in cardiomyopathies. Expert Review of Cardiovascular Therapy, 2015, 13, 825-837.	0.6	13
211	MicroRNA 665 Regulates Dentinogenesis through MicroRNA-Mediated Silencing and Epigenetic Mechanisms. Molecular and Cellular Biology, 2015, 35, 3116-3130.	1.1	14
212	MiR-25 Protects Cardiomyocytes against Oxidative Damage by Targeting the Mitochondrial Calcium Uniporter. International Journal of Molecular Sciences, 2015, 16, 5420-5433.	1.8	75
213	MicroRNA-30c contributes to the development of hypoxia pulmonary hypertension by inhibiting platelet-derived growth factor receptor \hat{l}^2 expression. International Journal of Biochemistry and Cell Biology, 2015, 64, 155-166.	1.2	29
214	Identification and characterization of novel serum microRNAs in unstable angina pectoris and subclinical atherosclerotic patients. Experimental Cell Research, 2015, 333, 220-227.	1.2	4
215	Epigenetics of the failing heart. Heart Failure Reviews, 2015, 20, 435-459.	1.7	16
216	Surface plasmon resonance biosensor for highly sensitive detection of microRNA based on DNA super-sandwich assemblies and streptavidin signal amplification. Analytica Chimica Acta, 2015, 874, 59-65.	2.6	73
217	Molecular Targets in the Treatment of Cardiac Hypertrophy. , 2015, , 343-371.		11
218	MicroRNAs in vascular tissue engineering and post-ischemic neovascularization. Advanced Drug Delivery Reviews, 2015, 88, 78-91.	6.6	26
219	MicroRNAs in placental health and disease. American Journal of Obstetrics and Gynecology, 2015, 213, S163-S172.	0.7	165
220	Harnessing the microRNA pathway for cardiac regeneration. Journal of Molecular and Cellular Cardiology, 2015, 89, 68-74.	0.9	35
221	MicroRNA-30 mediates anti-inflammatory effects of shear stress and KLF2 via repression of angiopoietin 2. Journal of Molecular and Cellular Cardiology, 2015, 88, 111-119.	0.9	50
222	Label-Free MicroRNA Detection Based on Fluorescence Quenching of Gold Nanoparticles with a Competitive Hybridization. Analytical Chemistry, 2015, 87, 10822-10829.	3.2	79
223	Manganese superoxide dismutase expression is negatively associated with microRNA-301a in human pancreatic ductal adenocarcinoma. Cancer Gene Therapy, 2015, 22, 481-486.	2.2	7

#	Article	IF	CITATIONS
224	The microRNA-132/212 family fine-tunes multiple targets in Angiotensin II signalling in cardiac fibroblasts. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2015, 16, 1288-1297.	1.0	27
225	Pygmy MicroRNA: Surveillance Cops in Therapy Kingdom. Molecular Medicine, 2016, 22, 759-775.	1.9	1
226	Deregulated Cardiac Specific MicroRNAs in Postnatal Heart Growth. BioMed Research International, 2016, 2016, 1-6.	0.9	5
227	Functions of miRNAs during Mammalian Heart Development. International Journal of Molecular Sciences, 2016, 17, 789.	1.8	39
228	The Circular RNA Cdr1as Promotes Myocardial Infarction by Mediating the Regulation of miR-7a on Its Target Genes Expression. PLoS ONE, 2016, 11, e0151753.	1.1	325
229	Down-regulation of miR-133a as a poor prognosticator in non-small cell lung cancer. Gene, 2016, 591, 333-337.	1.0	23
230	Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on) Tj ETQq0 0 0 rgB	「/Qverloc	k 10 Tf 50 50 223
231	Inhibition of miR-29c promotes proliferation, and inhibits apoptosis and differentiation in P19 embryonic carcinoma cells. Molecular Medicine Reports, 2016, 13, 2527-2535.	1.1	12
232	Coding and non-coding variants in the SHOX2 gene in patients with early-onset atrial fibrillation. Basic Research in Cardiology, 2016, 111, 36.	2.5	45
233	Tissue Differentiation. Current Topics in Developmental Biology, 2016, 116, 135-151.	1.0	6
234	Screening and identification of microRNA involved in unstable angina using gene-chip analysis. Experimental and Therapeutic Medicine, 2016, 12, 2716-2722.	0.8	5
235	Non-coding RNAs: Classification, Biology and Functioning. Advances in Experimental Medicine and Biology, 2016, 937, 3-17.	0.8	596
236	Development of Therapeutics for Heart Failure. Circulation: Heart Failure, 2016, 9, .	1.6	0
237	microRNA expression profiling and functional annotation analysis of their targets modulated by oxidative stress during embryonic heart development in diabetic mice. Reproductive Toxicology, 2016, 65, 365-374.	1.3	29
238	Stiff matrix induces switch to pure \hat{l}^2 -cardiac myosin heavy chain expression in human ESC-derived cardiomyocytes. Basic Research in Cardiology, 2016, 111, 68.	2.5	59
239	miR-93 regulates Msk2-mediated chromatin remodelling in diabetic nephropathy. Nature Communications, 2016, 7, 12076.	5.8	57
240	MicroRNA-423-5p mediates H2O2-induced apoptosis in cardiomyocytes through O-GlcNAc transferase. Molecular Medicine Reports, 2016, 14, 857-864.	1.1	10
241	Circulating microRNAs as Potential Biomarkers of Endothelial Dysfunction in Obese Children. Chest, 2016, 149, 786-800.	0.4	66

#	Article	IF	CITATIONS
242	Probing the G‑quadruplex from hsa-miR-3620-5p and inhibition of its interaction with the target sequence. Talanta, 2016, 154, 560-566.	2.9	30
243	Micro <scp>RNA</scp> expression profile of human periodontal ligament cells under the influence of <i>Porphyromonas gingivalis </i> <scp>LPS</scp> . Journal of Cellular and Molecular Medicine, 2016, 20, 1329-1338.	1.6	43
244	MicroRNA-221 sponge therapy attenuates neointimal hyperplasia and improves blood flows in vein grafts. International Journal of Cardiology, 2016, 208, 79-86.	0.8	27
245	Cardiac Regeneration and microRNAs: Regulators of Pluripotency, Reprogramming, and Cardiovascular Lineage Commitment. Pancreatic Islet Biology, 2016, , 79-109.	0.1	0
246	A new plasmid-based microRNA inhibitor system that inhibits microRNA families in transgenic mice and cells: a potential new therapeutic reagent. Gene Therapy, 2016, 23, 527-542.	2.3	32
247	Stem Cells and Cardiac Regeneration. Pancreatic Islet Biology, 2016, , .	0.1	2
248	Function and Therapeutic Potential of Noncoding RNAs in Cardiac Fibrosis. Circulation Research, 2016, 118, 108-118.	2.0	92
249	MicroRNA-29c overexpression inhibits proliferation and promotes apoptosis and differentiation in P19 embryonal carcinoma cells. Gene, 2016, 576, 304-311.	1.0	9
250	MicroRNA-1 effectively induces differentiation of myocardial cells from mouse bone marrow mesenchymal stem cells. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1665-1670.	1.9	16
251	Pathological microRNAs in acute cardiovascular diseases and microRNA therapeutics. Journal of Acute Disease, 2016, 5, 9-15.	0.0	18
252	Manipulating the Proliferative Potential of Cardiomyocytes by Gene Transfer. Methods in Molecular Biology, 2017, 1553, 41-53.	0.4	3
253	MicroRNA-mediated non-viral direct conversion of embryonic fibroblasts to cardiomyocytes: comparison of commercial and synthetic non-viral vectors. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1070-1085.	1.9	8
254	Establishment of transgenic lettuce plants producing potentially antihypertensive ShRNA. Cytology and Genetics, 2017, 51, 1-7.	0.2	1
255	Induction of MiR133a expression by IL-19 targets LDLRAP1 and reduces oxLDL uptake in VSMC. Journal of Molecular and Cellular Cardiology, 2017, 105, 38-48.	0.9	37
256	miRNA-32 Drives Brown Fat Thermogenesis and Trans-activates Subcutaneous White Fat Browning in Mice. Cell Reports, 2017, 19, 1229-1246.	2.9	76
257	Circulating microRNAs as Novel Biomarkers in Cardiovascular Disease: Basic and Technical Principles. Cardiac and Vascular Biology, 2017, , 83-101.	0.2	1
258	Role of micro RNAs in stem cells, cardiac differentiation and cardiovascular diseases. Gene Reports, 2017, 8, 11-16.	0.4	7
259	Vitamin K2 promotes mesenchymal stem cell differentiation by inhibiting miR-133a expression. Molecular Medicine Reports, 2017, 15, 2473-2480.	1.1	11

#	Article	IF	CITATIONS
260	Exosomes-Based Gene Therapy for MicroRNA Delivery. Methods in Molecular Biology, 2017, 1521, 139-152.	0.4	86
261	miR-125a-5p Modulates Phenotypic Switch of Vascular Smooth Muscle Cells by Targeting ETS-1. Journal of Molecular Biology, 2017, 429, 1817-1828.	2.0	33
262	miR-873 suppresses H9C2 cardiomyocyte proliferation by targeting GLI1. Gene, 2017, 626, 426-432.	1.0	26
263	Design of the Magnetic Resonance Imaging Evaluation of Mineralocorticoid Receptor Antagonism in Diabetic Atherosclerosis (<scp>MAGMA</scp>) Trial. Clinical Cardiology, 2017, 40, 633-640.	0.7	8
264	MicroRNA-4458 suppresses the proliferation of human lung cancer cells in vitro by directly targeting Lin28B. Acta Pharmacologica Sinica, 2017, 38, 1297-1304.	2.8	20
265	Atheroprotective effects of statins in patients with unstable angina by regulating the blood-borne microRNA network. Molecular Medicine Reports, 2017, 16, 817-827.	1.1	8
266	Electrochemiluminescence based determination of micro-RNA using target-guided assembly of gold nanoparticles on an electrode modified with Nafion, carbon nanotubes and polyvinylpyrrolidone. Mikrochimica Acta, 2017, 184, 1781-1789.	2.5	20
268	Circulating microRNAs in acute and chronic exercise: more than mere biomarkers. Journal of Applied Physiology, 2017, 122, 702-717.	1.2	80
269	Downregulation of myogenic microRNAs in sub-chronic but not in sub-acute model of daunorubicin-induced cardiomyopathy. Molecular and Cellular Biochemistry, 2017, 432, 79-89.	1.4	10
270	Angiogenesis and Anti-Angiogenesis Strategies in Cancer. , 2017, , 1-19.		4
271	Modulating microRNAs in cardiac surgery patients: Novel therapeutic opportunities?. , 2017, 170, 192-204.		13
272	Role of microRNAs in cardiac development and disease. Experimental and Therapeutic Medicine, 2017, 13, 3-8.	0.8	52
274	Content of mitochondrial calcium uniporter (MCU) in cardiomyocytes is regulated by microRNA-1 in physiologic and pathologic hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9006-E9015.	3.3	70
275	MicroRNA-210 Modulates the Cellular Energy Metabolism Shift During H2O2-Induced Oxidative Stress by Repressing ISCU in H9c2 Cardiomyocytes. Cellular Physiology and Biochemistry, 2017, 43, 383-394.	1.1	35
276	Renal sympathetic denervation alleviates myocardial fibrosis following isoproterenol-induced heart failure. Molecular Medicine Reports, 2017, 16, 5091-5098.	1.1	8
277	miR-101-1 expression pattern in Qinchuan cattle and its role in the regulation of cell differentiation. Gene, 2017, 636, 64-69.	1.0	7
278	In Vivo Lineage Reprogramming of Fibroblasts to Cardiomyocytes for Heart Regeneration. Pancreatic Islet Biology, 2017, , 45-63.	0.1	1
279	Decreased myoblast differentiation in chronic binge alcohol-administered simian immunodeficiency virus-infected male macaques: role of decreased miR-206. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R240-R250.	0.9	25

#	Article	IF	Citations
280	Differential expression of microRNAs following cardiopulmonary bypass in children with congenital heart diseases. Journal of Translational Medicine, 2017, 15, 117.	1.8	18
281	Effect of fetal hypothyroidism on MyomiR network and its target gene expression profiles in heart of offspring rats. Molecular and Cellular Biochemistry, 2017, 436, 179-187.	1.4	12
282	Micro <scp>RNA</scp> s in a hypertrophic heart: from foetal life to adulthood. Biological Reviews, 2017, 92, 1314-1331.	4.7	8
283	MicroRNA-1304 suppresses human non-small cell lung cancer cell growth in vitro by targeting heme oxygenase-1. Acta Pharmacologica Sinica, 2017, 38, 110-119.	2.8	50
284	In Vivo Reprogramming in Regenerative Medicine. Pancreatic Islet Biology, 2017, , .	0.1	0
285	miR-31a-5p promotes postnatal cardiomyocyte proliferation by targeting RhoBTB1. Experimental and Molecular Medicine, 2017, 49, e386-e386.	3.2	31
286	MicroRNA-31 promotes adverse cardiac remodeling and dysfunction in ischemic heart disease. Journal of Molecular and Cellular Cardiology, 2017, 112, 27-39.	0.9	46
287	MicroRNA-135a Regulates Apoptosis Induced by Hydrogen Peroxide in Rat Cardiomyoblast Cells. International Journal of Biological Sciences, 2017, 13, 13-21.	2.6	19
288	miRNAs in the vitreous humor of patients affected by idiopathic epiretinal membrane and macular hole. PLoS ONE, 2017, 12, e0174297.	1.1	25
289	MiR-1254 suppresses HO-1 expression through seed region-dependent silencing and non-seed interaction with TFAP2A transcript to attenuate NSCLC growth. PLoS Genetics, 2017, 13, e1006896.	1.5	42
290	Impact of MicroRNAs in the Cellular Response to Hypoxia. International Review of Cell and Molecular Biology, 2017, 333, 91-158.	1.6	37
291	Regenerative Medicine. , 2017, , 379-435.		0
292	MicroRNAs: pleiotropic players in congenital heart disease and regeneration. Journal of Thoracic Disease, 2017, 9, S64-S81.	0.6	44
293	Establishment of an easy and straight forward heparinase protocol to analyse circulating and myocardial tissue micro-RNA during coronary artery-bypass-graft surgery. Scientific Reports, 2018, 8, 1361.	1.6	8
294	Comparative developmental biology of the cardiac inflow tract. Journal of Molecular and Cellular Cardiology, 2018, 116, 155-164.	0.9	11
295	Loss of microRNA-128 promotes cardiomyocyte proliferation and heart regeneration. Nature Communications, 2018, 9, 700.	5.8	124
296	Integrated transcriptomic and regulatory network analyses identify microRNA-200c as a novel repressor of human pluripotent stem cell-derived cardiomyocyte differentiation and maturation. Cardiovascular Research, 2018, 114, 894-906.	1.8	44
297	A Rare Rs139365823 Polymorphism in Pre-miR-138 Is Associated with Risk of Congenital Heart Disease in a Chinese Population. DNA and Cell Biology, 2018, 37, 109-116.	0.9	10

#	Article	IF	CITATIONS
298	Bioinformatic screening for key mi RNA s and genes associated with myocardial infarction. FEBS Open Bio, 2018, 8, 897-913.	1.0	29
299	miR-206 is required for changes in cell adhesion that drive muscle cell morphogenesis in Xenopus laevis. Developmental Biology, 2018, 438, 94-110.	0.9	11
300	MicroRNAs in cardiomyocyte differentiation and maturation. Cardiovascular Research, 2018, 114, 779-781.	1.8	18
301	Cardiovascular disease-related miRNAs expression: potential role as biomarkers and effects of training exercise. Oncotarget, 2018, 9, 17238-17254.	0.8	51
302	Cell Biology and Translational Medicine, Volume 4. Advances in Experimental Medicine and Biology, 2018, , .	0.8	4
303	OBSOLETE: MicroRNAs in Cardiac Development and Function. , 2018, , .		0
304	The microRNA-23a cluster regulates the developmental HoxA cluster function during osteoblast differentiation. Journal of Biological Chemistry, 2018, 293, 17646-17660.	1.6	32
305	Anabolic Androgenic Steroids: Searching New Molecular Biomarkers. Frontiers in Pharmacology, 2018, 9, 1321.	1.6	35
306	Changes in microRNA–mRNA Signatures Agree with Morphological, Physiological, and Behavioral Changes in Larval Mahi-Mahi Treated with <i>Deepwater Horizon</i> Oil. Environmental Science & Technology, 2018, 52, 13501-13510.	4.6	25
307	Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes by Soluble Factors from Human Mesenchymal Stem Cells. Molecular Therapy, 2018, 26, 2681-2695.	3.7	135
308	Tissue-specific miRNA Expression Profiling in Mouse Heart Sections Using In Situ Hybridization. Journal of Visualized Experiments, 2018, , .	0.2	0
309	Therapeutic applications of zebrafish (Danio rerio) miRNAs linked with human diseases: A prospective review. Gene, 2018, 679, 202-211.	1.0	9
310	Long Non-coding RNA Structure and Function: Is There a Link?. Frontiers in Physiology, 2018, 9, 1201.	1.3	176
311	Identifying and Exploiting Potential miRNA-Disease Associations With Neighborhood Regularized Logistic Matrix Factorization. Frontiers in Genetics, 2018, 9, 303.	1.1	10
312	Promotion of Cell-Based Therapy: Special Focus on the Cooperation of Mesenchymal Stem Cell Therapy and Gene Therapy for Clinical Trial Studies. Advances in Experimental Medicine and Biology, 2018, 1119, 103-118.	0.8	18
313	Shox2: The Role in Differentiation and Development of Cardiac Conduction System. Tohoku Journal of Experimental Medicine, 2018, 244, 177-186.	0.5	13
314	The role of miRNA regulation in fetal cardiomyocytes, cardiac maturation and the risk of heart disease in adults. Journal of Physiology, 2018, 596, 5625-5640.	1.3	32
315	Molecular and Cellular Biology of the Right Heart. , 2018, , 57-89.		1

#	ARTICLE	IF	CITATIONS
316	<i>SREBF1</i> /MicroRNA-33b Axis Exhibits Potent Effect on Unstable Atherosclerotic Plaque Formation In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2460-2473.	1.1	24
317	The effects of subacute inhaled multi-walled carbon nanotube exposure on signaling pathways associated with cholesterol transport and inflammatory markers in the vasculature of wild-type mice. Toxicology Letters, 2018, 296, 48-62.	0.4	9
318	LncRNAs: Proverbial Genomic "Junk―or Key Epigenetic Regulators During Cardiac Fibrosis in Diabetes?. Frontiers in Cardiovascular Medicine, 2018, 5, 28.	1.1	17
319	Skeletal Muscle MicroRNAs as Key Players in the Pathogenesis of Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2018, 19, 1534.	1.8	25
320	The Role of scaRNAs in Adjusting Alternative mRNA Splicing in Heart Development. Journal of Cardiovascular Development and Disease, 2018, 5, 26.	0.8	18
321	A Hearty Dose of Noncoding RNAs: The Imprinted DLK1-DIO3 Locus in Cardiac Development and Disease. Journal of Cardiovascular Development and Disease, 2018, 5, 37.	0.8	23
322	Osteoglycin post-transcriptional regulation by miR-155 induces cellular architecture changes in H9c2 cardiomyoblasts. Gene, 2018, 676, 9-15.	1.0	5
323	TLHNMDA: Triple Layer Heterogeneous Network Based Inference for MiRNA-Disease Association Prediction. Frontiers in Genetics, 2018, 9, 234.	1.1	27
324	MicroRNAs in Cardiac Development and Function. , 2018, , 340-348.		2
325	Therapeutic approaches for cardiac regeneration and repair. Nature Reviews Cardiology, 2018, 15, 585-600.	6.1	268
326	Manipulation of MicroRNAs in Cultured Mouse Embryos: Applications for Developmental Toxicology. Methods in Molecular Biology, 2018, 1797, 205-214.	0.4	0
327	Teratogenicity Testing. Methods in Molecular Biology, 2018, , .	0.4	1
328	MicroRNAs and Congenital Heart Disease: Where Are We Now?. Revista Espanola De Cardiologia (English Ed), 2019, 72, 7-9.	0.4	2
329	Dgcr8 deletion in the primitive heart uncovered novel microRNA regulating the balance of cardiac-vascular gene program. Protein and Cell, 2019, 10, 327-346.	4.8	14
330	DNA nanotechnology approaches for microRNA detection and diagnosis. Nucleic Acids Research, 2019, 47, 10489-10505.	6.5	92
331	Networks of mRNA Processing and Alternative Splicing Regulation in Health and Disease. Advances in Experimental Medicine and Biology, 2019, 1157, 1-27.	0.8	9
332	The role of MicroRNAs on endoplasmic reticulum stress in myocardial ischemia and cardiac hypertrophy. Pharmacological Research, 2019, 150, 104516.	3.1	44
333	The role of cardiac transcription factor NKX2-5 in regulating the human cardiac miRNAome. Scientific Reports, 2019, 9, 15928.	1.6	3

#	Article	IF	CITATIONS
334	Whey Protein Supplementation Post Resistance Exercise in Elderly Men Induces Changes in Muscle miRNA's Compared to Resistance Exercise Alone. Frontiers in Nutrition, 2019, 6, 91.	1.6	11
335	Development and evolution of the metazoan heart. Developmental Dynamics, 2019, 248, 634-656.	0.8	26
336	MiR-423 is differentially expressed in patients with stable and unstable coronary artery disease: A pilot study. PLoS ONE, 2019, 14, e0216363.	1.1	37
337	Modulation of ADAR mRNA expression in patients with congenital heart defects. PLoS ONE, 2019, 14, e0200968.	1.1	23
338	Noncoding RNAs in Cardiovascular Disease. , 2019, , 43-87.		2
339	Embryopathy as a Model for the Epigenetics Regulation of Complications in Diabetes. , 2019, , 1361-1379.		0
340	miR-126 regulates glycogen trophoblast proliferation and DNA methylation in the murine placenta. Developmental Biology, 2019, 449, 21-34.	0.9	14
341	mRNA-miRNA-Seq Reveals Neuro-Cardio Mechanisms of Crude Oil Toxicity in Red Drum (<i>Sciaenops) Tj ETQq$1\ 1$</i>	0.78431 ⁴	1 1 ggBT /Ove
342	Roles of miRNAâ€1 and miRNAâ€133 in the proliferation and differentiation of myoblasts in duck skeletal muscle. Journal of Cellular Physiology, 2019, 234, 3490-3499.	2.0	32
343	El papel de los microARN en las cardiopatÃas congénitas: qué sabemos. Revista Espanola De Cardiologia, 2019, 72, 7-9.	0.6	5
344	MiRâ€145â€targeted HBXIP modulates human breast cancer cell proliferation. Thoracic Cancer, 2019, 10, 71-77.	0.8	18
345	Cardiac injections of AntagomiRs as a novel tool for knockdown of miRNAs during heart development. Developmental Biology, 2019, 445, 163-169.	0.9	2
346	Noninvasive prenatal testing for congenital heart disease – cell-free nucleic acid and protein biomarkers in maternal blood. Journal of Maternal-Fetal and Neonatal Medicine, 2020, 33, 1044-1050.	0.7	7
347	Molecular mechanisms of heart regeneration. Seminars in Cell and Developmental Biology, 2020, 100, 20-28.	2.3	28
348	Non-coding RNA regulatory networks. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194417.	0.9	262
349	Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Seminars in Cell and Developmental Biology, 2020, 100, 29-51.	2.3	38
350	Differentially expressed microRNA profiles in exosomes from vascular smooth muscle cells associated with coronary artery calcification. International Journal of Biochemistry and Cell Biology, 2020, 118, 105645.	1.2	46
351	mRNA Metabolism in Cardiac Development and Disease: Life After Transcription. Physiological Reviews, 2020, 100, 673-694.	13.1	30

#	Article	IF	Citations
352	MiRâ€563 restrains cell proliferation via targeting LIN28B in human lung cancer. Thoracic Cancer, 2020, 11, 55-61.	0.8	6
353	Identification of Long Noncoding RNAs Involved in Differentiation and Survival of Vascular Smooth Muscle Cells. Molecular Therapy - Nucleic Acids, 2020, 22, 209-221.	2.3	15
354	Tiny Regulators of Massive Tissue: MicroRNAs in Skeletal Muscle Development, Myopathies, and Cancer Cachexia. Frontiers in Oncology, 2020, 10, 598964.	1.3	23
355	Quantitative Expression Analysis of Circulating miRNAs Reveals Significant Association with Cardiovascular Pathogenesis in Women. Indian Journal of Cardiovascular Disease in Women WINCARS, 2020, 5, 08-14.	0.1	0
356	A review on qualifications and cost effectiveness of induced pluripotent stem cells (IPSCs)-induced cardiomyocytes in drug screening tests. Archives of Physiology and Biochemistry, 2023, 129, 131-142.	1.0	3
357	Cardiac Progenitor Cells. Advances in Experimental Medicine and Biology, 2020, 1312, 51-73.	0.8	3
358	Gene Therapy for the Heart Lessons Learned and Future Perspectives. Circulation Research, 2020, 126, 1394-1414.	2.0	81
359	Identification of miRNA–mRNA–TFs Regulatory Network and Crucial Pathways Involved in Tetralogy of Fallot. Frontiers in Genetics, 2020, 11, 552.	1.1	17
360	Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension., 2020,,.		4
361	Challenges in Using Circulating Micro-RNAs as Biomarkers for Cardiovascular Diseases. International Journal of Molecular Sciences, 2020, 21, 561.	1.8	46
362	MicroRNA-486-5p and microRNA-486-3p: Multifaceted pleiotropic mediators in oncological and non-oncological conditions. Non-coding RNA Research, 2020, 5, 11-21.	2.4	58
363	MicroRNAs: roles in cardiovascular development and disease. Cardiovascular Pathology, 2021, 50, 107296.	0.7	89
364	Regenerating the heart: The past, present, & Eamp; future., 2021,, 121-131.		0
365	OUP accepted manuscript. Nutrition Reviews, 2021, , .	2.6	6
366	Information on dysregulation of microRNA in placenta linked to preeclampsia. Bioinformation, 2021, 17, 240-248.	0.2	3
367	Arginine Alters miRNA Expression Involved in Development and Proliferation of Rat Mammary Tissue. Animals, 2021, 11, 535.	1.0	2
368	G6PD activity contributes to the regulation of histone acetylation and gene expression in smooth muscle cells and to the pathogenesis of vascular diseases. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H999-H1016.	1.5	13
369	A comparative analysis of heart microRNAs in vertebrates brings novel insights into the evolution of genetic regulatory networks. BMC Genomics, 2021, 22, 153.	1.2	2

#	Article	IF	CITATIONS
370	Unresolved Issues in RNA Therapeutics in Vascular Diseases With a Focus on Aneurysm Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 571076.	1.1	4
371	miR-29 family: A potential therapeutic target for cardiovascular disease. Pharmacological Research, 2021, 166, 105510.	3.1	22
372	METTL3 regulates skeletal muscle specific miRNAs at both transcriptional and post-transcriptional levels. Biochemical and Biophysical Research Communications, 2021, 552, 52-58.	1.0	19
373	miR-302d Competitively Binding with the IncRNA-341 Targets TLE4 in the Process of SSC Generation. Stem Cells International, 2021, 2021, 1-14.	1.2	2
374	Non-viral approaches for somatic cell reprogramming into cardiomyocytes. Seminars in Cell and Developmental Biology, 2022, 122, 28-36.	2.3	4
375	Cardiomyocyte-produced miR-339-5p mediates pathology in Duchenne muscular dystrophy cardiomyopathy. Human Molecular Genetics, 2021, 30, 2347-2361.	1.4	7
376	Proteomics and transcriptomics jointly identify the key role of oxidative phosphorylation in fluoride-induced myocardial mitochondrial dysfunction in rats. Ecotoxicology and Environmental Safety, 2021, 218, 112271.	2.9	8
377	Potential Roles of MyomiRs in Cardiac Development and Related Diseases. Current Cardiology Reviews, 2021, 17, e010621188335.	0.6	12
378	IncRNA SNHG14 promotes the proliferation, migration, and invasion of thyroid tumour cells by regulating miR-93-5p. Zygote, 2021, , 1-11.	0.5	1
379	Identification of candidate miRNA biomarkers for facioscapulohumeral muscular dystrophy using DUX4-based mouse models. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	14
380	Regeneration of infarcted mouse hearts by cardiovascular tissue formed via the direct reprogramming of mouse fibroblasts. Nature Biomedical Engineering, 2021, 5, 880-896.	11.6	18
381	In vitro CSC-derived cardiomyocytes exhibit the typical microRNA-mRNA blueprint of endogenous cardiomyocytes. Communications Biology, 2021, 4, 1146.	2.0	15
382	Regulation of cardiomyocyte fate plasticity: a key strategy for cardiac regeneration. Signal Transduction and Targeted Therapy, 2021, 6, 31.	7.1	33
383	Tissues & Organs Biochemistry of Development: Striated Muscle. , 2021, , 422-433.		0
384	Deep Sequencing of Cardiac MicroRNA-mRNA Interactomes in Clinical and Experimental Cardiomyopathy. Methods in Molecular Biology, 2015, 1299, 27-49.	0.4	15
385	MicroRNAs and Their Antagonists as Novel Therapeutics. RNA Technologies, 2012, , 503-523.	0.2	2
386	miRNA Biology in Pathological Processes. Springer Briefs in Molecular Science, 2015, , 7-22.	0.1	2
387	Prospective Advances in Non-coding RNAs Investigation. Advances in Experimental Medicine and Biology, 2020, 1229, 385-426.	0.8	1

#	Article	IF	CITATIONS
388	MicroRNAs in the Vitreous Humor of Patients with Retinal Detachment and a Different Grading of Proliferative Vitreoretinopathy: A Pilot Study. Translational Vision Science and Technology, 2020, 9, 23.	1.1	30
389	Mice lacking microRNA 133a develop dynamin 2–dependent centronuclear myopathy. Journal of Clinical Investigation, 2011, 121, 3258-3268.	3.9	138
390	microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. Journal of Clinical Investigation, 2012, 122, 2054-2065.	3.9	280
391	Non-coding RNAs in muscle differentiation and musculoskeletal disease. Journal of Clinical Investigation, 2016, 126, 2021-2030.	3.9	7 5
392	Role of Osterix and MicroRNAs in Bone Formation and Tooth Development. Medical Science Monitor, 2016, 22, 2934-2942.	0.5	27
393	miR-10a Regulates Proliferation of Human Cardiomyocyte Progenitor Cells by Targeting GATA6. PLoS ONE, 2014, 9, e103097.	1.1	21
394	A PCR-Based Method to Construct Lentiviral Vector Expressing Double Tough Decoy for miRNA Inhibition. PLoS ONE, 2015, 10, e0143864.	1.1	5
395	MicroRNA: New Era for Therapeutic Strategy in Ischaemic Heart Disease. Journal of Hypertension and Cardiology, 2017, 2, 12-23.	1.0	1
396	MicroRNAs in Lipid Metabolism and Atherosclerosis. Indonesian Biomedical Journal, 2014, 6, 3.	0.2	2
397	Involment of RAS/ERK1/2 signaling and MEF2C in miR-155-3p inhibition-triggered cardiomyocyte differentiation of embryonic stem cell. Oncotarget, 2017, 8, 84403-84416.	0.8	14
398	Influence of physical exercise on microRNAs in skeletal muscle regeneration, aging and diseases. Oncotarget, 2018, 9, 17220-17237.	0.8	42
399	Exercise for the heart: signaling pathways. Oncotarget, 2015, 6, 20773-20784.	0.8	73
400	Role of MicroRNAs in Fibrosis. Open Rheumatology Journal, 2012, 6, 130-139.	0.1	144
401	Expression of miR-208b and miR-499 in Greek Patients with Acute Myocardial Infarction. In Vivo, 2018, 32, 313-318.	0.6	24
402	MiR-21 confers resistance against CVB3-induced myocarditis by inhibiting PDCD4-mediated apoptosis. Clinical and Investigative Medicine, 2013, 36, 103.	0.3	43
403	The role of long non-coding RNAs in cardiac development and disease. AIMS Genetics, 2018, 05, 124-140.	1.9	22
404	MicroRNA Profiling Reveals Distinct Mechanisms Governing Cardiac and Neural Lineage-Specification of Pluripotent Human Embryonic Stem Cells. Journal of Stem Cell Research & Therapy, 2012, 02, .	0.3	28
405	The Role of miR-1 in the Heart: From Cardiac Morphogenesis to Physiological Function. , 2014, 04, .		4

#	Article	IF	CITATIONS
406	Genome-Scale Mapping of MicroRNA Signatures in Human Embryonic Stem Cell Neurogenesis. Molecular Medicine $\&$ Therapeutics, 2012, 01, .	1.0	28
407	Targeted MicroRNA Interference Promotes Postnatal Cardiac Cell Cycle Re-Entry. Journal of Regenerative Medicine, 2013, 02, 2.	0.1	18
408	MiR-301a promotes embryonic stem cell differentiation to cardiomyocytes. World Journal of Stem Cells, 2019, 11, 1130-1141.	1.3	6
409	An Update on the Role of PCSK9 in Atherosclerosis. Journal of Atherosclerosis and Thrombosis, 2020, 27, 909-918.	0.9	47
410	MicroRNAs: powerful regulators and potential diagnostic tools in cardiovascular disease. Kardiologia Polska, 2015, 73, 1-6.	0.3	15
412	MicroRNAs in Obesity, Metabolic Syndrome and Diabetes Mellitus. Indonesian Biomedical Journal, 2011, 3, 4.	0.2	1
413	MicroRNAs in skeletal muscle. Japanese Journal of Physical Fitness and Sports Medicine, 2012, 61, 61-70.	0.0	2
414	Bone Morphogenetic Protein Signaling Pathways in Heart Development and Disease., 0,,.		2
415	Molecular Traits of the Budding Colorectal Cancer Cells. , 0, , .		0
416	Survey of Anti-angiogenesis Strategies. , 2013, , 95-106.		0
417	MicroRNA Regulation Networks. , 2013, , 1317-1320.		0
418	Transdifferentiation during Heart Regeneration. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	0
419	Aging-Related Changes in Cellular and Molecular Mechanisms of Postinfarction Remodeling: Implications for Heart Failure Therapy., 2014,, 427-437.		0
420	Module 4: Sensors and Effectors. Cell Signalling Biology, 2014, 6, csb0001004.	1.0	2
421	Embryopathy as a Model for the Epigenetics Regulation of Complications in Diabetes., 2017, , 1-19.		0
422	Direct Cardiac Reprogramming. Cardiac and Vascular Biology, 2017, , 123-143.	0.2	67
423	THE PARTICIPATION OF LONG NONCODING RNAs IN CARDIAC HYPERTROPHY FORMATION DURING LONGLASTING PHYSICAL EXERCISE. Bulletin of Problems Biology and Medicine, 2018, 4.3, 38.	0.0	1
424	Non-coding RNAs: key regulators of reprogramming, pluripotency, and cardiac cell specification with therapeutic perspective for heart regeneration. Cardiovascular Research, 2022, 118, 3071-3084.	1.8	9

#	Article	IF	CITATIONS
425	The Role of Alternative mRNA Splicing in Heart Development. , 2020, , 339-351.		1
426	Regulator Non-coding RNAs: miRNA, siRNA, piRNA, lncRNA, circRNA. Journal of Clinical Medicine of Kazakhstan, 2020, 6, 29-39.	0.1	0
427	Mature and immature microRNA ratios in cultured rat cardiomyocytes during anoxia-reoxygenation. Experimental and Clinical Cardiology, 2012, 17, 84-7.	1.3	7
428	Mining disease fingerprints from within genetic pathways. AMIA Annual Symposium proceedings, 2012, 2012, 1320-9.	0.2	0
430	MicroRNA Regulation of Smooth Muscle Phenotype. Molecular and Cellular Pharmacology, 2012, 4, 1-16.	1.7	25
431	Embedding the Future of Regenerative Medicine into the Open Epigenomic Landscape of Pluripotent Human Embryonic Stem Cells. Annual Research & Review in Biology, 2013, 3, 323-349.	0.4	4
433	Irisin attenuates HO-induced apoptosis in cardiomyocytes via microRNA-19b/AKT/mTOR signaling pathway. International Journal of Clinical and Experimental Pathology, 2017, 10, 7707-7717.	0.5	7
434	Circular RNA MGAT1 regulates cell proliferation and apoptosis in hypoxia-induced cardiomyocytes through miR-34a/YAP1 axis. International Journal of Clinical and Experimental Pathology, 2020, 13, 2474-2486.	0.5	2
435	MicroRNA-29c affects zebrafish cardiac development via targeting Wnt4. Molecular Medicine Reports, 2020, 22, 4675-4684.	1.1	1
436	In vivo therapeutic genome editing via CRISPR/Cas9 magnetoplexes for myocardial infarction. Biomaterials, 2022, 281, 121327.	5.7	10
437	MicroRNA-29c affects zebrafish cardiac development via targeting Wnt4. Molecular Medicine Reports, 2020, 22, 4675-4684.	1.1	4
438	LncRNAs at the heart of development and disease. Mammalian Genome, 2022, 33, 354-365.	1.0	9
439	Wet-lab methods for miRNA analysis. , 2022, , 93-107.		0
440	MicroRNAs in hypertrophic cardiomyopathy: pathogenesis, diagnosis, treatment potential and roles as clinical biomarkers. Heart Failure Reviews, 2022, 27, 2211-2221.	1.7	9
441	Differential expression profiles of miRNA in the serum of sarcopenic rats. Biochemistry and Biophysics Reports, 2022, 30, 101251.	0.7	1
442	miR-29b-3p Inhibitor Alleviates Hypomethylation-Related Aberrations Through a Feedback Loop Between miR-29b-3p and DNA Methylation in Cardiomyocytes. Frontiers in Cell and Developmental Biology, 2022, 10, 788799.	1.8	2
449	Empagliflozin Improves the MicroRNA Signature of Endothelial Dysfunction in Patients with Heart Failure with Preserved Ejection Fraction and Diabetes. Journal of Pharmacology and Experimental Therapeutics, 2023, 384, 116-122.	1.3	42
450	The negative regulation of gene expression by microRNAs as key driver of inducers and repressors of cardiomyocyte differentiation. Clinical Science, 2022, 136, 1179-1203.	1.8	7

#	Article	IF	CITATIONS
451	DNA walking system integrated with enzymatic cleavage reaction for sensitive surface plasmon resonance detection of miRNA. Scientific Reports, 2022, 12 , .	1.6	2
452	A grooved porous hydroxyapatite scaffold induces osteogenic differentiation via regulation of <scp>PKA</scp> activity by upregulating <scp>miR</scp> â€129â€5p expression. Journal of Periodontal Research, 2022, 57, 1238-1255.	1.4	2
453	Profiling of microRNA from skeletal muscle of Bandur sheep using RNA sequencing. Indian Journal of Animal Sciences, 2022, 90, 1115-1119.	0.1	0
454	Complex congenital cardiovascular anomaly in a patient with <scp><i>AGO1</i></scp> â€associated disorder. American Journal of Medical Genetics, Part A, 2023, 191, 882-892.	0.7	3
455	Phenotypic heterogeneity in 22q11.2 deletion syndrome: <scp>CopyÂNumberÂVariants</scp> as genetic modifiers for congenital heart disease in a Brazilian cohort. American Journal of Medical Genetics, Part A, 2023, 191, 1273-1281.	0.7	0
456	Cardiac regeneration: Pre-existing cardiomyocyte as the hub of novel signaling pathway. Genes and Diseases, 2024, 11, 747-759.	1.5	1
457	Mesenchymal Stem Cell-Derived Exosomes for Myocardial Infarction Treatment. Physiology, 0, , .	4.0	1
460	MicroRNAs With Mega Functions in Cardiac Remodeling and Repair: The Micromanagement of Matters of the Heart., 2015,, 397-428.		4