A review of current and emergent biofilm control strate

LWT - Food Science and Technology 43, 573-583

DOI: 10.1016/j.lwt.2009.12.008

Citation Report

#	Article	IF	CITATIONS
1	Enhanced Surface Colonization by <i>Escherichia coli</i> O157:H7 in Biofilms Formed by an <i>Acinetobacter calcoaceticus</i> Isolate from Meat-Processing Environments. Applied and Environmental Microbiology, 2010, 76, 4557-4559.	1.4	88
2	Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157:H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat products. Meat Science, 2010, 86, 2-14.	2.7	157
3	Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies. Lab on A Chip, 2010, 10, 2162.	3.1	105
4	New Tool To Monitor Biofilm Growth in Industrial Process Waters. Industrial & Engineering Chemistry Research, 2011, 50, 5766-5773.	1.8	8
5	Immobilization of Subtilisin on Polycaprolactam for Antimicrobial Food Packaging Applications. Journal of Agricultural and Food Chemistry, 2011, 59, 10869-10878.	2.4	31
6	The effects of glutaraldehyde on the control of single and dual biofilms of <i>Bacillus cereus </i> and <i>Pseudomonas fluorescens </i> Biofouling, 2011, 27, 337-346.	0.8	33
7	Attached Growth Biological Systems in the Treatment of Potable Water and Wastewater. , 2011, , 371-383.		3
8	Anti-Biofilm Drug Susceptibility Testing Methods: Looking for New Strategies against Resistance Mechanism. Journal of Microbial & Biochemical Technology, 0, s3, .	0.2	18
9	Casbane Diterpene as a Promising Natural Antimicrobial Agent against Biofilm-Associated Infections. Molecules, 2011, 16, 190-201.	1.7	73
	(Wolcourts, 2011, 10, 170 201.		
10	Bacteriophages actions on <i>Salmonella</i> Enteritidis biofilm., 2011, , .		4
10			1
	Bacteriophages actions on <i>Salmonella</i> Enteritidis biofilm. , 2011, , .	1.5	
11	Bacteriophages actions on <i>Salmonella</i> Use of lactic acid bacteria biofilms as biocontrol agents., 2011,,. Effects of Nutritional and Environmental Conditions on <i>Salmonella</i> i> sp. Biofilm Formation.	1.5	1
11	Bacteriophages actions on <i>Salmonella</i> Enteritidis biofilm., 2011, , . Use of lactic acid bacteria biofilms as biocontrol agents., 2011, , . Effects of Nutritional and Environmental Conditions on <i>Salmonella</i> Sp. Biofilm Formation. Journal of Food Science, 2011, 76, M12-6. Effects of Photoactivated Titanium Dioxide Nanopowders and Coating on Planktonic and Biofilm		1 75
11 12 13	Bacteriophages actions on <i>Salmonella</i> Use of lactic acid bacteria biofilms as biocontrol agents., 2011,,. Effects of Nutritional and Environmental Conditions on <i>Salmonella</i> Journal of Food Science, 2011, 76, M12-6. Effects of Photoactivated Titanium Dioxide Nanopowders and Coating on Planktonic and Biofilm Growth of <i>Pseudomonas aeruginosa</i> Photochemistry and Photobiology, 2011, 87, 1387-1394. Radical polymerization and preliminary microbiological investigation of new polymer derived from	1.3	1 75 35
11 12 13	Bacteriophages actions on <i>Salmonella</i> Use of lactic acid bacteria biofilms as biocontrol agents., 2011,,. Effects of Nutritional and Environmental Conditions on <i>Salmonella</i> Journal of Food Science, 2011, 76, M12-6. Effects of Photoactivated Titanium Dioxide Nanopowders and Coating on Planktonic and Biofilm Growth of <i>Pseudomonas aeruginosa</i> Photochemistry and Photobiology, 2011, 87, 1387-1394. Radical polymerization and preliminary microbiological investigation of new polymer derived from myrtenol. European Polymer Journal, 2011, 47, 1842-1851. Surfactant-disinfectant resistance of Salmonella and Staphylococcus adhered and dried on surfaces	1.3 2.6	1 75 35
11 12 13 14	Bacteriophages actions on <i>Salmonella</i> Use of lactic acid bacteria biofilms as biocontrol agents., 2011,, Effects of Nutritional and Environmental Conditions on <i>Salmonella</i> Journal of Food Science, 2011, 76, M12-6. Effects of Photoactivated Titanium Dioxide Nanopowders and Coating on Planktonic and Biofilm Growth of <i>Pseudomonas aeruginosa</i> Photochemistry and Photobiology, 2011, 87, 1387-1394. Radical polymerization and preliminary microbiological investigation of new polymer derived from myrtenol. European Polymer Journal, 2011, 47, 1842-1851. Surfactant-disinfectant resistance of Salmonella and Staphylococcus adhered and dried on surfaces with egg compounds. Food Microbiology, 2011, 28, 920-925. Antibiofilm activity of Andrographis paniculata against cystic fibrosis clinical isolate Pseudomonas	1.3 2.6 2.1	1 75 35 14 17

#	ARTICLE	IF	CITATIONS
19	Biological approaches for addressing the grand challenge of providing access to clean drinking water. Journal of Biological Engineering, 2011, 5, 2.	2.0	32
20	Facile synthesis and promising antibacterial properties of a new guaiacol-based polymer. Polymer, 2011, 52, 1908-1916.	1.8	48
21	Effect of antimicrobial residues on early adhesion and biofilm formation by wild-type and benzalkonium chloride-adapted <i>Pseudomonas aeruginosa</i> . Biofouling, 2011, 27, 1151-1159.	0.8	36
22	Physiological changes induced by the quaternary ammonium compound benzyldimethyldodecylammonium chloride on Pseudomonas fluorescens. Journal of Antimicrobial Chemotherapy, 2011, 66, 1036-1043.	1.3	105
23	Removal of microbial multi-species biofilms from the paper industry by enzymatic treatments. Biofouling, 2012, 28, 305-314.	0.8	46
24	Sub-lethal concentrations of (i> Muscari comosum (li> bulb extract suppress adhesion and induce detachment of sessile yeast cells. Biofouling, 2012, 28, 1107-1117.	0.8	15
25	Antibiofilm Activity of Dendrophthoe falcata against Different Bacterial Pathogens. Planta Medica, 2012, 78, 1918-1926.	0.7	7
26	Effects of Temperature and Nutrient Conditions on Biofilm Formation of Pseudomonas putida. Food Science and Technology Research, 2012, 18, 879-883.	0.3	24
27	Investigation of microorganisms involved in biosynthesis of the kefir grain. Food Microbiology, 2012, 32, 274-285.	2.1	79
28	Control of planktonic and sessile bacterial cells by essential oils. Food and Bioproducts Processing, 2012, 90, 809-818.	1.8	17
29	Microbiologically influenced corrosion (MIC) in nuclear power plant systems and components., 2012, , 230-261.		4
31	The effects of biofilms formed on whey reverse osmosis membranes on the microbial quality of the concentrated product. International Journal of Dairy Technology, 2012, 65, 451-455.	1.3	18
32	Improved antibacterial and antibiofilm activity of magnesium fluoride nanoparticles obtained by water-based ultrasound chemistry. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 702-711.	1.7	74
33	Combining hydrodynamic and enzymatic treatments to improve multi-species thick biofilm removal. Chemical Engineering Science, 2012, 80, 109-118.	1.9	24
34	Resistances to UV-C irradiation of Salmonella Typhimurium and Staphylococcus aureus in wet and dried suspensions on surface with egg residues. Food Control, 2012, 23, 485-490.	2.8	12
35	Effects of temperature and nutrient concentration on the structural characteristics and removal of vegetable-associated Pseudomonas biofilm. Food Control, 2012, 24, 165-170.	2.8	15
36	Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria. Food Control, 2012, 25, 441-447.	2.8	162
37	The sanitizing action of essential oil-based solutions against Salmonella enterica serotype Enteritidis S64 biofilm formation on AISI 304 stainless steel. Food Control, 2012, 25, 673-677.	2.8	67

3

#	Article	IF	Citations
38	Detection methods of fouling in heat exchangers in the food industry. Food Control, 2012, 27, 1-10.	2.8	76
39	Pseudomonas aeruginosa Attachment on QCM-D Sensors: The Role of Cell and Surface Hydrophobicities. Langmuir, 2012, 28, 6396-6402.	1.6	85
40	Entrapment of Subtilisin in Ceramic Sol–Gel Coating for Antifouling Applications. ACS Applied Materials & Samp; Interfaces, 2012, 4, 5915-5921.	4.0	36
41	Microflora of biofilm on Algerian dairy processing lines: An approach to improve microbial quality of pasteurized milk. African Journal of Microbiology Research, 2012, 6, 3836-3844.	0.4	12
42	Bacterial biofilms resist oxidising agents due to the presence of organic matter. Czech Journal of Food Sciences, 2012, 30, 178-187.	0.6	24
43	The effect of surface charge property on <i>Escherichia coli</i> i> initial adhesion and subsequent biofilm formation. Biotechnology and Bioengineering, 2012, 109, 1745-1754.	1.7	107
44	Biofouling: lessons from nature. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 2381-2417.	1.6	425
45	Cinnamon essential oil and cinnamaldehyde in the control of bacterial biofilms formed on stainless steel surfaces. European Food Research and Technology, 2012, 234, 821-832.	1.6	48
46	A review of microbial biofilms of produce: Future challenge to food safety. Food Science and Biotechnology, 2012, 21, 299-316.	1.2	128
47	Inactivation of biofilm cells of foodborne pathogen by aerosolized sanitizers. International Journal of Food Microbiology, 2012, 154, 130-134.	2.1	47
48	The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunology and Medical Microbiology, 2012, 65, 183-195.	2.7	484
49	Enhanced activity of carvacrol against biofilm of <i><scp>S</scp>taphylococcus aureus</i> and <i><scp>S</scp>taphylococcus epidermidis</i> in an acidic environment. Apmis, 2012, 120, 967-973.	0.9	24
50	Activity of South African medicinal plants against Listeria monocytogenes biofilms, and isolation of active compounds from Acacia karroo. South African Journal of Botany, 2012, 78, 220-227.	1.2	45
51	A third mode of surfaceâ€essociated growth: immobilization of ⟨i⟩Salmonella enterica⟨li⟩ serovar Typhimurium modulates the RpoSâ€directed transcriptional programme. Environmental Microbiology, 2012, 14, 1855-1875.	1.8	27
52	Surface Hydrophobicity of Culture and Water Biofilm of Penicillium spp Current Microbiology, 2012, 64, 93-99.	1.0	16
53	Development of antimicrobial stainless steel via surface modification with Nâ€halamines: Characterization of surface chemistry and Nâ€halamine chlorination. Journal of Applied Polymer Science, 2013, 127, 821-831.	1.3	51
54	Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews, 2013, 65, 1803-1815.	6.6	1,048
55	Photodynamic inactivation of biofilm: taking a lightly colored approach to stubborn infection. Expert Review of Anti-Infective Therapy, 2013, 11, 669-693.	2.0	140

#	ARTICLE	IF	CITATIONS
56	Probing the cellular damage in bacteria induced by GaN nanoparticles using confocal laser Raman spectroscopy. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	16
58	Inactivation of Listeria monocytogenes on a polyethylene surface modified by layer-by-layer deposition of the antimicrobial N-halamine. Journal of Food Engineering, 2013, 117, 52-58.	2.7	25
59	Influence of Small RNAs on Biofilm Formation Process in Bacteria. Molecular Biotechnology, 2013, 55, 288-297.	1.3	26
61	Modeling, Simulation and Control of Pink Guava Puree Pasteurization Process with Fouling as Disturbance. Journal of Food Process Engineering, 2013, 36, 834-845.	1.5	1
62	Effect of rhamnolipids on initial attachment of bacteria on glass and octadecyltrichlorosilane-modified glass. Colloids and Surfaces B: Biointerfaces, 2013, 103, 121-128.	2.5	33
63	The role of ethanol in preventing biofilm formation of Penicillium purpurogenum. Annals of Microbiology, 2013, , .	1.1	0
64	Changes in resistance of Salmonella Typhimurium biofilms formed under various conditions to industrial sanitizers. Food Control, 2013, 29, 236-240.	2.8	57
65	Inhibition of planktonic and sessile Salmonella enterica cells by combinations of enterocin AS-48, polymyxin B and biocides. Food Control, 2013, 30, 214-221.	2.8	15
66	Antimicrobial enzymes: An emerging strategy to fight microbes and microbial biofilms. Biotechnology Journal, 2013, 8, 97-109.	1.8	249
67	Development of a sol–gel photonic sensor platform for the detection of biofilm formation. Sensors and Actuators B: Chemical, 2013, 177, 357-363.	4.0	9
68	In situ characterization and analysis of Salmonella biofilm formation under meat processing environments using a combined microscopic and spectroscopic approach. International Journal of Food Microbiology, 2013, 167, 293-302.	2.1	90
69	Biofilms in drinking water: problems and solutions. RSC Advances, 2013, 3, 2520-2533.	1.7	142
70	Regulation of flagellar motility during biofilm formation. FEMS Microbiology Reviews, 2013, 37, 849-871.	3.9	447
72	The effect of glucose concentration and shaking conditions on Escherichia coli biofilm formation in microtiter plates. Chemical Engineering Science, 2013, 94, 192-199.	1.9	45
73	Biofilm formation in food industries: A food safety concern. Food Control, 2013, 31, 572-585.	2.8	736
74	Combined treatments of enterocin AS-48 with biocides to improve the inactivation of methicillin-sensitive and methicillin-resistant Staphylococcus aureus planktonic and sessile cells. International Journal of Food Microbiology, 2013, 163, 96-100.	2.1	34
75	Initial adhesion of Listeria monocytogenes to fine polished stainless steel under flow conditions is determined by prior growth conditions. International Journal of Food Microbiology, 2013, 165, 35-42.	2.1	16
76	Synergistic inactivation of anaerobic wastewater biofilm by free nitrous acid and hydrogen peroxide. Journal of Hazardous Materials, 2013, 250-251, 91-98.	6.5	58

#	ARTICLE	IF	Citations
77	Egg wax from the cattle tick Rhipicephalus (Boophilus) microplus inhibits Pseudomonas aeruginosa biofilm. Ticks and Tick-borne Diseases, 2013, 4, 366-376.	1.1	12
78	A steroidal molecule present in the egg wax of the tick <i><scp>R</scp>hipicephalus</i> (<i><scp>B</scp>oophilus</i>) <i>microplus</i> inhibits bacterial biofilms. Environmental Microbiology, 2013, 15, 2008-2018.	1.8	19
79	Microbial Proteomics for Food Safety. , 2013, , 515-545.		0
80	Influence of Glucose Concentrations on Biofilm Formation, Motility, Exoprotease Production, and Quorum Sensing in Aeromonas hydrophila. Journal of Food Protection, 2013, 76, 239-247.	0.8	91
81	In-Situ Quantification of the Interfacial Rheological Response of Bacterial Biofilms to Environmental Stimuli. PLoS ONE, 2013, 8, e78524.	1.1	76
82	Biofilm Formation of O157 and Nonâ€O157 Shiga Toxinâ€Producing <i>Escherichia coli</i> and Multidrugâ€Resistant and Susceptible <i>Salmonella</i> Typhimurium and Newport and Their Inactivation by Sanitizers. Journal of Food Science, 2013, 78, M880-6.	1.5	34
83	Biofilm-Forming Activity of Bacteria Isolated from Toilet Bowl Biofilms and the Bactericidal Activity of Disinfectants against The Isolates. Biocontrol Science, 2013, 18, 129-135.	0.2	11
84	Introduction to biofilms and to biofilm research. , 2013, , 1-66.		0
85	Imaging and characterizing biofilm components. , 2013, , 67-120.		0
86	Lactic Acid Bacteria Resistance to Bacteriophage and Prevention Techniques to Lower Phage Contamination in Dairy Fermentation. , 2013, , .		7
87	The Influence of Interfering Substances on the Antimicrobial Activity of Selected Quaternary Ammonium Compounds. International Journal of Food Science, 2013, 2013, 1-9.	0.9	36
88	Occurrence of sulphate reducing bacteria (SRB) associated with biocorrosion on metallic surfaces in a hydroelectric power station in Ibirama (SC) - Brazil. Brazilian Archives of Biology and Technology, 2013, 56, 801-809.	0.5	5
89	Characterization of oregano (Origanum vulgare) essential oil and definition of its antimicrobial activity against Listeria monocytogenes and Escherichia coli in vitro system and on foodstuff surfaces. African Journal of Microbiology Research, 2014, 8, 2746-2753.	0.4	8
90	Bioluminescence ATP Monitoring for the Routine Assessment of Food Contact Surface Cleanliness in a University Canteen. International Journal of Environmental Research and Public Health, 2014, 11, 10824-10837.	1.2	48
91	Food Safety Assurance Systems: Management of Biofilm Risk. , 2014, , 240-243.		0
92	96-well microtiter plates for biofouling simulation in biomedical settings. Biofouling, 2014, 30, 535-546.	0.8	31
93	BIOFILM FORMATION., 2014,, 64-70.		0
94	Impact of blended tap water and desalinated seawater on biofilm stability. Desalination and Water Treatment, 2014, 52, 5806-5811.	1.0	5

#	Article	IF	Citations
95	Attachment and biofilm formation of Pseudomonas fluorescens PSD4 isolated from a dairy processing line. Food Science and Biotechnology, 2014, 23, 1903-1910.	1.2	33
96	Biofilms Formed by Mycobacterium tuberculosis on Cement, Ceramic, and Stainless Steel Surfaces and Their Controls. Journal of Food Protection, 2014, 77, 599-604.	0.8	4
97	Chitosan Improves Anti-Biofilm Efficacy of Gentamicin through Facilitating Antibiotic Penetration. International Journal of Molecular Sciences, 2014, 15, 22296-22308.	1.8	56
98	Efficacy of metal ions and isothiazolones in inhibiting <i>Enterobacter cloacae</i> BF-17 biofilm formation. Canadian Journal of Microbiology, 2014, 60, 5-14.	0.8	32
99	Biofilm Formation by (i) Mycobacterium bovis (i): Influence of Surface Kind and Temperatures of Sanitizer Treatments on Biofilm Control. BioMed Research International, 2014, 2014, 1-7.	0.9	13
100	Antiadhesive properties of the surfactants of Acinetobacter calcoaceticus IMB B-7241, Rhodococcus erythropolis IMB Ac-5017, and Nocardia vaccinii IMB B-7405. Microbiology, 2014, 83, 732-739.	0.5	15
101	Use of Fulvic Acid or Sodium Silicateâ€Based Sanitizers to Inactivate <scp><i>L</i></scp> <i>isteria monocytogenes</i> , <scp><i>S</i></scp> <i>almonella</i> Typhimurium and <scp><i>P</i></scp> <i>seudomonas aeruginosa</i> on Food Contact Surfaces. Journal of Food Safety, 2014, 34, 132-140.	1.1	2
102	The Paradox of Mixedâ€Species Biofilms in the Context of Food Safety. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 990-1011.	5.9	62
103	Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings. Journal of Colloid and Interface Science, 2014, 419, 114-133.	5.0	198
104	Transfer of foodborne pathogens during mechanical slicing and their inactivation by levulinic acid-based sanitizer on slicers. Food Microbiology, 2014, 38, 263-269.	2.1	31
105	The effects of ferulic and salicylic acids on Bacillus cereus and Pseudomonas fluorescens single- and dual-species biofilms. International Biodeterioration and Biodegradation, 2014, 86, 42-51.	1.9	70
106	Inactivation kinetics of anaerobic wastewater biofilms by free nitrous acid. Applied Microbiology and Biotechnology, 2014, 98, 1367-1376.	1.7	13
107	Effect of growth temperature, surface type and incubation time on the resistance of Staphylococcus aureus biofilms to disinfectants. Applied Microbiology and Biotechnology, 2014, 98, 2597-2607.	1.7	49
108	Eco-friendly decoration of graphene oxide with biogenic silver nanoparticles: antibacterial and antibiofilm activity. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	75
109	The impact of additional nitrates in mild steel corrosion in a seawater/sediment system. Corrosion Science, 2014, 80, 416-426.	3.0	38
110	A novel water-assisted pulsed light processing for decontamination of blueberries. Food Microbiology, 2014, 40, 1-8.	2.1	52
111	The effect of Quaternary Ammonium Compounds on the attachment of wild and adapted Pseudomonas putida strains to different contact materials used in the food sector. Food Control, 2014, 42, 277-283.	2.8	11
112	Titania nanoparticles prevent development of Pseudomonas fluorescens biofilms on polystyrene surfaces. Materials Letters, 2014, 127, 1-3.	1.3	12

#	Article	IF	CITATIONS
113	Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Archives of Microbiology, 2014, 196, 453-472.	1.0	224
114	The ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency. Biofouling, 2014, 30, 675-683.	0.8	34
115	Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species. International Journal of Food Microbiology, 2014, 181, 19-27.	2.1	43
116	Biofilm Formation in Food Processing Environments is Still Poorly Understood and Controlled. Food Engineering Reviews, 2014, 6, 29-42.	3.1	122
117	A biocontroller to eliminate Listeria monocytogenes from the food processing environment. Food Control, 2014, 36, 217-223.	2.8	8
118	Aging biofilm from a full-scale moving bed biofilm reactor: Characterization and enzymatic treatment study. Bioresource Technology, 2014, 154, 122-130.	4.8	44
119	A GFP promoter fusion library for the study of <i> Salmonella < /i > biofilm formation and the mode of action of biofilm inhibitors. Biofouling, 2014, 30, 605-625.</i>	0.8	25
120	Bovicin HC5 and nisin reduce Staphylococcus aureus adhesion to polystyrene and change the hydrophobicity profile and Gibbs free energy of adhesion. International Journal of Food Microbiology, 2014, 190, 1-8.	2.1	65
121	Does Campylobacter jejuni Form Biofilms in Food-Related Environments?. Applied and Environmental Microbiology, 2014, 80, 5154-5160.	1.4	75
122	Quorum Sensing Inhibitory and Anti-Biofilm Activity of Essential Oils and Their <i>in vivo</i> Efficacy in Food Systems. Food Biotechnology, 2014, 28, 269-292.	0.6	52
123	The importance of microscopic characterization of membrane biofilms in an unconfined environment. Desalination, 2014, 348, 8-15.	4.0	27
124	Culturable bacterial diversity from a feed water of a reverse osmosis system, evaluation of biofilm formation and biocontrol using phages. World Journal of Microbiology and Biotechnology, 2014, 30, 2689-2700.	1.7	25
125	Removal of different-age biofilms using carbon dioxide aerosols. Biotechnology and Bioprocess Engineering, 2014, 19, 503-509.	1.4	7
126	Application of bacteriophage-borne enzyme combined with chlorine dioxide on controlling bacterial biofilm. LWT - Food Science and Technology, 2014, 59, 1159-1165.	2.5	31
127	Microbial Quality and Safety of Fresh Produce. , 2014, , 313-339.		6
128	Analysis of ERIC-PCR genomic polymorphism of Salmonella isolates from chicken slaughter line. European Food Research and Technology, 2014, 239, 543-548.	1.6	10
129	Unraveling Microbial Biofilms of Importance for Food Microbiology. Microbial Ecology, 2014, 68, 35-46.	1.4	66
130	Label-free interdigitated microelectrode based biosensors for bacterial biofilm growth monitoring using Petri dishes. Journal of Microbiological Methods, 2014, 100, 77-83.	0.7	51

#	Article	IF	CITATIONS
131	Properties of Klebsiella phage P13 and associated exopolysaccharide depolymerase. Journal of Ocean University of China, 2014, 13, 163-168.	0.6	5
132	Evaluation of the Removal and Destruction Effect of a Chlorine and Thiamine Dilaurylsulfate Combined Treatment on <i>L. monocytogenes</i> Biofilm. Foodborne Pathogens and Disease, 2014, 11, 658-663.	0.8	16
133	Development and Control of Bacterial Biofilms on Dairy Processing Membranes. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 18-33.	5.9	71
134	Modelling Bacillus cereus adhesion on stainless steel surface as affected by temperature, pH and time. International Dairy Journal, 2014, 34, 153-158.	1.5	45
135	Effect of chemical cleaning and membrane aging on membrane biofouling using model organisms with increasing complexity. Journal of Membrane Science, 2014, 457, 19-28.	4.1	30
136	Effect of ciprofloxacin antibiotic on the partial-nitritation process and bacterial community structure of a submerged biofilter. Science of the Total Environment, 2014, 476-477, 276-287.	3.9	88
137	Use of phenyl isothiocyanate for biofilm prevention and control. International Biodeterioration and Biodegradation, 2014, 86, 34-41.	1.9	23
138	Cefuroxime axetil loaded solid lipid nanoparticles for enhanced activity against S. aureus biofilm. Colloids and Surfaces B: Biointerfaces, 2014, 121, 92-98.	2.5	57
139	Extracellular polymeric substances of bacteria and their potential environmental applications. Journal of Environmental Management, 2014, 144, 1-25.	3.8	694
140	An improved and versatile methodology to quantify biofilms formed on solid surfaces and exposed to the air–liquid interphase. Journal of Microbiological Methods, 2014, 103, 77-79.	0.7	3
141	Biofilm-producing ability of Staphylococcus aureus isolates from Brazilian dairy farms. Journal of Dairy Science, 2014, 97, 1812-1816.	1.4	60
142	Attachment and biofilm formation by foodborne bacteria in meat processing environments: Causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Science, 2014, 97, 298-309.	2.7	287
143	Characterization of Microorganisms Isolated from the Black Dirt of Toilet Bowls and Componential Analysis of the Black Dirt. Biocontrol Science, 2014, 19, 173-179.	0.2	5
144	Current and Recent Advanced Strategies for Combating Biofilms. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 491-509.	5.9	192
148	Effects of Carbon Dioxide Aerosols on the Viability of Escherichia coli during Biofilm Dispersal. Scientific Reports, 2015, 5, 13766.	1.6	8
149	Inhibition of pathogenic and spoilage bacteria by a novel biofilm-forming Lactobacillus isolate: a potential host for the expression of heterologous proteins. Microbial Cell Factories, 2015, 14, 96.	1.9	38
150	The Elimination of <i>Listeria Monocytogenes</i> Attached to Stainless Steel or Aluminum Using Multiple Hurdles. Journal of Food Science, 2015, 80, M1557-62.	1.5	2
151	Effects of <i>Zataria multiflora</i> boiss essential oil, ultraviolet radiation and their combination on <i>Listeria monocytogenes</i> biofilm in a simulated industrial model. International Journal of Food Science and Technology, 2015, 50, 2113-2119.	1.3	7

#	Article	IF	CITATIONS
152	Efficacy of disinfectants against <i>Cronobacter</i> biofilm on plastic surfaces. Quality Assurance and Safety of Crops and Foods, 2015, 7, 819-823.	1.8	10
153	Individual Constituents from Essential Oils Inhibit Biofilm Mass Production by Multi-Drug Resistant Staphylococcus aureus. Molecules, 2015, 20, 11357-11372.	1.7	55
154	Microbiological Characterization of Pure Geraniol and Comparison with Bactericidal Activity of the Cinnamic Acid in Gram-Positive and Gram-Negative Bacteria. Journal of Microbial & Biochemical Technology, 2015, 07, .	0.2	6
155	Regulation of biofilm formation by BpfA, BpfD, and BpfG in Shewanella oneidensis. Frontiers in Microbiology, 2015, 6, 790.	1.5	42
156	Magnesium ions mitigate biofilm formation of Bacillus species via downregulation of matrix genes expression. Frontiers in Microbiology, 2015, 6, 907.	1.5	43
157	The Prevalence and Control of Bacillus and Related Spore-Forming Bacteria in the Dairy Industry. Frontiers in Microbiology, 2015, 6, 1418.	1.5	210
158	New Derivatives of Pyridoxine Exhibit High Antibacterial Activity against Biofilm-Embedded <i>Staphylococcus</i> Cells. BioMed Research International, 2015, 2015, 1-10.	0.9	40
159	Hydrophobic properties of Candida spp. under the influence of selected essential oils. Acta Biochimica Polonica, 2015, 62, 663-668.	0.3	9
160	<i><scp>A</scp>eromonas</i> biofilm on stainless steel: efficiency of commonly used disinfectants. International Journal of Food Science and Technology, 2015, 50, 851-856.	1.3	16
161	Choosing When to Clean and How to Clean Biofilms in Heat Exchangers. Heat Transfer Engineering, 2015, 36, 676-684.	1.2	4
162	Listeria monocytogenes-carrying consortia in food industry. Composition, subtyping and numerical characterisation of mono-species biofilm dynamics on stainless steel. International Journal of Food Microbiology, 2015, 206, 84-95.	2.1	49
163	Characterisation of biofilms formed by Lactobacillus plantarum WCFS1 and food spoilage isolates. International Journal of Food Microbiology, 2015, 207, 23-29.	2.1	66
164	Self-repairing nonfouling polyurethane coatings via 3D-grafting of PEG-b-PHEMA-b-PMPC copolymer. RSC Advances, 2015, 5, 104907-104914.	1.7	22
165	Characterization of the archaeal community fouling a membrane bioreactor. Journal of Environmental Sciences, 2015, 29, 115-123.	3.2	10
166	Grafting of ionic liquids on stainless steel surface for antibacterial application. Colloids and Surfaces B: Biointerfaces, 2015, 126, 162-168.	2.5	43
167	Microbial biofilms in seafood: A food-hygiene challenge. Food Microbiology, 2015, 49, 41-55.	2.1	129
168	Effects of culture conditions on the biofilm formation of Cronobacter sakazakii strains and distribution of genes involved in biofilm formation. LWT - Food Science and Technology, 2015, 62, 1-6.	2.5	42
169	Biofilms of Enterococcus faecalis and Enterococcus faecium isolated from the processing of ricotta and the control of these pathogens through cleaning and sanitization procedures. International Journal of Food Microbiology, 2015, 200, 97-103.	2.1	27

#	Article	IF	CITATIONS
170	Physicochemical Interactions between Rhamnolipids and <i>Pseudomonas aeruginosa</i> Biofilm Layers. Environmental Science & En	4.6	70
171	Localised corrosion of mild steel in presence of <i>Pseudomonas aeruginosa </i> biofilm. Corrosion Engineering Science and Technology, 2015, 50, 538-546.	0.7	12
172	Incorporation of biocides in nanocapsules for protective coatings used in maritime applications. Chemical Engineering Journal, 2015, 270, 150-157.	6.6	68
173	Rice and Butterfly Wing Effect Inspired Low Drag and Antifouling Surfaces: A Review. Critical Reviews in Solid State and Materials Sciences, 2015, 40, 1-37.	6.8	96
174	Antibacterial surfaces obtained through dopamine and fluorination functionalizations. Progress in Organic Coatings, 2015, 82, 17-25.	1.9	29
175	Potential effects of damaged Pseudomonas aeruginosa PAO1 cells on development of reverse osmosis membrane biofouling. Journal of Membrane Science, 2015, 477, 86-92.	4.1	12
176	Behavior of Listeria monocytogenes in a multi-species biofilm with Enterococcus faecalis and Enterococcus faecium and control through sanitation procedures. International Journal of Food Microbiology, 2015, 200, 5-12.	2.1	43
177	Enzymatic degradation of bacterial biofilms using Aspergillus clavatus MTCC 1323. Microbiology, 2015, 84, 59-64.	0.5	19
178	Microbial adhesion capacity. Influence of shear and temperature stress. International Journal of Environmental Health Research, 2015, 25, 656-669.	1.3	22
179	Screening of antimicrobial compounds against Salmonellaty phimurium from burdock (Arctium lappa) leaf based on metabolomics. European Food Research and Technology, 2015, 240, 1203-1209.	1.6	14
180	Efficacy of antimicrobial combinations to reduce the use of sodium hypochlorite in the control of planktonic and sessile Escherichia coli. Biochemical Engineering Journal, 2015, 104, 115-122.	1.8	15
181	Green materials science and engineering reduces biofouling: approaches for medical and membrane-based technologies. Frontiers in Microbiology, 2015, 6, 196.	1.5	29
182	Metal-Based Antibacterial Substrates for Biomedical Applications. Biomacromolecules, 2015, 16, 1873-1885.	2.6	139
183	(1→3)-α-d-Glucan hydrolases in dental biofilm prevention and control: A review. International Journal of Biological Macromolecules, 2015, 79, 761-778.	3.6	62
184	Reduction of microbial biofilm formation using hydrophobic nano-silica coating on cooling tower fill material. Water S A, 2015, 41, 295.	0.2	9
185	Achieving profitable biological sludge disintegration through phase separation and predicting its anaerobic biodegradability by non linear regression model. Chemical Engineering Journal, 2015, 279, 478-487.	6.6	45
186	Association of blaOXA-23 and bap with the persistence of Acinetobacter baumannii within a major healthcare system. Frontiers in Microbiology, 2015, 6, 182.	1.5	31
187	Photodynamic inactivation induced by carboxypterin: a novel non-toxic bactericidal strategy against planktonic cells and biofilms of <i>Staphylococcus aureus < /i> . Biofouling, 2015, 31, 459-468.</i>	0.8	23

#	Article	IF	CITATIONS
188	Quorum sensing mechanism in lactic acid bacteria. Turk Hijiyen Ve Deneysel Biyoloji Dergisi Turkish Bulletin of Hygiene and Experimental Biology, 2015, 72, 79-90.	0.1	1
189	Isolation of bacteria rapidly adhering to metal iron surface. Materials Technology, 2015, 30, B38-B43.	1.5	7
190	Assessing the Antimicrobial Activity of Polyisoprene Based Surfaces. International Journal of Molecular Sciences, 2015, 16, 4392-4415.	1.8	8
191	Study on inhibitory activity of chitosan-based materials against biofilm producing <i>Pseudomonas i> aeruginosa strains. Journal of Biomaterials Applications, 2015, 30, 269-278.</i>	1.2	39
192	Selection Criteria for Water Disinfection Techniques in Agricultural Practices. Critical Reviews in Food Science and Nutrition, 2015, 55, 1529-1551.	5.4	59
193	Factors Affecting Biofilm Development. , 2015, , 53-65.		0
194	The Control of Microbiological Problems $\hat{a}-\hat{a}-S$ ome excerpts taken from Bajpai P (2012). Biotechnology for Pulp and Paper Processing with kind permission from Springer Science 1 Business Media, 2015, , 103-195.		9
195	Design of a Papain Immobilized Antimicrobial Food Package with Curcumin as a Crosslinker. PLoS ONE, 2015, 10, e0121665.	1.1	36
196	Preconditioning of Model Biocarriers by Soluble Pollutants: A QCM-D Study. ACS Applied Materials & Amp; Interfaces, 2015, 7, 7222-7230.	4.0	28
197	Living Composites of Bacteria and Polymers as Biomimetic Films for Metal Sequestration and Bioremediation. Macromolecular Bioscience, 2015, 15, 1052-1059.	2.1	30
198	Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens. LWT - Food Science and Technology, 2015, 63, 1001-1007.	2.5	142
199	Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes in biofilms by pulsed ultraviolet light. BMC Research Notes, 2015, 8, 235.	0.6	26
200	Insights into the transcriptome profile of mature biofilm of Salmonella Typhimurium on stainless steels surface. Food Research International, 2015, 77, 378-384.	2.9	23
201	Brief Notes About Biofilms. Springer Briefs in Molecular Science, 2015, , 57-78.	0.1	2
202	Effect of diesel leakage in circulating cooling water system on preponderant bacteria diversity and bactericidal effect of biocides. Environmental Technology (United Kingdom), 2015, 36, 1147-1159.	1.2	3
203	The combined effects of shear stress and mass transfer on the balance between biofilm and suspended cell dynamics. Desalination and Water Treatment, 2015, 53, 3348-3354.	1.0	19
204	Investigation of the effectiveness of disinfectants against planktonic and biofilm forms of <i>P. aeruginosa </i> and <i>E. faecalis </i> cells using a compilation of cultivation, microscopic and flow cytometric techniques. Biofouling, 2015, 31, 587-597.	0.8	7
205	Bioinspired passive anti-biofouling surfaces preventing biofilm formation. Journal of Materials Chemistry B, 2015, 3, 1371-1378.	2.9	49

#	Article	IF	CITATIONS
206	Complete nucleotide sequence of Klebsiella phage P13 and prediction of an EPS depolymerase gene. Virus Genes, 2015, 50, 118-128.	0.7	10
207	Biofilm-associated persistence of food-borne pathogens. Food Microbiology, 2015, 45, 167-178.	2.1	373
208	Bacterial biogeographical patterns in a cooking center for hospital foodservice. International Journal of Food Microbiology, 2015, 193, 99-108.	2.1	22
209	Biofilm formation by Staphylococcus aureus on food contact surfaces: Relationship with temperature and cell surface hydrophobicity. Food Control, 2015, 50, 930-936.	2.8	171
210	Escherichia coli adhesion to surfaces–a thermodynamic assessment. Colloid and Polymer Science, 2015, 293, 177-185.	1.0	12
211	The dual role of microbes in corrosion. ISME Journal, 2015, 9, 542-551.	4.4	273
212	Effect of quantity of food residues on resistance to desiccation of food-related pathogens adhered to a stainless steel surface. Food Microbiology, 2015, 46, 234-238.	2.1	35
213	Biofilm formation by Pseudomonas aeruginosa and disinfectant susceptibility of planktonic and biofilm cells. Czech Journal of Food Sciences, 2016, 34, 204-210.	0.6	11
214	Surface chemistry of nanobiomaterials with antimicrobial activity**In memoriam of Professor Dr. Luis Diaz, 2016, , 135-162.		10
215	Antibacterial and Antibiofilm Activity of Methanolic Plant Extracts against Nosocomial Microorganisms. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-8.	0.5	78
216	The LuxS Based Quorum Sensing Governs Lactose Induced Biofilm Formation by Bacillus subtilis. Frontiers in Microbiology, 2015, 6, 1517.	1.5	60
217	Efficient Eradication of Mature Pseudomonas aeruginosa Biofilm via Controlled Delivery of Nitric Oxide Combined with Antimicrobial Peptide and Antibiotics. Frontiers in Microbiology, 2016, 7, 1260.	1.5	48
218	Development of a Method to Determine the Effectiveness of Cleaning Agents in Removal of Biofilm Derived Spores in Milking System. Frontiers in Microbiology, 2016, 7, 1498.	1.5	26
219	New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry. Frontiers in Microbiology, 2016, 7, 1641.	1.5	210
220	Biofilm Risks. , 2016, , 55-79.		12
221	Influence of Flow Velocity on the Characteristics of <i>Pseudomonas fluorescens</i> Biofilms. Journal of Environmental Engineering, ASCE, 2016, 142, .	0.7	40
222	Effect of farm characteristics and practices on hygienic quality of ovine raw milk used for artisan cheese production in central Italy. Animal Science Journal, 2016, 87, 591-599.	0.6	11
223	The Effects of Selected Brominated and Chlorinated Chemicals on <i>Pseudomonas fluorescens (i) Planktonic Cells and Flow-Generated Biofilms. Journal of Food Processing and Preservation, 2016, 40, 316-328.</i>	0.9	7

#	Article	IF	CITATIONS
224	Changes in the <i>Salmonella enterica</i> Enteritidis phenotypes in presence of acyl homoserine lactone quorum sensing signals. Journal of Basic Microbiology, 2016, 56, 493-501.	1.8	36
225	Applications of Biosurfactants in Food. SpringerBriefs in Food, Health and Nutrition, 2016, , 43-80.	0.5	12
226	Bacterial biofilms in food processing environments: a review of recent developments in chemical and biological control. International Journal of Food Science and Technology, 2016, 51, 1731-1743.	1.3	45
227	Biofilms. , 2016, , 407-415.		12
228	Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces. Journal Physics D: Applied Physics, 2016, 49, 294001.	1.3	5
229	Elongational rheology of bacterial biofilms <i>in situ</i> . Journal of Rheology, 2016, 60, 1085-1094.	1.3	12
230	Cellular automaton simulation of the diffusive motion of bacteria and their adhesion to nanostructures on a solid surface. Computers in Biology and Medicine, 2016, 79, 173-181.	3.9	5
231	Adhesion and removal kinetics of <i>Bacillus cereus </i> biofilms on Ni-PTFE modified stainless steel. Biofouling, 2016, 32, 523-533.	0.8	21
232	Bacillus cereus hazard and control in industrial dairy processing environment. Food Control, 2016, 69, 20-29.	2.8	131
233	Exposure of fluid milk to LED light negatively affects consumer perception and alters underlying sensory properties. Journal of Dairy Science, 2016, 99, 4309-4324.	1.4	19
234	Staphylococcus aureus isolated from handmade sweets: Biofilm formation, enterotoxigenicity and antimicrobial resistance. Food Microbiology, 2016, 58, 105-111.	2.1	31
235	Differential toxicity of Al2O3 particles on Gram-positive and Gram-negative sediment bacterial isolates from freshwater. Environmental Science and Pollution Research, 2016, 23, 12095-12106.	2.7	24
236	Adhesion of anaerobic beer spoilage bacteria Megasphaera cerevisiae and Pectinatus frisingensis to stainless steel. LWT - Food Science and Technology, 2016, 70, 148-154.	2.5	5
237	Control of Listeria monocytogenes biofilms on industrial surfaces by the bacteriocin-producing Lactobacillus sakei CRL1862. FEMS Microbiology Letters, 2016, 363, .	0.7	54
238	Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold–silver nanoparticles against pathogenic bacteria and their physiochemical characterizations. Journal of Biomaterials Applications, 2016, 31, 366-378.	1.2	68
239	Modeling antimicrobial tolerance and treatment of heterogeneous biofilms. Mathematical Biosciences, 2016, 282, 1-15.	0.9	11
240	Effects of natural antimicrobials on bacterial cell hydrophobicity, adhesion, and zeta potential / Vpliv naravnih protimikrobnih snovi na bakterijsko hidrofobnost, adhezijo in zeta potencial. Arhiv Za Higijenu Rada I Toksikologiju, 2016, 67, 39-45.	0.4	34
241	Role of extracellular matrix protein CabA in resistance of Vibrio vulnificus biofilms to decontamination strategies. International Journal of Food Microbiology, 2016, 236, 123-129.	2.1	9

#	Article	IF	CITATIONS
242	Efficiency of a cleaning protocol for the removal of enterotoxigenic Staphylococcus aureus strains in dairy plants. International Journal of Food Microbiology, 2016, 238, 295-301.	2.1	20
243	Sporeforming bacterial pathogens in ready-to-eat dairy products. , 2016, , 259-273.		5
244	Biofilm Formation and Disinfectant Susceptibility of Persistent and Nonpersistent <i>Listeria monocytogenes</i> Isolates from Gorgonzola Cheese Processing Plants. Foodborne Pathogens and Disease, 2016, 13, 602-609.	0.8	28
245	Effect of carrot residue on the desiccation and disinfectant resistances of food related pathogens adhered to a stainless steel surfaces. LWT - Food Science and Technology, 2016, 74, 251-254.	2.5	9
246	Inhibition and Dispersal of Pseudomonas aeruginosa Biofilms by Combination Treatment with Escapin Intermediate Products and Hydrogen Peroxide. Antimicrobial Agents and Chemotherapy, 2016, 60, 5554-5562.	1.4	15
247	In situ activity recovery of aging biofilm in biological aerated filter: Surfactants treatment and mechanisms study. Bioresource Technology, 2016, 219, 403-410.	4.8	15
248	Effect of hydrophobicity of polymer materials used for water purification membranes on biofilm formation dynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 622-628.	2.3	35
249	A strategy for constructing anti-adhesion surfaces based on interfacial thiol–ene photoclick chemistry between DOPA derivatives with a catechol anchor group and zwitterionic betaine macromolecules. Polymer Chemistry, 2016, 7, 4964-4974.	1.9	29
250	Draught beer hygiene: cleaning of dispense tap nozzles. Journal of the Institute of Brewing, 2016, 122, 388-396.	0.8	7
251	Hydrosol of Thymbra capitata Is a Highly Efficient Biocide against Salmonella enterica Serovar Typhimurium Biofilms. Applied and Environmental Microbiology, 2016, 82, 5309-5319.	1.4	33
252	Jamming and Attraction of Interacting Run-and-Tumble Random Walkers. Physical Review Letters, 2016, 116, 218101.	2.9	79
253	Cleaning and Disinfection of Bacillus cereus Biofilm. PDA Journal of Pharmaceutical Science and Technology, 2016, 70, 208-217.	0.3	8
255	Reactive Extrusion Strategies to Fabricate Magnetite–Polyethylene Nanocomposites with Enhanced Mechanical and Magnetic Hyperthermia Properties. Macromolecular Materials and Engineering, 2016, 301, 1525-1536.	1.7	9
256	Crystal Violet and XTT Assays on Staphylococcus aureus Biofilm Quantification. Current Microbiology, 2016, 73, 474-482.	1.0	188
257	The current knowledge on the application of anti-biofilm enzymes in the food industry. Food Research International, 2016, 86, 140-146.	2.9	91
258	Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: A review. Desalination, 2016, 393, 2-15.	4.0	164
259	Study of the major essential oil compounds of <i>Coriandrum sativum</i> against <i>Acinetobacter baumannii</i> and the effect of linalool on adhesion, biofilms and quorum sensing. Biofouling, 2016, 32, 155-165.	0.8	73
260	Biofilm-producing ability and tolerance to industrial sanitizers in Salmonella spp. isolated from Brazilian poultry processing plants. LWT - Food Science and Technology, 2016, 68, 85-90.	2.5	26

#	Article	IF	CITATIONS
261	Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Research International, 2016, 82, 71-85.	2.9	251
262	Removal of Salmonella biofilm formed under meat processing environment by surfactant in combination with bio-enzyme. LWT - Food Science and Technology, 2016, 66, 298-304.	2.5	56
263	Characterization of antimicrobial efficacy of photocatalytic polymers against food-borne biofilms. LWT - Food Science and Technology, 2016, 68, 1-7.	2.5	11
264	Optical Sensing of Microbial Life on Surfaces. Applied and Environmental Microbiology, 2016, 82, 1362-1371.	1.4	31
265	Optical coherence tomography imaging to analyze biofilm thickness from distal to proximal regions of the endotracheal tubes. Proceedings of SPIE, 2016 , , .	0.8	0
266	Effect of the quantities of food residues on the desiccation resistance of spoilage lactic acid bacteria adhered to a stainless steel surface. Food Control, 2016, 68, 40-44.	2.8	8
267	Evaluation of SICON \hat{A}^{\otimes} surfaces for biofouling mitigation in critical process areas. Food and Bioproducts Processing, 2016, 98, 173-180.	1.8	8
268	Enhanced dewatering of waste-activated sludge by composite hydrolysis enzymes. Bioprocess and Biosystems Engineering, 2016, 39, 627-639.	1.7	40
269	Optimizing and real-time control of biofilm formation, growth and renewal in denitrifying biofilter. Bioresource Technology, 2016, 209, 326-332.	4.8	11
270	Cleaning efficacy of hydroxypropyl-beta-cyclodextrin for biofouling reduction on reverse osmosis membranes. Biofouling, 2016, 32, 359-370.	0.8	14
271	Bacterial viability on chemically modified silicon nanowire arrays. Journal of Materials Chemistry B, 2016, 4, 3104-3112.	2.9	37
272	Evaluation of SICAN performance for biofouling mitigation in the food industry. Food Control, 2016, 62, 201-207.	2.8	19
273	Membrane fouling and long-term performance of seawater-driven forward osmosis for enrichment of nutrients in treated municipal wastewater. Journal of Membrane Science, 2016, 499, 555-562.	4.1	59
274	Biofilms and human health. Biotechnology Letters, 2016, 38, 1-22.	1.1	86
275	The release and uptake of metals from potential biofilm inhibition products during spiny lobster (<i>Sagmariasus verreauxi</i> , <i>H. Milne Edwards 1851</i>) culture. Aquaculture Research, 2017, 48, 608-617.	0.9	4
276	Enzymes in therapy of biofilmâ€related oral diseases. Biotechnology and Applied Biochemistry, 2017, 64, 337-346.	1.4	37
277	Approaches to Removal and Killing of Salmonella Spp. Biofilms. Journal of Food Processing and Preservation, 2017, 41, e12758.	0.9	6
278	Evaluation and systematic selection of significant multi-scale surface roughness parameters (SRPs) as process monitoring index. Journal of Materials Processing Technology, 2017, 244, 157-165.	3.1	34

#	Article	IF	CITATIONS
279	Bacterial biofilms in the vagina. Research in Microbiology, 2017, 168, 865-874.	1.0	84
280	Short communication: Evaluation of a sol-gel–based stainless steel surface modification to reduce fouling and biofilm formation during pasteurization of milk. Journal of Dairy Science, 2017, 100, 2577-2581.	1.4	21
281	Effect of quantity of food residues on resistance to desiccation, disinfectants, and UV-C irradiation of spoilage yeasts adhered to a stainless steel surface. LWT - Food Science and Technology, 2017, 80, 169-177.	2.5	11
282	Influence of growth conditions on adhesion of yeast Candida spp. and Pichia spp. to stainless steel surfaces. Food Microbiology, 2017, 65, 179-184.	2.1	17
283	Rutin inhibits mono and multi-species biofilm formation by foodborne drug resistant Escherichia coli and Staphylococcus aureus. Food Control, 2017, 79, 325-332.	2.8	100
284	Eugenol inhibits quorum sensing and biofilm of toxigenic MRSA strains isolated from food handlers employed in Saudi Arabia. Biotechnology and Biotechnological Equipment, 2017, 31, 387-396.	0.5	43
285	Combination of selected enzymes with cetyltrimethylammonium bromide in biofilm inactivation, removal and regrowth. Food Research International, 2017, 95, 101-107.	2.9	30
286	Achieving partial denitrification through control of biofilm structure during biofilm growth in denitrifying biofilter. Bioresource Technology, 2017, 238, 223-231.	4.8	67
287	Pediococcus Acidilactici Inhibit Biofilm Formation of Food-Borne Pathogens on Abiotic Surfaces. Transactions of Tianjin University, 2017, 23, 70-77.	3.3	8
288	Long alkyl-chain imidazolium ionic liquids: Antibiofilm activity against phototrophic biofilms. Colloids and Surfaces B: Biointerfaces, 2017, 155, 487-496.	2.5	43
289	An ignored and potential source of taste and odor (T&O) issues—biofilms in drinking water distribution system (DWDS). Applied Microbiology and Biotechnology, 2017, 101, 3537-3550.	1.7	51
290	Efficacy of cleaning methods for the removal of Bacillus cereus biofilm from polyurethane conveyor belts in bakeries. Food Control, 2017, 80, 267-272.	2.8	29
291	Chloride-accelerated Cu-Fenton chemistry for biofilm removal. Chemical Communications, 2017, 53, 5862-5865.	2.2	21
292	Inactivation of <i>Bacillus cereus </i> biofilms on stainless steel by acidic electrolyzed water. Journal of Food Processing and Preservation, 2017, 41, e13304.	0.9	4
293	Formation of multi-species biofilms by Enterococcus faecium, Enterococcus faecalis, and Bacillus cereus isolated from ricotta processing and effectiveness of chemical sanitation procedures. International Dairy Journal, 2017, 72, 23-28.	1.5	21
294	Physical, antimicrobial and antibiofilm properties of <i>Zataria multiflora</i> Boiss essential oil nanoemulsion. International Journal of Food Science and Technology, 2017, 52, 1645-1652.	1.3	24
295	Preconditioning of the stainless steel surface affects the adhesion of Bacillus cereus spores. International Dairy Journal, 2017, 66, 108-114.	1.5	16
296	Biofouling of ultrafiltration membrane by dairy fluids: Characterization of pioneer colonizer bacteria using a DNA metabarcoding approach. Journal of Dairy Science, 2017, 100, 981-990.	1.4	17

#	ARTICLE	IF	CITATIONS
297	Attachment and Biofilm Formation by Selected Strains of <i>Salmonella enterica</i> and Entrohemorrhagic <i>Escherichia coli</i> of Fresh Produce Origin. Journal of Food Science, 2017, 82, 1461-1466.	1.5	15
298	Reduction of <i>Escherichia coli</i> O157:H7 in Biofilms Using Bacteriophage BPECO 19. Journal of Food Science, 2017, 82, 1433-1442.	1.5	33
299	The application of electromagnetic fields to the control of the scaling and biofouling of reverse osmosis membranes - A review. Desalination, 2017, 418, 19-34.	4.0	79
300	Biofilm formation and microscopic analysis of biofilms formed by Listeria monocytogenes in a food processing context. LWT - Food Science and Technology, 2017, 84, 47-57.	2.5	46
301	Tolerance development in Listeria monocytogenes-Escherichia coli dual-species biofilms after sublethal exposures to pronase-benzalkonium chloride combined treatments. Food Microbiology, 2017, 67, 58-66.	2.1	15
302	Bacterial adhesion capacity on food service contact surfaces. International Journal of Environmental Health Research, 2017, 27, 169-178.	1.3	13
303	Review on the current status of polymer degradation: a microbial approach. Bioresources and Bioprocessing, 2017, 4, .	2.0	473
305	Antibacterial effect of chalcogenoesters on planktonic cells and biofilms of Streptococcus mutans and Streptococcus parasanguinis. Medicinal Chemistry Research, 2017, 26, 1609-1618.	1.1	1
306	Formation and development of <i>Staphylococcus</i> biofilm: With focus on food safety. Journal of Food Safety, 2017, 37, e12358.	1.1	82
307	Removal of <i>Listeria monocytogenes</i> dual-species biofilms using combined enzyme-benzalkonium chloride treatments. Biofouling, 2017, 33, 45-58.	0.8	37
308	Overview of Food Safety Hazards in the European Dairy Supply Chain. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 59-75.	5.9	110
309	Biofilm formation on stainless steel as a function of time and temperature and control through sanitizers. International Dairy Journal, 2017, 68, 9-16.	1.5	21
310	Adhesiveness of opportunistic Staphylococcus aureus to materials used in dental office: InÂvitro study. Microbial Pathogenesis, 2017, 103, 129-134.	1.3	10
311	Antibacterial and anti-biofilm efficacy of fluoropolymer coating by a 2,3,5,6-tetrafluoro-p-phenylenedimethanol structure. Colloids and Surfaces B: Biointerfaces, 2017, 151, 363-371.	2.5	26
312	Biofilm removal potential of neutral electrolysed water on pathogen and spoilage bacteria in dairy model systems. Journal of Applied Microbiology, 2017, 123, 1429-1437.	1.4	12
313	Matrix composition determines the dimensions of Bacillus subtilis NCIB 3610 biofilm colonies grown on LB agar. RSC Advances, 2017, 7, 31886-31898.	1.7	17
314	Alternative SiO ₂ Surface Direct MDCK Epithelial Behavior. ACS Biomaterials Science and Engineering, 2017, 3, 3307-3317.	2.6	2
315	Biodegradation of graphene oxide-polymer nanocomposite films in wastewater. Environmental Science: Nano, 2017, 4, 1808-1816.	2.2	46

#	Article	IF	CITATIONS
318	Proteomic and genetics insights on the response of the bacteriocinogenic Lactobacillus sakei CRL1862 during biofilm formation on stainless steel surface at 10 \hat{A}° C. International Journal of Food Microbiology, 2017, 258, 18-27.	2.1	13
319	A review of chitosan's effect on oral biofilms: Perspectives from the tube to the mouth. Journal of Oral Biosciences, 2017, 59, 205-210.	0.8	23
320	Trisodium phosphate enhanced phage lysis of Listeria monocytogenes growth on fresh-cut produce. LWT - Food Science and Technology, 2017, 86, 312-317.	2.5	5
321	Pathogenic features and characteristics of food borne pathogens biofilm: Biomass, viability and matrix. Microbial Pathogenesis, 2017, 111, 285-291.	1.3	38
322	Disruption of Staphylococcus aureus biofilms using rhamnolipid biosurfactants. Journal of Dairy Science, 2017, 100, 7864-7873.	1.4	66
323	A meta-proteomics approach to study the interspecies interactions affecting microbial biofilm development in a model community. Scientific Reports, 2017, 7, 16483.	1.6	51
324	Bioinspired Nanostructured Anti-Biofouling and Anti-inorganic Surfaces. Springer Handbooks, 2017, , 1307-1327.	0.3	1
325	Quorum-Quenching Endophytes: A Novel Approach for Sustainable Development of Agroecosystem. Sustainable Development and Biodiversity, 2017, , 41-57.	1.4	1
326	Potential use of carvacrol and citral to inactivate biofilm cells and eliminate biofouling. Food Control, 2017, 82, 256-265.	2.8	35
327	Upgrading the hydrolytic potential of immobilized bacterial pretreatment to boost biogas production. Environmental Science and Pollution Research, 2017, 24, 813-826.	2.7	28
328	Virulence factors of Enterococcus spp. presented in food. LWT - Food Science and Technology, 2017, 75, 670-676.	2.5	68
329	The effect of burdock leaf fraction on adhesion, biofilm formation, quorum sensing and virulence factors of <i>Pseudomonas aeruginosa </i>): Journal of Applied Microbiology, 2017, 122, 615-624.	1.4	12
330	Activity of essential oil-based microemulsions against Staphylococcus aureus biofilms developed on stainless steel surface in different culture media and growth conditions. International Journal of Food Microbiology, 2017, 241, 132-140.	2.1	77
331	Prediction of Listeria monocytogenes ATCC 7644 growth on fresh-cut produce treated with bacteriophage and sucrose monolaurate by using artificial neural network. LWT - Food Science and Technology, 2017, 76, 9-17.	2.5	24
332	Biofilm formation of Campylobacter strains isolated from raw chickens and its reduction with DNase I treatment. Food Control, 2017, 71, 94-100.	2.8	36
333	Biofilm formation by Salmonella Enteritidis in a simulated liquid egg processing environment and its sensitivity to chlorine and hot water treatment. Food Control, 2017, 73, 595-600.	2.8	18
334	Iron oxide nano-material: physicochemical traits and in vitro antibacterial propensity against multidrug resistant bacteria. Journal of Industrial and Engineering Chemistry, 2017, 45, 121-130.	2.9	43
335	Diverse profiles of N-acyl-homoserine lactones in biofilm forming strains of Cronobacter sakazakii. Virulence, 2017, 8, 275-281.	1.8	24

#	Article	IF	CITATIONS
336	Antimicrobial nanomaterials against biofilms: an alternative strategy. Environmental Reviews, 2017, 25, 225-244.	2.1	37
337	Bacterial Biofilm Removal Using Solid-State-Produced Enzymes. Industrial Biotechnology, 2017, 13, 311-318.	0.5	2
338	Development of the fly crop vessel bioassay for fly/microbial studies. African Journal of Microbiology Research, 2017, 11, 1027-1034.	0.4	2
339	Biofilm Bioprocesses., 2017,, 143-175.		5
340	The Impact of Biofilms on Food Spoilage. , 2017, , 259-282.		4
341	Removal of Foodborne Pathogen Biofilms by Acidic Electrolyzed Water. Frontiers in Microbiology, 2017, 8, 988.	1.5	97
342	Preliminary Transcriptome Analysis of Mature Biofilm and Planktonic Cells of Salmonella Enteritidis Exposure to Acid Stress. Frontiers in Microbiology, 2017, 8, 1861.	1.5	37
343	Genetic Diversity, Antimicrobial Susceptibility, and Biofilm Formation of Cronobacter spp. Recovered from Spices and Cereals. Frontiers in Microbiology, 2017, 8, 2567.	1.5	20
344	Processing and Preservation of Fresh-Cut Fruit and Vegetable Products., 0, , .		16
345	Antimicrobial Activity of Intrinsic Antimicrobial Polymers Based on Poly((tertbutyl-amino)-methyl-styrene) Against Selected Pathogenic and Spoilage Microorganisms Relevant in Meat Processing Facilities. Journal of Antimicrobial Agents, 2017, 03, .	0.2	3
346	Fresh-Cut Fruit and Vegetables: Emerging Eco-friendly Techniques for Sanitation and Preserving Safety. , 0 , , .		13
347	Sanitation of equipment., 2017,, 167-195.		2
348	Microbial Fouling in a Water Treatment Plant and Its Control Using Biocides. Biocontrol Science, 2017, 22, 105-119.	0.2	9
349	Evaluation of Two Surface Sampling Methods for Microbiological and Chemical Analyses To Assess the Presence of Biofilms in Food Companies. Journal of Food Protection, 2017, 80, 2022-2028.	0.8	11
350	Antimicrobial Natural Products Against Campylobacter. Sustainable Development and Biodiversity, 2018, , 3-30.	1.4	2
351	Carvacrol efficacy in reducing microbial biofilms on stainless steel and in limiting re-growth of injured cells. Food Control, 2018, 90, 10-17.	2.8	17
352	Improved performance of Pseudomonas aeruginosa catalyzed MFCs with graphite/polyester composite electrodes doped with metal ions for azo dye degradation. Chemical Engineering Journal, 2018, 343, 258-269.	6.6	52
353	Inactivation of <i>Escherichia Coli</i> O157:H7 and <i>Listeria Innocua</i> by Benzoic Acid, Ethylenediaminetetraacetic Acid and Their Combination in Model Wash Water and Simulated Spinach Washing. Journal of Food Science, 2018, 83, 1032-1040.	1.5	8

#	Article	IF	CITATIONS
354	Gold Nanoclusters for Targeting Methicillinâ€Resistant <i>Staphylococcusâ€aureus</i> Inâ€Vivo. Angewandte Chemie, 2018, 130, 4022-4026.	1.6	15
355	Pathogenic Biofilm Formation in the Food Industry and Alternative Control Strategies., 2018,, 309-377.		21
356	Fighting biofilms with lantibiotics and other groups of bacteriocins. Npj Biofilms and Microbiomes, 2018, 4, 9.	2.9	154
357	Response of Formedâ€Biofilm of <i>Enterobacter cloacae</i> , <i>Klebsiella oxytoca</i> , and <i>Citrobacter freundii</i> to Chloriteâ€Based Disinfectants. Journal of Food Science, 2018, 83, 1326-1332.	1.5	16
358	Diversity and fate of spore forming bacteria in cocoa powder, milk powder, starch and sugar during processing: A review. Trends in Food Science and Technology, 2018, 76, 101-118.	7.8	27
359	Biofilmâ€forming ability of <i>Alicyclobacillus</i> spp. isolates from orange juice concentrate processing plant. Journal of Food Safety, 2018, 38, e12466.	1.1	9
360	Potential of antimicrobial treatment of linear low-density polyethylene with poly((tert-butyl-amino)-methyl-styrene) to reduce biofilm formation in the food industry. Biofouling, 2018, 34, 378-387.	0.8	6
361	Photodynamic inactivation of <i>Listeria innocua</i> biofilms with food-grade photosensitizers: a curcumin-rich extract of <i>Curcuma longa vs</i> commercial curcumin. Journal of Applied Microbiology, 2018, 125, 282-294.	1.4	36
362	Design of Nanofiber Coatings for Mitigation of Microbial Adhesion: Modeling and Application to Medical Catheters. ACS Applied Materials & Interfaces, 2018, 10, 15477-15486.	4.0	8
363	Poultry hatcheries as potential reservoirs for antimicrobial-resistant Escherichia coli: A risk to public health and food safety. Scientific Reports, 2018, 8, 5859.	1.6	78
364	Optimization of essential oil-based natural disinfectants against Listeria monocytogenes and Escherichia coli biofilms formed on polypropylene surfaces. Journal of Molecular Liquids, 2018, 255, 257-262.	2.3	37
365	The effectiveness of radiant catalytic ionization in inactivation of Listeria monocytogenes planktonic and biofilm cells from food and food contact surfaces as a method of food preservation. Journal of Applied Microbiology, 2018, 124, 1493-1505.	1.4	11
366	Antibiofilm potential of biogenic silver nanoparticles against Kocuria rosea And Kocuria rhizophila. Microbiology, 2018, 87, 9-20.	0.5	2
367	Biofilm formation of <i>Enterococcus faecium </i> on stainless steel surfaces: Modeling and control by disinfection agents. Journal of Food Process Engineering, 2018, 41, e12663.	1.5	7
368	Gold Nanoclusters for Targeting Methicillinâ€Resistant <i>Staphylococcusâ€aureus</i> Inâ€Vivo. Angewandte Chemie - International Edition, 2018, 57, 3958-3962.	7.2	190
369	Incorporation of the zosteric sodium salt in silica nanocapsules: synthesis and characterization of new fillers for antifouling coatings. Applied Surface Science, 2018, 439, 705-711.	3.1	26
370	Antiadhesion activity of juniper (<i>Juniperus communis</i> L.) preparations against <i>Campylobacter jejuni</i> evaluated with PCRâ€based methods. Phytotherapy Research, 2018, 32, 542-550.	2.8	16
371	Exogenous N-acyl homoserine lactones facilitate microbial adhesion of high ammonia nitrogen wastewater on biocarrier surfaces. Science of the Total Environment, 2018, 624, 1013-1022.	3.9	36

#	Article	IF	CITATIONS
372	Calcium ion- and rhamnolipid-mediated deposition of soluble matters on biocarriers. Water Research, 2018, 133, 37-46.	5.3	26
373	Microbial load of white cheese process lines after CIP and COP: A case study in Turkey. LWT - Food Science and Technology, 2018, 90, 505-512.	2.5	6
374	Aeromonas salmonicida isolates: Attachment ability and sensitivity to four disinfectants. Food Control, 2018, 88, 40-46.	2.8	7
375	Modeling Biofilm Formation on Dynamically Reconfigurable Composite Surfaces. Langmuir, 2018, 34, 1807-1816.	1.6	4
376	Establishment of LCMS Based Platform for Discovery of Quorum Sensing Inhibitors: Signal Detection in <i>Pseudomonas aeruginosa</i> PAO1. ACS Chemical Biology, 2018, 13, 657-665.	1.6	19
377	Zosteric acid and salicylic acid bound to a low density polyethylene surface successfully control bacterial biofilm formation. Biofouling, 2018, 34, 440-452.	0.8	10
378	Antibiotic resistance and biofilm formation of some bacteria isolated from sediment, water and fish farms in Malaysia. , 2018 , , .		0
379	Interspecies variation in biofilm-forming capacity of psychrotrophic bacterial isolates from Chinese raw milk. Food Control, 2018, 91, 47-57.	2.8	39
380	Antimicrobial and magnetically removable tannic acid nanocarrier: A processing aid for Listeria monocytogenes treatment for food industry applications. Food Chemistry, 2018, 267, 430-436.	4.2	19
381	Biofilm formation by Salmonella spp. in catfish mucus extract under industrial conditions. Food Microbiology, 2018, 70, 172-180.	2.1	20
382	Towards physicochemical and biological effects on detachment and activity recovery of aging biofilm by enzyme and surfactant treatments. Bioresource Technology, 2018, 247, 319-326.	4.8	51
383	Symposium review: Effect of post-pasteurization contamination on fluid milk quality. Journal of Dairy Science, 2018, 101, 861-870.	1.4	59
384	Applications of nisin for biofouling mitigation of reverse osmosis membranes. Desalination, 2018, 429, 52-59.	4.0	11
385	<i>Escherichia coli</i> biofilm formation and dispersion under hydrodynamic conditions on metal surfaces. International Journal of Environmental Health Research, 2018, 28, 55-63.	1.3	15
386	The biofilm hypothesis: The formation mechanism of Tibetan kefir grains. International Journal of Dairy Technology, 2018, 71, 44-50.	1.3	23
387	Surface Attachment of Natural Antimicrobial Coatings onto Conventional Polypropylene Nonwoven Fabric and Its Antimicrobial Performance Assessment. Journal of Food Protection, 2018, 81, 172-177.	0.8	6
388	Resistance of L. monocytogenes and S. Typhimurium towards Cold Atmospheric Plasma as Function of Biofilm Age. Applied Sciences (Switzerland), 2018, 8, 2702.	1.3	24
389	Insights into Bacterial Milk Spoilage with Particular Emphasis on the Roles of Heat-Stable Enzymes, Biofilms, and Quorum Sensing. Journal of Food Protection, 2018, 81, 1651-1660.	0.8	36

#	Article	IF	CITATIONS
390	Growth and Biofilm Formation by Listeria monocytogenes in Catfish Mucus Extract on Four Food Contact Surfaces at 22 and $10\hat{A}^{\circ}\text{C}$ and Their Reduction by Commercial Disinfectants. Journal of Food Protection, 2018, 81, 59-67.	0.8	19
391	<i>Aeromonas hydrophila</i> biofilm, exoprotease, and quorum sensing responses to co-cultivation with diverse foodborne pathogens and food spoilage bacteria on crab surfaces. Biofouling, 2018, 34, 1079-1092.	0.8	13
392	Inactivation of <i>Pseudomonas aeruginosa</i> biofilms formed under high shear stress on various hydrophilic and hydrophobic surfaces by a continuous flow of ozonated water. Biofouling, 2018, 34, 826-834.	0.8	8
393	Inhibition of biofilm formation and quorum sensing mediated phenotypes by berberine in <i>Pseudomonas aeruginosa</i> and <i>Salmonella typhimurium</i> . RSC Advances, 2018, 8, 36133-36141.	1.7	41
394	Bio- and Inorganic Fouling. Springer Series in Materials Science, 2018, , 621-664.	0.4	1
395	Linalool, citral, eugenol and thymol: control of planktonic and sessile cells of Shigella flexneri. AMB Express, 2018, 8, 105.	1.4	15
396	Pch Genes Control Biofilm and Cell Adhesion in a Clinical Serotype O157:H7 Isolate. Frontiers in Microbiology, 2018, 9, 2829.	1.5	5
397	Quorum sensing in Enterococcus faecium, Enterococcus faecalis and Bacillus cereus strains isolated from ricotta processing. Ciencia Rural, 2018, 48, .	0.3	2
398	Efficiency of Different Disinfectants on Bacillus cereus Sensu Stricto Biofilms on Stainless-Steel Surfaces in Contact With Milk. Frontiers in Microbiology, 2018, 9, 2934.	1.5	19
399	Photodynamic inactivation as an emergent strategy against foodborne pathogenic bacteria in planktonic and sessile states. Critical Reviews in Microbiology, 2018, 44, 667-684.	2.7	53
400	Demonstration of biofilm removal from type 304 stainless steel using pulsed-waveform electropolishing. Biofouling, 2018, 34, 731-739.	0.8	4
401	Bacteria isolated from the bovine gelatin production line: biofilm formation and use of different sanitation procedures to eliminate the biofilms. Journal of Food Safety, 2018, 38, e12489.	1.1	3
402	Antimicrobial Photodynamic Inactivation Mediated by Rose Bengal and Erythrosine Is Effective in the Control of Food-Related Bacteria in Planktonic and Biofilm States. Molecules, 2018, 23, 2288.	1.7	49
403	Advances and Future Prospects of Enzymeâ€Based Biofilm Prevention Approaches in the Food Industry. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 1484-1502.	5.9	96
404	Microbiota in a cooling-lubrication circuit and an option for controlling triethanolamine biodegradation. Biofouling, 2018, 34, 519-531.	0.8	2
405	New insights into the thermophilic spore-formers in powdered infant formula: Implications of changes in microbial composition during manufacture. Food Control, 2018, 92, 464-470.	2.8	22
406	Efficacy of "HLEâ€â€"a multidrug efflux-pump inhibitor—as a disinfectant against surface bacteria. Environmental Research, 2018, 165, 133-139.	3.7	9
407	Effect of different conditions on Listeria monocytogenes biofilm formation and removal. Czech Journal of Food Sciences, 2018, 36, 208-214.	0.6	10

#	Article	IF	CITATIONS
408	Biofilms in the Spotlight: Detection, Quantification, and Removal Methods. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 1261-1276.	5.9	100
409	Mercaptopyrimidine-Conjugated Gold Nanoclusters as Nanoantibiotics for Combating Multidrug-Resistant Superbugs. Bioconjugate Chemistry, 2018, 29, 3094-3103.	1.8	80
410	Preventing Healthcare-Associated Legionellosis: Results after 3 Years of Continuous Disinfection of Hot Water with Monochloramine and an Effective Water Safety Plan. International Journal of Environmental Research and Public Health, 2018, 15, 1594.	1.2	18
411	Lactic Acid Bacteria (LAB) and Their Bacteriocins as Alternative Biotechnological Tools to Control Listeria monocytogenes Biofilms in Food Processing Facilities. Molecular Biotechnology, 2018, 60, 712-726.	1.3	43
412	Anti-biofouling implantable catheter using thin-film magnetic microactuators. Sensors and Actuators B: Chemical, 2018, 273, 1694-1704.	4.0	15
413	Biocides. , 2018, , 478-478.		7
414	Antibacterial and antibiofilm activity of carvacrol against Salmonella enterica serotype Typhimurium. Brazilian Journal of Pharmaceutical Sciences, 2018, 54, .	1.2	35
415	Microbial Biosurfactants in Food Sanitation. , 2018, , 341-368.		4
416	Investigation of microorganisms involved in kefir biofilm formation. Antonie Van Leeuwenhoek, 2018, 111, 2361-2370.	0.7	17
417	Antimicrobial polymer coatings with efficacy against pathogenic and spoilage microorganisms. LWT - Food Science and Technology, 2018, 97, 546-554.	2.5	30
418	Enzymatic dispersal of dual-species biofilms carrying Listeria monocytogenes and other associated food industry bacteria. Food Control, 2018, 94, 222-228.	2.8	26
419	Recent progress in bio-inspired biofilm-resistant polymeric surfaces. Critical Reviews in Microbiology, 2018, 44, 633-652.	2.7	24
420	Current Knowledge on Listeria monocytogenes Biofilms in Food-Related Environments: Incidence, Resistance to Biocides, Ecology and Biocontrol. Foods, 2018, 7, 85.	1.9	98
421	Evaluation antibacterial and antibiofilm activity of the antimicrobial peptide P34 against Staphylococcus aureus and Enterococcus faecalis. Anais Da Academia Brasileira De Ciencias, 2018, 90, 73-84.	0.3	33
422	Development of a peroxide biodetector for a direct detection of biofilms produced by catalase-positive bacteria on food-contact surfaces. CYTA - Journal of Food, 2018, 16, 506-515.	0.9	22
423	Influence of incubation conditions on the formation of model biofilms by <i>Listeria monocytogenes</i> and <i>Salmonella</i> Typhimurium on abiotic surfaces. Journal of Applied Microbiology, 2018, 125, 1890-1900.	1.4	30
424	Biocidal poly (vinyl alcohol) films incorporated with N-halamine siloxane. Composites Communications, 2018, 10, 89-92.	3.3	14
425	Design of intelligent surfaces for energy intensive processing industry. MATEC Web of Conferences, 2018, 185, 00001.	0.1	3

#	Article	IF	CITATIONS
426	Enzyme treatment improves the performance of laboratory-scale vertical flow constructed wetland. Bioresource Technology, 2018, 268, 665-671.	4.8	22
427	Quorum Sensing as a Mechanism of Microbial Control and Food Safety. , 2018, , 85-107.		1
428	Membrane filtration-based recovery of extracellular polymer substances from excess sludge and analysis of their heavy metal ion adsorption properties. Chemical Engineering Journal, 2018, 354, 866-874.	6.6	39
429	Characterization of physicochemical composition, microbiology, sensory evaluation and microscopical attributes of sweetened condensed milk. Food Science and Technology, 2018, 38, 293-298.	0.8	14
430	Ions, metabolites, and cells: Water as a reporter of surface conditions during bacterial growth. Journal of Chemical Physics, 2018, 148, 222825.	1.2	5
431	Food-Safe Modification of Stainless Steel Food-Processing Surfaces to Reduce Bacterial Biofilms. ACS Applied Materials & Distriction (2018), 10, 22902-22912.	4.0	67
432	Bio-enzymes for inhibition and elimination of Escherichia coli O157:H7 biofilm and their synergistic effect with sodium hypochlorite. Scientific Reports, 2019, 9, 9920.	1.6	44
433	Enhanced synergistic effects of xylitol and isothiazolones for inhibition of initial biofilm formation by <i>Pseudomonas aeruginosa</i> ATCC 9027 and <i>Staphylococcus aureus</i> ATCC 6538. Journal of Oral Science, 2019, 61, 255-263.	0.7	20
434	Operational optimization of a three-stage nitrification moving bed biofilm reactor (NMBBR) by obtaining enriched nitrifying bacteria: Nitrifying performance, microbial community, and kinetic parameters. Science of the Total Environment, 2019, 697, 134101.	3.9	37
435	Metallic nanoparticles as a potential antimicrobial for catheters and prostheses., 2019,, 153-196.		3
436	Changes in the composition and architecture of staphylococcal biofilm by nisin. Brazilian Journal of Microbiology, 2019, 50, 1083-1090.	0.8	13
437	New insecticides and antimicrobials derived from Sargassum wightii and Halimeda gracillis seaweeds: Toxicity against mosquito vectors and antibiofilm activity against microbial pathogens. South African Journal of Botany, 2019, 125, 466-480.	1.2	37
438	Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon, 2019, 5, e02192.	1.4	238
439	Adhesion abilities and biosorption of Cd and Mg by microorganisms - first step for eco-friendly beneficiation of phosphate ore. Scientific Reports, 2019, 9, 12929.	1.6	3
440	Biofilm and dairy fouling detection in flexible tubing using low-field NMR. European Food Research and Technology, 2019, 245, 2579-2590.	1.6	2
441	The fungal problem in thermal processed beverages. Current Opinion in Food Science, 2019, 29, 80-87.	4.1	12
442	Superhydrophobic Wax Coatings for Prevention of Biofilm Establishment in Dairy Food. ACS Applied Bio Materials, 2019, 2, 4932-4940.	2.3	13
443	Identification and Spoilage Potential of the Remaining Dominant Microbiota on Food Contact Surfaces after Cleaning and Disinfection in Different Food Industries. Journal of Food Protection, 2019, 82, 262-275.	0.8	42

#	Article	IF	CITATIONS
444	Application of Electrolyzed Water on Environment Sterilization. , 2019, , 177-204.		3
445	Topographical alterations render bacterial biofilms susceptible to chemical and mechanical stress. Biomaterials Science, 2019, 7, 220-232.	2.6	25
446	Effect of Clove and Thyme Essential Oils on Candida Biofilm Formation and the Oil Distribution in Yeast Cells. Molecules, 2019, 24, 1954.	1.7	41
447	Structure and resistance to mechanical stress and enzymatic cleaning of Pseudomonas fluorescens biofilms formed in fresh-cut ready to eat washing tanks Journal of Food Engineering, 2019, 262, 154-161.	2.7	12
448	Production of Bioactive Peptides from Lactic Acid Bacteria: A Sustainable Approach for Healthier Foods. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1039-1051.	5.9	89
449	Distribution, adhesion, virulence and antibiotic resistance of persistent Listeria monocytogenes in a pig slaughterhouse in Brazil. Food Microbiology, 2019, 84, 103234.	2.1	22
450	Inhibitory effects of two types of food additives on biofilm formation by foodborne pathogens. MicrobiologyOpen, 2019, 8, e00853.	1.2	25
451	Investigation of the effect of different environmental conditions on biofilm structure of Salmonella enterica serotype Virchow via FTIR spectroscopy. Archives of Microbiology, 2019, 201, 1233-1248.	1.0	9
452	Separation and enrichment of phenolics improved the antibiofilm and antibacterial activity of the fractions from Citrus medica L. var. sarcodactylis in vitro and in tofu. Food Chemistry, 2019, 294, 533-538.	4.2	21
453	QCM-D characterization of time-dependence of bacterial adhesion. Cell Surface, 2019, 5, 100024.	1.5	48
454	Detection of P. polymyxa biofilm, dairy biofouling and CIP-cleaning agents using low-field NMR. European Food Research and Technology, 2019, 245, 1719-1731.	1.6	4
455	Anti-biofilm activities of essential oils rich in carvacrol and thymol against <i>Salmonella</i> Finteritidis. Biofouling, 2019, 35, 361-375.	0.8	85
456	Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces. Applied Microbiology and Biotechnology, 2019, 103, 4565-4574.	1.7	61
457	The Plastisphere – Uncovering tightly attached plastic "specific―microorganisms. PLoS ONE, 2019, 14, e0215859.	1.1	168
458	Robust Biofilm-Forming Bacillus Isolates from the Dairy Environment Demonstrate an Enhanced Resistance to Cleaning-in-Place Procedures. Foods, 2019, 8, 134.	1.9	14
459	Antifouling and conducting PEDOT derivative grafted with polyglycerol for highly sensitive electrochemical protein detection in complex biological media. Journal of Electroanalytical Chemistry, 2019, 840, 272-278.	1.9	24
460	Biobased Sanitizer Delivery System for Improved Sanitation of Bacterial and Fungal Biofilms. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17204-17214.	4.0	22
461	The Effects of Dry, Humid and Wear Conditions on the Antimicrobial Efficiency of Triclosan-Containing Surfaces. Applied Sciences (Switzerland), 2019, 9, 1717.	1.3	7

#	Article	IF	CITATIONS
462	Exopolysaccharides produced by Pandoraea shows emulsifying and anti-biofilm activities. Journal of Polymer Research, 2019, 26, 1.	1.2	14
463	Drug-susceptibility, biofilm-forming ability and biofilm survival on stainless steel of Listeria spp. strains isolated from cheese. International Journal of Food Microbiology, 2019, 296, 75-82.	2.1	14
464	Influence of feed temperature to biofouling of ultrafiltration membrane during skim milk processing. International Dairy Journal, 2019, 93, 99-105.	1.5	18
465	Mucus penetration enhanced lipid polymer nanoparticles improve the eradication rate of Helicobacter pylori biofilm. Journal of Controlled Release, 2019, 300, 52-63.	4.8	74
466	Adaptation of Bacillus species to dairy associated environment facilitates their biofilm forming ability. Food Microbiology, 2019, 82, 316-324.	2.1	32
467	Biofilm aging in full-scale aerobic bioreactors from perspectives of metabolic activity and microbial community. Biochemical Engineering Journal, 2019, 146, 69-78.	1.8	7
469	Extremely acidic environment: Biogeochemical effects on algal biofilms. Ecotoxicology and Environmental Safety, 2019, 177, 124-132.	2.9	8
470	Expression levels of the agr locus and prfA gene during biofilm formation by Listeria monocytogenes on stainless steel and polystyrene during 8 to 48‹h of incubation 10 to 37â€⁻°C. International Journal of Food Microbiology, 2019, 300, 1-7.	2.1	27
471	Xanthene Dyes and Green <scp>LED</scp> for the Inactivation of Foodborne Pathogens in Planktonic and Biofilm States. Photochemistry and Photobiology, 2019, 95, 1230-1238.	1.3	17
473	Natural and Environmentally Friendly Strategies for Controlling Campylobacter jejuni Colonization in Poultry, Survival in Poultry Products and Infection in Humans., 2019,, 67-93.		6
474	The antibacterial and antibiofilm activity of sea anemone (Stichodactyla haddoni) against antibiotic-resistant bacteria and characterization of bioactive metabolites. International Aquatic Research, 2019, 11, 85-97.	1.5	16
475	Green sol–gel synthesis of novel nanoporous copper aluminosilicate for the eradication of pathogenic microbes in drinking water and wastewater treatment. Environmental Science and Pollution Research, 2019, 26, 9508-9523.	2.7	76
476	Sepsis: mechanisms of bacterial injury to the patient. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 2019, 27, 19.	1.1	130
477	Effect of residual chlorine and organic acids on survival and attachment of Escherichia coli O157: H7 and Listeria monocytogenes on spinach leaves during storage. LWT - Food Science and Technology, 2019, 105, 298-305.	2.5	27
478	Antimicrobial Particle-Based Novel Sanitizer for Enhanced Decontamination of Fresh Produce. Applied and Environmental Microbiology, 2019, 85, .	1.4	20
479	Biofilm Formation of Staphylococcus aureus under Food Heat Processing Conditions: First Report on CML Production within Biofilm. Scientific Reports, 2019, 9, 1312.	1.6	57
480	Formation of dairy fouling deposits on food contact surfaces. International Journal of Dairy Technology, 2019, 72, 257-265.	1.3	4
481	Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents. Human Microbiome Journal, 2019, 11, 100052.	3.8	76

#	Article	IF	CITATIONS
483	Efficacy of chemical agents and power ultrasound on biofilms formed by Asaia spp spoilage bacteria in beverage industries. Czech Journal of Food Sciences, 2019, 37, 221-225.	0.6	1
484	Bacterial Biofilm Eradication Agents: A Current Review. Frontiers in Chemistry, 2019, 7, 824.	1.8	338
485	Biocide Potentiation Using Cinnamic Phytochemicals and Derivatives. Molecules, 2019, 24, 3918.	1.7	11
486	High-Hydrostatic-Pressure (HHP) Processing Technology as a Novel Control Method for Listeria monocytogenes Occurrence in Mediterranean-Style Dry-Fermented Sausages. Foods, 2019, 8, 672.	1.9	20
487	Efficacy of Commercial Sanitizers Used in Food Processing Facilities for Inactivation of Listeria monocytogenes, E. Coli O157:H7, and Salmonella Biofilms. Foods, 2019, 8, 639.	1.9	47
488	Understanding the antifouling mechanisms related to copper oxide and zinc oxide nanoparticles in anaerobic membrane bioreactors. Environmental Science: Nano, 2019, 6, 3467-3479.	2.2	14
489	Antibiofilm Enzymes as an Emerging Technology for Food Quality and Safety., 2019,, 321-342.		12
490	Antibacterial and anti-adhesive efficiency of Pediococcus acidilactici against foodborne biofilm producer Bacillus cereus attached on different food processing surfaces. Food Science and Biotechnology, 2019, 28, 841-850.	1.2	13
491	From the Titanic and other shipwrecks to biofilm prevention: The interesting role of polyphenol-protein complexes in biofilm inhibition. Science of the Total Environment, 2019, 658, 1098-1105.	3.9	27
492	Selective Labeling and Growth Inhibition of <i>Pseudomonas aeruginosa</i> by Aminoguanidine Carbon Dots. ACS Infectious Diseases, 2019, 5, 292-302.	1.8	50
493	Inhibition of Wild Enterobacter cloacae Biofilm Formation by Nanostructured Graphene- and Hexagonal Boron Nitride-Coated Surfaces. Nanomaterials, 2019, 9, 49.	1.9	27
494	Optically Responsive, Smart Anti-Bacterial Coatings via the Photofluidization of Azobenzenes. ACS Applied Materials & Earny; Interfaces, 2019, 11, 1760-1765.	4.0	18
495	Towards the biofilm characterization and regulation in biological wastewater treatment. Applied Microbiology and Biotechnology, 2019, 103, 1115-1129.	1.7	70
496	Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella Typhimurium. Food Control, 2019, 98, 274-280.	2.8	71
497	Evaluation of factors influencing dairy biofilm formation in filling hoses of food-processing equipment. Food and Bioproducts Processing, 2019, 113, 39-48.	1.8	27
498	Light controllable chitosan micelles with ROS generation and essential oil release for the treatment of bacterial biofilm. Carbohydrate Polymers, 2019, 205, 533-539.	5.1	46
499	Comparative study of growth temperature impact on the susceptibility of biofilm-detached and planktonic Staphylococcus aureus cells to benzalkonium chloride. Annals of Microbiology, 2019, 69, 291-298.	1.1	5
500	Effect of subinhibitory concentration of antibiotics on Rhodococcus erythropolis and Pseudomonas fluorescens biofilm formation. Chemical Papers, 2019, 73, 1113-1119.	1.0	3

#	Article	IF	CITATIONS
501	Exploration of factors in response to low acid tolerance using random mutagenesis in Cronobacter malonaticus. Food Research International, 2019, 116, 994-999.	2.9	5
502	Design of antimicrobial polycaprolactam nanocomposite by immobilizing subtilisin conjugated Au/Ag core-shell nanoparticles for biomedical applications. Materials Science and Engineering C, 2019, 94, 656-665.	3.8	31
503	Biofilm formation by Salmonella sp. in the poultry industry: Detection, control and eradication strategies. Food Research International, 2019, 119, 530-540.	2.9	89
504	Sanitizing food contact surfaces by the use of essential oils. Innovative Food Science and Emerging Technologies, 2019, 51, 220-228.	2.7	32
505	Enzyme-based strategy to eradicate monospecies Macrococcus caseolyticus biofilm contamination in dairy industries. International Dairy Journal, 2020, 100, 104560.	1.5	8
506	Interaction of Pseudomonas aeruginosa and Staphylococcus aureus with Listeria innocua in dual species biofilms and inactivation following disinfectant treatments. LWT - Food Science and Technology, 2020, 118, 108736.	2.5	19
507	Extract of <i>Mangifera indica</i> L. leaves may reduce biofilms of <i>Staphylococcus</i> spp. in stainless steel and teatcup rubbers. Food Science and Technology International, 2020, 26, 11-20.	1.1	9
508	Antimicrobial effect of benzoic and sorbic acid salts and nano-solubilisates against Staphylococcus aureus, Pseudomonas fluorescens and chicken microbiota biofilms. Food Control, 2020, 107, 106786.	2.8	29
509	Nanoparticles applied in membrane bioreactors: potential impact on reactor performance and microbial communities., 2020,, 207-236.		5
510	Impact of temperature on Legionella pneumophila, its protozoan host cells, and the microbial diversity of the biofilm community of a pilot cooling tower. Science of the Total Environment, 2020, 712, 136131.	3.9	15
511	Ultrasound-involved emerging strategies for controlling foodborne microbial biofilms. Trends in Food Science and Technology, 2020, 96, 91-101.	7.8	89
512	Sustainability through Management of Water, Process and Product Hygiene on Food and Beverage Sites. Journal of the American Society of Brewing Chemists, 2020, 78, 1-15.	0.8	1
513	Bacterial fouling in dairy processing. International Dairy Journal, 2020, 101, 104593.	1.5	27
514	Homogeneous Distribution of Magnetic, Antimicrobial-Carrying Nanoparticles through an Infectious Biofilm Enhances Biofilm-Killing Efficacy. ACS Biomaterials Science and Engineering, 2020, 6, 205-212.	2.6	31
515	Inhibitory effects of probiotic potential lactic acid bacteria isolated from kimchi against Listeria monocytogenes biofilm on lettuce, stainless-steel surfaces, and MBECâ,,¢ biofilm device. LWT - Food Science and Technology, 2020, 118, 108864.	2.5	56
516	A comparative study between chemically modified and copper nanoparticle immobilized Nylon 6 films to explore their efficiency in fighting against two types of pathogenic bacteria. European Polymer Journal, 2020, 122, 109392.	2.6	14
517	Anti-biofilm and wound-healing activity of chitosan-immobilized Ficin. International Journal of Biological Macromolecules, 2020, 164, 4205-4217.	3.6	41
518	Salmonella enterica Optimizes Metabolism After Addition of Acyl-Homoserine Lactone Under Anaerobic Conditions. Frontiers in Microbiology, 2020, 11, 1459.	1.5	11

#	Article	IF	Citations
519	The potential of violet, blue, green and red light for the inactivation of P. fluorescens as planktonic cells, individual cells on a surface and biofilms. Food and Bioproducts Processing, 2020, 124, 184-195.	1.8	6
520	Sodium alginate-based edible coating containing nanoemulsion of Citrus sinensis essential oil eradicates planktonic and sessile cells of food-borne pathogens and increased quality attributes of tomatoes. International Journal of Biological Macromolecules, 2020, 162, 1770-1779.	3.6	68
521	Evaluation of Enzymatic Cleaning on Food Processing Installations and Food Products Bacterial Microflora. Frontiers in Microbiology, 2020, 11, 1827.	1.5	20
522	Mitigating Milk-Associated Bacteria through Inducing Zinc Ions Antibiofilm Activity. Foods, 2020, 9, 1094.	1.9	14
523	Natural Extract of Moringa oleifera Leaves Promoting Control of Staphylococcus aureus strains biofilm on PVC surface. Food and Bioprocess Technology, 2020, 13, 1817-1832.	2.6	11
524	In situ modelling of biofilm formation in a hydrothermal spring cave. Scientific Reports, 2020, 10, 21733.	1.6	7
525	Inactivation Efficacy of 405 nm LED Against Cronobacter sakazakii Biofilm. Frontiers in Microbiology, 2020, 11, 610077.	1.5	14
526	Factors influencing adhesion of bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and yeast Pichia membranifaciens to wooden surfaces. Wood Science and Technology, 2020, 54, 1663-1676.	1.4	13
527	Isolation and Characterization of a Lytic Salmonella paratyphi Phage and Its Antibiofilm Activity Individually or Collaborative with Kanamycin Sulfate. Viral Immunology, 2020, 33, 521-529.	0.6	1
528	Biofilm Eradication Activity of Herb and Spice Extracts Alone and in Combination Against Oral and Food-Borne Pathogenic Bacteria. Current Microbiology, 2020, 77, 2486-2495.	1.0	9
529	The Biofilms Structural Database. Trends in Biotechnology, 2020, 38, 937-940.	4.9	16
530	Synthesis and Antibacterial Activity Investigation of Novel Cuprous Oxide-Graphene Oxide Nanocomposites. Chemistry Letters, 2020, 49, 693-696.	0.7	4
531	Novel eradication methods for Staphylococcus aureus biofilm in poultry farms and abattoirs using disinfectants loaded onto silver and copper nanoparticles. Environmental Science and Pollution Research, 2020, 27, 30716-30728.	2.7	5
532	Thermal and non-thermal treatment effects on Staphylococcus aureus biofilms formed at different temperatures and maturation periods. Food Research International, 2020, 137, 109432.	2.9	18
533	Trending biocontrol strategies against Cronobacter sakazakii: A recent updated review. Food Research International, 2020, 137, 109385.	2.9	18
534	Biofilm eradication by in situ generation of reactive chlorine species on nano-CuO surfaces. Journal of Materials Science, 2020, 55 , $11609-11621$.	1.7	7
535	Caatinga biome plant extracts affect the planktonic growth and biofilm formation of Xanthomonas citri pv. viticola. Journal of Plant Pathology, 2020, 102, 1245-1250.	0.6	0
536	Isolation and application of bacteriophages alone or in combination with nisin against planktonic and biofilm cells of Staphylococcus aureus. Applied Microbiology and Biotechnology, 2020, 104, 5145-5158.	1.7	33

#	Article	IF	Citations
537	Carvacrol encapsulation into nanostructures: Characterization and antimicrobial activity against foodborne pathogens adhered to stainless steel. Food Research International, 2020, 133, 109143.	2.9	36
538	A Review Study of Biofilm Bacteria and Microalgae Bioremediation for Palm Oil Mill Effluent: Possible Approach. IOP Conference Series: Materials Science and Engineering, 2020, 736, 022034.	0.3	7
539	Photoinactivation of biofilms. , 2020, , 295-306.		0
540	Cell‣aden Hydrogels for Multikingdom 3D Printing. Macromolecular Bioscience, 2020, 20, e2000121.	2.1	29
541	The role of filamentous fungi in drinking water biofilm formation. , 2020, , 101-125.		3
542	Biofilm control with enzymes. , 2020, , 249-271.		5
543	The potential of phytochemical products in biofilm control., 2020,, 273-293.		4
544	Evidence of anti- K. pneumoniae biofilm activity of novel Entrococcus faecalis enterocin GLHM. Microbial Pathogenesis, 2020, 147, 104366.	1.3	3
545	Ability of Three Lactic Acid Bacteria to Grow in Sessile Mode and to Inhibit Biofilm Formation of Pathogenic Bacteria. Advances in Experimental Medicine and Biology, 2020, 1282, 105-114.	0.8	10
546	Impact of CRISPR interference on strain development in biotechnology. Biotechnology and Applied Biochemistry, 2020, 67, 7-21.	1.4	31
547	Antimicrobial effect of oxidative technologies in food processing: an overview. European Food Research and Technology, 2020, 246, 669-692.	1.6	16
548	Quantitative and Fast Sterility Assurance Testing of Surfaces by Enumeration of Germinable Endospores. Scientific Reports, 2020, 10, 431.	1.6	4
549	Inhibition of <i>Candida albicans</i> and <i>Staphylococcus aureus</i> biofilms by centipede oil and linoleic acid. Biofouling, 2020, 36, 126-137.	0.8	34
550	Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics, 2020, 12, 142.	2.0	188
551	Assessment of Performance of Two Rapid Methods for On-Site Control of Microbial and Biofilm Contamination. Applied Sciences (Switzerland), 2020, 10, 744.	1.3	3
552	Competitive Surface Colonization of Antibacterial and Bioactive Materials Doped with Strontium and/or Silver Ions. Nanomaterials, 2020, 10, 120.	1.9	38
553	Recent Patents on Impact of Lipopeptide on the Biofilm Formation onto Titanium and Stainless Steel Surfaces. Recent Patents on Biotechnology, 2020, 14, 49-62.	0.4	10
554	Role of <i>Bacillus</i> species in biofilm persistence and emerging antibiofilm strategies in the dairy industry. Journal of the Science of Food and Agriculture, 2020, 100, 2327-2336.	1.7	27

#	Article	IF	CITATIONS
555	Virulence factors and antimicrobial resistance of Staphylococcus aureus isolated from the production process of Minas artisanal cheese from the region of Campo das Vertentes, Brazil. Journal of Dairy Science, 2020, 103, 2098-2110.	1.4	18
556	Tailoring the interaction between graphene oxide and antibacterial pyridinium salts by terminal functional groups. Carbon, 2020, 160, 204-210.	5.4	8
557	Electromagnetic fields for biofouling mitigation in reclaimed water distribution systems. Water Research, 2020, 173, 115562.	5.3	23
558	Balancing chemical function with reduced environmental health hazards: A joint probability approach to examine antimicrobial product efficacy and mammalian toxicity. Journal of Cleaner Production, 2020, 262, 121323.	4.6	1
559	Survival of Salmonella enterica and shifts in the culturable mesophilic aerobic bacterial community as impacted by tomato wash water particulate size and chlorine treatment. Food Microbiology, 2020, 90, 103470.	2.1	9
560	Bacillus cereus spores and toxins – The potential role of biofilms. Food Microbiology, 2020, 90, 103493.	2.1	58
561	Removal of heavy metal ions by ultrafiltration with recovery of extracellular polymer substances from excess sludge. Journal of Membrane Science, 2020, 606, 118103.	4.1	38
562	Effect of an enzymatic treatment on the removal of mature Listeria monocytogenes biofilms: A quantitative and qualitative study. Food Control, 2020, 114, 107266.	2.8	21
563	Dose dependent enhanced antibacterial effects and reduced biofilm activity against Bacillus subtilis in presence of ZnO nanoparticles. Materials Science and Engineering C, 2020, 113, 111021.	3.8	31
564	Copper(II) and zinc(II) complexes with Hydrazone: Synthesis, crystal structure, Hirshfeld surface and antibacterial activity. Inorganica Chimica Acta, 2020, 508, 119632.	1.2	48
565	Detection of Salmonella Typhimurium and Listeria monocytogenes biofilm cells exposed to different drying and pre-enrichment times using conventional and rapid methods. International Journal of Food Microbiology, 2020, 324, 108611.	2.1	13
566	Antimicrobial Activity and Prevention of Bacterial Biofilm Formation of Silver and Zinc Oxide Nanoparticle-Containing Polyester Surfaces at Various Concentrations for Use. Foods, 2020, 9, 442.	1.9	41
567	Hypericin-mediated photoinactivation of polymeric nanoparticles against Staphylococcus aureus. Photodiagnosis and Photodynamic Therapy, 2020, 30, 101737.	1.3	11
568	Influences and impacts of biofouling in SWRO desalination plants. Critical Reviews in Environmental Science and Technology, 2021, 51, 1281-1301.	6.6	7
569	Structural changes in model compounds of sludge extracellular polymeric substances caused by exposure to free nitrous acid. Water Research, 2021, 188, 116553.	5. 3	19
570	Acinetobacter spp. in food and drinking water – A review. Food Microbiology, 2021, 95, 103675.	2.1	58
571	Evaluation of bacterial population using multiple sampling methods and the identification of bacteria detected on supermarket food contact surfaces. Food Control, 2021, 119, 107471.	2.8	10
572	Application of an innovative water-assisted ultraviolet C light technology for the inactivation of microorganisms in tomato processing industries. Food Microbiology, 2021, 94, 103631.	2.1	10

#	Article	IF	CITATIONS
573	Life cycle assessment of cleaning-in-place operations in egg yolk powder production. Journal of Cleaner Production, 2021, 278, 123936.	4.6	22
574	<i>Bacillus amyloliquefaciens</i> application to prevent biofilms in reclaimed water microirrigation systems*. Irrigation and Drainage, 2021, 70, 4-15.	0.8	5
575	N-substituted carbazoles as corrosion inhibitors in microbiologically influenced and acidic corrosion of mild steel: Gravimetric, electrochemical, surface and computational studies. Journal of Molecular Structure, 2021, 1223, 129328.	1.8	22
576	Characterization and control of biofilms of Salmonella Minnesota of poultry origin. Food Bioscience, 2021, 39, 100811.	2.0	4
577	Synergistic bactericidal effect of hot water with citric acid against Escherichia coli O157:H7 biofilm formed on stainless steel. Food Microbiology, 2021, 95, 103676.	2.1	30
578	Hydrodynamics and surface properties influence biofilm proliferation. Advances in Colloid and Interface Science, 2021, 288, 102336.	7.0	107
579	Development of a rapid method for assessing the efficacy of antibacterial photocatalytic coatings. Talanta, 2021, 225, 122009.	2.9	5
580	Insights on toxin genotyping, virulence, antibiogram profiling, biofilm formation and efficacy of disinfectants on biofilms of Clostridium perfringens isolated from poultry, animals and humans. Journal of Applied Microbiology, 2021, 130, 819-831.	1.4	10
581	Polymeric approach to combat drug-resistant methicillin-resistant Staphylococcus aureus. Journal of Materials Science, 2021, 56, 7265-7285.	1.7	14
582	Listeria monocytogenes Biofilms in the Food Industry: Is the Current Hygiene Program Sufficient to Combat the Persistence of the Pathogen?. Microorganisms, 2021, 9, 181.	1.6	68
583	Nitrite-enhanced copper-based Fenton reactions for biofilm removal. Chemical Communications, 2021, 57, 5514-5517.	2.2	6
584	Microbiologically Influenced Corrosion Behavior of Carbon Steel in the Presence of Marine Bacteria <i>Pseudomonas</i> sp. and <i>Vibrio</i> sp ACS Omega, 2021, 6, 3780-3790.	1.6	15
585	Dynamic and mechanical evolution of an oil–water interface during bacterial biofilm formation. Soft Matter, 2021, 17, 8195-8210.	1.2	5
586	Effect of dry sanitizing methods on Bacillus cereus biofilm. Brazilian Journal of Microbiology, 2021, 52, 919-926.	0.8	10
587	Microbial Biofilms in the Food Industryâ€"A Comprehensive Review. International Journal of Environmental Research and Public Health, 2021, 18, 2014.	1.2	165
588	Biomimetic antibiofouling oil infused honeycomb films fabricated using breath figures. Polymer Journal, 2021, 53, 713-717.	1.3	8
589	DETERMINATION OF THE OPTIMUM CONDITIONS FOR BIOSURFACTANT PRODUCTION BY LOCAL ISOLATE OF LACTOBACILLUS PLANTARUM AND EVALUATE ITS ANTIMICROBIAL ACTIVITY. Iraqi Journal of Agricultural Sciences, 2021, 52, 170-188.	0.1	2
590	Microbial biofilm: A matter of grave concern for human health and food industry. Journal of Basic Microbiology, 2021, 61, 380-395.	1.8	54

#	Article	IF	CITATIONS
591	Comparative Proteomic Analyses Between Biofilm-Forming and Non-biofilm-Forming Strains of Corynebacterium pseudotuberculosis Isolated From Goats. Frontiers in Veterinary Science, 2021, 8, 614011.	0.9	6
592	Abiyotik yüzeylerde termofilik Anoxybacillus rupiensis DSM 17127T suşunun biyofilm oluşumu ve polistiren yüzeyler üzerindeki biyofilm yapısının giderimi. Balıkesir Üniversitesi Fen Bilimleri EnstitÃ⅓ Dergisi, 0, , 455-470.	/43.Æ1/4	2
593	Degradation of Staphylococcus aureus Biofilm Using Hydrolytic Enzymes Produced by Amazonian Endophytic Fungi. Applied Biochemistry and Biotechnology, 2021, 193, 2145-2161.	1.4	18
594	Isolation, characterization, and application of <i>Salmonella paratyphi</i> phage KM16 against <i>Salmonella paratyphi</i> biofilm. Biofouling, 2021, 37, 276-288.	0.8	11
595	Biofilm Formation in Xanthomonas arboricola pv. pruni: Structure and Development. Agronomy, 2021, 11, 546.	1.3	4
596	Removal of <i>Salmonella</i> Typhimurium Biofilm from Food Contact Surfaces Using <i>Quercus infectoria</i> Gall Extract in Combination with a Surfactant. Journal of Microbiology and Biotechnology, 2021, 31, 439-446.	0.9	5
597	Modelling Pseudomonas fluorescens and Pseudomonas aeruginosa biofilm formation on stainless steel surfaces and controlling through sanitisers. International Dairy Journal, 2021, 114, 104945.	1.5	7
598	S. aureus Biofilm Protein Expression Linked to Antimicrobial Resistance: A Proteomic Study. Animals, 2021, 11, 966.	1.0	7
599	Cadmium Water Pollution Associated with Motor Vehicle Brake Parts. IOP Conference Series: Earth and Environmental Science, 2021, 691, 012001.	0.2	4
600	An Overview of the Antimicrobial Properties of Lignocellulosic Materials. Molecules, 2021, 26, 1749.	1.7	27
601	Toward Designing of Anti-infective Hydrogels for Orthopedic Implants: From Lab to Clinic. ACS Biomaterials Science and Engineering, 2021, 7, 1933-1961.	2.6	25
602	Biofilm and Spore Formation of Clostridium perfringens and Its Resistance to Disinfectant and Oxidative Stress. Antibiotics, 2021, 10, 396.	1.5	11
603	Surface energetics to assess influence of biomass-type and biomass–adsorbent interactions in expanded beds. Bioresources and Bioprocessing, 2021, 8, .	2.0	2
604	Slime control in paper mill using biological agents as biocides. ChemistrySelect, 2021, 6, 149-173.	0.7	1
605	A novel bacteriocin from Lactobacillus salivarius against Staphylococcus aureus: Isolation, purification, identification, antibacterial and antibiofilm activity. LWT - Food Science and Technology, 2021, 140, 110826.	2.5	43
606	Bacteriophages for detection and control of foodborne bacterial pathogensâ€"The case of <scp><i>Bacillus cereus</i></scp> and their phages. Journal of Food Safety, 2023, 43, e12906.	1.1	2
607	Exopolysaccharides as Antimicrobial Agents: Mechanism and Spectrum of Activity. Frontiers in Microbiology, 2021, 12, 664395.	1.5	94
608	Extract from phyllosphere bacteria with antibiofilm and quorum quenching activity to control several fish pathogenic bacteria. BMC Research Notes, 2021, 14, 202.	0.6	2

#	Article	IF	CITATIONS
609	Reduction of Salmonella Typhimurium, Escherichia coli, and Staphylococcus aureus Biofilms by Electrolysis. Ad \ddot{A} ±yaman University Journal of Science, 0 , , .	0.0	0
610	Microscopic analysis towards rhamnolipid-mediated adhesion of Thiobacillus denitrificans: A QCM-D study. Chemosphere, 2021, 271, 129539.	4.2	6
611	Análisis de la casuÃstica del estado oral de pacientes de la clÃnica quirúrgica de un hospital universitario. C E S Odontologia, 2021, 34, 4-13.	0.1	0
612	Influence of the design of fresh-cut food washing tanks on the growth kinetics of Pseudomonas fluorescens biofilms. IScience, 2021, 24, 102506.	1.9	5
613	Antimicrobial Peptides Derived From Insects Offer a Novel Therapeutic Option to Combat Biofilm: A Review. Frontiers in Microbiology, 2021, 12, 661195.	1.5	41
614	Wetting/spreading on porous media and on deformable, soluble structured substrates as a model system for studying the effect of morphology on biofilms wetting and for assessing anti-biofilm methods. Current Opinion in Colloid and Interface Science, 2021, 53, 101426.	3.4	11
615	Revisiting the Microscopic Processes of Biofilm Formation on Organic Carriers: A Study under Variational Shear Stresses. ACS Applied Bio Materials, 2021, 4, 5529-5541.	2.3	9
616	Nanotechnology-based lipid systems applied to resistant bacterial control: A review of their use in the past two decades. International Journal of Pharmaceutics, 2021, 603, 120706.	2.6	15
617	Antibiotic susceptibility pattern of fish pathogens: A new approach of emerging the bacterial resistance through biofilm formation in in-vitro condition. Saudi Journal of Biological Sciences, 2021, 28, 6933-6938.	1.8	4
618	Long-term effectiveness of commonly used hospital disinfectants against Pseudomonas aeruginosa and Staphylococcus aureus. African Journal of Microbiology Research, 2021, 15, 396-400.	0.4	0
619	Factors influencing microbial transmission in a meat processing plant. Teori Ã $^{\mbox{\it L}}$ I Praktika Pererabotki MÃ $^{\mbox{\it L}}$ sa, 2021, 6, 183-190.	0.2	0
620	Biofilm Formation by Marine Cobetia marina alex and Pseudoalteromonas spp: Development and Detection of Quorum Sensing N-Acyl Homoserine Lactones (AHLs) Molecules. Journal of Marine Science, 2021, 3, .	0.1	1
621	A surface modified microbial polymer inactivates quorum sensing molecules and incapacitates Sphingomonas paucimobilis biofilm formation in plumbing material. IOP Conference Series: Materials Science and Engineering, 2021, 1170, 012001.	0.3	0
622	Simultaneous quantification of total carbohydrate and protein amounts from aqueous solutions by the sulfuric acid ultraviolet absorption method (SA-UV method). Analytica Chimica Acta, 2021, 1174, 338712.	2.6	14
623	Effect of Lactobacillus plantarum Biofilms on the Adhesion of Escherichia coli to Urinary Tract Devices. Antibiotics, 2021, 10, 966.	1.5	17
624	Mechanisms and Impact of Biofilms and Targeting of Biofilms Using Bioactive Compounds—A Review. Medicina (Lithuania), 2021, 57, 839.	0.8	32
625	Engineered living biomaterials. Nature Reviews Materials, 2021, 6, 1175-1190.	23.3	181
626	Immobilization of Cells of Hydrocarbon-oxidizing Bacteria for Petroleum Bioremediation Using New Materials. International Journal of Environmental Research, 2021, 15, 971-984.	1.1	2

#	ARTICLE	IF	CITATIONS
627	Efficacy of Novel Bacteriophages against Escherichia coli Biofilms on Stainless Steel. Antibiotics, 2021, 10, 1150.	1.5	8
628	Multi-Modal Biological Destruction by Cold Atmospheric Plasma: Capability and Mechanism. Biomedicines, 2021, 9, 1259.	1.4	20
629	Target-based screening for natural products against <i>Staphylococcus aureus</i> biofilms. Critical Reviews in Food Science and Nutrition, 2023, 63, 2216-2230.	5.4	14
630	Effectiveness of Plasma-Treated Hydrogen Peroxide Mist Disinfection in Various Hospital Environments. International Journal of Environmental Research and Public Health, 2021, 18, 9841.	1.2	2
631	Bacterial diversity in organic and conventional Minas Frescal cheese production using targeted 16S rRNA sequencing. International Dairy Journal, 2021, 122, 105139.	1.5	4
632	Resistance of biofilm- and pellicle-embedded strains of Escherichia coli encoding the transmissible locus of stress tolerance (tLST) to oxidative sanitation chemicals. International Journal of Food Microbiology, 2021, 359, 109425.	2.1	8
633	NiO-nanoflowers decorating a plastic electrode for the non-enzymatic amperometric detection of H2O2 in milk: Old issue, new challenge. Food Control, 2022, 132, 108549.	2.8	26
634	Single-cell adhesion force mapping of a highly sticky bacterium in liquid. Journal of Colloid and Interface Science, 2022, 606, 628-634.	5.0	8
635	Development, dynamics and control of antimicrobial-resistant bacterial biofilms: a review. Environmental Chemistry Letters, 2021, 19, 1983-1993.	8.3	25
636	Biofilm Applications of Bacteriophages. , 2021, , 789-822.		2
638	Applications of Streptomyces spp. Enhanced Compost in Sustainable Agriculture. Soil Biology, 2020, , 257-291.	0.6	9
639	Control of Bacterial Biofilms for Mitigating Antimicrobial Resistance. Sustainable Agriculture Reviews, 2020, , 147-176.	0.6	4
640	Bio- and Inorganic Fouling. Biological and Medical Physics Series, 2016, , 423-456.	0.3	1
641	Disinfection efficacy over yeast biofilms of juice processing industries. Food Research International, 2018, 105, 473-481.	2.9	11
642	The antibacterial, antibiofilm, antifogging and mosquitocidal activities of titanium dioxide (TiO2) nanoparticles green-synthesized using multiple plants extracts. Journal of Environmental Chemical Engineering, 2020, 8, 104521.	3.3	42
643	Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. RSC Advances, 2017, 7, 36670-36683.	1.7	175
644	Current and future perspectives for controlling <i>Vibrio</i> biofilms in the seafood industry: a comprehensive review. Critical Reviews in Food Science and Nutrition, 2021, 61, 1827-1851.	5.4	36
645	Fate of <scp><i>Listeria</i></scp> on various food contact and noncontact surfaces when treated with bacteriophage. Journal of Food Safety, 2020, 40, e12775.	1.1	9

#	Article	IF	CITATIONS
646	Physiology, Growth, and Inhibition of Microbes in Foods., 0,, 1-18.		7
647	Meat, Poultry, and Seafood., 0,, 109-167.		20
648	d-Amino Acids Do Not Inhibit Biofilm Formation in Staphylococcus aureus. PLoS ONE, 2015, 10, e0117613.	1.1	38
649	Mechanobiology of Antimicrobial Resistant Escherichia coli and Listeria innocua. PLoS ONE, 2016, 11, e0149769.	1.1	13
650	Modeling of Mesoscale Variability in Biofilm Shear Behavior. PLoS ONE, 2016, 11, e0165593.	1.1	15
651	Influence of Environmental Factors on Bacterial Biofilm Formation in the Food Industry: A Review. Postdoc Journal, 2015, 3, .	0.4	16
652	Biosafety of Vibrio Parahaemolyticus Biofilm From Seafood Using Herbs and Spices. Journal of Life Medicine, 2013, 01, 71-82.	0.1	7
653	Formation of biofilms on dairy equipment and the influence of disinfectants on them. Eastern-European Journal of Enterprise Technologies, 2017, 5, 26-33.	0.3	19
654	Effect of Cinnamomum verum leaf essential oil on virulence factors of Candida species and determination of the in-vivo toxicity with Galleria mellonella model. Memorias Do Instituto Oswaldo Cruz, 2020, 115, e200349.	0.8	25
655	Nanoscale morphology, structure and fractal study of kefir microbial films grown in natura. Polimeros, 2020, 30, .	0.2	7
656	Individual and Combined Antimicrobial Activity of Oleuropein and Chemical Sanitizers. Journal of Food Chemistry and Nanotechnology, 2016, 2, .	0.7	2
657	Antibiotic Resistance Pattern and Biofilm Formation Ability of Clinically Isolates of Salmonella enterica Serotype typhimurium. International Journal of Enteric Pathogens, 2015, 3, .	0.2	10
658	3.ÂMicrobiological Monitoring of the Food Processing Environment., 2015,,.		23
659	AVALIAÇÃO DA QUALIDADE MICROBIOLÓGICA E FÃSICO-QUÃMICA DE LEITE UHT INTEGRAL PROCESSADO EM INDÊSTRIAS DO ESTADO DE MINAS GERAIS, BRASIL1. Revista Brasileira De Agropecuária Sustentável, 2015, 4, .	0.1	1
660	Inhibition of Bacterial Biofilm Formation by Phytotherapeutics with Focus on Overcoming Antimicrobial Resistance. Current Pharmaceutical Design, 2020, 26, 2807-2816.	0.9	8
662	Silage and the safety and quality of dairy foods: a review. Agricultural and Food Science, 2013, 22, 16-34.	0.3	97
663	Soft nanotechnology: the potential of polyelectrolyte multilayers against E. coli adhesion to surfaces. Arhiv Za Higijenu Rada I Toksikologiju, 2020, 71, 63-68.	0.4	1
664	Antimicrobial Effects of Essential Oils on Oral Microbiota Biofilms: The Toothbrush In Vitro Model. Antibiotics, 2021, 10, 21.	1.5	13

#	Article	IF	CITATIONS
665	9. Biofilm formation in the dairy industry: applications to cheese. Human Health Handbooks, 2013, , 137-150.	0.1	1
666	Efficacy of disinfectants against <i>Cronobacter</i> biofilm on plastic surfaces. Quality Assurance and Safety of Crops and Foods, 2015, 1, 1-5.	1.8	4
667	Chemical and Ultrastructural Characteristics of Mycobacterial Biofilms. Asian Journal of Animal and Veterinary Advances, 2015, 10, 592-622.	0.3	3
668	Biosurfactants in Pharmaceutical Industry (A Mini-Review). American Journal of Drug Discovery and Development, 2010, 1, 58-69.	0.6	108
669	Biofilm Formation in Human and Tropical Foodborne Isolates of Listeria Strains. American Journal of Food Technology, 2012, 7, 517-531.	0.2	5
670	Microbiological Considerations: Pasteurized Milk. International Journal of Dairy Science, 2015, 10, 206-218.	0.4	45
671	A Review of Biofilm Treatment Systems in Treating Downstream Palm Oil Mill Effluent (POME). Journal of Applied Sciences, 2014, 14, 1334-1338.	0.1	6
672	Antibiofilm Activity of Bacteria Isolated from Marine Environment in Indonesia against Vibrio cholerae. Research Journal of Microbiology, 2011, 6, 926-930.	0.2	3
673	Surface conditioning with Escherichia coli cell wall components can reduce biofilm formation by decreasing initial adhesion. AIMS Microbiology, 2017, 3, 613-628.	1.0	5
674	An Insight into Surface Topographical Parameters and Bacterial Adhesion: A Case Study of Listeria monocytogenes Scott A Attachment on 304 Stainless Steel. Journal of Food Protection, 2020, 83, 426-433.	0.8	3
676	A Bird's Eye View on Sustainable Management Solutions for Non-degradable Plastic Wastes. Emerging Contaminants and Associated Treatment Technologies, 2022, , 503-534.	0.4	5
677	Operational culture conditions determinate benzalkonium chloride resistance in L. monocytogenes-E. coli dual species biofilms. International Journal of Food Microbiology, 2021, 360, 109441.	2.1	4
678	Effect of ultraviolet, electromagnetic radiation subtype C (UV-C) dose on biofilm formation by Pseudomonas aeruginosa. African Journal of Microbiology Research, 2011, 5, .	0.4	4
679	Disinfection action of some essential oils on stainless steel. Analecta Technica Szegedinensia, 2014, 8, 18-21.	0.2	1
680	Bactericidal Efficacy of a Fumigation Disinfectant Containing Paraformaldehyde Against Salmonella Typhimurium. Han'gug Sigpum Wi'saeng Anjeonseong Haghoeji, 2016, 31, 216-221.	0.1	0
681	Effect of surface roughness on susceptibility of Escherichia coli biofilm to benzalkonium chloride. Malaysian Journal of Fundamental and Applied Sciences, 2017, 13, .	0.4	0
682	Thermophilic Bacilli in Commercially Heat Treated Milks. Benha Journal of Applied Sciences, 2017, 2, 61-64.	0.0	1
683	Investigating the Effects of Lactic-Citric Acid Blend and Sodium Lauryl Sulfate on the Inhibition of Shiga Toxin-Producing Escherichia coli in a Broth System. Journal of Nutrition & Food Sciences, 2018, 08, .	1.0	0

#	Article	IF	CITATIONS
684	CONTROL OF B. CEREUS BIOFILMS BY CITRIC ACID TREATMENTS. Gıda, 0, , 604-615.	0.1	1
685	Biofilm Applications of Bacteriophages. , 2019, , 1-35.		1
686	STUDY OF THE INFLUENCE OF SAVINASE®EVITY16L ENZYME ON BIOFILMS FORMATION OF STAPHYLOCOCCUS AUREUS ON STAINLESS STEEL WITH DIFFERENT ROUGHNESS. EUREKA Life Sciences, 2019, 2, 26-32.	0.1	1
687	Mechanism of Antimicrobial Resistance in Bacterial Biofilms. Akademik Gıda, 2019, 17, 131-139.	0.5	2
688	Optimization of the Sample Preparation Method for the Determination of Biofilm in the Water Supply System. Lecture Notes in Civil Engineering, 2020, , 315-322.	0.3	0
689	Potential of Lactobacillus casei shirota's strain against the biofilm-forming of Salmonella Spp. Jurnal Teknologi Laboratorium, 2019, 8, 54-63.	0.4	O
690	The Evaluation of Antimicrobial and Antibiofilm Activity of Bioactive Compounds Obtained from Aspergillus Sclerotiorum. Journal of the Institute of Science and Technology, 2019, 9, 1666-1673.	0.3	0
691	Antibiofilm Activity and Biocorrosion Control by Means of Essential Oil from Lippiagracilis Schauer (Verbenaceae) Microemulsion System. Journal of Environmental Science and Engineering Technology, 0, 7, 66-79.	0.1	O
693	Emphasis on the Devastating Impacts of Microbial Biofilms in Oil and Gas Facilities. Advances in Material Research and Technology, 2020, , 101-123.	0.3	0
694	Inhibitory Effects of Combinations of Chemicals on Escherichia coli, Bacillus cereus, and Staphylococcus aureus Biofilms during the Clean-in-Place Process at an Experimental Dairy Plant. Journal of Food Protection, 2020, 83, 1302-1306.	0.8	4
695	Enterococcus spp.: Is It a Bad Choice for a Good Useâ€"A Conundrum to Solve?. Microorganisms, 2021, 9, 2222.	1.6	17
696	Antibiofilm Effects of Bacteriocin BMP32r on Listeria monocytogenes. Probiotics and Antimicrobial Proteins, 2022, 14, 1067-1076.	1.9	3
697	Regulatory network controls microbial biofilm development, with <i>Candida albicans</i> as a representative: from adhesion to dispersal. Bioengineered, 2022, 13, 253-267.	1.4	9
698	Contribution of environmental factors in the formation of biofilms by Alicyclobacillus acidoterrestris on surfaces of the orange juice industry. Ciencia Rural, 2020, 50, .	0.3	O
699	Comparative study of Salmonella Typhimurium biofilms and their resistance depending on cellulose secretion and maturation temperatures. LWT - Food Science and Technology, 2022, 154, 112700.	2.5	11
700	Influence of detergents and sodium hypochlorite on Yarrowia lipolytica biofilms in utensils used in industrial production of colonial cheese. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20181379.	0.3	O
701	Biofilms in Nature and Artificial Materials. , 2020, , 59-81.		1
702	Biological Strategies Against Biofilms. Environmental and Microbial Biotechnology, 2020, , 205-232.	0.4	3

#	Article	IF	CITATIONS
703	9. Biofilm formation in the dairy industry: applications to cheese., 0,, 137-150.		0
704	Biofilm Formation Mechanism in Fungi. Anatolian Journal of Botany, 0, , .	0.5	3
705	Design principles for bacteria-responsive antimicrobial nanomaterials. Materials Today Chemistry, 2022, 23, 100606.	1.7	20
706	Biofilm formation under high shear stress increases resilience to chemical and mechanical challenges. Biofouling, 2022, 38, 1-12.	0.8	12
707	Application of Bacteriophages on Shiga Toxin-Producing Escherichia coli (STEC) Biofilm. Antibiotics, 2021, 10, 1423.	1.5	6
708	Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology. Fermentation, 2021, 7, 291.	1.4	35
709	Uses of Bacteriophages as Bacterial Control Tools and Environmental Safety Indicators. Frontiers in Microbiology, 2021, 12, 793135.	1.5	14
710	Wetting properties of dehydrated biofilms under different growth conditions. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112245.	2.5	4
711	Potent eradication of mixed-species biofilms using photodynamic inactivation coupled with slightly alkaline electrolyzed water. LWT - Food Science and Technology, 2022, 155, 112958.	2.5	6
712	Chlorinated cyanurates and potassium salt of peroxymonosulphate as antimicrobial and antibiofilm agents for drinking water disinfection. Science of the Total Environment, 2022, 811, 152355.	3.9	14
713	Synthesis, Biological Evaluation and Molecular Docking Studies of 5-Indolylmethylen-4-oxo-2-thioxothiazolidine Derivatives. Molecules, 2022, 27, 1068.	1.7	6
714	Protective Role of Acinetobacter and Bacillus for Escherichia Coli O157:H7 in Biofilms Against Sodium Hypochlorite and Extracellular Matrix-Degrading Enzymes. SSRN Electronic Journal, 0, , .	0.4	0
715	Antibiofilm activity and bioactive phenolic compounds of ethanol extract from the Hericium erinaceus basidiome. Journal of Advanced Pharmaceutical Technology and Research, 2022, 13, 111.	0.4	6
716	Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 1657-1676.	5.9	34
717	Preparation and Characterization of Biodegradable \hat{I}^2 -Carrageenan Based Anti-Bacterial Film Functionalized with Wells-Dawson Polyoxometalate. Foods, 2022, 11, 586.	1.9	15
718	Inactivation of Polymicrobial Biofilms of Foodborne Pathogens Using Epsilon Poly-L-Lysin Conjugated Chitosan Nanoparticles. Foods, 2022, 11, 569.	1.9	6
719	From laboratory tests to field trials: a review of cathodic protection and microbially influenced corrosion. Biofouling, 2022, 38, 298-320.	0.8	15
721	Biofilm Formation by Pathogenic Bacteria: Applying a Staphylococcus aureus Model to Appraise Potential Targets for Therapeutic Intervention. Pathogens, 2022, 11, 388.	1.2	18

#	Article	IF	CITATIONS
722	Hurdle technology using encapsulated enzymes and essential oils to fight bacterial biofilms. Applied Microbiology and Biotechnology, 2022, 106, 2311-2335.	1.7	11
723	Electroactive biofilms: how microbial electron transfer enables bioelectrochemical applications. Journal of Industrial Microbiology and Biotechnology, 2022, 49, .	1.4	16
724	Kinetics of Bacterial Adaptation, Growth, and Death at Didecyldimethylammonium Chloride sub-MIC Concentrations. Frontiers in Microbiology, 2022, 13, 758237.	1.5	6
725	Influence of shear stress, organic loading rate and hydraulic retention time on the biofilm structure and on the competition between different biological aggregate morphotypes. Journal of Environmental Chemical Engineering, 2022, 10, 107597.	3.3	8
726	Effects of hematite on the dissemination of antibiotic resistance in pathogens and underlying mechanisms. Journal of Hazardous Materials, 2022, 431, 128537.	6.5	5
727	Investigating the influence of Food Safety Management Systems (FSMS) on microbial diversity of Canastra cheeses and their processing environments. Food Microbiology, 2022, 105, 104023.	2.1	2
728	Polymer Surface Dissection for Correlated Microscopic and Compositional Analysis of Bacterial Aggregates during Membrane Biofouling. ACS Applied Bio Materials, 2022, 5, 134-145.	2.3	4
729	Cholera outbreak: antibiofilm activity, profiling of antibiotic-resistant genes and virulence factors of toxigenic Vibrio cholerae isolates reveals concerning traits. Access Microbiology, 2022, 4, .	0.2	5
730	Magnetoelectric Polymer Membrane-Based Electrical Microenvironment with Magnetically Controlled Antibacterial Activity. ACS Applied Materials & Samp; Interfaces, 2022, 14, 20139-20150.	4.0	9
731	Control strategies for biofilm control in reclaimed water distribution systems from the perspective of microbial antagonism and electrochemistry. Science of the Total Environment, 2022, 834, 155289.	3.9	5
741	Mitigation of microbial corrosion by Cu addition to X65 pipeline steel by Pseudomonas aeruginosa MCCC 1A00099. Archives of Microbiology, 2022, 204, 299.	1.0	2
742	Inhibitory effects of clove and oregano essential oils on biofilm formation of Salmonella Derby isolated from beef processing plant. LWT - Food Science and Technology, 2022, 162, 113486.	2.5	13
743	Inactivation effect of low-energy X-ray irradiation against planktonic and biofilm Pseudomonas fluorescens and its antibacterial mechanism. International Journal of Food Microbiology, 2022, 374, 109716.	2.1	9
744	Concept and fundamentals of biofilms. , 2022, , 23-61.		0
746	Exploring communication signals inside the microbial community of a Listeria monocytogenes-carrying biofilm contamination site. International Journal of Food Microbiology, 2022, , 109773.	2.1	2
747	Electrospun alginate mats embedding silver nanoparticles with bioactive properties. International Journal of Biological Macromolecules, 2022, 213, 427-434.	3.6	4
748	Strategies for controlling biofilm formation in food industry. Grain & Oil Science and Technology, 2022, 5, 179-186.	2.0	15
749	Flow of spore-forming bacteria between suppliers of dairy powders and users in some developing countries: challenges and perspectives. Journal of Food Science and Technology, 0, , .	1.4	0

#	Article	IF	CITATIONS
750	Repeated sub-inhibitory doses of cassia essential oil do not increase the tolerance pattern in Listeria monocytogenes cells. LWT - Food Science and Technology, 2022, 165, 113681.	2.5	6
751	Microbially-derived cocktail of carbohydrases as an anti-biofouling agents: a â€~green approach'. Biofouling, 2022, 38, 455-481.	0.8	2
752	Evaluation of anti-biofilm formation and quorum sensing attenuation of herbal medicines. , 2022, , 723-738.		0
753	Control of biofilm-producing Pseudomonas aeruginosa isolated from dairy farm using Virokill silver nano-based disinfectant as an alternative approach. Scientific Reports, 2022, 12, .	1.6	6
754	Wetting and Imbibition Characteristics of <i>Pseudomonas fluorescens</i> Biofilms Grown on Stainless Steel. Langmuir, 2022, 38, 9810-9821.	1.6	6
755	Sporulation and Biofilms as Survival Mechanisms of <i>Bacillus</i> Species in Low-Moisture Food Production Environments. Foodborne Pathogens and Disease, 2022, 19, 448-462.	0.8	3
756	Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems. Journal of Controlled Release, 2022, 349, 184-205.	4.8	52
757	Role of milk and milk products in the spread of methicillinâ€resistant <i>Staphylococcus aureus</i> in the dairy production chain. Journal of Food Science, 2022, 87, 3699-3723.	1.5	10
758	Biofilms as a microbial hazard in the food industry: A scoping review. Journal of Applied Microbiology, 2022, 133, 2210-2234.	1.4	17
759	Understanding the Effect of Free Nitrous Acid on Biofilms. Environmental Science & Emp; Technology, 2022, 56, 11625-11634.	4.6	7
760	Control Measurements of Escherichia coli Biofilm: A Review. Foods, 2022, 11, 2469.	1.9	10
761	Antibacterial effect of edible coatings with essential oil. Analecta Technica Szegedinensia, 2022, 16, 71-76.	0.2	1
762	The milk fat globule size governs a physiological switch for biofilm formation by Bacillus subtilis. Frontiers in Nutrition, 0, 9, .	1.6	2
763	Precise portrayal of microscopic processes of wastewater biofilm formation: Taking SiO2 as the model carrier. Science of the Total Environment, 2022, 849, 157776.	3.9	7
764	Formation of biofilm changed the responses of Tetragenococcus halophilus to ethanol stress revealed by transcriptomic and proteomic analyses. Food Research International, 2022, 161, 111817.	2.9	7
765	Black cherry fruit as a source of probiotic candidates with antimicrobial and antibiofilm activities against Salmonella. South African Journal of Botany, 2022, 150, 861-872.	1.2	10
766	A novel in-situ enhancement strategy of denitrification biofilter for simultaneous removal of steroid estrogens and total nitrogen from low C/N wastewater. Chemical Engineering Journal, 2023, 452, 138896.	6.6	10
767	Protective role of Acinetobacter and Bacillus for Escherichia coli O157:H7 in biofilms against sodium hypochlorite and extracellular matrix-degrading enzymes. Food Microbiology, 2023, 109, 104125.	2.1	3

#	Article	IF	CITATIONS
768	BIOFILM: FORMATION AND NATURAL PRODUCTS' APPROACH TO CONTROL – A REVIEW African Journal of Infectious Diseases, 2022, 16, 59-71.	O.5	6
769	Surface Properties and Biological Activities on Bacteria Cells by Biobased Surfactants for Antifouling Applications. Surfaces, 2022, 5, 383-394.	1.0	4
770	Role of Biofilms in Waste Water Treatment. Applied Biochemistry and Biotechnology, 2023, 195, 5618-5642.	1.4	4
771	Insights into antibiofilm mechanisms of phytochemicals: Prospects in the food industry. Critical Reviews in Food Science and Nutrition, 2024, 64, 1736-1763.	5.4	8
772	Biofilm formation status in ESBL-producing bacteria recovered from clinical specimens of patients: A systematic review and meta-analysis. Infectious Disorders - Drug Targets, 2022, 22, .	0.4	0
773	Salmonella Derby from pig production chain over a 10-year period: antimicrobial resistance, biofilm formation, and genetic relatedness. Brazilian Journal of Microbiology, 2022, 53, 2185-2194.	0.8	3
774	Iminated aminoglycosides in self-emulsifying drug delivery systems: Dual approach to break down the microbial defense. Journal of Colloid and Interface Science, 2023, 630, 164-178.	5.0	3
775	Antibiofilm activities against food pathogens. , 2023, , 261-278.		0
776	Antibiofilm activities against food pathogens. , 2023, , 479-508.		0
777	Biocides., 2024,, 85-89.		1
778	Comparison of Performance of Cold Atmospheric Plasma and Biocides on the Inactivation of Alternaria sp IEEE Transactions on Plasma Science, 2022, 50, 4782-4787.	0.6	1
779	Elimination of mature Listeria monocytogenes biofilms formed on preconditioned and non-preconditioned surfaces after the application of cleaning treatments and their cell regeneration. LWT - Food Science and Technology, 2023, 173, 114316.	2.5	3
780	Hurdle technology based on the use of microencapsulated pepsin, trypsin and carvacrol to eradicate <i>Pseudomonas aeruginosa</i> and <i>Enterococcus faecalis</i> biofilms. Biofouling, 2022, 38, 903-915.	0.8	3
781	Inhibitory effects of hexanal on acylated homoserine lactones (AHLs) production to disrupt biofilm formation and enzymes activity in Erwinia carotovora and Pseudomonas fluorescens. Journal of Food Science and Technology, 0, , .	1.4	0
782	Biofouling in Membrane Bioreactors—Mitigation and Current Status: a Review. Applied Biochemistry and Biotechnology, 2023, 195, 5643-5668.	1.4	4
783	Cold plasma for sustainable control of hygienically relevant biofilms. The interaction of plasma distance and exposure time. International Journal of Environmental Health Research, 2024, 34, 340-354.	1.3	3
784	Popular cleaning systems of bottles reused for traditional food packaging in the city of Yaound $\tilde{\mathbb{Q}}$ (Cameroon) and study of their prospective effectiveness on biofilms. Frontiers in Food Science and Technology, 0, 2, .	1.2	1
785	A Review on Current Strategies for Biofilm Control in Food Industry. , 2023, , 123-132.		0

#	Article	IF	CITATIONS
786	Microbial Biofilm—a modern sustainable approach for bioremediation in 21st century. , 2022, , 65-92.		0
787	Biofilms in dairy industry. , 2023, , 125-146.		0
788	Enzymes for cleaning-in-place in the dairy industry. , 2023, , 491-518.		0
789	The emergence of predominance in the constitutive microflora of dairy membrane biofilms. , 2023, , 415-425.		0
790	Ultrasound-Assisted Cavitation Effect on the Biofilm-Forming Ability of Common Dairy Sporeformers. Dairy, 2023, 4, 100-107.	0.7	0
791	Cross-contamination of mature Listeria monocytogenes biofilms from stainless steel surfaces to chicken broth before and after the application of chlorinated alkaline and enzymatic detergents. Food Microbiology, 2023, 112, 104236.	2.1	4
792	Bio-mineral Interactions and the Environment. Earth and Environmental Sciences Library, 2023, , 67-116.	0.3	0
793	Development of Cork Biocomposites Enriched with Chitosan Targeting Antibacterial and Antifouling Properties. Molecules, 2023, 28, 990.	1.7	2
794	Industrial backgrounds and microbes growth. , 2023, , 141-217.		0
795	Comparative genome identification of accessory genes associated with strong biofilm formation in Vibrio parahaemolyticus. Food Research International, 2023, 166, 112605.	2.9	4
796	Bacterial and fungal microbiota of mouldâ€ripened cheese produced in Konya. International Journal of Dairy Technology, 2023, 76, 627-637.	1.3	2
797	Antibacterial Mechanism of <i>2R,3R</i> -Dihydromyricetin Against <i>Staphylococcus aureus</i> Deciphering Inhibitory Effect on Biofilm and Virulence Based on Transcriptomic and Proteomic Analyses. Foodborne Pathogens and Disease, 2023, 20, 90-99.	0.8	0
798	Antimicrobial and Antibiofilm Potential of Thymus vulgaris and Cymbopogon flexuosus Essential Oils against Pure and Mixed Cultures of Foodborne Bacteria. Antibiotics, 2023, 12, 565.	1.5	2
799	Eradication of multiple-species biofilms from food industrial and domestic surfaces using essential oils. Food Science and Technology International, 0, , 108201322311655.	1.1	1
800	Utilization of <i>Piper betle</i> L. Extract for Inactivating Foodborne Bacterial Biofilms on Pitted and Smooth Stainless Steel Surfaces. Journal of Microbiology and Biotechnology, 2023, 33, 771-779.	0.9	0
801	Forced Wetting Properties of Bacteria-Laden Droplets Experiencing Initial Evaporation. Langmuir, 2023, 39, 8589-8602.	1.6	1
802	Concrete Sewer Systems and Wastewater Processes Related to Concrete Corrosion. Engineering Materials, 2023, , 3-20.	0.3	0
806	Management of Biofilm Risk. , 2024, , 312-319.		0

#	Article	IF	CITATIONS
807	Postharvest sanitation of produce with conventional and novel technologies., 2023,, 299-333.		0
808	Mechanisms of microbial cross-contamination and novel intervention strategies in fresh produce processing., 2023,, 353-379.		0
809	New perspectives and role of phytochemicals in biofilm inhibition. , 2023, , 413-431.		0
815	Magnetic microactuators for self-clearing implantable catheters. , 2023, , 129-158.		1
824	The role of biofilms and multidrug resistance in wound infections. , 2023, , 57-114.		0
839	Biofilm-Forming Capability of Bacillus and Its Related Genera. Microorganisms for Sustainability, 2024, , 71-89.	0.4	0
842	Microbial Biofilms and the Role of Biotechnology as a Solution. , 2024, , 187-240.		0
845	Antimicrobial activity of food packaging biofilms derived from lignin-starch-poly(lactic acid). AIP Conference Proceedings, 2024, , .	0.3	0