Diagnostics for the Developing World: Microfluidic Pap

Analytical Chemistry 82, 3-10 DOI: 10.1021/ac9013989

Citation Report

#	Article	IF	CITATIONS
3	Inkjet-printed paperfluidic immuno-chemical sensing device. Analytical and Bioanalytical Chemistry, 2010, 398, 885-893.	1.9	220
4	Chemical signal amplification in two-dimensional paper networks. Sensors and Actuators B: Chemical, 2010, 149, 325-328.	4.0	172
5	Toner and paperâ€based fabrication techniques for microfluidic applications. Electrophoresis, 2010, 31, 2487-2498.	1.3	136
6	High fidelity hot-embossing of COC microdevices using a one-step process without pre-annealing of polymer substrate. Sensors and Actuators B: Chemical, 2010, 150, 692-699.	4.0	16
7	Design and fabrication of porous polymer wick structures. Sensors and Actuators B: Chemical, 2010, 150, 556-563.	4.0	18
8	Nanoparticles-based strategies for DNA, protein and cell sensors. Biosensors and Bioelectronics, 2010, 26, 1164-1177.	5.3	131
9	Microfluidic diagnostics for low-resource settings. , 2010, , .		14
10	Bioanalytical applications in microfluidics. Bioanalysis, 2010, 2, 1661-1662.	0.6	6
11	Analytical connotations of point-of-care testing. Analyst, The, 2010, 135, 2220.	1.7	34
12	Fluidic Timers for Time-Dependent, Point-of-Care Assays on Paper. Analytical Chemistry, 2010, 82, 8071-8078.	3.2	169
13	Paper Disk on Screen Printed Electrode for One-Step Sensing with an Internal Standard. Analytical Chemistry, 2010, 82, 8844-8847.	3.2	63
14	Thick-film textile-based amperometric sensors and biosensors. Analyst, The, 2010, 135, 1230.	1.7	143
15	Programmable diagnostic devices made from paper and tape. Lab on A Chip, 2010, 10, 2499.	3.1	320
16	Advances in developing HIV-1 viral load assays for resource-limited settings. Biotechnology Advances, 2010, 28, 770-781.	6.0	142
17	Visualization and measurement of flow in two-dimensional paper networks. Lab on A Chip, 2010, 10, 2614.	3.1	75
18	Paper-Based SERS Swab for Rapid Trace Detection on Real-World Surfaces. ACS Applied Materials & Interfaces, 2010, 2, 3429-3435.	4.0	319
19	Thread as a Matrix for Biomedical Assays. ACS Applied Materials & amp; Interfaces, 2010, 2, 1722-1728.	4.0	224
20	Laboratory-scale protein striping system for patterning biomolecules onto paper-based immunochromatographic test strips. Lab on A Chip, 2010, 10, 2279.	3.1	29

		15	C
#		IF	CITATIONS
21	Paper Strip Whole Cell Biosensors: A Portable Test for the Semiquantitative Detection of Bacterial Quorum Signaling Molecules. Analytical Chemistry, 2010, 82, 4457-4463.	3.2	96
22	Immunosensor for the detection of cancer biomarker based on percolated graphene thin film. Chemical Communications, 2010, 46, 5796.	2.2	60
23	Metering the Capillary-Driven Flow of Fluids in Paper-Based Microfluidic Devices. Analytical Chemistry, 2010, 82, 4181-4187.	3.2	173
24	Flexographically Printed Fluidic Structures in Paper. Analytical Chemistry, 2010, 82, 10246-10250.	3.2	301
25	Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab on A Chip, 2010, 10, 3163.	3.1	452
26	The Effect of Residual Ionic Liquid for Cellulose Based Electro-Active Paper Actuator. Soft Materials, 2010, 8, 254-262.	0.8	9
27	Patterned paper as a template for the delivery of reactants in the fabrication of planar materials. Soft Matter, 2010, 6, 4303.	1.2	27
28	Patterning precipitates of reactions in paper. Journal of Materials Chemistry, 2010, 20, 5117.	6.7	41
29	Millimeter-scale contact printing of aqueous solutions using a stamp made out of paper and tape. Lab on A Chip, 2010, 10, 3201.	3.1	56
30	Supramolecular hydrogel-based protein and chemosensor array. Lab on A Chip, 2010, 10, 3325.	3.1	89
31	Polydiacetylenes carrying amino groups for colorimetric detection and identification of anionic surfactants. Journal of Materials Chemistry, 2011, 21, 16391.	6.7	22
32	Towards a point-of-care diagnostic system. , 2011, , .		18
33	Flexible microfluidic devices with three-dimensional interconnected microporous walls for gas and liquid applications. Lab on A Chip, 2011, 11, 3249.	3.1	23
34	Rapid prototyping of polymeric electrophoresis microchips with integrated copper electrodes for contactless conductivity detection. Analytical Methods, 2011, 3, 168-172.	1.3	30
35	Paper on a disc: balancing the capillary-driven flow with a centrifugal force. Lab on A Chip, 2011, 11, 3404.	3.1	49
36	Simultaneous multiple assays on microfluidic cloth-based analytical devices. , 2011, , .		2
37	Microfluidic Devices Constructed by a Marker Pen on a Silica Gel Plate for Multiplex Assays. Analytical Chemistry, 2011, 83, 3596-3599.	3.2	23
38	Amplified Protein Detection through Visible Plasmon Shifts in Gold Nanocrystal Solutions from Bacteriophage Platforms. Analytical Chemistry, 2011, 83, 3516-3519.	3.2	19

#	Article	IF	CITATIONS
39	Cell analysis using a multiple internal reflection photonic lab-on-a-chip. Nature Protocols, 2011, 6, 1642-1655.	5.5	41
40	Transporting Micro-fluids in Vertical Direction Using Surface Acoustic Waves. Chinese Journal of Analytical Chemistry, 2011, 39, 1805-1810.	0.9	3
41	Naked Eye Detection of Glucose in Urine Using Glucose Oxidase Immobilized Gold Nanoparticles. Analytical Chemistry, 2011, 83, 2829-2833.	3.2	183
42	Paper Bioassay Based on Ceria Nanoparticles as Colorimetric Probes. Analytical Chemistry, 2011, 83, 4273-4280.	3.2	323
43	Electrogenerated Chemiluminescence Detection in Paper-Based Microfluidic Sensors. Analytical Chemistry, 2011, 83, 1300-1306.	3.2	539
44	Highly Sensitive Surface Enhanced Raman Scattering Substrates Based on Filter Paper Loaded with Plasmonic Nanostructures. Analytical Chemistry, 2011, 83, 8953-8958.	3.2	253
45	Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab on A Chip, 2011, 11, 1286.	3.1	296
46	Benzophenone Absorption and Diffusion in Poly(dimethylsiloxane) and Its Role in Graft Photo-polymerization for Surface Modification. Langmuir, 2011, 27, 1232-1240.	1.6	88
47	Graphene-on-Paper Sound Source Devices. ACS Nano, 2011, 5, 4878-4885.	7.3	197
48	Two-dimensional paper networks: programmable fluidic disconnects for multi-step processes in shaped paper. Lab on A Chip, 2011, 11, 4274.	3.1	145
49	A portable microfluidic paper-based device for ELISA. , 2011, , .		30
50	Disposable microfluidic substrates: Transitioning from the research laboratory into the clinic. Lab on A Chip, 2011, 11, 2656.	3.1	70
51	Paper-based piezoresistive MEMS sensors. Lab on A Chip, 2011, 11, 2189.	3.1	212
53	Three-Dimensional Paper Microfluidic Devices Assembled Using the Principles of Origami. Journal of the American Chemical Society, 2011, 133, 17564-17566.	6.6	466
54	Patterned Paper as a Low-Cost, Flexible Substrate for Rapid Prototyping of PDMS Microdevices via "Liquid Molding― Analytical Chemistry, 2011, 83, 1830-1835.	3.2	54
55	Flow control concepts for thread-based microfluidic devices. Biomicrofluidics, 2011, 5, 14105.	1.2	81
56	β-Galactosidase-Based Colorimetric Paper Sensor for Determination of Heavy Metals. Analytical Chemistry, 2011, 83, 8772-8778.	3.2	272
57	Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping. Talanta, 2011, 85, 2587-2593.	2.9	228

#	Article	IF	CITATIONS
58	Microfluidic analytical systems for food analysis. Trends in Food Science and Technology, 2011, 22, 386-404.	7.8	83
59	From Cleanroom to Desktop: Emerging Micro-Nanofabrication Technology for Biomedical Applications. Annals of Biomedical Engineering, 2011, 39, 600-620.	1.3	62
60	A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst, The, 2011, 136, 77-82.	1.7	537
61	Recent Advancements on Greening Analytical Separation. Critical Reviews in Analytical Chemistry, 2011, 41, 2-20.	1.8	58
62	Sum Frequency Generation Spectroscopy in Biosensors Technology. , 0, , .		0
63	Chiral Biosensors and Immunosensors. , 2011, , .		2
64	An Overview of Analytical Techniques Employed to Evidence Drug-DNA Interactions. Applications to the Design of Genosensors. , 0, , .		25
65	Design Principles for Microfluidic Biomedical Diagnostics in Space. , 0, , .		1
66	A Camera Phone Localised Surface Plasmon Biosensing Platform towards Low-Cost Label-Free Diagnostic Testing. Journal of Sensors, 2011, 2011, 1-7.	0.6	12
67	Paper-based planar reaction arrays for printed diagnostics. Sensors and Actuators B: Chemical, 2011, 160, 1404-1412.	4.0	118
68	Colloids engineering and filtration to enhance the sensitivity of paper-based biosensors. Colloids and Surfaces B: Biointerfaces, 2011, 88, 271-278.	2.5	7
69	Capillary-driven multiparametric microfluidic chips for one-step immunoassays. Biosensors and Bioelectronics, 2011, 27, 64-70.	5.3	73
70	Process Analytical Chemistry. Analytical Chemistry, 2011, 83, 4557-4578.	3.2	81
71	Dynamics of Capillary-Driven Flow in Open Microchannels. Journal of Physical Chemistry C, 2011, 115, 18761-18769.	1.5	120
72	Green Analytical Separation Methods. RSC Green Chemistry, 2011, , 168-198.	0.0	6
73	Paper-based piezoresistive MEMS force sensors. , 2011, , .		21
74	Miniaturized lensless imaging systems for cell and microorganism visualization in pointâ€of are testing. Biotechnology Journal, 2011, 6, 138-149.	1.8	84
75	Microfluidic platforms for performing surface-based clinical assays. Expert Review of Molecular Diagnostics, 2011, 11, 711-720.	1.5	24

#	Article	IF	CITATIONS
76	Microsystems for personalized biomolecular diagnostics. Engineering in Life Sciences, 2011, 11, 121-132.	2.0	10
77	Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins. Microfluidics and Nanofluidics, 2011, 10, 231-247.	1.0	211
78	Transport in two-dimensional paper networks. Microfluidics and Nanofluidics, 2011, 10, 29-35.	1.0	261
79	Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide. Biosensors and Bioelectronics, 2011, 26, 3927-3931.	5.3	144
80	Low-parachor solvents extraction and thermostated micro-thin-layer chromatography separation for fast screening and classification of spirulina from pharmaceutical formulations and food samples. Journal of Chromatography A, 2011, 1218, 5694-5704.	1.8	26
81	Simple and inexpensive immunoassay-based diagnostic tests. Bioanalytical Reviews, 2011, 3, 27-40.	0.1	4
82	System Integration - A Major Step toward Lab on a Chip. Journal of Biological Engineering, 2011, 5, 6.	2.0	76
83	Current trends in nanobiosensor technology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 229-246.	3.3	116
84	Paper Electronics. Advanced Materials, 2011, 23, 1935-1961.	11.1	1,141
85	Microfluidic Chips for Pointâ€ofâ€Care Immunodiagnostics. Advanced Materials, 2011, 23, H151-76.	11.1	415
86	Discrimination of Trace Heavyâ€Metal Ions by Filtration on Sol–Gel Membrane Arrays. Chemistry - A European Journal, 2011, 17, 1101-1104.	1.7	38
87	A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosensors and Bioelectronics, 2011, 26, 3284-3289.	5.3	178
88	Paper based point-of-care testing disc for multiplex whole cell bacteria analysis. Biosensors and Bioelectronics, 2011, 26, 4342-4348.	5.3	192
89	Biosensors and rapid diagnostic tests on the frontier between analytical and clinical chemistry for biomolecular diagnosis of dengue disease: A review. Analytica Chimica Acta, 2011, 687, 28-42.	2.6	88
90	Application of micro-thin-layer chromatography as a simple fractionation tool for fast screening of raw extracts derived from complex biological, pharmaceutical and environmental samples. Analytica Chimica Acta, 2011, 688, 168-174.	2.6	26
91	Radial flow electroosmotic pump. Sensors and Actuators A: Physical, 2011, 169, 250-255.	2.0	5
92	One-step sensing lead in surface waters with screen printed electrode. Sensors and Actuators B: Chemical, 2011, 153, 369-372.	4.0	20
93	Improvement of thermal bond strength and surface properties of Cyclic Olefin Copolymer (COC) based microfluidic device using the photo-grafting technique. Sensors and Actuators B: Chemical, 2011, 157, 518-526.	4.0	21

#	Article	IF	CITATIONS
94	Paper Based Microfluidic Device Using Surface Acoustic Wave as Driving Source. Applied Mechanics and Materials, 2011, 130-134, 1658-1662.	0.2	0
95	Effect of polymer orientation on pattern replication in a micro-hot embossing process: experiments and numerical simulation. Journal of Micromechanics and Microengineering, 2011, 21, 065007.	1.5	4
96	Microfluidic paper-based analytical devices: from POCKET to paper-based ELISA. Bioanalysis, 2011, 3, 2589-2592.	0.6	90
97	Microfluidic Components, Devices and Integrated Lab-on-a-Chip Systems. , 2011, , 199-233.		0
99	A Paper-Based Multiplexed Transaminase Test for Low-Cost, Point-of-Care Liver Function Testing. Science Translational Medicine, 2012, 4, 152ra129.	5.8	277
100	A high sensitivity and low-cost polycarbonate (PC)-based biosensor. , 2012, , .		2
101	Inkjet-Fabricated SERS-Active Swab-Dipstick. , 2012, , .		1
102	Paper point of care. Science-Business EXchange, 2012, 5, 1021-1021.	0.0	1
103	Microfluidic Technology for Molecular Diagnostics. Advances in Biochemical Engineering/Biotechnology, 2012, 133, 89-114.	0.6	8
104	Microfluidic Systems for Diagnostic Applications: A Review. Journal of the Association for Laboratory Automation, 2012, 17, 330-347.	2.8	95
105	Fabrication of paper-based microfluidic device using printed circuit technology. AIP Advances, 2012, 2, .	0.6	37
106	Green bioanalytical chemistry. Bioanalysis, 2012, 4, 1271-1274.	0.6	11
107	A Unique Approach to Business Strategy as a Means to Enable Change in Global Healthcare: A Case Study. Clinical Chemistry, 2012, 58, 1302-1305.	1.5	7
108	Optofluidic SERS on Paper: A Lateral Flow Concentration Assay Using Inkjet Fabricated SERS-Active Substrates. , 2012, , .		1
109	Multiplexed volumetric bar-chart chip for point-of-care diagnostics. Nature Communications, 2012, 3, 1283.	5.8	192
110	A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab on A Chip, 2012, 12, 3082.	3.1	237
111	Fully Enclosed Microfluidic Paper-Based Analytical Devices. Analytical Chemistry, 2012, 84, 1579-1585.	3.2	186
112	"Fluidic batteries―as low-cost sources of power in paper-based microfluidic devices. Lab on A Chip, 2012, 12, 1768.	3.1	157

		Citation Report	
#	Article	IF	CITATIONS
113	Point-of-care colorimetric detection with a smartphone. Lab on A Chip, 2012, 12, 4240.	3.1	507
114	Optofluidic opportunities in global health, food, water and energy. Nanoscale, 2012, 4, 4839.	2.8	65
115	Low-Cost Fabrication of Paper-Based Microfluidic Devices by One-Step Plotting. Analytical Chemist 2012, 84, 6331-6335.	ry, 3.2	191
118	Mechanical Drawing of Gas Sensors on Paper. Angewandte Chemie - International Edition, 2012, 5 10740-10745.	1, 7.2	152
119	Using Smell To Triage Samples in Pointâ€ofâ€Care Assays. Angewandte Chemie - International Edit 51, 11145-11148.	ion, 2012, 7.2	34
120	Fluorescence "Turnâ€On―Detection of Melamine with Aggregationâ€Inducedâ€Emissionâ€A Tetraphenylethene. Chemistry - A European Journal, 2012, 18, 15254-15257.	ctive 1.7	44
121	Design and fabrication of a <scp>COP</scp> â€based microfluidic chip: Chronoamperometric dete of <scp>T</scp> roponin <scp>T</scp> . Electrophoresis, 2012, 33, 3187-3194.	ction 1.3	19
122	Optofluidic SERS: synergizing photonics and microfluidics for chemical and biological analysis. Microfluidics and Nanofluidics, 2012, 13, 205-216.	1.0	63
123	Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluidics and Nanofluidics, 2012, 13, 769-787.	1.0	142
124	Biosensors as Novel Platforms for Detection of Food Pathogens and Allergens. BioNanoScience, 20 2, 196-217.	12, 1.5	31
125	A supramolecular hydrogel containing boronic acid-appended receptor for fluorocolorimetric sensing of polyols with a paper platform. Chemical Communications, 2012, 48, 2716.	2.2	59
126	Vapor Phase Deposition of Functional Polymers onto Paper-Based Microfluidic Devices for Advance Unit Operations. Analytical Chemistry, 2012, 84, 10129-10135.	d 3.2	59
127	A Paper-Based Microfluidic Switch Based on Surface Acoustic Wave. Ferroelectrics, 2012, 437, 149	0-159. 0.3	1
128	Strategy To Enhance the Wettability of Bioacive Paper-Based Sensors. ACS Applied Materials & amp Interfaces, 2012, 4, 6573-6578.	^{y;} 4.0	20
129	Prussian Blue-functionalized ceria nanoparticles as label for ultrasensitive detection of tumor necrosis factor-α. Sensors and Actuators B: Chemical, 2012, 171-172, 1060-1065.	4.0	40
130	Engineering of polarized tubular structures in a microfluidic device to study calcium phosphate stone formation. Lab on A Chip, 2012, 12, 4037.	3.1	37
132	Fabrication of Sensitivity Tunable Flexible Force Sensor via Spray Coating of Graphite Ink. IEEE Electron Device Letters, 2012, 33, 902-904.	2.2	17
133	Influenza A virus infection diagnosis based on DVD reader technology. Analytical Methods, 2012, 4 3133.	, 1.3	4

		CITATION REPORT		
#	Article		IF	CITATIONS
134	Mechanisms of red blood cells agglutination in antibody-treated paper. Analyst, The, 202	12, 137, 2205.	1.7	69
135	Controlled release of dry reagents in porous media for tunable temporal and spatial dist upon rehydration. Lab on A Chip, 2012, 12, 4321.	ribution	3.1	62
136	Battery-triggered microfluidic paper-based multiplex electrochemiluminescence immunc on potential-resolution strategy. Lab on A Chip, 2012, 12, 4489.	device based	3.1	114
137	Lab-on-chip (LOC) devices and microfluidics for biomedical applications. , 2012, , 150-17	1.		10
138	Bioplasmonic Paper as a Platform for Detection of Kidney Cancer Biomarkers. Analytical 2012, 84, 9928-9934.	Chemistry,	3.2	90
139	Microchip electrophoresis with amperometric detection for a novel determination of pho compounds in olive oil. Analyst, The, 2012, 137, 5153.	enolic	1.7	24
140	Influence of Surface Properties of Coated Papers on Printed Electronics. Industrial & Chemistry Research, 2012, 51, 6025-6036.	; Engineering	1.8	90
141	Capacitively coupled contactless conductivity detection on microfluidic systems—ten development. Analytical Methods, 2012, 4, 25-33.	years of	1.3	137
142	Low-Resource Method for Extracting the Malarial Biomarker Histidine-Rich Protein II To E Diagnostic Test Performance. Analytical Chemistry, 2012, 84, 6136-6142.	inhance	3.2	32
143	Polydiacetylene paper-based colorimetric sensor array for vapor phase detection and ide volatile organic compounds. Journal of Materials Chemistry, 2012, 22, 5970.	ntification of	6.7	155
144	Paper-Based Ion-Selective Potentiometric Sensors. Analytical Chemistry, 2012, 84, 4695	-4702.	3.2	189
145	Reprint of: Application of micro-thin-layer chromatography as a simple fractionation too screening of raw extracts derived from complex biological, pharmaceutical and environn samples. Analytica Chimica Acta, 2012, 716, 54-60.	for fast nental	2.6	3
146	Miniaturization through lab-on-a-chip: Utopia or reality for routine laboratories? A review Chimica Acta, 2012, 740, 1-11.	[,] Analytica	2.6	191
147	Colorimetric sensing of anions in water using ratiometric indicator-displacement assay. Chimica Acta, 2012, 743, 1-8.	Analytica	2.6	41
148	Biofunctional Paper via the Covalent Modification of Cellulose. Langmuir, 2012, 28, 112	65-11273.	1.6	72
149	Development of a Paper-Based Analytical Device for Colorimetric Detection of Select For Pathogens. Analytical Chemistry, 2012, 84, 2900-2907.	odborne	3.2	411
150	A "place n play―modular pump for portable microfluidic applications. Biomicrofluid 14118-1411816.	ics, 2012, 6,	1.2	51
151	Fabricating electrodes for amperometric detection in hybrid paper/polymer lab-on-a-chip on A Chip, 2012, 12, 3281.	devices. Lab	3.1	43

#	Article	IF	CITATIONS
152	Colorimetric Paper Bioassay for the Detection of Phenolic Compounds. Analytical Chemistry, 2012, 84, 9729-9737.	3.2	158
153	Creating fast flow channels in paper fluidic devices to control timing of sequential reactions. Lab on A Chip, 2012, 12, 5079.	3.1	118
154	Paper-Based Analytical Device for Electrochemical Flow-Injection Analysis of Glucose in Urine. Analytical Chemistry, 2012, 84, 4147-4152.	3.2	153
155	Paper-Based Enzyme Immobilization for Flow Injection Electrochemical Biosensor Integrated with Reagent-Loaded Cartridge toward Portable Modular Device. Analytical Chemistry, 2012, 84, 10071-10076.	3.2	35
156	Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab on A Chip, 2012, 12, 274-280.	3.1	240
157	One-Step Homogeneous Magnetic Nanoparticle Immunoassay for Biomarker Detection Directly in Blood Plasma. ACS Nano, 2012, 6, 3134-3141.	7.3	117
158	Electrochemical immunoassay on a 3D microfluidic paper-based device. Chemical Communications, 2012, 48, 4683.	2.2	199
159	Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab on A Chip, 2012, 12, 1224.	3.1	769
160	Recent Advances in Paper-Based Sensors. Sensors, 2012, 12, 11505-11526.	2.1	545
161	Plasmonic paper as a highly efficient SERS substrate. , 2012, , .		6
162	Automated Droplet Microfluidic Chips for Biochemical Assays. , 2012, , 117-136.		0
163	Development of paper based electrodes: From air-breathing to paintable enzymatic cathodes. Electrochimica Acta, 2012, 82, 208-213.	2.6	73
164	Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochimica Acta, 2012, 80, 334-341.	2.6	161
165	Fabrication of carbon nanotube-based pH sensor for paper-based microfluidics. Microelectronic Engineering, 2012, 100, 1-5.	1.1	43
166	Integration of CNT-Based Chemical Sensors and Biosensors in Microfluidic Systems. Springer Series on Chemical Sensors and Biosensors, 2012, , 59-101.	0.5	1
167	Vitamin B12 Derivatives for Spectroanalytical and Medicinal Applications. Handbook of Porphyrin Science, 2012, , 83-130.	0.3	10
168	Microfluidic diagnostics for the developing world. Lab on A Chip, 2012, 12, 1412.	3.1	201
169	μ-PADs for detection of chemical warfare agents. Analyst, The, 2012, 137, 5648.	1.7	18

#	Article	IF	CITATIONS
170	Uniform mixing in paper-based microfluidic systems using surface acoustic waves. Lab on A Chip, 2012, 12, 773-779.	3.1	153
171	Paper-Based Electrochemical Sensing Platform with Integral Battery and Electrochromic Read-Out. Analytical Chemistry, 2012, 84, 2528-2532.	3.2	219
172	Activated Paper Surfaces for the Rapid Hybridization of DNA through Capillary Transport. Analytical Chemistry, 2012, 84, 3311-3317.	3.2	78
173	Medical Devices and Biomaterials for the Developing World. SpringerBriefs in Public Health, 2012, , .	0.2	3
174	A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics, 2012, 6, 11301-1130113.	1.2	679
175	Validation of Paper-Based Assay for Rapid Blood Typing. Analytical Chemistry, 2012, 84, 1661-1668.	3.2	102
176	Toward Fabric-Based Flexible Microfluidic Devices: Pointed Surface Modification for pH Sensitive Liquid Transport. ACS Applied Materials & Interfaces, 2012, 4, 4541-4548.	4.0	40
177	Progress toward multiplexed sample-to-result detection in low resource settings using microfluidic immunoassay cards. Lab on A Chip, 2012, 12, 1119.	3.1	70
178	Measuring Markers of Liver Function Using a Micropatterned Paper Device Designed for Blood from a Fingerstick. Analytical Chemistry, 2012, 84, 2883-2891.	3.2	312
179	Simple and covalent fabrication of a paper device and its application in sensitive chemiluminescence immunoassay. Analyst, The, 2012, 137, 3821.	1.7	80
180	Centrifugally enhanced paper microfluidics. , 2012, , .		6
181	A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper. Lab on A Chip, 2012, 12, 2909.	3.1	125
182	Capillary-Driven Toner-Based Microfluidic Devices for Clinical Diagnostics with Colorimetric Detection. Analytical Chemistry, 2012, 84, 9002-9007.	3.2	49
183	Blood separation on microfluidic paper-based analytical devices. Lab on A Chip, 2012, 12, 3392.	3.1	285
184	The development of paper microzone-based green analytical chemistry methods for determining the quality of wines. Analytical and Bioanalytical Chemistry, 2012, 404, 627-633.	1.9	35
185	A simple cellulose acetate membrane-based small lanes technique for protein electrophoresis. Analytical and Bioanalytical Chemistry, 2012, 404, 753-762.	1.9	2
186	Quantitation of Femtomolar Protein Levels via Direct Readout with the Electrochemical Proximity Assay. Journal of the American Chemical Society, 2012, 134, 7066-7072.	6.6	154
188	A glass fiber sheet-based electroosmotic lateral flow immunoassay for point-of-care testing. Lab on A Chip, 2012, 12, 5155.	3.1	29

#	Article	IF	Citations
191	A Lateral Flow Assay for Quantitative Detection of Amplified HIV-1 RNA. PLoS ONE, 2012, 7, e45611.	1.1	146
192	Electrochemical impedimetric biosensor based on a nanostructured polycarbonate substrate. International Journal of Nanomedicine, 2012, 7, 133.	3.3	7
193	Microfluidic Automation Using Elastomeric Valves and Droplets: Reducing Reliance on External Controllers. Small, 2012, 8, 2925-2934.	5.2	32
194	High throughput method for prototyping three-dimensional, paper-based microfluidic devices. Lab on A Chip, 2012, 12, 2630.	3.1	124
195	Point of Care Diagnostics: Status and Future. Analytical Chemistry, 2012, 84, 487-515.	3.2	962
196	3D Origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab on A Chip, 2012, 12, 3150.	3.1	257
197	Quantum Dot (QD)-Modified Carbon Tape Electrodes for Reproducible Electrochemiluminescence (ECL) Emission on a Paper-Based Platform. Analytical Chemistry, 2012, 84, 3033-3038.	3.2	86
198	Amplified Protein Detection and Identification through DNA-Conjugated M13 Bacteriophage. ACS Nano, 2012, 6, 5621-5626.	7.3	48
199	Electrokinetics with "paper-and-pencil―devices. Lab on A Chip, 2012, 12, 4026.	3.1	66
203	Significantly Improved Analytical Sensitivity of Lateral Flow Immunoassays by Using Thermal Contrast. Angewandte Chemie - International Edition, 2012, 51, 4358-4361.	7.2	155
204	Photoluminescent Graphene Oxide Ink to Print Sensors onto Microporous Membranes for Versatile Visualization Bioassays. Angewandte Chemie - International Edition, 2012, 51, 5602-5606.	7.2	181
205	Aptamerâ€Based Origami Paper Analytical Device for Electrochemical Detection of Adenosine. Angewandte Chemie - International Edition, 2012, 51, 6925-6928.	7.2	239
206	Paperâ€Based Electrochemiluminescent 3D Immunodevice for Labâ€onâ€Paper, Specific, and Sensitive Pointâ€ofâ€Care Testing. Chemistry - A European Journal, 2012, 18, 4938-4945.	1.7	132
207	Flexible microfluidic cloth-based analytical devices using a low-cost waxpatterning technique. Lab on A Chip, 2012, 12, 209-218.	3.1	186
208	Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab on A Chip, 2012, 12, 3249.	3.1	404
209	Rapid Dengue and Outbreak Detection with Mobile Systems and Social Networks. Mobile Networks and Applications, 2012, 17, 178-191.	2.2	15
210	Nanostructured substrates for portable and miniature SPR biosensors. Analytical and Bioanalytical Chemistry, 2012, 403, 1477-1484.	1.9	49
211	Multiplexed paper test strip for quantitative bacterial detection. Analytical and Bioanalytical Chemistry, 2012, 403, 1567-1576.	1.9	194

#	Article	IF	CITATIONS
212	Investigation of wax and paper materials for the fabrication of paper-based microfluidic devices. Microsystem Technologies, 2012, 18, 649-659.	1.2	71
213	Transparency-based microplates for fluorescence quantification. Analytical Biochemistry, 2012, 422, 39-45.	1.1	18
214	Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials, 2012, 33, 1024-1031.	5.7	344
215	Paper-based three-dimensional electrochemical immunodevice based on multi-walled carbon nanotubes functionalized paper for sensitive point-of-care testing. Biosensors and Bioelectronics, 2012, 32, 238-243.	5.3	159
216	Small-size biofuel cell on paper. Biosensors and Bioelectronics, 2012, 35, 155-159.	5.3	113
217	Determination of glucose and uric acid with bienzyme colorimetry on microfluidic paper-based analysis devices. Biosensors and Bioelectronics, 2012, 35, 363-368.	5.3	202
218	Colorimetric detection of cancer biomarker based on pH induced color change. Sensors and Actuators B: Chemical, 2012, 166-167, 56-60.	4.0	13
219	Prototyping chips in minutes: Direct Laser Plotting (DLP) of functional microfluidic structures. Sensors and Actuators B: Chemical, 2012, 168, 214-222.	4.0	38
220	Towards Protein Assays on Paper Platforms with Potentiometric Detection. Electroanalysis, 2012, 24, 146-152.	1.5	39
221	Recent advances in miniaturisation – The role of microchip electrophoresis in clinical analysis. Electrophoresis, 2012, 33, 105-116.	1.3	60
222	Real-Time Electrochemical Monitoring of Adenosine Triphosphate in the Picomolar to Micromolar Range Using Graphene-Modified Electrodes. Analytical Chemistry, 2013, 85, 8158-8165.	3.2	232
223	Ionic liquids as modifiers for glass and SU-8 electrochemical microfluidic chips. Sensors and Actuators B: Chemical, 2013, 188, 837-846.	4.0	9
224	A paper-based photoelectrochemical immunoassay for low-cost and multiplexed point-of-care testing. Chemical Communications, 2013, 49, 3294.	2.2	83
225	DNA Nanotechnology. , 2013, , .		5
226	Label-free optofluidic cell classifier utilizing support vector machines. Sensors and Actuators B: Chemical, 2013, 186, 327-332.	4.0	8
227	Magnetic timing valves for fluid control in paper-based microfluidics. Lab on A Chip, 2013, 13, 2609.	3.1	131
228	Sintered gold nanoparticles as an electrode material for paper-based electrochemical sensors. RSC Advances, 2013, 3, 8683.	1.7	59
229	Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic RF paper. Lab on A Chip, 2013, 13, 2922.	3.1	153

		EPORT	
#	Article	IF	CITATIONS
230	Lab-on-a-Chip, Micro- and Nanoscale Immunoassay Systems, and Microarrays. , 2013, , 175-202.		6
231	Bipolar Electrochemistry. Angewandte Chemie - International Edition, 2013, 52, 10438-10456.	7.2	588
232	Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Analytica Chimica Acta, 2013, 788, 39-45.	2.6	191
233	Biosensor technology: recent advances in threat agent detection and medicine. Chemical Society Reviews, 2013, 42, 8733.	18.7	375
234	Molecularly Imprinted Polymer Grafted Porous Auâ€Paper Electrode for an Microfluidic Electroâ€Analytical Origami Device. Advanced Functional Materials, 2013, 23, 3115-3123.	7.8	115
236	Reagents in microfluidics: an â€~in' and â€~out' challenge. Chemical Society Reviews, 2013, 42, 8494.	18.7	71
237	Paper-Based Solid-Phase Multiplexed Nucleic Acid Hybridization Assay with Tunable Dynamic Range Using Immobilized Quantum Dots As Donors in Fluorescence Resonance Energy Transfer. Analytical Chemistry, 2013, 85, 7502-7511.	3.2	65
238	Structural colour in colourimetric sensors and indicators. Journal of Materials Chemistry C, 2013, 1, 6075.	2.7	102
239	Bioinspired Wetting Surface via Laser Microfabrication. ACS Applied Materials & Interfaces, 2013, 5, 6777-6792.	4.0	194
240	Present Technology and Future Trends in Point-of-Care Microfluidic Diagnostics. Methods in Molecular Biology, 2013, 949, 3-23.	0.4	33
241	Microfluidic Paper-Based Analytical Device for Aerosol Oxidative Activity. Environmental Science & Technology, 2013, 47, 932-940.	4.6	77
242	Immunochromatographic lateral flow strip for on-site detection of bisphenol A. Mikrochimica Acta, 2013, 180, 279-285.	2.5	62
243	Diagnostic tools and technologies for infectious and non-communicable diseases in low-and-middle-income countries. Health and Technology, 2013, 3, 271-281.	2.1	13
244	Stimuli-responsive hydrogel patterns for smart microfluidics and microarrays. Analyst, The, 2013, 138, 6230.	1.7	65
245	Point-of-care nucleic acid detection using nanotechnology. Nanoscale, 2013, 5, 10141.	2.8	79
246	Controlled Hydrophobic Functionalization of Natural Fibers through Selfâ€Assembly of Amphiphilic Diblock Copolymer Micelles. ChemSusChem, 2013, 6, 1203-1208.	3.6	9
247	Programming paper networks for point of care diagnostics. , 2013, , .		21
248	Rapid prototyping of microfluidic modules with a water-developable dry-film photoresist bondable to PDMS. RSC Advances, 2013, 3, 14066.	1.7	3

#	Article	IF	CITATIONS
249	Paper-Based Microfluidic Electrochemical Immunodevice Integrated with Nanobioprobes onto Graphene Film for Ultrasensitive Multiplexed Detection of Cancer Biomarkers. Analytical Chemistry, 2013, 85, 8661-8668.	3.2	211
250	Protein immobilization techniques for microfluidic assays. Biomicrofluidics, 2013, 7, 41501.	1.2	310
251	Reagents and assay strategies for quantifying active enzyme analytes using a personal glucose meter. Chemical Communications, 2013, 49, 6134.	2.2	38
252	Array sensing using optical methods for detection of chemical and biological hazards. Chemical Society Reviews, 2013, 42, 8596.	18.7	275
253	Diagnostic Applications of Biomaterials. , 2013, , 1087-1106.		1
254	Multiplexed colorimetric detection of Kaposi's sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles. Nanoscale, 2013, 5, 1678.	2.8	83
255	Bioactive paper platform for colorimetric phenols detection. Sensors and Actuators B: Chemical, 2013, 186, 557-562.	4.0	29
256	Photoelectrochemical lab-on-paper device equipped with a porous Au-paper electrode and fluidic delay-switch for sensitive detection of DNA hybridization. Lab on A Chip, 2013, 13, 3945.	3.1	76
258	Microfluidic Paper-Based Analytical Devices (μPADs) and Micro Total Analysis Systems (μTAS): Development, Applications and Future Trends. Chromatographia, 2013, 76, 1201-1214.	0.7	194
259	A paper-based microbial fuel cell: Instant battery for disposable diagnostic devices. Biosensors and Bioelectronics, 2013, 49, 410-414.	5.3	128
260	Biochip technology for monitoring posttraumatic stress disorder (PTSD). Biochip Journal, 2013, 7, 195-200.	2.5	16
261	Development of a paper-based carbon nanotube sensing microfluidic device for biological detection. , 2013, 2013, 168-71.		1
262	3D microfluidic origami electrochemiluminescence immunodevice for sensitive point-of-care testing of carcinoma antigen 125. Sensors and Actuators B: Chemical, 2013, 176, 1-8.	4.0	62
263	Naked-eye detection of nucleic acids through rolling circle amplification and magnetic particle mediated aggregation. Biosensors and Bioelectronics, 2013, 47, 515-519.	5.3	37
264	Laminated Paper-Based Analytical Devices (LPAD) with Origami-Enabled Chemiluminescence Immunoassay for Cotinine Detection in Mouse Serum. Analytical Chemistry, 2013, 85, 10270-10276.	3.2	126
265	Paper-Based SlipPAD for High-Throughput Chemical Sensing. Analytical Chemistry, 2013, 85, 4263-4267.	3.2	92
266	Paper-Based Microfluidic Device with Upconversion Fluorescence Assay. Analytical Chemistry, 2013, 85, 11691-11694.	3.2	86
267	A novel electrochemical sensing platform for anions based on conducting polymer film modified electrodes integrated on paper-based chips. Talanta, 2013, 105, 40-45.	2.9	19

#	Article	IF	CITATIONS
268	Inkjet printing lanthanide doped nanorods test paper for visual assays of nitroaromatic explosives. Analytica Chimica Acta, 2013, 802, 89-94.	2.6	12
269	Smartphone quantifies Salmonella from paper microfluidics. Lab on A Chip, 2013, 13, 4832.	3.1	204
270	A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Lab on A Chip, 2013, 13, 3921.	3.1	258
271	A microfluidic paper-based analytical device for rapid quantification of particulate chromium. Analytica Chimica Acta, 2013, 800, 50-55.	2.6	95
272	Nucleic Acid Sample Preparation Using Spontaneous Biphasic Plug Flow. Analytical Chemistry, 2013, 85, 8641-8646.	3.2	6
273	Point-of-Care Assay Platform for Quantifying Active Enzymes to Femtomolar Levels Using Measurements of Time as the Readout. Analytical Chemistry, 2013, 85, 10432-10439.	3.2	89
274	Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays. Lab on A Chip, 2013, 13, 4352.	3.1	157
275	Random laser emission from a paper-based device. Journal of Materials Chemistry C, 2013, 1, 8128.	2.7	51
276	Materials for Sensor Platforms and Packaging. Integrated Analytical Systems, 2013, , 223-248.	0.4	0
277	Molecularly imprinted polymer grafted paper-based multi-disk micro-disk plate for chemiluminescence detection of pesticide. Biosensors and Bioelectronics, 2013, 50, 262-268.	5.3	91
278	Optimization of a Paper-Based ELISA for a Human Performance Biomarker. Analytical Chemistry, 2013, 85, 11634-11642.	3.2	160
279	Microfluidic Multiplexing in Bioanalyses. Journal of the Association for Laboratory Automation, 2013, 18, 350-366.	2.8	27
280	Determination of aerosol oxidative activity using silver nanoparticle aggregation on paper-based analytical devices. Analyst, The, 2013, 138, 6766.	1.7	59
281	The Potential Impact of Droplet Microfluidics in Biology. Analytical Chemistry, 2013, 85, 3476-3482.	3.2	141
282	(Super)hydrophobic and Multilayered Amphiphilic Films Prepared by Continuous Assembly of Polymers. Advanced Functional Materials, 2013, 23, 5159-5166.	7.8	29
283	Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing. Analytica Chimica Acta, 2013, 792, 86-92.	2.6	58
284	Nanoparticles That Sense Thrombin Activity As Synthetic Urinary Biomarkers of Thrombosis. ACS Nano, 2013, 7, 9001-9009.	7.3	98
285	Image-based ELISA on an activated polypropylene microtest plate—A spectrophotometer-free low cost assay technique. Biosensors and Bioelectronics, 2013, 48, 287-292.	5.3	29

#	Article	IF	Citations
286	Magnetic valves with programmable timing capability for fluid control in paper-based microfluidics. , 2013, , .		3
287	Proteolytic Assays on Quantum-Dot-Modified Paper Substrates Using Simple Optical Readout Platforms. Analytical Chemistry, 2013, 85, 8817-8825.	3.2	73
288	A microfabricated paper-based microbial fuel cell. , 2013, , .		5
290	A Point-of-Care Paper-based Fingerstick Transaminase Test: Toward Low-cost "Lab-on-a-Chip― Technology for the Developing World. Clinical Gastroenterology and Hepatology, 2013, 11, 478-482.	2.4	18
291	Chemical Analog-to-Digital Signal Conversion Based on Robust Threshold Chemistry and Its Evaluation in the Context of Microfluidics-Based Quantitative Assays. Journal of the American Chemical Society, 2013, 135, 14775-14783.	6.6	20
292	Paper diagnostics in biomedicine. Reviews in Analytical Chemistry, 2013, 32, .	1.5	32
293	3D origami electrochemiluminescence immunodevice based on porous silver-paper electrode and nanoporous silver double-assisted signal amplification. Sensors and Actuators B: Chemical, 2013, 188, 417-424.	4.0	28
294	Folding Paper-Based Lithium-Ion Batteries for Higher Areal Energy Densities. Nano Letters, 2013, 13, 4969-4974.	4.5	218
295	A paper-based microfluidic device for multiplexed electrochemical detection of biomarkers. , 2013, , .		3
296	Paper-based photoelectrochemical immunosensing based on CdS QD sensitized multidimensional porous ZnO spheres promoted by carbon nanotubes. Chemical Communications, 2013, 49, 10400-10402.	2.2	26
297	Positively charged polymer brush-functionalized filter paper for DNA sequence determination following Dot blot hybridization employing a pyrrolidinyl peptide nucleic acid probe. Analyst, The, 2013, 138, 269-277.	1.7	27
298	Fast prototyping of paper-based microfluidic devices by contact stamping using indelible ink. RSC Advances, 2013, 3, 18811.	1.7	80
299	Microfluidic opportunities in the field of nutrition. Lab on A Chip, 2013, 13, 3993.	3.1	14
300	A portable explosive detector based on fluorescence quenching of pyrene deposited on coloured wax-printed μPADs. Lab on A Chip, 2013, 13, 4164.	3.1	72
301	Microfab-less microfluidic capillary electrophoresis devices. Analytical Methods, 2013, 5, 1652.	1.3	20
302	Paper-based electroanalytical sensing platforms. Analytical Methods, 2013, 5, 103-110.	1.3	85
303	Development of paper-based analytical kit for point-of-care testing. Expert Review of Molecular Diagnostics, 2013, 13, 83-91.	1.5	59
304	Paper and toner three-dimensional fluidic devices: programming fluid flow to improve point-of-care diagnostics. Lab on A Chip, 2013, 13, 628.	3.1	61

		CITATION REPORT		
#	Article		IF	CITATIONS
305	Laser-printing of toner-based 96-microzone plates for immunoassays. Analyst, The, 201	3, 138, 1114-1121.	1.7	21
306	A Simple Paper-Based Microfluidic Device for the Determination of the Total Amino Acic Tea Leaf Extract. Journal of Chemical Education, 2013, 90, 232-234.	Content in a	1.1	58
307	Optofluidic imaging: now and beyond. Lab on A Chip, 2013, 13, 17-24.		3.1	70
308	Paper-based nanobiosensors for diagnostics. Chemical Society Reviews, 2013, 42, 450-	457.	18.7	481
309	Dried Blood Spots: Analysis and Applications. Analytical Chemistry, 2013, 85, 779-789.		3.2	222
310	Naked Eye Detection of Lung Cancer Associated miRNA by Paper Based Biosensing Plat Chemistry, 2013, 85, 820-824.	form. Analytical	3.2	82
311	Study on Enzyme Linked Immunosorbent Assay Using Paper-based Micro-zone Plates. C Analytical Chemistry, 2013, 41, 20-24.	hinese Journal of	0.9	14
312	Biocompatibility of printed paper-based arrays for 2-D cell cultures. Acta Biomaterialia, 2 6704-6710.	2013, 9,	4.1	49
313	Enhancing fluorescence signals from aluminium thin films and foils using polyelectrolyte multilayers. Sensors and Actuators B: Chemical, 2013, 183, 496-503.	2	4.0	7
314	Fabrication of paper-based devices by lacquer spraying method for the determination of in waste water. Talanta, 2013, 114, 291-296.	nickel (II) ion	2.9	80
315	Surfaceâ€Tensionâ€Confined Microfluidics and Their Applications. ChemPhysChem, 20	13, 14, 471-481.	1.0	35
316	Towards a wicking rapid test for rejection assessment of reused fried oils: Results and a extra virgin olive oil. Journal of Food Engineering, 2013, 119, 260-270.	nalysis for	2.7	9
317	Paper-based chemiresistor for detection of ultralow concentrations of protein. Biosenso Bioelectronics, 2013, 49, 462-465.	ors and	5.3	30
318	A simple, rapid, low-cost diagnostic test for sickle cell disease. Lab on A Chip, 2013, 13,	1464.	3.1	72
319	Multifunctional Analytical Platform on a Paper Strip: Separation, Preconcentration, and Subattomolar Detection. Analytical Chemistry, 2013, 85, 3977-3983.		3.2	151
320	Development and applications of paper-based electrospray ionization-mass spectromet monitoring of sequentially generated droplets. Analyst, The, 2013, 138, 2163.	ry for	1.7	33
321	Dynamic pH mapping in microfluidic devices by integrating adaptive coatings based on colorimetric imaging techniques. Lab on A Chip, 2013, 13, 1079.	polyaniline with	3.1	49
322	Emerging Applications of Superhydrophilic uperhydrophobic Micropatterns. Advance 2013, 25, 1234-1247.	ed Materials,	11.1	407

#	Article	IF	CITATIONS
323	Towards low-cost flexible substrates for nanoplasmonic sensing. Physical Chemistry Chemical Physics, 2013, 15, 5288.	1.3	232
324	Photoelectrochemical Lab-on-Paper Device Based on an Integrated Paper Supercapacitor and Internal Light Source. Analytical Chemistry, 2013, 85, 3961-3970.	3.2	142
325	Potential flow in the presence of a sudden expansion: Application to capillary driven transport in porous media. Physical Review E, 2013, 87, .	0.8	21
326	Interfacial microfluidic transport on micropatterned superhydrophobic textile. Lab on A Chip, 2013, 13, 1937.	3.1	90
327	Development of a disposable and highly sensitive paper-based immunosensor for early diagnosis of Asian soybean rust. Biosensors and Bioelectronics, 2013, 45, 123-128.	5.3	35
328	Microfluidic Chips for Immunoassays. Annual Review of Analytical Chemistry, 2013, 6, 119-141.	2.8	138
329	Electro-osmotic flows through topographically complicated porous media: Role of electropermeability tensor. Physical Review E, 2013, 87, .	0.8	17
330	Applications of Microfluidics for Molecular Diagnostics. Methods in Molecular Biology, 2013, 949, 305-334.	0.4	33
331	Paper-based electroanalytical devices for accessible diagnostic testing. MRS Bulletin, 2013, 38, 309-314.	1.7	173
332	Bioactive paper: Biomolecule immobilization methods and applications in environmental monitoring. MRS Bulletin, 2013, 38, 331-334.	1.7	27
333	Evidence-Based Point-of-Care Diagnostics: Current Status and Emerging Technologies. Annual Review of Analytical Chemistry, 2013, 6, 191-211.	2.8	90
334	Bubble gate for in-plane flow control. Lab on A Chip, 2013, 13, 2519.	3.1	19
335	Advances in Microfluidic Materials, Functions, Integration, and Applications. Chemical Reviews, 2013, 113, 2550-2583.	23.0	731
336	Surface-enhanced Raman scattering microfluidic sensor. RSC Advances, 2013, 3, 13015.	1.7	41
337	A Glimpse into the Future of Diagnostics. Clinical Chemistry, 2013, 59, 589-591.	1.5	14
338	Label-free DNA quantification via a †pipette, aggregate and blot' (PAB) approach with magnetic silica particles on filter paper. Lab on A Chip, 2013, 13, 955.	3.1	13
339	A fluorometric paper-based sensor array for the discrimination of heavy-metal ions. Talanta, 2013, 108, 103-108.	2.9	75
340	Preprogrammed capillarity to passively control system-level sequential and parallel microfluidic flows. Lab on A Chip, 2013, 13, 2091.	3.1	28

#	Article	IF	CITATIONS
341	Paper-Based Solid-Phase Nucleic Acid Hybridization Assay Using Immobilized Quantum Dots as Donors in Fluorescence Resonance Energy Transfer. Analytical Chemistry, 2013, 85, 1860-1867.	3.2	97
342	Superhydrophobic Paper in the Development of Disposable Labware and Lab-on-Paper Devices. ACS Applied Materials & Interfaces, 2013, 5, 3731-3737.	4.0	47
343	Study on Microenvironment Acidification by Microfluidic Chip with Multilayer-paper Supported Breast Cancer Tissue. Chinese Journal of Analytical Chemistry, 2013, 41, 822-827.	0.9	19
344	Method for Fabrication of Paper-Based Microfluidic Devices by Alkylsilane Self-Assembling and UV/O ₃ -Patterning. Analytical Chemistry, 2013, 85, 1327-1331.	3.2	183
345	Pencilâ€drawn paper supported electrodes as simple electrochemical detectors for paperâ€based fluidic devices. Electrophoresis, 2013, 34, 2085-2091.	1.3	121
346	Inkjet printing: an integrated and green chemical approach to microfluidic paper-based analytical devices. RSC Advances, 2013, 3, 9258.	1.7	130
347	Lab-on-a-chip technologies for single-molecule studies. Lab on A Chip, 2013, 13, 2183.	3.1	42
348	The evolution of nitrocellulose as a material for bioassays. MRS Bulletin, 2013, 38, 326-330.	1.7	66
349	Inkjet printed (bio)chemical sensing devices. Analytical and Bioanalytical Chemistry, 2013, 405, 5785-5805.	1.9	141
350	Paper Analytical Devices for Fast Field Screening of Beta Lactam Antibiotics and Antituberculosis Pharmaceuticals. Analytical Chemistry, 2013, 85, 6453-6460.	3.2	107
351	Target-Responsive "Sweet―Hydrogel with Glucometer Readout for Portable and Quantitative Detection of Non-Glucose Targets. Journal of the American Chemical Society, 2013, 135, 3748-3751.	6.6	303
352	Advances in materials that enable quantitative point-of-care assays. MRS Bulletin, 2013, 38, 315-319.	1.7	17
353	Is the Focus on "Molecules―Obsolete?. Annual Review of Analytical Chemistry, 2013, 6, 1-29.	2.8	16
354	Advances in point-of-care technologies with biosensors based on carbon nanotubes. TrAC - Trends in Analytical Chemistry, 2013, 45, 24-36.	5.8	105
355	Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva. Lab on A Chip, 2013, 13, 3232.	3.1	327
356	Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab on A Chip, 2013, 13, 126-135.	3.1	204
357	Urine for Plasmonic Nanoparticleâ€Based Colorimetric Detection of Mercury Ion. Small, 2013, 9, 4104-4111.	5.2	102
360	An inkjet-printed electrowetting valve for paper-fluidic sensors. Analyst, The, 2013, 138, 4998.	1.7	69

#	Article	IF	CITATIONS
361	Magnetic Separation of Malaria-Infected Red Blood Cells in Various Developmental Stages. Analytical Chemistry, 2013, 85, 7316-7323.	3.2	89
362	Microfluidic sample preparation for diagnostic cytopathology. Lab on A Chip, 2013, 13, 1011.	3.1	84
363	Preprogrammed, Parallel On-Chip Immunoassay Using System-Level Capillarity Control. Analytical Chemistry, 2013, 85, 6902-6907.	3.2	21
364	A microfluidic origami electrochemiluminescence aptamer-device based on a porous Au-paper electrode and a phenyleneethynylene derivative. Chemical Communications, 2013, 49, 1383-1385.	2.2	80
365	An electrochemical Lab-on-a-CD system for parallel whole blood analysis. Lab on A Chip, 2013, 13, 2634.	3.1	33
366	Paper-based microfluidic point-of-care diagnostic devices. Lab on A Chip, 2013, 13, 2210.	3.1	1,615
367	Microfluidic Tools for DNA Analysis. , 2013, , 113-153.		1
368	Paper-Based Electrochemiluminescent Screening for Genotoxic Activity in the Environment. Environmental Science & Technology, 2013, 47, 1937-1944.	4.6	74
369	One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices. Analyst, The, 2013, 138, 671-676.	1.7	133
370	Colorimetric Visualization of Glucose at the Submicromole Level in Serum by a Homogenous Silver Nanoprism–Glucose Oxidase System. Analytical Chemistry, 2013, 85, 6241-6247.	3.2	232
371	Immunospot assay based on fluorescent nanoparticles for Dengue fever detection. Biosensors and Bioelectronics, 2013, 41, 180-185.	5.3	45
372	Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+ and Hg2+ based on potential-control technique. Biosensors and Bioelectronics, 2013, 41, 544-550.	5.3	177
373	Modification of paper using polyhydroxybutyrate to obtain biomimetic superhydrophobic substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 416, 51-55.	2.3	59
374	Patterned Fluoropolymer Barriers for Containment of Organic Solvents within Paper-Based Microfluidic Devices. ACS Applied Materials & Interfaces, 2013, 5, 12701-12707.	4.0	56
375	Chip in a lab: Microfluidics for next generation life science research. Biomicrofluidics, 2013, 7, 11302.	1.2	142
376	Biomaterials in the nano-era. Science Bulletin, 2013, 58, 4337-4341.	1.7	2
377	A Flexible Paper-Based Microdischarge Array Device for Maskless Patterning on Nonflat Surfaces. Journal of Microelectromechanical Systems, 2013, 22, 256-258.	1.7	9
378	Paper-based super-capacitor using micro and nano particle deposition for paper-based diagnostics. , 2013, , .		4

#	Article	IF	CITATIONS
379	Anomalous Thermally Induced Pinning of a Liquid Drop on a Solid Substrate. Langmuir, 2013, 29, 10665-10673.	1.6	4
380	Hydrochloric acid-impregnated paper for liquid metal microfluidics. , 2013, , .		7
381	Pencilâ€Ðrawn Dual Electrode Detectors to Discriminate Between Analytes Comigrating on Paperâ€Based Fluidic Devices but Undergoing Electrochemical Processes with Different Reversibility. Electroanalysis, 2013, 25, 2515-2522.	1.5	66
382	A one-step and biocompatible cellulose functionalization for covalent antibody immobilization on immunoassay membranes. Journal of Materials Chemistry B, 2013, 1, 3277.	2.9	30
383	Two general designs for fluidic batteries in paper-based microfluidic devices that provide predictable and tunable sources of power for on-chip assays. RSC Advances, 2013, 3, 6888.	1.7	45
384	Design and Fabrication of Biosensing Interface for Waveguide-Mode Sensor. Langmuir, 2013, 29, 13111-13120.	1.6	21
385	Lightâ€Governed Capillary Flow in Microfluidic Systems. Small, 2013, 9, 107-114.	5.2	14
386	Wetting in color: from photonic fingerprinting of liquids to optical control of liquid percolation. Proceedings of SPIE, 2013, , .	0.8	1
387	Design of affordable and ruggedized biomedical devices using virtual instrumentation. Journal of Medical Engineering and Technology, 2013, 37, 237-251.	0.8	4
388	Actuation mechanisms for microfluidic biomedical devices. , 2013, , 100-138.		1
390	Field Evaluation of a Prototype Paper-Based Point-of-Care Fingerstick Transaminase Test. PLoS ONE, 2013, 8, e75616.	1.1	40
391	Low-cost assays in paper-based microfluidic biomedical devices. , 2013, , 492-528e.		6
392	Paper-Based Sensors and Microfluidic Chips. , 2013, , 1-9.		1
393	The future of microfluidic point-of-care diagnostic devices. Bioanalysis, 2013, 5, 1-3.	0.6	69
394	Highly sensitive salicylic fluorophore for visual detection of picomole amounts of Cu2+. RSC Advances, 2013, 3, 25215.	1.7	17
395	Novel self-folding electrode for neural stimulation and recording. , 2013, , .		5
396	Materials and methods for the microfabrication of microfluidic biomedical devices. , 2013, , 3-62.		9
397	Laser micromachined hybrid open/paper microfluidic chips. Biomicrofluidics, 2013, 7, 064109.	1.2	14

		CITATION REPOR	RL	
#	Article	IF		CITATIONS
398	Paper pump for passive and programmable transport. Biomicrofluidics, 2013, 7, 14107.	1.2	2	62
399	Exploration of microfluidic devices based on multi-filament threads and textiles: A review. Biomicrofluidics, 2013, 7, 51501.	1.2	2	127
400	A microfluidic paper-based electrochemical biosensor array for multiplexed detection of meta biomarkers. Science and Technology of Advanced Materials, 2013, 14, 054402.	abolic 2.8	8	132
401	Progress in the development of paper-based diagnostics for low-resource point-of-care settin Bioanalysis, 2013, 5, 2821-2836.	gs. 0.	6	68
402	Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles. Science an Technology of Advanced Materials, 2013, 14, 044404.	d 2.8	8	84
403	Multicolor Saccharide-analysis Sensor Arrays Based on Boronic Acid-containing Thin Films Co with Various Anionic Dyes. Chemistry Letters, 2013, 42, 1214-1216.	mbined o.	7	6
404	Laser guidance in a microfluidic biochip. Proceedings of SPIE, 2013, , .	0.6	8	0
405	Microfluidic Glucose Sensors. , 2013, , 47-67.			0
406	Paper-based Microfluidic Point-of-care Diagnostic Devices for Monitoring Drug Metabolism. Jo of Nanomedicine & Biotherapeutic Discovery, 2013, 03, .	ournal 0.4	6	8
407	Low Cost Extraction and Isothermal Amplification of DNA for Infectious Diarrhea Diagnosis. F ONE, 2013, 8, e60059.	PLoS 1.1	1	60
408	Photoresist-Free Patterning by Mechanical Abrasion of Water-Soluble Lift-Off Resists and Bar Substrates: Toward Green Fabrication of Transparent Electrodes. PLoS ONE, 2013, 8, e83939	'e 1.1). 1.1	1	7
409	Foldscope: Origami-Based Paper Microscope. PLoS ONE, 2014, 9, e98781.	1.1	1	279
410	Standing of nucleic acid testing strategies in veterinary diagnosis laboratories to uncover Mycobacterium tuberculosis complex members. Frontiers in Molecular Biosciences, 2014, 1,	16. 1.6	6	13
411	Environmental Analysis for All: The Need for Cheap Analytical Methods. Journal of Environme Analytical Chemistry, 2014, 01, .	ntal o.	3	0
412	Rapid prototyping techniques for the fabrication of biosensors. , 2014, , 93-112.			1
414	Paper-based Microreactor Integrating Cell Culture and Subsequent Immunoassay for the Inve of Cellular Phosphorylation. ACS Applied Materials & Interfaces, 2014, 6, 22423-22429.	estigation 4.0	0	29
415	Rapid Detection of Transition Metals in Welding Fumes Using Paper-Based Analytical Devices Occupational Hygiene, 2014, 58, 413-23.	s. Annals of 1.9	9	24
416	Microfluidic device on a nonwoven fabric: A potential biosensor for lactate detection. Textile Reseach Journal, 2014, 84, 1729-1741.	1.1	1	31

	Сітатіо	n Report	
#	Article	IF	CITATIONS
417	Hybrid Integrated Label-Free Chemical and Biological Sensors. Sensors, 2014, 14, 5890-5928.	2.1	60
418	Point of Care Technologies for HIV. AIDS Research and Treatment, 2014, 2014, 1-20.	0.3	46
419	Low-cost paper-based electrochemical sensors with CMOS readout IC. , 2014, , .		13
420	Laser-direct-write methods for fabrication of paper-based medical diagnostic sensors. , 2014, , .		0
421	Field evaluation of a camera-based mobile health system in low-resource settings. , 2014, , .		11
422	Imaging and Sizing of Single DNA Molecules on a Mobile Phone. ACS Nano, 2014, 8, 12725-12733.	7.3	155
423	Paper-based glucose biosensing system utilizing a smartphone as a signal reader. Biochip Journal, 2014, 8, 218-226.	2.5	92
424	Barcode-Like Paper Sensor for Smartphone Diagnostics: An Application of Blood Typing. Analytical Chemistry, 2014, 86, 11362-11367.	3.2	91
425	Paper-based colorimetric enzyme linked immunosorbent assay fabricated by laser induced forward transfer. Biomicrofluidics, 2014, 8, 036502.	1.2	24
426	Bottom-Up Fabrication of Paper-Based Microchips by Blade Coating of Cellulose Microfibers on a Patterned Surface. Langmuir, 2014, 30, 15041-15046.	1.6	23
427	A low-cost and rapid microfluidic paper-based analytical device fabrication method: flash foam stamp lithography. RSC Advances, 2014, 4, 63860-63865.	1.7	35
428	Fabrication of Paper-Based Microfluidics by Single-Step Wax Printing for Portable Multianalyte Bioassays. Advanced Materials Research, 0, 881-883, 503-508.	0.3	4
429	Hematopoietic Stem Cell Protocols. Methods in Molecular Biology, 2014, , .	0.4	2
430	Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Review of Molecular Diagnostics, 2014, 14, 225-244.	1.5	294
431	Inkjet Printing of Conductive Inks with High Lateral Resolution on Omniphobic "R ^F Paperâ€ for Paperâ€8ased Electronics and MEMS. Advanced Materials, 2014, 26, 4677-4682.	• 11.1	216
432	Enzymatic Transformation of Phosphate Decorated Magnetic Nanoparticles for Selectively Sorting and Inhibiting Cancer Cells. Bioconjugate Chemistry, 2014, 25, 2129-2133.	1.8	24
433	Prototyping of Wrinkled Nano-/Microstructured Electrodes for Electrochemical DNA Detection. Analytical Chemistry, 2014, 86, 12341-12347.	3.2	38
434	Low-Voltage Origami-Paper-Based Electrophoretic Device for Rapid Protein Separation. Analytical Chemistry, 2014, 86, 12390-12397.	3.2	72

#	Article	IF	CITATIONS
435	Visual and sensitive detection of viable pathogenic bacteria by sensing of RNA markers in gold nanoparticles based paper platform. Biosensors and Bioelectronics, 2014, 62, 38-46.	5.3	62
437	Point-of-Care Vertical Flow Allergen Microarray Assay: Proof of Concept. Clinical Chemistry, 2014, 60, 1209-1216.	1.5	52
438	Measuring Fate and Rate of Singleâ€Molecule Competition of Amplification and Restriction Digestion, and Its Use for Rapid Genotyping Tested with Hepatitisâ€C Viral RNA. Angewandte Chemie - International Edition, 2014, 53, 8088-8092.	7.2	24
439	Materials and Fabrication Techniques for Nano- and Microfluidic Devices. RSC Detection Science, 2014, , 1-28.	0.0	18
440	High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films. Nanotechnology, 2014, 25, 094012.	1.3	59
441	Point of care nucleic acid detection of viable pathogenic bacteria with isothermal RNA amplification based paper biosensor. Proceedings of SPIE, 2014, , .	0.8	3
442	Paper microfluidics in bioanalysis. Bioanalysis, 2014, 6, 2911-2914.	0.6	22
443	Heterogeneous integration of gels into microfluidics using a mesh carrier. Biomedical Microdevices, 2014, 16, 829-835.	1.4	4
444	EWOD (electrowetting on dielectric) digital microfluidics powered by finger actuation. Lab on A Chip, 2014, 14, 1117.	3.1	53
445	Chemiluminescence excited paper-based photoelectrochemical competitive immunosensing based on porous ZnO spheres and CdS nanorods. Journal of Materials Chemistry B, 2014, 2, 7679-7684.	2.9	23
446	Evaluation of Optical Detection Platforms for Multiplexed Detection of Proteins and the Need for Point-of-Care Biosensors for Clinical Use. Sensors, 2014, 14, 22313-22341.	2.1	67
447	Biosphere. Nanostructure Science and Technology, 2014, , 105-130.	0.1	0
448	Colored wax-printed timers for two-dimensional and three-dimensional assays on paper-based devices. Biomicrofluidics, 2014, 8, 066502.	1.2	29
449	Process parameter effects on dimensional accuracy of a hot embossing process for polymer-based micro-fluidic device manufacturing. International Journal of Advanced Manufacturing Technology, 2014, 75, 225-235.	1.5	12
450	Fabrication of a Textile-Based Platform for Rapid Analyte Detection. Applied Mechanics and Materials, 0, 490-491, 1611-1616.	0.2	0
451	Paper-based chromatographic chemiluminescence chip for the detection of dichlorvos in vegetables. Biosensors and Bioelectronics, 2014, 52, 76-81.	5.3	77
452	Enhanced protein adsorption and patterning on nanostructured latex-coated paper. Colloids and Surfaces B: Biointerfaces, 2014, 118, 261-269.	2.5	13
453	Hand-drawn&written pen-on-paper electrochemiluminescence immunodevice powered by rechargeable battery for low-cost point-of-care testing. Biosensors and Bioelectronics, 2014, 61, 21-27.	5.3	46

#	Article	IF	CITATIONS
454	Ultrasensitive chemiluminescence detection of DNA on a microfluidic paper-based analytical device. Monatshefte Für Chemie, 2014, 145, 129-135.	0.9	19
455	Hydroxypropyl Cellulose Methacrylate as a Photoâ€Patternable and Biodegradable Hybrid Paper Substrate for Cell Culture and Other Bioapplications. Advanced Healthcare Materials, 2014, 3, 543-554.	3.9	25
456	Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis. Journal of Pharmaceutical and Biomedical Analysis, 2014, 87, 36-52.	1.4	137
457	Fabrication of three-dimensional microfluidic channels in a single layer of cellulose paper. Microfluidics and Nanofluidics, 2014, 16, 819-827.	1.0	77
458	Engineering microfluidic papers: effect of fiber source and paper sheet properties on capillary-driven fluid flow. Microfluidics and Nanofluidics, 2014, 16, 789-799.	1.0	91
459	A paper based self-pumping and self-breathing fuel cell using pencil stroked graphite electrodes. Lab on A Chip, 2014, 14, 1661-1664.	3.1	109
460	Recent progress in the physics of microfluidics and related biotechnological applications. Current Opinion in Biotechnology, 2014, 25, 129-134.	3.3	32
461	In situ silver nanoparticles synthesis in agarose film supported on filter paper and its application as highly efficient SERS test stripes. Forensic Science International, 2014, 237, e42-e46.	1.3	35
462	Sensitive origami dual-analyte electrochemical immunodevice based on polyaniline/Au-paper electrode and multi-labeled 3D graphene sheets. Electrochimica Acta, 2014, 120, 102-109.	2.6	61
463	The present and future role of microfluidics in biomedical research. Nature, 2014, 507, 181-189.	13.7	2,259
464	One-step rapid fabrication of paper-based microfluidic devices using fluorocarbon plasma polymerization. Microfluidics and Nanofluidics, 2014, 16, 811-818.	1.0	37
465	Developing new materials for paper-based diagnostics using electrospun nanofibers. Analytical and Bioanalytical Chemistry, 2014, 406, 3297-3304.	1.9	40
466	Fabrication of disposable electrochemical devices using silver ink and office paper. Analyst, The, 2014, 139, 2742-2747.	1.7	83
467	A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: Toward whole blood glucose determination. Biosensors and Bioelectronics, 2014, 56, 77-82.	5.3	201
468	Advances in paper-based point-of-care diagnostics. Biosensors and Bioelectronics, 2014, 54, 585-597.	5.3	826
469	A "green―cellulose paper based glucose amperometric biosensor. Sensors and Actuators B: Chemical, 2014, 193, 536-541.	4.0	84
470	Bacterial detection: From microscope to smartphone. Biosensors and Bioelectronics, 2014, 60, 332-342.	5.3	131
471	The expanding role of paper in point-of-care diagnostics. Expert Review of Molecular Diagnostics, 2014, 14, 123-125.	1.5	24

	CITATION	Report	
#	Article	IF	CITATIONS
472	Nanomaterial-enhanced paper-based biosensors. TrAC - Trends in Analytical Chemistry, 2014, 58, 31-39.	5.8	165
473	Omniphobic "R ^F Paper―Produced by Silanization of Paper with Fluoroalkyltrichlorosilanes. Advanced Functional Materials, 2014, 24, 60-70.	7.8	169
474	Photoâ€Patterning of Nonâ€Fouling Polymers and Biomolecules on Paper. Advanced Materials, 2014, 26, 4087-4092.	11.1	79
475	Bioplasmonic calligraphy for multiplexed label-free biodetection. Biosensors and Bioelectronics, 2014, 59, 208-215.	5.3	26
476	Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3671-3676.	3.3	167
477	A paper microfluidic cartridge for automated staining of malaria parasites with an optically transparent microscopy window. Lab on A Chip, 2014, 14, 2040-2046.	3.1	23
478	Interfacing microfluidic chip-based chromatography with flame atomic absorption spectrometry for the determination of chromium(VI). Microchemical Journal, 2014, 114, 216-222.	2.3	12
479	A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper. Nanotechnology, 2014, 25, 094006.	1.3	193
480	A fluorescent probe for thiols based on aggregation-induced emission and its application in live-cell imaging. Dyes and Pigments, 2014, 108, 24-31.	2.0	70
481	Paperâ€Based Electrochemical Biosensors: From Test Strips to Paperâ€Based Microfluidics. Electroanalysis, 2014, 26, 1214-1223.	1.5	107
482	Electrochemistry in Hollow-Channel Paper Analytical Devices. Journal of the American Chemical Society, 2014, 136, 4616-4623.	6.6	129
483	Recent advances in lowâ€cost microfluidic platforms for diagnostic applications. Electrophoresis, 2014, 35, 2309-2324.	1.3	124
484	Multilayer Paper-Based Device for Colorimetric and Electrochemical Quantification of Metals. Analytical Chemistry, 2014, 86, 3555-3562.	3.2	288
485	Equipment-Free Quantitative Measurement for Microfluidic Paper-Based Analytical Devices Fabricated Using the Principles of Movable-Type Printing. Analytical Chemistry, 2014, 86, 2005-2012.	3.2	99
486	Hydrophobic sol–gel channel patterning strategies for paper-based microfluidics. Lab on A Chip, 2014, 14, 691-695.	3.1	137
487	A paper-based microfluidic electrochemical immunodevice integrated with amplification-by-polymerization for the ultrasensitive multiplexed detection of cancer biomarkers. Biosensors and Bioelectronics, 2014, 52, 180-187.	5.3	175
488	Surface Acoustic Wave Microfluidics. Annual Review of Fluid Mechanics, 2014, 46, 379-406.	10.8	456
489	Using Paper-Based Diagnostics with High School Students To Model Forensic Investigation and Colorimetric Analysis. Journal of Chemical Education, 2014, 91, 107-111.	1.1	39

#	Article	IF	CITATIONS
490	Determination of nitrite in saliva using microfluidic paper-based analytical devices. Analytica Chimica Acta, 2014, 809, 117-122.	2.6	138
491	Fresnel lenses fabricated by femtosecond laser micromachining on polymer one-dimensional photonic crystal. Optical Engineering, 2014, 53, 071813.	0.5	2
492	Paper-based batteries: A review. Biosensors and Bioelectronics, 2014, 54, 640-649.	5.3	207
493	A paper-based potentiometric cell for decentralized monitoring of Li levels in whole blood. Lab on A Chip, 2014, 14, 1308.	3.1	92
494	Paper-based analytical devices for point-of-care infectious disease testing. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 147-156.	1.3	66
495	Facile synthesis of ZnO/CuO nanostructures on cellulose paper and their p–n junction properties. Materials Letters, 2014, 116, 64-67.	1.3	17
496	Lab-in-a-pen: a diagnostics format familiar to patients for low-resource settings. Lab on A Chip, 2014, 14, 957.	3.1	24
497	Paper-based microfluidics with high resolution, cut on a glass fiber membrane for bioassays. Lab on A Chip, 2014, 14, 911.	3.1	62
498	Paper based colorimetric biosensing platform utilizing cross-linked siloxane as probe. Biosensors and Bioelectronics, 2014, 55, 39-43.	5.3	67
499	Simple SERS substrates: powerful, portable, and full of potential. Physical Chemistry Chemical Physics, 2014, 16, 2224-2239.	1.3	197
500	Inkjet-Printed Fluidic Paper Devices for Chemical and Biological Analytics Using Surface Enhanced Raman spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 195-204.	1.9	22
501	Transparent paper: fabrications, properties, and device applications. Energy and Environmental Science, 2014, 7, 269-287.	15.6	457
502	Automatic spot preparation and image processing of paper microzone-based assays for analysis of bioactive compounds in plant extracts. Food Chemistry, 2014, 143, 465-471.	4.2	22
503	Agarose-Based Microfluidic Device for Point-of-Care Concentration and Detection of Pathogen. Analytical Chemistry, 2014, 86, 10653-10659.	3.2	33
504	Folding Analytical Devices for Electrochemical ELISA in Hydrophobic R ^H Paper. Analytical Chemistry, 2014, 86, 11999-12007.	3.2	127
505	One-step and eco-friendly modification of cellulose membranes by polymer grafting. RSC Advances, 2014, 4, 60959-60969.	1.7	9
506	Novel salicylaldehyde derivatives as fluorescence turn-on sensors for cyanide ion. Journal of Hazardous Materials, 2014, 280, 458-463.	6.5	51
507	Selective Fluorescence Turn-On and Ratiometric Detection of Organophosphate Using Dual-Emitting Mn-Doped ZnS Nanocrystal Probe. Analytical Chemistry, 2014, 86, 11727-11733.	3.2	115

#	Article	IF	CITATIONS
508	Fusing Catechol-Driven Surface Anchoring with Rapid Hetero Diels–Alder Ligation. ACS Macro Letters, 2014, 3, 1169-1173.	2.3	17
509	Rapid prototyping techniques for the fabrication of biosensors. , 2014, , 75-96.		0
510	Electrophoretic separation in a microfluidic paper-based analytical device with an on-column wireless electrogenerated chemiluminescence detector. Chemical Communications, 2014, 50, 5699.	2.2	65
511	Paper-based electrochemical immunoassay for rapid, inexpensive cancer biomarker protein detection. Analytical Methods, 2014, 6, 8878-8881.	1.3	31
512	Paper substrate modification for rapid capillary flow in microfluidic paper-based analytical devices. RSC Advances, 2014, 4, 12867-12872.	1.7	22
513	Spectrally Matched Duplexed Nucleic Acid Bioassay Using Two-Colors from a Single Form of Upconversion Nanoparticle. Analytical Chemistry, 2014, 86, 10932-10939.	3.2	24
514	Laser-induced photo-polymerisation for creation of paper-based fluidic devices. Lab on A Chip, 2014, 14, 4567-4574.	3.1	72
515	Multiplexed charge-selective surface enhanced Raman scattering based on plasmonic calligraphy. Journal of Materials Chemistry C, 2014, 2, 5438.	2.7	38
516	Caterpillar locomotion-inspired valveless pneumatic micropump using a single teardrop-shaped elastomeric membrane. Lab on A Chip, 2014, 14, 2240-2248.	3.1	9
517	Electrochromatographic separations of multi-component metal complexes on a microfluidic paper-based device with a simplified photolithography. RSC Advances, 2014, 4, 1093-1101.	1.7	53
518	Enhancement of Quantum Dot Förster Resonance Energy Transfer within Paper Matrices and Application to Proteolytic Assays. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 141-151.	1.9	5
519	Electrodes/paper sandwich devices for in situ sensing of hydrogen peroxide secretion from cells growing in gels-in-paper 3-dimensional matrix. Analytical Methods, 2014, 6, 4446-4454.	1.3	22
520	Construction of a new versatile point-of-care testing device with electrochemical detection employing paper as a microfluidic platform. Analytical Methods, 2014, 6, 6133-6136.	1.3	10
521	Multiplex detection of nucleic acids using a low cost microfluidic chip and a personal glucose meter at the point-of-care. Chemical Communications, 2014, 50, 3824-3826.	2.2	44
522	Induced charge electroosmosis micropumps using arrays of Janus micropillars. Lab on A Chip, 2014, 14, 3300-3312.	3.1	40
523	Photoâ€Induced Functionalization of Spherical and Planar Surfaces via Caged Thioaldehyde Endâ€Functional Polymers. Advanced Functional Materials, 2014, 24, 5649-5661.	7.8	25
524	A paper-based bacteria-powered battery having high power generation. , 2014, , .		2
525	Preparation of paper micro-fluidic devices used in bio-assay based on drop-on-demand wax droplet generation. Analytical Methods, 2014, 6, 878-885.	1.3	22

#	Article	IF	CITATIONS
526	Point of care diagnostics for sexually transmitted infections: perspectives and advances. Expert Review of Anti-Infective Therapy, 2014, 12, 657-672.	2.0	143
527	Development of the smartphone-based colorimetry for multi-analyte sensing arrays. Lab on A Chip, 2014, 14, 1725-1732.	3.1	199
528	Nanoporous Membranes Enable Concentration and Transport in Fully Wet Paper-Based Assays. Analytical Chemistry, 2014, 86, 8090-8097.	3.2	72
529	Pencil leads doped with electrochemically deposited Ag and AgCl for drawing reference electrodes on paper-based electrochemical devices. Electrochimica Acta, 2014, 146, 518-524.	2.6	52
530	A 3D origami electrochemical immunodevice based on a Au@Pd alloy nanoparticle-paper electrode for the detection of carcinoembryonic antigen. Journal of Materials Chemistry B, 2014, 2, 6669-6674.	2.9	36
531	Vapor-phase deposition of polymers as a simple and versatile technique to generate paper-based microfluidic platforms for bioassay applications. Analyst, The, 2014, 139, 2326-2331.	1.7	63
532	Modification of microfluidic paper-based devices with silica nanoparticles. Analyst, The, 2014, 139, 5560-5567.	1.7	140
533	1000-fold sample focusing on paper-based microfluidic devices. Lab on A Chip, 2014, 14, 4465-4474.	3.1	89
534	The pumping lid: investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications. Lab on A Chip, 2014, 14, 4616-4628.	3.1	95
535	Bright lights yield drug readout. Nature Chemical Biology, 2014, 10, 490-491.	3.9	3
535 536	Bright lights yield drug readout. Nature Chemical Biology, 2014, 10, 490-491. Luminescence Resonance Energy Transfer-Based Nucleic Acid Hybridization Assay on Cellulose Paper with Upconverting Phosphor as Donors. Analytical Chemistry, 2014, 86, 2719-2726.	3.9 3.2	3 63
535 536 537	Bright lights yield drug readout. Nature Chemical Biology, 2014, 10, 490-491. Luminescence Resonance Energy Transfer-Based Nucleic Acid Hybridization Assay on Cellulose Paper with Upconverting Phosphor as Donors. Analytical Chemistry, 2014, 86, 2719-2726. A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays. RSC Advances, 2014, 4, 37637-37644.	3.9 3.2 1.7	3 63 198
535 536 537 538	Bright lights yield drug readout. Nature Chemical Biology, 2014, 10, 490-491. Luminescence Resonance Energy Transfer-Based Nucleic Acid Hybridization Assay on Cellulose Paper with Upconverting Phosphor as Donors. Analytical Chemistry, 2014, 86, 2719-2726. A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays. RSC Advances, 2014, 4, 37637-37644. Enabling robust quantitative readout in an equipment-free model of device development. Analyst, The, 2014, 139, 4750-4757.	3.93.21.71.7	3 63 198 43
535 536 537 538	Bright lights yield drug readout. Nature Chemical Biology, 2014, 10, 490-491. Luminescence Resonance Energy Transfer-Based Nucleic Acid Hybridization Assay on Cellulose Paper with Upconverting Phosphor as Donors. Analytical Chemistry, 2014, 86, 2719-2726. A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays. RSC Advances, 2014, 4, 37637-37644. Enabling robust quantitative readout in an equipment-free model of device development. Analyst, The, 2014, 139, 4750-4757. Cellulose: from biocompatible to bioactive material. Journal of Materials Chemistry B, 2014, 2, 4767-4788.	 3.9 3.2 1.7 1.7 2.9 	3 63 198 43 243
 535 536 537 538 539 541 	Bright lights yield drug readout. Nature Chemical Biology, 2014, 10, 490-491.Luminescence Resonance Energy Transfer-Based Nucleic Acid Hybridization Assay on Cellulose Paper with Upconverting Phosphor as Donors. Analytical Chemistry, 2014, 86, 2719-2726.A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays. RSC Advances, 2014, 4, 37637-37644.Enabling robust quantitative readout in an equipment-free model of device development. Analyst, The, 2014, 139, 4750-4757.Cellulose: from biocompatible to bioactive material. Journal of Materials Chemistry B, 2014, 2, 4767-4788.A paper-based amperometric glucose biosensor developed with Prussian Blue-modified screen-printed electrodes. Sensors and Actuators B: Chemical, 2014, 204, 414-420.	 3.9 3.2 1.7 1.7 2.9 4.0 	3 63 198 43 243 69
 535 536 537 538 539 541 542 	Bright lights yield drug readout. Nature Chemical Biology, 2014, 10, 490-491. Luminescence Resonance Energy Transfer-Based Nucleic Acid Hybridization Assay on Cellulose Paper with Upconverting Phosphor as Donors. Analytical Chemistry, 2014, 86, 2719-2726. A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays. RSC Advances, 2014, 4, 37637-37644. Enabling robust quantitative readout in an equipment-free model of device development. Analyst, The, 2014, 139, 4750-4757. Cellulose: from biocompatible to bioactive material. Journal of Materials Chemistry B, 2014, 2, 4767-4788. A paper-based amperometric glucose biosensor developed with Prussian Blue-modified screen-printed electrodes. Sensors and Actuators B: Chemical, 2014, 204, 414-420. Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation: SIMPLE. Lab on A Chip, 2014, 14, 4329-4333.	 3.9 3.2 1.7 1.7 2.9 4.0 3.1 	3 63 198 43 243 69
 535 536 537 538 539 541 542 543 	Bright lights yield drug readout. Nature Chemical Biology, 2014, 10, 490-491.Luminescence Resonance Energy Transfer-Based Nucleic Acid Hybridization Assay on Cellulose Paper with Upconverting Phosphor as Donors. Analytical Chemistry, 2014, 86, 2719-2726.A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays. RSC Advances, 2014, 4, 37637-37644.Enabling robust quantitative readout in an equipment-free model of device development. Analyst, The, 2014, 139, 4750-4757.Cellulose: from biocompatible to bioactive material. Journal of Materials Chemistry B, 2014, 2, 4767-4788.A paper-based amperometric glucose biosensor developed with Prussian Blue-modified screen-printed electrodes. Sensors and Actuators B: Chemical, 2014, 204, 414-420.Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation: SIMPLE. Lab on A Chip, 2014, 14, 4329-4333.Nanomolar Detection Limits of Cd ^{2+<(sup>, Ag^{+<(sup>, and K^{+<(sup>) +<(sup>) Lising Paper-Strip Ion-Selective Electrodes. Analytical Chemistry, 2014, 86, 7269-7273.}}}	 3.9 3.2 1.7 1.7 2.9 4.0 3.1 3.2 	3 63 198 43 243 69 72 83

#	Article	IF	CITATIONS
545	A chemiluminescence excited photoelectrochemistry aptamer-device equipped with a tin dioxide quantum dot/reduced graphene oxide nanocomposite modified porous Au-paper electrode. Journal of Materials Chemistry B, 2014, 2, 3462-3468.	2.9	27
546	Prospects for the commercialization of chemiluminescence-based point-of-care and on-site testing devices. Analytical and Bioanalytical Chemistry, 2014, 406, 5631-5637.	1.9	33
547	Paper-based three-dimensional microfluidic device for monitoring of heavy metals with a camera cell phone. Analytical and Bioanalytical Chemistry, 2014, 406, 2799-2807.	1.9	114
548	Centrifugal automation of a triglyceride bioassay on a low-cost hybrid paper-polymer device. Microfluidics and Nanofluidics, 2014, 16, 895-905.	1.0	25
549	Paper-based diagnostic devices for evaluating the quality of human sperm. Microfluidics and Nanofluidics, 2014, 16, 857-867.	1.0	25
550	Future of portable devices for plant pathogen diagnosis. Lab on A Chip, 2014, 14, 2887-2904.	3.1	81
551	Portable paperâ€based device for quantitative colorimetric assays relying on light reflectance principle. Electrophoresis, 2014, 35, 1152-1159.	1.3	63
552	Programming Fluid Transport in Paper-Based Microfluidic Devices Using Razor-Crafted Open Channels. Analytical Chemistry, 2014, 86, 6202-6207.	3.2	111
553	Direct measurement of the differential pressure during drop formation in a co-flow microfluidic device. Lab on A Chip, 2014, 14, 1357.	3.1	35
554	Twist on Protein Microarrays: Layering Wax-Patterned Nitrocellulose to Create Customizable and Separable Arrays of Multiplexed Affinity Columns. Analytical Chemistry, 2014, 86, 4209-4216.	3.2	11
555	Isotachophoretic Preconcenetration on Paper-Based Microfluidic Devices. Analytical Chemistry, 2014, 86, 5829-5837.	3.2	112
556	Rational selection of substrates to improve color intensity and uniformity on microfluidic paper-based analytical devices. Analyst, The, 2014, 139, 2127-2132.	1.7	148
557	Paper-based electrochemical cyto-device for sensitive detection of cancer cells and in situ anticancer drug screening. Analytica Chimica Acta, 2014, 847, 1-9.	2.6	87
558	A device architecture for three-dimensional, patterned paper immunoassays. Lab on A Chip, 2014, 14, 4653-4658.	3.1	72
559	Electrochemical―and Fluorescentâ€Mediated Signal Amplifications for Rapid Detection of Lowâ€Abundance Circulating Tumor Cells on a Paperâ€Based Microfluidic Immunodevice. ChemElectroChem, 2014, 1, 722-727.	1.7	23
560	Capture and Detection of DNA Hybrids on Paper via the Anchoring of Antibodies with Fusions of Carbohydrate Binding Modules and ZZ-Domains. Analytical Chemistry, 2014, 86, 4340-4347.	3.2	61
561	An Overview of the Clinical Use of Filter Paper in the Diagnosis of Tropical Diseases. American Journal of Tropical Medicine and Hygiene, 2014, 90, 195-210.	0.6	110
562	An interference-free and rapid electrochemical lateral-flow immunoassay for one-step ultrasensitive detection with serum. Analyst, The, 2014, 139, 1420-1425.	1.7	53

#	Article	IF	CITATIONS
563	Microemulsification: An Approach for Analytical Determinations. Analytical Chemistry, 2014, 86, 9082-9090.	3.2	19
564	Camera-Based Ratiometric Fluorescence Transduction of Nucleic Acid Hybridization with Reagentless Signal Amplification on a Paper-Based Platform Using Immobilized Quantum Dots as Donors. Analytical Chemistry, 2014, 86, 10331-10339.	3.2	96
565	Quantitative fluorescence assays using a self-powered paper-based microfluidic device and a camera-equipped cellular phone. RSC Advances, 2014, 4, 1334-1340.	1.7	95
566	Three-Dimensional Wax Patterning of Paper Fluidic Devices. Langmuir, 2014, 30, 7030-7036.	1.6	135
567	Stability measurements of antibodies stored on paper. Analytical Biochemistry, 2014, 449, 147-154.	1.1	22
568	Design of capillary flows with functionally graded porous titanium oxide films fabricated by anodization instability. Journal of Colloid and Interface Science, 2014, 423, 143-150.	5.0	5
569	Doped pencil leads for drawing modified electrodes on paper-based electrochemical devices. Journal of Electroanalytical Chemistry, 2014, 722-723, 90-94.	1.9	57
570	Transparency microplates under impact. Journal of Colloid and Interface Science, 2014, 426, 56-63.	5.0	7
571	Bienzyme colorimetric detection of glucose with self-calibration based on tree-shaped paper strip. Sensors and Actuators B: Chemical, 2014, 190, 414-418.	4.0	88
572	Kinetic study of glucose oxidase on microfluidic toner-based analytical devices for clinical diagnostics with image-based detection. Analytical Methods, 2014, 6, 4995-5000.	1.3	21
573	Simple, Sensitive, and Quantitative Electrochemical Detection Method for Paper Analytical Devices. Analytical Chemistry, 2014, 86, 6501-6507.	3.2	82
575	Potentiometric sensing utilizing paper-based microfluidic sampling. Analyst, The, 2014, 139, 2133-2136.	1.7	51
576	Lab-on-paper-based devices using chemiluminescence and electrogenerated chemiluminescence detection. Analytical and Bioanalytical Chemistry, 2014, 406, 5613-5630.	1.9	73
577	Morphology and Entrapped Enzyme Performance in Inkjet-Printed Sol–Gel Coatings on Paper. Chemistry of Materials, 2014, 26, 1941-1947.	3.2	33
578	Impact of humidity on functionality of on-paper printed electronics. Nanotechnology, 2014, 25, 094003.	1.3	33
579	Fabrication of Low-Cost Paper-Based Microfluidic Devices by Embossing or Cut-and-Stack Methods. Chemistry of Materials, 2014, 26, 4230-4237.	3.2	140
580	Manufacturing prototypes for paper-based diagnostic devices. Microfluidics and Nanofluidics, 2014, 16, 801-809.	1.0	50
581	A versatile-deployable bacterial detection system for food and environmental safety based on LabTube-automated DNA purification, LabReader-integrated amplification, readout and analysis. Analyst The 2014 139 2788-2798	1.7	7

ARTICLE IF CITATIONS Cellulose Paper Sensors Modified with Zwitterionic Poly(carboxybetaine) for Sensing and Detection 582 3.2 71 in Complex Media. Analytical Chemistry, 2014, 86, 2871-2875. Lights and shadows on Food Microfluidics. Lab on A Chip, 2014, 14, 3213-3224. 3.1 Highly Sensitive Immunoassay Based on Controlled Rehydration of Patterned Reagents in a 584 3.2 77 2-Dimensional Paper Network. Analytical Chemistry, 2014, 86, 6447-6453. Paper-based electrochemiluminescence immunodevice for carcinoembryonic antigen using nanoporous gold-chitosan hybrids and graphene quantum dots functionalized Au@Pt. Sensors and 4.0 59 Actuators B: Chemical, 2014, 202, 314-322 A microfluidic optical beam steerer. Microfluidics and Nanofluidics, 2014, 16, 47-53. 586 1.0 4 Development of Highly Sensitive Amperometric Biosensor for Glucose Using Carbon Nanosphere/Sodium Álginate Composite Matrix for Enzyme Immobilization. Analytical Sciences, 2014, 0.8 30, 897-902. $UV\hat{a} \in initiated$ copolymerization route for facile fabrication of $epoxy\hat{a} \in functionalized$ micro $\hat{a} \in z$ one plates. 588 1.3 0 Journal of Applied Polymer Science, 2014, 131, . Development of Novel Deposition Method for Silver Nanostructures on Flexible and Nanopatterned Surfaces., 2014, 5, 1043-1048. Optode sensor for on-site detection and quantification of hydroxide ions in highly concentrated 591 1.7 6 alkali solutions. RSC Advances, 2015, 5, 72893-72899. A portable point-of-care device for multi-parametric diabetes mellitus analysis., 2015,,. Laser Machined Plastic Laminates: Towards Portable Diagnostic Devices for Use in Low Resource 593 1.5 1 Environments. Electroanalysis, 2015, 27, 2503-2512. 594 The development of image base, portable microfluidic paper-based analytical device., 2015, , . Continuous Flow Microfluidic Bioparticle Concentrator. Scientific Reports, 2015, 5, 11300. 595 1.6 76 A Dual Electrochemical Sensor Based on a Test-strip Assay for the Quantitative Determination of 0.8 Albumin and Creatinine. Analytical Sciences, 2015, 31, 583-589. A paper-based microfluidic biosensor integrating zinc oxide nanowires for electrochemical glucose 597 131 3.4 detection. Microsystems and Nanoengineering, 2015, 1, . Cotton-based Diagnostic Devices. Scientific Reports, 2014, 4, 6976. 29 Rational Design of Photonic Dust from Nanoporous Anodic Alumina Films: A Versatile Photonic 599 1.6 31 Nanotool for Visual Sensing. Scientific Reports, 2015, 5, 12893. Printed Flexible Plastic Microchip for Viral Load Measurement through Quantitative Detection of 1.6 Viruses in Plasma and Saliva. Scientific Reports, 2015, 5, 9919.

#	Article	IF	CITATIONS
601	Microfluidic assembly kit based on laser-cut building blocks for education and fast prototyping. Biomicrofluidics, 2015, 9, 064105.	1.2	9
602	Lateral Flow Immunoassays – from Paper Strip to Smartphone Technology. Electroanalysis, 2015, 27, 2116-2130.	1.5	89
603	Engineering Cell ompatible Paper Chips for Cell Culturing, Drug Screening, and Mass Spectrometric Sensing. Advanced Healthcare Materials, 2015, 4, 2291-2296.	3.9	40
605	Autonomous Chemical Sensing Interface for Universal Cell Phone Readout. Angewandte Chemie - International Edition, 2015, 54, 8708-8712.	7.2	54
606	Increasing performance and stability of mass-manufacturable biobatteries by ink modification. Sensing and Bio-Sensing Research, 2015, 4, 61-69.	2.2	1
607	Surface Tension Triggered Wetting and Point of Care Sensor Design. Advanced Healthcare Materials, 2015, 4, 1654-1657.	3.9	4
610	CdTeâ€paperâ€based Visual Sensor for Detecting Methyl Viologen. Chinese Journal of Chemistry, 2015, 33, 446-450.	2.6	18
611	A Review of Patterned Organic Bioelectronic Materials and their Biomedical Applications. Advanced Materials, 2015, 27, 7583-7619.	11.1	67
612	The Evolution and Future of Point-of-Care Testing. Point of Care, 2015, 14, 110-115.	0.5	5
614	A Modular, DNAâ€Based Beacon for Singleâ€Step Fluorescence Detection of Antibodies and Other Proteins. Angewandte Chemie - International Edition, 2015, 54, 13214-13218.	7.2	93
615	Solution or Gas Phase? Oxidation and Radical Formation in Electrospray Ionization Mass Spectrometry (ESI MS). Electroanalysis, 2015, 27, 2872-2881.	1.5	9
616	Chromatographic paper embedded with silver nanostructure as a disposable substrate for surfaceâ€enhanced Raman spectroscopy and catalytic reactor. Journal of Raman Spectroscopy, 2015, 46, 211-216.	1.2	6
617	Paper-based smart microfluidics for education and low-cost diagnostics. South African Journal of Science, 2015, 111, 10.	0.3	18
618	Poly(N-isopropylacrylamide) Hydrogels for Storage and Delivery of Reagents to Paper-Based Analytical Devices. Chromatography (Basel), 2015, 2, 436-451.	1.2	12
619	Surface and Electrical Characterization of Ag/AgCl Pseudo-Reference Electrodes Manufactured with Commercially Available PCB Technologies. Sensors, 2015, 15, 18102-18113.	2.1	38
620	Portable Nanoparticle-Based Sensors for Food Safety Assessment. Sensors, 2015, 15, 30736-30758.	2.1	146
621	Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering. Sensors, 2015, 15, 31142-31170.	2.1	124
622	Performance of an Optimized Paper-Based Test for Rapid Visual Measurement of Alanine Aminotransferase (ALT) in Fingerstick and Venipuncture Samples. PLoS ONE, 2015, 10, e0128118.	1.1	19

#	Article	IF	CITATIONS
623	AMPFLUID: Aggregation Magnified Post-Assay Fluorescence for Ultrasensitive Immunodetection on Digital Microfluidics. Proceedings of the IEEE, 2015, 103, 225-235.	16.4	15
624	A Novel Fluid-Reconfigurable Advanced and Delayed Phase Line Using Inkjet-Printed Microfluidic Composite Right/Left-Handed Transmission Line. IEEE Microwave and Wireless Components Letters, 2015, 25, 142-144.	2.0	20
625	An electrochemical microfluidic paper-based glucose sensor integrating zinc oxide nanowires. , 2015, ,		1
626	Pyrrolidinyl peptide nucleic acids immobilised on cellulose paper as a DNA sensor. RSC Advances, 2015, 5, 24110-24114.	1.7	17
627	A disposable paper-based electrochemiluminescence device for ultrasensitive monitoring of CEA based on Ru(bpy) ₃ ²⁺ @Au nanocages. RSC Advances, 2015, 5, 28324-28331.	1.7	33
628	A low cost design and fabrication method for developing a leak proof paper based microfluidic device with customized test zone. Biomicrofluidics, 2015, 9, 026502.	1.2	9
629	Low-Interference Washing-Free Electrochemical Immunosensor Using Glycerol-3-phosphate Dehydrogenase as an Enzyme Label. Analytical Chemistry, 2015, 87, 3574-3578.	3.2	56
630	Paper as a Platform for Sensing Applications and Other Devices: A Review. ACS Applied Materials & Interfaces, 2015, 7, 8345-8362.	4.0	269
631	Enhancement of performance in porous bead-based microchip sensors: effects of chip geometry on bio-agent capture. RSC Advances, 2015, 5, 48194-48206.	1.7	5
632	Laser treated glass platform with rapid wicking-driven transport and particle separation capabilities. , 2015, , .		0
633	Fast-fabrication process for low environmental impact microsystems. Journal of Cleaner Production, 2015, 108, 207-216.	4.6	9
634	Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection. Analytica Chimica Acta, 2015, 885, 156-165.	2.6	32
635	Biocompatible Enzymatic Roller Pens for Direct Writing of Biocatalytic Materials: "Doâ€itâ€Yourself― Electrochemical Biosensors. Advanced Healthcare Materials, 2015, 4, 1215-1224.	3.9	58
636	Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Research, 2015, 70, 360-369.	5.3	176
637	Electrochemical Detection in Stacked Paper Networks. Journal of the Association for Laboratory Automation, 2015, 20, 506-510.	2.8	2
638	Evaluating organophosphate poisoning in human serum with paper. Talanta, 2015, 144, 189-195.	2.9	7
639	Timing readout in paper device for quantitative point-of-use hemin/G-quadruplex DNAzyme-based bioassays. Biosensors and Bioelectronics, 2015, 73, 13-18.	5.3	45
640	Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Science Translational Medicine, 2015, 7, 289ra83.	5.8	199

#	Article	IF	CITATIONS
641	Towards paper based diaper sensors. , 2015, , .		9
642	Towards a high-precision, embedded system for versatile sensitive biosensing measurements. , 2015, , .		2
643	Update 1 of: Destruction and Detection of Chemical Warfare Agents. Chemical Reviews, 2015, 115, PR1-PR76.	23.0	284
644	Influence of the Particle Shape and Density of Self-Assembled Gold Nanoparticle Sensors on LSPR and SERS. Journal of Physical Chemistry C, 2015, 119, 28577-28585.	1.5	109
645	Microfluidic Investigation of Nanoparticles' Role in Mobilizing Trapped Oil Droplets in Porous Media. Langmuir, 2015, 31, 13673-13679.	1.6	60
646	Hydrogel-laden paper scaffold system for origami-based tissue engineering. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15426-15431.	3.3	87
647	Fabrication of dielectrophoretic microfluidic chips using a facile screen-printing technique for microparticle trapping. Journal of Micromechanics and Microengineering, 2015, 25, 105015.	1.5	10
648	Liquid Metal Ink Enabled Rapid Prototyping of Electrochemical Sensor for Wireless Clucose Detection on the Platform of Mobile Phone. Journal of Medical Devices, Transactions of the ASME, 2015, 9, .	0.4	15
649	Smartphone spectrophotometer for point-of-care diagnostics in low-resource settings. , 2015, , .		5
650	Integrated paper-based electroanalytical devices for determination of dopamine extracted from striatum of rat. Sensors and Actuators B: Chemical, 2015, 209, 870-876.	4.0	23
651	Magnetoresistive performance and comparison of supermagnetic nanoparticles on giant magnetoresistive sensor-based detection system. Scientific Reports, 2014, 4, 5716.	1.6	80
652	Development of a microfluidicâ€based assay on a novel nitrocellulose platform. Electrophoresis, 2015, 36, 884-888.	1.3	19
653	A mediated turnip tissue paper-based amperometric hydrogen peroxide biosensor. Sensors and Actuators B: Chemical, 2015, 210, 336-342.	4.0	28
654	Pencil Drawn Strain Gauges and Chemiresistors on Paper. Scientific Reports, 2014, 4, 3812.	1.6	131
655	Microfluidic paper-based analytical devices fabricated by low-cost photolithography and embossing of Parafilm®. Lab on A Chip, 2015, 15, 1642-1645.	3.1	107
656	Detection of Cancer Biomarkers on Biosensor Surfaces. , 2015, , 43-108.		1
657	A molecularly imprinted polymer based a lab-on-paper chemiluminescence device for the detection of dichlorvos. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 141, 51-57.	2.0	73
658	Integration of Nanoparticle-Based Paper Sensors into the Classroom: An Example of Application for Rapid Colorimetric Analysis of Antioxidants. Journal of Chemical Education, 2015, 92, 886-891.	1.1	8
#	Article	IF	CITATIONS
-----	---	-----	-----------
659	Photoelectrochemical detection of tumor markers based on a CdS quantum dot/ZnO nanorod/Au@Pt-paper electrode 3D origami immunodevice. Journal of Materials Chemistry B, 2015, 3, 2426-2432.	2.9	36
660	Post modification of injection molded polystyrene components using green solvents and flexible masks. Sensors and Actuators B: Chemical, 2015, 211, 187-197.	4.0	ο
661	GalvaPot, a custom-made combination galvanostat/potentiostat and high impedance potentiometer for decentralized measurements of ionophore-based electrodes. Sensors and Actuators B: Chemical, 2015, 207, 631-639.	4.0	10
662	On the Slow Diffusion of Point-of-Care Systems in Therapeutic Drug Monitoring. Frontiers in Bioengineering and Biotechnology, 2015, 3, 20.	2.0	27
663	A high-density nanowire electrode on paper for biomedical applications. RSC Advances, 2015, 5, 8680-8687.	1.7	35
664	New method for fabricating an αâ€fetoprotein affinity monolithic polymer array. Journal of Applied Polymer Science, 2015, 132, .	1.3	Ο
665	Multiple semi-quantitative colorimetric assays in compact embeddable microfluidic cloth-based analytical device (μCAD) for effective point-of-care diagnostic. Microfluidics and Nanofluidics, 2015, 19, 317-333.	1.0	49
666	A versatile valving toolkit for automating fluidic operations in paper microfluidic devices. Lab on A Chip, 2015, 15, 1432-1444.	3.1	128
667	A stacking flow immunoassay for the detection of dengue-specific immunoglobulins in salivary fluid. Lab on A Chip, 2015, 15, 1465-1471.	3.1	66
668	Detection of Viruses By Counting Single Fluorescent Genetically Biotinylated Reporter Immunophage Using a Lateral Flow Assay. ACS Applied Materials & Interfaces, 2015, 7, 2891-2898.	4.0	21
669	A paperfluidic device for dental applications using a novel patterning technique. Analytical Methods, 2015, 7, 1293-1299.	1.3	14
670	Low-cost, high-throughput fabrication of cloth-based microfluidic devices using a photolithographical patterning technique. Lab on A Chip, 2015, 15, 1598-1608.	3.1	49
671	A paper based microfluidic device for easy detection of uric acid using positively charged gold nanoparticles. Analyst, The, 2015, 140, 1817-1821.	1.7	82
672	All-Solid-State Reference Electrodes Based on Colloid-Imprinted Mesoporous Carbon and Their Application in Disposable Paper-based Potentiometric Sensing Devices. Analytical Chemistry, 2015, 87, 2981-2987.	3.2	89
673	Blood diagnostics using sedimentation to extract plasma on a fully integrated pointâ€ofâ€care microfluidic system. Engineering in Life Sciences, 2015, 15, 333-339.	2.0	8
674	Paper-Based Thin-Layer Coulometric Sensor for Halide Determination. Analytical Chemistry, 2015, 87, 1981-1990.	3.2	82
675	Photolinker-free photoimmobilization of antibodies onto cellulose for the preparation of immunoassay membranes. Journal of Materials Chemistry B, 2015, 3, 1079-1088.	2.9	8
676	Graphene on Paper: A Simple, Low-Cost Chemical Sensing Platform. ACS Applied Materials & Interfaces, 2015, 7, 2189-2194.	4.0	101

#	Article	IF	CITATIONS
677	Microfluidic paper-based multiplex colorimetric immunodevice based on the catalytic effect of Pd/Fe3O4@C peroxidase mimetics on multiple chromogenic reactions. Analytica Chimica Acta, 2015, 862, 70-76.	2.6	46
678	A single-step enzyme immunoassay capillary sensor composed of functional multilayer coatings for the diagnosis of marker proteins. Analyst, The, 2015, 140, 1459-1465.	1.7	25
679	Paper-based enzyme-free immunoassay for rapid detection and subtyping of influenza A H1N1 and H3N2 viruses. Analytica Chimica Acta, 2015, 883, 37-44.	2.6	63
680	Ultra-low-cost â€~paper-and-pencil' device for electrically controlled micromixing of analytes. Microfluidics and Nanofluidics, 2015, 19, 375-383.	1.0	52
681	Microengineering in cardiovascular research: new developments and translational applications. Cardiovascular Research, 2015, 106, 9-18.	1.8	9
682	Spatial, spectral, radiometric, and temporal analysis of polymer-modified paper substrates using fluorescence microscopy. Cellulose, 2015, 22, 73-88.	2.4	17
683	Lab on Paper: Iodometric Titration on a Printed Card. Analytical Chemistry, 2015, 87, 3764-3770.	3.2	45
684	A 3D electrochemical immunodevice based on a porous Pt-paper electrode and metal ion functionalized flower-like Au nanoparticles. Journal of Materials Chemistry B, 2015, 3, 2764-2769.	2.9	22
685	Fabrication of a Paper-Based Microfluidic Device To Readily Determine Nitrite Ion Concentration by Simple Colorimetric Assay. Journal of Chemical Education, 2015, 92, 733-736.	1.1	55
686	Integrated, DC voltage-driven nucleic acid diagnostic platform for real sample analysis: Detection of oral cancer. Talanta, 2015, 145, 35-42.	2.9	30
687	Multifunctional Paper Strip Based on Self-Assembled Interfacial Plasmonic Nanoparticle Arrays for Sensitive SERS Detection. ACS Applied Materials & amp; Interfaces, 2015, 7, 16767-16774.	4.0	78
688	Replication of microchannel structures in WC–Co feedstock using elastomeric replica moulds by hot embossing process. Materials Science and Engineering C, 2015, 55, 252-266.	3.8	14
689	Empowering Community Health Workers with Inkjet-printed Diagnostic Test Strips. Procedia Engineering, 2015, 107, 205-214.	1.2	2
690	An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing. Analyst, The, 2015, 140, 6493-6499.	1.7	76
691	Pillar Cuvettes: Capillary-Filled, Microliter Quartz Cuvettes with Microscale Path Lengths for Optical Spectroscopy. Analytical Chemistry, 2015, 87, 4757-4764.	3.2	16
692	Fabrication of porous anodic aluminium oxide layers on paper for humidity sensors. Sensors and Actuators B: Chemical, 2015, 220, 829-839.	4.0	58
693	Integrated OLED as excitation light source in fluorescent lateral flow immunoassays. Biosensors and Bioelectronics, 2015, 74, 150-155.	5.3	30
694	Paper-Based RNA Extraction, <i>in Situ</i> Isothermal Amplification, and Lateral Flow Detection for Low-Cost, Rapid Diagnosis of Influenza A (H1N1) from Clinical Specimens. Analytical Chemistry, 2015, 87, 7872-7879.	3.2	189

ARTICLE IF CITATIONS # Paper-based sample-to-answer molecular diagnostic platform for point-of-care diagnostics. 695 5.3 120 Biosensors and Bioelectronics, 2015, 74, 427-439. Liquid on Paper: Rapid Prototyping of Soft Functional Components for Paper Electronics. Scientific 1.6 Reports, 2015, 5, 11488. One-touch-activated blood multidiagnostic system using a minimally invasive hollow microneedle 697 3.1112 integrated with a paper-based sensor. Lab on A Chip, 2015, 15, 3286-3292. "Paper Machine―for Molecular Diagnostics. Analytical Chemistry, 2015, 87, 7595-7601. 698 Gold Nanoparticles for In Vitro Diagnostics. Chemical Reviews, 2015, 115, 10575-10636. 699 23.0 725 Measurement of total antioxidant capacity in sub- \hat{l} L blood samples using craft paper-based analytical devices. RSC Advances, 2015, 5, 55633-55639. 700 1.7 Preparation of reactive fibre interfaces using multifunctional cellulose derivatives. Carbohydrate 701 5.1 11 Polymers, 2015, 132, 261-273. Bio-sample detection on paper-based devices with inkjet printer-sprayed reagents. Talanta, 2015, 145, 6-11. 2.9 10 Paper Test Cards for Presumptive Testing of Very Low Quality Antimalarial Medications. American 703 0.6 35 Journal of Tropical Medicine and Hygiene, 2015, 92, 17-23. 704 Hand-Held Reader for Colorimetric Sensor Arrays. Analytical Chemistry, 2015, 87, 7810-7816. 3.2 Fabrication and packaging of a mass-producible capillary-assembled microchip for simple and 705 4.010 multiplexed bioassay. Sensors and Actuators B: Chemical, 2015, 218, 245-252. Tailor-made functional surfaces based on cellulose-derived materials. Applied Microbiology and Biotechnology, 2015, 99, 5791-5799. Real-time monitoring of small biological molecules by ligation-mediated polymerase chain reaction. 707 2.2 4 Chemical Communications, 2015, 51, 12270-12273. Diagnosing dengue virus infection: rapid tests and the role of micro/nanotechnologies. 1.7 38 Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1745-1761. Low-cost blood plasma separation method using salt functionalized paper. RSC Advances, 2015, 5, 709 1.7 51 53172-53179. Hand drawing of pencil electrodes on paper platforms for contactless conductivity detection of inorganic cations in human tear samples using electrophoresis chips. Electrophoresis, 2015, 36, 59 1837-1844. Raman Characterization of Nanoparticle Transport in Microfluidic Paper-Based Analytical Devices 711 4.0 23 (14/4PADs). ACS Applied Materials & amp; Interfaces, 2015, 7, 9139-9146. From the Bench to the Field in Lowâ€Cost Diagnostics: Two Case Studies. Angewandte Chemie -141 International Edition, 2015, 54, 5836-5853.

	C	CITATION REPORT	
#	Article	IF	CITATIONS
713	Advancing rapid point-of-care viral diagnostics to a clinical setting. Future Virology, 2015, 10, 313-32	28. 0.9	18
714	Self-powered competitive immunosensor driven by biofuel cell based on hollow-channel paper analytical devices. Biosensors and Bioelectronics, 2015, 71, 18-24.	5.3	35
715	Office Paper Platform for Bioelectrochromic Detection of Electrochemically Active Bacteria using Tungsten Trioxide Nanoprobes. Scientific Reports, 2015, 5, 9910.	1.6	75
716	A paper-based resonance energy transfer nucleic acid hybridization assay using upconversion nanoparticles as donors and quantum dots as acceptors. Analytica Chimica Acta, 2015, 878, 1-8.	2.6	62
717	Single-step bioassays in serum and whole blood with a smartphone, quantum dots and paper-in-PDM chips. Analyst, The, 2015, 140, 4037-4045.	IS 1.7	73
718	Hydrogel-driven paper-based microfluidics. Lab on A Chip, 2015, 15, 2452-2459.	3.1	64
719	Open bipolar electrode-electrochemiluminescence imaging sensing using paper-based microfluidics. Sensors and Actuators B: Chemical, 2015, 216, 255-262.	4.0	67
720	Incorporating yeast biosensors into paper-based analytical tools for pharmaceutical analysis. Analytical and Bioanalytical Chemistry, 2015, 407, 615-619.	1.9	27
721	Multiplexed enzyme-free electrochemical immunosensor based on ZnO nanorods modified reduced graphene oxide-paper electrode and silver deposition-induced signal amplification strategy. Biosensors and Bioelectronics, 2015, 71, 30-36.	5.3	63
722	Reagent pencils: a new technique for solvent-free deposition of reagents onto paper-based microfluidic devices. Lab on A Chip, 2015, 15, 2213-2220.	3.1	45
723	Applications of Paper-Based Diagnostics. , 2015, , 161-195.		14
724	Paper imbibition for timing of multi-step liquid handling protocols on event-triggered centrifugal microfluidic lab-on-a-disc platforms. RSC Advances, 2015, 5, 1818-1826.	1.7	44
725	Toward point-of-care diagnostics with consumer electronic devices: the expanding role of nanoparticles. RSC Advances, 2015, 5, 22256-22282.	1.7	90
726	Colorimetric determination of nitrite in clinical, food and environmental samples using microfluidic devices stamped in paper platforms. Analytical Methods, 2015, 7, 7311-7317.	1.3	132
727	New approach for sensitive photothermal detection of C60 and C70 fullerenes on micro-thin-layer chromatographic plates. Analytica Chimica Acta, 2015, 863, 70-77.	2.6	14
728	An aptamer-functionalized chemomechanically modulated biomolecule catch-and-release system. Nature Chemistry, 2015, 7, 447-454.	6.6	128
729	Paper and Flexible Substrates as Materials for Biosensing Platforms to Detect Multiple Biotargets. Scientific Reports, 2015, 5, 8719.	1.6	148
730	Coffee stains on paper. Chemical Engineering Science, 2015, 129, 34-41.	1.9	49

#	Article	IF	CITATIONS
731	Low-cost bioanalysis on paper-based and its hybrid microfluidic platforms. Talanta, 2015, 145, 43-54.	2.9	121
732	Reconfigurable microfluidic dilution for high-throughput quantitative assays. Lab on A Chip, 2015, 15, 2670-2679.	3.1	14
733	Effect of hematocrit on blood dynamics on a compact disc platform. Analyst, The, 2015, 140, 1432-1437.	1.7	22
734	Detection of trace arsenic in drinking water: challenges and opportunities for microfluidics. Environmental Science: Water Research and Technology, 2015, 1, 426-447.	1.2	112
735	Chemiluminescence detection for microfluidic cloth-based analytical devices (μCADs). Biosensors and Bioelectronics, 2015, 72, 114-120.	5.3	38
736	Printed microwells with highly stable thin-film enzyme coatings for point-of-care multiplex bioassay of blood samples. Analyst, The, 2015, 140, 4105-4113.	1.7	35
737	Paper-based cell culture microfluidic system. Biochip Journal, 2015, 9, 97-104.	2.5	32
738	Paper-Based Systems for Point-of-Care Biosensing. Journal of the Association for Laboratory Automation, 2015, 20, 316-333.	2.8	38
739	Patterned Paper Sensors Printed with Longâ€Chain DNA Aptamers. Chemistry - A European Journal, 2015, 21, 7369-7373.	1.7	66
740	Advances in Smartphone-Based Point-of-Care Diagnostics. Proceedings of the IEEE, 2015, 103, 236-247.	16.4	169
741	Paperâ€Based Inkjetâ€Printed Microfluidic Analytical Devices. Angewandte Chemie - International Edition, 2015, 54, 5294-5310.	7.2	419
742	Photo-assisted inkjet printing of antibodies onto cellulose for the eco ² -friendly preparation of immunoassay membranes. RSC Advances, 2015, 5, 29786-29798.	1.7	14
743	Piezoelectric-driven droplet impact printing with an interchangeable microfluidic cartridge. Biomicrofluidics, 2015, 9, 054101.	1.2	17
744	Eco-friendly electrochemical lab-on-paper for heavy metal detection. Analytical and Bioanalytical Chemistry, 2015, 407, 8445-8449.	1.9	70
745	Paper-based devices for energy applications. Renewable and Sustainable Energy Reviews, 2015, 52, 1453-1472.	8.2	92
746	Microfluidic paper analytical device for the chromatographic separation of ascorbic acid and dopamine. RSC Advances, 2015, 5, 93162-93169.	1.7	32
747	Application of microfluidic "lab-on-a-chip―for the detection of mycotoxins in foods. Trends in Food Science and Technology, 2015, 46, 252-263.	7.8	75
748	Will nanobiosensors change therapeutic drug monitoring? The case of methotrexate. Nanomedicine, 2015, 10, 521-524.	1.7	11

ATION R

#	ARTICLE	IF	CITATIONS
749	Recent developments in computer vision-based analytical chemistry: A tutorial review. Analytica Chimica Acta, 2015, 899, 23-56.	2.6	220
750	Reprint of 'Evaluating organophosphate poisoning in human serum with paper'. Talanta, 2015, 145, 66-72.	2.9	7
751	Demonstration of an optical cavity sensor with a differential detection method by refractive index measurements. , 2015, , .		2
752	Multiplex detection and genotyping of pathogenic bacteria on paper-based biosensor with a novel universal primer mediated asymmetric PCR. Biosensors and Bioelectronics, 2015, 74, 778-785.	5.3	41
753	Detection of Hepatitis B Virus DNA with a Paper Electrochemical Sensor. Analytical Chemistry, 2015, 87, 9009-9015.	3.2	150
754	A portable, paper-based multiplexing immunosensor for detection of HIV and HCV markers in serum. , 2015, , .		0
755	Application of Nanoparticles in Manufacturing. , 2015, , 1-53.		4
756	Melt-and-mold fabrication (MnM-Fab) of reconfigurable low-cost devices for use in resource-limited settings. Talanta, 2015, 145, 20-28.	2.9	7
757	Emerging Technologies for Next-Generation Point-of-Care Testing. Trends in Biotechnology, 2015, 33, 692-705.	4.9	583
758	Two-ply channels for faster wicking in paper-based microfluidic devices. Lab on A Chip, 2015, 15, 4461-4466.	3.1	98
759	Paper-based plasmon-enhanced protein sensing by controlled nucleation of silver nanoparticles on cellulose. Cellulose, 2015, 22, 4027-4034.	2.4	16
760	Design, Synthesis, and Characterization of Small-Molecule Reagents That Cooperatively Provide Dual Readouts for Triaging and, When Necessary, Quantifying Point-of-Need Enzyme Assays. Journal of Organic Chemistry, 2015, 80, 10437-10445.	1.7	11
761	Direct DNA Analysis with Paper-Based Ion Concentration Polarization. Journal of the American Chemical Society, 2015, 137, 13913-13919.	6.6	121
762	Organ-on-a-chip and the kidney. Kidney Research and Clinical Practice, 2015, 34, 165-169.	0.9	70
763	An instantly usable paper-based screen-printed solid-state KCl/Ag/AgCl reference electrode with long-term stability. Analyst, The, 2015, 140, 6481-6484.	1.7	38
764	Toward Paper-Based Sensors: Turning Electrical Signals into an Optical Readout System. ACS Applied Materials & Interfaces, 2015, 7, 19201-19209.	4.0	45
765	Novel membrane devices and their potential utility in blood sample collection prior to analysis of dried plasma spots. Bioanalysis, 2015, 7, 1987-2002.	0.6	34
766	Microfluidic Sample Preparation for Medical Diagnostics. Annual Review of Biomedical Engineering, 2015, 17, 267-286.	5.7	106

#	Article	IF	CITATIONS
767	Rapid, culture-independent, optical diagnostics of centrifugally captured bacteria from urine samples. Biomicrofluidics, 2015, 9, 044118.	1.2	32
768	Dynamics of water imbibition through paper channels with wax boundaries. Microfluidics and Nanofluidics, 2015, 19, 845-853.	1.0	81
769	Microfluidic multiplexed partitioning enables flexible and effective utilization of magnetic sensor arrays. Lab on A Chip, 2015, 15, 4273-4276.	3.1	10
770	Engineering fluidic delays in paper-based devices using laser direct-writing. Lab on A Chip, 2015, 15, 4054-4061.	3.1	33
771	Low-voltage paper isotachophoresis device for DNA focusing. Lab on A Chip, 2015, 15, 4090-4098.	3.1	54
772	Printed Paper Sensors for Serum Lactate Dehydrogenase using Pullulan-Based Inks to Immobilize Reagents. Analytical Chemistry, 2015, 87, 9288-9293.	3.2	66
773	Microemulsification-Based Method: Analysis of Monoethylene Glycol in Samples Related to Natural Gas Processing. Energy & Fuels, 2015, 29, 5649-5654.	2.5	5
774	Capillary penetration in cellulose and polyethylene porous media: effect of contact with vapours and partial saturation with a non-miscible liquid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 483, 297-306.	2.3	8
775	A solution processed carbon nanotube modified conducting paper sensor for cancer detection. Journal of Materials Chemistry B, 2015, 3, 9305-9314.	2.9	48
776	Versatile Microfluidic Droplets Array for Bioanalysis. ACS Applied Materials & Interfaces, 2015, 7, 935-940.	4.0	35
777	Experimental and numerical studies on liquid wicking into filter papers for paper-based diagnostics. Applied Thermal Engineering, 2015, 88, 280-287.	3.0	74
778	A novel paper-based microfluidic enhanced chemiluminescence biosensor for facile, reliable and highly-sensitive gene detection of Listeria monocytogenes. Sensors and Actuators B: Chemical, 2015, 209, 399-406.	4.0	67
779	Paper-based assay of antioxidant activity using analyte-mediated on-paper nucleation of gold nanoparticles as colorimetric probes. Analytica Chimica Acta, 2015, 860, 61-69.	2.6	76
780	A flexible and low-cost polypropylene pouch for naked-eye detection of herpes simplex viruses. Analyst, The, 2015, 140, 931-937.	1.7	13
781	Paper – a potential platform in pharmaceutical development. Trends in Biotechnology, 2015, 33, 4-9.	4.9	49
782	Rapid fabrication of paper-based microfluidic analytical devices with desktop stereolithography 3D printer. RSC Advances, 2015, 5, 2694-2701.	1.7	65
783	DNA/RNA Preparation for Molecular Detection. Clinical Chemistry, 2015, 61, 89-99.	1.5	89
784	Design and fabrication of a new nonwoven-textile based platform for biosensor construction. Sensors and Actuators B: Chemical, 2015, 208, 475-484.	4.0	24

#	Article	IF	CITATIONS
785	Direct measurement of betaâ€agonists in swine hair extract in multiplexed mode by surfaceâ€enhanced Raman spectroscopy and microfluidic paper. Electrophoresis, 2015, 36, 485-487.	1.3	13
786	Emerging Technologies for Point-of-Care Management of HIV Infection. Annual Review of Medicine, 2015, 66, 387-405.	5.0	97
787	Chemiluminescence excited photoelectrochemical competitive immunosensing lab-on-paper device using an integrated paper supercapacitor for signal amplication. Sensors and Actuators B: Chemical, 2015, 208, 546-553.	4.0	32
788	Paper-based microfluidic sensing device for label-free immunoassay demonstrated by biotin–avidin binding interaction. Talanta, 2015, 134, 264-270.	2.9	40
789	A simple method for patterning poly(dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps. Analytica Chimica Acta, 2015, 858, 82-90.	2.6	82
790	Simultaneous colorimetric detection of improvised explosive compounds using microfluidic paper-based analytical devices (μPADs). Analytical Methods, 2015, 7, 63-70.	1.3	105
791	Corrin-based chemosensors for the ASSURED detection of endogenous cyanide. Organic and Biomolecular Chemistry, 2015, 13, 14-17.	1.5	25
792	Recent Developments in Paper-Based Microfluidic Devices. Analytical Chemistry, 2015, 87, 19-41.	3.2	1,002
793	Nematic Director Reorientation at Solid and Liquid Interfaces under Flow: SAXS Studies in a Microfluidic Device. Langmuir, 2015, 31, 4361-4371.	1.6	27
794	Paper-based microfluidic sampling for potentiometric determination of ions. Sensors and Actuators B: Chemical, 2015, 207, 933-939.	4.0	56
795	Printed electronics integrated with paper-based microfluidics: new methodologies for next-generation health care. Microfluidics and Nanofluidics, 2015, 19, 251-261.	1.0	42
796	Hydrochloric acid-impregnated paper for gallium-based liquid metal microfluidics. Sensors and Actuators B: Chemical, 2015, 207, 199-205.	4.0	32
797	Femtogram detection of horseradish peroxidase by a common desktop scanner. Journal of Bioscience and Bioengineering, 2015, 119, 113-116.	1.1	13
798	A siphonage flow and thread-based low-cost platform enables quantitative and sensitive assays. Lab on A Chip, 2015, 15, 495-503.	3.1	20
799	Polymerization-based signal amplification for paper-based immunoassays. Lab on A Chip, 2015, 15, 655-659.	3.1	98
800	Paper based platform for colorimetric sensing of dissolved NH3 and CO2. Biosensors and Bioelectronics, 2015, 67, 477-484.	5.3	54
801	3D origami electrochemical immunodevice for sensitive point-of-care testing based on dual-signal amplification strategy. Biosensors and Bioelectronics, 2015, 63, 7-13.	5.3	60
802	Cyto-sensing in electrochemical lab-on-paper cyto-device for in-situ evaluation of multi-glycan expressions on cancer cells. Biosensors and Bioelectronics, 2015, 63, 232-239.	5.3	58

#	Article	IF	Citations
803	A cost-effective Z-folding controlled liquid handling microfluidic paper analysis device for pathogen detection via ATP quantification. Biosensors and Bioelectronics, 2015, 63, 379-383.	5.3	56
804	Paper-based electrochemiluminescence origami cyto-device for multiple cancer cells detection using porous AuPd alloy as catalytically promoted nanolabels. Biosensors and Bioelectronics, 2015, 63, 450-457.	5.3	81
805	Microfluidic biosensors for high throughput screening of pathogens in food. , 2015, , 327-357.		10
806	A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosensors and Bioelectronics, 2015, 64, 63-68.	5.3	309
808	Easily Fabricated Microfluidic Devices Using Permanent Marker Inks for Enzyme Assays. Micromachines, 2016, 7, 6.	1.4	26
809	Surface Modification Chemistries of Materials Used in Diagnostic Platforms with Biomolecules. Journal of Chemistry, 2016, 2016, 1-19.	0.9	51
810	Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors. Biosensors, 2016, 6, 36.	2.3	18
811	Current Technologies and Recent Developments for Screening of HPV-Associated Cervical and Oropharyngeal Cancers. Cancers, 2016, 8, 85.	1.7	41
812	Aspartate Aminotransferase and Alanine Aminotransferase Detection on Paper-Based Analytical Devices with Inkjet Printer-Sprayed Reagents. Micromachines, 2016, 7, 9.	1.4	24
813	Challenges and Opportunities of Centrifugal Microfluidics for Extreme Point-of-Care Testing. Micromachines, 2016, 7, 32.	1.4	32
814	Challenges in the Use of Compact Disc-Based Centrifugal Microfluidics for Healthcare Diagnostics at the Extreme Point of Care. Micromachines, 2016, 7, 52.	1.4	29
815	Influence of Geometry and Surrounding Conditions on Fluid Flow in Paper-Based Devices. Micromachines, 2016, 7, 73.	1.4	48
816	Cardiac Meets Skeletal: What's New in Microfluidic Models for Muscle Tissue Engineering. Molecules, 2016, 21, 1128.	1.7	39
817	Fabrication of a Miniature Paper-Based Electroosmotic Actuator. Polymers, 2016, 8, 400.	2.0	10
818	A Fluidically Tunable Metasurface Absorber for Flexible Large-Scale Wireless Ethanol Sensor Applications. Sensors, 2016, 16, 1246.	2.1	61
819	Microwave Chemical Sensor Using Substrate-Integrated-Waveguide Cavity. Sensors, 2016, 16, 1829.	2.1	31
820	A Review on Microfluidic Paper-Based Analytical Devices for Glucose Detection. Sensors, 2016, 16, 2086.	2.1	100
821	Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular	1.1	43

		CITATION REPORT		
#	Article		IF	CITATIONS
822	Microfluidic components, devices and integrated lab-on-a-chip systems. , 2016, , 181-214.			0
823	Paper-based bipolar electrode-electrochemiluminescence (BPE-ECL) device with battery energy su and smartphone read-out: A handheld ECL system for biochemical analysis at the point-of-care lev Sensors and Actuators B: Chemical, 2016, 237, 308-317.	ipply vel.	4.0	104
824	Paperâ€Based Surfaces with Extreme Wettabilities for Novel, Openâ€Channel Microfluidic Device Advanced Functional Materials, 2016, 26, 6121-6131.	?S.	7.8	82
825	Ein einfacher Zugang zu funktionalen Mustern auf Cellulosepapier durch Kombination von Laserdruck und materialspezifischer Peptidadsorption. Angewandte Chemie, 2016, 128, 11435-1	1440.	1.6	7
826	Easy Access to Functional Patterns on Cellulose Paper by Combining Laser Printing and Materialâ€6pecific Peptide Adsorption. Angewandte Chemie - International Edition, 2016, 55, 11.	266-11270.	7.2	41
827	Targetâ€Induced and Equipmentâ€Free DNA Amplification with a Simple Paper Device. Angewand 2016, 128, 2759-2763.	dte Chemie,	1.6	38
828	A Disposable Planar Paperâ€Based Potentiometric Ionâ€Sensing Platform. Angewandte Chemie - International Edition, 2016, 55, 7544-7547.		7.2	88
829	A paper-based microbial fuel cell operating under continuous flow condition. Technology, 2016, 0 98-103.)4,	1.4	54
830	Electrically Activated Paper Actuators. Advanced Functional Materials, 2016, 26, 2446-2453.		7.8	135
831	Advances of Paper-Based Microfluidics for Diagnostics—The Original Motivation and Current St ACS Sensors, 2016, 1, 1382-1393.	atus.	4.0	119
832	Paper-based CRP Monitoring Devices. Scientific Reports, 2016, 6, 38171.		1.6	19
833	Fluorimetric Mercury Test Strips with Suppressed "Coffee Stains―by a Bio-inspired Fabricatio Strategy. Scientific Reports, 2016, 6, 36494.	on .	1.6	25
834	Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detecti of multiple cancer biomarkers. Scientific Reports, 2016, 6, 23406.	on	1.6	45
835	Inexpensive urinalysis test strips to screen for diabetes in developing countries. , 2016, , .			6
836	Flexible dopamine sensor based on electrolyte gated carbon nanotube field effect transistor. , 20	16,,.		4
837	The power of data mining in diagnosis of childhood pneumonia. Journal of the Royal Society Inter 2016, 13, 20160266.	face,	1.5	33
838	Integrated ZnO nanoparticles on paper-based microfluidic: toward efficient analytical device for glucose detection based on impedance and FTIR measurement. Proceedings of SPIE, 2016, , .		0.8	2
839	Development of smart phone tools for printed diagnostics: Challenges and solutions. , 2016, , .			2

#	Article	IF	CITATIONS
841	Interaction of elastocapillary flows in parallel microchannels across a thin membrane. Applied Physics Letters, 2016, 109, 141601.	1.5	9
842	Inkjet printed silver electrodes on macroporous paper for a paper-based isoelectric focusing device. Biomicrofluidics, 2016, 10, 064120.	1.2	18
843	Multi-analyte paper-analytical-devices (PAD) with CMOS integration for point-of-Care diagnostics. , 2016, , .		4
844	A portable paper-based microfluidic platform for multiplexed electrochemical detection of human immunodeficiency virus and hepatitis C virus antibodies in serum. Biomicrofluidics, 2016, 10, 024119.	1.2	70
845	Spatial Control of Bacteria Using Screen Printing. 3D Printing and Additive Manufacturing, 2016, 3, 194-203.	1.4	6
846	Image analysis for a microfluidic paper-based analytical device using the CIE L*a*b* color system. Analyst, The, 2016, 141, 6507-6509.	1.7	54
847	Papierbasierte mikrofluidische Systeme. Chemkon - Chemie Konkret, Forum Fuer Unterricht Und Didaktik, 2016, 23, 181-187.	0.2	2
848	Lab-on-paper micro- and nano-analytical devices: Fabrication, modification, detection and emerging applications. Mikrochimica Acta, 2016, 183, 1521-1542.	2.5	110
849	An all-glass 12 μm ultra-thin and flexible micro-fluidic chip fabricated by femtosecond laser processing. Lab on A Chip, 2016, 16, 2427-2433.	3.1	50
850	Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices. Analyst, The, 2016, 141, 4749-4756.	1.7	153
851	A microfluidic galvanic cell on a single layer of paper. Journal of Power Sources, 2016, 318, 163-169.	4.0	31
852	Microfluidic Platforms for Quantitative Biology Studies in Model Organisms. , 2016, , 1-18.		3
853	Simultaneous forward and reverse ABO blood group typing using a paper-based device and barcode-like interpretation. Analytica Chimica Acta, 2016, 921, 67-76.	2.6	29
854	Chelate titrations of Ca 2+ and Mg 2+ using microfluidic paper-based analytical devices. Analytica Chimica Acta, 2016, 924, 60-67.	2.6	62
855	Microfluidic Methods for Molecular Biology. , 2016, , .		4
856	Microfluidic Paper-Based Multiplexing Biosensors for Electrochemical Detection of Metabolic Biomarkers. , 2016, , 205-218.		2
857	Multiplexed, Patterned-Paper Immunoassay for Detection of Malaria and Dengue Fever. Analytical Chemistry, 2016, 88, 6161-6165.	3.2	62
858	Chemiluminescence reactions enhanced by silver nanoparticles and silver alloy nanoparticles: Applications in analytical chemistry. TrAC - Trends in Analytical Chemistry, 2016, 82, 126-142.	5.8	51

#	Article	IF	CITATIONS
859	Development of graphene-based sensors on paper substrate for the measurement of pH value of analyte. Biochip Journal, 2016, 10, 182-188.	2.5	28
860	New Functionalities for Paper-Based Sensors Lead to Simplified User Operation, Lower Limits of Detection, and New Applications. Annual Review of Analytical Chemistry, 2016, 9, 183-202.	2.8	93
861	Fabrication and Operation of Paper-Based Analytical Devices. Annual Review of Analytical Chemistry, 2016, 9, 203-222.	2.8	74
862	Immobilized liquid layers: A new approach to anti-adhesion surfaces for medical applications. Experimental Biology and Medicine, 2016, 241, 909-918.	1.1	81
863	A stackable, two-chambered, paper-based microbial fuel cell. Biosensors and Bioelectronics, 2016, 83, 27-32.	5.3	74
864	A paper-based biomimetic device for the reduction of Cu(<scp>ii</scp>) to Cu(<scp>i</scp>) – application to the sensing of Cu(<scp>ii</scp>). Chemical Communications, 2016, 52, 6569-6572.	2.2	39
865	Paper-based biodetection using luminescent nanoparticles. Analyst, The, 2016, 141, 2838-2860.	1.7	45
866	Photonic Lab-on-a-Chip: Integration of Optical Spectroscopy in Microfluidic Systems. Analytical Chemistry, 2016, 88, 6630-6637.	3.2	63
867	Microfluidic-based photocatalytic microreactor for environmental application: a review of fabrication substrates and techniques, and operating parameters. Photochemical and Photobiological Sciences, 2016, 15, 714-730.	1.6	79
868	Continuous-Flow Separation of Malaria-Infected Human Erythrocytes Using DC Dielectrophoresis: An Electrokinetic Modeling and Simulation. Industrial & Engineering Chemistry Research, 2016, 55, 5484-5499.	1.8	10
869	2D wax-printed paper substrates with extended solvent supply capabilities allow enhanced ion signal in paper spray ionization. Analyst, The, 2016, 141, 3866-3873.	1.7	69
870	Impedimetric quantification of cells encapsulated in hydrogel cultured in a paper-based microchamber. Talanta, 2016, 147, 628-633.	2.9	19
871	Fast and single-step immunoassay based on fluorescence quenching within a square glass capillary immobilizing graphene oxide–antibody conjugate and fluorescently labelled antibody. Analyst, The, 2016, 141, 3389-3394.	1.7	17
872	Improving the analytical performance and versatility of paper spray mass spectrometry via paper microfluidics. Analyst, The, 2016, 141, 4065-4073.	1.7	10
873	Engineered nanofluidic preconcentration devices by ion concentration polarization. Biochip Journal, 2016, 10, 251-261.	2.5	40
874	Computational cell analysis for label-free detection of cell properties in a microfluidic laminar flow. Analyst, The, 2016, 141, 4142-4150.	1.7	10
875	A portable sample concentrator on paper-based microfluidic devices. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	25
876	A Microfluidic Investigation of the Synergistic Effect of Nanoparticles and Surfactants in Macro-Emulsion Based EOR. , 2016, , .		11

#	Article	IF	CITATIONS
877	Colorimetric Detection of Alkaline Phosphatase on Microfluidic Paper-based Analysis Devices. Chinese Journal of Analytical Chemistry, 2016, 44, 591-596.	0.9	27
878	Multivariate analysis of digital images of a paper sensor by partial least squares for determination of nitrite. Chemometrics and Intelligent Laboratory Systems, 2016, 158, 48-53.	1.8	11
879	Development of a paper-based analytical device for colorimetric detection of uric acid using gold nanoparticles–graphene oxide (AuNPs–GO) conjugates. Analytical Methods, 2016, 8, 6965-6973.	1.3	48
880	Analytical performance of paper electro-biosensor detection platform for point-of-care diagnosis. Cellulose, 2016, 23, 3799-3808.	2.4	16
881	Magnetic-adhesive based valves for microfluidic devices used in low-resource settings. Lab on A Chip, 2016, 16, 4142-4151.	3.1	12
882	Portable Enzyme-Paper Biosensors Based on Redox-Active CeO2 Nanoparticles. Methods in Enzymology, 2016, 571, 177-195.	0.4	10
883	Point-of-use electroanalytical platform based on homemade potentiostat and smartphone for multivariate data processing. Electrochimica Acta, 2016, 219, 170-177.	2.6	41
884	Thermally actuated wax valves for paper-fluidic diagnostics. Lab on A Chip, 2016, 16, 4230-4236.	3.1	44
885	Temperature-Switch Cytometry—Releasing Antibody on Demand from Inkjet-Printed Gelatin for On-Chip Immunostaining. ACS Applied Materials & Interfaces, 2016, 8, 27539-27545.	4.0	8
886	A field-deployable mobile molecular diagnostic system for malaria at the point of need. Lab on A Chip, 2016, 16, 4341-4349.	3.1	39
887	Recruiting physisorbed water in surface polymerization for bio-inspired materials of tunable hydrophobicity. Journal of Materials Chemistry A, 2016, 4, 14729-14738.	5.2	45
888	Functional nanostructures for enzyme based biosensors: properties, fabrication and applications. Journal of Materials Chemistry B, 2016, 4, 7178-7203.	2.9	54
889	Development of an Indicator Displacement Based Detection of Malaria Targeting HRP-II as Biomarker for Application in Point-of-Care Settings. Analytical Chemistry, 2016, 88, 10316-10321.	3.2	21
890	Dengue diagnosis on laser printed microzones using smartphone-based detection and multivariate image analysis. Analytical Methods, 2016, 8, 6506-6511.	1.3	23
891	Microfluidics-based Low-Cost Medical Diagnostic Devices: Some Recent Developments. INAE Letters, 2016, 1, 59-64.	1.0	11
892	Flow control in paper-based microfluidic device for automatic multistep assays: A focused minireview. Korean Journal of Chemical Engineering, 2016, 33, 2761-2770.	1.2	41
893	A paper-based lanthanide smart device for acid–base vapour detection, anti-counterfeiting and logic operations. Inorganic Chemistry Frontiers, 2016, 3, 1014-1020.	3.0	50
894	A one-step strategy for ultra-fast and low-cost mass production of plastic membrane microfluidic chips. Lab on A Chip, 2016, 16, 3909-3918.	3.1	25

#	Article	IF	CITATIONS
895	Measurement of the hematocrit using paper-based microfluidic devices. Lab on A Chip, 2016, 16, 3689-3694.	3.1	93
896	Plasmonic-ELISA: expanding horizons. RSC Advances, 2016, 6, 85440-85456.	1.7	83
897	Paper-PDMS hybrid microchannel: a platform for rapid fluid-transport and mixing. Journal of Microengineering, 2016, 26, 105008.	1.5	19
898	Paperâ€Origamiâ€Based Multiplexed Malaria Diagnostics from Whole Blood. Angewandte Chemie - International Edition, 2016, 55, 15250-15253.	7.2	125
899	Paperâ€Origamiâ€Based Multiplexed Malaria Diagnostics from Whole Blood. Angewandte Chemie, 2016, 128, 15476-15479.	1.6	29
900	A sensing smartphone and its portable accessory for on-site rapid biochemical detection of marine toxins. Analytical Methods, 2016, 8, 6895-6902.	1.3	34
901	A mobile laboratory for rapid on-site analysis of catechols from water samples with real-time results production. RSC Advances, 2016, 6, 80885-80895.	1.7	2
902	Highly efficient sample stacking by enhanced field amplification on a simple paper device. Lab on A Chip, 2016, 16, 3460-3465.	3.1	42
903	Current Status of Microfluidics-Assisted Cytology: The Application in Molecular Cytology. Essentials in Cytopathology Series, 2016, , 261-283.	0.1	0
904	Determination of Iron Ion in the Water of a Natural Hot Spring Using Microfluidic Paper-based Analytical Devices. Analytical Sciences, 2016, 32, 31-34.	0.8	37
905	Precise capillary flow for paper-based viscometry. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	35
906	Towards low-cost bioanalytical tools for sarcosine assays for cancer diagnostics. Analytical Methods, 2016, 8, 7312-7318.	1.3	33
907	Inkjet printing on transparency films for reagent storage with polyester–toner microdevices. Analytical Methods, 2016, 8, 7061-7068.	1.3	11
908	An Integrated Paperâ€Based Readout System and Piezoresistive Pressure Sensor for Measuring Bandage Compression. Advanced Materials Technologies, 2016, 1, 1600143.	3.0	22
909	Immobilized Biocatalyst for Detection and Destruction of the Insensitive Explosive, 2,4-Dinitroanisole (DNAN). Environmental Science & Technology, 2016, 50, 11193-11199.	4.6	10
913	A novel screen-printed microfluidic paper-based electrochemical device for detection of glucose and uric acid in urine. Biomedical Microdevices, 2016, 18, 92.	1.4	46
914	Coated and uncoated cellophane as materials for microplates and open-channel microfluidics devices. Lab on A Chip, 2016, 16, 3885-3897.	3.1	24
915	Smart hydrogels as storage elements with dispensing functionality in discontinuous microfluidic systems. Lab on A Chip, 2016, 16, 3977-3989.	3.1	19

#	Article	IF	CITATIONS
916	Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chemical Reviews, 2016, 116, 9305-9374.	23.0	1,110
917	Challenges and opportunities for translating medical microdevices: insights from the programmable bio-nano-chip. Bioanalysis, 2016, 8, 905-919.	0.6	7
918	Paper-based enzymatic microfluidic fuel cell: From a two-stream flow device to a single-stream lateral flow strip. Journal of Power Sources, 2016, 326, 410-416.	4.0	59
919	A Multifunctional Surface That Simultaneously Balances Hydrophilic Enzyme Catalysis and Hydrophobic Water Repellency. Chemistry - A European Journal, 2016, 22, 12068-12073.	1.7	7
920	Hairy cellulose nanocrystalloids: a novel class of nanocellulose. Nanoscale, 2016, 8, 15101-15114.	2.8	111
921	Paper Microfluidics. , 2016, , 165-190.		0
922	Biological Applications of Microfluidics System. , 2016, , 191-221.		5
923	Simultaneous Identification and Antimicrobial Susceptibility Testing of Multiple Uropathogens on a Microfluidic Chip with Paper-Supported Cell Culture Arrays. Analytical Chemistry, 2016, 88, 11593-11600.	3.2	27
924	Nanoparticle-based photoacoustic analysis for highly sensitive lateral flow assays. Nanoscale, 2016, 8, 19204-19210.	2.8	33
925	Photopatterned Multidimensional Fluorescent Images. Advanced Functional Materials, 2016, 26, 8471-8477.	7.8	17
926	Three-dimensional paper-based slip device for one-step point-of-care testing. Scientific Reports, 2016, 6, 25710.	1.6	68
927	A Simple Paper-Based Colorimetric Device for Rapid Mercury(II) Assay. Scientific Reports, 2016, 6, 31948.	1.6	77
928	Mimosa Origami: A nanostructure-enabled directional self-organization regime of materials. Science Advances, 2016, 2, e1600417.	4.7	108
929	Origami microfluidic paper-analytical-devices (omPAD) for sensing and diagnostics. , 2016, 2016, 307-310.		7
930	Microfluidics for Biologists. , 2016, , .		16
931	<i>In Situ</i> Ion-Transmission Mass Spectrometry for Paper-Based Analytical Devices. Analytical Chemistry, 2016, 88, 10805-10810.	3.2	26
932	Development of a functional point-of-need diagnostic for myeloperoxidase detection to identify neutrophilic bronchitis. Analyst, The, 2016, 141, 6438-6443.	1.7	10
933	Lignocellulose-based analytical devices: bamboo as an analytical platform for chemical detection. Scientific Reports, 2016, 5, 18570.	1.6	37

#	Article	IF	CITATIONS
934	Creating compact and microscale features in paper-based devices by laser cutting. Analyst, The, 2016, 141, 6449-6454.	1.7	39
935	An inkjet printed, roll-coated digital microfluidic device for inexpensive, miniaturized diagnostic assays. Lab on A Chip, 2016, 16, 4560-4568.	3.1	88
936	Simultaneous transfer of noble metals and three-dimensional micro- and nanopatterns onto zein for fabrication of nanophotonic platforms. Journal of Materials Science, 2016, 51, 3806-3816.	1.7	14
937	A paper-based electrochemiluminescence electrode as an aptamer-based cytosensor using PtNi@carbon dots as nanolabels for detection of cancer cells and for in-situ screening of anticancer drugs. Mikrochimica Acta, 2016, 183, 1873-1880.	2.5	49
938	Modification and evaluation of the Carba NP test by use of paper strip for simple and rapid detection of carbapenemase-producing Enterobacteriaceae. World Journal of Microbiology and Biotechnology, 2016, 32, 117.	1.7	12
939	A low-cost, ultraflexible cloth-based microfluidic device for wireless electrochemiluminescence application. Lab on A Chip, 2016, 16, 2860-2870.	3.1	58
940	Supramolecular Approach to Enzyme Sensing on Paper Discs Using Lanthanide Photoluminescence. ACS Sensors, 2016, 1, 934-940.	4.0	58
941	Paper-based microreactor array for rapid screening of cell signaling cascades. Lab on A Chip, 2016, 16, 2911-2920.	3.1	20
942	Lab on a stick: multi-analyte cellular assays in a microfluidic dipstick. Lab on A Chip, 2016, 16, 2891-2899.	3.1	47
943	Comparative performance evaluation of carbon dot-based paper immunoassay on Whatman filter paper and nitrocellulose paper in the detection of HIV infection. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	68
944	A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab on A Chip, 2016, 16, 2376-2396.	3.1	354
945	Advances in biosensing strategies for HIV-1 detection, diagnosis, and therapeutic monitoring. Advanced Drug Delivery Reviews, 2016, 103, 90-104.	6.6	66
946	Fluorescence "turn-on―determination of H 2 O 2 using multilayer porous SiO 2 /NGQDs and PdAu mimetics enzymatic/oxidative cleavage of single-stranded DNA. Biosensors and Bioelectronics, 2016, 82, 204-211.	5.3	43
947	Graphene-Enabled Optoelectronics on Paper. ACS Photonics, 2016, 3, 964-971.	3.2	56
948	Microfluidic systems for stem cell-based neural tissue engineering. Lab on A Chip, 2016, 16, 2551-2571.	3.1	100
949	Ultra-High-Throughput Sample Preparation System for Lymphocyte Immunophenotyping Point-of-Care Diagnostics. Journal of the Association for Laboratory Automation, 2016, 21, 706-712.	2.8	2
950	Comparison of three indirect immunoassay formats on a common paper-based microfluidic device architecture. Analytical Methods, 2016, 8, 5204-5211.	1.3	15
951	Fluorescent zinc and copper complexes for detection of adrafinil in paper-based microfluidic devices. Chemical Communications, 2016, 52, 8279-8282.	2.2	38

#	Article	IF	CITATIONS
952	Mixed thread/paperâ€based microfluidic chips as a platform for glucose assays. Electrophoresis, 2016, 37, 1685-1690.	1.3	45
953	Flexible Substrate-Based Devices for Point-of-Care Diagnostics. Trends in Biotechnology, 2016, 34, 909-921.	4.9	180
954	Paper-based sensors and assays: a success of the engineering design and the convergence of knowledge areas. Lab on A Chip, 2016, 16, 3150-3176.	3.1	192
955	A Microfluidic Paperâ€Based Origami Nanobiosensor for Labelâ€Free, Ultrasensitive Immunoassays. Advanced Healthcare Materials, 2016, 5, 1326-1335.	3.9	69
956	Integrating Electronics and Microfluidics on Paper. Advanced Materials, 2016, 28, 5054-5063.	11.1	216
957	A Disposable Planar Paperâ€Based Potentiometric Ion‣ensing Platform. Angewandte Chemie, 2016, 128, 7670-7673.	1.6	20
958	Targetâ€Induced and Equipmentâ€Free DNA Amplification with a Simple Paper Device. Angewandte Chemie - International Edition, 2016, 55, 2709-2713.	7.2	113
959	A job for quantum dots: use of a smartphone and 3D-printed accessory for all-in-one excitation and imaging of photoluminescence. Analytical and Bioanalytical Chemistry, 2016, 408, 2913-2925.	1.9	43
960	Clinically relevant analytical techniques, organizational concepts for application and future perspectives of point-of-care testing. Biotechnology Advances, 2016, 34, 139-160.	6.0	75
961	Advances in addressing technical challenges of point-of-care diagnostics in resource-limited settings. Expert Review of Molecular Diagnostics, 2016, 16, 449-459.	1.5	103
962	Direct Biofluid Analysis Using Hydrophobic Paper Spray Mass Spectrometry. Analytical Chemistry, 2016, 88, 1878-1884.	3.2	131
963	A comparative study of paper-based microfluidic devices with respect to channel geometry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 492, 190-198.	2.3	38
964	A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples. Lab on A Chip, 2016, 16, 753-763.	3.1	224
965	A 3D electrochemical immunodevice based on an Au paper electrode and using Au nanoflowers for amplification. New Journal of Chemistry, 2016, 40, 2835-2842.	1.4	25
966	Highly Sensitive Two-Dimensional Paper Network Incorporating Biotin–Streptavidin for the Detection of Malaria. Analytical Chemistry, 2016, 88, 2553-2557.	3.2	39
967	Personalized medicine: the enabling role of nanotechnology. Nanomedicine, 2016, 11, 1-3.	1.7	62
968	Controlling wettability in paper by atmospheric-pressure microplasma processes to be used in µPAD fabrication. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	12
969	Flexible and robust hybrid paper with a large piezoelectric coefficient. Journal of Materials Chemistry C, 2016, 4, 1448-1453.	2.7	7

#	Article	IF	CITATIONS
970	Flexible opto-electronics enabled microfluidics systems with cloud connectivity for point-of-care micronutrient analysis. Biosensors and Bioelectronics, 2016, 78, 290-299.	5.3	35
971	Powering point-of-care diagnostic devices. Biotechnology Advances, 2016, 34, 321-330.	6.0	97
972	Analytical applications of chemiluminescence systems assisted by carbon nanostructures. TrAC - Trends in Analytical Chemistry, 2016, 80, 387-415.	5.8	49
973	A highly facile and selective Chemo-Paper-Sensor (CPS) for detection of strontium. Chemosphere, 2016, 152, 39-46.	4.2	19
974	Deposition, patterning, and utility of conductive materials for the rapid prototyping of chemical and bioanalytical devices. Analyst, The, 2016, 141, 3511-3525.	1.7	15
975	Preliminary measurement results of biotinylated BSA detection of a low cost optical cavity based biosensor using differential detection. Proceedings of SPIE, 2016, , .	0.8	5
976	Polydimethylsiloxane-Paper Hybrid Lateral Flow Assay for Highly Sensitive Point-of-Care Nucleic Acid Testing. Analytical Chemistry, 2016, 88, 6254-6264.	3.2	93
977	An integrated lateral flow assay for effective DNA amplification and detection at the point of care. Analyst, The, 2016, 141, 2930-2939.	1.7	80
979	A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (1¼PADs) using technical drawing pens and in-house formulated aqueous inks. Analytica Chimica Acta, 2016, 919, 70-77.	2.6	73
980	Advances in microfluidics in combating infectious diseases. Biotechnology Advances, 2016, 34, 404-421.	6.0	79
981	Paper-based analytical devices for environmental analysis. Analyst, The, 2016, 141, 1874-1887.	1.7	238
982	Distance-based microfluidic quantitative detection methods for point-of-care testing. Lab on A Chip, 2016, 16, 1139-1151.	3.1	143
983	Cellulose-Based Biosensors for Esterase Detection. Analytical Chemistry, 2016, 88, 2989-2993.	3.2	51
984	An electrochemiluminescence lab-on-paper device for sensitive detection of two antigens at the MCF-7 cell surface based on porous bimetallic AuPd nanoparticles. RSC Advances, 2016, 6, 16500-16506.	1.7	18
985	Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care. Biotechnology Advances, 2016, 34, 305-320.	6.0	128
986	Reading Out Single-Molecule Digital RNA and DNA Isothermal Amplification in Nanoliter Volumes with Unmodified Camera Phones. ACS Nano, 2016, 10, 3102-3113.	7.3	110
987	An animal cell culture monitoring system using a smartphone-mountable paper-based analytical device. Sensors and Actuators B: Chemical, 2016, 229, 166-173.	4.0	40
988	Sample pre-concentration with high enrichment factors at a fixed location in paper-based microfluidic devices. Lab on A Chip, 2016, 16, 925-931.	3.1	73

		CITATION REPORT		
#	Article		IF	CITATIONS
989	Chemoelectronic circuits based on metal nanoparticles. Nature Nanotechnology, 2016	, 11, 603-608.	15.6	103
990	Dynamic electrochemical quantitation of dopamine release from a cells-on-paper system Advances, 2016, 6, 31069-31073.	m. RSC	1.7	18
991	A concentration gradient generator on a paper-based microfluidic chip coupled with ce microarray for high-throughput drug screening. Biomedical Microdevices, 2016, 18, 21	ll culture	1.4	77
992	Lab-on-a-Drone: Toward Pinpoint Deployment of Smartphone-Enabled Nucleic Acid-Bas for Mobile Health Care. Analytical Chemistry, 2016, 88, 4651-4660.	ed Diagnostics	3.2	135
993	Rapid prototyping of electrochemical lateral flow devices: stencilled electrodes. Analyst 141, 2515-2522.	:, The, 2016,	1.7	20
994	Cell phone spectrometry: Science in your pocket?. TrAC - Trends in Analytical Chemistry	y, 2016, 85, 20-25.	5.8	10
995	Assessment of colorimetric amplification methods in a paper-based immunoassay for d malaria. Lab on A Chip, 2016, 16, 1374-1382.	iagnosis of	3.1	76
996	Recent advancements in ion concentration polarization. Analyst, The, 2016, 141, 3496	-3510.	1.7	84
997	Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent a clinical analysis. TrAC - Trends in Analytical Chemistry, 2016, 79, 114-126.	applications in	5.8	303
998	Plasma treatment of paper for protein immobilization on paper-based chemiluminescer immunodevice. Biosensors and Bioelectronics, 2016, 79, 581-588.	nce	5.3	97
999	Paper-Based Flow Fractionation System Applicable to Preconcentration and Field-Flow Analytical Chemistry, 2016, 88, 1682-1687.	Separation.	3.2	58
1000	Paper-based energy harvesting from salinity gradients. Lab on A Chip, 2016, 16, 700-70	08.	3.1	35
1001	Electrochemical and photoelectrochemical nano-immunesensing using origami paper b Materials Science and Engineering C, 2016, 61, 979-1001.	ased method.	3.8	46
1002	Paper-based α- amylase detector for point-of-care diagnostics. Biosensors and Bioelect 447-453.	ronics, 2016, 78,	5.3	60
1003	Microfluidic paper-based analytical device for photoelectrochemical immunoassay with signal amplification using multibranched hybridization chain reaction and PdAu enzyme Biosensors and Bioelectronics, 2016, 79, 416-422.	multiplex e mimetics.	5.3	66
1004	Paper-based enzymatic reactors for batch injection analysis of glucose on 3D printed c with amperometric detection. Sensors and Actuators B: Chemical, 2016, 226, 196-203	ell coupled ·	4.0	57
1005	Plasmonic paper: a porous and flexible substrate enabling nanoparticle-based combination chemistry. RSC Advances, 2016, 6, 4136-4144.	torial	1.7	21
1006	An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the p on A Chip, 2016, 16, 611-621.	oint of care. Lab	3.1	247

	CITATION	REPORT	
#		IF	CITATIONS
1007	Real-time imaging of cancer cell chemotaxis in paper-based scaffolds. Analyst, The, 2016, 141, 661-668.	1.7	41
1008	REMOVED: Bioactive Paper Design for Human Blood Analysis: Paper Property Suitable for Large-scale Sensor Production. Biochemical Engineering Journal, 2016, 105, 473.	1.8	0
1009	Electromagnetic-based ethanol chemical sensor using metamaterial absorber. Sensors and Actuators B: Chemical, 2016, 222, 173-180.	4.0	53
1010	Analytical Devices Based on Direct Synthesis of DNA on Paper. Analytical Chemistry, 2016, 88, 725-731.	3.2	38
1011	Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein. Biosensors and Bioelectronics, 2016, 77, 400-408.	5.3	122
1012	Global Bioethics: The Impact of the UNESCO International Bioethics Committee. Advancing Global Bioethics, 2016, , .	0.8	5
1013	Self-powered switch-controlled nucleic acid extraction system. Lab on A Chip, 2016, 16, 132-141.	3.1	18
1014	Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosensors and Bioelectronics, 2016, 77, 774-789.	5.3	441
1015	Paper-based analytical device for instrumental-free detection of thiocyanate in saliva as a biomarker of tobacco smoke exposure. Talanta, 2016, 147, 390-396.	2.9	53
1016	Sample concentration in a microfluidic paper-based analytical device using ion concentration polarization. Sensors and Actuators B: Chemical, 2016, 222, 735-740.	4.0	84
1017	Low-cost In Vitro Diagnostic Technologies. , 2016, , 59-91.		2
1018	In-Vitro Diagnostic Devices. , 2016, , .		3
1019	High-throughput sample-to-answer detection of DNA/RNA in crude samples within functionalized micro-pipette tips. Biosensors and Bioelectronics, 2016, 75, 28-33.	5.3	55
1020	Paper-based point-of-care testing for diagnosis of dengue infections. Critical Reviews in Biotechnology, 2017, 37, 100-111.	5.1	26
1021	Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chemical Reviews, 2017, 117, 536-711.	23.0	575
1022	Pin-based electrochemical glucose sensor with multiplexing possibilities. Biosensors and Bioelectronics, 2017, 88, 34-40.	5.3	41
1023	Insulin biosensor development: a case study. International Journal of Parallel, Emergent and Distributed Systems, 2017, 32, 119-138.	0.7	10
1024	Electrochemical Immunosensors for Food Analysis: A Review of Recent Developments. Analytical Letters, 2017, 50, 1-32.	1.0	76

	CHAI	ON REPORT	
#	Article	IF	CITATIONS
1025	Fabricâ€based alkaline direct formate microfluidic fuel cells. Electrophoresis, 2017, 38, 1224-1231.	1.3	21
1026	Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms. Expert Review of Molecular Diagnostics, 2017, 17, 351-366.	1.5	196
1027	Amperometric paper sensor based on Cu nanoparticles for the determination of carbohydrates. Sensors and Actuators B: Chemical, 2017, 245, 352-358.	4.0	29
1028	A paper-based nanomodified electrochemical biosensor for ethanol detection in beers. Analytica Chimica Acta, 2017, 960, 123-130.	2.6	151
1029	Paper-based microfluidic devices by asymmetric calendaring. Biomicrofluidics, 2017, 11, 014104.	1.2	19
1030	Generation of digitized microfluidic filling flow by vent control. Biosensors and Bioelectronics, 2017, 92, 465-471.	5.3	9
1031	A simple method to produce 2D and 3D microfluidic paper-based analytical devices for clinical analysis. Analytica Chimica Acta, 2017, 957, 40-46.	2.6	101
1032	Hand-powered ultralow-cost paper centrifuge. Nature Biomedical Engineering, 2017, 1, .	11.6	230
1033	Development of a single-step immunoassay microdevice based on a graphene oxide-containing hydrogel possessing fluorescence quenching and size separation functions. Analyst, The, 2017, 142, 472-477.	1.7	5
1034	Single strip solid contact ion selective electrodes on a pencil-drawn electrode substrate. Analytical Methods, 2017, 9, 1213-1220.	1.3	19
1035	EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). EFSA Journal, 2017, 15, e04666.	0.9	137
1036	Flexible CuInSe ₂ Nanocrystal Solar Cells on Paper. ACS Energy Letters, 2017, 2, 574-581.	8.8	54
1037	Paper-polymer composite devices with minimal fluorescence background. Analytica Chimica Acta, 2017, 963, 93-98.	2.6	22
1038	Diagnostics for global health: Hand-spun centrifuge. Nature Biomedical Engineering, 2017, 1, .	11.6	2
1039	Simplicity as a Route to Impact in Materials Research. Advanced Materials, 2017, 29, 1604681.	11.1	15
1041	Point-of-Care Detection Devices for Food Safety Monitoring: Proactive Disease Prevention. Trends in Biotechnology, 2017, 35, 288-300.	4.9	92
1042	Quantum Dot-Based Molecularly Imprinted Polymers on Three-Dimensional Origami Paper Microfluidic Chip for Fluorescence Detection of Phycocyanin. ACS Sensors, 2017, 2, 243-250.	4.0	123
1043	From Bits and Pieces to Whole Phage to Nanomachines: Pathogen Detection Using Bacteriophages. Annual Review of Food Science and Technology, 2017, 8, 305-329.	5.1	27

#	Article	IF	CITATIONS
1044	Paper: A promising material for human-friendly functional wearable electronics. Materials Science and Engineering Reports, 2017, 112, 1-22.	14.8	128
1045	Manipulation of magnetocapillary flow of ferrofluid in a microchannel. Sensors and Actuators B: Chemical, 2017, 246, 487-496.	4.0	13
1046	Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab on A Chip, 2017, 17, 1206-1249.	3.1	345
1047	Rapid structuring of proteins on filter paper using lithography. , 2017, , .		0
1048	Improving FoRe: A New Inlet Design for Filtering Samples through Individual Microarray Spots. ACS Sensors, 2017, 2, 339-345.	4.0	5
1049	Flexible time–temperature indicator: a versatile platform for laminated paper-based analytical devices. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	37
1050	Paper-based analytical devices for direct electrochemical detection of free IAA and SA in plant samples with the weight of several milligrams. Sensors and Actuators B: Chemical, 2017, 247, 336-342.	4.0	40
1051	Dynamics of Capillary-Driven Flow in 3D Printed Open Microchannels. Langmuir, 2017, 33, 2949-2964.	1.6	34
1052	Simultaneous electrokinetic concentration and separation of proteins on a paper-based analytical device. RSC Advances, 2017, 7, 4011-4016.	1.7	37
1053	Printed Microfluidics. Advanced Functional Materials, 2017, 27, 1604824.	7.8	41
1054	Use of chemometrics to optimize a glucose assay on a paper microfluidic platform. Analytical and Bioanalytical Chemistry, 2017, 409, 2697-2703.	1.9	25
1055	Development of paper-based electrochemical sensors for water quality monitoring. , 2017, , .		2
1056	Development of paper-based wireless communication modules for point-of-care diagnostic applications. , 2017, , .		1
1057	Tailoring the Retention of Charged Model Compounds in Polymer Functionalized Paperâ€Based Microfluidic Devices. Macromolecular Chemistry and Physics, 2017, 218, 1600408.	1.1	11
1058	Automating multi-step paper-based assays using integrated layering of reagents. Lab on A Chip, 2017, 17, 943-950.	3.1	20
1059	Boron Doped Diamond Paste Electrodes for Microfluidic Paper-Based Analytical Devices. Analytical Chemistry, 2017, 89, 4100-4107.	3.2	78
1060	Zinc oxide nanorods functionalized paper for protein preconcentration in biodiagnostics. Scientific Reports, 2017, 7, 43905.	1.6	31
1061	Small but Perfectly Formed? Successes, Challenges, and Opportunities for Microfluidics in the Chemical and Biological Sciences. CheM, 2017, 2, 201-223.	5.8	278

#	Article	IF	CITATIONS
1062	Wearable microfluidics: fabric-based digital droplet flowmetry for perspiration analysis. Lab on A Chip, 2017, 17, 926-935.	3.1	40
1063	Flow reproducibility of whole blood and other bodily fluids in simplified no reaction lateral flow assay devices. Biomicrofluidics, 2017, 11, 024116.	1.2	25
1064	Improving Sample Distribution Homogeneity in Three-Dimensional Microfluidic Paper-Based Analytical Devices by Rational Device Design. Analytical Chemistry, 2017, 89, 4786-4792.	3.2	51
1065	Beyond Wicking: Expanding the Role of Patterned Paper as the Foundation for an Analytical Platform. Analytical Chemistry, 2017, 89, 5654-5664.	3.2	69
1066	Two orders of magnitude electrokinetic stacking of proteins in one minute on a simple paper fluidic channel. Analytical Methods, 2017, 9, 2703-2709.	1.3	29
1067	Instrument-free quantitative detection of alkaline phosphatase using paper-based devices. Analytical Methods, 2017, 9, 3375-3379.	1.3	12
1068	Paper Microzone Plates as Analytical Tools for Studying Enzyme Stability: A Case Study on the Stabilization of Horseradish Peroxidase Using Trehalose and SU-8 Epoxy Novolac Resin. Analytical Chemistry, 2017, 89, 5333-5341.	3.2	23
1069	A Chemically Patterned Microfluidic Paper-based Analytical Device (C-µPAD) for Point-of-Care Diagnostics. Scientific Reports, 2017, 7, 1188.	1.6	77
1070	Controlling Capillary-Driven Fluid Transport in Paper-Based Microfluidic Devices Using a Movable Valve. Analytical Chemistry, 2017, 89, 5707-5712.	3.2	64
1071	A novel direct and cost effective method for fabricating paper-based microfluidic device by commercial eye pencil and its application for determining simultaneous calcium and magnesium. Microchemical Journal, 2017, 133, 545-550.	2.3	30
1072	Development of a point-of-care diagnostic for influenza detection with antiviral treatment effectiveness indication. Lab on A Chip, 2017, 17, 332-340.	3.1	17
1073	Detection of alprazolam with a lab on paper economical device integrated with urchin like Ag@ Pd shell nano-hybrids. Materials Science and Engineering C, 2017, 80, 728-735.	3.8	28
1074	Chemically modified cellulose strips with pyridoxal conjugated red fluorescent gold nanoclusters for nanomolar detection of mercuric ions. Biosensors and Bioelectronics, 2017, 90, 329-335.	5.3	54
1075	Enhanced sample concentration on a three-dimensional origami paper-based analytical device with non-uniform assay channel. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	13
1076	Point-of-need simultaneous electrochemical detection of lead and cadmium using low-cost stencil-printed transparency electrodes. Analytica Chimica Acta, 2017, 981, 24-33.	2.6	81
1077	Biochemical-immunological hybrid biosensor based on two-dimensional chromatography for on-site sepsis diagnosis. Biosensors and Bioelectronics, 2017, 98, 7-14.	5.3	28
1078	High-throughput rapid-prototyping of low-cost paper-based microfluidics. Scientific Reports, 2017, 7, 3553.	1.6	60
1079	Rapid, Self-driven Liquid Mixing on Open-Surface Microfluidic Platforms. Scientific Reports, 2017, 7, 1800.	1.6	53

		15	0
#	ARTICLE	lF	CITATIONS
1080	Paper microfluidics for nucleic acid amplification testing (NAAT) of infectious diseases. Lab on A Chip, 2017, 17, 2347-2371.	3.1	94
1081	Rough‣urfaceâ€Enabled Capacitive Pressure Sensors with 3D Touch Capability. Small, 2017, 13, 1700368.	5.2	142
1082	Design Automation for Paper Microfluidics with Passive Flow Substrates. , 2017, , .		3
1083	Chiral Responsive Liquid Quantum Dots. Advanced Materials, 2017, 29, 1700296.	11.1	16
1084	Photoelectrochemical ion concentration polarization: membraneless ion filtration based on light-driven electrochemical reactions. Lab on A Chip, 2017, 17, 2491-2499.	3.1	9
1085	Electrophoretic separations on paper: Past, present, and future-A review. Analytica Chimica Acta, 2017, 985, 7-23.	2.6	37
1086	Paper-based chemiluminescence immunodevice with temporal controls of reagent transport technique. Sensors and Actuators B: Chemical, 2017, 250, 324-332.	4.0	44
1087	Advances and challenges of fully integrated paper-based point-of-care nucleic acid testing. TrAC - Trends in Analytical Chemistry, 2017, 93, 37-50.	5.8	72
1088	Selective functionalization of laser printout patterns on cellulose paper sheets coated with surface-specific peptides. Journal of Materials Chemistry A, 2017, 5, 16144-16149.	5.2	11
1089	Electrochemiluminescence Detection in Paperâ€Based and Other Inexpensive Microfluidic Devices. ChemElectroChem, 2017, 4, 1594-1603.	1.7	32
1090	Heat release at the wetting front during capillary filling of cellulosic micro-substrates. Journal of Colloid and Interface Science, 2017, 504, 751-757.	5.0	13
1091	Sensitive Protein Detection and Quantification in Paper-Based Microfluidics for the Point of Care. Methods in Enzymology, 2017, 589, 383-411.	0.4	11
1092	Integration of paper and micropipette tip to build a "sample-in, answer-out―point-of-care device. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	10
1093	Improvement in Efficiency of the Electrocatalytic Reduction of Hydrogen Peroxide by Prussian Blue Produced from the [Fe(CN)5(mpz)]2-Complex. European Journal of Inorganic Chemistry, 2017, 2017, 1979-1988.	1.0	12
1094	Electrically-Actuated Valves for Woven Fabric Lateral Flow Devices. Analytical Chemistry, 2017, 89, 4671-4679.	3.2	7
1095	Bioresponsive Release System for Visual Fluorescence Detection of Carcinoembryonic Antigen from Mesoporous Silica Nanocontainers Mediated Optical Color on Quantum Dot-Enzyme-Impregnated Paper. Analytical Chemistry, 2017, 89, 5152-5160.	3.2	405
1096	Nanoplasmonic sensors for biointerfacial science. Chemical Society Reviews, 2017, 46, 3615-3660.	18.7	195
1097	Modelling of capillary-driven flow for closed paper-based microfluidic channels. Journal of Micromechanics and Microengineering, 2017, 27, 065001.	1.5	8

CITATION REPORT ARTICLE IF CITATIONS Versatile fabrication of paper-based microfluidic devices with high chemical resistance using scholar 1098 51 2.6 glue and magnetic masks. Analytica Chimica Acta, 2017, 974, 63-68. Self-sensing paper-based actuators employing ferromagnetic nanoparticles and graphite. Applied 1099 1.5 29 Physics Letters, 2017, 110, . Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical 1101 303 2.6 devices (μPADs) - A review. Analytica Chimica Acta, 2017, 970, 1-22. Anisotropic, Transparent Films with Aligned Cellulose Nanofibers. Advanced Materials, 2017, 29, 11.1 1606284. Paper/PMMA Hybrid 3D Cell Culture Microfluidic Platform for the Study of Cellular Crosstalk. ACS 1103 4.0 32 Applied Materials & amp; Interfaces, 2017, 9, 13092-13101. Enhanced Performance of Colorimetric Biosensing on Paper Microfluidic Platforms Through Chemical Modification and Incorporation of Nanoparticles. Methods in Molecular Biology, 2017, 1571, 0.4 327-341. Resonance Energy Transfer-Based Nucleic Acid Hybridization Assays on Paper-Based Platforms Using 1105 0.4 0 Emissive Nanoparticles as Donors. Methods in Molecular Biology, 2017, 1571, 301-326. Properties of modified surface for biosensing interface. Journal of Colloid and Interface Science, 1106 5.0 2017, 497, 309-316. Challenges and trends in magnetic sensor integration with microfluidics for biomedical applications. 1107 1.3 81 Journal Physics D: Applied Physics, 2017, 50, 213001. Materials for Microfluidic Immunoassays: A Review. Advanced Healthcare Materials, 2017, 6, 1601403. Finger-Powered Electro-Digital-Microfluidics. Methods in Molecular Biology, 2017, 1572, 293-311. 1109 0 0.4 A novel method for bloodâ€typing using nitrocellulose. Biomedical Chromatography, 2017, 31, e3908. 0.8 Dual-Functional Carbon Dots Pattern on Paper Chips for Fe³⁺ and Ferritin Analysis in 1111 3.2 58 Whole Blood. Analytical Chemistry, 2017, 89, 2131-2137. How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review. Analytica Chimica Acta, 2017, 959, 15-42. 2.6 133 Fluid Flow Programming in Paper-Derived Silica–Polymer Hybrids. Langmuir, 2017, 33, 332-339. 111312 1.6 A comparison of nanoparticle-antibody conjugation strategies in sandwich immunoassays. Journal of 1114 Immunoassay and Immunochemistry, 2017, 38, 355-377. Low-cost reusable sensor for cobalt and nickel detection in aerosols using adsorptive cathodic 1115 1.9 25 square-wave stripping voltammetry. Journal of Electroanalytical Chemistry, 2017, 805, 75-82.

1116Nonlithographic Fabrication of Plastic-Based Nanofibers Integrated Microfluidic Biochip for Sensitive
Detection of Infectious Biomarker. ACS Applied Materials & amp; Interfaces, 2017, 9, 39994-40005.4.021

#	Article	IF	CITATIONS
1117	Challenges of the Nano–Bio Interface in Lateral Flow and Dipstick Immunoassays. Trends in Biotechnology, 2017, 35, 1169-1180.	4.9	89
1118	Electric generation and ratcheted transport of contact-charged drops. Physical Review E, 2017, 96, 043101.	0.8	5
1119	Microfluidics for sperm analysis and selection. Nature Reviews Urology, 2017, 14, 707-730.	1.9	144
1120	Detection of Biomarkers of Periodontal Disease in Human Saliva Using Stabilized, Vertical Flow Immunoassays. ACS Sensors, 2017, 2, 1589-1593.	4.0	37
1121	Inkjet-printed barcodes for a rapid and multiplexed paper-based assay compatible with mobile devices. Lab on A Chip, 2017, 17, 3874-3882.	3.1	44
1122	A disposable microcapsule array chip for on-site multi-target detection of ions in water. , 2017, , .		1
1124	A Printed Multicomponent Paper Sensor for Bacterial Detection. Scientific Reports, 2017, 7, 12335.	1.6	82
1125	Facile fabrication of paper-based analytical devices for rapid and highly selective colorimetric detection of cesium in environmental samples. RSC Advances, 2017, 7, 48374-48385.	1.7	16
1126	High-speed spinning disks on flexible threads. Scientific Reports, 2017, 7, 13111.	1.6	7
1127	Paper-based assays for urine analysis. Biomicrofluidics, 2017, 11, 051501.	1.2	56
1128	Performance of electrokinetic stacking enhanced paper-based analytical device with smartphone for fast detection of fluorescent whitening agent. Analytica Chimica Acta, 2017, 995, 85-90.	2.6	30
1129	Localized detection of reversal nucleation generated by high moment magnetic nanoparticles using a large-area magnetic sensor. Journal of Applied Physics, 2017, 122, 123901.	1.1	19
1130	Paper-based electrospray emitters. Journal of Aerosol Science, 2017, 113, 108-113.	1.8	6
1131	Bio-inspired liquid transport via elastocapillary interaction of a thin membrane with a liquid meniscus. Soft Matter, 2017, 13, 6858-6869.	1.2	10
1132	Painting and heating: A nonconventional, scalable route to sensitive biomolecular analysis with plasmonâ€enhanced spectroscopy. Journal of Raman Spectroscopy, 2017, 48, 1365-1374.	1.2	8
1133	Peroxidymeâ€Amplified Radical Chain Reaction (PARCR): Visible Detection of a Catalytic Reporter. Angewandte Chemie - International Edition, 2017, 56, 13411-13415.	7.2	8
1134	Fully Inkjet-Printed Paper-Based Potentiometric Ion-Sensing Devices. Analytical Chemistry, 2017, 89, 10608-10616.	3.2	98
1135	Redefining Chinese calligraphy rice paper: an economical and cytocompatible substrate for cell biological assays. RSC Advances, 2017, 7, 41017-41023.	1.7	8

#	Article	IF	CITATIONS
1136	A review on wax printed microfluidic paper-based devices for international health. Biomicrofluidics, 2017, 11, 041501.	1.2	69
1137	A fast, reconfigurable flow switch for paper microfluidics based on selective wetting of folded paper actuator strips. Lab on A Chip, 2017, 17, 3621-3633.	3.1	34
1138	Introduction to Electrochemical Point-of-Care Devices. Bioanalysis, 2017, , 1-26.	0.1	0
1139	Electrochemical DC Techniques. Glucose Monitoring and Multi-parametric Detection. Bioanalysis, 2017, , 113-136.	0.1	0
1140	Paper Sensor Coated with a Poly(carboxybetaine)-Multiple DOPA Conjugate via Dip-Coating for Biosensing in Complex Media. Analytical Chemistry, 2017, 89, 10999-11004.	3.2	49
1141	Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Advanced Healthcare Materials, 2017, 6, 1700258.	3.9	38
1142	Pump drill: A superb device for converting translational motion into high-speed rotation. Extreme Mechanics Letters, 2017, 16, 56-63.	2.0	6
1143	Review of recent research on flexible multifunctional nanopapers. Nanoscale, 2017, 9, 15181-15205.	2.8	126
1144	Novel functionalities of hybrid paper-polymer centrifugal devices for assay performance enhancement. Biomicrofluidics, 2017, 11, 054101.	1.2	14
1145	Countercurrent liquid–liquid extraction on paper. Lab on A Chip, 2017, 17, 3401-3404.	3.1	7
1146	Peroxidymeâ€Amplified Radical Chain Reaction (PARCR): Visible Detection of a Catalytic Reporter. Angewandte Chemie, 2017, 129, 13596-13600.	1.6	2
1147	Paper-Based Bimodal Sensor for Electronic Skin Applications. ACS Applied Materials & Interfaces, 2017, 9, 26974-26982.	4.0	83
1148	Biosensors-on-chip: a topical review. Journal of Micromechanics and Microengineering, 2017, 27, 083001.	1.5	75
1149	Fabrication of Cost-effective and Lithographically Patterned Flexible Paper Based Microfluidic Device Using Photo-PDMS for Point of Care Application. Procedia Technology, 2017, 27, 112-113.	1.1	1
1150	An Ionophoreâ€Based Anion‣elective Optode Printed on Cellulose Paper. Angewandte Chemie - International Edition, 2017, 56, 11826-11830.	7.2	64
1151	Reconfigurable Pipet for Customized, Cost-Effective Liquid Handling. Analytical Chemistry, 2017, 89, 8656-8661.	3.2	6
1152	Facile synthesis of Au@Ag–hemin decorated reduced graphene oxide sheets: a novel peroxidase mimetic for ultrasensitive colorimetric detection of hydrogen peroxide and glucose. RSC Advances, 2017, 7, 37568-37577.	1.7	45
1153	An Ionophoreâ€Based Anionâ€Selective Optode Printed on Cellulose Paper. Angewandte Chemie, 2017, 129, 11988-11992	1.6	6

#	Article	IF	CITATIONS
1154	Coupling solid-phase microextractions and surface-enhanced Raman scattering: towards a point-of-need tool for hepatic cancer screening. Analytical Methods, 2017, 9, 4641-4646.	1.3	10
1155	Fabrication of Three-dimensional Paper-based Microfluidic Devices for Immunoassays. Journal of Visualized Experiments, 2017, , .	0.2	4
1156	Point-of-care diagnostics to improve maternal and neonatal health in low-resource settings. Lab on A Chip, 2017, 17, 3351-3387.	3.1	39
1157	Text-Displaying Colorimetric Paper-Based Analytical Device. ACS Sensors, 2017, 2, 1247-1254.	4.0	65
1158	Integrated Distance-Based Origami Paper Analytical Device for One-Step Visualized Analysis. ACS Applied Materials & Interfaces, 2017, 9, 30480-30487.	4.0	79
1159	Malodorogenic Sensing of Carbon Monoxide. Chemistry - A European Journal, 2017, 23, 13328-13331.	1.7	12
1160	Using airbrushes to pattern reagents for microarrays and paper-fluidic devices. Microsystems and Nanoengineering, 2017, 3, 17055.	3.4	7
1161	Paper-based MoS2 nanosheet-mediated FRET aptasensor for rapid malaria diagnosis. Scientific Reports, 2017, 7, 17510.	1.6	31
1162	An Open Software Platform for the Automated Design of Paper-Based Microfluidic Devices. Scientific Reports, 2017, 7, 16224.	1.6	15
1164	Supramolecular Chemistry of Biomimetic Systems. , 2017, , .		3
1165	Principles around Accurate Blood Volume Collection Using Capillary Action. Langmuir, 2017, 33, 14220-14225.	1.6	9
1167	Functional Nanomaterials Via Self-assembly Based Modification of Natural Cellulosic Substances. , 2017, , 165-202.		1
1168	A precise goniometer/tensiometer using a low cost single-board computer. Measurement Science and Technology, 2017, 28, 125302.	1.4	11
1169	The Role of Nanoparticle Design in Determining Analytical Performance of Lateral Flow Immunoassays. Nano Letters, 2017, 17, 7207-7212.	4.5	149
1170	A Simple Paper Based Microfluidic Electrochemical Biosensor for Pointâ€ofâ€Care Cholesterol Diagnostics. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700468.	0.8	10
1171	Inkjet-Printed Paper-Based Colorimetric Polyion Sensor Using a Smartphone as a Detector. Analytical Chemistry, 2017, 89, 12334-12341.	3.2	41
1172	Sensitive and reliable paper-based glucose sensing mechanisms with smartphone readout using the <i>L</i> * <i>a</i> * <i>b</i> * color space. Analytical Methods, 2017, 9, 6698-6704.	1.3	16
1173	Mussel-Inspired Universal Bioconjugation of Polydiacetylene Liposome for Droplet-Array Biosensors. ACS Applied Materials & Interfaces, 2017, 9, 42210-42216.	4.0	40

#	Article	IF	CITATIONS
1174	Localisation of alkaline phosphatase in the pore structure of paper. Colloid and Polymer Science, 2017, 295, 1293-1304.	1.0	4
1175	Semi-quantitative visual detection of loop mediated isothermal amplification (LAMP)-generated DNA by distance-based measurement on a paper device. Talanta, 2017, 175, 135-142.	2.9	66
1176	Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care. Nanophotonics, 2017, 6, 681-701.	2.9	63
1177	Recycled polymethylmethacrylate (PMMA) microfluidic devices. Sensors and Actuators B: Chemical, 2017, 253, 738-744.	4.0	32
1178	Microfluidic paper-based analytical devices for potential use in quantitative and direct detection of disease biomarkers in clinical analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1060, 424-442.	1.2	62
1179	A paper-based colorimetric spot test for the identification of adulterated whiskeys. Chemical Communications, 2017, 53, 7957-7960.	2.2	38
1180	Pen-on-paper strategy for point-of-care testing: Rapid prototyping of fully written microfluidic biosensor. Biosensors and Bioelectronics, 2017, 98, 478-485.	5.3	75
1181	Fully integrated ready-to-use paper-based electrochemical biosensor to detect nerve agents. Biosensors and Bioelectronics, 2017, 93, 46-51.	5.3	129
1182	Microfluidic PDMS on paper (POP) devices. Lab on A Chip, 2017, 17, 120-127.	3.1	27
1183	Hydroxyapatite Nanowires@Metal–Organic Framework Core/Shell Nanofibers: Templated Synthesis, Peroxidaseâ€Like Activity, and Derived Flexible Recyclable Test Paper. Chemistry - A European Journal, 2017, 23, 3328-3337.	1.7	51
1184	Development and statistical assessment of a paper-based immunoassay for detection of tumor markers. Analytica Chimica Acta, 2017, 950, 156-161.	2.6	44
1185	Paper-based laser induced fluorescence immunodevice combining with CdTe embedded silica nanoparticles signal enhancement strategy. Sensors and Actuators B: Chemical, 2017, 242, 87-94.	4.0	45
1186	Fluorescenceâ€based lateral flow assays for rapid oral fluid roadside detection of cannabis use. Electrophoresis, 2017, 38, 501-506.	1.3	24
1187	A Microfluidic Investigation of the Synergistic Effect of Nanoparticles and Surfactants in Macro-Emulsion-Based Enhanced Oil Recovery. SPE Journal, 2017, 22, 459-469.	1.7	87
1188	Stepping Toward Selfâ€Powered Papertronics: Integrating Biobatteries into a Single Sheet of Paper. Advanced Materials Technologies, 2017, 2, 1600194.	3.0	37
1189	Paper microchip with a graphene-modified silver nano-composite electrode for electrical sensing of microbial pathogens. Nanoscale, 2017, 9, 1852-1861.	2.8	58
1190	Electroanalytical thread-device for estriol determination using screen-printed carbon electrodes modified with carbon nanotubes. Sensors and Actuators B: Chemical, 2017, 241, 978-984.	4.0	67
1191	Paper-based maskless enzymatic sensor for glucose determination combining ink and wire electrodes. Biosensors and Bioelectronics, 2017, 93, 40-45.	5.3	69

#	Article		CITATIONS
1192	A smartphone-based optical platform for colorimetric analysis of microfluidic device. Sensors and Actuators B: Chemical, 2017, 239, 52-59.	4.0	103
1193	3D origami electrochemical device for sensitive Pb2+ testing based on DNA functionalized iron-porphyrinic metal-organic framework. Biosensors and Bioelectronics, 2017, 87, 108-115.	5.3	66
1194	Paper-based colorimetric biosensor for antibiotics inhibiting bacterial protein synthesis. Journal of Bioscience and Bioengineering, 2017, 123, 96-100.	1.1	54
1195	A paper-supported aptasensor for total IgE based on luminescence resonance energy transfer from upconversion nanoparticles to carbon nanoparticles. Sensors and Actuators B: Chemical, 2017, 239, 319-324.	4.0	44
1196	A Low-Cost and High Sensitive Paper-Based Microfluidic Device for Rapid Detection of Glucose in Fruit. Food Analytical Methods, 2017, 10, 666-674.	1.3	26
1197	Deep-Reaching Hydrodynamic Flow Confinement: Micrometer-Scale Liquid Localization for Open Substrates With Topographical Variations. IEEE Transactions on Biomedical Engineering, 2017, 64, 1261-1269.	2.5	7
1198	Indicator-Impregnated Agarose Films for Colorimetric Measurement of pH. SLAS Technology, 2017, 22, 81-88.	1.0	5
1199	One-step synthesis of uniform nanoparticles of porphyrin functionalized ceria with promising peroxidase mimetics for H2O2 and glucose colorimetric detection. Sensors and Actuators B: Chemical, 2017, 240, 726-734.	4.0	195
1200	Paper-based microfluidic biofuel cell operating under glucose concentrations within physiological range. Biosensors and Bioelectronics, 2017, 90, 475-480.	5.3	53
1201	Paper-based microfluidic sampling and separation of analytes for potentiometric ion sensing. Sensors and Actuators B: Chemical, 2017, 243, 346-352.	4.0	33
1202	Rapid prototyping of microfluidic chips using laser-cut double-sided tape for electrochemical biosensors. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 1469-1477.	0.8	16
1203	Recent trends in targeted therapy of cancer using graphene oxide-modified multifunctional nanomedicines. Journal of Drug Targeting, 2017, 25, 202-215.	2.1	54
1204	Quantitative Detection in Lateral Flow Immunoassay Using Integrated Organic Optoelectronics. IEEE Sensors Journal, 2017, 17, 8343-8349.	2.4	9
1205	Microfluidic Paper-Based Analytical Devices for Point-of-Care Diagnosis. , 2017, , 365-396.		2
1206	Analyte sampling in paper biosensors powered by graphite-based light absorption. , 2017, , .		2
1207	Rapid Determination of Humulones and Isohumulones in Beers Using MISER LC-MS Analysis. Journal of the American Society of Brewing Chemists, 2017, 75, 333-338.	0.8	4
1208	Benefits of a scaled differential calculation method for use in a Fabry-Perot based optical cavity biosensor. , 2017, , .		0
1209	Pneumatic microvalves fabricated by multi-material 3D printing. , 2017, , .		3

#	Article	IF	CITATIONS
1210	pH sensing threads with CMOS readout for Smart Bandages. , 2017, , .		14
1211	Roll-to-roll manufacturing of disposable surfaceenhanced Raman scattering (SERS) sensors on paper based substrates. Nordic Pulp and Paper Research Journal, 2017, 32, 222-228.	0.3	2
1213	A Paper-Based Device for Performing Loop-Mediated Isothermal Amplification with Real-Time Simultaneous Detection of Multiple DNA Targets. Theranostics, 2017, 7, 2220-2230.	4.6	108
1214	Paper-Based Microfluidic Device with a Gold Nanosensor to Detect Arsenic Contamination of Groundwater in Bangladesh. Micromachines, 2017, 8, 71.	1.4	17
1215	Paper-Based Colorimetric Biosensor for Tear Glucose Measurements. Micromachines, 2017, 8, 104.	1.4	74
1216	Paper-Based Analytical Device for Zinc Ion Quantification in Water Samples with Power-Free Analyte Concentration. Micromachines, 2017, 8, 127.	1.4	31
1217	Monitoring Acid–Base Titrations on Wax Printed Paper Microzones Using a Smartphone. Micromachines, 2017, 8, 139.	1.4	33
1218	Commercial Value and Challenges of Drop-Based Microfluidic Screening Platforms–An Opinion. Micromachines, 2017, 8, 193.	1.4	14
1219	Characterization of Reagent Pencils for Deposition of Reagents onto Paper-Based Microfluidic Devices. Micromachines, 2017, 8, 242.	1.4	6
1220	Rethinking the Design of Low-Cost Point-of-Care Diagnostic Devices. Micromachines, 2017, 8, 317.	1.4	15
1221	Bench-Top Fabrication of an All-PDMS Microfluidic Electrochemical Cell Sensor Integrating Micro/Nanostructured Electrodes. Sensors, 2017, 17, 732.	2.1	30
1222	Low-Cost Inkjet Printing Technology for the Rapid Prototyping of Transducers. Sensors, 2017, 17, 748.	2.1	68
1223	A Smartphone-Based Automatic Measurement Method for Colorimetric pH Detection Using a Color Adaptation Algorithm. Sensors, 2017, 17, 1604.	2.1	52
1224	Cost-Effective and Handmade Paper-Based Immunosensing Device for Electrochemical Detection of Influenza Virus. Sensors, 2017, 17, 2597.	2.1	60
1225	Recent Advances in Mycotoxin Determination for Food Monitoring via Microchip. Toxins, 2017, 9, 324.	1.5	36
1226	Chemical sensors based onÂhybrid nanomaterials for food analysis. , 2017, , 205-244.		12
1227	Rapid and Low-Cost CRP Measurement by Integrating a Paper-Based Microfluidic Immunoassay with Smartphone (CRP-Chip). Sensors, 2017, 17, 684.	2.1	43
1228	Paper and Fiber-Based Bio-Diagnostic Platforms: Current Challenges and Future Needs. Applied Sciences (Switzerland), 2017, 7, 863.	1.3	24

#	Article	IF	CITATIONS
1229	Current Nucleic Acid Extraction Methods and Their Implications to Point-of-Care Diagnostics. BioMed Research International, 2017, 2017, 1-13.	0.9	199
1230	Biosensing of DNA oxidative damage: a model of using glucose meter for non-glucose biomarker detection. International Journal of Nanomedicine, 2017, Volume 12, 979-987.	3.3	18
1231	Microfluidics technology: future prospects for molecular diagnostics. Advanced Health Care Technologies, 0, Volume 3, 3-17.	1.4	10
1232	DipTest: A litmus test for E. coli detection in water. PLoS ONE, 2017, 12, e0183234.	1.1	20
1233	Lab-on-a-Chip: A Potential Tool for Enhancing Teaching-Learning in Developing Countries Using Paper Microfluidics. , 2017, , .		5
1234	Colorimetric and Fluorometric Sensor Arrays for Molecular Recognition. , 2017, , 37-88.		3
1235	Paper-Based Microfluidics Immunoassay for Detection of Canine Distemper Virus. Brazilian Archives of Biology and Technology, 2017, 60, .	0.5	4
1236	Optoelectronics and Bio Devices on Paper Powered by Solar Cells. , 0, , .		9
1237	<i>Rapid and reliable norovirus assay at pg/mL level using smartphone-based fluorescence microscope and a microfluidic paper analytic device</i> . , 2017, , .		0
1238	One-step nanoimprinted hybrid micro-/nano-structure for in situ protein detection of isolated cell array via localized surface plasmon resonance. Japanese Journal of Applied Physics, 2018, 57, 03EC03.	0.8	7
1239	Paper-based chemiluminescence immunodevice for the carcinoembryonic antigen by employing multi-enzyme carbon nanosphere signal enhancement. Mikrochimica Acta, 2018, 185, 187.	2.5	35
1240	Photolithography-free PDMS stamps for paper microdevice fabrication. Rapid Prototyping Journal, 2018, 24, 361-367.	1.6	6
1241	Phase-Change Partitions for Thermal Automation of Multistep Reactions. Analytical Chemistry, 2018, 90, 3708-3713.	3.2	11
1242	Enhancing adhesion and polymerization of lipaseâ€plasmaâ€polymerizedâ€ethylene coatings deposited with planar dielectricâ€barrierâ€dischargeâ€type aerosolâ€assisted atmosphericâ€pressure plasma system. Plasma Processes and Polymers, 2018, 15, 1700173.	1.6	8
1243	Novel Electrochemical Paper-Based Immunocapture Assay for the Quantitative Determination of Ethinylestradiol in Water Samples. Analytical Chemistry, 2018, 90, 4104-4111.	3.2	60
1244	CMOS Enabled Microfluidic Systems for Healthcare Based Applications. Advanced Materials, 2018, 30, e1705759.	11.1	46
1245	Multifunctional cellulose-paper for light harvesting and smart sensing applications. Journal of Materials Chemistry C, 2018, 6, 3143-3181.	2.7	147
1246	Low-voltage driven portable paper bipolar electrode-supported electrochemical sensing device. Analytica Chimica Acta, 2018, 1015, 1-7.	2.6	11

# 1247	ARTICLE Mobile oral heath technologies based on saliva. Oral Diseases, 2018, 24, 194-197.	lF 1.5	CITATIONS
1248	A novel patterning method for three-dimensional paper-based devices by using inkjet-printed water mask. Cellulose, 2018, 25, 2659-2665.	2.4	12
1249	A Paper Sensor Printed with Multifunctional Bio/Nano Materials. Angewandte Chemie - International Edition, 2018, 57, 4549-4553.	7.2	73
1250	Dynamics of liquid imbibition through paper with intra-fibre pores. Journal of Fluid Mechanics, 2018, 845, 36-50.	1.4	37
1251	Thread/paper―and paperâ€based microfluidic devices for glucose assays employing artificial neural networks. Electrophoresis, 2018, 39, 1443-1451.	1.3	27
1252	Non-invasive paper-based microfluidic device for ultra-low detection of urea through enzyme catalysis. Royal Society Open Science, 2018, 5, 171980.	1.1	24
1253	Electrokinetic stacking on paper-based analytical device by ion concentration polarization with ion exchange membrane interface. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	27
1254	Green, fast and cheap paper-based method for estimating equivalence ratio of cationic carriers to DNA in gene delivery formulations. European Journal of Pharmaceutical Sciences, 2018, 115, 204-211.	1.9	5
1255	Paper-based nucleic acid amplification tests for point-of-care diagnostics. Analyst, The, 2018, 143, 2213-2234.	1.7	73
1256	Hybrid Surface and Bulk Resonant Acoustics for Concurrent Actuation and Sensing on a Single Microfluidic Device. Analytical Chemistry, 2018, 90, 5335-5342.	3.2	9
1257	Local Wettability Modification and its Micro-Fluidic System Application. Toxinology, 2018, , 1-33.	0.2	0
1258	Headspace-Sampling Paper-Based Analytical Device for Colorimetric/Surface-Enhanced Raman Scattering Dual Sensing of Sulfur Dioxide in Wine. Analytical Chemistry, 2018, 90, 5719-5727.	3.2	98
1259	A Capillary Flow Dynamicsâ€Based Sensing Modality for Direct Environmental Pathogen Monitoring. Chemistry - A European Journal, 2018, 24, 6025-6029.	1.7	24
1260	Microfluidics for Fast and Frugal Diagnosis of Malaria, Sepsis, and HIV/AIDS. , 2018, , 57-75.		1
1261	Advances in Point-of-Care Diagnostics for Infectious Disease. , 2018, , 1-21.		0
1262	Thread- paper, and fabric enzyme-linked immunosorbent assays (ELISA). Methods, 2018, 146, 58-65.	1.9	11
1263	Carbon Nanotube Paperâ€based Electrode for Electrochemical Detection of Chemicals in Rat Microdialysate. Electroanalysis, 2018, 30, 1022-1027.	1.5	13
1264	Fabrication of a Paperâ€Based Turnâ€Off Fluorescence Sensor for Cu ²⁺ Ion from a Pyridinium Porphyrin. ChemistrySelect, 2018, 3, 894-899.	0.7	14

#	Article	IF	CITATIONS
1265	Advances in Microfluidicsâ€Based Assisted Reproductive Technology: From Sperm Sorter to Reproductive Systemâ€onâ€aâ€Chip. Advanced Biology, 2018, 2, 1700197.	3.0	64
1266	Solenoid Driven Pressure Valve System: Toward Versatile Fluidic Control in Paper Microfluidics. Analytical Chemistry, 2018, 90, 2534-2541.	3.2	17
1267	Low-cost Paper Analytical Devices for Environmental and Biomedical Sensing Applications. Energy, Environment, and Sustainability, 2018, , 315-341.	0.6	10
1268	Wax Spreading in Paper under Controlled Pressure and Temperature. Langmuir, 2018, 34, 432-441.	1.6	7
1269	A nanopaper-based artificial tongue: a ratiometric fluorescent sensor array on bacterial nanocellulose for chemical discrimination applications. Nanoscale, 2018, 10, 2492-2502.	2.8	80
1270	TEMPO-based immuno-lateral flow quantitative detection of dengue NS1 protein. Sensors and Actuators B: Chemical, 2018, 259, 354-363.	4.0	24
1271	Integration of paper-based microarray and time-of-flight secondary ion mass spectrometry (ToF-SIMS) for parallel detection and quantification of molecules in multiple samples automatically. Analytica Chimica Acta, 2018, 1005, 61-69.	2.6	5
1272	Single-Droplet Multiplex Bioassay on a Robust and Stretchable Extreme Wetting Substrate through Vacuum-Based Droplet Manipulation. ACS Nano, 2018, 12, 932-941.	7.3	82
1273	Scaling Laws in Directional Spreading of Droplets on Wettability-Confined Diverging Tracks. Langmuir, 2018, 34, 1899-1907.	1.6	41
1274	Microfluidic diatomite analytical devices for illicit drug sensing with ppb-Level sensitivity. Sensors and Actuators B: Chemical, 2018, 259, 587-595.	4.0	91
1275	Ultrasensitive microfluidic paper-based electrochemical/visual biosensor based on spherical-like cerium dioxide catalyst for miR-21 detection. Biosensors and Bioelectronics, 2018, 105, 218-225.	5.3	108
1278	Modification of microfluidic paper-based devices with dye nanomaterials obtained by encapsulation of compounds in Y and ZSM5 zeolites. Sensors and Actuators B: Chemical, 2018, 261, 66-74.	4.0	13
1279	Characteristics of Microfluidic Paper-based Analytical Devices Fabricated by Four Different Methods. Analytical Sciences, 2018, 34, 39-44.	0.8	19
1280	"Connecting worlds – a view on microfluidics for a wider application― Biotechnology Advances, 2018, 36, 1341-1366.	6.0	36
1281	Recent developments on electrochemical flow injection in pharmaceuticals and biologically important compounds. Electrochimica Acta, 2018, 287, 135-148.	2.6	19
1282	Signal Amplification: A Sharp Impermeableâ€Permeable Transition for Highly Sensitive Lowâ€Cost Detection. Advanced Materials Technologies, 2018, 3, 1800042.	3.0	2
1283	A microfluidic glucose sensor incorporating a novel threadâ€based electrode system. Electrophoresis, 2018, 39, 2131-2135.	1.3	22
1284	Fluorescent Nanomaterials for Colorâ€Multiplexing Test Papers toward Qualitative/Quantitative Assays. Small Methods, 2018, 2, 1700379.	4.6	26

#	Article		CITATIONS
1285	Flexible surface-enhanced Raman scattering-active substrates based on nanofibrous membranes. Nano Research, 2018, 11, 4468-4488.	5.8	40
1286	Enzyme Chemotaxis on Paper-based Devices. Analytical Sciences, 2018, 34, 115-119.	0.8	11
1287	Highly Sensitive Paper-based Analytical Devices with the Introduction of a Large-Volume Sample via Continuous Flow. Analytical Sciences, 2018, 34, 65-70.	0.8	16
1288	Trends in Paper-based Electrochemical Biosensors: From Design to Application. Analytical Sciences, 2018, 34, 7-18.	0.8	79
1289	Determination of Ascorbic Acid in Commercial Tablets Using Pencil Drawn Electrochemical Paper-based Analytical Devices. Analytical Sciences, 2018, 34, 91-95.	0.8	41
1290	A Paper Sensor Printed with Multifunctional Bio/Nano Materials. Angewandte Chemie, 2018, 130, 4639-4643.	1.6	21
1291	A temperature-based diagnostic approach for paper-based microfluidics. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	2
1292	Towards an Integrated QR Code Biosensor: Light-Driven Sample Acquisition and Bacterial Cellulose Paper Substrate. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 452-460.	2.7	2
1293	Footprint of droplets after impact onto paper surfaces with a hydrophobic barrier. Chemical Engineering Research and Design, 2018, 133, 103-110.	2.7	1
1294	Surface-modified cellulose paper and its application in infectious disease diagnosis. Sensors and Actuators B: Chemical, 2018, 265, 506-513.	4.0	28
1295	The Developing Status of High-Throughput Drug Screening Microfluidic Chip by FRET on Medicine. Materials Science Forum, 2018, 914, 19-28.	0.3	0
1296	Creating novel medical diagnostics with a design for manufacturing. Translational Materials Research, 2018, 5, 024001.	1.2	6
1297	Laser-cut paper-based device for the detection of dengue non-structural NS1 protein and specific IgM in human samples. Archives of Virology, 2018, 163, 1757-1767.	0.9	12
1298	Study on stair-step liquid triggered capillary valve for microfluidic systems. Journal of Micromechanics and Microengineering, 2018, 28, 065005.	1.5	16
1299	Enzymatic amplification of oligonucleotides in paper substrates. Talanta, 2018, 186, 568-575.	2.9	6
1300	Microfluidic approaches for probing amyloid assembly and behaviour. Lab on A Chip, 2018, 18, 999-1016.	3.1	27
1301	Eu/Tb luminescence for alkaline phosphatase and β-galactosidase assay in hydrogels and on paper devices. Journal of Materials Chemistry B, 2018, 6, 2143-2150.	2.9	32
1302	A paper-based device with an adjustable time controller for the rapid determination of tumor biomarkers. Sensors and Actuators B: Chemical, 2018, 254, 855-862.	4.0	36

		CITATION REPORT		
#	Article		IF	CITATIONS
1303	Sliding-strip microfluidic device enables ELISA on paper. Biosensors and Bioelectronics,	2018, 99, 77-84.	5.3	110
1304	A simple and versatile paper-based electrochemiluminescence biosensing platform for surface antigen detection. Biochemical Engineering Journal, 2018, 129, 1-6.	nepatitis B virus	1.8	33
1305	Simultaneous determination of renal function biomarkers in urine using a validated pa microfluidic analytical device. Analytica Chimica Acta, 2018, 997, 16-23.	per-based	2.6	64
1306	Design and Preparation of Microfluidics Device. Integrated Analytical Systems, 2018, ,	1-42.	0.4	1
1307	Laminated and infused Parafilm® – paper for paper-based analytical devices. Senso Chemical, 2018, 255, 3654-3661.	rs and Actuators B:	4.0	41
1308	A simple and facile paper-based colorimetric assay for detection of free hydrogen sulfic cancer cells. Sensors and Actuators B: Chemical, 2018, 256, 828-834.	e in prostate	4.0	41
1309	Advances in paper-analytical methods for pharmaceutical analysis. European Journal of Pharmaceutical Sciences, 2018, 111, 46-56.		1.9	34
1310	Shifting paradigm of cancer diagnoses in clinically relevant samples based on miniaturi electrochemical nanobiosensors and microfluidic devices. Biosensors and Bioelectronic 411-428.	zed s, 2018, 100,	5.3	108
1311	Portable and low-cost colorimetric office paper-based device for phenacetin detection cocaine samples. Talanta, 2018, 176, 674-678.	n seized	2.9	62
1312	An aptamerâ€based paper microfluidic device for the colorimetric determination of coor Electrophoresis, 2018, 39, 470-475.	caine.	1.3	33
1313	Patterned polycaprolactone-filled glass microfiber microfluidic devices for total protein analysis. Talanta, 2018, 176, 589-594.	content	2.9	25
1314	Flow injection analysis in lab-on-paper format. Sensors and Actuators B: Chemical, 201	8, 257, 16-22.	4.0	16
1315	Creasensor: SIMPLE technology for creatinine detection in plasma. Analytica Chimica A 191-198.	.cta, 2018, 1000,	2.6	34
1316	Enzymeâ€linked immunosorbent assays (ELISA) based on thread, paper, and fabric. Ele 39, 476-484.	ctrophoresis, 2018,	1.3	17
1317	On-chip conductometric detection of short DNA sequences <i>via</i> electro-hydrody aggregation. Analyst, The, 2018, 143, 190-199.	namic	1.7	5
1318	Fabric-Based Ion Concentration Polarization for Pump-Free Water Desalination. ACS St Chemistry and Engineering, 2018, 6, 99-103.	istainable	3.2	16
1319	Evaporation effect on two-dimensional wicking in porous media. Journal of Colloid and Science, 2018, 514, 21-29.	Interface	5.0	8
1320	Development of a low-cost paper-based ELISA method for rapid Escherichia coli O157: Analytical Biochemistry, 2018, 542, 58-62.	17 detection.	1.1	144
#	Article	IF	CITATIONS	
------	--	-----	-----------	
1321	Peptide nucleic acid-templated selenocystine–selenoester ligation enables rapid miRNA detection. Chemical Science, 2018, 9, 896-903.	3.7	50	
1322	Quantitative evaluation of analyte transport on microfluidic paper-based analytical devices (μPADs). Analyst, The, 2018, 143, 643-653.	1.7	37	
1323	Portable bioactive paper based genosensor incorporated with Zn-Ag nanoblooms for herpes detection at the point-of-care. International Journal of Biological Macromolecules, 2018, 107, 2559-2565.	3.6	33	
1324	Review on microfluidic paper-based analytical devices towards commercialisation. Analytica Chimica Acta, 2018, 1001, 1-17.	2.6	379	
1325	A suspending-droplet mode paper-based microfluidic platform for low-cost, rapid, and convenient detection of lead(II) ions in liquid solution. Biosensors and Bioelectronics, 2018, 99, 361-367.	5.3	49	
1326	microRNA biosensors: Opportunities and challenges among conventional and commercially available techniques. Biosensors and Bioelectronics, 2018, 99, 525-546.	5.3	220	
1327	A Fully-Papertronic Biosensing Array for High-Throughput Characterization of Microbial Electrogenicity. , 2018, 2018, 1-4.		0	
1328	Improvement in the Reproducibility of a Paper-based Analytical Device (PAD) Using Stable Covalent Binding between Proteins and Cellulose Paper. Biotechnology and Bioprocess Engineering, 2018, 23, 686-692.	1.4	30	
1329	Characterizations of Diagnostic Properties and Detection Techniques of Fentanyl and Related Synthetic Opioids. , 2018, , .		0	
1330	Paper Based Microfluidic Device for the Detection of Total Protein in Blood. Materials Today: Proceedings, 2018, 5, 16220-16225.	0.9	8	
1331	Detection of Stress Using Biosensors. Materials Today: Proceedings, 2018, 5, 21003-21010.	0.9	5	
1332	A Fuel Cell-based adaptable Self-Powered Event Detection platform enhanced for biosampling applications. , 2018, , .		3	
1334	Screen-printed Paper-based Three-electrode System with Long-term Stable and Instantaneously Usable Reference Electrode. Chemistry Letters, 2018, 47, 1502-1504.	0.7	7	
1335	From Point-of-Care Testing to eHealth Diagnostic Devices (eDiagnostics). ACS Central Science, 2018, 4, 1600-1616.	5.3	140	
1336	Quantifying colorimetric assays in µPAD for milk adulterants detection using colorimetric android application. Micro and Nano Letters, 2018, 13, 1520-1524.	0.6	18	
1337	Open-channel microfluidic diodes based on two-tier junctions. Applied Physics Letters, 2018, 113, .	1.5	6	
1338	A Diffusion-Based pH Regulator in Laminar Flows with Smartphone-Based Colorimetric Analysis. Micromachines, 2018, 9, 616.	1.4	1	
1339	Meander Designer: Automatically Generating Meander Channel Designs. Micromachines, 2018, 9, 625.	1.4	13	

# 1340	ARTICLE Research on the Methods for the Mass Production of Multi-Scale Organs-On-Chips. Polymers, 2018, 10, 1238.	IF 2.0	CITATIONS
1341	Paper-based microfluidic device for diagnosis of osteoporosis markers. Bioanalysis, 2018, 10, 1639-1649.	0.6	5
1342	Design, fabrication and characterisation of Siâ€based capillaryâ€driven microfluidic devices. Micro and Nano Letters, 2018, 13, 1682-1687.	0.6	3
1343	Paper-based immunosensor utilizing dielectrophoretic trapping of microprobes for quantitative and label free detection using electrochemical impedance spectroscopy. Biomicrofluidics, 2018, 12, 064102.	1.2	5
1344	Genome Microbiology for Synthetic Applications. , 2018, , 75-86.		1
1345	In-field determination of soil ion content using a handheld device and screen-printed solid-state ion-selective electrodes. PLoS ONE, 2018, 13, e0203862.	1.1	16
1346	Microfluidic threadâ€based electrode system to detect glucose and acetylthiocholine. Electrophoresis, 2018, 39, 3082-3086.	1.3	7
1347	Paper-Based Methods. , 2018, , 129-129.		0
1348	Rapid Multiplexed Detection on Lateral-Flow Devices Using a Laser Direct-Write Technique. Biosensors, 2018, 8, 97.	2.3	16
1349	Simulation of immiscible liquid–liquid flows in complex microchannel geometries using a front-tracking scheme. Microfluidics and Nanofluidics, 2018, 22, 126.	1.0	11
1350	Multistage Chemical Heating for Instrument-Free Biosensing. ACS Applied Materials & Interfaces, 2018, 10, 33043-33048.	4.0	8
1351	Nucleic Acid Isolation. , 2018, , 35-46.		1
1352	Paper-Based Strips for the Electrochemical Detection of Single and Double Stranded DNA. Analytical Chemistry, 2018, 90, 13680-13686.	3.2	64
1353	Microfluidics and Nanofluidics: Science, Fabrication Technology (From Cleanrooms to 3D Printing) and Their Application to Chemical Analysis by Battery-Operated Microplasmas-On-Chips. , 2018, , .		7
1354	Low-Cost and Rapid-Production Microfluidic Electrochemical Double-Layer Capacitors for Fast and Sensitive Breast Cancer Diagnosis. Analytical Chemistry, 2018, 90, 12377-12384.	3.2	28
1355	Paper-Based Analytical Methods for Smartphone Sensing with Functional Nanoparticles: Bridges from Smart Surfaces to Global Health. Analytical Chemistry, 2018, 90, 12325-12333.	3.2	60
1356	Uncovering the Formation of Color Gradients for Glucose Colorimetric Assays on Microfluidic Paper-Based Analytical Devices by Mass Spectrometry Imaging. Analytical Chemistry, 2018, 90, 11949-11954.	3.2	46
1357	A novel combination of quick response code and microfluidic paper-based analytical devices for rapid and quantitative detection. Biomedical Microdevices, 2018, 20, 79.	1.4	12

#	Apticie	IF	CITATIONS
1358	Design of a simple paper-based colorimetric biosensor using polydiacetylene liposomes for neomycin detection. Analyst, The, 2018, 143, 4623-4629.	1.7	24
1359	Rapid fabrication of versatile omni-directional and long-distance three-dimensional flow paper-fluidic analytical devices using a cut-and-insert method for biomedical applications. Analytical Methods, 2018, 10, 4648-4654.	1.3	4
1360	Paper-Based Sensors: Emerging Themes and Applications. Sensors, 2018, 18, 2838.	2.1	189
1361	Paper-based electrochemiluminescence sensor for highly sensitive detection of amyloid-β oligomerization: Toward potential diagnosis of Alzheimer's disease. Theranostics, 2018, 8, 2289-2299.	4.6	26
1362	Pen-on-paper strategies for point-of-care testing of human health. TrAC - Trends in Analytical Chemistry, 2018, 108, 50-64.	5.8	47
1363	Rapid, High Affinity Binding by a Fluorescein Templated Copolymer Combining Covalent, Hydrophobic, and Acid–Base Noncovalent Crosslinks. Sensors, 2018, 18, 1330.	2.1	8
1364	Rapid Low-Cost Microfluidic Detection in Point of Care Diagnostics. Journal of Medical Systems, 2018, 42, 184.	2.2	7
1365	Detection of cystic fibrosis transmembrane conductance regulator ΔF508 gene mutation using a paper-based nucleic acid hybridization assay and a smartphone camera. Analyst, The, 2018, 143, 3049-3058.	1.7	10
1366	Correcting the effect of hematocrit in whole blood coagulation analysis on paper-based lateral flow device. Analytical Methods, 2018, 10, 2869-2874.	1.3	12
1367	Improved performance of a paper-based glucose fuel cell by capillary induced flow. Electrochimica Acta, 2018, 282, 336-342.	2.6	36
1368	Capillary Coatings: Flow and Drying Dynamics in Open Microchannels. Langmuir, 2018, 34, 7624-7639.	1.6	26
1369	Enzyme-Linked Immunoassays. , 2018, , 97-127.		10
1370	Paper-Based Immunoassays. , 2018, , 183-201.		2
1371	Lab-on-a-Chip (LOC) Immunoassays. , 2018, , 415-431.		2
1372	Quantification of combined color and shade changes in colorimetry and image analysis: water pH measurement as an example. Analytical Methods, 2018, 10, 3059-3065.	1.3	14
1373	Self-powered infusion microfluidic pump for ex vivo drug delivery. Biomedical Microdevices, 2018, 20, 44.	1.4	22
1374	Multidimensional Paper Networks: A New Generation of Low-Cost Pump-Free Microfluidic Devices. Journal of the Indian Institute of Science, 2018, 98, 103-136.	0.9	7
1375	Immunoassays. , 2018, , 1-18.		15

#	Article	IF	CITATIONS
1376	Bacterial Membrane Depolarization-Linked Fuel Cell Potential Burst as Signal for Selective Detection of Alcohol. ACS Applied Materials & Interfaces, 2018, 10, 18630-18640.	4.0	17
1377	Laserâ€Induced Molybdenum Carbide–Graphene Composites for 3D Foldable Paper Electronics. Advanced Materials, 2018, 30, e1800062.	11.1	135
1378	A cotton thread fluidic device with a wall-jet pencil-drawn paper based dual electrode detector. Analytica Chimica Acta, 2018, 1040, 74-80.	2.6	25
1379	One-step three-dimensional printing of enzyme/substrate–incorporated devices for glucose testing. Analytica Chimica Acta, 2018, 1036, 133-140.	2.6	18
1380	Paper-Based Enzyme Competition Assay for Detecting Falsified β-Lactam Antibiotics. ACS Sensors, 2018, 3, 1299-1307.	4.0	28
1381	Photography Coupled with Self-Propagating Chemical Cascades: Differentiation and Quantitation of G- and V-Nerve Agent Mimics via Chromaticity. ACS Central Science, 2018, 4, 854-861.	5.3	36
1382	A distance-based paper sensor for the determination of chloride ions using silver nanoparticles. Analyst, The, 2018, 143, 3867-3873.	1.7	52
1383	Detection of Analgesics and Sedation Drugs in Whiskey Using Electrochemical Paperâ€based Analytical Devices. Electroanalysis, 2018, 30, 2250-2257.	1.5	54
1384	A simple and low-cost portable paper-based ABO blood typing device for point-of-care testing. Journal of Immunoassay and Immunochemistry, 2018, 39, 292-307.	0.5	20
1385	Polymethyl methacrylate (PMMA) point of care for ABO-Rh(D) blood typing. Sensors and Actuators B: Chemical, 2018, 273, 703-709.	4.0	3
1386	Mimicking peroxidase activity of Co2(OH)2CO3-CeO2 nanocomposite for smartphone based detection of tumor marker using paper-based microfluidic immunodevice. Talanta, 2018, 189, 100-110.	2.9	66
1387	Integrated paper-based microfluidic devices for point-of-care testing. Analytical Methods, 2018, 10, 3567-3581.	1.3	65
1388	Photolithographic structuring of soft, extremely foldable and autoclavable hydrophobic barriers in paper. Analytical Methods, 2018, 10, 4028-4035.	1.3	13
1389	Fiber-Based Sensors. , 2018, , 153-171.		8
1390	Flow of liquids through paper. Journal of Fluid Mechanics, 2018, 852, 1-4.	1.4	32
1391	Cellulose Nanofibers as a Module for Paper-Based Microfluidic Analytical Devices: Labile Substance Storage, Processability, and Reaction Field Provision and Control. ACS Applied Bio Materials, 2018, 1, 480-486.	2.3	15
1392	Flexible substrate sensors for multiplex biomarker monitoring. MRS Communications, 2018, 8, 627-641.	0.8	14
1393	Carbon tape as a convenient electrode material for electrochemical paper-based microfluidic devices (ePADs). Analytical Methods, 2018, 10, 4020-4027.	1.3	20

		CITATION REPOR	RT	
#	Article	IF		Citations
1394	Fibre-optic sensing in digital microfluidic devices. Sensors and Actuators A: Physical, 2018,	280, 164-169. 2.0	0	16
1395	Merging Electric Bacteria with Paper. Advanced Materials Technologies, 2018, 3, 1800118.	3.0	0	36
1396	Enhancing the sensitivity of colorimetric lateral flow assay (CLFA) through signal amplificat techniques. Journal of Materials Chemistry B, 2018, 6, 7102-7111.	ion 2.9	9	56
1397	Emerging Anti-Fouling Methods: Towards Reusability of 3D-Printed Devices for Biomedical Applications. Micromachines, 2018, 9, 196.	1.4	4	16
1398	Features in Microfluidic Paper-Based Devices Made by Laser Cutting: How Small Can They B Micromachines, 2018, 9, 220.	je?. 1.4	4	49
1399	Laminated Copper Nanocluster Incorporated Antioxidative Paper Device with RGB System-A Signal Improvement. Nanomaterials, 2018, 8, 97.	Assisted 1.9	9	10
1400	Malaria and the †last' parasite: how can technology help?. Malaria Journal, 2018, 17,	260. 0.1	8	32
1401	Phenolphthalein-Conjugated Hydrogel Formation under Visible-Light Irradiation for Reducin Variability of Colorimetric Biodetection. ACS Applied Bio Materials, 2018, 1, 216-220.	g 2.:	3	11
1402	Liquid Metal Printed Biosensor. Springer Series in Biomaterials Science and Engineering, 20	18, , 325-367. 0.'	7	0
1403	Multiplexed Instrument-Free Bar-Chart SpinChip Integrated with Nanoparticle-Mediated Ma Aptasensors for Visual Quantitative Detection of Multiple Pathogens. Analytical Chemistry, 9888-9896.	gnetic 2018, 90, 3.:	2	101
1404	An easy-to-build and re-usable microfluidic system for live-cell imaging. BMC Cell Biology, 20	018, 19, 8. 3.0	0	9
1405	Blood plasma separation in ZnO nanoflowers-supported paper based microfluidic for glucos AIP Conference Proceedings, 2018, , .	se sensing. 0.1	3	1
1406	Advances in Diagnostic Methods for Zika Virus Infection. Journal of Medical Devices, Transa the ASME, 2018, 12, 0408021-4080211.	ctions of 0.4	4	28
1407	Local Wettability Modification and its Micro-Fluidic System Application. Toxinology, 2018,	.1-33. 0.:	2	Ο
1408	Optimizing piezoelectric inkjet printing of silica sols for biosensor production. Journal of Sc Science and Technology, 2018, 87, 657-664.	l-Gel 1.1	1	13
1409	Tunability of liquid-infused silicone materials for biointerfaces. Biointerphases, 2018, 13, 06	D401. o.	6	42
1410	Hydrophobic Covalent Patterns on Cellulose Paper through Photothiol-X Ligations. ACS On 3, 9155-9159.	1.6	6	19
1411	Paper-based luminescence bioassay method embedding a sequence of enzymatic reactions sulfonamide groups. Journal of Antibiotics, 2018, 71, 1044-1047.	to detect 1.0	0	0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1412	Roll-to-Roll Surface Modification of Cellulose Paper via Initiated Chemical Vapor Deposit Industrial & Engineering Chemistry Research, 2018, 57, 11675-11680.	ion.	1.8	31
1413	Paper based DNA biosensor for detection of chikungunya virus using gold shells coated nanocubes. Process Biochemistry, 2018, 74, 35-42.	magnetic	1.8	55
1414	Rotational Paper-Based Microfluidic-Chip Device for Multiplexed and Simultaneous Fluo Detection of Phenolic Pollutants Based on a Molecular-Imprinting Technique. Analytical 2018, 90, 11827-11834.	rescence Chemistry,	3.2	140
1415	Development of quantum dot-based biosensors: principles and applications. Journal of I Chemistry B, 2018, 6, 6173-6190.	Materials	2.9	119
1416	Technology of Stearine Transfer Using Laser-Heating for Lab-On-Paper Development. , 2	018,,.		0
1417	Paper-based chemiluminescence enzyme-linked immunosorbent assay enhanced by bio system for high-sensitivity C-reactive protein detection. Analytical Biochemistry, 2018, 1	tin-streptavidin 559, 86-90.	1.1	12
1418	Electrospinning and microfluidics. , 2018, , 139-155.			12
1419	Smart Portable Devices Suitable for Cultural Heritage: A Review. Sensors, 2018, 18, 243	\$ 4.	2.1	16
1420	From Nanowarming to Thermoregulation: New Multiscale Applications of Bioheat Trans Review of Biomedical Engineering, 2018, 20, 301-327.	fer. Annual	5.7	22
1421	A chemically functionalized paper-based microfluidic platform for multiplex heavy metal Sensors and Actuators B: Chemical, 2018, 273, 18-24.	detection.	4.0	79
1422	Microfluidic Lateral Flow Cytochrome P450 Assay on a Novel Printed Functionalized Cal Carbonateâ€Based Platform for Rapid Screening of Human Xenobiotic Metabolism. Adv Materials, 2018, 28, 1802793.	cium anced Functional	7.8	15
1423	Highly sensitive paper-based immunoassay using photothermal laser speckle imaging. B Bioelectronics, 2018, 117, 385-391.	iosensors and	5.3	29
1424	Plasmonic Biosensor Based on Vertical Arrays of Gold Nanoantennas. ACS Sensors, 201	8, 3, 1392-1400.	4.0	36
1425	Design Principles for Enhancing Sensitivity in Paper-Based Diagnostics via Large-Volume Analytical Chemistry, 2018, 90, 9472-9479.	Processing.	3.2	12
1426	Spectroâ€Electrochemical Microfluidic Platform for Monitoring Multiâ€Step Cascade Ro ChemElectroChem, 2019, 6, 246-251.	eactions.	1.7	10
1427	Highly Flexible Transistor Threads for All-Thread Based Integrated Circuits and Multiplex Diagnostics. ACS Applied Materials & amp; Interfaces, 2019, 11, 31096-31104.	ed	4.0	33
1428	Microfluidics and hydrogel: A powerful combination. Reactive and Functional Polymers, 104314.	2019, 145,	2.0	64
1429	Polydentate Aromatic Nanoparticles Complexed with Cu ²⁺ for the Detect Cysteamine Using a Smartphone as a Portable Diagnostic Tool. ACS Applied Nano Mate 5841-5849.	on of rials, 2019, 2,	2.4	14

#	Article	IF	CITATIONS
1430	Microfluidic paper-based analytical devices for environmental analysis of soil, air, ecology and river water. Sensors and Actuators B: Chemical, 2019, 301, 126855.	4.0	125
1431	Cellulose Nano-Films as Bio-Interfaces. Frontiers in Chemistry, 2019, 7, 535.	1.8	36
1432	Biofunctionalized cellulose paper matrix for cell delivery applications. International Journal of Biological Macromolecules, 2019, 139, 114-127.	3.6	11
1433	Combining the geometry of folded paper with liquid-infused polymer surfaces to concentrate and localize bacterial solutions. Biointerphases, 2019, 14, 041005.	0.6	6
1434	Vacuum pouch microfluidic system and its application for thin-film micromixers. Lab on A Chip, 2019, 19, 2834-2843.	3.1	12
1435	<i>Escherichia Coli</i> Fed Paper-Based Microfluidic Microbial Fuel Cell With MWCNT Composed Bucky Paper Bioelectrodes. IEEE Transactions on Nanobioscience, 2019, 18, 510-515.	2.2	14
1436	Aggregation-induced emission of azines: An up-to-date review. Journal of Molecular Liquids, 2019, 292, 111371.	2.3	37
1437	Fabrication of paper-based microfluidic device by recycling foamed plastic and the application for multiplexed measurement of biomarkers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117341.	2.0	14
1438	Graphene oxide-circular aptamer based colorimetric protein detection on bioactive paper. Analytical Methods, 2019, 11, 4328-4333.	1.3	10
1439	T-shirt ink for one-step screen-printing of hydrophobic barriers for 2D- and 3D-microfluidic paper-based analytical devices. Talanta, 2019, 205, 120113.	2.9	43
1440	Fabrication and Validation of a Handheld Non-Invasive, Optical Biosensor for Self-Monitoring of Glucose Using Saliva. IEEE Sensors Journal, 2019, 19, 8332-8339.	2.4	30
1441	Noble metal nanoparticles growth-based colorimetric strategies: From monocolorimetric to multicolorimetric sensors. Coordination Chemistry Reviews, 2019, 398, 113003.	9.5	85
1442	Nonfluorescent Molecule Detection in 10 ² nm Nanofluidic Channels by Photothermal Optical Diffraction. Analytical Chemistry, 2019, 91, 9741-9746.	3.2	17
1443	Clickable cellulosic surfaces for peptide-based bioassays. Talanta, 2019, 205, 120152.	2.9	9
1444	Paperâ€Based Electrochromic Devices Enabled by Nanocelluloseâ€Coated Substrates. Advanced Functional Materials, 2019, 29, 1903487.	7.8	81
1445	A paper-based length of stain analytical device for naked eye (readout-free) detection of cystic fibrosis. Analytica Chimica Acta, 2019, 1080, 138-145.	2.6	28
1446	Novel field amplification for sensitive colorimetric detection of microalbuminuria on a paper-based analytical device. Analytica Chimica Acta, 2019, 1080, 146-152.	2.6	27
1447	Open Microfluidic Capillary Systems. Analytical Chemistry, 2019, 91, 8739-8750.	3.2	87

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1448	Flow control for lateral flow strips with centrifugal microfluidics. Lab on A Chip, 2019,	19, 2718-2727.	3.1	15
1449	Preparation of paper-based devices for reagentless electrochemical (bio)sensor strips. Protocols, 2019, 14, 2437-2451.	Nature	5.5	114
1450	Ambient mass spectrometry from the point of view of Green Analytical Chemistry. Cur Green and Sustainable Chemistry, 2019, 19, 50-60.	rent Opinion in	3.2	13
1451	Paper-Based All-in-One Origami Microdevice for Nucleic Acid Amplification Testing for I Colorimetric Identification of Live Cells for Point-of-Care Testing. Analytical Chemistry, 11013-11022.	Rapid 2019, 91,	3.2	62
1452	Analytical aspects of smart (phone) fluorometric measurements. Talanta, 2019, 197, 3	19-325.	2.9	27
1453	Rapid multiplex microfiber-based immunoassay for anti-MERS-CoV antibody detection. Bio-Sensing Research, 2019, 26, 100304.	Sensing and	2.2	14
1454	Chronometric Quantitation of Analytes in Paper-Based Microfluidic Devices (MicroPAD Enzymatic Degradation of a Metastable Biomatrix. Inventions, 2019, 4, 48.	is) via	1.3	3
1455	Wettability Control in Tree Structure-Based 1D Fiber Assemblies for Moisture Wicking ACS Applied Materials & amp; Interfaces, 2019, 11, 44682-44690.	Functionality.	4.0	23
1456	A paper-based microfluidic platform with shape-memory-polymer-actuated fluid valves multi-step immunoassays. Microsystems and Nanoengineering, 2019, 5, 50.	for automated	3.4	49
1457	Nanomaterialâ€Modified Conducting Paper: Fabrication, Properties, and Emerging Bio Applications. Global Challenges, 2019, 3, 1900041.	medical	1.8	23
1459	The threats from nanotechnology. Bulletin of the Atomic Scientists, 2019, 75, 290-294	4.	0.2	0
1460	Paper Stacks for Uniform Rehydration of Dried Reagents in Paper Microfluidic Devices. Reports, 2019, 9, 15755.	Scientific	1.6	15
1461	A broad overview on innovative functionalized paper solutions. Nordic Pulp and Paper Journal, 2019, 34, 395-416.	Research	0.3	16
1462	A Nanocelluloseâ€Paperâ€Based SERS Multiwell Plate with High Sensitivity and High S Advanced Materials Interfaces, 2019, 6, 1901346.	ignal Homogeneity.	1.9	27
1463	Colorimetric Paper-Based Immunosensor for Simultaneous Determination of Fetuin B a toward Early Alzheimer's Diagnosis. ACS Nano, 2019, 13, 13325-13332.	and Clusterin	7.3	67
1464	On-chip solid phase extraction and in situ optical detection. Talanta, 2019, 197, 299-3	03.	2.9	9
1465	Fabrication of Miniaturized Paper-Based Microfluidic Devices (MicroPADs). Scientific R 7.	eports, 2019, 9,	1.6	80
1466	Experimental comparison of surface chemistries for biomolecule immobilization on pa microfluidic devices. Journal of Micromechanics and Microengineering, 2019, 29, 1240	ber-based 003.	1.5	10

#	Article	IF	CITATIONS
1467	Development of a Thermoresponsive Valve Membrane for Microfluiic Paper-Based Analytical Devic. , 2019, , .		1
1468	Proof of Concept of Sucrose Measurement Method that Combines Photocatalysis with Enzymatic Reaction. Chemistry Letters, 2019, 48, 1251-1253.	0.7	0
1469	Wireless colorimetric readout to enable resource-limited point-of-care. Lab on A Chip, 2019, 19, 3344-3353.	3.1	10
1470	Chemical Sensing Platforms Based on Organic Thin-Film Transistors Functionalized with Artificial Receptors. ACS Sensors, 2019, 4, 2571-2587.	4.0	62
1471	Laser-treated glass platform for rapid wicking-driven transport and particle separation in bio microfluidics. RSC Advances, 2019, 9, 19531-19538.	1.7	5
1472	A cellulosic paper-based sensor for detection of starch contamination in milk. Bulletin of Materials Science, 2019, 42, 1.	0.8	21
1473	Photothermal Microfluidic Sensing Platform Using Near-Infrared Laser-Driven Multiplexed Dual-Mode Visual Quantitative Readout. Analytical Chemistry, 2019, 91, 13290-13296.	3.2	43
1474	Fabrication of a Tyrosine-Responsive Liquid Quantum Dots Based Biosensor through Host–Guest Chemistry. Analytical Chemistry, 2019, 91, 13285-13289.	3.2	13
1475	Development of a colorimetric array to discriminate cutting agents in seized cocaine samples. , 2019, , .		2
1476	Lamb to Rayleigh Wave Conversion on Superstrates as a Means to Facilitate Disposable Acoustomicrofluidic Applications. Analytical Chemistry, 2019, 91, 12358-12368.	3.2	20
1477	Micropipette Tip-Based Immunoassay with Electrochemical Detection of Antitissue Transglutaminase to Diagnose Celiac Disease Using Staples and a Paper-Based Platform. ACS Sensors, 2019, 4, 2679-2687.	4.0	13
1478	Feasibility of paper microzone plates for greener determination of the alcoholic content of beverages by thermal infrared enthalpimetry. Analytical Methods, 2019, 11, 4983-4990.	1.3	5
1479	Flavin Binding Allosteric Aptamer with Noncovalent Labeling for miR Sensing. Bioconjugate Chemistry, 2019, 30, 2822-2827.	1.8	0
1480	Paper-based microfluidic devices for glucose assays employing a metal-organic framework (MOF). Analytica Chimica Acta, 2019, 1055, 74-80.	2.6	42
1481	Paper-based platform for detection by hybridization using intrinsically labeled fluorescent oligonucleotide probes on quantum dots. Analyst, The, 2019, 144, 1223-1229.	1.7	9
1482	PEG-based cross-linked films with aligned channels: combining cryogenic processing and photopolymerization for the design of micro-patterned oriented platforms. Molecular Systems Design and Engineering, 2019, 4, 133-143.	1.7	6
1483	Development of a microfluidic device (μPADs) for forensic serological analysis. Analytical Methods, 2019, 11, 587-595.	1.3	15
1484	Determination of sample stability for whole blood parameters using formal experimental design. Analytical Methods, 2019, 11, 930-935.	1.3	9

#	Article	IF	CITATIONS
1485	Amperometric Automation and Optimization Paper Microfluidic Viscometer. , 2019, 3, 1-4.		4
1486	Janus electrochemistry: Simultaneous electrochemical detection at multiple working conditions in a paper-based analytical device. Analytica Chimica Acta, 2019, 1056, 88-95.	2.6	40
1487	Paper-based multiplexed vertical flow assay for point-of-care testing. Lab on A Chip, 2019, 19, 1027-1034.	3.1	53
1488	Designing Paper-Based Immunoassays for Biomedical Applications. Sensors, 2019, 19, 554.	2.1	86
1489	Immunobindingâ€induced alteration in the electrophoretic mobility of proteins: An approach to studying the preconcentration of an acidic protein under cationic isotachophoresis. Electrophoresis, 2019, 40, 1314-1321.	1.3	8
1490	Towards Closed-Loop Integration of Point-of-Care Technologies. Trends in Biotechnology, 2019, 37, 775-788.	4.9	22
1491	Recent Advances in Paper-Based Analytical Devices: A Pivotal Step Forward in Building Next-Generation Sensor Technology. , 2019, , 479-517.		4
1492	Equipment-Free Detection of K ⁺ on Microfluidic Paper-Based Analytical Devices Based on Exhaustive Replacement with Ionic Dye in Ion-selective Capillary Sensors. ACS Sensors, 2019, 4, 670-677.	4.0	57
1493	Solid-state NMR of nanocrystals. Annual Reports on NMR Spectroscopy, 2019, 97, 1-82.	0.7	22
1494	Development of a Paper-Based Luminescence Bioassay for Therapeutic Monitoring of Aminoglycosides: a Proof-of-Concept Study. Applied Biochemistry and Biotechnology, 2019, 189, 798-809.	1.4	10
1495	Infrared thermal imaging combined with paper microzone plates and natural reagent extracts for simple, fast, and green enthalpimetric analysis. Talanta, 2019, 204, 266-271.	2.9	6
1496	Paper-microfluidics based SERS substrate for PPB level detection of catechol. Optical Materials, 2019, 94, 305-310.	1.7	8
1497	Highly Filled Papers, on their Manufacturing, Processing, and Applications. Advanced Engineering Materials, 2019, 21, 1900180.	1.6	17
1498	Tuning a Bisphenol A Lateral Flow Assay Using Multiple Gold Nanosystems. Particle and Particle Systems Characterization, 2019, 36, 1900133.	1.2	4
1499	Fabrication of laser printed microfluidic paper-based analytical devices (LP-µPADs) for point-of-care applications. Scientific Reports, 2019, 9, 7896.	1.6	86
1500	Distance versus Capillary Flow Dynamicsâ€Based Detection Methods on a Microfluidic Paperâ€Based Analytical Device (μPAD). Chemistry - A European Journal, 2019, 25, 13070-13077.	1.7	21
1501	A paper-based analytical device coupled with electrochemical detection for the determination of dexamethasone and prednisoloneÂin adulterated traditional medicines. Analytica Chimica Acta, 2019, 1078, 16-23.	2.6	40
1502	Structure-tunable graphene oxide fibers via microfluidic spinning route for multifunctional textiles. Carbon, 2019, 152, 106-113.	5.4	52

#	Article	IF	CITATIONS
1503	Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urine. Biomedical Microdevices, 2019, 21, 48.	1.4	38
1504	Current and Emerging Methods of Antibiotic Susceptibility Testing. Diagnostics, 2019, 9, 49.	1.3	239
1505	Preconcentration and sensitive determination of the anti-inflammatory drug diclofenac on a paper-based electroanalytical platform. Analytica Chimica Acta, 2019, 1074, 89-97.	2.6	43
1506	Electrochemical biotoxicity detection on a microfluidic paper-based analytical device via cellular respiratory inhibition. Talanta, 2019, 202, 384-391.	2.9	27
1507	Patterning and Modeling Three-Dimensional Microfluidic Devices Fabricated on a Single Sheet of Paper. Analytical Chemistry, 2019, 91, 8298-8303.	3.2	22
1508	Tangential Flow Microfiltration for Viral Separation and Concentration. Micromachines, 2019, 10, 320.	1.4	7
1509	Overreliance on Cost Reduction as a Featured Element of Sensor Design. ACS Sensors, 2019, 4, 1120-1125.	4.0	12
1510	Hand-Fabricated CNT/AgNPs Electrodes using Wax-on-Plastic Platforms for Electro-Immunosensing Application. Scientific Reports, 2019, 9, 6131.	1.6	13
1511	Applications of Microfluidic Systems in Biology and Medicine. Bioanalysis, 2019, , .	0.1	7
1513	Paper Microfluidics for POC Testing in Low-Resource Settings. Bioanalysis, 2019, , 325-352.	0.1	0
1514	Optimization of CIEL*a*b*/Yxy colour system for colorimetric devices fabricated with gold nanoparticles. Journal of Molecular Structure, 2019, 1191, 271-277.	1.8	6
1515	Perspective on signal amplification strategies and sensing protocols in photoelectrochemical immunoassay. Coordination Chemistry Reviews, 2019, 391, 1-14.	9.5	97
1516	Microfluidics on the fly: Inexpensive rapid fabrication of thermally laminated microfluidic devices for live imaging and multimodal perturbations of multicellular systems. Biomicrofluidics, 2019, 13, 024111.	1.2	16
1517	Microdroplet Array for Nucleic Acid Amplification Strategies. , 2019, , 307-331.		0
1518	Using printer ink color to control the behavior of paper microfluidics. Lab on A Chip, 2019, 19, 2000-2008.	3.1	13
1519	Flourishing Smart Flexible Membranes Beyond Paper. Analytical Chemistry, 2019, 91, 4224-4234.	3.2	13
1520	Scalable Methods for Device Patterning as an Outstanding Challenge in Translating Paper-Based Microfluidics from the Academic Benchtop to the Point-of-Care. Journal of Analysis and Testing, 2019, 3, 50-60.	2.5	18
1521	Paper-Based Electrochemical Biosensors for Point-of-Care Testing of Neurotransmitters. Journal of Analysis and Testing, 2019, 3, 19-36.	2.5	30

#	Article	IF	CITATIONS
1522	Analysis of centrifugal homogenization and its applications for emulsification & mechanical cell lysis. Journal of Colloid and Interface Science, 2019, 547, 127-135.	5.0	4
1523	Recent advances in and potential utilities of paper-based electrochemical sensors: beyond qualitative analysis. Analyst, The, 2019, 144, 2467-2479.	1.7	40
1524	Paper microzones as a route to greener analytical chemistry. Current Opinion in Green and Sustainable Chemistry, 2019, 19, 15-18.	3.2	12
1525	Peptide-Mediated Electrochemical Steric Hindrance Assay for One-Step Detection of HIV Antibodies. Analytical Chemistry, 2019, 91, 4943-4947.	3.2	35
1526	Reconfigurable Acrylic-tape Hybrid Microfluidics. Scientific Reports, 2019, 9, 4824.	1.6	22
1527	Pore network model for permeability characterization of three-dimensionally-printed porous materials for passive microfluidics. Physical Review E, 2019, 99, 033107.	0.8	28
1528	Paper based electronic tongue – a low-cost solution for the distinction of sugar type and apple juice brand. Analyst, The, 2019, 144, 2827-2832.	1.7	25
1529	Analytical reliability of simple, rapid, minuturizated, direct analytical processes: A call to arms. TrAC - Trends in Analytical Chemistry, 2019, 114, 98-107.	5.8	11
1530	Battery-Less NFC Sensor for pH Monitoring. IEEE Access, 2019, 7, 33226-33239.	2.6	36
1531	Enzymatic Litmus Test for Selective Colorimetric Detection of C–C Single Nucleotide Polymorphisms. Analytical Chemistry, 2019, 91, 4735-4740.	3.2	24
1532	Wax-Printed Fluidic Time Delays for Automating Multi-Step Assays in Paper-Based Microfluidic Devices (MicroPADs). Inventions, 2019, 4, 20.	1.3	16
1533	Nanoarchitectonics in Microfluidic Devices for Sensing and Biosensing. , 2019, , 231-252.		4
1534	3D Capillary-Driven Paper-Based Sequential Microfluidic Device for Electrochemical Sensing Applications. ACS Sensors, 2019, 4, 1211-1221.	4.0	79
1535	A Solidâ€Stateâ€Emissive 1,8â€Naphthalimide Probe Based on Photoinduced Electron Transfer and Aggregationâ€Induced Emission. ChemistrySelect, 2019, 4, 4163-4167.	0.7	12
1536	Fully integrated and slidable paper-embedded plastic microdevice for point-of-care testing of multiple foodborne pathogens. Biosensors and Bioelectronics, 2019, 135, 120-128.	5.3	83
1537	An all-printed 3D-Zn/Fe3O4 paper battery. Sensors and Actuators B: Chemical, 2019, 289, 226-233.	4.0	6
1538	Colorimetric sensor for determination of phosphate ions using anti-aggregation of 2-mercaptoethanesulfonate-modified silver nanoplates and europium ions. Sensors and Actuators B: Chemical, 2019, 290, 226-232.	4.0	47
1539	Sustainable Hydrophobic and Moisture-Resistant Coating Derived from Downstream Corn Oil. ACS Sustainable Chemistry and Engineering, 2019, 7, 8766-8774.	3.2	24

#	ARTICLE Pore-Scale Displacement Efficiency during Different Salinity Water Flooding in Hydrophilic and	IF	Citations
1540	Hydrophobic Microstructures. Energy & amp; Fuels, 2019, 33, 3859-3870.	2.5	10
1541	point-of-care testing. Talanta, 2019, 201, 126-133. Advanced Colorimetric Paper Sensors Using Color Focusing Effect Based on Asymmetric Flow of Flore Laboration of Colorimetric Paper Sensors Using Color Focusing Effect Based on Asymmetric Flow of	4.0	26
1543	Sampling and multiplexing in lab-on-paper bioelectroanalytical devices for glucose determination. Biosensors and Bioelectronics, 2019, 135, 64-70.	5.3	27
1544	Methanol-Based Fuel Cell on Paper Support with N-Doped Graphene Oxide/Nickel Cobaltite Composite Catalyst. Journal of the Electrochemical Society, 2019, 166, F190-F197.	1.3	8
1545	Parametric analysis of wax printing technique for fabricating microfluidic paper-based analytic devices (µPAD) for milk adulteration analysis. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	37
1546	Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S. Sensors, 2019, 19, 905.	2.1	223
1547	An integrated device for the rapid and sensitive detection of the influenza hemagglutinin. Lab on A Chip, 2019, 19, 885-896.	3.1	14
1548	An origami paper-based electrochemical immunoassay for theÂC-reactive protein using a screen-printed carbon electrode modified with graphene and gold nanoparticles. Mikrochimica Acta, 2019, 186, 153.	2.5	85
1549	Detection of chikungunya virusâ€specific IgM on laserâ€cut paperâ€based device using pseudoâ€particles as capture antigen. Journal of Medical Virology, 2019, 91, 899-910.	2.5	11
1550	Dynamics of poroelastocapillary rise. Journal of Fluids and Structures, 2019, 85, 220-228.	1.5	6
1551	Fabricating Paper Based Devices Using Correction Pens. Scientific Reports, 2019, 9, 1752.	1.6	54
1552	Multi-screening of β-lactam antibiotics for β-lactamase resistance by means of a paper-based analytical device with a 4-(2-pyridylazo)resorcinol (PAR)–Hg ²⁺ complex. Analytical Methods, 2019, 11, 1729-1734.	1.3	2
1553	Paper-based microfluidics for DNA diagnostics of malaria in low resource underserved rural communities. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4834-4842.	3.3	233
1554	An Overview of Point-of-Care Technologies Enabling Next-Generation Healthcare Monitoring and Management. , 2019, , 1-25.		5
1555	Paper-Based Point-of-Care Immunoassays. , 2019, , 133-155.		2
1556	Lab-on-a-Chip-Based Point-of-Care Immunoassays. , 2019, , 157-175.		0
1557	Paper-based electroanalytical strip for user-friendly blood glutathione detection. Sensors and Actuators B: Chemical, 2019, 294, 291-297.	4.0	39

#	Article	IF	CITATIONS
1558	Printed Paper–Based Electrochemical Sensors for Low-Cost Point-of-Need Applications. Electrocatalysis, 2019, 10, 342-351.	1.5	23
1559	Fluid Mixing Enhanced by Surface Acoustic Waves in a Micro-Cavity. Acoustical Physics, 2019, 65, 647-651.	0.2	2
1560	Editorial: Plasmonic Technologies for Bioanalytical Applications. Frontiers in Chemistry, 2019, 7, 865.	1.8	4
1561	Microfluidic paper-based analytical devices for reliable and low-cost point-of-care applications. , 2019, , .		1
1563	A low-cost sensor based on silver nanoparticles for determining chemical oxygen demand in wastewater <i>via</i> image processing analysis. Analytical Methods, 2019, 11, 5577-5583.	1.3	5
1564	A low-cost fluorescence reader for in vitro transcription and nucleic acid detection with Cas13a. PLoS ONE, 2019, 14, e0220091.	1.1	44
1565	A Fully Integrated In Vitro Diagnostic Microsystem for Pathogen Detection Developed Using a "3D Extensible―Microfluidic Design Paradigm. Micromachines, 2019, 10, 873.	1.4	8
1566	Emerging paper microfluidic devices. Analyst, The, 2019, 144, 6497-6511.	1.7	33
1567	Enhanced Protein Adsorption in Fibrous Substrates Treated with Zeolitic Imidazolate Framework-8 (ZIF-8) Nanoparticles. ACS Applied Nano Materials, 2019, 2, 7626-7636.	2.4	37
1568	Frontiers in Microfluidics, a Teaching Resource Review. Bioengineering, 2019, 6, 109.	1.6	19
1569	Research and Application Progress of Paper-based Microfluidic Sample Preconcentration. Chinese Journal of Analytical Chemistry, 2019, 47, 1878-1886.	0.9	12
1570	A transparent paper-based platform for multiplexed bioassays by wavelength-dependent absorbance/transmittance. Analyst, The, 2019, 144, 7157-7161.	1.7	11
1571	Rotary manifold for automating a paper-based <i>Salmonella</i> immunoassay. RSC Advances, 2019, 9, 29078-29086.	1.7	28
1572	DNA microarray analysis using a smartphone to detect the BRCA-1 gene. Analyst, The, 2019, 144, 197-205.	1.7	32
1573	A paper-based chemiresistive biosensor employing single-walled carbon nanotubes for low-cost, point-of-care detection. Biosensors and Bioelectronics, 2019, 130, 367-373.	5.3	54
1574	Two-Dimensional Antifouling Fluidic Channels on Nanopapers for Biosensing. Biomacromolecules, 2019, 20, 1036-1044.	2.6	16
1575	A cellulose-based photoacoustic sensor to measure heparin concentration and activity in human blood samples. Biosensors and Bioelectronics, 2019, 126, 831-837.	5.3	28
1576	Fully integrated nucleic acid pretreatment, amplification, and detection on a paper chip for identifying EGFR mutations in lung cancer cells. Sensors and Actuators B: Chemical, 2019, 283, 472-477.	4.0	35

#	Article	IF	CITATIONS
1577	Recruitment and Collection of Dermal Interstitial Fluid Using a Microneedle Patch. Advanced Healthcare Materials, 2019, 8, e1801262.	3.9	70
1578	Auto-cleaning paper-based electrochemiluminescence biosensor coupled with binary catalysis of cubic Cu2O-Au and polyethyleneimine for quantification of Ni2+ and Hg2+. Biosensors and Bioelectronics, 2019, 126, 339-345.	5.3	34
1579	A novel and innovative paper-based analytical device for assessing tear lactoferrin of dry eye patients. Ocular Surface, 2019, 17, 160-166.	2.2	36
1580	Paper Microfluidics for Cell Analysis. Advanced Healthcare Materials, 2019, 8, e1801084.	3.9	44
1581	Autocatalytic Metallization of Fabrics Using Si Ink, for Biosensors, Batteries and Energy Harvesting. Advanced Functional Materials, 2019, 29, 1804798.	7.8	27
1582	Fast analysis of ketamine using a colorimetric immunosorbent assay on a paper-based analytical device. Sensors and Actuators B: Chemical, 2019, 282, 251-258.	4.0	41
1583	Molecularly Imprinted Fluorescent Test Strip for Direct, Rapid, and Visual Dopamine Detection in Tiny Amount of Biofluid. Small, 2019, 15, e1803913.	5.2	103
1584	Microfluidics for Porous Systems: Fabrication, Microscopy and Applications. Transport in Porous Media, 2019, 130, 277-304.	1.2	43
1585	SIMPLE analytical model for smart microfluidic chip design. Sensors and Actuators A: Physical, 2019, 287, 131-137.	2.0	9
1586	Paper microfluidic device for early diagnosis and prognosis of acute myocardial infarction via quantitative multiplex cardiac biomarker detection. Biosensors and Bioelectronics, 2019, 128, 176-185.	5.3	76
1587	A wearable origami-like paper-based electrochemical biosensor for sulfur mustard detection. Biosensors and Bioelectronics, 2019, 129, 15-23.	5.3	103
1588	Fluorometric analysis of borohydrides based on reductive aldehyde-to-alcohol conversion of arylaldehydes. Tetrahedron Letters, 2019, 60, 59-62.	0.7	2
1589	Life-Saving Threads: Advances in Textile-Based Analytical Devices. ACS Combinatorial Science, 2019, 21, 229-240.	3.8	38
1590	Recent advances in microfluidic paper-based electrochemiluminescence analytical devices for point-of-care testing applications. Biosensors and Bioelectronics, 2019, 126, 68-81.	5.3	145
1591	Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays. Talanta, 2019, 194, 837-845.	2.9	79
1592	Light ontrolled Chemoenzymatic Immobilization of Proteins towards Engineering of Bioactive Papers. Chemistry - A European Journal, 2019, 25, 1746-1751.	1.7	13
1593	3D Multilayered paper―and thread/paperâ€based microfluidic devices for bioassays. Electrophoresis, 2019, 40, 296-303.	1.3	23
1594	The design, fabrication, and applications of flexible biosensing devices. Biosensors and Bioelectronics, 2019, 124-125, 96-114.	5.3	124

#	Article	IF	CITATIONS
1595	Redox titration on foldable paper-based analytical devices for the visual determination of alcohol content in whiskey samples. Talanta, 2019, 194, 363-369.	2.9	36
1596	A colorimetric assay system for dopamine using microfluidic paper-based analytical devices. Talanta, 2019, 194, 171-176.	2.9	59
1597	A critical review of flexible and porous SERS sensors for analytical chemistry at the point-of-sample. Analytica Chimica Acta, 2019, 1060, 17-29.	2.6	106
1598	Recent Trends in the Development of Paper-Based Diagnostic Chips for the Detection of Human Viruses. , 2019, , 349-361.		4
1599	Frugal Medical Technologies and Adaptive Solutions: Field-Based Applications. SpringerBriefs in Bioengineering, 2019, , 49-73.	0.8	3
1600	REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nature Microbiology, 2019, 4, 46-54.	5.9	437
1601	Double-sided electrohydrodynamic jet printing of two-dimensional electrode array in paper-based digital microfluidics. Sensors and Actuators B: Chemical, 2019, 282, 831-837.	4.0	35
1602	Rapid fabrication of microfluidic paper-based analytical devices by microembossing. Sensors and Actuators B: Chemical, 2019, 283, 87-92.	4.0	23
1603	Chemiluminescence-based biosensor for monitoring astronauts' health status during space missions: Results from the International Space Station. Biosensors and Bioelectronics, 2019, 129, 260-268.	5.3	41
1604	Paper Microfluidics for Point-of-Care Blood-Based Analysis and Diagnostics. Analytical Chemistry, 2019, 91, 352-371.	3.2	109
1605	Green synthesized materials for sensor, actuator, energy storage and energy generation: a review. Polymer-Plastics Technology and Materials, 2020, 59, 1-62.	0.6	26
1606	Multiplexed chemiluminescence determination of three acute myocardial infarction biomarkers based on microfluidic paper-based immunodevice dual amplified by multifunctionalized gold nanoparticles. Talanta, 2020, 207, 120346.	2.9	59
1607	A low cost, versatile and chromatographic device for microfluidic amperometric analyses. Sensors and Actuators B: Chemical, 2020, 304, 127117.	4.0	19
1608	Paper-based colorimetric probe for highly sensitive detection of folic acid based on open-ring form amplification of rhodamine B derivative. Journal of Industrial and Engineering Chemistry, 2020, 81, 352-359.	2.9	20
1609	High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: A concise review. Carbohydrate Polymers, 2020, 229, 115463.	5.1	137
1610	Improving the limit of detection in portable luminescent assay readers through smart optical design. Journal of Biophotonics, 2020, 13, e201900241.	1.1	10
1611	Paper-based immunosensor with competitive assay for cortisol detection. Journal of Pharmaceutical and Biomedical Analysis, 2020, 178, 112925.	1.4	22
1612	Non-enzymatic electrochemical determination of creatinine using a novel screen-printed microcell. Talanta, 2020, 207, 120277.	2.9	35

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
1613	Basics of Micro/Nano Fluidics and Biology. Microtechnology and MEMS, 2020, , 7-87.		0.2	1
1614	Paper-based point-of-care immunoassays: Recent advances and emerging trends. Biote Advances, 2020, 39, 107442.	chnology	6.0	139
1615	Tree-like structure driven water transfer in 1D fiber assemblies for Functional Moisture Fabrics. Materials and Design, 2020, 186, 108305.	-Wicking	3.3	46
1616	A portable medical diagnostic device utilizing free-standing responsive polymer film-ba and low-cost transducer for point-of-care applications. Sensors and Actuators B: Chem 127356.	sed biosensors ical, 2020, 304,	4.0	16
1617	Rapid preâ€concentration of <i>Escherichia coli</i> in a microfluidic paperâ€based dev concentration polarization. Electrophoresis, 2020, 41, 867-874.	vice using ion	1.3	26
1618	Application of Nanodiagnostics in Viral Infectious Diseases. , 2020, , 179-195.			4
1619	Dendrite gold nanostructures electrodeposited on paper fibers: Application to electroc non-enzymatic determination of glucose. Sensors and Actuators B: Chemical, 2020, 30	:hemical)4, 127335.	4.0	42
1620	Recent applications of paperâ€based pointâ€ofâ€care devices for biomarker detectior 41, 287-305.	. Electrophoresis, 2020,	1.3	44
1621	Determination of glucose with an enzymatic paper-based sensor. , 2020, , 257-265.			0
1622	Electrochemical paper-based devices: sensing approaches and progress toward practic Lab on A Chip, 2020, 20, 9-34.	al applications.	3.1	203
1623	Flexible low-voltage paper transistors harnessing ion gel/cellulose fiber composites. Jou Materials Research, 2020, 35, 940-948.	ırnal of	1.2	10
1624	Flexible pH sensor based on a conductive PANI membrane for pH monitoring. RSC Adv 21-28.	ances, 2020, 10,	1.7	72
1625	Determination of salivary uric acid by using poly(3,4-ethylenedioxythipohene) and grap disposable paper-based analytical device. Analytica Chimica Acta, 2020, 1103, 75-83.	phene oxide in a	2.6	42
1626	One-Step Biotinylation of Cellulose Paper by Polymer Coating to Prepare a Paper-Based Device. Analytical Chemistry, 2020, 92, 1978-1987.	d Analytical	3.2	16
1627	Material development using the inherent features of nano-cellulose and nano-chitin: N simple processes and cross-disciplinary collaboration. Advanced Powder Technology, 2	ecessity of 020, 31, 528-532.	2.0	9
1628	Enhanced sample pre-concentration by ion concentration polarization on a paraffin co converging microfluidic paper based analytical platform. Biomicrofluidics, 2020, 14, 01	ated 4103.	1.2	11
1629	Disposable glassy carbon stencil printed electrodes for trace detection of cadmium an Analytica Chimica Acta, 2020, 1103, 58-66.	d lead.	2.6	38
1631	Immobilization and Function of nIR-Fluorescent Carbon Nanotube Sensors on Paper Su Fluidic Manipulation. Analytical Chemistry, 2020, 92, 916-923.	ibstrates for	3.2	20

#	Article	IF	CITATIONS
1632	Exosome aggregation mediated stopâ€flow paperâ€based portable device for rapid exosome quantification. Electrophoresis, 2020, 41, 311-318.	1.3	8
1633	Understanding the coffee-ring effect of red blood cells for engineering paper-based blood analysis devices. Chemical Engineering Journal, 2020, 391, 123522.	6.6	15
1634	Pixelated colorimetric nucleic acid assay. Talanta, 2020, 209, 120581.	2.9	16
1635	A low-cost nanomaterial-based electrochemical immunosensor on paper for high-sensitivity early detection of pancreatic cancer. Sensors and Actuators B: Chemical, 2020, 305, 127516.	4.0	103
1636	Online sample clean-up and enrichment of proteins from salty media with dynamic double gradients on a paper fluidic channel. Analytica Chimica Acta, 2020, 1100, 149-155.	2.6	18
1637	Electroâ€kinetically driven route for highly sensitive blood pathology on a paperâ€based device. Electrophoresis, 2020, 41, 615-620.	1.3	26
1638	Colorimetric Diagnostic Capillary Enabled by Size Sieving in a Porous Hydrogel. Biosensors, 2020, 10, 130.	2.3	5
1639	A Novel NiFe2O4/Paper-Based Magnetoelastic Biosensor to Detect Human Serum Albumin. Sensors, 2020, 20, 5286.	2.1	16
1640	Paper-based pump-free magnetophoresis. Analytical Methods, 2020, 12, 5177-5185.	1.3	14
1641	Determination of inhibitory activity of Salvia miltiorrhiza extracts on xanthine oxidase with a paper-based analytical device. Journal of Pharmaceutical Analysis, 2021, 11, 603-610.	2.4	7
1642	Fabrication and testing of handheld electronic meter for colorimetric paper microfluidic devices. Materials Today: Proceedings, 2020, 33, 2421-2425.	0.9	2
1643	Paper microzone plates integrating Natural Deep Eutectic Solvents: Total phenolic compounds and antioxidant capacity as performed by nature. Microchemical Journal, 2020, 158, 105296.	2.3	9
1644	Sustainable and high-power wearable glucose biofuel cell using long-term and high-speed flow in sportswear fabrics. Biosensors and Bioelectronics, 2020, 169, 112652.	5.3	45
1645	An Inexpensive Paperâ€Based Photoluminescent Sensor for Gallate Derived Green Tea Polyphenols. Chemistry - an Asian Journal, 2020, 15, 4023-4027.	1.7	2
1646	Paper-Based In-Situ Gold Nanoparticle Synthesis for Colorimetric, Non-Enzymatic Glucose Level Determination. Nanomaterials, 2020, 10, 2027.	1.9	28
1647	Smart Fully Integrated Lab: A Smartphoneâ€Based Compact Miniaturized Analytical/Diagnostic Device. Advanced Materials Technologies, 2020, 5, 2000742.	3.0	9
1648	A point of use sensor assay for detecting purely viral versus viral-bacterial samples. Sensors and Actuators B: Chemical, 2020, 322, 128562.	4.0	6
1649	Local photo-polymer deposition-assisted fabrication of multilayer paper-based devices. Sensors and Actuators B: Chemical, 2020, 322, 128574.	4.0	10

#	Article	IF	CITATIONS
1650	Review of separation methods for the determination of ammonium/ammonia in natural water. Trends in Environmental Analytical Chemistry, 2020, 27, e00098.	5.3	23
1651	Ultrastable Plasmonic Bioink for Printable Point-Of-Care Biosensors. ACS Applied Materials & Interfaces, 2020, 12, 35977-35985.	4.0	17
1652	Evaporation-Driven Flow in Micropillar Arrays: Transport Dynamics and Chemical Analysis under Varied Sample and Ambient Conditions. Analytical Chemistry, 2020, 92, 16043-16050.	3.2	7
1653	Affinity Immobilization of Semiconductor Quantum Dots and Metal Nanoparticles on Cellulose Paper Substrates. ACS Applied Materials & Interfaces, 2020, 12, 53462-53474.	4.0	9
1654	Engineering strategies for enhancing the performance of electrochemical paper-based analytical devices. Biosensors and Bioelectronics, 2020, 167, 112506.	5.3	48
1655	Study on Functionality and Surface Modification of a Stair-Step Liquid-Triggered Valve for On-Chip Flow Control. Micromachines, 2020, 11, 690.	1.4	5
1657	Sustainable Printed Electrochemical Platforms for Greener Analytics. Frontiers in Chemistry, 2020, 8, 644.	1.8	29
1658	Microfluidic strategies for extraction and preconcentration of proteins and peptides. , 2020, , 35-75.		2
1659	NanoPADs and nanoFACEs: an optically transparent nanopaper-based device for biomedical applications. Lab on A Chip, 2020, 20, 3322-3333.	3.1	21
1660	Semi-quantitative analysis by spot counting on origami paper-based device for endpoint detection in titrimetric analysis. Microchemical Journal, 2020, 158, 105284.	2.3	3
1661	Mechanics Design in Celluloseâ€Enabled Highâ€Performance Functional Materials. Advanced Materials, 2021, 33, e2002504.	11.1	77
1662	Inkjet-printed low-cost colorimetric tickets for TNT detection in contaminated soil. Korean Journal of Chemical Engineering, 2020, 37, 2171-2178.	1.2	2
1663	High-Throughput Tailoring of Nanocellulose Films: From Complex Bio-Based Materials to Defined Multifunctional Architectures. ACS Applied Bio Materials, 2020, 3, 7428-7438.	2.3	18
1664	PMAA-CeO2 nanoparticle-based paper microfluidic device with customized image processing software for antioxidant assay. Analytical and Bioanalytical Chemistry, 2020, 412, 8197-8209.	1.9	5
1665	Advances in Portable Visual Detection of Pathogenic Bacteria. ACS Applied Bio Materials, 2020, 3, 7291-7305.	2.3	24
1666	Challenges in Microfluidic and Point-of-Care Phenotypic Antimicrobial Resistance Tests. Frontiers in Mechanical Engineering, 2020, 6, .	0.8	11
1667	A sample volume independent paper microfluidic device for quantifying glucose in real human plasma. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	17
1668	Electrochemical Multiplexed Paper Nanosensor for Specific Dengue Serotype Detection Predicting Pervasiveness of DHF/DSS. ACS Biomaterials Science and Engineering, 2020, 6, 5886-5894.	2.6	31

#	Article	IF	Citations
1669	Hydrophilic patterning of octadecyltrichlorosilane (OTS)-coated paper via atmospheric-pressure dielectric-barrier-discharge jet (DBDjet). Cellulose, 2020, 27, 10293-10301.	2.4	6
1670	Paper-based analytical devices for colorimetric detection of <i>S. aureus</i> and <i>E. coli</i> and their antibiotic resistant strains in milk. Analyst, The, 2020, 145, 7320-7329.	1.7	26
1671	Enhanced functional DNA biosensor for distance-based read-by-eye quantification of various analytes based on starch-hydrolysis-adjusted wettability change in paper devices. RSC Advances, 2020, 10, 28121-28127.	1.7	9
1672	Enzyme-Assisted Nucleic Acid Detection for Infectious Disease Diagnostics: Moving toward the Point-of-Care. ACS Sensors, 2020, 5, 2701-2723.	4.0	56
1673	Detection of prostate cancer DNA using tetrapods based disposable paper ecofriendly biosensor device. Medical Devices & Sensors, 2020, 3, e10122.	2.7	7
1674	A decoupler-free simple paper microchip capillary electrophoresis device for simultaneous detection of dopamine, epinephrine and serotonin. RSC Advances, 2020, 10, 25487-25495.	1.7	67
1675	Platinum Nanozyme-Triggered Pressure-Based Immunoassay Using a Three-Dimensional Polypyrrole Foam-Based Flexible Pressure Sensor. ACS Applied Materials & Interfaces, 2020, 12, 40133-40140.	4.0	123
1676	Inkjet Printing-Based Immobilization Method for a Single-Step and Homogeneous Competitive Immunoassay in Microchannel Arrays. Frontiers in Chemistry, 2020, 8, 612132.	1.8	2
1677	One-Step Hot Microembossing for Fabrication of Paper-Based Microfluidic Chips in 10 Seconds. Polymers, 2020, 12, 2493.	2.0	6
1678	A Paperâ€Based Potentiometric Sensor for Solid Samples: Corrosion Evaluation of Reinforcements Embedded in Concrete Structures as a Case Study. ChemElectroChem, 2020, 7, 2274-2282.	1.7	7
1679	Paper-based electrochemical sensing devices. Comprehensive Analytical Chemistry, 2020, 89, 91-137.	0.7	23
1680	Tungsten disulfide Quantum Dots Based Disposable Paper Based Lab on GenoChip for Specific Meningitis DNA Detection. Journal of the Electrochemical Society, 2020, 167, 107501.	1.3	18
1681	Plasticizer-Free Thin-Film Sodium-Selective Optodes Inkjet-Printed on Transparent Plastic for Sweat Analysis. ACS Applied Materials & Interfaces, 2020, 12, 25616-25624.	4.0	21
1682	Colorimetric paper bioassay by horseradish peroxidase for the detection of catechol and resorcinol in aqueous samples. Preparative Biochemistry and Biotechnology, 2020, 50, 849-856.	1.0	14
1683	Repurposing Old Antibodies for New Diseases by Exploiting Cross-Reactivity and Multicolored Nanoparticles. ACS Nano, 2020, 14, 6626-6635.	7.3	19
1684	Deep learning-enabled point-of-care sensing using multiplexed paper-based sensors. Npj Digital Medicine, 2020, 3, 66.	5.7	65
1685	Low sample volume origami-paper-based graphene-modified aptasensors for label-free electrochemical detection of cancer biomarker-EGFR. Microsystems and Nanoengineering, 2020, 6, 32.	3.4	55
1686	Optimization of paper-based nanoparticle immunoassays for direct detection of the bacterial pathogen <i>V. parahaemolyticus</i> in oyster hemolymph. Analytical Methods, 2020, 12, 3056-3063.	1.3	9

#	Article	IF	CITATIONS
1687	4D synchrotron microtomography and pore-network modelling for direct <i>in situ</i> capillary flow visualization in 3D printed microfluidic channels. Lab on A Chip, 2020, 20, 2403-2411.	3.1	7
1688	Case Studies in Micromechatronics. , 2020, , .		7
1689	Novel microfluidic paper-based analytical devices (\hat{l} 4PADs) for the determination of nitrate and nitrite in human saliva. Talanta, 2020, 219, 121183.	2.9	46
1690	Label-Free, High-Throughput Assay of Human Dendritic Cells from Whole-Blood Samples with Microfluidic Inertial Separation Suitable for Resource-Limited Manufacturing. Micromachines, 2020, 11, 514.	1.4	11
1691	Paper-Based Electrochemical Sensors Using Paper as a Scaffold to Create Porous Carbon Nanotube Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 30680-30685.	4.0	37
1692	Microfluidic paper-based device integrated with smartphone for point-of-use colorimetric monitoring of water quality index. Measurement: Journal of the International Measurement Confederation, 2020, 164, 108085.	2.5	36
1693	Microfluidic cloth-based analytical devices: Emerging technologies and applications. Biosensors and Bioelectronics, 2020, 168, 112391.	5.3	24
1694	Ultrarapid, size-controlled, high-crystalline plasma-mediated synthesis of ceria nanoparticles for reagent-free colorimetric glucose test strips. Sensors and Actuators B: Chemical, 2020, 320, 128404.	4.0	14
1695	Non-enzymatic lab-on-paper devices for biosensing applications. Comprehensive Analytical Chemistry, 2020, , 189-237.	0.7	8
1696	Rapid Detection of <i>Listeriolysin O</i> Toxin Based on a Nanoscale Liposome–Gold Nanoparticle Platform. ACS Applied Nano Materials, 2020, 3, 7270-7280.	2.4	22
1697	Novel bio-lab-on-a-tip for electrochemical glucose sensing in commercial beverages. Biosensors and Bioelectronics, 2020, 165, 112334.	5.3	18
1698	Bladder cancer hunting: A microfluidic paperâ€based analytical device. Electrophoresis, 2020, 41, 1509-1516.	1.3	10
1699	Inâ€Vitro Selection of a DNA Aptamer Targeting Degraded Protein Fragments for Biosensing. Angewandte Chemie, 2020, 132, 7780-7784.	1.6	6
1700	Porphyrins as Colorimetric and Photometric Biosensors in Modern Bioanalytical Systems. ChemBioChem, 2020, 21, 1793-1807.	1.3	45
1701	Inâ€Vitro Selection of a DNA Aptamer Targeting Degraded Protein Fragments for Biosensing. Angewandte Chemie - International Edition, 2020, 59, 7706-7710.	7.2	49
1702	Paper-based microfluidics for rapid diagnostics and drug delivery. Journal of Controlled Release, 2020, 322, 187-199.	4.8	53
1703	Detection and extraction of heavy metal ions using paper-based analytical devices fabricated via atom stamp printing. Microsystems and Nanoengineering, 2020, 6, 14.	3.4	39
1704	A novel microfluidic paper-based analytical device based on chemiluminescence for the determination of β-agonists in swine hair. Analytical Methods, 2020, 12, 2317-2322.	1.3	11

#	Article	IF	CITATIONS
1705	Paper-Based Device for Naked Eye Urinary Albumin/Creatinine Ratio Evaluation. ACS Sensors, 2020, 5, 1110-1118.	4.0	42
1706	One-Step Surface Modification to Graft DNA Codes on Paper: The Method, Mechanism, and Its Application. Analytical Chemistry, 2020, 92, 7045-7053.	3.2	31
1707	A portable microfluidic paper-based analytical device for blood detection and typing assay. Australian Journal of Forensic Sciences, 0, , 1-12.	0.7	12
1708	A Flexible Method for Nanofiber-based 3D Microfluidic Device Fabrication for Water Quality Monitoring. Micromachines, 2020, 11, 276.	1.4	8
1709	Benchtop-fabricated lipid-based electrochemical sensing platform for the detection of membrane disrupting agents. Scientific Reports, 2020, 10, 4595.	1.6	9
1710	Microfluidics in Haemostasis: A Review. Molecules, 2020, 25, 833.	1.7	20
1711	Integrated hand-powered centrifugation and paper-based diagnosis with blood-in/answer-out capabilities. Biosensors and Bioelectronics, 2020, 165, 112282.	5.3	44
1712	Scaling-up medical technologies using flexographic printing. Talanta, 2020, 219, 121236.	2.9	13
1713	Pushing the Limits of Spatial Assay Resolution for Paper-Based Microfluidics Using Low-Cost and High-Throughput Pen Plotter Approach. Micromachines, 2020, 11, 611.	1.4	16
1714	Electrochemical determination of capsaicin in pepper samples using sustainable paper-based screen-printed bulk modified with carbon black. Electrochimica Acta, 2020, 354, 136628.	2.6	29
1715	The Immunoprobe Aggregation State is Central to Dipstick Immunoassay Performance. ACS Applied Materials & Interfaces, 2020, 12, 34620-34629.	4.0	15
1716	A hybrid electrically-and-piezoelectrically driven micromixer built on paper for microfluids mixing. Biomedical Microdevices, 2020, 22, 47.	1.4	9
1717	A low-cost paper-based platform for fast and reliable screening of cellular interactions with materials. Journal of Materials Chemistry B, 2020, 8, 1146-1156.	2.9	6
1718	Mass production of thin-walled hollow optical fibers enables disposable optofluidic laser immunosensors. Lab on A Chip, 2020, 20, 923-930.	3.1	32
1719	Disposable Paper-on-CMOS Platform for Real-Time Simultaneous Detection of Metabolites. IEEE Transactions on Biomedical Engineering, 2020, 67, 2417-2426.	2.5	10
1720	Emerging Trends in Microfluidics Based Devices. Biotechnology Journal, 2020, 15, e1900279.	1.8	29
1721	High-strength paper enhanced by chitin nanowhiskers and its potential bioassay applications. International Journal of Biological Macromolecules, 2020, 150, 885-893.	3.6	15
1722	Precision medicine, bioanalytics and nanomaterials: toward a new generation of personalized portable diagnostics. Analyst, The, 2020, 145, 2841-2853.	1.7	11

#	Article	IF	CITATIONS
1723	Lateral flow assay using aptamer-based sensing for on-site detection of dopamine in urine. Analytical Biochemistry, 2020, 596, 113637.	1.1	74
1724	Evaporation versus imbibition in a porous medium. Journal of Colloid and Interface Science, 2020, 576, 280-290.	5.0	18
1725	Recent Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering, 2020, , .	0.3	4
1726	Microfluidics on Porous Substrates Mediated by Capillarity-Driven Transport. Industrial & Engineering Chemistry Research, 2020, 59, 3644-3654.	1.8	23
1727	Counting-based microfluidic paper-based devices capable of analyzing submicroliter sample volumes. Biomicrofluidics, 2020, 14, 014107.	1.2	6
1728	Wearable biosensors and sample handling strategies. , 2020, , 65-88.		10
1729	State of the Art in Alcohol Sensing with 2D Materials. Nano-Micro Letters, 2020, 12, 33.	14.4	41
1730	Anomalous diffusion in an electrolyte saturated paper matrix. Electrophoresis, 2020, 41, 678-683.	1.3	0
1731	A Feasible Method Applied to One-Bath Process of Wool/Acrylic Blended Fabrics with Novel Heterocyclic Reactive Dyes and Application Properties of Dyed Textiles. Polymers, 2020, 12, 285.	2.0	9
1732	Computer-Aided Design of Microfluidic Circuits. Annual Review of Biomedical Engineering, 2020, 22, 285-307.	5.7	18
1733	Microfluidic Paper-based Analytical Devices in Clinical Applications. Chromatographia, 2020, 83, 693-701.	0.7	10
1734	Distance-based paper device using polydiacetylene liposome as a chromogenic substance for rapid and in-field analysis of quaternary ammonium compounds. Analytical and Bioanalytical Chemistry, 2020, 412, 3221-3230.	1.9	7
1735	Development of a Reversible Indicator Displacement Assay Based on the 1-(2-Pyridylazo)-2-naphthol for Colorimetric Determination of Cysteine in Biological Samples and Its Application to Constructing the Paper Test Strips and a Molecular-Scale Set/Reset Memorized Device. Applied Biochemistry and Biotechnology 2020, 192, 85-102	1.4	8
1736	Electrochemical biosensors for pathogen detection. Biosensors and Bioelectronics, 2020, 159, 112214.	5.3	509
1737	Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials. Theranostics, 2020, 10, 4359-4373.	4.6	59
1738	Open sessile droplet viscometer with low sample consumption. Lab on A Chip, 2020, 20, 1869-1876.	3.1	5
1739	Multienzyme chemiluminescent foldable biosensor for on-site detection of acetylcholinesterase inhibitors. Biosensors and Bioelectronics, 2020, 162, 112232.	5.3	75
1740	Monitoring cellulose oxidation for protein immobilization in paper-based low-cost biosensors. Mikrochimica Acta, 2020, 187, 272.	2.5	19

		CITATION REP	ORT	
#	Article		IF	CITATIONS
1741	Polymer Micropillar Arrays for Colorimetric DNA Detection. Analytical Chemistry, 2020, 92,	7738-7745.	3.2	9
1742	Development of a Paper-Based Microfluidic System for a Continuous High-Flow-Rate Fluid Manipulation. Analytical Chemistry, 2020, 92, 7307-7316.		3.2	15
1743	In Situ Cation Exchange Generated ZnS–Ag ₂ S Nanoparticles for Photothern of Transcription Factor. ACS Applied Bio Materials, 2020, 3, 3260-3267.	al Detection	2.3	17
1744	An Ultrasensitive Fluorescent Paper-Based CO ₂ Sensor. ACS Applied Materials Interfaces, 2020, 12, 20507-20513.	&	4.0	44
1745	Dynamics of water imbibition through paper with swelling. Journal of Fluid Mechanics, 2020), 892, .	1.4	19
1746	Detection of adulteration in sunflower oil using paper-based microfluidic lab-on-a-chip devic Materials Today: Proceedings, 2021, 34, 496-501.	es.	0.9	9
1747	Tunable flow rate in textile-based materials utilising composite fibres. Journal of the Textile 2021, 112, 568-577.	nstitute,	1.0	0
1748	Application of smartphone-based spectroscopy to biosample analysis: A review. Biosensors Bioelectronics, 2021, 172, 112788.	and	5.3	97
1749	An Integrated Paper-Based Microfluidic Device for Real-Time Sweat Potassium Monitoring. I Journal, 2021, 21, 9642-9648.	EEE Sensors	2.4	35
1750	Enhancing the performance of paper-based electrochemical impedance spectroscopy nanol An experimental approach. Biosensors and Bioelectronics, 2021, 177, 112672.	piosensors:	5.3	100
1751	Lab-on-a-chip: Systems integration at the microscale. , 2021, , 63-87.			2
1752	All-graphene-based open fluidics for pumpless, small-scale fluid transport <i>via</i> laser-co wettability patterning. Nanoscale Horizons, 2021, 6, 24-32.	ntrolled	4.1	12
1753	Simultaneously Detecting Monoamine Oxidase A and B in Disease Cell/Tissue Samples Usin Devices. ACS Applied Bio Materials, 2021, 4, 1395-1402.	g Paper-Based	2.3	5
1754	Modular design of paper based switches for autonomous lab-on paper micro devices. Biome Microdevices, 2021, 23, 1.	edical	1.4	4
1755	Paper-based Electrochemical Flow Biosensor Using Enzyme-modified Polystyrene Particles. Letters, 2021, 50, 147-150.	Chemistry	0.7	1
1756	Paper-based nanosensors to evaluate community-wide illicit drug use for wastewater-based epidemiology. Water Research, 2021, 189, 116559.		5.3	33
1757	A highly integrated sensing paper for wearable electrochemical sweat analysis. Biosensors a Bioelectronics, 2021, 174, 112828.	nd	5.3	113
1758	Miniaturized electrochemical biosensor based on wholeâ€cell for heavy metal ions detectio Biotechnology and Bioengineering, 2021, 118, 1456-1465.	n in water.	1.7	27

# 1759	ARTICLE Nucleic Acids Analysis. Science China Chemistry, 2021, 64, 171-203.	IF 4.2	Citations 88
1760	Paper microfluidic device using carbon dots to detect glucose and lactate in saliva samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 248, 119285.	2.0	28
1761	Enabling Direct Protein Detection in a Drop of Whole Blood with an "On-Strip―Plasma Separation Unit in a Paper-Based Lateral Flow Strip. Analytical Chemistry, 2021, 93, 1326-1332.	3.2	38
1762	Polychlorinated biphenyl detection in organic solvents with paper-based analytical devices. Environmental Technology (United Kingdom), 2021, 42, 1766-1771.	1.2	3
1763	Faster, better, and cheaper: harnessing microfluidics and mass spectrometry for biotechnology. RSC Chemical Biology, 2021, 2, 1331-1351.	2.0	20
1764	Integration of FISH and Microfluidics. Methods in Molecular Biology, 2021, 2246, 249-261.	0.4	0
1765	Biosensing with DNAzymes. Chemical Society Reviews, 2021, 50, 8954-8994.	18.7	193
1766	<scp>PEDOT</scp> : <scp>PSS</scp> â€grafted graphene oxideâ€titanium dioxide nanohybridâ€based conducting paper for glucose detection. Polymers for Advanced Technologies, 2021, 32, 1774-1782.	1.6	16
1767	Research progress on the applications of paper chips. RSC Advances, 2021, 11, 8793-8820.	1.7	15
1768	Materials and methods for microfabrication of microfluidic devices. , 2021, , 1-78.		7
1769	Fully integrated rapid microfluidic device translated from conventional 96-well ELISA kit. Scientific Reports, 2021, 11, 1986.	1.6	18
1770	Versatile quantitative biopsy: an approach for cost-effective detection of hydrogen peroxide in tissue specimens. New Journal of Chemistry, 2021, 45, 4311-4317.	1.4	3
1771	Increasing the packing density of assays in paper-based microfluidic devices. Biomicrofluidics, 2021, 15, 011502.	1.2	22
1772	Microfluidic paper-based analytical devices coupled with coprecipitation enrichment show improved trace analysis of copper ions in water samples. Analytical Sciences, 2022, 38, 123-130.	0.8	4
1773	Nanomaterial-Integrated Cellulose Platforms for Optical Sensing of Trace Metals and Anionic Species in the Environment. Sensors, 2021, 21, 604.	2.1	12
1774	Microcapillary LAMP for rapid and sensitive detection of pathogen in bovine semen. Animal Biotechnology, 2022, 33, 1025-1034.	0.7	2
1775	Nanotechnology-based on microfluidic devices lab-on-a-chip for food analysis. , 2021, , 187-211.		0
1776	The Interplay Between Frugal Science and Chemical and Biological Weapons: Investigating the Proliferation Risks of Technology Intended for Humanitarian, Disaster Response, and International Development Efforts. Advanced Sciences and Technologies for Security Applications, 2021, , <u>1</u> 53-203.	0.4	1

#	ARTICLE Architecture of a multi-channel and easy-to-make microfluidic paper-based colorimetric device (μPCD)	IF	Citations
1777	rapid and low-cost identification of clinically relevant biomolecules. RSC Advances, 2021, 11, 27298-27308.	1.7	22
1778	Functional Comparison of Bioactive Cellulose Materials Incorporating Engineered Binding Proteins. ACS Applied Bio Materials, 2021, 4, 392-398.	2.3	4
1779	Paper-Based Semi-quantitative Antimicrobial Susceptibility Testing. ACS Omega, 2021, 6, 1410-1414.	1.6	6
1780	Sensing Materials: Paper Substrate - Color Detection. , 2021, , .		1
1781	Origami paper analytical assay based on metal complex sensor for rapid determination of blood cyanide concentration in fire survivors. Scientific Reports, 2021, 11, 3521.	1.6	13
1782	Electrical Characterization of Cellulose-Based Membranes towards Pathogen Detection in Water. Biosensors, 2021, 11, 57.	2.3	6
1783	Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds. PLoS ONE, 2021, 16, e0245206.	1.1	20
1784	Nanotechnology-assisted microfluidic systems: from bench to bedside. Nanomedicine, 2021, 16, 237-258.	1.7	30
1785	Molecularly imprinted curcumin nanoparticles decorated paper for electrochemical and fluorescence dual-mode sensing of bisphenol A. Mikrochimica Acta, 2021, 188, 94.	2.5	22
1786	Paper-Based Screen-Printed Electrodes: A New Generation of Low-Cost Electroanalytical Platforms. Biosensors, 2021, 11, 51.	2.3	49
1787	Recent developments of point-of-care (POC) testing platform for biomolecules. TrAC - Trends in Analytical Chemistry, 2021, 135, 116160.	5.8	44
1788	Electroanalytical Sensor Based on Gold-Nanoparticle-Decorated Paper for Sensitive Detection of Copper Ions in Sweat and Serum. Analytical Chemistry, 2021, 93, 5225-5233.	3.2	62
1789	Feasibility Study of Dielectric Barrier Discharge Jet-Patterned Perfluorodecyltrichlorosilane-Coated Paper for Biochemical Diagnosis. ECS Journal of Solid State Science and Technology, 2021, 10, 037005.	0.9	4
1790	Development of a Single-step Bioassay Microdevice Using a Reagent Immobilization Method Based on Inkjet Printing. Bunseki Kagaku, 2021, 70, 125-131.	0.1	1
1791	A colorimetric paper-based sensor with nanoporous SBA-15 for simultaneous determination of histidine and cysteine in urine samples. Chemical Papers, 2021, 75, 3401-3410.	1.0	9
1792	Speciation of chromium in water samples using microfluidic paper-based analytical devices with online oxidation of trivalent chromium. Analytical and Bioanalytical Chemistry, 2021, 413, 3339-3347.	1.9	8
1793	Enzyme embedded microfluidic paper-based analytic device (μPAD): a comprehensive review. Critical Reviews in Biotechnology, 2021, 41, 1046-1080.	5.1	25
1794	Nitrocellulose-bound achromopeptidase for point-of-care nucleic acid tests. Scientific Reports, 2021, 11, 6140.	1.6	8

ARTICLE IF CITATIONS Paper-based PCR method development, validation and application for microbial detection. Journal of 1795 1.5 2 Genetic Engineering and Biotechnology, 2021, 19, 37. Droplet digital PCR of viral ‎DNA/RNA, current progress, challenges, and future perspectives. Journal of Medical Virology, 2021, 93, 4182-4197. 1796 2.5 100 1797 Functional paper-based materials for diagnostics. ChemTexts, 2021, 7, 14. 1.0 23 Composable paper-based analytical devices for determination of flavonoids. Sensors and Actuators B: 1798 4.0 Chemical, 2021, 331, 129398. Multichannel Paper Chip-Based Gas Pressure Bioassay for Simultaneous Detection of Multiple 1799 4.0 23 MicroRNAs. ACS Applied Materials & amp; Interfaces, 2021, 13, 15008-15016. Emerging applications of microfluidic techniques for <i>inÂvitro</i> toxicity studies of atmospheric particulate matter. Aerosol Science and Technology, 2021, 55, 623-639. 1.5 Paper-Based Microfluidic Sensors for Onsite Environmental Detection: A Critical Review. Critical 1801 1.8 14 Reviews in Analytical Chemistry, 2022, 52, 1432-1449. Recent advances in paperâ€based preconcentrators by utilizing ion concentration polarization. 1.3 Electrophoresis, 2021, 42, 1340-1351. Remote Investigation of Total Chromium Determination in Environmental Samples of the Kombolcha 1804 Industrial Zone, Ethiopia, Using Microfluidic Paper-based Analytical Devices. Analytical Sciences, 2021, 9 0.8 37, 585-592. Synthesize of nitrogen doped carbon quantum dots by the hydrothermal method and its application for detection of iodide anion using paper based smart phone detection system.. IOP Conference Series: 0.2 Earth and Environmental Science, 2021, 722, 012011. Paper and Other Fibrous Materialsâ€"A Complete Platform for Biosensing Applications. Biosensors, 1807 4 2.32021, 11, 128. Advances in Multiplexed Paperâ€Based Analytical Devices for Cancer Diagnosis: A Review of 1809 3.0 Technological Developments. Advanced Materials Technologies, 2021, 6, 2001138. Cellulose: A Contribution for the Zero eâ€Waste Challenge. Advanced Materials Technologies, 2021, 6, . 1810 3.0 56 NANOTECHNOLOGY FOR DETECTION OF DISEASES CAUSED BY VIRUSES-CURRENT OVERVIEW. International 0.3 Journal of Pharmacy and Pharmaceutical Sciences, 0, , 1-7. Fabrication and characterization of pillar interdigitated electrode for blood glucose sensing. Sensor 1812 1.0 1 Review, 2021, 41, 200-207. Antibody affinity as a driver of signal generation in a paper-based immunoassay for Ebola virus surveillance. Analytical and Bioanalytical Chemistry, 2021, 413, 3695-3706. 1.9 Design and application of ion concentration polarization for preconcentrating charged analytes. 1814 1.6 14 Physics of Fluids, 2021, 33, . Multivariate thinking for optical microfluidic analytical devices – A tutorial review. Microchemical 2.3 Journal, 2021, 164, 105959.

#	Article	IF	CITATIONS
1816	Gold nanoparticles-decorated paper-based sensor for rapid cyanide detection in water. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2021, 12, 025007.	0.7	9
1817	Knitting Thread Devices: Detecting <i>Candida albicans</i> Using Napkins and Tampons. ACS Omega, 2021, 6, 12667-12675.	1.6	23
1819	Fabrication of Biosensing Interface with Monolayers. Analytical Sciences, 2021, 37, 673-682.	0.8	4
1820	A Snapshot of Microfluidics in Pointâ€of are Diagnostics: Multifaceted Integrity with Materials and Sensors. Advanced Materials Technologies, 2021, 6, 2100049.	3.0	31
1822	A Simple Paper-Based α-Amylase Separating System for Potential Application in Biological Sciences. Biochip Journal, 2021, 15, 252-259.	2.5	5
1823	Acoustic flow in porous media. Journal of Fluid Mechanics, 2021, 920, .	1.4	6
1824	Cellular fluidics. Nature, 2021, 595, 58-65.	13.7	106
1825	One-dollar microfluidic paper-based analytical devices: Do-It-Yourself approaches. Microchemical Journal, 2021, 165, 106126.	2.3	33
1826	Toward Fabrication of Bioactive Papers: Covalent Immobilization of Peptides and Proteins. Biomacromolecules, 2021, 22, 2954-2962.	2.6	7
1827	A novel paper biosensor based on Fe ₃ O ₄ @SiO ₂ –NH ₂ and MWCNTs for rapid detection of pseudorabies virus. Nanotechnology, 2021, 32, 355102.	1.3	4
1828	Integration of sample preparation with RNA-Amplification in a hand-held device for airborne virus detection. Analytica Chimica Acta, 2021, 1165, 338542.	2.6	16
1829	Electrochemical Affinity Assays/Sensors: Brief History and Current Status. Annual Review of Analytical Chemistry, 2021, 14, 109-131.	2.8	18
1830	Metabolic biomarker modeling for predicting clinical diagnoses through microfluidic paper-based analytical devices. Microchemical Journal, 2021, 165, 106093.	2.3	2
1831	Enzyme-based biofuel cells for biosensors and in vivo power supply. Nano Energy, 2021, 84, 105853.	8.2	57
1832	Paper-Based Optode Devices (PODs) for Selective Quantification of Potassium in Biological Fluids. Analytical Chemistry, 2021, 93, 9383-9389.	3.2	9
1833	Methods for immobilizing receptors in microfluidic devices: A review. Micro and Nano Engineering, 2021, 11, 100085.	1.4	25
1834	Paper-based microfluidics: Simplified fabrication and assay methods. Sensors and Actuators B: Chemical, 2021, 336, 129681.	4.0	190
1835	Salty Biofluidic Sample Clean-Up and Preconcentration with a Paper-Based Ion Concentration Polarization Interface. Analytical Chemistry, 2021, 93, 10236-10242.	3.2	14

		IF.	Circurations
#	ARTICLE	IF	CITATIONS
1836	bipolar electrochemistry. Journal of the Iranian Chemical Society, 2022, 19, 809-819.	1.2	2
1837	A Miniaturized Microbe-Silicon-Chip Based on Bioluminescent Engineered Escherichia coli for the Evaluation of Water Quality and Safety. International Journal of Environmental Research and Public Health, 2021, 18, 7580.	1.2	1
1838	Smart biosensors and intelligent devices for salivary biomarker detection. TrAC - Trends in Analytical Chemistry, 2021, 140, 116281.	5.8	57
1839	Glass based micro total analysis systems: Materials, fabrication methods, and applications. Sensors and Actuators B: Chemical, 2021, 339, 129859.	4.0	49
1840	Recent Advances in Microfluidic Platforms for Programming Cellâ€Based Living Materials. Advanced Materials, 2021, 33, e2005944.	11.1	26
1841	Intensified extraction and separation of zinc from cadmium and manganese by a slug flow capillary microreactor. Separation and Purification Technology, 2021, 267, 118564.	3.9	12
1842	Developing a SARS-CoV-2 Antigen Test Using Engineered Affinity Proteins. ACS Applied Materials & Interfaces, 2021, 13, 38990-39002.	4.0	12
1843	Quantitative Point-of-Care Colorimetric Assay Modeling Using a Handheld Colorimeter. ACS Omega, 2021, 6, 22439-22446.	1.6	7
1844	Ultrasensitive and Low-Cost Paper-Based Graphene Oxide Nanobiosensor for Monitoring Water-Borne Bacterial Contamination. ACS Sensors, 2021, 6, 3214-3223.	4.0	13
1845	Analytical Methods for Detection of Gasotransmitter Hydrogen Sulfide Released from Live Cells. BioMed Research International, 2021, 2021, 1-14.	0.9	5
1846	Monolithic integration of nanorod arrays on microfluidic chips for fast and sensitive one-step immunoassays. Microsystems and Nanoengineering, 2021, 7, 65.	3.4	11
1847	Fully integrated sampler and dilutor in an electrochemical paper-based device for glucose sensing. Mikrochimica Acta, 2021, 188, 302.	2.5	7
1848	Engineering paper-based visible light-responsive Sn-self doped domed SnO2 nanotubes for ultrasensitive photoelectrochemical sensor. Biosensors and Bioelectronics, 2021, 185, 113250.	5.3	34
1849	Evaluating TiO2 Photocatalysis Performance in Microtubes on Paper Background by Smartphone: Principles and Application Examples. Chemosensors, 2021, 9, 235.	1.8	5
1850	Paperfluidic devices with a selective molecularly imprinted polymer surface for instrumentation-free distance-based detection of protein biomarkers. Sensors and Actuators B: Chemical, 2021, 341, 129999.	4.0	17
1851	Membrane Technology for Rapid Point-of-Care Diagnostics for Parasitic Neglected Tropical Diseases. Clinical Microbiology Reviews, 2021, 34, e0032920.	5.7	9
1852	Alkaline Phosphataseâ€based Electrochemical Analysis for Pointâ€ofâ€Care Testing. Electroanalysis, 2022, 34, 161-167.	1.5	10
1853	Prostate cancer and microfluids. Urologic Oncology: Seminars and Original Investigations, 2021, 39, 455-470.	0.8	6

#	Article	IF	CITATIONS
1854	Graphite/RGO coated paper μ-electrolyzers for production and separation of hydrogen and oxygen. Energy, 2021, 228, 120490.	4.5	8
1855	Reducing Unspecific Protein Adsorption in Microfluidic Papers Using Fiber-Attached Polymer Hydrogels. Sensors, 2021, 21, 6348.	2.1	5
1857	Field Deployable Vertical Flow Based Immunodevice for Detection of Potato Virus Y in Potato Leaves. ACS Agricultural Science and Technology, 2021, 1, 558-565.	1.0	7
1858	Sample Preparation and Diagnostic Methods for a Variety of Settings: A Comprehensive Review. Molecules, 2021, 26, 5666.	1.7	10
1859	Disposable Paper-Based Biosensors for the Point-of-Care Detection of Hazardous Contaminations—A Review. Biosensors, 2021, 11, 316.	2.3	48
1860	A colorimetric microfluidic paper-based analytical device for sulfonamides in cow milk using enzymatic inhibition. Food Chemistry, 2021, 356, 129692.	4.2	18
1861	Bottom-up microwave-assisted seed-mediated synthesis of gold nanoparticles onto nanocellulose to boost stability and high performance for SERS applications. Applied Surface Science, 2021, 561, 150060.	3.1	16
1862	Cr ₂ O ₃ –TiO ₂ -Modified Filter Paper-Based Portable Nanosensors for Optical and Colorimetric Detection of Hydrogen Peroxide. ACS Omega, 2021, 6, 23368-23377.	1.6	11
1863	Microchip electrophoresis and electrochemical detection: A review on a growing synergistic implementation. Electrochimica Acta, 2021, 391, 138928.	2.6	18
1864	Light Amplification Materials Based on Biopolymers Doped with Dye Molecules—Structural Insights from 15N and 13C Solid-State Dynamic Nuclear Polarization. Journal of Physical Chemistry C, 0, , .	1.5	3
1865	A sample-to-answer, wearable cloth-based electrochemical sensor (WCECS) for point-of-care detection of glucose in sweat. Sensors and Actuators B: Chemical, 2021, 343, 130131.	4.0	55
1866	Origami Paper-Based Electrochemical (Bio)Sensors: State of the Art and Perspective. Biosensors, 2021, 11, 328.	2.3	32
1867	Plasmonic paper substrates for point-of-need applications: Recent developments and fabrication methods. Sensors and Actuators B: Chemical, 2021, 345, 130401.	4.0	16
1868	Pop-up paper-based and fully integrated microdevice for point-of-care testing of vancomycin-resistant Enterococcus. Sensors and Actuators B: Chemical, 2021, 345, 130362.	4.0	20
1869	Eco-friendly pH detecting paper-based analytical device: Towards process intensification. Analytica Chimica Acta, 2021, 1182, 338953.	2.6	15
1870	Microfluidic paper-based chips in rapid detection: Current status, challenges, and perspectives. TrAC - Trends in Analytical Chemistry, 2021, 143, 116371.	5.8	90
1871	Ubiquitous Self-Powered Architecture for Fuel Cell-Based Point-of-Care Applications. IEEE Transactions on Industrial Electronics, 2021, 68, 11447-11457.	5.2	6
1872	lonic strength-independent potentiometric cation concentration sensing on paper using a tetrabutylammonium-based reference electrode. Sensors and Actuators B: Chemical, 2021, 346, 130527.	4.0	9

#	Article	IF	Citations
1873	Transmittance measurements on paper soaked with deep eutectic solvents. Microchemical Journal, 2021, 170, 106690.	2.3	5
1874	Sensory materials for microfluidic paper based analytical devices - A review. Talanta, 2021, 235, 122733.	2.9	29
1875	An automated fast-flow/delayed paper-based platform for the simultaneous electrochemical detection of hepatitis B virus and hepatitis C virus core antigen. Biosensors and Bioelectronics, 2021, 193, 113543.	5.3	44
1876	Paper-based electrochemiluminescence device for the rapid estimation of trimethylamine in fish via the quenching effect of thioglycolic acid-capped cadmium selenide quantum dots. Food Chemistry, 2022, 366, 130590.	4.2	16
1877	Fluid–substrate interactions. , 2022, , 37-58.		0
1878	Paper-based nanosensors for smart manufacturing. , 2021, , 517-532.		1
1879	Paper-based microfluidic devices for low-cost assays. , 2021, , 551-585.		0
1880	Actuation mechanisms for microfluidic biomedical devices. , 2021, , 125-162.		1
1881	"Scratch it out― carbon copy based paper devices for microbial assays and liver disease diagnosis. Analytical Methods, 2021, 13, 3172-3180.	1.3	17
1882	Hepatitis C virus (HCV) diagnosis <i>via</i> microfluidics. Analytical Methods, 2021, 13, 740-763.	1.3	18
1883	Fork-shaped paper SERS sensors coated with raspberry-like bimetallic nanospheres for the detection of the boosted mixture: experimental design and applications. Journal of Materials Chemistry C, 2021, 9, 2763-2774.	2.7	13
1884	A Comparison of Commercially Available Screen-Printed Electrodes for Electrogenerated Chemiluminescence Applications. Frontiers in Chemistry, 2020, 8, 628483.	1.8	13
1885	Using Microfluidics to Investigate Hematopoietic Stem Cell and Microniche Interactions at the Single Cell Level. Methods in Molecular Biology, 2014, 1185, 223-233.	0.4	4
1886	Three-Dimensional, Paper-Based Microfluidic Devices Containing Internal Timers for Running Time-Based Diagnostic Assays. Methods in Molecular Biology, 2013, 949, 185-196.	0.4	5
1887	Teaching Microfluidic Diagnostics Using Jell-O® Chips. Methods in Molecular Biology, 2013, 949, 25-40.	0.4	3
1888	Application of Microfluidics to Study Stem Cell Dynamics. , 2013, , 435-470.		3
1889	Cell Migration in Microfluidic Devices: Invadosomes Formation in Confined Environments. Advances in Experimental Medicine and Biology, 2019, 1146, 79-103.	0.8	3
1890	Facile and Ultrasensitive Sensors Based on Electrospinning-Netting Nanofibers/Nets. Nanoscience and Technology, 2015, , 1-34.	1.5	4

#	Article	IF	CITATIONS
1891	Application of Nanoparticles in Manufacturing. , 2016, , 1219-1278.		3
1892	Dust of Wonder, Dust of Doom: A Landscape of Nanotechnology, Nanoethics, and Sustainable Development. Advancing Global Bioethics, 2016, , 101-123.	0.8	5
1893	Simple Fabrication Method of Micro-Fluidic Devices with Thick Resist Flow Paths Designed Arbitrarily Using Versatile Computer Aided Design Tools. Communications in Computer and Information Science, 2015, , 19-33.	0.4	3
1894	Thin Film Biosensors. Biological and Medical Physics Series, 2013, , 265-300.	0.3	5
1895	Paper-Based Sensors for Biomedical Applications. , 2019, , 355-376.		6
1896	Fluid Transport Mechanisms in Paper-Based Microfluidic Devices. Advanced Functional Materials and Sensors, 2019, , 7-28.	1.2	7
1897	Evolution of Paper Microfluidics as an Alternate Diagnostic Platform. Advanced Functional Materials and Sensors, 2019, , 83-98.	1.2	4
1898	Wax-printed well pads and colorimetric LAMP detection of ApxIA toxin gene. Molecular and Cellular Toxicology, 2020, 16, 263-270.	0.8	3
1899	Fast and straightforward in-situ synthesis of gold nanoparticles on a thread-based microfluidic device for application in surface-enhanced Raman scattering detection. Microchemical Journal, 2020, 156, 104985.	2.3	24
1900	Viscosity measurements utilizing a fast-flow microfluidic paper-based device. Sensors and Actuators B: Chemical, 2020, 319, 128240.	4.0	26
1901	Vertically and Horizontally Drawing Formation of Graphite Pencil Electrodes on Paper by Frictional Sliding for a Disposable and Foldable Electronic Device. ACS Omega, 2021, 6, 1960-1970.	1.6	12
1902	Wearable Analytical Platform with Enzyme-Modulated Dynamic Range for the Simultaneous Colorimetric Detection of Sweat Volume and Sweat Biomarkers. ACS Sensors, 2021, 6, 130-136.	4.0	44
1903	Peptide Functionalized Gold Nanorods for the Sensitive Detection of a Cardiac Biomarker Using Plasmonic Paper Devices. Scientific Reports, 2015, 5, 16206.	1.6	82
1904	Peptide Functionalized Gold Nanorods for the Sensitive Detection of a Cardiac Biomarker Using Plasmonic Paper Devices. Scientific Reports, 2015, 5, .	1.6	15
1905	Chapter 11. Smartphone-based Sensing in Food Safety and Quality Analysis. Food Chemistry, Function and Analysis, 2017, , 332-358.	0.1	1
1906	Past, Present and Future of Green Analytical Chemistry. RSC Green Chemistry, 2020, , 1-18.	0.0	21
1908	Critical review on where CRISPR meets molecular diagnostics. Progress in Biomedical Engineering, 2021, 3, 012001.	2.8	20
1912	Imbibition with swelling: Capillary rise in thin deformable porous media. Physical Review Fluids, 2017, 2, .	1.0	21

~			<u> </u>	
(17	ΓΔΤΙ	10N	KEDUB	Г
\sim				

#	Article	IF	CITATIONS
1913	Medical Devices for Low- and Middle-Income Countries: A Review and Directions for Development. Journal of Medical Devices, Transactions of the ASME, 2020, 14, 010803.	0.4	13
1914	State-of-Art Advances in Liquid Penetration Theory and Flow Control in Paper for Paper-Based Diagnosis. Advances in Porous Flow, 2015, 05, 16-29.	0.3	10
1915	Nanonets Collect Cancer Secretome from Pericellular Space. PLoS ONE, 2016, 11, e0154126.	1.1	11
1916	Green design of a paper test card for urinary iodine analysis. PLoS ONE, 2017, 12, e0179716.	1.1	3
1917	Cellulose-based Biosensor for Bio-molecules Detection in Medical Diagnosis: A Mini-Review. Current Medicinal Chemistry, 2020, 27, 4593-4612.	1.2	16
1918	Progress and Prospects in Translating Nanobiotechnology in Medical Theranostics. Current Nanoscience, 2020, 16, 685-707.	0.7	12
1920	Paper-Based Bipolar Electrochemistry. Journal of Electrochemical Science and Technology, 2013, 4, 146-152.	0.9	10
1921	Metastable capillary filaments in rectangular cross-section open microchannels. AIMS Biophysics, 2014, 1, 31-48.	0.3	20
1922	Opto-Smart Systems in Microfluidics. Advances in Chemical and Materials Engineering Book Series, 2016, , 265-288.	0.2	2
1923	Applications of Microfluidic Devices for Urology. International Neurourology Journal, 2017, 21, S4-9.	0.5	17
1924	Paper-Based Bipolar Electrochemistry. Journal of Electrochemical Science and Technology, 2013, 4, 146-152.	0.9	22
1925	Flexible Microfluidic Metamaterial Absorber for Remote Chemical Sensor Application. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2016, 27, 123-130.	0.0	2
1926	RAPID, LOW-COST PROTOTYPING OF CENTRIFUGAL MICROFLUIDIC DEVICES FOR EFFECTIVE IMPLEMENTATION OF VARIOUS MICROFLUIDIC COMPONENTS. South African Journal of Industrial Engineering, 2015, 26, 179.	0.2	1
1927	Paper-Based Neuraminidase Assay Sensor for Detection of Influenza Viruses. Korean Chemical Engineering Research, 2016, 54, 380-386.	0.2	1
1928	An origami paper-based analytical device for DNA damage analysis. Chemical Communications, 2021, 57, 11465-11468.	2.2	4
1929	Flexible Surfaceâ€Enhanced Raman Scattering Substrates: A Review on Constructions, Applications, and Challenges. Advanced Materials Interfaces, 2021, 8, 2100982.	1.9	43
1930	New microfluidic paper-based analytical device for iron determination in urine samples. Analytical and Bioanalytical Chemistry, 2021, 413, 7463-7472.	1.9	11
1931	Paper and thread as media for the frugal detection of urinary tract infections (UTIs). Analytical and Bioanalytical Chemistry, 2022, 414, 847-865.	1.9	16

#	Article	IF	CITATIONS
1932	Paper-Based Lateral Flow Device for the Sustainable Measurement of Human Plasma Fibrinogen in Low-Resource Settings. Analytical Chemistry, 2021, 93, 14007-14013.	3.2	5
1933	The Latest Trend of Micro TAS Technology. Journal of the Institute of Electrical Engineers of Japan, 2011, 131, 296-299.	0.0	0
1934	Simple and inexpensive immunoassay-based diagnostic tests. , 2013, , 183-196.		0
1937	Thread Based Devices for Low-Cost Diagnostics. Methods in Molecular Biology, 2013, 949, 197-205.	0.4	3
1938	Immunodiagnostics: Major Advances and Future Insights. Journal of Biochips & Tissue Chips, 2013, 03, .	0.2	1
1939	A Low Temperature Cofired Ceramic Microfluidic Calorimeter for ELISA Biosensing. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2013, 2013, 000168-000172.	0.2	0
1940	Microdevices for Point of Care. Journal of the Institute of Electrical Engineers of Japan, 2014, 134, 144-147.	0.0	0
1941	Fabrication of Precise Micro-fluidic Devices using a Low-cost and Simple Contact-exposure Tool for Lithography. , 2014, , .		0
1942	Microfluidic Diagnostics for Low-resource Settings: Improving Global Health without a Power Cord. RSC Nanoscience and Nanotechnology, 2014, , 151-190.	0.2	1
1943	Microfluidic Systems with Functional Patterned Surface for Biomedical Applications. , 2015, , 305-324.		0
1944	Lab-on-a-Chip Devices and Opportunities for Latin America and the Caribbean. , 0, , .		0
1945	Ethanol Concentration Sensor Using Microfluidic Metamaterial Absorber. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2015, 26, 506-513.	0.0	0
1948	Fluidic Microsystems: From Labs-on-Chips to Microfluidic Cell Culture. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2016, , 351-372.	0.7	1
1949	Fabrication and characterization of passive micropump for microfluidics based devices. , 2016, , .		0
1950	Challenges of malaria diagnosis in clinical settings and disease surveillance under reduced malaria burden in Tanzania. Asian Pacific Journal of Tropical Disease, 2017, 7, 1-7.	0.5	2
1951	POCT in der Entwicklungszusammenarbeit. , 2017, , 337-342.		0
1952	Chapter 10. Graphene-electrochemical Sensing in Food Safety and Quality Analysis. Food Chemistry, Function and Analysis, 2017, , 299-331.	0.1	0
1953	Chapter 2 Recent Advances in Bipolar Electrochemistry. Electroanalytical Chemistry, A Series of Advances, 2017, , 27-118.	1.7	0

# 1955	ARTICLE MANGANESE(II) DETERMINATION BY DIFFUSE REFLECTANCE SPECTROSCOPY. Fine Chemical Technologies, 2017, 12, 47-55.	IF 0.1	CITATIONS
1956	Tailoring Wettability for Passive Fluid Control in Microfluidics. , 2017, , 19-46.		0
1957	Technologien und Materialien für mikrofluidische Systeme. , 2018, , 57-76.		0
1958	Local Wettability Modification and Its Micro-Fluidic System Application. Micro/Nano Technologies, 2018, , 925-957.	0.1	0
1959	POCT in international development cooperation. , 2018, , 337-342.		0
1960	Einleitung: Mikrofluidische Lab-on-a-Chip-Systeme. , 2018, , 1-6.		0
1961	Nanocellulose-based Functional Materials Oriented to Life Science. Kami Pa Gikyoshi/Japan Tappi Journal, 2018, 72, 1228-1232.	0.1	0
1962	Modeling fluid transport in 2d paper networks. , 2018, , .		0
1963	Structuring unbreakable hydrophobic barriers in paper. , 2018, , .		0
1964	Point-of-Care Diagnostics for Infectious Diseases: Present and Future. Korean Journal of Medicine, 2018, 93, 181-187.	0.1	4
1965	Modeling fluid transport in two-dimensional paper networks. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2018, 17, 1.	1.0	3
1967	Analytical Study for Development of Fuel Adulteration Detection System. Helix, 2018, 8, 4327-4333.	0.1	0
1968	Paper-Based Devices for Food Quality Control. Advanced Functional Materials and Sensors, 2019, , 147-163.	1.2	0
1969	Paper-Based Devices for Wearable Diagnostic Applications. Advanced Functional Materials and Sensors, 2019, , 193-208.	1.2	3
1970	Paper-Based Microfluidic Devices for the Detection of DNA. Advanced Functional Materials and Sensors, 2019, , 99-113.	1.2	0
1972	Characteristics of Chromatography-paper-based Electrochemical Sensors. Bunseki Kagaku, 2019, 68, 601-608.	0.1	0
1974	A Hybrid Approach for Large-scale Fabrication of Paper-based Electrochemical Assays for Biomedical Diagnosis. Celal Bayar Universitesi Fen Bilimleri Dergisi, 2019, 15, 271-277.	0.1	0
1975	La impronta como método no invasivo de toma de muestra para el diagnóstico molecular de la leishmaniosis cutánea en población militar de Colombia. Revista Med, 2019, 26, 15-21.	0.1	Ο

#	Article	IF	CITATIONS
1976	Laser-based photo-polymerisation method for the fabrication of 3D multilayer paper-based devices. , 2020, , .		0
1977	Material Development Using the Inherent Features of Nano-cellulose and Nano-chitin: Necessity of Simple Processes and Cross-disciplinary Collaboration. Journal of the Society of Powder Technology, Japan, 2020, 57, 97-102.	0.0	0
1978	Micro-fabrication by wax spraying for rapid smartphone-based quantification of bio-markers. Analytical Biochemistry, 2020, 603, 113777.	1.1	2
1979	Paper-Based Biosensors for COVID-19: A Review of Innovative Tools for Controlling the Pandemic. ACS Omega, 2021, 6, 29268-29290.	1.6	40
1980	Frugal Science Powered by Curiosity. Industrial & Engineering Chemistry Research, 2021, 60, 15874-15884.	1.8	12
1981	Diagnosis and prognosis for exercise-induced muscle injuries: from conventional imaging to emerging point-of-care testing. RSC Advances, 2020, 10, 38847-38860.	1.7	1
1982	Biobased Materials for Medical Applications. , 2021, , 139-193.		1
1983	Paper-Based Molecular Diagnostics. Bioanalysis, 2021, , 155-181.	0.1	2
1985	Conclusions, challenges, and next steps. , 2022, , 259-274.		1
1986	Introduction remarks for paper-based analytical devices and timeline. , 2022, , 1-13.		0
1987	3D printed hydrophobic barriers in a paper-based biosensor for point-of-care detection of dengue virus serotypes. Talanta, 2022, 237, 122962.	2.9	27
1988	Schistosomiasis: from established diagnostic assays to emerging micro/nanotechnology-based rapid field testing for clinical management and epidemiology. Precision Nanomedicine, 2020, 3, 439-458.	0.4	7
1989	Diagnostic Tools for Food Safety. , 2020, , 333-365.		1
1990	Portable Diagnostic Platform for Detection of Microorganisms Coliforms and <i>E. coli</i> . Advances in Microbiology, 2020, 10, 224-237.	0.3	0
1991	Paper for microfluidics: Selection criteria. AIP Conference Proceedings, 2020, , .	0.3	5
1993	Exploring paper as a substrate for electrochemical micro-devices. Comprehensive Analytical Chemistry, 2020, , 1-29.	0.7	6
1994	Surface Micromachined Acceleration Sensors. , 2020, , 87-144.		0
1995	Sensors as Green Tools. RSC Green Chemistry, 2020, , 55-91.	0.0	1
ARTICLE IF CITATIONS A scalable fibre optic sensing architecture for lab-on-a-chip devices. , 2020, , . 1996 0 Rapid and Sensitive Detection of Hepatitis C Virus in Clinical Blood Samples Using Reverse Transcriptase Polymerase Spiral Reaction. Journal of Microbiology and Biotechnology, 2020, 30, 459-468. Spontaneous diffusiophoretic separation in paper-based microfluidic device. Micro and Nano Systems 1999 1.7 5 Letters, 2020, 8, . Multiâ€Color Au/Ag Nanoparticles for Multiplexed Lateral Flow Assay Based on Spatial Separation and 2000 Color Coâ€Localization. Advanced Functional Materials, 2022, 32, . Controlled generation of droplets using an electric field in a flowâ€focusing paperâ€based device. 2001 1.34 Electrophoresis, 2022, 43, 601-608. A global health opportunity: The potential of multiplexed diagnostics in low-resource settings. Journal of Global Health, 2011, 1, 138-41. 1.2 Paper-Based Multiplexed Colorimetric Device for the Simultaneous Detection of Salivary Biomarkers. 2004 2.318 Biosensors, 2021, 11, 443. Current Challenges and Future Trends of Enzymatic Paper-Based Point-of-Care Testing for Diabetes 2.3 Mellitus Type 2. Biosensors, 2021, 11, 482. Imbibition of Newtonian Fluids in Paper-like Materials with the Infinitesimal Control Volume Method. 2006 1.4 4 Micromachines, 2021, 12, 1391. Tuning the Structure, Conductivity, and Wettability of Laser-Induced Graphene for Multiplexed Open 7.3 Microfluidic Environmental Biosensing and Energy Storage Devices. ACS Nano, 2022, 16, 15-28. Recent Advances in Photocatalysis Based on Bioinspired Superwettabilities. ACS Catalysis, 2021, 11, 2008 5.559 14751-14771. 2009 Paper-based field-effect transistor sensors. Talanta, 2022, 239, 123085. 2.9 Portable and sensitive detection of non-glucose target by enzyme-encapsulated 2010 metal-organic-framework using personal glucose meter. Biosensors and Bioelectronics, 2022, 198, 5.3 17 113819. MOF-based hybrid film for multiphase detection of sulfur dioxide with colorimetric and 2011 6.6 surface-enhanced Raman scattering readout. Chemical Engineering Journal, 2022, 432, 134317. A chromatographic paper-based electrochemical device to determine l'al-tetrahydrocannabinol and 2012 20 4.0 cannabidiol in cannabis oil. Sensors and Actuators B: Chemical, 2022, 355, 131353. Supramolecular optical sensor arrays for on-site analytical devices. Journal of Photochemistry and Photobiology C: Photochemistry Réviews, 2022, 51, 100475. On-chip integration of ultra-thin glass cantilever for physical property measurement activated by 2014 1 femtosecond laser impulse., 2020,,. Electrokinetically Assisted Paper-Based DNA Concentration for Enhanced qPCR Sensing., 2020, 60, .

#	Article	IF	Citations
2016	Electrochemical Characterization of Nitrocellulose Membranes towards Bacterial Detection in Water. , 2020, 60, .		0
2017	In Situ Detection of Hydrogen Sulfide in 3D-Cultured, Live Prostate Cancer Cells Using a Paper-Integrated Analytical Device. Chemosensors, 2022, 10, 27.	1.8	8
2018	Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chemical Society Reviews, 2022, 51, 329-375.	18.7	104
2019	Colorimetric and Electrochemical Screening for Early Detection of Diabetes Mellitus and Diabetic Retinopathy—Application of Sensor Arrays and Machine Learning. Sensors, 2022, 22, 718.	2.1	7
2020	Electrophoretic µPAD for Purification and Analysis of DNA Samples. Biosensors, 2022, 12, 62.	2.3	2
2021	Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chemical Reviews, 2022, 122, 7142-7181.	23.0	21
2022	Elastocapillary interaction between a long rectangular membrane and a liquid drop. Soft Matter, 2021, 18, 228-235.	1.2	1
2023	Fabrication of functionalized nanomaterial-based electrochemical sensors' platforms. , 2022, , 445-486.		2
2024	Microfluidic pressure in paper (μPiP): rapid prototyping and low-cost liquid handling for on-chip diagnostics. Analyst, The, 2022, 147, 587-596.	1.7	5
2025	Metal oxidesbased microfluidic biosensing. , 2022, , 233-263.		0
2026	Microfluidics technology: past, present, and future prospects for biomarker diagnostics. , 2022, , 457-485.		1
2027	Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application. Pharmaceutics, 2022, 14, 141.	2.0	35
2028	Cellulose through the Lens of Microfluidics: A Review. , 2022, 1, 1-37.		7
2029	Development of next-generation diagnostic tools using synthetic biology. , 2022, , 287-330.		2
2030	Paper based micro/nanofluidics devices for biomedical applications. Progress in Molecular Biology and Translational Science, 2022, 186, 159-190.	0.9	2
2031	Molecular electronics sensors on a scalable semiconductor chip: A platform for single-molecule measurement of binding kinetics and enzyme activity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	34
2032	Microfluidic tools for veterinary and zoonotic disease diagnostics. Progress in Molecular Biology and Translational Science, 2022, 187, 281-293.	0.9	0
2033	Green microfluidics in microchemical engineering for carbon neutrality. Chinese Journal of Chemical Engineering, 2023, 53, 332-345.	1.7	6

#	Article	IF	CITATIONS
2034	Design, fabrication and assembly of lab-on-a-chip and its uses. Progress in Molecular Biology and Translational Science, 2022, 187, 121-162.	0.9	8
2035	An outlook on microfluidics: the promise and the challenge. Lab on A Chip, 2022, 22, 530-536.	3.1	115
2036	Stereolithography based 3D-printed microfluidic device with integrated electrochemical detection. Electrochimica Acta, 2022, 407, 139888.	2.6	13
2037	Paper-based microfluidic colorimetric sensor on a 3D printed support for quantitative detection of nitrite in aquatic environments. Environmental Research, 2022, 208, 112745.	3.7	15
2038	A Paper-Based Microfluidic Analytical Device with A Highly Integrated On-Chip Valve For Autonomous ELISA. , 2022, , .		1
2039	A ZnFe ₂ O ₄ -catalyzed segment imprinted polymer on a three-dimensional origami paper-based microfluidic chip for the detection of microcystin. Analyst, The, 2022, 147, 1060-1065.	1.7	11
2040	Fabrication of Paper-Based Microfluidics by Spray on Printed Paper. Polymers, 2022, 14, 639.	2.0	5
2041	Development of nanomaterials-fabricated paper-based sensors for the analysis of environmental and biological samples: A Review. Current Nanoscience, 2021, 17, .	0.7	1
2042	Electroosmotic flow of viscoelastic fluid through a microchannel with slip-dependent zeta potential. Physics of Fluids, 2021, 33, .	1.6	30
2043	Autonomous electrochemical biosensing of glial fibrillary acidic protein for point-of-care detection of central nervous system injuries. Lab on A Chip, 2022, 22, 1542-1555.	3.1	8
2044	Paper-based sensors for diagnostics, human activity monitoring, food safety and environmental detection. Sensors & Diagnostics, 2022, 1, 312-342.	1.9	32
2045	Portable smartphone-based colorimetric system for simultaneous on-site microfluidic paper-based determination and mapping of phosphate, nitrite and silicate in coastal waters. Environmental Monitoring and Assessment, 2022, 194, 190.	1.3	9
2046	A March to Shape Optical Artificial Olfactory System toward Ultrasensitive Detection of Improvised Explosives. Advanced Photonics Research, 2022, 3, .	1.7	10
2047	A new method for selective determination of creatinine using smartphone-based digital image. Microfluidics and Nanofluidics, 2022, 26, 1.	1.0	5
2048	A Green Analytical Methodology for Detecting Adulteration in Automotive Urea-SCR Products Using Microfluidic-Paper Analytical Devices. Sustainability, 2022, 14, 3363.	1.6	0
2049	A One-Dollar, Disposable, Paper-Based Microfluidic Chip for Real-Time Monitoring of Sweat Rate. Micromachines, 2022, 13, 414.	1.4	6
2050	Liquid Transport of Heated Glycerol-Water Mixtures with Colloidal Fluorescent Particles through Multiple Biomass Layers. E-Journal of Surface Science and Nanotechnology, 2022, 20, 13-19.	0.1	1
2051	New Insights for Biosensing: Lessons from Microbial Defense Systems. Chemical Reviews, 2022, 122, 8126-8180.	23.0	15

#	Article	IF	CITATIONS
2052	Screen-Printed Electrodes on Tyvek Substrate as Low-Cost Device to Applications in Alzheimer's Disease Detection. Journal of the Electrochemical Society, 2022, 169, 037505.	1.3	1
2053	A review on colorimetric indicators for monitoring product freshness in intelligent food packaging: Indicator dyes, preparation methods, and applications. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2489-2519.	5.9	57
2054	Versatile inexpensive paper-based chemosensor to detects trimethylamine: A proof of concept. Sensors and Actuators A: Physical, 2022, 338, 113437.	2.0	7
2055	On-site Chemosensor Arrays for Qualitative and Quantitative Detection with Imaging Analysis. Bunseki Kagaku, 2021, 70, 691-702.	0.1	0
2057	Macro-porous Ferro-gel for Regulation of Flow and Drug Release in Bio-microfluidics Using Static Magnetic Field. , 2021, , .		0
2059	An Origami Paper-Based Analytical Device for Rapid and Sensitive Analysis of Acrylamide in Foods. Micromachines, 2022, 13, 13.	1.4	9
2060	Leveraging Arylboronic Acid–Cellulose Binding as a Versatile and Scalable Approach to Hydrophobic Patterning. Advanced Materials Technologies, 0, , 2101280.	3.0	0
2061	Revisiting the Electroacoustic Phenomenon in the Presence of Surface Acoustic Waves. Langmuir, 2021, 37, 14679-14687.	1.6	2
2062	Rapid, Simple and Inexpensive Fabrication of Paper-Based Analytical Devices by Parafilm® Hot Pressing. Micromachines, 2022, 13, 48.	1.4	9
2063	Paperâ€based open microfluidic platform for protein electrophoresis and immunoprobing. Electrophoresis, 2022, 43, 621-631.	1.3	9
2064	Diagnosis of disease relevant nucleic acid biomarkers with off-the-shelf devices. Journal of Materials Chemistry B, 2022, 10, 3959-3973.	2.9	5
2065	Handmade Paper as a Paper Analytical Device for Determining the Quality of an Antidiabetic Drug. ACS Omega, 2022, 7, 14074-14081.	1.6	4
2066	Novel regimes of calcium carbonate dissolution in micron-scale confined spaces. Advances in Water Resources, 2022, 164, 104200.	1.7	5
2071	Quantifying DNA damage on paper sensors <i>via</i> controlled template-independent DNA polymerization. Chemical Science, 2022, 13, 6496-6501.	3.7	2
2072	Applications of Nanozymology in the Detection and Identification of Viral, Bacterial and Fungal Pathogens. International Journal of Molecular Sciences, 2022, 23, 4638.	1.8	13
2073	Reversible Thermo-Responsive Valve for Microfluidic Paper-Based Analytical Devices. Micromachines, 2022, 13, 690.	1.4	4
2074	Boundary condition induced passive chaotic mixing in straight microchannels. Physics of Fluids, 2022, 34, .	1.6	4
2075	Extraction processes for deriving cellulose: A comprehensive review on green approaches. Polymers for Advanced Technologies, 2022, 33, 2069-2090.	1.6	14

#	Article	IF	CITATIONS
2076	Paper-based biosensors for cancer diagnostics. Trends in Chemistry, 2022, 4, 554-567.	4.4	14
2077	Silk-fibroin film as enzyme stabilizing material and optical signal transducer for developing alcohol oxidase-based μPAD methanol biosensor. Biosensors and Bioelectronics: X, 2022, 11, 100147.	0.9	1
2078	Progress toward a Simplified UTI Diagnostic: Pump-Free Magnetophoresis for E. coli Detection. Analytical Chemistry, 2022, 94, 7545-7550.	3.2	10
2079	A thermoresponsive valve to control fluid flow in microfluidic paper-based devices. Microfluidics and Nanofluidics, 2022, 26, .	1.0	1
2080	Current Advancements and Future Road Map to Develop ASSURED Microfluidic Biosensors for Infectious and Non-Infectious Diseases. Biosensors, 2022, 12, 357.	2.3	12
2081	A free customizable tool for easy integration of microfluidics and smartphones. Scientific Reports, 2022, 12, .	1.6	13
2082	Printed 384â€Well Microtiter Plate on Paper for Fluorescent Chemosensor Arrays in Food Analysis. Chemistry - an Asian Journal, 2022, 17, .	1.7	7
2083	Diagnostic Accuracy of Liquid Biomarkers in Airway Diseases: Toward Point-of-Care Applications. Frontiers in Medicine, 2022, 9, .	1.2	9
2084	Nanopaper Biosensors at Point of Care. Bioconjugate Chemistry, 2022, 33, 1114-1130.	1.8	11
2086	Recent advances in potentiometric analysis: Paper–based devices. Sensors International, 2022, 3, 100189.	4.9	14
2087	Engineering a sustainable future for point-of-care diagnostics and single-use microfluidic devices. Lab on A Chip, 2022, 22, 3122-3137.	3.1	41
2088	A simple cost-effective paper-based electrochemical device for detection of adulterated sibutramine in slimming products. Analytical Methods, 0, , .	1.3	1
2089	Laser-induced graphene from paper for non-enzymatic uric acid electrochemical sensing in urine. Carbon, 2022, 197, 253-263.	5.4	32
2090	Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer. Analytical Chemistry, 2022, 94, 8833-8837.	3.2	25
2091	Innovations and Challenges in Electroanalytical Tools for Rapid Biosurveillance of SARS oVâ€2. Advanced Materials Technologies, 2022, 7, .	3.0	3
2092	Nanomaterials and paper-based electrochemical devices: merging strategies for fostering sustainable detection of biomarkers. Journal of Materials Chemistry B, 2022, 10, 9021-9039.	2.9	14
2094	Rapid and inexpensive process to fabricate paper based microfluidic devices using a cut and heat plastic lamination process. Lab on A Chip, 2022, 22, 3377-3389.	3.1	11
2095	Biomedical Applications of Fibers Produced by Electrospinning, Microfluidic Spinning and Combinations of Both. , 2022, , 251-295.		1

#	Article	IF	CITATIONS
2096	Point-of-Care Diagnostics for Farm Animal Diseases: From Biosensors to Integrated Lab-on-Chip Devices. Biosensors, 2022, 12, 455.	2.3	15
2097	Reliable Paper Surface Treatments for the Development of Inkjetâ€Printed Electrochemical Sensors. Advanced Materials Interfaces, 2022, 9, .	1.9	7
2098	Advances in Organ-on-a-Chip Materials and Devices. ACS Applied Bio Materials, 2022, 5, 3576-3607.	2.3	27
2099	Progress on dot-blot assay as a promising analytical tool: Detection from molecules to cells. TrAC - Trends in Analytical Chemistry, 2022, 157, 116736.	5.8	12
2100	A cell-free paper-based biosensor dependent on allosteric transcription factors (aTFs) for on-site detection of harmful metals Hg2+ and Pb2+ in water. Journal of Hazardous Materials, 2022, 438, 129499.	6.5	13
2101	Metal Oxide (ZnO, TiO2) Layer Affects Sensitivity of Multisample Colorimetric Detection in Microfluidic Paper-based Biosensor. , 2021, , .		0
2102	Design of a microfluidic paper-based device for the quantification of phenolic compounds in wine samples. Talanta, 2022, 250, 123747.	2.9	6
2103	Determination of phosphorus in water and chemical fertilizer samples using a simple drawing microfluidic paper-based analytical device. Analytical Sciences, 2022, 38, 1323-1332.	0.8	2
2104	Nanocellulose as a promising substrate for advanced sensors and their applications. International Journal of Biological Macromolecules, 2022, 218, 473-487.	3.6	19
2105	Water activated disposable paper battery. Scientific Reports, 2022, 12, .	1.6	10
2106	An Integrated 3D Hydrophilicity/Hydrophobicity Design for Artificial Sweating Skin (iâ€₹RANS) Mimicking Human Body Perspiration. Advanced Materials, 2022, 34, .	11.1	20
2107	Paper-Based Enzymatic Electrochemical Sensors for Glucose Determination. Sensors, 2022, 22, 6232.	2.1	15
2108	Electrochemical immunoassay for detection of hepatitis C virus core antigen using electrode modified with Pt-decorated single-walled carbon nanotubes. Mikrochimica Acta, 2022, 189, .	2.5	9
2109	Growth of a fluid-infused patch from droplet drainage into a thin porous layer. Journal of Fluid Mechanics, 2022, 946, .	1.4	2
2110	Colorimetric test strip cassette readout with a smartphone for on-site and rapid screening test of carbamate pesticides in vegetables. Microchemical Journal, 2022, 181, 107837.	2.3	9
2111	A microfluidic paper-based analytical device for iodometric titration of ascorbic acid and dopamine. Microchemical Journal, 2022, 182, 107886.	2.3	7
2112	Paper Based Microfluidic Colorimetric Sensor Systems. International Journal of Eastern Anatolia Science Engineering and Design, 0, , 104-117.	0.1	0
2113	Microfluidics in smart packaging of foods. Food Research International, 2022, 161, 111873.	2.9	6

#	Article	IF	CITATIONS
2114	Computational modelling of paper-based capillary-driven microfluidic flow cells. Journal of Power Sources, 2022, 548, 232084.	4.0	6
2115	Wearable microneedle-integrated sensors for household health monitoring. Engineered Regeneration, 2022, 3, 420-426.	3.0	7
2116	Electric yo-yo centrifugation combining with paper-based microfluidic immunoassay chip for inflammatory biomarkers detection in whole blood. Talanta, 2023, 253, 123883.	2.9	5
2117	Paper-based sample processing for the fast and direct MS analysis of multiple analytes from serum samples. Analyst, The, 2022, 147, 4895-4902.	1.7	1
2118	Food-On-A-Chip: Relevance of Microfluidics in Food Processing. Food Engineering Series, 2022, , 655-668.	0.3	0
2119	Recapitulation of dynamic nanoparticle transport around tumors using a triangular multi-chamber tumor-on-a-chip. Lab on A Chip, 0, , .	3.1	1
2120	Smartphone-Based Colorimetric Detection of Cardiac Troponin T Via Label-Free Aptasensing. SSRN Electronic Journal, 0, , .	0.4	0
2121	Nucleic acid based biosensor as a cutting edge tool for point of care diagnosis. , 2022, , 265-301.		0
2122	Rapid quantification of thiocyanate in milk samples using a universal paper-based SERS sensor. Analyst, The, 0, , .	1.7	4
2123	A Fluorescent Alcohol Biosensor Using a Simple microPAD Based Detection Scheme. Frontiers in Sensors, 0, 3, .	1.7	3
2124	Determination of Ascorbic Acid (Vitamin C) with Paper Based Colorimetric Method. Afyon Kocatepe University Journal of Sciences and Engineering, 2022, 22, 597-606.	0.1	0
2126	Patterning Wettability for Open-Surface Fluidic Manipulation: Fundamentals and Applications. Chemical Reviews, 2022, 122, 16752-16801.	23.0	28
2127	Peeling of linearly elastic sheets using complex fluids at low Reynolds numbers. Journal of Non-Newtonian Fluid Mechanics, 2022, 309, 104916.	1.0	3
2128	Functional nucleic acid biosensors utilizing rolling circle amplification. Chemical Society Reviews, 2022, 51, 9009-9067.	18.7	32
2129	Confinement of high-loading probes within silica film for paper-based sensor with enhanced imidacloprid sensitivity application. Sensors and Actuators B: Chemical, 2023, 375, 132919.	4.0	4
2130	Paper-Based Analytical Device for One-Step Detection of Bisphenol-A Using Functionalized Chitosan. Chemosensors, 2022, 10, 450.	1.8	4
2131	A Paper-Based Analytical Device Integrated with Smartphone: Fluorescent and Colorimetric Dual-Mode Detection of β-Glucosidase Activity. Biosensors, 2022, 12, 893.	2.3	9
2132	Freestanding 3D-interconnected carbon nanofibers as high-performance transducers in miniaturized electrochemical sensors. Mikrochimica Acta, 2022, 189, .	2.5	4

#	Article	IF	CITATIONS
2133	A paper-based point-of-care testing device for the colourimetric estimation of bilirubin in blood sample. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 287, 122045.	2.0	0
2134	Fully integrated colorimetric sensor based on transparency substrate for salbutamol determination. MethodsX, 2022, 9, 101913.	0.7	0
2135	Scaffold assisted synthesized metallic and semiconductor nanowires for electrochemical biosensing applications. , 2023, , 217-238.		0
2136	Flow regulation and drug delivery in bio-microfluidics using macro-porous ferrogel. Microfluidics and Nanofluidics, 2022, 26, .	1.0	0
2137	A paper-based analytical device with in-situ Carrez pretreatment for the determination of total polyphenolic content and antioxidant capacity. Food Chemistry, 2023, 405, 134952.	4.2	1
2138	A Chemometric-Assisted Colorimetric-Based Inexpensive Paper Biosensor for Glucose Detection. Biosensors, 2022, 12, 1008.	2.3	5
2139	Advances in microfluidic strategies for single-cell research. TrAC - Trends in Analytical Chemistry, 2022, 157, 116822.	5.8	13
2140	Fluids flow analysis on porous materials: A mathematical and simulation study. Materials Today: Proceedings, 2022, , .	0.9	0
2141	Fabrication of Paper-based Analytical Devices by Laminating Method with Thermal Ink Ribbon, Sticky Notes, and Office Appliances. Analytical Methods, 0, , .	1.3	0
2142	Paper-based optical nanosensors – A review. Analytica Chimica Acta, 2023, 1238, 340640.	2.6	16
2143	A low-cost, paper-based hybrid capture assay to detect high-risk HPV DNA for cervical cancer screening in low-resource settings. Lab on A Chip, 2023, 23, 451-465.	3.1	3
2144	Evaluation of chromogenic substrates for horseradish peroxidase on paper-based microfluidic devices. Sensors and Actuators B: Chemical, 2023, 377, 133028.	4.0	2
2145	Accelerating the optimization of vertical flow assay performance guided by a rational systematic model-based approach. Biosensors and Bioelectronics, 2023, 222, 114977.	5.3	2
2146	Smartphone-based colorimetric detection of cardiac troponin T via label-free aptasensing. Biosensors and Bioelectronics, 2023, 222, 114938.	5.3	9
2147	Enhancing of detection resolution via designing of a multi-functional 3D connector between sampling and detection zones in distance-based microfluidic paper-based analytical device: multi-channel design for multiplex analysis. Mikrochimica Acta, 2022, 189, .	2.5	5
2148	Paper-Based Biosensors for the Detection of Nucleic Acids from Pathogens. Biosensors, 2022, 12, 1094.	2.3	12
2149	Quasi-steady imbibition of physiological liquids in paper-based microfluidic kits: Effect of shear-thinning. Physics of Fluids, 2022, 34, .	1.6	5
2150	Fundamentals of Image-Based Assay (IBA) System for Affordable Point of Care Diagnostics. Microchemical Journal, 2023, 186, 108345.	2.3	1

#	Article	IF	CITATIONS
2151	A Step Forward for Smart Clothes─Fabric-Based Microfluidic Sensors for Wearable Health Monitoring. ACS Sensors, 2022, 7, 3857-3866.	4.0	9
2152	Photoinduced Electron Transfer and Aggregation-Induced Emission in 1,8-Naphthalimide Probes as a Platform for Detection of Acid/Base Vapors. Photonics, 2022, 9, 994.	0.9	5
2153	Protein Determination by Distance and Color Changing <i>via</i> PEG-Based Hydrogels. Chromatography, 2023, 44, 27-32.	0.8	1
2154	Paper based microfluidic devices: a review of fabrication techniques and applications. European Physical Journal: Special Topics, 2023, 232, 781-815.	1.2	20
2155	Evaluation of cellophane as platform for colorimetric assays on microfluidic analytical devices. Mikrochimica Acta, 2023, 190, .	2.5	4
2156	Characterization of subâ€atmospheric pressureâ€inducing micropump based on flow rate and gauge pressure measurements. Chemical Engineering and Technology, 0, , .	0.9	1
2157	Recent advances on paper-based microfluidic devices for bioanalysis. TrAC - Trends in Analytical Chemistry, 2023, 158, 116893.	5.8	25
2158	Enzyme-immobilized microfluidic devices for biomolecule detection. TrAC - Trends in Analytical Chemistry, 2023, 159, 116908.	5.8	16
2159	Advances on microfluidic paper-based electroanalytical devices. Biotechnology Advances, 2023, 63, 108093.	6.0	11
2160	Review on the Selection of Aptamers and Application in Paper-Based Sensors. Biosensors, 2023, 13, 39.	2.3	10
2160 2161	Review on the Selection of Aptamers and Application in Paper-Based Sensors. Biosensors, 2023, 13, 39. Real Time Paper Based Detection of Streptococcus bovis using Chromogenic Substrate in Resource Constrained Environments. , 0, , 171-175.	2.3	10 0
2160 2161 2162	Review on the Selection of Aptamers and Application in Paper-Based Sensors. Biosensors, 2023, 13, 39. Real Time Paper Based Detection of Streptococcus bovis using Chromogenic Substrate in Resource Constrained Environments., 0,, 171-175. Green Instrumental Analysis., 2019,, 168-222.	2.3	10 0 0
2160 2161 2162 2163	Review on the Selection of Aptamers and Application in Paper-Based Sensors. Biosensors, 2023, 13, 39.Real Time Paper Based Detection of Streptococcus bovis using Chromogenic Substrate in Resource Constrained Environments., 0,, 171-175.Green Instrumental Analysis., 2019,, 168-222.A smart paper-based electrochemical sensor for reliable detection of iron ions in serum. Analytical and Bioanalytical Chemistry, 2023, 415, 1149-1157.	2.3	10 0 0 6
2160 2161 2162 2163 2163	Review on the Selection of Aptamers and Application in Paper-Based Sensors. Biosensors, 2023, 13, 39. Real Time Paper Based Detection of Streptococcus bovis using Chromogenic Substrate in Resource Constrained Environments., 0,, 171-175. Green Instrumental Analysis., 2019,, 168-222. A smart paper-based electrochemical sensor for reliable detection of iron ions in serum. Analytical and Bioanalytical Chemistry, 2023, 415, 1149-1157. Microfluidic-Integrated Biosensors., 2023,, 21-42.	2.3	10 0 0 6 0
2160 2161 2162 2163 2164 2165	Review on the Selection of Aptamers and Application in Paper-Based Sensors. Biosensors, 2023, 13, 39. Real Time Paper Based Detection of Streptococcus bovis using Chromogenic Substrate in Resource Constrained Environments., 0,, 171-175. Green Instrumental Analysis., 2019,, 168-222. A smart paper-based electrochemical sensor for reliable detection of iron ions in serum. Analytical and Bioanalytical Chemistry, 2023, 415, 1149-1157. Microfluidic-Integrated Biosensors., 2023,, 21-42. Microfluidic and small-scale planar separation systems., 2023,, 395-409.	2.3	10 0 0 0 0 1
2160 2161 2162 2163 2164 2165 2166	Review on the Selection of Aptamers and Application in Paper-Based Sensors. Biosensors, 2023, 13, 39. Real Time Paper Based Detection of Streptococcus bovis using Chromogenic Substrate in Resource Constrained Environments., 0,, 171-175. Green Instrumental Analysis., 2019,, 168-222. A smart paper-based electrochemical sensor for reliable detection of iron ions in serum. Analytical and Bioanalytical Chemistry, 2023, 415, 1149-1157. Microfluidic-Integrated Biosensors., 2023,, 21-42. Microfluidic and small-scale planar separation systems., 2023,, 395-409. Enhancing Protein Adsorption for Improved Lateral Flow Assay on Cellulose Paper by Depleting Inert Additive Films Using Reactive Plasma. AcS Applied Materials & amp; Interfaces, 2023, 15, 6561-6571.	2.3	10 0 0 6 0 1
2160 2161 2162 2163 2164 2165 2166	Review on the Selection of Aptamers and Application in Paper-Based Sensors. Biosensors, 2023, 13, 39.Real Time Paper Based Detection of Streptococcus bovis using Chromogenic Substrate in Resource Constrained Environments., 0,, 171-175.Green Instrumental Analysis., 2019,, 168-222.A smart paper-based electrochemical sensor for reliable detection of iron ions in serum. Analytical and Bioanalytical Chemistry, 2023, 415, 1149-1157.Microfluidic-Integrated Biosensors., 2023,, 21-42.Microfluidic and small-scale planar separation systems., 2023,, 395-409.Enhancing Protein Adsorption for Improved Lateral Flow Assay on Cellulose Paper by Depleting Inert Additive Films Using Reactive Plasma. ACS Applied Materials & amp; Interfaces, 2023, 15, 6561-6571.Passive monitoring by smart toilets for precision health. Science Translational Medicine, 2023, 15, .	2.3 1.9 4.0 5.8	10 0 0 6 0 1 3 10

#	Article	IF	CITATIONS
2169	Enhanced Chemiluminescence of a Superior Luminol Derivative Provides Sensitive Smartphoneâ€Based Pointâ€ofâ€Care Testing with Enzymatic μPAD. Analysis & Sensing, 2023, 3, .	1.1	0
2170	Integrated smart analytics of nucleic acid amplification tests via paper microfluidics and deep learning in cloud computing. Biomedical Signal Processing and Control, 2023, 83, 104721.	3.5	4
2171	Enzyme-based color bar-style lateral flow strip for equipment-free and semi-quantitative determination of urinary oxalate. Sensors and Actuators B: Chemical, 2023, 385, 133699.	4.0	3
2172	Microfluidic-based blood immunoassays. Journal of Pharmaceutical and Biomedical Analysis, 2023, 228, 115313.	1.4	2
2173	Cellular aggregation dictates universal spreading behaviour of a whole-blood drop on a paper strip. Journal of Colloid and Interface Science, 2023, 640, 309-319.	5.0	5
2174	Paper microfluidics with deep learning for portable intelligent nucleic acid amplification tests. Talanta, 2023, 258, 124470.	2.9	3
2175	Controlling the advancement of the liquid front of the nitrocellulose membrane assay under the influence of the centrifugal force on the Lab-on-a-Disc platform. Sensors and Actuators B: Chemical, 2023, 386, 133735.	4.0	0
2176	Facile Microembossing Process for Microchannel Fabrication for Nanocellulose-Paper-Based Microfluidics. ACS Applied Materials & Interfaces, 2023, 15, 6420-6430.	4.0	3
2177	Microfluidic in-vitro fertilization technologies: Transforming the future of human reproduction. TrAC - Trends in Analytical Chemistry, 2023, 160, 116959.	5.8	5
2178	Iron Determination in Natural Waters Using a Synthesised 3-Hydroxy-4-Pyridione Ligand in a Newly Developed Microfluidic Paper-Based Device. Chemosensors, 2023, 11, 101.	1.8	3
2179	Fluorine-Labeled <i>N</i> -Boc- <scp></scp> -proline as a Marker for Solid-State NMR Characterization of Biofunctionalizations on Paper Substrates. Journal of Physical Chemistry C, 2023, 127, 3570-3578.	1.5	2
2180	Capillary electrophoresis as a simple and low-cost analytical tool for use in money-constrained situations. TrAC - Trends in Analytical Chemistry, 2023, 160, 116992.	5.8	6
2181	Paper-based microfluidics in sweat detection: from design to application. Analyst, The, 2023, 148, 1175-1188.	1.7	3
2182	Printed colorimetric chemosensor array on a 96-microwell paper substrate for metal ions in river water. Frontiers in Chemistry, 0, 11, .	1.8	2
2183	Development of a New Lab-on-Paper Microfluidics Platform Using Bi-Material Cantilever Actuators for ELISA on Paper. Biosensors, 2023, 13, 310.	2.3	4
2184	The air-gap PAD: a roll-to-roll-compatible fabrication method for paper microfluidics. Lab on A Chip, 2023, 23, 1918-1925.	3.1	1
2185	Paper-Based Humidity Sensors as Promising Flexible Devices: State of the Art: Part 1. General Consideration. Nanomaterials, 2023, 13, 1110.	1.9	5
2186	Biosecurity: Current and Future Strategies. , 2023, , 430-461.		2

#	Article	IF	CITATIONS
2187	Low-Cost Microfluidic Systems for Detection of Neglected Tropical Diseases. Annual Review of Analytical Chemistry, 2023, 16, 117-138.	2.8	1
2188	Demonstrating Waxpaper Plus: Sequentially and Conditionally Programmable Morphing Wax Fabrics. , 2023, , .		0
2189	Design and Synthesis of a Novel ICT Bichromophoric pH Sensing System Based on 1,8-Naphthalimide Fluorophores as a Two-Input Logic Gate and Its Antibacterial Evaluation. Molecules, 2023, 28, 3631.	1.7	2
2191	Laser patterned nitrocellulose-based microfluidic devices: Applications in fluid manipulation and immunoassay. Sensors and Actuators B: Chemical, 2023, 389, 133867.	4.0	1
2192	Microfluidic systems for neural tissue engineering. , 2023, , 125-149.		0
2195	Disposable paper-based sensors. , 2023, , 803-860.		1
2198	Analysis of fluid transport on porous material for flexible microfluidic device applications. AIP Conference Proceedings, 2023, , .	0.3	0
2202	Exploring the Frontiers of Microfluidics. Advances in Mechatronics and Mechanical Engineering, 2023, , 11-31.	1.0	0
2203	Nanosensor-Enabled Microfluidic Biosensors for the Detection of Pathogenic Bacteria. , 2023, , 85-111.		1
2221	Flexible Nanobiosensors in Biomolecular Detection and Point of Care Testing. , 2023, , 175-198.		0
2222	Nanopapers-Based Biosensors for Point-of-Care Diagnostics. , 2023, , 383-411.		0
2232	Lateral flow assay for early diagnosis of neurodegenerative disorder. , 2024, , 81-98.		0
2240	Microfluidics: a concise review of the history, principles, design, applications, and future outlook. Biomaterials Science, 2024, 12, 218-251.	2.6	2
2255	Low-Cost Paper-Based Analytical Devices and Their Application in Healthcare System. , 2023, , 273-292.		0
2257	Design of supramolecular chemosensor arrays and their applications to optical chips. , 2024, , 561-586.		0
2263	Microfluidic systems for infectious disease diagnostics. Lab on A Chip, 2024, 24, 1441-1493.	3.1	0
2266	Advances in Luminescence-Based Biosensing with Quantum Dots. Advanced Structured Materials, 2024, , 469-489.	0.3	0