Mobilization of arsenic and iron from Red River floodpl

Geochimica Et Cosmochimica Acta 74, 3367-3381 DOI: 10.1016/j.gca.2010.03.024

Citation Report

#	Article	IF	CITATIONS
3	Transformation of arsenic in offshore sediment under the impact of anaerobic microbial activities. Water Research, 2011, 45, 6781-6788.	11.3	67
4	Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere, 2011, 83, 925-932.	8.2	269
5	Arsenic associations in sediments from shallow aquifers of northwestern Hetao Basin, Inner Mongolia. Environmental Earth Sciences, 2011, 64, 2001-2011.	2.7	34
6	Adsorption behavior of arsenic relating to different natural solids: Soils, stream sediments and peats. Science of the Total Environment, 2012, 433, 456-461.	8.0	37
7	A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution. Water Research, 2012, 46, 500-508.	11.3	57
8	Surface complexation modeling of groundwater arsenic mobility: Results of a forced gradient experiment in a Red River flood plain aquifer, Vietnam. Geochimica Et Cosmochimica Acta, 2012, 98, 186-201.	3.9	52
9	Groundwater arsenic concentrations in Vietnam controlled by sediment age. Nature Geoscience, 2012, 5, 656-661.	12.9	159
10	Hydrogeochemical factors affecting the mobilization of As into the groundwater of the Brahmaputra alluvial plains of Assam, Northeast India. Environmental Sciences: Processes and Impacts, 2013, 15, 1775.	3.5	8
11	Organic matter control on the reactivity of Fe(III)-oxyhydroxides and associated As in wetland soils: A kinetic modeling study. Chemical Geology, 2013, 335, 24-35.	3.3	46
12	Arsenic Mobility and Speciation in a Cleysol with Petrogleyic Properties: A Field and Laboratory Approach. Journal of Environmental Quality, 2013, 42, 1130-1141.	2.0	23
13	Reductive Reactivity of Iron(III) Oxides in the East China Sea Sediments: Characterization by Selective Extraction and Kinetic Dissolution. PLoS ONE, 2013, 8, e80367.	2.5	4
14	Role of competing ions in the mobilization ofÂarsenic in groundwater of Bengal Basin: Insight from surface complexation modeling. Water Research, 2014, 55, 30-39.	11.3	110
15	Kinetic characterization on reductive reactivity of iron(III) oxides in surface sediments of the East China Sea and the influence of repeated redox cycles: Implications for microbial iron reduction. Applied Geochemistry, 2014, 42, 16-26.	3.0	14
16	Human exposure to arsenic from drinking water in Vietnam. Science of the Total Environment, 2014, 488-489, 562-569.	8.0	61
17	Arsenic in the Multi-aquifer System of the Mekong Delta, Vietnam: Analysis of Large-Scale Spatial Trends and Controlling Factors. Environmental Science & Technology, 2014, 48, 6081-6088.	10.0	25
18	Adsorption and desorption of arsenic to aquifer sediment on the Red River floodplain at Nam Du, Vietnam. Geochimica Et Cosmochimica Acta, 2014, 142, 587-600.	3.9	74
19	Biodegradable Organic Carbon in Sediments of an Arsenic-Contaminated Aquifer in Bangladesh. Environmental Science and Technology Letters, 2014, 1, 221-225.	8.7	66
20	Phytocapping: An Alternative Technology for the Sustainable Management of Landfill Sites. Critical Reviews in Environmental Science and Technology, 2014, 44, 561-637.	12.8	50

			2
#	ARTICLE	IF	CITATIONS
21	Arsenic mobilization in the Brahmaputra plains of Assam: groundwater and sedimentary controls. Environmental Monitoring and Assessment, 2014, 186, 6805-6820.	2.7	21
22	Review of arsenic contamination, exposure through water and food and low cost mitigation options for rural areas. Applied Geochemistry, 2014, 41, 11-33.	3.0	160
23	Phosphorus and arsenic distributions in a seasonally stratified, iron- and manganese-rich lake: microbiological and geochemical controls. Environmental Chemistry, 2015, 12, 708.	1.5	14
24	Quality and hydrochemistry of groundwater used for drinking in Lahore, Pakistan: analysis of source and distributed groundwater. Environmental Earth Sciences, 2015, 74, 4281-4294.	2.7	29
25	Effect of irrigation on Fe(III)–SO42â^' redox cycling and arsenic mobilization in shallow groundwater from the Datong basin, China: Evidence from hydrochemical monitoring and modeling. Journal of Hydrology, 2015, 523, 128-138.	5.4	48
26	Exploratory experiments to determine the effect of alternative operations on the efficiency of subsurface arsenic removal in rural Bangladesh. Hydrogeology Journal, 2015, 23, 19-34.	2.1	11
27	In-house-made capillary electrophoresis instruments coupled with contactless conductivity detection as a simple and inexpensive solution for water analysis: a case study in Vietnam. Environmental Sciences: Processes and Impacts, 2015, 17, 1941-1951.	3.5	26
28	Reactivity and speciation of mineral-associated arsenic in seasonal and permanent wetlands of the Mekong Delta. Geochimica Et Cosmochimica Acta, 2015, 171, 143-155.	3.9	47
29	Delineating the Convergence of Biogeochemical Factors Responsible for Arsenic Release to Groundwater in South and Southeast Asia. Advances in Agronomy, 2016, 140, 43-74.	5.2	14
30	Arsenic mobilization from sediments in microcosms under sulfate reduction. Chemosphere, 2016, 153, 254-261.	8.2	86
31	Vulnerability of low-arsenic aquifers to municipal pumping in Bangladesh. Journal of Hydrology, 2016, 539, 674-686.	5.4	54
32	A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain, Vietnam. Geochimica Et Cosmochimica Acta, 2016, 195, 277-292.	3.9	75
33	River bank geomorphology controls groundwater arsenic concentrations in aquifers adjacent to the Red River, Hanoi Vietnam. Water Resources Research, 2016, 52, 6321-6334.	4.2	57
34	In Situ Magnetite Formation and Long-Term Arsenic Immobilization under Advective Flow Conditions. Environmental Science & Technology, 2016, 50, 10162-10171.	10.0	38
35	Effect of hydroquinone-induced iron reduction on the stability of scorodite and arsenic mobilization. Hydrometallurgy, 2016, 164, 228-237.	4.3	33
36	Arsenic release metabolically limited to permanently water-saturated soil in Mekong Delta. Nature Geoscience, 2016, 9, 70-76.	12.9	152
37	Effect of oxalic acid treatment on sediment arsenic concentrations and lability under reducing conditions. Journal of Hazardous Materials, 2016, 311, 125-133.	12.4	24
38	Effects of microbially induced transformations and shift in bacterial community on arsenic mobility in arsenic-rich deep aquifer sediments. Journal of Hazardous Materials, 2016, 310, 11-19.	12.4	32

#	Article	IF	CITATIONS
39	Natural attenuation processes of arsenic in the groundwater of the Brahmaputra floodplain of Assam, India. Environmental Sciences: Processes and Impacts, 2016, 18, 115-125.	3.5	7
40	Reversible adsorption and flushing of arsenic in a shallow, Holocene aquifer of Bangladesh. Applied Geochemistry, 2017, 77, 142-157.	3.0	41
41	Origin and availability of organic matter leading to arsenic mobilisation in aquifers of the Red River Delta, Vietnam. Applied Geochemistry, 2017, 77, 184-193.	3.0	42
42	Reactive Transport Modeling of Arsenic Mobilization in Groundwater of the Red River Floodplain, Vietnam. Procedia Earth and Planetary Science, 2017, 17, 85-87.	0.6	6
43	Do Fe-oxides Control the Adsorption of Arsenic in Aquifers of the Red River Floodplain, Vietnam?. Procedia Earth and Planetary Science, 2017, 17, 300-303.	0.6	1
44	Arsenic, iron and organic matter in quaternary aquifer sediments from western Hetao Basin, Inner Mongolia. Journal of Earth Science (Wuhan, China), 2017, 28, 473-483.	3.2	3
45	Remediation of arsenic-contaminated groundwater by in-situ stimulating biogenic precipitation of iron sulfides. Water Research, 2017, 109, 337-346.	11.3	50
46	In-situ mobilization and transformation of iron oxides-adsorbed arsenate in natural groundwater. Journal of Hazardous Materials, 2017, 321, 228-237.	12.4	54
47	Geochemical Evolution of Groundwater Flowing Through Arsenic Source Sediments in an Aquifer System of West Bengal, India. Water Resources Research, 2017, 53, 8715-8735.	4.2	24
48	Groundwater Arsenic contamination and land subsidence in Hanoi City, Vietnam. , 2017, , .		3
49	Simultaneous influence of indigenous microorganism along with abiotic factors controlling arsenic mobilization in Brahmaputra floodplain, India. Journal of Contaminant Hydrology, 2018, 213, 1-14.	3.3	34
50	Predicting the risk of groundwater arsenic contamination in drinking water wells. Journal of Hydrology, 2018, 560, 318-325.	5.4	24
51	Arsenic and metallic trace elements cycling in the surface water-groundwater-soil continuum down-gradient from a reclaimed mine area: Isotopic imprints. Journal of Hydrology, 2018, 558, 341-355.	5.4	23
52	Arsenic in Holocene aquifers of the Red River floodplain, Vietnam: Effects of sediment-water interactions, sediment burial age and groundwater residence time. Geochimica Et Cosmochimica Acta, 2018, 225, 192-209.	3.9	53
53	Partitioning and reactivity of iron oxide minerals in aquifer sediments hosting high arsenic groundwater from the Hetao basin, P. R. China. Applied Geochemistry, 2018, 89, 190-201.	3.0	28
54	Redox buffering and de-coupling of arsenic and iron in reducing aquifers across the Red River Delta, Vietnam, and conceptual model of de-coupling processes. Environmental Science and Pollution Research, 2018, 25, 15954-15961.	5.3	16
55	Arsenic biotransformation potential of microbial arsH responses in the biogeochemical cycling of arsenic-contaminated groundwater. Chemosphere, 2018, 191, 729-737.	8.2	33
56	Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin. Science of the Total Environment, 2018, 619-620, 1247-1258.	8.0	65

#	Article	IF	CITATIONS
57	Simultaneously quantifying ferrihydrite and goethite in natural sediments using the method of standard additions with X-ray absorption spectroscopy. Chemical Geology, 2018, 476, 248-259.	3.3	32
58	Insights into arsenic retention dynamics of Pleistocene aquifer sediments by in situ sorption experiments. Water Research, 2018, 129, 123-132.	11.3	18
59	Spatial Variability of Groundwater Arsenic Concentration as Controlled by Hydrogeology: Conceptual Analysis Using 2â€Ð Reactive Transport Modeling. Water Resources Research, 2018, 54, 10254-10269.	4.2	21
61	Tolerance Mechanisms of Rice to Arsenic Stress. Soil Biology, 2018, , 215-227.	0.8	0
62	The fate of arsenic in groundwater discharged to the Meghna River, Bangladesh. Environmental Chemistry, 2018, 15, 29.	1.5	17
63	Model-Based Analysis of Arsenic Immobilization via Iron Mineral Transformation under Advective Flows. Environmental Science & amp; Technology, 2018, 52, 9243-9253.	10.0	57
64	Arsenite adsorption controlled by the iron oxide content of Holocene Red River aquifer sediment. Geochimica Et Cosmochimica Acta, 2018, 239, 61-73.	3.9	22
65	Effects of irrigation-induced water table fluctuation on arsenic mobilization in the unsaturated zone of the Datong Basin, northern China. Journal of Hydrology, 2018, 564, 256-265.	5.4	17
66	Identification of Hydrobiogeochemical Processes Controlling Seasonal Variations in Arsenic Concentrations Within a Riverbank Aquifer at Jianghan Plain, China. Water Resources Research, 2018, 54, 4294-4308.	4.2	21
67	Microbially Mediated Release of As from Mekong Delta Peat Sediments. Environmental Science & Technology, 2019, 53, 10208-10217.	10.0	12
68	Biogeochemical and reactive transport modeling of arsenic in groundwaters from the Mississippi River delta plain: An analog for the As-affected aquifers of South and Southeast Asia. Geochimica Et Cosmochimica Acta, 2019, 264, 245-272.	3.9	26
69	Quantifying Riverine Recharge Impacts on Redox Conditions and Arsenic Release in Groundwater Aquifers Along the Red River, Vietnam. Water Resources Research, 2019, 55, 6712-6728.	4.2	16
70	Occurrence and distribution of high arsenic in sediments and groundwater of the ClaromecÃ ³ fluvial basin, southern Pampean plain (Argentina). Science of the Total Environment, 2019, 695, 133673.	8.0	18
71	Arsenic alleviation in rice by using paddy soil microbial fuel cells. Plant and Soil, 2019, 441, 111-127.	3.7	22
72	Digestive solubilization of particle-associated arsenate by deposit-feeders: The roles of proteinaceous and surfactant materials. Environmental Pollution, 2019, 248, 980-988.	7.5	1
73	Facilitated arsenic immobilization by biogenic ferrihydrite-goethite biphasic Fe(III) minerals (Fh-Gt) Tj ETQq1 1 0.7	784314 rg 8.2	BT_/Overloc
74	Fractions and colloidal distribution of arsenic associated with iron oxide minerals in lead-zinc mine-contaminated soils: Comparison of tailings and smelter pollution. Chemosphere, 2019, 227, 614-623.	8.2	41
75	Experimental constraints on redox-induced arsenic release and retention from aquifer sediments in the central Yangtze River Basin. Science of the Total Environment, 2019, 649, 629-639.	8.0	29

#	Article	IF	CITATIONS
76	Sedimentogenesis and hydrobiogeochemistry of high arsenic Late Pleistocene-Holocene aquifer systems. Earth-Science Reviews, 2019, 189, 79-98.	9.1	91
77	Remarks on the current quality of groundwater in Vietnam. Environmental Science and Pollution Research, 2019, 26, 1163-1169.	5.3	46
78	Microscale distribution of trace elements: a methodology for accessing major bearing phases in stream sediments as applied to the Loire basin (France). Journal of Soils and Sediments, 2020, 20, 498-512.	3.0	2
79	Hydrogeochemical evolution of shallow and deeper aquifers in central Bangladesh: arsenic mobilization process and health risk implications from the potable use of groundwater. Environmental Earth Sciences, 2020, 79, 1.	2.7	42
80	Aquifer-Scale Observations of Iron Redox Transformations in Arsenic-Impacted Environments to Predict Future Contamination. Environmental Science and Technology Letters, 2020, 7, 916-922.	8.7	19
81	Geochemical transformations beneath man-made ponds: Implications for arsenic mobilization in South Asian aquifers. Geochimica Et Cosmochimica Acta, 2020, 288, 262-281.	3.9	9
82	Experiment-based geochemical modeling of Arsenic(V) and Arsenic(III) adsorption onto aquifer sediments from an inland basin. Journal of Hydrology, 2020, 588, 125094.	5.4	18
83	Immobilization and release risk of arsenic associated with partitioning and reactivity of iron oxide minerals in paddy soils. Environmental Science and Pollution Research, 2020, 27, 36377-36390.	5.3	5
84	The effect of groundwater velocities on sulfidation of arsenic-bearing ferrihydrite: Insight from column experiments. Journal of Hydrology, 2020, 586, 124827.	5.4	8
85	The river–groundwater interface as a hotspot for arsenic release. Nature Geoscience, 2020, 13, 288-295.	12.9	104
86	Arsenic(III) biotransformation to tooeleite associated with the oxidation of Fe(II) via Acidithiobacillus ferrooxidans. Chemosphere, 2020, 248, 126080.	8.2	21
87	Transformation pathways of arsenic species: SRB mediated mechanism and seasonal patterns. Chemosphere, 2021, 263, 128255.	8.2	6
88	Reduction of iron (hydr)oxide-bound arsenate: Evidence from high depth resolution sampling of a reducing aquifer in Yinchuan Plain, China. Journal of Hazardous Materials, 2021, 406, 124615.	12.4	13
89	Arsenic releasing mechanisms during clayey sediments compaction: An experiment study. Journal of Hydrology, 2021, 597, 125743.	5.4	8
90	Global geogenic groundwater pollution. , 2021, , 187-213.		5
91	Multi–mode Sample Introduction System (MSIS) as an interface in the hyphenated system 2 HPLC–MSIS–ICP–OES in simultaneous determination of metals and metalloids species. Analytica Chimica Acta, 2021, 1147, 1-14.	5.4	12
92	Metal speciation of the Paraopeba river after the Brumadinho dam failure. Science of the Total Environment, 2021, 757, 143917.	8.0	24
93	Iron mineral transformations and their impact on As (im)mobilization at redox interfaces in As-contaminated aquifers. Geochimica Et Cosmochimica Acta, 2021, 296, 189-209.	3.9	24

#	Article	IF	CITATIONS
94	A critical review of abiotic and microbially-mediated chemical reduction rates of Fe(III) (oxyhydr)oxides using a reactivity model. Applied Geochemistry, 2021, 126, 104895.	3.0	10
95	Pleistocene sands of the Mississippi River Alluvial Aquifer produce the highest groundwater arsenic concentrations in southern Louisiana, USA. Journal of Hydrology, 2021, 595, 125995.	5.4	7
96	Vertical redox zones of Fe–S–As coupled mineralogy in the sediments of Hetao Basin – Constraints for groundwater As contamination. Journal of Hazardous Materials, 2021, 408, 124924.	12.4	15
97	Phosphate immobilisation dynamics and interaction with arsenic sorption at redox transition zones in floodplain aquifers: Insights from the Red River Delta, Vietnam. Journal of Hazardous Materials, 2021, 411, 125128.	12.4	21
98	Anthropogenic arsenic menace in contaminated water near thermal power plants and coal mining areas of India. Environmental Geochemistry and Health, 2022, 44, 1099-1127.	3.4	6
99	Iron species determination by high performance liquid chromatography with plasma based optical emission detectors: HPLC–MIP OES and HPLC–ICP OES. Talanta, 2021, 231, 122403.	5.5	17
100	Arsenic Pollution Study at Nitra-KrÅika Ny Location as an Example of Line Contamination. Acta Regionalia Et Environmentalica, 2016, 13, 6-11.	0.1	0
101	Groundwater Pollution Connected to Multiple Effect: a case study Kaman (Kırşehir, Turkey). Sakarya University Journal of Science, 0, , .	0.7	Ο
102	Appraisal of groundwater arsenic on opposite banks of River Ganges, West Bengal, India, and quantification of cancer risk using Monte Carlo simulations. Environmental Science and Pollution Research, 2023, 30, 25205-25225.	5.3	14
103	Groundwater arsenic content related to the sedimentology and stratigraphy of the Red River delta, Vietnam. Science of the Total Environment, 2022, 814, 152641.	8.0	9
104	Influence of Sulfate Reduction on Arsenic Migration and Transformation in Groundwater Environment. Water (Switzerland), 2022, 14, 942.	2.7	6
105	Metal (Fe, Cu, and As) transformation and association within secondary minerals in neutralized acid mine drainage characterized using X-ray absorption spectroscopy. Applied Geochemistry, 2022, 139, 105242.	3.0	29
107	Mobilization of As, Fe, and Mn from Contaminated Sediment in Aerobic and Anaerobic Conditions: Chemical or Microbiological Triggers?. ACS Earth and Space Chemistry, 0, , .	2.7	5
108	Thermal regime, together with lateral connectivity, control aquatic invertebrate composition in river floodplains. Freshwater Biology, 2022, 67, 1774-1788.	2.4	1
109	Abundant Fe(III) Oxideâ€Bound Arsenic and Depleted Mn Oxides Facilitate Arsenic Enrichment in Groundwater From a Sandâ€Gravel Confined Aquifer. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	4
110	Mass fluxes of dissolved arsenic discharging to the Meghna River are sufficient to account for the mass of arsenic in riverbank sediments. Journal of Contaminant Hydrology, 2022, 251, 104068.	3.3	6
111	Effect of manganese oxides on arsenic speciation and mobilization in different arsenic-adsorbed iron-minerals under microbially-reducing conditions. Journal of Hazardous Materials, 2023, 445, 130602.	12.4	2
112	Impact of Pressure on Arsenic Released from Pore Water in Clayey Sediment. Toxics, 2022, 10, 738.	3.7	0

#	Article	IF	CITATIONS
113	Exogenous-organic-matter-driven mobilization of groundwater arsenic. Environmental Science and Ecotechnology, 2023, 15, 100243.	13.5	6
114	Sulfate reduction accelerates groundwater arsenic contamination even in aquifers with abundant iron oxides. , 2023, 1, 151-165.		8
116	Transformation of dissolved organic matter and related arsenic mobility at a surface water-groundwater interface in the Hetao Basin, China. Environmental Pollution, 2023, 334, 122202.	7.5	0
117	Release of arsenic during riverbank filtration under anoxic conditions linked to grain size of riverbed sediments. Science of the Total Environment, 2023, 900, 165858.	8.0	1
118	Redox trapping of arsenic in hyporheic zones modified by silicate weathering beneath floodplains. Applied Geochemistry, 2023, 159, 105831.	3.0	1
119	Synergetic effect of nitrate on dissolved organic carbon attenuation through dissimilatory iron reduction during aquifer storage and recovery. Water Research, 2024, 249, 120954.	11.3	1