Regional economic impacts of razor clam beach closure (HABs) on the Pacific coast of Washington

Harmful Algae 9, 264-271 DOI: 10.1016/j.hal.2009.11.003

Citation Report

#	Article	IF	CITATIONS
1	Bacterial community composition differs with species and toxigenicity of the diatom Pseudo-nitzschia. Aquatic Microbial Ecology, 2011, 64, 117-133.	1.8	59
2	Science, technology and policy for Water Pollution Control at the Watershed Scale: Current issues and future challenges. Physics and Chemistry of the Earth, 2011, 36, 335-341.	2.9	40
3	Interdisciplinary approaches for addressing marine contamination issues. Environmental Conservation, 2011, 38, 187-198.	1.3	1
4	Cooperation of Science and Management for Harmful Algal Blooms: Domoic Acid and the Washington Coast Razor Clam Fishery. Coastal Management, 2012, 40, 33-54.	2.0	20
5	Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae, 2012, 14, 271-300.	4.8	429
6	Remote sampling of harmful algal blooms: A case study on the Washington State coast. Harmful Algae, 2012, 19, 39-45.	4.8	12
7	Harmful algal blooms along the North American west coast region: History, trends, causes, and impacts. Harmful Algae, 2012, 19, 133-159.	4.8	254
8	The role of dissolved organic matter (<scp>DOM</scp>) quality in the growth enhancement of <i>Alexandrium fundyense</i> (Dinophyceae) in laboratory culture ¹ . Journal of Phycology, 2013, 49, 546-554.	2.3	5
9	Keeping Tabs on HABs: New Tools for Detecting, Monitoring, and Preventing Harmful Algal Blooms. Environmental Health Perspectives, 2014, 122, A206-13.	6.0	24
10	Hindcasts of potential harmful algal bloom transport pathways on the Pacific Northwest coast. Journal of Geophysical Research: Oceans, 2014, 119, 2439-2461.	2.6	82
11	Assessment of harmful algal species using different approaches: the case study of the Sardinian coasts. Advances in Oceanography and Limnology, 2014, 5, 60-78.	0.6	1
12	Enhancing Shellfish Safety in Alaska through Monitoring of Harmful Algae and Their Toxins. Journal of Shellfish Research, 2014, 33, 531-539.	0.9	16
13	The effects of precipitation, river discharge, land use and coastal circulation on water quality in coastal Maine. Royal Society Open Science, 2015, 2, 140429.	2.4	27
14	Environmental Views from the Coast: Public Concern about Local to Global Marine Issues. Society and Natural Resources, 2015, 28, 57-74.	1.9	43
15	Harvesting the Beach Clam <i>Tivela mactroides</i> : Short―and Longâ€Term Dynamics. Marine and Coastal Fisheries, 2015, 7, 103-115.	1.4	12
16	Living with Harmful Algal Blooms in a Changing World. , 2015, , 495-561.		41
17	An economic perspective on oceans and human health. Journal of the Marine Biological Association of the United Kingdom, 2016, 96, 13-17.	0.8	6
18	Use of biosensors for the detection of marine toxins. Essays in Biochemistry, 2016, 60, 49-58.	4.7	25

#	Article	IF	CITATIONS
19	Acute and chronic dietary exposure to domoic acid in recreational harvesters: A survey of shellfish consumption behavior. Environment International, 2017, 101, 70-79.	10.0	44
20	Recreational Demand for Shellfish Harvesting Under Environmental Closures. Marine Resource Economics, 2017, 32, 43-57.	2.0	10
21	Presence of azaspiracids in bivalve molluscs from Northern Spain. Toxicon, 2017, 137, 135-143.	1.6	18
22	Integrating multiple stressors in aquaculture to build the blue growth in a changing sea. Hydrobiologia, 2018, 809, 5-17.	2.0	31
23	Global Ecology and Oceanography of Harmful Algal Blooms. Ecological Studies, 2018, , .	1.2	31
24	GlobalHAB: Fostering International Coordination on Harmful Algal Bloom Research in Aquatic Systems. Ecological Studies, 2018, , 425-447.	1.2	7
25	Diverse algicidal bacteria associated with harmful bloom-forming Karenia mikimotoi in estuarine soil and seawater. Science of the Total Environment, 2018, 631-632, 1415-1420.	8.0	34
26	Economic impacts of marine ecological change: Review and recent contributions of the VECTORS project on European marine waters. Estuarine, Coastal and Shelf Science, 2018, 201, 152-163.	2.1	12
27	Liquid Chromatography–Tandem Mass Spectrometry Method for the Screening of Eight Paralytic Shellfish Poisoning Toxins, Domoic Acid, 13-Desmethyl Spirolide C, Palytoxin and Okadaic Acid in Seawater. Chromatographia, 2018, 81, 277-288.	1.3	11
28	Domoic Acid-Producing Diatoms of the Genus Pseudo-nitzschia H. Peragallo, 1900 (Bacillariophyta) from the North Pacific. Russian Journal of Marine Biology, 2018, 44, 347-354.	0.6	4
29	Diarrhetic Shellfish Toxin Monitoring in Commercial Wild Harvest Bivalve Shellfish in New South Wales, Australia. Toxins, 2018, 10, 446.	3.4	13
30	Economic and sociocultural impacts of fisheries closures in two fishing-dependent communities following the massive 2015 U.S. West Coast harmful algal bloom. Harmful Algae, 2018, 80, 35-45.	4.8	77
31	The successional formation and release of domoic acid in a Pseudo-nitzschia bloom in the Juan de Fuca Eddy: A drifter study. Harmful Algae, 2018, 79, 105-114.	4.8	14
33	Harmful algal blooms: the impacts on cultural ecosystem services and human well-being in a case study setting, Cornwall, UK. Marine Policy, 2018, 97, 232-238.	3.2	46
34	Valuing Provision Scenarios of Coastal Ecosystem Services: The Case of Boat Ramp Closures Due to Harmful Algae Blooms in Florida. Water (Switzerland), 2019, 11, 1250.	2.7	8
35	Monitoring of the toxic dinoflagellate Alexandrium catenella in Osaka Bay, Japan using a massively parallel sequencing (MPS)-based technique. Harmful Algae, 2019, 89, 101660.	4.8	24
36	Clam hunger and the changing ocean: characterizing social and ecological risks to the Quinault razor clam fishery using participatory modeling. Ecology and Society, 2019, 24, .	2.3	23
37	Behavioral adaptations of sandy beach macrofauna in face of climate change impacts: A conceptual framework. Estuarine, Coastal and Shelf Science, 2019, 225, 106236.	2.1	25

#	Αρτιςι ε	IF	CITATIONS
" 38	An index of fisheries closures due to harmful algal blooms and a framework for identifying vulnerable fishing communities on the U.S. West Coast. Marine Policy, 2019, 110, 103543.	3.2	41
39	Photocatalytic Degradation of Microcystins by TiO2 Using UV-LED Controlled Periodic Illumination. Catalysts, 2019, 9, 181.	3.5	22
40	Modeling short-term fishing dynamics in a small-scale intertidal shellfishery. Fisheries Research, 2019, 209, 242-250.	1.7	10
41	An approach for evaluating the economic impacts of harmful algal blooms: The effects of blooms of toxic Dinophysis spp. on the productivity of Scottish shellfish farms. Harmful Algae, 2020, 99, 101912.	4.8	26
42	HABNet: Machine Learning, Remote Sensing-Based Detection of Harmful Algal Blooms. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 3229-3239.	4.9	54
43	Is a delay a disaster? economic impacts of the delay of the california dungeness crab fishery due to a harmful algal bloom. Harmful Algae, 2020, 98, 101904.	4.8	26
44	Harmful algal blooms and coastal communities: Socioeconomic impacts and actions taken to cope with the 2015 U.S. West Coast domoic acid event. Harmful Algae, 2020, 96, 101799.	4.8	39
45	Harmful Algal Blooms: Identifying Effective Adaptive Actions Used in Fishery-Dependent Communities in Response to a Protracted Event. Frontiers in Marine Science, 2020, 6, .	2.5	16
46	Marine paralytic shellfish toxins: chemical properties, mode of action, newer analogues, and structure–toxicity relationship. Natural Product Reports, 2022, 39, 33-57.	10.3	30
47	Mitochondrial genome of the harmful algal bloom species Odontella regia (Mediophyceae,) Tj ETQq1 1 0.784314	rgBT /Ov	erlgck 10 Ti
48	Seasonal Variation in Visitor Satisfaction and Its Management Implications in Banff National Park. Sustainability, 2021, 13, 1681.	3.2	7
49	Development of an absolute quantification method for ribosomal RNA gene copy numbers per eukaryotic single cell by digital PCR. Harmful Algae, 2021, 103, 102008.	4.8	20
50	Taking the Long View for Oceans and Human Health Connection through Community Driven Science. International Journal of Environmental Research and Public Health, 2021, 18, 2662.	2.6	7
51	Sublethal and antioxidant effects of six ichthyotoxic algae on early-life stages of the Japanese pearl oyster. Harmful Algae, 2021, 103, 102013.	4.8	12
52	One-step removal of harmful algal blooms by dual-functional flocculant based on self-branched chitosan integrated with flotation function. Carbohydrate Polymers, 2021, 259, 117710.	10.2	10
53	A Remote Sensing and Machine Learning-Based Approach to Forecast the Onset of Harmful Algal Bloom. Remote Sensing, 2021, 13, 3863.	4.0	27
54	The vulnerability of shellfish farmers to HAB events: An optimal matching analysis of closure decrees. Harmful Algae, 2021, 101, 101968.	4.8	17
55	Harmful Algal Blooms harmful algal bloom (HAB). , 2012, , 4819-4846.		2

CITATION REPORT

#	Article	IF	CITATIONS
56	Oceans and Human Health ocean/oceanic oceans and human health (OHH) , Social ocean/oceanic oceans and human health (OHH) social impacts and Economic Impacts ocean/oceanic oceans and human health (OHH) economic impacts. , 2012, , 7383-7393.		2
57	Harmful Algal Blooms. , 2013, , 319-360.		3
58	Evaluating the hydrologic and water quality performance of novel infiltrating wet retention ponds. Blue-Green Systems, 2020, 2, 282-299.	2.0	8
60	Spatial and temporal patterns of Pseudo-nitzschia genetic diversity in the North Pacific Ocean from the Continuous Plankton Recorder survey. Marine Ecology - Progress Series, 2018, 606, 7-28.	1.9	12
62	Assessment of harmful algal species using different approaches: the case study of the Sardinian coasts. Advances in Oceanography and Limnology, 2014, 5, 60.	0.6	0
63	A Meta-Analysis on Harmful Algal Bloom (HAB) Detection and Monitoring: A Remote Sensing Perspective. Remote Sensing, 2021, 13, 4347.	4.0	28
64	Gene Expression Profiles in Two Razor Clam Populations: Discerning Drivers of Population Status. Life, 2021, 11, 1288.	2.4	4
65	Impacts of harmful algal blooms on marine aquaculture in a low-carbon future. Harmful Algae, 2021, 110, 102143.	4.8	13
66	Diatom Biodiversity and Speciation Revealed by Comparative Analysis of Mitochondrial Genomes. Frontiers in Plant Science, 2022, 13, 749982.	3.6	6
67	The value of monitoring in efficiently and adaptively managing biotoxin contamination in marine fisheries. Harmful Algae, 2022, 114, 102226.	4.8	6
68	The study of fluorescence features of microalgae from the genus Pseudo-nitzschia and the possibility of their detection in water. Algal Research, 2022, 64, 102662.	4.6	0
71	Evaluating the effect of nuclear inclusion X (NIX) infections on Pacific razor clam populations. Diseases of Aquatic Organisms, 0, , .	1.0	0
72	Addressing the Governance of Harmful Algal Bloom Impacts: A Case Study of the Scallop Fishery in the Eastern French Coasts of the English Channel. Journal of Marine Science and Engineering, 2022, 10, 948.	2.6	1
73	Dataset for Estimated Closures of Scallop (Pecten maximus) Production Areas Due to Phycotoxin Contamination along the French Coasts of the Eastern English Channel. Data, 2022, 7, 103.	2.3	1
74	Tourism seasonality: the causes and effects. Worldwide Hospitality and Tourism Themes, 2022, 14, 421-430.	1.3	4
75	Urban runoff quality and quantity control: a functional comparison of various types of detention basins. Urban Water Journal, 0, , 1-13.	2.1	0
76	Socioeconomic disruptions of harmful algal blooms in indigenous communities: The case of Quinault Indian nation. Harmful Algae, 2022, 118, 102316.	4.8	7
77	Irregular harmful algal blooms triggered by feedback between toxin production and zooplankton feeding. Ecological Modelling, 2022, 473, 110120.	2.5	6

#	Article	IF	CITATIONS
78	Cost-effective screen-printed carbon electrode biosensors for rapid detection of microcystin-LR in surface waters for early warning of harmful algal blooms. Environmental Science and Pollution Research, 2023, 30, 124854-124865.	5.3	2
79	Economic impacts of harmful algal blooms on fishery-dependent communities. Harmful Algae, 2022, 118, 102321.	4.8	5
80	Bloom of Prorocentrum cordatum in Paracas Bay, Peru. Diversity, 2022, 14, 844.	1.7	3
81	River Discharge Mediates Extent of Phytoplankton and Harmful Algal Bloom Habitat in the Columbia River Estuary (USA) During North Pacific Marine Heat Waves. Estuaries and Coasts, 2023, 46, 166-181.	2.2	5
83	Domoic acid production by Pseudo-nitzschia australis: Re-evaluating the role of macronutrient limitation on toxigenicity. Harmful Algae, 2023, 125, 102431.	4.8	3
84	Paralytic Shellfish Toxins. , 2024, , 650-670.		0
85	Impact of the 2014–2016 marine heatwave on US and Canada West Coast fisheries: Surprises and lessons from key case studies. Fish and Fisheries, 2023, 24, 652-674.	5.3	12
86	The Pacific Northwest Harmful Algal Blooms Bulletin. Harmful Algae, 2023, 127, 102480.	4.8	0
87	Impact of climate risk materialization and ecological deterioration on house prices in Mar Menor, Spain. Scientific Reports, 2023, 13, .	3.3	0
88	Photodegradation of MC-LR using a novel Au-decorated Ni metal-organic framework (Au/Ni-MOF). Chemosphere, 2023, 344, 140404.	8.2	0
89	New tools and recommendations for a better management of harmful algal blooms under the European Marine Strategy Framework Directive. , 0, 1, .		1
91	AquaNutriOpt: Optimizing nutrients for controlling harmful algal blooms in Python—A case study of Lake Okeechobee. Environmental Modelling and Software, 2024, 176, 106025.	4.5	0

CITATION REPORT