A Comprehensive Review of Glucose Biosensors Based of

Sensors

10, 4855-4886

DOI: 10.3390/s100504855

Citation Report

#	Article	IF	CITATIONS
1	Design of a test suite for NCAP-to-NCAP communication based on IEEE 1451., 2008, , .		5
2	HPM Sources: The DoD Perspective. , 2009, , .		4
3	Non-Enzymatic Glucose and Cholesterol Biosensors Based on Silica Coated Nano Iron Oxide Dispersed Multiwalled Carbon Nanotubes. , $2011, \ldots$		6
4	Solid-State Nanostructured Materials from Self-Assembly of a Globular Protein–Polymer Diblock Copolymer. ACS Nano, 2011, 5, 5697-5707.	14.6	88
5	Nanostructured metal oxide-based biosensors. NPG Asia Materials, 2011, 3, 17-24.	7.9	612
6	Enzyme-Polymers Conjugated to Quantum-Dots for Sensing Applications. Sensors, 2011, 11, 9951-9972.	3.8	36
7	Advances in Electronic-Nose Technologies Developed for Biomedical Applications. Sensors, 2011, 11, 1105-1176.	3.8	315
8	Preparation and characterization of bismuth oxide nanoparticles-multiwalled carbon nanotube composite for the development of horseradish peroxidase based H2O2 biosensor. Talanta, 2011, 87, 15-23.	5.5	68
9	Metal Oxides and Their Composites for the Photoelectrode of Dye Sensitized Solar Cells. , 0 , , .		9
10	Enzyme and Cofactor Engineering: Current Trends and Future Prospects in the Pharmaceutical and Fermentation Industries., 2011,, 221-244.		3
11	ZnO nanoparticle and multiwalled carbon nanotubes for glucose oxidase direct electron transfer and electrocatalytic activity investigation. Journal of Molecular Catalysis B: Enzymatic, 2011, 72, 298-304.	1.8	54
12	Quantitative measurement of Au and Fe in ferromagnetic nanoparticles with Laser Induced Breakdown Spectroscopy using a polymer-based gel matrix. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2011, 66, 726-732.	2.9	11
13	Mediatorless bioelectrocatalysis of dioxygen reduction at indium-doped tin oxide (ITO) and ITO nanoparticulate film electrodes. Electrochimica Acta, 2011, 56, 8739-8745.	5.2	16
14	A low cost universal photoelectrochemical detector for organic compounds based on photoelectrocatalytic oxidation at a nanostructured TiO2 photoanode. Journal of Electroanalytical Chemistry, 2011, 656, 211-217.	3.8	15
15	Electrochemical detection of dioxygen and hydrogen peroxide by hemin immobilized on chemically converted graphene. Journal of Electroanalytical Chemistry, 2011, 657, 34-38.	3.8	52
16	Electrochemical albumin sensing based on silicon nanowires modified by gold nanoparticles. Applied Surface Science, 2011, 257, 4650-4654.	6.1	20
17	A silicon nanoparticle-based polymeric nano-composite material for glucose sensing. Journal of Electroanalytical Chemistry, 2011, 657, 172-175.	3.8	17
18	Cu@C composite nanotube array and its application as an enzyme-free glucose sensor. Nanotechnology, 2011, 22, 375303.	2.6	8

#	Article	IF	Citations
19	Design of nanostructured-based glucose biosensors. , 2012, , .		0
20	Preparation and application of copper hydroxide (oxide) / multiwalled carbon nanotubes nanocomposite-modified glassy carbon electrode as a nitrite sensor. Canadian Journal of Chemistry, 2012, 90, 517-525.	1.1	2
21	Printed thick-film biosensors. , 2012, , 366-409.		12
22	Opportunities in nano-structured metal oxides based biosensors. Journal of Physics: Conference Series, 2012, 358, 012007.	0.4	12
23	Glucose biosensor based on the immobilization of glucose oxidase on electrochemically synthesized polypyrrole-poly(vinyl sulphonate) composite film by cross-linking with glutaraldehyde. Artificial Cells, Blood Substitutes, and Biotechnology, 2012, 40, 354-361.	0.9	18
25	Simultaneous Determination of Ranitidine and Metronidazole at Poly(thionine) Modified Anodized Glassy Carbon Electrode. Journal of Electrochemical Science and Technology, 2012, 3, 90-94.	2.2	12
26	Improvement of Amperometric Biosensor Performance for $H \cdot Sub \cdot C \cdot Sub \cdot Su$	2.4	31
27	3D Graphene Foam as a Monolithic and Macroporous Carbon Electrode for Electrochemical Sensing. ACS Applied Materials & Samp; Interfaces, 2012, 4, 3129-3133.	8.0	292
28	Fluorescent nanohybrids: quantum dots coupled to polymer recombinant protein conjugates for the recognition of biological hazards. Journal of Materials Chemistry, 2012, 22, 9006.	6.7	31
29	Functionalization of silver nanowire surfaces with copper oxide for surface-enhanced Raman spectroscopic bio-sensing. Journal of Materials Chemistry, 2012, 22, 15495.	6.7	33
30	Electrochemical synthesis of NiFe2O4 nanoparticles: Characterization and their catalytic applications. Journal of Alloys and Compounds, 2012, 536, S241-S244.	5 . 5	52
31	Nanopatterned Protein Films Directed by Ionic Complexation with Water-Soluble Diblock Copolymers. Macromolecules, 2012, 45, 4572-4580.	4.8	36
32	Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers. Sensors and Actuators B: Chemical, 2012, 171-172, 580-587.	7.8	234
33	Surface chemical functionalisation of epoxy photoresist-based microcantilevers with organic-coated TiO2 nanocrystals. Micro and Nano Letters, 2012, 7, 337.	1.3	0
34	A glucose biosensor based on TiO2–Graphene composite. Biosensors and Bioelectronics, 2012, 38, 184-188.	10.1	197
35	Bio-electrocatalysis of Acetobacter aceti through direct electron transfer using a template deposited nickel anode. Catalysis Science and Technology, 2012, 2, 1234.	4.1	10
36	Metal–organic framework templated synthesis of Co3O4 nanoparticles for direct glucose and H2O2 detection. Analyst, The, 2012, 137, 5803.	3.5	161
37	Poly(lactic acid)/Carbon Nanotube Fibers as Novel Platforms for Glucose Biosensors. Biosensors, 2012, 2, 70-82.	4.7	41

#	ARTICLE	IF	CITATIONS
38	Ion-Exchange Route to Au–Cu _{<i>x</i>} OS Yolk–Shell Nanostructures with Porous Shells and Their Ultrasensitive H ₂ O ₂ Detection. ACS Applied Materials & amp; Interfaces, 2012, 4, 6463-6467.	8.0	53
39	Materials for Diabetes Therapeutics. Advanced Healthcare Materials, 2012, 1, 267-284.	7.6	130
40	Metal Oxides Monoâ€Dimensional Nanostructures for Gas Sensing and Light Emission. Journal of the American Ceramic Society, 2012, 95, 831-850.	3.8	11
41	CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor. Electrochemistry Communications, 2012, 20, 128-132.	4.7	146
42	DNA-dispersed graphene/NiO hybrid materials for highly sensitive non-enzymatic glucose sensor. Electrochimica Acta, 2012, 73, 129-135.	5.2	96
43	Investigation of DNA damage treated with perfluorooctane sulfonate (PFOS) on ZrO2/DDAB active nano-order film. Biosensors and Bioelectronics, 2012, 35, 180-185.	10.1	24
44	Facile synthesis of nanospindle-like Cu2O/straight multi-walled carbon nanotube hybrid nanostructures and their application in enzyme-free glucose sensing. Sensors and Actuators B: Chemical, 2012, 168, 1-7.	7.8	82
45	A surfactant-free strategy for controllable growth of hierarchical copper oxide nanostructures. CrystEngComm, 2013, 15, 5275.	2.6	27
46	A high-performance glucose biosensor using covalently immobilised glucose oxidase on a poly(2,6-diaminopyridine)/carbon nanotube electrode. Talanta, 2013, 116, 801-808.	5 . 5	36
47	Hierarchical CuO nanoflowers: water-required synthesis and their application in a nonenzymatic glucose biosensor. Physical Chemistry Chemical Physics, 2013, 15, 10904.	2.8	125
48	Applications of antibiofouling PEG-coating in electrochemical biosensors for determination of glucose in whole blood. Electrochimica Acta, 2013, 89, 549-554.	5.2	45
49	Electrochemical biosensors on platforms of graphene. Chemical Communications, 2013, 49, 9526.	4.1	152
50	Mango core inner shell membrane template-directed synthesis of porous ZnO films and their application for enzymatic glucose biosensor. Applied Surface Science, 2013, 285, 344-349.	6.1	18
51	Ultrasensitive electrochemical immunoassay for carcinoembryonic antigen based on three-dimensional macroporous gold nanoparticles/graphene composite platform and multienzyme functionalized nanoporous silver label. Analytica Chimica Acta, 2013, 775, 85-92.	5.4	65
52	Fabrication and characterization of enzymatic glucose sensor based on ZnO nanoparticles., 2013,,.		0
53	Chemical functionalization of surfaces for building three-dimensional engineered biosensors. Applied Surface Science, 2013, 275, 347-360.	6.1	80
54	Theoretical insight of polypyrrole ammonia gas sensor. Synthetic Metals, 2013, 172, 14-20.	3.9	105
55	Development of Anodic Titania Nanotubes for Application in High Sensitivity Amperometric Glucose and Uric Acid Biosensors. Sensors, 2013, 13, 14161-14174.	3.8	15

#	Article	IF	CITATIONS
56	Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose. Materials Science in Semiconductor Processing, 2013, 16, 1747-1752.	4.0	489
57	An aptasensor for sensitive detection of human breast cancer cells by using porous GO/Au composites and porous PtFe alloy as effective sensing platform and signal amplification labels. Analytica Chimica Acta, 2013, 798, 33-39.	5.4	94
58	Opening windows on new biology and disease mechanisms: development of real-time in vivo sensors. Interface Focus, 2013, 3, 20130014.	3.0	8
59	Electrochemical biosensors for glucose based on metal nanoparticles. TrAC - Trends in Analytical Chemistry, 2013, 42, 216-227.	11.4	146
60	Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose. Nanoscale, 2013, 5, 2089.	5.6	167
61	Porous silicon biosensor: Current status. Biosensors and Bioelectronics, 2013, 41, 54-64.	10.1	180
63	Electrochemical Biosensors Based on ZnO Nanostructures to Measure Intracellular Metal Ions and Glucose. Journal of Analytical & Bioanalytical Techniques, 2013, S7, .	0.6	4
64	Recent advances in electrochemical glucose biosensors: a review. RSC Advances, 2013, 3, 4473.	3.6	683
65	Nonenzymatic biosensor based on CuxO nanoparticles deposited on polypyrrole nanowires for improving detectionrange. Biosensors and Bioelectronics, 2013, 42, 141-147.	10.1	130
66	Improvement of sensitive Ni(OH)2 nonenzymatic glucose sensor based on carbon nanotube/polyimide membrane. Carbon, 2013, 63, 367-375.	10.3	80
67	Cellobiose dehydrogenase modified electrodes: advances by materials science and biochemical engineering. Analytical and Bioanalytical Chemistry, 2013, 405, 3637-3658.	3.7	107
68	An enzyme–metal–insulator–silicon structured sensor using surface photovoltage technology for potentiometric glucose detection. Sensors and Actuators B: Chemical, 2013, 187, 147-152.	7.8	6
69	Facile Water-Assisted Synthesis of Cupric Oxide Nanourchins and Their Application as Nonenzymatic Glucose Biosensor. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4429-4437.	8.0	117
70	Nonenzymatic glucose sensing at ruthenium dioxide–poly(vinyl chloride)–Nafion composite electrode. Journal of Solid State Electrochemistry, 2013, 17, 937-947.	2.5	12
71	Bonding of Histidine to Cerium Oxide. Journal of Physical Chemistry B, 2013, 117, 9182-9193.	2.6	29
72	A Facile Synthesis of Granular ZnO Nanostructures for Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2013, 2013, 1-6.	2.5	5
73	Biomedical Detection via Macro- and Nano-Sensors Fabricated with Metallic and Semiconducting Oxides. Journal of Biomedical Nanotechnology, 2013, 9, 1-25.	1.1	93
74	Direct Electrochemical Tyrosinase Biosensor based on Mesoporous Carbon and $Co < sub > 3 < / sub > O < sub > 4 < / sub > Nanorods for the Rapid Detection of Phenolic Pollutants. ChemElectroChem, 2014, 1, 808-816.$	3.4	21

#	Article	IF	CITATIONS
75	Aqueous electrolyte-gated ZnO transistors for environmental and biological sensing. Journal of Materials Chemistry C, 2014, 2, 10277-10281.	5 . 5	22
76	LIGHT-SENSITIVE SILICON NANOWIRE ARRAY FIELD EFFECT TRANSISTOR FOR GLUCOSE DETECTION. Nano, 2014, 09, 1450099.	1.0	7
77	Functional Materials in Amperometric Sensing. Monographs in Electrochemistry, 2014, , .	0.2	15
78	Electrochemical Glucose Sensors. , 2014, , 479-485.		4
79	A Rapid Anodic Fabrication of Nanoporous Gold in NH4Cl Solution for Nonenzymatic Glucose Detection. Journal of the Electrochemical Society, 2014, 161, H802-H808.	2.9	9
80	A Highly Sensitive and Selective Enzymatic Biosensor Based on Direct Electrochemistry of Hemoglobin at Zinc Oxide Nanoparticles Modified Activated Screen Printed Carbon Electrode. Electroanalysis, 2014, 26, 1984-1993.	2.9	24
81	Hierarchical Cu4V2.15O9.38 superstructures assembled by single-crystalline rods: its synthesis, characteristics and electrochemical properties. RSC Advances, 0 , , .	3.6	1
82	Nanosized Materials in Amperometric Sensors. Nanostructure Science and Technology, 2014, , 497-527.	0.1	O
83	Trends in Nanomaterial-Based Non-Invasive Diabetes Sensing Technologies. Diagnostics, 2014, 4, 27-46.	2.6	150
84	Novel ultrasensitive non-enzymatic glucose sensors based on controlled flower-like CuO hierarchical films. Sensors and Actuators B: Chemical, 2014, 199, 175-182.	7.8	118
85	Cathodic deposition of binary nickel-cobalt hydroxide for non-enzymatic glucose sensing. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 846-851.	5.3	51
86	A nanoceria–platinum–graphene nanocomposite for electrochemical biosensing. Biosensors and Bioelectronics, 2014, 58, 179-185.	10.1	49
87	Amperometric hydrogen peroxide and cholesterol biosensors designed by using hierarchical curtailed silver flowers functionalized graphene and enzymes deposits. Journal of Solid State Electrochemistry, 2014, 18, 685-701.	2.5	28
88	Sacrificial template synthesis of high surface area metal oxides. Example: An excellent structured Fenton-like catalyst. Applied Catalysis B: Environmental, 2014, 152-153, 51-58.	20.2	23
89	Novel helical TiO2 nanotube arrays modified by Cu2O for enzyme-free glucose oxidation. Biosensors and Bioelectronics, 2014, 59, 243-250.	10.1	96
90	Synthesis of ZnO micro-pompons by soft template-directed wet chemical method and their application in electrochemical biosensors. Electrochimica Acta, 2014, 115, 277-282.	5.2	17
91	Development of electrochemical biosensor with ceria–PANI core–shell nano-interface for the detection of histamine. Sensors and Actuators B: Chemical, 2014, 199, 330-338.	7.8	84
92	Electroanalysis at the Nanoscale. Annual Review of Analytical Chemistry, 2014, 7, 163-181.	5.4	30

#	Article	IF	CITATIONS
93	Highly Stable and Selective Non-Enzymatic Glucose Biosensor Using Carbon Nanotubes Decorated by Fe3O4Nanoparticles. Journal of the Electrochemical Society, 2014, 161, B19-B25.	2.9	42
94	A review of recent advances in nonenzymatic glucose sensors. Materials Science and Engineering C, 2014, 41, 100-118.	7.3	469
95	CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Progress in Materials Science, 2014, 60, 208-337.	32.8	1,086
96	Electrochemical application of titanium dioxide nanoparticle/gold nanoparticle/multiwalled carbon nanotube nanocomposites for nonenzymatic detection of ascorbic acid. Journal of Solid State Electrochemistry, 2014, 18, 477-485.	2.5	18
97	A gold@silica core–shell nanoparticle-based surface-enhanced Raman scattering biosensor for label-free glucose detection. Analytica Chimica Acta, 2014, 811, 76-80.	5.4	85
98	Oxide Nanomaterials and their Applications as a Memristor. Solid State Phenomena, 0, 222, 67-97.	0.3	24
99	Precise micromolar-level glucose determination using a glucose test strip for quick and approximate millimolar-level estimation. Analytical Methods, 2014, 6, 9509-9513.	2.7	5
100	Pectin coated polyaniline nanoparticles for an amperometric glucose biosensor. RSC Advances, 2014, 4, 40917-40923.	3.6	42
101	An enhanced direct electrochemistry of glucose oxidase at poly(taurine) modified glassy carbon electrode for glucose biosensor. Analytical Methods, 2014, 6, 9053-9058.	2.7	23
102	A Review of Glucose Biosensors Based on Graphene/Metal Oxide Nanomaterials. Analytical Letters, 2014, 47, 1821-1834.	1.8	53
103	Nanostructured conducting polymers for electrochemical sensing and biosensing., 2014,, 150-194.		2
104	Simple fabrication of ZnO/Pt/chitosan electrode for enzymatic glucose biosensor. Sensors and Actuators B: Chemical, 2014, 202, 827-833.	7.8	69
105	Nitrogenâ€Doped Carbon–Copper Nanohybrids as Electrocatalysts in H ₂ O ₂ and Glucose Sensing. ChemElectroChem, 2014, 1, 799-807.	3.4	36
106	Simultaneous determination of ascorbic acid, uric acid and glucose using glassy carbon electrode modified by nickel nanoparticles at poly 1, 8-diaminonaphthalene in basic medium. Journal of Electroanalytical Chemistry, 2014, 728, 123-129.	3.8	25
107	A novel reduction approach to fabricate quantum-sized SnO2-conjugated reduced graphene oxide nanocomposites as non-enzymatic glucose sensors. Physical Chemistry Chemical Physics, 2014, 16, 8801.	2.8	61
108	Direct electrochemistry of glucose oxidase and sensing glucose using a screen-printed carbon electrode modified with graphite nanosheets and zinc oxide nanoparticles. Mikrochimica Acta, 2014, 1843-1850.	5.0	48
109	Biosensors based on zinc oxide. Nanotechnologies in Russia, 2014, 9, 99-115.	0.7	7
110	Porous gold cluster film prepared from Au@BSA microspheres for electrochemical nonenzymatic glucose sensor. Electrochimica Acta, 2014, 138, 109-114.	5.2	82

#	Article	IF	Citations
111	Liquid Crystal-Based Proton Sensitive Glucose Biosensor. Analytical Chemistry, 2014, 86, 1493-1501.	6.5	84
112	Semiconducting properties of ZnO/TiO2 composites by electrochemical measurements and their relationship with photocatalytic activity. Electrochimica Acta, 2014, 140, 541-549.	5 . 2	95
113	Structure and valence properties of ceria films synthesized by laser ablation under reducing atmosphere. Materials Research Express, 2014, 1, 015704.	1.6	22
114	Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite. Materials Science and Engineering C, 2014, 34, 207-213.	7.3	86
115	Zinc oxide ion-sensitive field-effect transistors and biosensors. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2098-2104.	1.8	25
116	Bioactive Surface Design Based on Functional Composite Electrospun Nanofibers for Biomolecule Immobilization and Biosensor Applications. ACS Applied Materials & Emp; Interfaces, 2014, 6, 5235-5243.	8.0	68
117	A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly(thionine) film. Sensors and Actuators B: Chemical, 2014, 202, 536-542.	7.8	84
118	Controllable fabrication of CuO nanostructure by hydrothermal method and its properties. Applied Surface Science, 2014, 311, 602-608.	6.1	149
119	Metallic Nanoparticle– and Metal Oxide Nanoparticle–Based Electrodes. , 2014, , 243-275.		1
120	Pulse Laser Deposition Fabricating Gold Nanoclusters on a Glassy Carbon Surface for Nonenzymatic Glucose Sensing. Analytical Sciences, 2015, 31, 609-616.	1.6	6
121	- Amperometric Enzyme Electrodes. , 2015, , 108-139.		108
122	Film thickness dependence of glucose response for spin-coated zinc oxide-based non-enzymatic glucose sensor., 2015,,.		O
123	Multiple Silicon Nanowires with Enzymatic Modification for Measuring Glucose Concentration. Micromachines, 2015, 6, 1135-1142.	2.9	10
124	Rapid and Sensitive Detection of Lung Cancer Biomarker Using Nanoporous Biosensor Based on Localized Surface Plasmon Resonance Coupled with Interferometry. Journal of Nanomaterials, 2015, 2015, 1-11.	2.7	10
125	Chlortoluron-induced enzymatic activity inhibition in tyrosinase/ZnO NPs/SPCE biosensor for the detection of ppb levels of herbicide. Sensors and Actuators B: Chemical, 2015, 219, 171-178.	7.8	47
126	Hierarchical cupric oxide nanostructures on copper substrate for cold cathode emission: an experimental venture with theoretical correlation. Dalton Transactions, 2015, 44, 6098-6106.	3.3	5
127	Nanoporous copper oxide ribbon assembly of free-standing nanoneedles as biosensors for glucose. Analyst, The, 2015, 140, 5205-5215.	3.5	49
128	A Facile One-step Electrochemical Synthesis of Nickel Nanoparticle/Graphene Composites for Non-enzymatic Biosensor Applications. , 2015, 11, 142-146.		5

#	Article	IF	Citations
129	(Invited) Nanotechnology for Biosensing Applications. ECS Transactions, 2015, 66, 9-21.	0.5	0
130	Heteroatom-enriched porous carbon/nickel oxide nanocomposites as enzyme-free highly sensitive sensors for detection of glucose. Sensors and Actuators B: Chemical, 2015, 221, 1384-1390.	7.8	60
131	Obtaining a Well-Aligned ZnO Nanotube Array Using the Hydrothermal Growth Method / Labi SakÄrtotu Zno NanocauruĽu Kopu legÅ«Åjana, Izmantojot HidrotermÄlo Metodi. Latvian Journal of Physics and Technical Sciences, 2015, 52, 28-40.	0.6	10
132	Graphene–gold nanoparticle composite: Application as a good scaffold for construction of glucose oxidase biosensor. Materials Science and Engineering C, 2015, 49, 297-304.	7.3	41
133	Synthesis of ZnO–CuO porous core–shell spheres and their application for non-enzymatic glucose sensor. Applied Physics A: Materials Science and Processing, 2015, 118, 989-996.	2.3	37
134	Liquid crystal-based glucose biosensor functionalized with mixed PAA and QP4VP brushes. Biosensors and Bioelectronics, 2015, 68, 404-412.	10.1	37
135	An outstandingly sensitive enzyme-free glucose sensor prepared by co-deposition of nano-sized cupric oxide and multi-walled carbon nanotubes on glassy carbon electrode. Biochemical Engineering Journal, 2015, 97, 81-91.	3.6	20
136	One-Step Thermal-Treatment Route to Fabricate Well-Dispersed ZnO Nanocrystals on Nitrogen-Doped Graphene for Enhanced Electrochemiluminescence and Ultrasensitive Detection of Pentachlorophenol. ACS Applied Materials & Detection of Rentachlorophenol. ACS Applied Materials & Detection of Rentachlorophenol.	8.0	110
137	Synthesis and electrocatalytic properties of manganese dioxide for non-enzymatic hydrogen peroxide sensing. Materials Science in Semiconductor Processing, 2015, 31, 709-714.	4.0	28
138	Nanoporous CuO layer modified Cu electrode for high performance enzymatic and non-enzymatic glucose sensing. Nanotechnology, 2015, 26, 015503.	2.6	32
139	Non-enzymatic electronic detection of glucose using aminophenylboronic acid functionalized reduced graphene oxide. Sensors and Actuators B: Chemical, 2015, 221, 1209-1214.	7.8	21
140	Interaction of titanium dioxide nanoparticles with glucose on young rats after oral administration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1633-1642.	3.3	46
141	Highly Active Biocatalytic Coatings from Protein–Polymer Diblock Copolymers. ACS Applied Materials & Lamp; Interfaces, 2015, 7, 14660-14669.	8.0	35
142	CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing. Nanotechnology, 2015, 26, 305503.	2.6	50
143	Controllable fabrication of nanowire-like CuO film by anodization and its properties. Applied Surface Science, 2015, 349, 636-643.	6.1	33
144	Selective detection of l-tyrosine in the presence of ascorbic acid, dopamine, and uric acid at poly(thionine)-modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 2015, 754, 87-93.	3.8	47
145	Molecular and Electronic Structure Elucidation of Polypyrrole Gas Sensors. Journal of Physical Chemistry C, 2015, 119, 15994-16003.	3.1	94
146	Nanoporous cobalt oxide nanowires for non-enzymatic electrochemical glucose detection. Sensors and Actuators B: Chemical, 2015, 220, 888-894.	7.8	104

#	Article	IF	CITATIONS
147	Fluorescent chemosensors of carbohydrate triols exhibiting TICT emissions. Chemical Communications, 2015, 51, 12641-12644.	4.1	31
148	Label-Free Detection of DNA Hybridization by Using Charge Perturbation on Poly(thionine)-Modified Glassy Carbon and Gold Electrodes. Journal of the Electrochemical Society, 2015, 162, B159-B162.	2.9	22
149	The advantages of disposable screen-printed biosensors in a bioelectronic tongue for the analysis of grapes. LWT - Food Science and Technology, 2015, 62, 940-947.	5.2	36
150	A novel ultrasensitive phosphate amperometric nanobiosensor based on the integration of pyruvate oxidase with highly ordered gold nanowires array. Biosensors and Bioelectronics, 2015, 71, 278-285.	10.1	19
151	Coâ€"Cu alloy nanoparticles decorated TiO2 nanotube arrays for highly sensitive and selective nonenzymatic sensing of glucose. Sensors and Actuators B: Chemical, 2015, 215, 337-344.	7.8	56
152	Metal Oxide Nanoparticles in Electroanalysis. Electroanalysis, 2015, 27, 2074-2090.	2.9	29
153	Electrochemical DNA Hybridization Sensors Based on Conducting Polymers. Sensors, 2015, 15, 3801-3829.	3.8	72
154	Habit-modifying additives and their morphological consequences on photoluminescence and glucose sensing properties of ZnO nanostructures, grown via aqueous chemical synthesis. Vacuum, 2015, 116, 21-26.	3.5	22
155	Electrocatalytic oxidation of ascorbic acid, uric acid, and glucose at nickel nanoparticles/poly (1-amino-2-methyl-9,10-anthraquinone) modified electrode in basic medium. Journal of Applied Electrochemistry, 2015, 45, 567-575.	2.9	12
156	Electrochemical deposition of silver/silver oxide on reduced graphene oxide for glucose sensing. Journal of Solid State Electrochemistry, 2015, 19, 2255-2263.	2.5	33
157	Paper membrane-based SERS platform for the determination of glucose in blood samples. Analytical and Bioanalytical Chemistry, 2015, 407, 8243-8251.	3.7	73
158	A Review of High-κ Material for Biosensor Application. Advanced Materials Research, 0, 1109, 123-127.	0.3	0
159	A universal channel model for molecular communication systems with metal-oxide detectors., 2015,,.		14
160	Functionalization of nanostructured cerium oxide films with histidine. Physical Chemistry Chemical Physics, 2015, 17, 2770-2777.	2.8	8
161	The Solvothermal Synthesized La-Doped ZnO Nanorods Modified Electrochemical Sensor for the Determination of Bisphenol A. Journal of the Electrochemical Society, 2015, 162, B298-B303.	2.9	4
162	Unraveling the charge transfer/electron transport in mesoporous semiconductive TiO ₂ films by voltabsorptometry. Physical Chemistry Chemical Physics, 2015, 17, 10592-10607.	2.8	21
163	A sensitive hydrogen peroxide sensor based on a three-dimensional N-doped carbon nanotube-hemin modified electrode. Analytical Methods, 2015, 7, 8439-8444.	2.7	18
164	Electrocatalytic oxidation of carbohydrates and dopamine in alkaline and neutral medium using CuO nanoplatelets. Journal of Electroanalytical Chemistry, 2015, 739, 1-9.	3.8	19

#	Article	IF	CITATIONS
165	New ZnO nanostructures as non-enzymatic glucose biosensors. Biosensors and Bioelectronics, 2015, 67, 601-607.	10.1	70
166	Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode. Materials Science and Engineering C, 2015, 46, 548-552.	7.3	82
167	Enzyme biosensor systems based on porous silicon photoluminescence for detection of glucose, urea and heavy metals. Biosensors and Bioelectronics, 2015, 66, 89-94.	10.1	102
168	Highly selective and sensitive glucose sensors based on organic electrochemical transistors using TiO2 nanotube arrays-based gate electrodes. Sensors and Actuators B: Chemical, 2015, 208, 457-463.	7.8	69
169	Immobilization of glucose oxidase on modified electrodes with composite layers based on poly(3,4-ethylenedioxythiophene). Bioelectrochemistry, 2015, 101, 8-13.	4.6	23
170	Self-assembled vertically aligned gold nanorod superlattices for ultra-high sensitive detection of molecules. Nano Research, 2015, 8, 907-919.	10.4	28
172	Non-Enzymatic Glucose Biosensor Based on CuO-Decorated CeO2 Nanoparticles. Nanomaterials, 2016, 6, 159.	4.1	37
173	Electrochemical Study and Characterization of an Amperometric Biosensor Based on the Immobilization of Laccase in a Nanostructure of TiO2 Synthesized by the Sol-Gel Method. Materials, 2016, 9, 543.	2.9	30
174	Recognizing Physisorption and Chemisorption in Carbon Nanotubes Gas Sensors by Double Exponential Fitting of the Response. Sensors, 2016, 16, 731.	3.8	28
175	Printable Electrochemical Biosensors: A Focus on Screen-Printed Electrodes and Their Application. Sensors, 2016, 16, 1761.	3.8	135
176	Polyaniline/Cerium Oxide Hybrid Modified Carbon Paste Electrode for Nonâ€Enzymatic Glucose Detection. Bulletin of the Korean Chemical Society, 2016, 37, 985-986.	1.9	8
177	Veteran cupric oxide with new morphology and modified bandgap for superior photocatalytic activity against different kinds of organic contaminants (acidic, azo and triphenylmethane dyes). Materials Research Bulletin, 2016, 83, 522-533.	5.2	24
178	Manifesting Subtle Differences of Neutral Hydrophilic Guest Isomers in a Molecular Container by Phase Transfer. Angewandte Chemie - International Edition, 2016, 55, 8249-8253.	13.8	18
179	Commercial Copper Foam as an Effective 3D Porous Electrode for Nonenzymatic Glucose Detection. Electroanalysis, 2016, 28, 2070-2074.	2.9	5
180	Manifesting Subtle Differences of Neutral Hydrophilic Guest Isomers in a Molecular Container by Phase Transfer. Angewandte Chemie, 2016, 128, 8389-8393.	2.0	1
181	6 Nanobiotechnology for Enzymatic Sensors. , 2016, , 161-182.		0
182	A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes. Scientific Reports, 2016, 6, 28588.	3.3	30
183	Enhanced photoluminescence and photocatalytic activity of ZnO-ZnWO4 nanocomposites synthesized by a precipitation method. Ceramics International, 2016, 42, 15160-15165.	4.8	54

#	Article	IF	CITATIONS
184	Photolithographically Patterned TiO ₂ Films for Electrolyte-Gated Transistors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 14855-14862.	8.0	15
185	Synthesis and characterization of CuO nanoparticles using strong base electrolyte through electrochemical discharge process. Bulletin of Materials Science, 2016, 39, 469-478.	1.7	56
186	A novel CuS microflower superstructure based sensitive and selective nonenzymatic glucose detection. Sensors and Actuators B: Chemical, 2016, 233, 93-99.	7.8	95
187	High Responsivity IR Photodetector Based on CuO Nanorod Arrays/AAO Assembly. Procedia Chemistry, 2016, 19, 311-318.	0.7	11
188	In situ synthesis of Ni(OH)2/TiO2 composite film on NiTi alloy for non-enzymatic glucose sensing. Sensors and Actuators B: Chemical, 2016, 232, 150-157.	7.8	80
189	Polymer-templated mesoporous hybrid oxides of Al and Cu: highly porous sorbents for ammonia. RSC Advances, 2016, 6, 38662-38670.	3.6	3
190	Advances in non-enzymatic glucose sensors based on metal oxides. Journal of Materials Chemistry B, 2016, 4, 7333-7349.	5.8	348
191	MWCNT Based Non-Enzymatic H2O2Sensor: Influence of Amine Functionalization on the Electrochemical H2O2Sensing. Journal of the Electrochemical Society, 2016, 163, B627-B632.	2.9	16
192	Electrochemical Determination of Glucose Using a Platinum–Palladium Nanoparticle Carbon Nanofiber Glassy Carbon Electrode. Analytical Letters, 2016, 49, 2741-2754.	1.8	9
193	Phase and Shape Dependent Non-enzymatic Glucose Sensing Properties of Nickel Molybdate. ChemistrySelect, 2016, 1, 5187-5195.	1.5	12
194	Newâ€Type Nickel Oxalate Nanostructures for Ultrahigh Sensitive Electrochemical Biosensing of Glucose. Advanced Materials Interfaces, 2016, 3, 1600197.	3.7	6
195	Simultaneous Cu doping and growth of TiO2 nanocrystalline array film as a glucose biosensor. RSC Advances, 2016, 6, 78219-78224.	3.6	4
196	Biomedical Applications of Functionalized ZnO Nanomaterials: from Biosensors to Bioimaging. Advanced Materials Interfaces, 2016, 3, 1500494.	3.7	138
197	Histidine adsorption on nanostructured cerium oxide. Journal of Electron Spectroscopy and Related Phenomena, 2016, 212, 28-33.	1.7	4
198	Design of a lithium niobate-on-insulator-based optical microring resonator for biosensing applications. Optical Engineering, 2016, 55, 087108.	1.0	14
199	Engineered IrO ₂ @NiO Core–Shell Nanowires for Sensitive Non-enzymatic Detection of Trace Glucose in Saliva. Analytical Chemistry, 2016, 88, 12346-12353.	6.5	94
200	Electrical Cableâ€based Copper Disk Electrodes as Oxidase Biosensor Platforms with Cathodic H ₂ O ₂ Readout. Electroanalysis, 2016, 28, 2408-2414.	2.9	3
201	A Study of Heterogeneous Catalysis by Nanoparticleâ€Embedded Paperâ€Spray Ionization Mass Spectrometry. Angewandte Chemie, 2016, 128, 12999-13003.	2.0	5

#	Article	IF	CITATIONS
202	A Study of Heterogeneous Catalysis by Nanoparticleâ€Embedded Paperâ€Spray Ionization Mass Spectrometry. Angewandte Chemie - International Edition, 2016, 55, 12807-12811.	13.8	47
203	Glucose biosensor based on functionalized ZnO nanowire/graphite films dispersed on a Pt electrode. Nanotechnology, 2016, 27, 425501.	2.6	23
204	Hierarchical Cu/Cu(OH) < sub > 2 < /sub > nanorod arrays grown on Cu foam as a high-performance 3D self-supported electrode for enzyme-free glucose sensing. RSC Advances, 2016, 6, 95740-95746.	3.6	19
205	Recent advances in electrospun metal-oxide nanofiber based interfaces for electrochemical biosensing. RSC Advances, 2016, 6, 94595-94616.	3.6	116
207	Electrocatalytic oxidation of Epinephrine and Norepinephrine at metal oxide doped phthalocyanine/MWCNT composite sensor. Scientific Reports, 2016, 6, 26938.	3.3	103
208	In-Vivo Validation of Fully Implantable Multi-Panel Devices for Remote Monitoring of Metabolism. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10, 955-962.	4.0	7
209	Electrochemical Glucose Sensing: Is There Still Room for Improvement?. Analytical Chemistry, 2016, 88, 11271-11282.	6.5	213
210	Ultrasensitive and low-volume point-of-care diagnostics on flexible strips – a study with cardiac troponin biomarkers. Scientific Reports, 2016, 6, 33423.	3.3	57
211	Facile synthesis of Ni(OH) ₂ nanoplates on nitrogen-doped carbon foam for nonenzymatic glucose sensors. Analytical Methods, 2016, 8, 8227-8233.	2.7	12
212	A Facile Chemical Synthesis of Cu ₂ O Nanocubes Covered with Co ₃ O ₄ Nanohexagons for the Sensitive Detection of Glucose. Electroanalysis, 2016, 28, 1547-1552.	2.9	16
213	Novel alkaline-reduced cuprous oxide/graphene nanocomposites for non-enzymatic amperometric glucose sensor application. Materials Science and Engineering C, 2016, 68, 465-473.	7.3	42
214	An electrochemical biosensor for rapid detection of E. coli O157:H7 with highly efficient bi-functional glucose oxidase-polydopamine nanocomposites and Prussian blue modified screen-printed interdigitated electrodes. Analyst, The, 2016, 141, 5441-5449.	3.5	75
215	Electrochemical Glucose Biosensors for Diabetes Care. Bioanalytical Reviews, 2016, , 1-101.	0.2	4
216	Nickel-oxide multiwall carbon-nanotube/reduced graphene oxide a ternary composite for enzyme-free glucose sensing. RSC Advances, 2016, 6, 62491-62500.	3.6	17
217	Preparing Co3O4 urchin-like hollow microspheres self-supporting architecture for improved glucose biosensing performance. Sensors and Actuators B: Chemical, 2016, 235, 162-169.	7.8	26
218	Facile and green synthesis of CuO nanoneedles with high photo catalytic activity. Journal of Materials Science: Materials in Electronics, 2016, 27, 9454-9460.	2.2	36
219	Electrochemical Fabrication of Cobalt Oxides/Nanoporous Gold Composite Electrode and its Nonenzymatic Glucose Sensing Performance. Electroanalysis, 2016, 28, 2149-2157.	2.9	14
220	A facile approach for the synthesis of copper(<scp>ii</scp>) myristate strips and their electrochemical activity towards the oxygen reduction reaction. RSC Advances, 2016, 6, 15599-15604.	3.6	6

#	Article	IF	Citations
221	Phase and composition selective superior cholesterol sensing performance of ZnO@ZnS nano-heterostructure and ZnS nanotubes. Sensors and Actuators B: Chemical, 2016, 229, 14-24.	7.8	21
222	Glucose oxidase immobilization platform based on ZnO nanowires supported by silicon nanowires for glucose biosensing. Microelectronic Engineering, 2016, 149, 153-158.	2.4	26
223	Recent developments in nanostructure based electrochemical glucose sensors. Talanta, 2016, 149, 30-42.	5.5	238
224	Single Walled Carbon Nanotube Sandwiched Ni-Ag Hybrid Nanoparticle Layers for the Extraordinary Electrocatalysis toward Glucose Oxidation. Electrochimica Acta, 2016, 188, 197-209.	5.2	30
225	Glucose sensing and low-threshold field emission from MnCo ₂ O ₄ nanosheets. RSC Advances, 2016, 6, 29734-29740.	3.6	25
226	Electrophoretic Deposition of Carbon Nanofibers/Co(OH) < sub > 2 < /sub > Nanocomposites: Application for Nonâ∈Enzymatic Glucose Sensing. Electroanalysis, 2016, 28, 119-125.	2.9	34
227	Glucose Sensors. , 2016, , 213-228.		1
228	A Comprehensive Survey of Recent Advancements in Molecular Communication. IEEE Communications Surveys and Tutorials, 2016, 18, 1887-1919.	39.4	681
229	Determination of Glucose in Food by the Ionic Liquid and Carbon Nanotubes Modified Dual-Enzymatic Sensors. Food Analytical Methods, 2016, 9, 2491-2500.	2.6	11
230	Direct glucose sensing and biocompatible properties of a zinc oxide – multiwalled carbon nanotube–poly(vinyl chloride) ternary composite. Analytical Methods, 2016, 8, 2691-2697.	2.7	16
231	Non-enzymatic amperometric sensing of glucose by employing sucrose templated microspheres of copper oxide (CuO). Dalton Transactions, 2016, 45, 5833-5840.	3.3	58
232	Nanomaterial based electrochemical sensors for in vitro detection of small molecule metabolites. Biotechnology Advances, 2016, 34, 234-249.	11.7	86
233	Nanobiosensors., 2016,, 299-312.		1
234	Label-Free DNA Hybridization Detection by Poly(Thionine)-Gold Nanocomposite on Indium Tin Oxide Electrode. Journal of the Electrochemical Society, 2016, 163, B153-B157.	2.9	17
235	Effects of molarity on structural, optical, morphological and CO2 gas sensing properties of nanostructured copper oxide films deposited by spray pyrolysis. Materials Science in Semiconductor Processing, 2016, 43, 214-221.	4.0	30
236	Glucose sensors based on electrospun nanofibers: a review. Analytical and Bioanalytical Chemistry, 2016, 408, 1285-1306.	3.7	93
237	CuO core–shell nanostructures: Precursor-mediated fabrication and visible-light induced photocatalytic degradation of organic pollutants. Powder Technology, 2016, 287, 346-354.	4.2	28
238	Synthesis of hierarchical NiCo2O4 hollow nanorods via sacrificial-template accelerate hydrolysis for electrochemical glucose oxidation. Biosensors and Bioelectronics, 2016, 75, 15-22.	10.1	146

#	Article	IF	CITATIONS
239	Facile Preparation of Nickel Nanoparticle-Modified Carbon Nanotubes with Application as a Nonenzymatic Electrochemical Glucose Sensor. Analytical Letters, 2016, 49, 568-578.	1.8	14
240	Facile approach to synthesize magnesium oxide nanoparticles by using Clitoria ternateaâ€"characterization and in vitro antioxidant studies. Applied Nanoscience (Switzerland), 2016, 6, 437-444.	3.1	98
241	Sonochemical synthesis of "sea-island―structure silver/polyaniline nanocomposites for the detection of <scp>l</scp> -tyrosine. Journal of Thermoplastic Composite Materials, 2017, 30, 1033-1044.	4.2	11
242	Metal nanostructures for non-enzymatic glucose sensing. Materials Science and Engineering C, 2017, 70, 1018-1030.	7.3	145
243	Synthesis and characterization of CuO thin films grown by chemical spray pyrolysis. Optical and Quantum Electronics, 2017, 49, 1.	3.3	44
244	Ordered titanium templates functionalized by gold films for biosensing applications – Towards non-enzymatic glucose detection. Talanta, 2017, 166, 207-214.	5 . 5	20
245	Systematic study of inorganic functionalization of ZnO nanorods by Sol-Gel method. Journal of Physics: Conference Series, 2017, 786, 012022.	0.4	2
246	Room temperature growth and field emission characteristics of CuO nanostructures. Vacuum, 2017, 139, 136-142.	3.5	25
247	Glucose Biosensor Based on a Glassy Carbon Electrode Modified with Multi-Walled Carbon Nanotubes-Chitosan for the Determination of Beef Freshness. Food Analytical Methods, 2017, 10, 2667-2676.	2.6	16
248	A Miniaturized Electrochemical System Based on Nickel Oxide Species for Glucose Sensing Applications. BioNanoScience, 2017, 7, 58-63.	3.5	6
249	Highly active nickel-doped FeS2 nanoparticles trigger non-enzymatic glucose detection. Materials Chemistry and Physics, 2017, 193, 311-315.	4.0	17
250	Phthalocyanine Doped Metal Oxide Nanoparticles on Multiwalled Carbon Nanotubes Platform for the detection of Dopamine. Scientific Reports, 2017, 7, 43181.	3.3	89
251	Cytotoxicity of gold nanoparticles with different structures and surface-anchored chiral polymers. Acta Biomaterialia, 2017, 53, 610-618.	8.3	51
252	In-situ grown flower-like nanostructured CuO on screen printed carbon electrodes for non-enzymatic amperometric sensing of glucose. Mikrochimica Acta, 2017, 184, 2375-2385.	5.0	48
253	Multi-dimensional Ag/NiO/reduced graphene oxide nanostructures for a highly sensitive non-enzymatic glucose sensor. Journal of Alloys and Compounds, 2017, 712, 742-751.	5 . 5	59
254	Electrochemical and nonenzymatic glucose biosensor based on MDPA/MWNT/PGE nanocomposite. Materials Science and Engineering C, 2017, 78, 539-545.	7.3	4
255	Flexible electronics-compatible non-enzymatic glucose sensing via transparent CuO nanowire networks on PET films. Nanotechnology, 2017, 28, 245502.	2.6	28
256	Influence of aspect ratio and surface defect density on hydrothermally grown ZnO nanorods towards amperometric glucose biosensing applications. Applied Surface Science, 2017, 422, 798-808.	6.1	35

#	Article	IF	CITATIONS
257	H2O2 sensing using HRP modified catalyst-free ZnO nanorods synthesized by RF sputtering. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	4
258	Probing the flat band potential and effective electronic carrier density in vertically aligned nitrogen doped diamond nanorods via electrochemical method. Electrochimica Acta, 2017, 246, 68-74.	5.2	15
259	Amperometric glucose sensor based on the Ni(OH) 2 /Al(OH) 4 \hat{a} electrode obtained from a thin Ni 3 Al foil. Applied Surface Science, 2017, 408, 96-102.	6.1	13
260	A 3D graphene-based biosensor as an early microcystin-LR screening tool in sources of drinking water supply. Electrochimica Acta, 2017, 236, 319-327.	5.2	62
261	Zinc Oxide Nanorods Grown on Printed Circuit Board for Extended-Gate Field-Effect Transistor pH Sensor. Journal of Electronic Materials, 2017, 46, 3732-3737.	2.2	20
262	Copper oxide nanoparticles-loaded zeolite and its characteristics and antibacterial activities. Journal of Materials Science and Technology, 2017, 33, 889-896.	10.7	115
263	Facile synthesis of layered CuS/RGO/CuS nanocomposite on Cu foam for ultrasensitive nonenzymatic detection of glucose. Journal of Electroanalytical Chemistry, 2017, 785, 172-179.	3.8	48
264	CuO nanoparticles supported on nitrogen and sulfur co-doped graphene nanocomposites for non-enzymatic glucose sensing. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	16
265	Influence of Mn-doping on the photocatalytic and solar cell efficiency of CuO nanowires. Inorganic Chemistry Communication, 2017, 76, 71-76.	3.9	73
266	Ecotoxicological effects and mechanism of CuO nanoparticles to individual organisms. Environmental Pollution, 2017, 221, 209-217.	7.5	125
267	Zinc ion mediated synthesis of cuprous oxide crystals for non-enzymatic glucose detection. Journal of Materials Chemistry B, 2017, 5, 8686-8694.	5.8	21
268	Thermally Controlled Bonding of Adenine to Cerium Oxide: Effect of Substrate Stoichiometry, Morphology, Composition, and Molecular Deposition Technique. Journal of Physical Chemistry C, 2017, 121, 25118-25131.	3.1	7
269	Nanoenabling electrochemical sensors for life sciences applications. Journal of Materials Research, 2017, 32, 2883-2904.	2.6	5
270	Cu ^{II} â€Mediated Ultraâ€efficient Electrooxidation of Glucose. ChemElectroChem, 2017, 4, 2788-2792.	3.4	20
271	Surface modification of ZnO nanostructured electrodes with thiol and phosphonic acid moieties for biosensing applications. Analytical Methods, 2017, 9, 5525-5533.	2.7	13
272	Sputter coated ZnO thin films on glass and polycarbonate: Evaluation of stability and interaction with Flavin adenine dinucleotide-dependent oxidases. Biointerphases, 2017, 12, 031005.	1.6	1
273	Hierarchical Co(OH) ₂ nanotube arrays grown on carbon cloth for use in non-enzymatic glucose sensing. Analytical Methods, 2017, 9, 5903-5909.	2.7	26
274	Synthesis of tunable size gold nanoparticles using seeding growth method and its application in glucose sensor. AIP Conference Proceedings, 2017, , .	0.4	7

#	Article	IF	CITATIONS
275	Comparative studies on Indian traditional nanomedicine Yashadha Bhasmaand zinc oxide nanoparticles for anti-diabetic activity. Materials Research Express, 2017, 4, 075016.	1.6	1
276	Electrochemical synthesis of Ni nanoparticles over tailored TiN thin film electrodes for glucose sensing. Ceramics International, 2017, 43, S807-S813.	4.8	2
277	Nozzle-jet printed flexible field-effect transistor biosensor for high performance glucose detection. Journal of Colloid and Interface Science, 2017, 506, 188-196.	9.4	42
278	Enzyme Deposition by Polydimethylsiloxane Stamping for Biosensor Fabrication. Electroanalysis, 2017, 29, 2300-2306.	2.9	12
279	Impedimetric glucose biosensor based on nanostructure nickel oxide transducer fabricated by reactive RF magnetron sputtering system. Journal of Electroanalytical Chemistry, 2017, 801, 258-266.	3.8	40
280	Synthesis of an electronically conductive hydrogel from a hydrogelator and a conducting polymer. New Journal of Chemistry, 2017, 41, 9602-9606.	2.8	11
281	Point-of-care diagnostics to improve maternal and neonatal health in low-resource settings. Lab on A Chip, 2017, 17, 3351-3387.	6.0	39
282	Colorimetric Nanofibers as Optical Sensors. Advanced Functional Materials, 2017, 27, 1702646.	14.9	96
283	Ultra-low intensity UV detection using partitioned mesoporous TiO2. Applied Physics Letters, 2017, 111, .	3.3	9
284	Template-free synthesis of two-dimensional titania/titanate nanosheets as electrodes for high-performance supercapacitor applications. Journal of Power Sources, 2017, 372, 227-234.	7.8	33
285	A review on ZnO-based electrical biosensors for cardiac biomarker detection. Future Science OA, 2017, 3, FSO196.	1.9	61
286	Enhanced Nonenzymatic Glucose-Sensing Properties of Electrodeposited NiCo ₂ O ₄ –Pd Nanosheets: Experimental and DFT Investigations. ACS Applied Materials & DFT Investigations. ACS Applied Materials & DFT Investigations. ACS Applied Materials & DFT Investigations.	8.0	97
287	Facile synthesis of hierarchically mesoporous NiCo2O4 nanowires for sensitive nonenzymatic glucose detection. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	20
288	Facile One Pot Synthesis of CuO Nanostructures and Their Effect on Nonenzymatic Glucose Biosensing. Electrocatalysis, 2017, 8, 27-35.	3.0	32
289	A novel glucose sensor using lutetium phthalocyanine as redox mediator in reduced graphene oxide conducting polymer multifunctional hydrogel. Biosensors and Bioelectronics, 2017, 92, 638-645.	10.1	95
290	Mediator-free interaction of glucose oxidase, as model enzyme for immobilization, with Al-doped and undoped ZnO thin films laser-deposited on polycarbonate supports. Enzyme and Microbial Technology, 2017, 96, 67-74.	3.2	19
291	Charge storage, electrocatalytic and sensing activities of nest-like nanostructured Co3O4. Journal of Colloid and Interface Science, 2017, 487, 20-30.	9.4	38
292	Magnetite as a platform material in the detection of glucose, ethanol and cholesterol. Sensors and Actuators B: Chemical, 2017, 238, 693-701.	7.8	25

#	Article	IF	CITATIONS
293	Amperometric Glucose Biosensor Based on Titanium Electrode Modified with Prussian Blue Layer and Immobilized Glucose Oxidase. Journal of the Electrochemical Society, 2017, 164, B781-B784.	2.9	16
294	3.34 Biomaterials Challenges in Continuous Glucose Monitors In Vivo. , 2017, , 755-770.		2
295	Effect of immobilization technique on performance ZnO nanorods based enzymatic electrochemical glucose biosensor. Journal of Physics: Conference Series, 2017, 924, 012013.	0.4	2
296	CeO2 Nanorods Embedded in Ni(OH)2 Matrix for the Non-Enzymatic Detection of Glucose. Nanomaterials, 2017, 7, 205.	4.1	13
297	Nanostructured biosensor using bioluminescence quenching technique for glucose detection. Journal of Nanobiotechnology, 2017, 15, 59.	9.1	9
298	ZnO Nanoparticle Modification by Polyethylenimine for Biomolecule Conjugation. Nanotechnologies in Russia, 2017, 12, 613-619.	0.7	3
299	Glucose Oxidase Embedded ZnO Nanowires/Ferrocenyl-Alkanethiol Array for efficient glucose-sensing application. International Journal of Electrochemical Science, 2017, 12, 7216-7226.	1.3	5
300	Simple and low-cost synthesis of CuO nanosheets for visible-light-driven photocatalytic degradation of textile dyes. Journal of Environmental Chemical Engineering, 2018, 6, 2003-2010.	6.7	40
301	Highly Redox-Active Hematin-Functionalized Carbon Mesoporous Nanomaterial for Electrocatalytic Reduction Applications in Neutral Media. ACS Applied Nano Materials, 2018, 1, 2272-2283.	5.0	13
302	Eco-friendly synthesis of cuprous oxide (Cu2O) nanoparticles and improvement of their solar photocatalytic activities. Journal of Solid State Chemistry, 2018, 263, 79-83.	2.9	77
303	Bioconjugated Nanostructured Metals and Metal Oxides for Biosensors. , 2018, , 105-125.		1
304	Following the growth of ZnO clusters on graphite by in situ X-ray Absorption Near-Edge Spectroscopy. Materials and Design, 2018, 142, 240-246.	7. O	4
305	An electrochemical sensor for sensitive detection of dopamine based on MWCNTs/CeO 2 -PEDOT composite. Journal of Electroanalytical Chemistry, 2018, 813, 134-142.	3.8	56
306	Applying Co ₃ O ₄ @nanoporous Carbon to Nonenzymatic Glucose Biofuel Cell and Biosensor. Electroanalysis, 2018, 30, 525-532.	2.9	23
307	One-step green hydrothermal synthesis of biocompatible graphene/TiO ₂ nanocomposites for non-enzymatic H ₂ O ₂ detection and their cytotoxicity effects on human keratinocyte and lung fibroblast cells. Journal of Materials Chemistry B, 2018, 6, 1195-1206.	5.8	14
308	Microwave-assisted synthesis of graphene modified CuO nanoparticles for voltammetric enzyme-free sensing of glucose at biological pH values. Mikrochimica Acta, 2018, 185, 57.	5.0	56
309	Vertically grown zinc oxide nanorods functionalized with ferric oxide for <i>ii</i> vivoand non-enzymatic glucose detection. Nanotechnology, 2018, 29, 115501.	2.6	24
310	Self-Powered Implantable Skin-Like Glucometer for Real-Time Detection of Blood Glucose Level In Vivo. Nano-Micro Letters, 2018, 10, 32.	27.0	68

#	Article	IF	CITATIONS
311	Opto-chemical glucose sensing over NiO/polyaniline hybrid matrix using optical fiber approach. Optik, 2018, 165, 94-101.	2.9	11
312	A very facile strategy for the synthesis of ultrathin CuO nanorods towards non-enzymatic glucose sensing. New Journal of Chemistry, 2018, 42, 6364-6369.	2.8	20
313	Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosensors and Bioelectronics, 2018, 99, 122-135.	10.1	123
315	Nanostructured indium tin oxide electrodes immobilized with toll-like receptor proteins for label-free electrochemical detection of pathogen markers. Sensors and Actuators B: Chemical, 2018, 257, 324-330.	7.8	27
316	Ultra-small (r<2Ânm), stable (>1 year) copper oxide quantum dots with wide band gap. Superlattices and Microstructures, 2018, 113, 600-607.	3.1	26
317	Metal-organic framework derived nanoporous carbon/Co3O4 composite electrode as a sensing platform for the determination of glucose and high-performance supercapacitor. Carbon, 2018, 127, 366-373.	10.3	76
318	Grapheneâ€based Electrochemical Glucose Sensors: Fabrication and Sensing Properties. Electroanalysis, 2018, 30, 2504-2524.	2.9	75
319	Reduced graphene oxide-supported methylene blue nanocomposite as a glucose oxidase-mimetic for electrochemical glucose sensing. RSC Advances, 2018, 8, 32565-32573.	3.6	12
320	Nonenzymatic Glucose Sensor Using MIM Pt/CuO/Pt. , 2018, , .		1
321	Phosphate Modified Screen Printed Electrodes by LIFT Treatment for Glucose Detection. Biosensors, 2018, 8, 91.	4.7	5
322	Enzyme Biosensing Based on Zinc Oxide Nanostructures as Active Surface. IOP Conference Series: Materials Science and Engineering, 2018, 374, 012070.	0.6	1
323	Exploring the potential of electroless and electroplated noble metal–semiconductor hybrids within bio- and environmental sensing. Analyst, The, 2018, 143, 5646-5669.	3.5	10
324	Metal oxide modified ZnO nanomaterials for biosensor applications. Nano Convergence, 2018, 5, 27.	12.1	119
325	Combination of graphene and graphene oxide with metal and metal oxide nanoparticles in fabrication of electrochemical enzymatic biosensors. International Nano Letters, 2018, 8, 229-239.	5.0	70
326	Amperometric Glucose Sensing at Nanomolar Level Using MOF-Encapsulated TiO ₂ Platform. ACS Omega, 2018, 3, 14634-14640.	3.5	38
327	Covalent Immobilization of Glucose Oxidase onto Electro-synthesized Nanocomposite with PEDOT Derivative for Amperometric Glucose Biosensing. International Journal of Electrochemical Science, 2018, 13, 5294-5310.	1.3	4
328	Fabrication and Characterization of Glucose Biosensors by Using Hydrothermally Grown ZnO Nanorods. Scientific Reports, 2018, 8, 13722.	3.3	101
329	Non-enzymatic glucose sensor based on copper oxide and multi-wall carbon nanotubes using PEDOT:PSS matrix. Synthetic Metals, 2018, 245, 160-166.	3.9	43

#	Article	IF	CITATIONS
330	Low PSNR High Fidelity Image Compression Using Surrounding Pixels., 2018,,.		4
331	Electrical Power Usage Prediction using A Multi Input Single Output Heuristic Network. , 2018, , .		0
332	Experimental analysis of the influencing factors on the response of a tool for epidural space detection. , $2018, \ldots$		2
333	Low Cost Inkjet Fabrication of Glucose Electrochemical Sensors Based on Copper Oxide. Journal of the Electrochemical Society, 2018, 165, B3176-B3183.	2.9	23
334	Carrier transport mechanisms in semiconductor nanostructures and devices. Journal of Semiconductors, 2018, 39, 061002.	3.7	38
335	Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Mikrochimica Acta, 2018, 185, 358.	5.0	342
336	Development of an Amperometric Glucose Biosensor Based on the Immobilization of Glucose Oxidase on the Se-MCM-41 Mesoporous Composite. Journal of Analytical Methods in Chemistry, 2018, 2018, 1-8.	1.6	25
337	Nonâ€enzymatic continuous glucose monitoring system. Micro and Nano Letters, 2018, 13, 1079-1084.	1.3	1
338	Nonenzymatic glucose sensing using metal oxides $\hat{a}\in$ Comparison of CuO, Co3O4, and NiO. Vacuum, 2018, 155, 696-701.	3.5	40
339	Ammonium nickel phosphate on nickel foam with a Ni3+-rich surface for ultrasensitive nonenzymatic glucose sensors. Applied Surface Science, 2018, 459, 40-47.	6.1	25
340	Adsorption and electrochemical behavior of Cyt-c on carbon nanotubes/TiO2 nanocomposite films fabricated at various annealing temperatures. Colloid and Polymer Science, 2018, 296, 1353-1364.	2.1	2
341	Non-enzymatic glucose sensing using hydrothermally grown ZnO nanorods: sensitivity augmentation by carbon doping and carbon functionalization. Materials Research Express, 2018, 5, 095011.	1.6	10
342	An amperometric glucose biosensor based on PEDOT nanofibers. RSC Advances, 2018, 8, 19724-19731.	3.6	48
343	Enzyme based amperometric biosensors. Current Opinion in Electrochemistry, 2018, 10, 157-173.	4.8	153
344	Enzymatic glucose biosensor based on manganese dioxide nanoparticles decorated on graphene nanoribbons. Journal of Electroanalytical Chemistry, 2018, 823, 610-616.	3.8	78
345	Wearable Technology for Chronic Wound Monitoring: Current Dressings, Advancements, and Future Prospects. Frontiers in Bioengineering and Biotechnology, 2018, 6, 47.	4.1	132
346	Pulsed photoinitiated fabrication of inkjet printed titanium dioxide/reduced graphene oxide nanocomposite thin films. Nanotechnology, 2018, 29, 315401.	2.6	8
347	A Ni-based redox-active metal-organic framework for sensitive and non-enzymatic detection of glucose. Journal of Electroanalytical Chemistry, 2018, 822, 43-49.	3.8	72

#	ARTICLE	IF	CITATIONS
348	Hybridization of Co ₃ O ₄ and α-MnO ₂ Nanostructures for High-Performance Nonenzymatic Glucose Sensing. ACS Sustainable Chemistry and Engineering, 2018, 6, 13248-13261.	6.7	54
349	Gold-Nanoparticle-Encapsulated ZIF-8 for a Mediator-Free Enzymatic Glucose Sensor by Amperometry. ACS Applied Nano Materials, 2018, 1, 3600-3607.	5.0	89
350	Toxicity, bioaccumulation and biotransformation of Cu oxide nanoparticles in Daphnia magna. Environmental Science: Nano, 2019, 6, 2897-2906.	4.3	21
351	A Non-Enzymatic Glucose Sensor Based on the Hybrid Thin Films of Cu on Acetanilide/ITO. Journal of the Electrochemical Society, 2019, 166, B1116-B1125.	2.9	22
352	In-situ silver nanoparticles formation as a tool for non-enzymatic glucose sensing: Study with an enzyme mimicking salt. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580, 123715.	4.7	8
353	<i>In situ</i> formation of metal–organic framework derived CuO polyhedrons on carbon cloth for highly sensitive non-enzymatic glucose sensing. Journal of Materials Chemistry B, 2019, 7, 4990-4996.	5.8	44
354	Electrochemical Cycling-Induced Spiky Cu _{<i>x</i>} O/Cu Nanowire Array for Glucose Sensing. ACS Omega, 2019, 4, 12222-12229.	3.5	30
355	Polarization-Independent Perfect Optical Metamaterial Absorber as a Glucose Sensor in Food Industry Applications. IEEE Transactions on Nanobioscience, 2019, 18, 622-627.	3.3	107
356	Super Nernstian pH response and enzyme-free detection of glucose using sol-gel derived RuOx on PET flexible-based extended-gate field-effect transistor. Sensors and Actuators B: Chemical, 2019, 298, 126837.	7.8	46
357	Nano-manipulation and nano-assembling using shape memory alloy nanogripper of metal oxide and semiconductor single nanowires and nanoparticles for biological nanosensors. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2019, 10, 035003.	1.5	4
358	Hierarchical Co3O4/CuO nanorod array supported on carbon cloth for highly sensitive non-enzymatic glucose biosensing. Sensors and Actuators B: Chemical, 2019, 298, 126860.	7.8	89
359	A non-enzymatic glucose sensor enabled by bioelectronic pH control. Scientific Reports, 2019, 9, 10844.	3.3	76
360	Spectrophotometric nanomolar determination of glucose by using C-dots/ $\{6\}_{4}$ magnetic nanozyme. Journal of Chemical Sciences, 2019, 131, 1.	1.5	8
361	Facile Non-Enzymatic Electrochemical Sensing for Glucose Based on Cu2O–BSA Nanoparticles Modified GCE. Sensors, 2019, 19, 2824.	3.8	28
362	Promising PVA/TiO2, CuO filled nanocomposites for electrical and third order nonlinear optical applications. Optical Materials, 2019, 95, 109218.	3.6	33
363	CuO Nanoparticles/Multi-Walled Carbon Nanotubes (MWCNTs) Nanocomposites for Flexible Supercapacitors. Journal of Nanoscience and Nanotechnology, 2019, 19, 8151-8156.	0.9	11
364	Fabrication of a glucose oxidase/multiporous tin-oxide nanofiber film on Prussian blue–modified gold electrode for biosensing. Journal of Electroanalytical Chemistry, 2019, 852, 113550.	3.8	15
366	Modeling of a micro-biological sensor field effect for the enzymatic detection of glucose. International Journal of Modern Physics B, 2019, 33, 1950289.	2.0	2

#	ARTICLE	IF	CITATIONS
367	An Experimentally Validated Channel Model for Molecular Communication Systems. IEEE Access, 2019, 7, 81849-81858.	4.2	14
368	A Simple Electrochemical Route to Access Amorphous Co-Ni Hydroxide for Non-enzymatic Glucose Sensing. Nanoscale Research Letters, 2019, 14, 135.	5.7	45
369	Fe2O3 sensor for breath gas sensing. AIP Conference Proceedings, 2019, , .	0.4	1
370	Superhydrophobic nanocomposite coatings of poly(methyl methacrylate) and stearic acid grafted CuO nanoparticles with photocatalytic activity. Progress in Organic Coatings, 2019, 136, 105270.	3.9	31
371	The Flexible Urea Biosensor Using Magnetic Nanoparticles. IEEE Nanotechnology Magazine, 2019, 18, 484-490.	2.0	20
372	Semiconducting Metal Oxides for Gas Sensing. , 2019, , .		36
373	Enhanced Peroxidase Mimetic Activity of Porous Iron Oxide Nanoflakes. ChemNanoMat, 2019, 5, 506-513.	2.8	44
374	Semiconducting Metal Oxides: Microstructure and Sensing Performance., 2019, , 105-135.		1
375	Amorphous Ni–Co–Fe hydroxide nanospheres for the highly sensitive and selective non-enzymatic glucose sensor applications. Journal of Alloys and Compounds, 2019, 800, 261-271.	5.5	31
376	In-situ electrochemical deposition of dendritic Cu-Cu2S nanocomposites onto glassy carbon electrode for sensitive and non-enzymatic detection of glucose. Journal of Electroanalytical Chemistry, 2019, 847, 113177.	3.8	20
377	Porous Enzymatic Membrane for Nanotextured Glucose Sweat Sensors with High Stability toward Reliable Noninvasive Health Monitoring. Advanced Functional Materials, 2019, 29, 1902521.	14.9	120
378	Molecular Design of a New Diboronic Acid for the Electrohydrodynamic Monitoring of Glucose. Angewandte Chemie, 2019, 131, 10722-10725.	2.0	4
379	In situ fabrication of CuO nanowire film for high-sensitive ascorbic acid recognition. Sensors and Actuators B: Chemical, 2019, 296, 126617.	7.8	33
380	Molecular Design of a New Diboronic Acid for the Electrohydrodynamic Monitoring of Glucose. Angewandte Chemie - International Edition, 2019, 58, 10612-10615.	13.8	21
381	3D-printed CuO nanoparticle–functionalized flow reactor enables online fluorometric monitoring of glucose. Mikrochimica Acta, 2019, 186, 404.	5.0	13
382	A Green Systematic Approach of Carbon/CuO Nano Composites Using Aristolochia bracteolate by Response Surface Methodology. Journal of Cluster Science, 2019, 30, 1177-1183.	3.3	3
383	Highly sensitive and non-invasive electrochemical immunosensor for salivary cortisol detection. Sensors and Actuators B: Chemical, 2019, 293, 281-288.	7.8	63
384	Biosample Concentration Using Microscale Forward Osmosis with Electrochemical Monitoring. Analytical Chemistry, 2019, 91, 7487-7494.	6.5	3

#	Article	IF	CITATIONS
385	Cerium Oxide Based Glucose Biosensors: Influence of Morphology and Underlying Substrate on Biosensor Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 8083-8089.	6.7	31
386	Graphene-Based Electrochemical Sensors for Biomedical Applications. , 2019, , 249-282.		5
387	Enzymatic Urea Sensor Based on Graphene Oxide/Titanium Dioxide Films Modified by Urease-Magnetic Beads. IEEE Nanotechnology Magazine, 2019, 18, 336-344.	2.0	13
388	Direct glucose detection in whole blood by colorimetric assay based on glucose oxidase-conjugated graphene oxide/MnO ₂ nanozymes. Analyst, The, 2019, 144, 3038-3044.	3.5	58
389	Electrochemical glucose biosensor based on ZnO nanorods modified with gold nanoparticles. Journal of Materials Science: Materials in Electronics, 2019, 30, 7460-7470.	2.2	8
390	Bacterial-nanostructure interactions: The role of cell elasticity and adhesion forces. Journal of Colloid and Interface Science, 2019, 546, 192-210.	9.4	120
391	Magnetic Nanoparticlesâ€Embedded Enzymeâ€Inorganic Hybrid Nanoflowers with Enhanced Peroxidaseâ€Like Activity and Substrate Channeling for Glucose Biosensing. Advanced Healthcare Materials, 2019, 8, e1801507.	7.6	77
392	Designing and Implementation of Microcontroller Based Non-Invasive Health Monitoring System. , 2019, , .		10
393	Real-Time Interferometric Refractive Index Change Measurement for the Direct Detection of Enzymatic Reactions and the Determination of Enzyme Kinetics. Sensors, 2019, 19, 539.	3.8	3
394	Novel urchin-like FeCo oxide nanostructures supported carbon spheres as a highly sensitive sensor for hydrazine sensing application. Journal of Pharmaceutical and Biomedical Analysis, 2019, 172, 243-252.	2.8	13
395	A portable micro glucose sensor based on copper-based nanocomposite structure. New Journal of Chemistry, 2019, 43, 7806-7813.	2.8	32
396	A chemically and electrochemically stable, redox-active and highly sensitive metal azolate framework for non-enzymatic electrochemical detection of glucose. Journal of Electroanalytical Chemistry, 2019, 840, 263-271.	3.8	34
397	A Review of the Construction of Nano-Hybrids for Electrochemical Biosensing of Glucose. Biosensors, 2019, 9, 46.	4.7	74
398	Alleviating concentration polarization: a micro three-electrode interdigitated glucose sensor based on nanoporous gold from a mild process. RSC Advances, 2019, 9, 10465-10472.	3.6	7
399	Nitrogen Incorporated (Ultra)Nanocrystalline Diamond Films for Field Electron Emission Applications. Topics in Applied Physics, 2019, , 123-171.	0.8	1
400	MOMSense: Metal-Oxide-Metal Elementary Glucose Sensor. Scientific Reports, 2019, 9, 5524.	3.3	39
401	CuO nanoparticles as a reusable catalyst for the synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives under solvent-free conditions. Journal of the Iranian Chemical Society, 2019, 16, 1665-1675.	2.2	19
402	High-Performance Non-enzymatic Glucose Sensors Based on CoNiCu Alloy Nanotubes Arrays Prepared by Electrodeposition. Frontiers in Materials, 2019, 6, .	2.4	49

#	Article	IF	CITATIONS
403	Development of 3-methoxyaniline sensor probe based on thin $Ag < sub > 2 < sub > 0@La < sub > 2 < sub > 0 < sub > 3 < sub > nanosheets for environmental safety. New Journal of Chemistry, 2019, 43, 4620-4632.$	2.8	130
404	Elemental Cu doped Co3O4 thin film for highly sensitive non-enzymatic glucose detection. Sensing and Bio-Sensing Research, 2019, 23, 100262.	4.2	17
405	3D Graphene-based macro-mesoporous frameworks as enzymatic electrodes. Journal of Physics and Chemistry of Solids, 2019, 130, 1-5.	4.0	13
406	Influence of Annealing Temperature on Structural Compositions and pH Sensing Properties of Sol-Gel Derived YTixOy Electroceramic Sensing Membranes. Journal of the Electrochemical Society, 2019, 166, B187-B192.	2.9	4
407	Design of a Backstepping-Controlled Boost Converter for MPPT in PV Chains. , 2019, , .		3
408	Predicting the Silent Data Corruption Vulnerability of Instructions in Programs. , 2019, , .		7
409	Educational Tool for the Teaching and Self-Learning of Mathematics and Language from Mobile Devices Aimed at Quechua-Speaking Educational Institutions of the Initial Level in Ayacucho, Peru. , 2019, , .		2
410	Generation of Nickel Oxide Nanoparticles by Wire Explosion Process and Its Interaction with Glucose. , 2019, , .		0
411	Modeling a Data Landscape for Intelligent Systems in Industry 4.0. , 2019, , .		0
412	Slice Scheduling with QoS-Guarantee Towards 5G., 2019, , .		16
413	Estimating the effective dimension of large biological datasets using Fisher separability analysis. , 2019, , .		18
414	Face Recognition Based on Global and Local Feature Fusion. , 2019, , .		5
415	The Application of Hydrometeor Classification Algorithm for China New Generation Doppler Radar. , 2019, , .		2
416	Spatiotemporal Real-Time Anomaly Detection for Supercomputing Systems. , 2019, , .		1
417	Advanced Protection Technique for Wind Farm Collector Feeder Divided into Multi Zones., 2019,,.		0
418	A Study on Self-Regulated Mobile Learning Model with Real-Time Diagnosis to Students' Learning Behaviors. , 2019, , .		0
419	Frame-Wise CNN-Based View Synthesis for Light Field Camera Arrays. , 2019, , .		1
420	Effects of Impurity Hubbard Bands on the Hall Effect in n-InP. , 2019, , .		0

#	Article	IF	CITATIONS
421	Generalization of Quantum Strassen Theorem. , 2019, , .		0
422	IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2019, 1, C2-C2.	4.4	0
424	What Does Sustainability in Communications Mean?. IEEE Communications Standards Magazine, 2019, 3, 4-4.	4.9	0
425	Open-Source Big Data Analytics Architecture for Businesses. , 2019, , .		9
426	Using SDN Strategies to Improve Resource Management On a NoC. , 2019, , .		2
427	Study on Fast Needle Puncture to Reduce Pain. , 2019, , .		3
428	Timeliness Analysis of Service-Driven Collaborative Mobile Edge Computing in UAV Swarm. , 2019, , .		5
429	Instance-Level Meta Normalization. , 2019, , .		15
430	Sensitivity Estimation of JOM-4 Overhauser Magnetometer. , 2019, , .		0
431	Learning-Based Inversion-Free Model-Data Integration to Advance Ecosystem Model Prediction. , 2019, , .		2
432	SENTINEL-3 A, B, C, D: Development, Commissioning and Operations of an Environmental and Climate Monitoring Observation System. , 2019, , .		0
433	Graph Matching via Multi-Scale Heat Diffusion. , 2019, , .		0
434	Energy Management System for a Residential Microgrid in a Power Hardware-in-the-Loop Platform. , 2019, , .		1
435	Proteus-I: A Flexible and Adaptable Low-Cost General-Purpose Micro-Robot Prototype for Swarm Robotics. , 2019, , .		2
436	AES-RC4 Encryption Technique to Improve File Security., 2019,,.		6
437	Volatility Clustering in Medical Ultrasound Imaging and System Identification Based Deconvolution. , 2019, , .		0
438	Analysis of Factors Affecting User Loyalty on Bitcoin Exchange. , 2019, , .		1
439	Performance Analysis of PV & Description (2019, 1.1).		5

#	Article	IF	Citations
440	An Innovative Load Balancing Cluster Composition of Wireless Sensor Networks. , 2019, , .		0
441	MA ² RA - Manual Assembly Augmented Reality Assistant., 2019,,.		6
442	The Application of Network Structure Aanalysis in the Study of Disease Mechanisms. , 2019, , .		0
443	Integrated Cuckoo and Monkey Search Algorithm for Energy Efficient Clustering in Wireless Sensor Networks. , 2019, , .		1
444	A Flexible Portable Glucose Sensor Based on Hierarchical Arrays of Au@Cu(OH)2 Nanograss. Sensors, 2019, 19, 5055.	3.8	14
445	Detection of Phosphatidylcholine Content in Crude Oil with Bio-Enzyme Screen-Printed Electrode. Food Analytical Methods, 2019, 12, 229-238.	2.6	8
446	Three-Dimensional CeO ₂ Woodpile Nanostructures To Enhance Performance of Enzymatic Glucose Biosensors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1821-1828.	8.0	24
447	Electrochemical amperometric biosensor applications of nanostructured metal oxides: a review. Materials Research Express, 2019, 6, 042003.	1.6	37
448	Combined effect of titanium dioxide nanoparticles and glucose on the cardiovascular system in young rats after oral administration. Journal of Applied Toxicology, 2019, 39, 590-602.	2.8	10
449	Use of carbon supports with copper ion as a highly sensitive non-enzymatic glucose sensor. Sensors and Actuators B: Chemical, 2019, 282, 187-196.	7.8	33
450	Electrochemical Sensor Platforms Based on Nanostructured Metal Oxides, and Zeoliteâ€Based Materials. Chemical Record, 2019, 19, 883-907.	5.8	45
451	TiO2 sol/graphene modified 3D porous Ni foam: A novel platform for enzymatic electrochemical biosensor. Journal of Electroanalytical Chemistry, 2019, 833, 133-142.	3.8	23
452	Impact of molarity on structural, optical, morphological and electrical properties of copper oxide thin films prepared by cost effective jet nebulizer spray pyrolysis technique. Journal of Materials Science: Materials in Electronics, 2019, 30, 1571-1578.	2.2	14
453	Electrochemical behavior of a cation-exchange resin modified with copper ions on non-enzymatic glucose determination. Journal of Electroanalytical Chemistry, 2019, 835, 248-253.	3.8	4
454	Fluorometric determination of glucose based on a redox reaction between glucose and aminopropyltriethoxysilane and in-situ formation of blue-green emitting silicon nanodots. Mikrochimica Acta, 2019, 186, 78.	5.0	15
455	Enzyme immobilization in completely packaged freestanding SU-8 microfluidic channel by electro click chemistry for compact thermal biosensor. Process Biochemistry, 2019, 79, 57-64.	3.7	22
456	New route for the synthesis of nickel (II) oxide nanostructures and its application as non-enzymatic glucose sensor. Journal of Electroanalytical Chemistry, 2019, 832, 189-195.	3.8	42
457	Bifunctional (Zn,Fe)3O4 nanoparticles: Tuning their efficiency for potential application in reagentless glucose biosensors and magnetic hyperthermia. Journal of Alloys and Compounds, 2019, 777, 454-462.	5.5	26

#	Article	IF	CITATIONS
458	Diagnostic biosensors in medicine – A review. Biocatalysis and Agricultural Biotechnology, 2019, 17, 271-283.	3.1	192
459	Thin layers formed by the oriented 2D nanocrystals of birnessite-type manganese oxide as a new electrochemical platform for ultrasensitive nonenzymatic hydrogen peroxide detection. Journal of Solid State Electrochemistry, 2019, 23, 573-582.	2.5	9
460	Synthesis of Micro-dumbbell Shaped rGO/ZnO Composite Rods and Its Application Towards as Electrochemical Sensor for the Simultaneous Determination of Ammonia and Formaldehyde Using Hexamine and Its Structural Analysis. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 943-954.	3.7	13
461	Plasmaâ€functionalized Highly Aligned CNTâ€based Biosensor for Point of Care Determination of Glucose in Human Blood Plasma. Electroanalysis, 2020, 32, 394-403.	2.9	23
462	Relevance of defects in ZnO nanotubes for selective adsorption of H2S and CO2 gas molecules: Ab-initio investigation. Results in Physics, 2020, 16, 102907.	4.1	6
463	Smartphone for glucose monitoring. , 2020, , 45-65.		0
464	A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials. Mikrochimica Acta, 2020, 187, 29.	5.0	97
465	Non-enzymatic multispecies sensing of key wine attributes with nickel nanoparticles on N-doped graphene composite. Journal of Solid State Electrochemistry, 2020, 24, 45-56.	2.5	2
466	Increased thermal stability of a glucose oxidase biosensor under high hydrostatic pressure. Enzyme and Microbial Technology, 2020, 134, 109486.	3.2	6
467	Hierarchically porous NiCo2S4 nanowires anchored on flexible electrospun graphitic nanofiber for high-performance glucose biosensing. Journal of Alloys and Compounds, 2020, 819, 153376.	5.5	28
468	An impedimetric biosensor based on electrophoretically assembled ZnO nanorods and carboxylated graphene nanoflakes on anÂindium tin oxide electrode forÂdetection of the DNA of Escherichia coli O157:H7. Mikrochimica Acta, 2020, 187, 1.	5.0	332
469	MOFs-Derived Nano-CuO Modified Electrode as a Sensor for Determination of Hydrazine Hydrate in Aqueous Medium. Sensors, 2020, 20, 140.	3.8	13
470	Ingenious design and development of recyclable 2D BiOCl nanotiles attached tri-functional robust strips for high performance selective electrochemical sensing, SERS and heterogenous dip catalysis. Chemical Engineering Journal, 2020, 385, 123974.	12.7	25
471	Modified screen-printed Electrode as Electrochemical Detector for Noscapine. International Journal of Electrochemical Science, 2020, 15, 8612-8621.	1.3	4
472	Highly redox-active organic molecular nanomaterials: Naphthalene and phenanthrene molecular species π-stacked MWCNT modified electrodes for oxygen-interference free H2O2 sensing in neutral pH. Journal of Electroanalytical Chemistry, 2020, 878, 114680.	3.8	6
473	MnO2/multi-walled carbon nanotubes based nanocomposite with enhanced electrocatalytic activity for sensitive amperometric glucose biosensing. Journal of Electroanalytical Chemistry, 2020, 878, 114602.	3.8	19
474	Electrochemical non-enzymatic sensing of glucose by gold nanoparticles incorporated graphene nanofibers. Materials Today Communications, 2020, 24, 100963.	1.9	29
475	Development Perspective of Bioelectrocatalysis-Based Biosensors. Sensors, 2020, 20, 4826.	3.8	29

#	Article	IF	CITATIONS
476	A Review on the Development of Non-Enzymatic Glucose Sensor Based on Graphene-Based Nanocomposites. Nano, 2020, 15, 2030004.	1.0	23
477	Colorimetric detection of glucose based on the binding specificity of a synthetic cyclic peptide. Analyst, The, 2020, 145, 7234-7241.	3.5	17
478	Advances in Nanotechnology and Its Applications. , 2020, , .		3
479	Biomolecules and Electrochemical Tools in Chronic Non-Communicable Disease Surveillance: A Systematic Review. Biosensors, 2020, 10, 121.	4.7	14
480	Unique Nonenzymatic Glucose Sensor Using a Hollow-Shelled Triple Oxide Mn–Cu–Al Nanocomposite. ACS Omega, 2020, 5, 23502-23509.	3 . 5	11
481	Facile SrO nanorods: an efficient and alternate detection approach for the selective removal of 4-aminophenol towards environmental safety. New Journal of Chemistry, 2020, 44, 15507-15514.	2.8	6
482	Fabrication of amperometric sensor for glucose detection based on phosphotungstic acid–assisted PDPA/ZnO nanohybrid composite. Ionics, 2020, 26, 6341-6349.	2.4	16
483	Fabrication of Non-enzymatic Electrochemical Glucose Sensor Based on Nano-copper Oxide Micro Hollow-spheres. Biotechnology and Bioprocess Engineering, 2020, 25, 528-535.	2.6	30
484	Flow-following sensor devices: A tool for bridging data and model predictions in large-scale fermentations. Computational and Structural Biotechnology Journal, 2020, 18, 2908-2919.	4.1	19
485	Amperometric determination of Myo-inositol using a glassy carbon electrode modified with nanostructured copper sulfide. Mikrochimica Acta, 2020, 187, 334.	5.0	15
486	Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions. Biosensors and Bioelectronics, 2020, 165, 112331.	10.1	196
487	Role of Fe doping on structural and electrical properties of MnO2 nanostructured thin films for glucose sensing performance. Materials Science in Semiconductor Processing, 2020, 117, 105109.	4.0	13
488	Composites of Reduced Graphene Oxide/Nickel Submicrorods for Non-Enzymatic Electrochemical Biosensing: Application to Amperometric Glucose Detection. Journal of the Electrochemical Society, 2020, 167, 087513.	2.9	3
489	Immunosensors containing solution blow spun fibers of poly(lactic acid) to detect p53 biomarker. Materials Science and Engineering C, 2020, 115, 111120.	7.3	7
490	Fabrication of an ultra-sensitive <i>para</i> -nitrophenol sensor based on facile Zn-doped Er ₂ O ₃ nanocomposites <i>via</i>) an electrochemical approach. Analytical Methods, 2020, 12, 3470-3483.	2.7	16
491	Non-Enzymatic Detection of Glucose Using a Capacitive Nanobiosensor Based on PVA Capped CuO Synthesized via Co-Precipitation Route. IEEE Sensors Journal, 2020, 20, 10415-10423.	4.7	12
492	Metal Oxide Nanoparticles as Biomedical Materials. Biomimetics, 2020, 5, 27.	3.3	249
493	The Impact of Lexicon Adaptation on the Emotion Mining From Software Engineering Artifacts. IEEE Access, 2020, 8, 48742-48751.	4.2	9

#	Article	IF	CITATIONS
494	Applicability of Fe-CNC/GR/PLA composite as potential sensor for biomolecules. Journal of Materials Science: Materials in Electronics, 2020, 31, 5984-5999.	2.2	7
495	Advances in Solar Power Generation and Energy Harvesting. Springer Proceedings in Energy, 2020, , .	0.3	2
496	A Single-Shot Region-Adaptive Network for Myotendinous Junction Segmentation in Muscular Ultrasound Images. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2531-2542.	3.0	16
497	Scan Integrity Tests for EDT Compression. IEEE Design and Test, 2020, 37, 21-26.	1.2	O
498	An Approach for Radicalization Detection Based on Emotion Signals and Semantic Similarity. IEEE Access, 2020, 8, 17877-17891.	4.2	36
499	Analysis and Comparison of the Radiated Electromagnetic Interference Generated by Power Converters With Si MOSFETs and GaN HEMTs. IEEE Transactions on Power Electronics, 2020, 35, 8050-8062.	7.9	29
500	A Grant-Free Random Access Scheme for M2M Communication in Massive MIMO Systems. IEEE Internet of Things Journal, 2020, 7, 3602-3613.	8.7	26
501	Phyto-synthesis of CuO nano-particles and its catalytic application in C-S bond formation. Materials Letters, 2020, 266, 127486.	2.6	12
503	A novel antimicrobial electrochemical glucose biosensor based on silver–Prussian blueâ€modified TiO 2 nanotube arrays. Medical Devices & Sensors, 2020, 3, e10061.	2.7	3
504	Correlation Self-Expression Shrunk for Subspace Clustering. IEEE Access, 2020, 8, 16595-16605.	4.2	4
505	Study of acidosis, neutral and alkalosis media effects on the behaviour of activated carbon threads decorated by zinc oxide using extended gate FET for glucose sensor application. Materials Science in Semiconductor Processing, 2020, 108, 104911.	4.0	11
506	Review of metal oxide semiconductors-based thin-film transistors for point-of-care sensor applications. Journal of Information Display, 2020, 21, 203-210.	4.0	38
507	Nanostructured Metal-Oxide Electrode Materials for Water Purification. Engineering Materials, 2020,	0.6	1
508	CuO/MoS2 nanocomposites for rapid and high sensitive non-enzymatic glucose sensors. Ceramics International, 2020, 46, 16879-16885.	4.8	28
509	Nonenzymatic Glucose Sensing Using Ni ₆₀ Nb ₄₀ Nanoglass. ACS Nano, 2020, 14, 5543-5552.	14.6	55
510	Spectrum Sharing in mmWave Cellular Networks Using Clustering Algorithms. IEEE/ACM Transactions on Networking, 2020, 28, 1378-1390.	3.8	2
511	Electrochemical Biosensors for Determination of Colorectal Tumor Biomarkers. Micromachines, 2020, 11, 411.	2.9	45
512	Eigen Vector Method with Swarm and Non Swarm Intelligence Techniques for Epileptic Seizure Classification. , 2020, , .		2

#	Article	IF	CITATIONS
513	Highâ€speed energy efficient process, voltage and temperature tolerant hybrid multiâ€threshold 4:2 compressor design in CNFET technology. IET Circuits, Devices and Systems, 2020, 14, 357-368.	1.4	6
514	Electrospun CuO/PVA fibers: Effects of heat treatment on the structural, surface morphology, optical and magnetic properties. Materials Science in Semiconductor Processing, 2020, 115, 105121.	4.0	4
515	CMOS MEMS Thermal Flow Sensor With Enhanced Sensitivity for Heating, Ventilation, and Air Conditioning Application. IEEE Transactions on Industrial Electronics, 2021, 68, 4468-4476.	7.9	28
516	Achieving Accountable and Efficient Data Sharing in Industrial Internet of Things. IEEE Transactions on Industrial Informatics, 2021, 17, 1416-1427.	11.3	30
517	Tannic acid-modified tin oxide nanoparticle and aromatic polyamide: from synthesis to their application for preparation of safe p-PVC. Polymer Bulletin, 2021, 78, 1331-1352.	3.3	1
518	Dynamic Prediction of Body Temperature Monitoring Equipment. IEEE Sensors Journal, 2021, 21, 7291-7297.	4.7	0
519	Effect of composition and calcination on the enzymeless glucose detection of Cu-Ag bimetallic nanocomposites. Materials Today Communications, 2021, 26, 101815.	1.9	8
520	Recent developments in biosensors for healthcare and biomedical applications: A review. Measurement: Journal of the International Measurement Confederation, 2021, 167, 108293.	5.0	130
521	Direct growth of flower like-structured CuFe oxide on graphene supported nickel foam as an effective sensor for glucose determination. Materials Science and Engineering C, 2021, 118, 111510.	7.3	17
522	High-performance field-effect transistor glucose biosensors based on bimetallic Ni/Cu metal-organic frameworks. Biosensors and Bioelectronics, 2021, 171, 112736.	10.1	86
523	A Highly Sensitive Nonenzymatic Glucose Sensor Based on Carbon Electrode Amplified with Pd \times Cu y Catalyst. Electroanalysis, 2021, 33, 820-830.	2.9	3
524	Electrochemical operational principles and analytical performance of Pd-based amperometric nanobiosensors. Analyst, The, 2021, 146, 4873-4882.	3.5	6
525	Ni/NiO/Ni–B/graphene heterostructure-modified electrodes and their electrochemical activities towards acetaminophen. Analytical Methods, 2021, 13, 3187-3195.	2.7	6
526	Biosensors: Biosensors With Signal Amplification. , 2021, , .		0
527	Electrocatalytic Oxidation of Glucose on Boron and Nitrogen Codoped Graphene Quantum Dot Electrodes in Alkali Media. Catalysts, 2021, 11, 101.	3.5	15
528	Functionalized Magnetic Nanoparticle (MNPs)-based Biosensors. , 2021, , 324-346.		0
529	A novel site-induced biomolecule anchoring strategy based on solid superacid ZrO2/SO42- for fabricating label-free IgG electrochemical immunosensors. New Journal of Chemistry, 2021, 45, 10850-10856.	2.8	2
530	Recent advancements in coinage metal nanostructures and bio-applications. Materials Advances, 2021, 2, 1507-1529.	5.4	22

#	Article	IF	CITATIONS
531	A Late-Model Optical Biochemical Sensor Based on OTS for Methane Gas and Glucose Solution Concentration Detection. IEEE Sensors Journal, 2021, 21, 21465-21472.	4.7	20
532	Rapid and Selective Biomarker Detection with Conductometric Sensors. Small, 2021, 17, e2005582.	10.0	20
533	Recent advances and perspectives of two-dimensional Ti-based electrodes for electrochemical energy storage. Sustainable Energy and Fuels, 2021, 5, 5061-5113.	4.9	11
534	Nickel Cobalt Oxide Nanoneedles for Electrochromic Glucose Sensors. ACS Applied Nano Materials, 2021, 4, 2143-2152.	5.0	54
535	Metal oxide based non-enzymatic electrochemical sensors for glucose detection. Electrochimica Acta, 2021, 370, 137744.	5.2	184
536	2D metal azolate framework as nanozyme for amperometric detection of glucose at physiological pH and alkaline medium. Mikrochimica Acta, 2021, 188, 77.	5.0	24
537	Structural and Electrical Properties of Glucose Biosensors Based on ZnO and ZnO-CuO Nanostructures Current Nanoscience, 2021, 17, .	1.2	1
538	Performance enhancement of surface plasmon resonance sensor based on Ag-TiO2-MAPbX3-graphene for the detection of glucose in water. Optical and Quantum Electronics, 2021, 53, 1.	3.3	13
539	Electrochemical Detection of Glucose Molecules Using Laser-Induced Graphene Sensors: A Review. Sensors, 2021, 21, 2818.	3.8	14
540	Enzyme-based amperometric biosensors for malic acid – A review. Analytica Chimica Acta, 2021, 1156, 338218.	5.4	24
541	Glucose Detection of 4-Mercaptophenylboronic Acid-Immobilized Gold-Silver Core-Shell Assembled Silica Nanostructure by Surface Enhanced Raman Scattering. Nanomaterials, 2021, 11, 948.	4.1	11
542	Simple solvothermal approach to highly nanostructured hematite thin films. Canadian Journal of Chemistry, 2021, 99, 355-361.	1.1	2
543	Sensitivity control of dopamine detection by conducting poly(thionine). Electrochemistry Communications, 2021, 125, 107005.	4.7	20
544	An Overview on Recent Progress of Metal Oxide/Graphene/CNTs-Based Nanobiosensors. Nanoscale Research Letters, 2021, 16, 65.	5.7	37
545	Development of Transition Metal Oxide Film Coated Platforms for Aptamer Based Electrochemical Detection of Ochratoxin A. Journal of the Electrochemical Society, 2021, 168, 057516.	2.9	2
546	A review on recent advances in hierarchically porous metal and metal oxide nanostructures as electrode materials for supercapacitors and non-enzymatic glucose sensors. Journal of Saudi Chemical Society, 2021, 25, 101228.	5.2	42
547	Dual Transduction of H2O2 Detection Using ZnO/Laser-Induced Graphene Composites. Chemosensors, 2021, 9, 102.	3.6	13
548	Immobilizing Redox Enzyme on Amino Functional Group-Integrated Tailor-Made Polyester Textile: High Loading, Stability, and Application in a Bio-Fenton System. ACS Sustainable Chemistry and Engineering, 2021, 9, 8879-8894.	6.7	7

#	Article	IF	CITATIONS
549	Modified electrodes for electrochemical determination of metronidazole in drug formulations and biological samples: An overview. Microchemical Journal, 2021, 165, 106151.	4.5	21
550	Novel SWCNTs-mesoporous silicon nanocomposite as efficient non-enzymatic glucose biosensor. Applied Surface Science, 2021, 552, 149477.	6.1	56
551	Nanocoral Ag for nonenzymatic glucose detection at extremely low operational potential. Materials Today Communications, 2021, 27, 102261.	1.9	7
552	Study of the Glucose Sensor Based on Potentiometric Non-Enzymatic Nafion/CZO Thin Film. IEEE Sensors Journal, 2021, 21, 15926-15934.	4.7	9
553	Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. Sensors, 2021, 21, 4672.	3.8	148
554	MoS ₂ Nanosheet-Modified NiO Layers on a Conducting Carbon Paper for Glucose Sensing. ACS Applied Nano Materials, 2021, 4, 6609-6619.	5.0	18
555	Advances in Biosensors and Diagnostic Technologies Using Nanostructures and Nanomaterials. Advanced Functional Materials, 2021, 31, 2104126.	14.9	77
556	Non-enzymatic andÂrapid detection of glucose on PVA-CuO thin film using ARDUINO UNO based capacitance measurement unit. Biomedical Microdevices, 2021, 23, 36.	2.8	9
557	Copper Nanoparticles Decorated Halloysite Nanotube/Polyaniline Composites for High Performance Non-Enzymatic Glucose Sensor. Journal of the Electrochemical Society, 2021, 168, 086504.	2.9	6
558	Facile synthesis of Cu/Co-ZIF nanoarrays for non-enzymatic glucose detection. Nanotechnology, 2021, 32, 475508.	2.6	4
559	Nanostructured Titanium Dioxide Surfaces for Electrochemical Biosensing. Sensors, 2021, 21, 6167.	3.8	33
560	Glucose Detection Devices and Methods Based on Metal–Organic Frameworks and Related Materials. Advanced Functional Materials, 2021, 31, 2106023.	14.9	78
561	Fourthâ€generation glucose sensors composed of copper nanostructures for diabetes management: A critical review. Bioengineering and Translational Medicine, 2022, 7, e10248.	7.1	32
562	Oxygen vacancies boosted vanadium doped ZnO nanostructures-based voltage-switchable binary biosensor. Nanotechnology, 2021, 33, .	2.6	2
563	Fabrication strategies and surface tuning of hierarchical gold nanostructures for electrochemical detection and removal of toxic pollutants. Journal of Hazardous Materials, 2021, 420, 126648.	12.4	59
564	Electrodes for Cell Sensors Interfacing. , 2022, , 569-600.		0
565	Organobase assisted synthesis of Co(OH)2 nanosheets enriched with oxygen vacancies for nonenzymatic glucose sensing at physiological pH. Journal of Industrial and Engineering Chemistry, 2021, 103, 165-174.	5.8	7
566	ITO electrode modified with Pt nanodendrites-decorated ZnO nanorods for enzymatic glucose sensor. Journal of Solid State Electrochemistry, 2021, 25, 1065-1072.	2.5	14

#	Article	IF	CITATIONS
567	Probing blood plasma samples for the detection of diabetes using SERS aided by PCA and LDA multivariate data analyses. New Journal of Chemistry, 2021, 45, 2670-2682.	2.8	14
568	Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC Advances, 2021, 11, 24722-24746.	3.6	88
569	Plant-based green synthesis and applications of cuprous oxide nanoparticles. , 2021, , 201-208.		3
570	Voltammetric bienzymatic sensor for sucrose determination in honey. Methods and Objects of Chemical Analysis, 2021, 16, 61-70.	0.4	1
571	One-pot scalable synthesis of rGO/AuNPs nanocomposite and its application in enzymatic glucose biosensor. Nanocomposites, 2021, 7, 44-52.	4.2	18
572	Cu-nanoparticle-decorated sulfur-based polymers for highly sensitive nonenzymatic glucose detection. New Journal of Chemistry, 2021, 45, 16205-16212.	2.8	2
573	Nanosized Materials. Monographs in Electrochemistry, 2014, , 139-181.	0.2	1
574	Applications of graphene-based sensors for biomedical industries. Comprehensive Analytical Chemistry, 2020, 91, 201-233.	1.3	8
575	Electrocatalytic activity enhancement of Au NPs-TiO2 electrode via a facile redistribution process towards the non-enzymatic glucose sensors. Sensors and Actuators B: Chemical, 2020, 319, 128279.	7.8	29
576	Surface Engineering of Three-Dimensional-like Hybrid AB ₂ O ₄ (AB = Zn, Co, and) Tj ETQ Electrocatalyst for Clioquinol Detection. ACS Applied Electronic Materials, 2021, 3, 362-372.)q1 1 0.78 4.3	34314 rgBT 53
577	Facile synthesis of CuCo2O4@NiCo2O4 hybrid nanowire arrays on carbon cloth for a multicomponent non-enzymatic glucose sensor. Nanotechnology, 2020, 31, 495708.	2.6	11
578	Zinc Oxide Nanorods and Their Application to Intracellular Glucose Measurements. , 2012, , 120-140.		1
579	SÃntesis de CeO2: propiedades del sol-gel y caracterización de las nanopartÃculas obtenidas. TecnologÃa En Marcha, 2014, 27, 62.	0.1	2
580	Facile Synthesis of NiO/CuO/reduced Graphene Oxide Nanocomposites for Use in Enzyme-free Glucose Sensing. International Journal of Electrochemical Science, 2016, 11, 6747-6760.	1.3	19
581	Breath Acetone-Based Non-Invasive Detection of Blood Glucose Levels. International Journal on Smart Sensing and Intelligent Systems, 2015, 8, 1244-1260.	0.7	14
582	Glucose Sensors Based on Core@Shell Magnetic Nanomaterials and Their Application in Diabetes Management: A Review. Current Pharmaceutical Design, 2015, 21, 5359-5368.	1.9	9
584	In Situ Quantification of Glucose Concentration in Airway Surface Liquid With Functionalized ZnO Nanorod-Coated Microelectrodes. Journal of Analytical & Bioanalytical Techniques, 2013, S7, .	0.6	4
585	Electrodeposition of Gold on Fluorine-Doped Tin Oxide: Characterization and Application for Catalytic Oxidation of Nitrite. Bulletin of the Korean Chemical Society, 2014, 35, 2072-2076.	1.9	22

#	Article	IF	CITATIONS
587	Quantitative evaluation of blood glucose concentration using impedance sensing devices. Journal of Electrical Bioimpedance, 2013, 4, 73-77.	0.9	13
588	Conductivity and LPG sensing behavior of polyaniline/NiO2 nano composites thin films. Ferroelectrics, 2021, 582, 180-186.	0.6	2
589	Non-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes. Biosensors, 2021, 11, 409.	4.7	14
590	Fabrication of stable electrospun blended chitosan-poly(vinyl alcohol) nanofibers for designing naked-eye colorimetric glucose biosensor based on GOx/HRP. International Journal of Biological Macromolecules, 2021, 192, 999-1012.	7.5	19
591	Layer-by-Layer Technology and Its Implications in the Field of Glucose Nanobiosensors. Advances in Chemical and Materials Engineering Book Series, 2015, , 400-437.	0.3	0
592	CuO-Modified Cu Electrodes for Glucose Sensing. Lecture Notes in Electrical Engineering, 2018, , 90-96.	0.4	0
595	Electrodes for Cell Sensors Interfacing. , 2020, , 1-33.		0
596	Nanomaterial for Biosensors. , 2020, , 35-61.		0
597	Layered Si–Ti oxide thin films with tailored electrical and optical properties by catalytic tandem MLD-ALD. RSC Advances, 2021, 11, 35099-35109.	3. 6	1
598	Role of Nanostructures in Development of Energy-Efficient Electrochemical Non-enzymatic Glucose Sensors. Springer Proceedings in Energy, 2020, , 199-207.	0.3	0
599	Application of Metal Oxides Electrodes. Engineering Materials, 2020, , 127-149.	0.6	0
600	Investigation of Sensitive Structures of Nanostructured Silicon – Melanin. Electronic and Acoustic Engineering, 2020, 3, 5-9.	0.0	0
601	Thermoplastic Electrode (TPE)â€based Enzymatic Glucose Sensor Using Polycaprolactoneâ€graphite Composites. Electroanalysis, 2022, 34, 1869-1876.	2.9	4
603	Electrodeposited CuO thin film for wide linear range photoelectrochemical glucose sensing. Applied Surface Science, 2022, 576, 151822.	6.1	14
604	Synthesis of hierarchical hetero-composite of graphene foam/ \hat{l} ±-Fe2O3 nanowires and its application on glucose biosensors. Journal of Alloys and Compounds, 2022, 895, 162688.	5 . 5	20
605	Strong Structural and Electronic Binding of Bovine Serum Albumin to ZnO via Specific Amino Acid Residues and Zinc Atoms. ChemPhysChem, 2022, 23, e202100639.	2.1	5
606	Mesoporous Silica-Based Metal Oxide Electrode for a Nonenzymatic Glucose Sensor at a Physiological pH. Langmuir, 2021, 37, 13559-13566.	3.5	4
607	Nanomaterial Gas Sensors for Biosensing Applications: A Review. Recent Patents on Nanotechnology, 2023, 17, 104-118.	1.3	5

#	Article	IF	CITATIONS
608	Superior Non-Invasive Glucose Sensor Using Bimetallic CuNi Nanospecies Coated Mesoporous Carbon. Biosensors, 2021, 11, 463.	4.7	8
609	Structural, optical and photocatalytic properties of mesoporous CuO nanoparticles with tunable size and different morphologies. RSC Advances, 2021, 11, 37801-37813.	3.6	18
610	A versatile nanocomposite made of Cd/Cu, chlorophyll and PVA matrix utilized for photocatalytic degradation of the hazardous chemicals and pathogens for wastewater treatment. Journal of Molecular Structure, 2022, 1256, 132456.	3.6	10
611	Exploring the potential of metal oxides for biomedical applications. , 2022, , 183-203.		2
612	Glucose biosensors in clinical practice: principles, limits and perspectives of currently used devices. Theranostics, 2022, 12, 493-511.	10.0	52
613	ZnO Transducers for Photoluminescence-Based Biosensors: A Review. Chemosensors, 2022, 10, 39.	3.6	12
614	Metal oxidesbased microfluidic biosensing. , 2022, , 233-263.		0
615	Diamond Nanowire Transistor with High Current Capability. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100622.	1.8	1
616	Introduction to metal oxide-based biosensing. , 2022, , 169-182.		1
617	Recent progress on titanium oxide nanostructures for biosensing applications. , 2022, , 437-470.		1
618	Nonâ€Enzymatic Electrochemical Biosensing of Glucose Using Nanocomposites of Polyaniline Nanofibers and Silver. ChemistrySelect, 2022, 7, .	1.5	4
619	Metal oxides for detection of cardiac biomarkers. , 2022, , 353-367.		0
620	Revisiting Some Recently Developed Conducting Polymer@Metal Oxide Nanostructures for Electrochemical Sensing of Vital Biomolecules: A Review. Journal of Analysis and Testing, 2022, 6, 274-295.	5.1	24
621	Metal Oxide-Based Composites in Nonenzymatic Electrochemical Glucose Sensors. Industrial & Engineering Chemistry Research, 2021, 60, 18195-18217.	3.7	30
622	A sensitive non-enzymatic glucose sensor based on MgO entangled nanosheets decorated with CdS nanoparticles: Experimental and DFT study. Journal of Molecular Liquids, 2022, 360, 119366.	4.9	10
625	Nanomaterial-based optical- and electrochemical-biosensors for urine glucose detection: A comprehensive review. , 2022, 1, 100016.		17
626	Prospects of Biosensors Based on Functionalized and Nanostructured Solitary Materials: Detection of Viral Infections and Other Risks. ACS Omega, 2022, 7, 22073-22088.	3.5	12
627	Controlled growth of nanocomposite thin layer based on Zn-Doped MgO nanoparticles through Sol-Gel technique for biosensor applications. Inorganic Chemistry Communication, 2022, 142, 109702.	3.9	16

#	Article	IF	CITATIONS
628	Mn/Cu Nanoparticles Modified Carbon Paste Electrode as a Novel Electrochemical Sensor for Nicotine Detection. Electroanalysis, 2023, 35, .	2.9	3
629	Platinum nanoparticles modified electrode for glucose sensor. Materials Today: Proceedings, 2022, 66, 2972-2976.	1.8	2
630	Hollow nanocages for electrochemical glucose sensing: A comprehensive review. Journal of Molecular Structure, 2022, 1268, 133646.	3.6	6
631	Interaction of Glucose with CuO: Glucose sensing platform. , 2020, , .		0
632	APPLICATION OF NANOMATERIALS (SPECIALLY STRUCTURED GRAPHITE AND GOLD NANOPARTICLES) IN EXPRESS-DIAGNOSTICS OF GLUCOSE CONCENTRATION IN BLOOD. , 2021, 13, 315-328.		0
633	Glucose, Fructose and H2O2 Detection by Microstructured Copper and Cobalt Oxides Electrodeposited onto Glassy Carbon Electrodes using Potentiostatic or Potentiodynamic Methods. International Journal of Electrochemical Science, 2022, 17, 220911.	1.3	1
634	A comprehensive review on zinc oxide bulk and nano-structured materials for ionizing radiation detection and measurement applications. Materials Science in Semiconductor Processing, 2022, 151, 107040.	4.0	6
635	Cellulose microfluidic pH boosting on copper oxide non-enzymatic glucose sensor strip for neutral pH samples. Talanta, 2023, 253, 123926.	5.5	6
636	One-Step Synthesis of Copper-Platinum Nanoparticles Modified Electrode for Non-Enzymatic Salivary Glucose Detection. SSRN Electronic Journal, 0, , .	0.4	1
637	Synthesis and validation of ultrasensitive stripping voltammetric sensor based on polypyrrole@ZnO/Fe ₃ O ₄ core–shell nanostructure for picomolar detection of artesunate and dopamine drugs. Analytical Methods, 2022, 14, 3739-3750.	2.7	2
638	Nonenzymatic Sweat-Based Glucose Sensing by Flower-like Au Nanostructures/Graphene Oxide. ACS Applied Nano Materials, 2022, 5, 13361-13372.	5.0	8
639	Fabrication and characterization of an electrochemical glucose biosensor using zinc oxide nanoparticles and soy protein isolate film support matrix. MRS Communications, 2022, 12, 930-936.	1.8	2
640	Imprinted-Zeolite-X-Based Sensor for Non-Enzymatic Detection of Blood Glucose by Potentiometry. ChemEngineering, 2022, 6, 71.	2.4	0
641	Photocatalytic Decomposition of Rhodamine B Dye Using Copper Oxide Nanoparticles Prepared from Copper Chalcone Complexes. International Journal of Nanoscience, 2022, 21, .	0.7	1
642	Nanostructured Nickelâ€based Nonâ€enzymatic Electrochemical Glucose Sensors. Chemistry - an Asian Journal, 2022, 17, .	3.3	8
643	Synthesis and structural characterization of nano-layers prepared from Al-Ni-Cr alloy for reflectance coatings. AIP Conference Proceedings, 2022, , .	0.4	0
644	An Overview of Iron Oxide Nanoparticles: Characterisation, Synthesis, and Potential Applications. Nanosistemi, Nanomateriali, Nanotehnologii, 2022, 20, .	0.3	0
645	Hierarchical Structures Composed of Cu(OH) ₂ Nanograss within Directional Microporous Cu for Glucose Sensing. Langmuir, 2022, 38, 13659-13667.	3.5	4

#	Article	IF	CITATIONS
646	Copper oxide nanostructured thin films processed by SILAR for optoelectronic applications. RSC Advances, 2022, 12, 32853-32884.	3.6	9
647	A Concise and Systematic Review on Non-Invasive Glucose Monitoring for Potential Diabetes Management. Biosensors, 2022, 12, 965.	4.7	13
648	Metallic Structures Based on Zinc Oxide Film for Enzyme Biorecognition. Micromachines, 2022, 13, 1997.	2.9	0
649	CuO Nanowires Fabricated by Thermal Oxidation of Cu Foils towards Electrochemical Detection of Glucose. Micromachines, 2022, 13, 2010.	2.9	1
650	A sensitive non-enzymatic electrochemical glucose sensor based on a ZnO/Co ₃ O ₄ /reduced graphene oxide nanocomposite. Sensors & Diagnostics, 2023, 2, 347-360.	3.8	7
651	One-step synthesis of copper-platinum nanoparticles modified electrode for non-enzymatic salivary glucose detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658, 130672.	4.7	4
652	Highly Selective and Sensitive Non-enzymatic Glucose Biosensor Based on Polypyrrole-Borophene Nanocomposite. Sakarya University Journal of Science, 0, , .	0.7	0
653	Saliva Sensors. Armenian Journal of Physics, 0, , 131-140.	0.0	0
654	Progress of Enzymatic and Non-Enzymatic Electrochemical Glucose Biosensor Based on Nanomaterial-Modified Electrode. Biosensors, 2022, 12, 1136.	4.7	29
655	Surface Interactions of Erythrose on Assorted Metal Oxides: A Solid-State NMR Study. Journal of Physical Chemistry C, 2023, 127, 1430-1440.	3.1	0
656	Investigation of optical and electrical properties of copper oxide - polyvinyl alcohol nanocomposites for solar cell applications. Arabian Journal of Chemistry, 2023, 16, 104535.	4.9	9
657	Development of glucose sensor based on cobalt and nickel doped ceria nanostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 289, 116231.	3.5	5
658	Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications. Biosensors, 2023, 13, 40.	4.7	44
659	Nanocomposites for Improved Non-enzymatic Glucose Biosensing. Lecture Notes in Networks and Systems, 2023, , 232-239.	0.7	0
660	An efficient electrochemical sensor based on ZnO/Co3O4 nanocomposite modified carbon paste electrode for the sensitive detection of hydroquinone and resorcinol. Inorganic Chemistry Communication, 2023, 152, 110656.	3.9	13
661	Electrochemical sensing of dual biomolecules in live cells and whole blood samples: A flexible gold wire-modified copper-organic framework-based hybrid composite. Bioelectrochemistry, 2023, 152, 108434.	4.6	3
662	Procedure to Obtain Cu2O Isolate Films, Structural, Electrical, and Morphological Characterization, and Its Use as an Electrical Isolator to Build a New Tube Furnace. Materials, 2023, 16, 1361.	2.9	0
663	Surface specific adsorption of glucose to ZnO. Physical Chemistry Chemical Physics, 2023, 25, 7805-7814.	2.8	1

#	Article	IF	CITATIONS
664	Glucose Monitoring Techniques and Their Calibration., 2023, , 1-23.		0
665	One-pot preparation of NiMn layered double hydroxide-MOF material for highly sensitive electrochemical sensing of glucose. Journal of Electroanalytical Chemistry, 2023, 933, 117276.	3.8	23
667	<i>In silico</i> study of interaction of (ZnO) ₁₂ nanocluster to glucose oxidase-FAD in absence and presence of glucose. Journal of Biomolecular Structure and Dynamics, 2023, 41, 15234-15242.	3.5	1
668	The Enzymatic Doped/Undoped Poly-Silicon Nanowire Sensor for Glucose Concentration Measurement. Sensors, 2023, 23, 3166.	3.8	0
670	CuO/Cu/rGO nanocomposite anodic titania nanotubes for boosted non-enzymatic glucose biosensors. New Journal of Chemistry, 2023, 47, 7890-7902.	2.8	6
671	Carrier Localization on the Nanometerâ€Scale limits Transport in Metal Oxide Photoabsorbers. Advanced Functional Materials, 2023, 33, .	14.9	7
672	Biomaterial-mediated strategies for accurate and convenient diagnosis, and effective treatment of diabetes: advantages, current progress and future perspectives. Journal of Materials Chemistry B, O, , .	5 . 8	1
673	Silver nanoparticles doped polymethylmethacrylate [Ag/PMMA] nanocomposite as smart material for non-enzymatic glucose sensor. Journal of Dispersion Science and Technology, 0, , 1-9.	2.4	1
674	Density Functional Theory Investigation of Glucose Oxidation on Au Surfaces. Chemistry Letters, 2023, 52, 361-364.	1.3	0
675	Synthesis of Ni–TiO ₂ Nanocomposites as Enzyme–Less, Amperometric Sensors for the Electrooxidation of Glucose. , 2023, 2, 026502.		0
676	Recent Progress in Diboronic-Acid-Based Glucose Sensors. Biosensors, 2023, 13, 618.	4.7	3
677	Applications of trimetallic nanomaterials as Non-Enzymatic glucose sensors. Drug Development and Industrial Pharmacy, 2023, 49, 393-404.	2.0	0
678	Non-enzymatic glucose sensors composed of NFS-CuO/Ag/SiNPs based composite material with high performance. Microchemical Journal, 2023, 192, 108959.	4.5	1
679	Self-powered triboelectric sensor with N-doped graphene quantum dots decorated polyaniline layer for non-invasive glucose monitoring in human sweat. Nano Energy, 2023, 112, 108505.	16.0	12
680	Nanomaterials for Biosensing Applications in the Medical Field., 2023, , 313-334.		0
681	An Interference Study with Different Working Potentials for an Amperometric Glucose Sensor. International Journal of Electrochemical Science, 2015, 10, 2755-2763.	1.3	1
682	Characteristics of a Poly(thionine) Modified Glassy Carbon Electrode and the Detection of Dopamine and Uric acid. International Journal of Electrochemical Science, 2013, 8, 7806-7815.	1.3	9
683	Amperometric and Impedimetric H2O2 Biosensor Based on Horseradish Peroxidase Covalently Immobilized at Ruthenium Oxide Nanoparticles Modified Electrode. International Journal of Electrochemical Science, 2011, 6, 2688-2709.	1.3	18

#	ARTICLE	IF	Citations
685	Development of nanozyme based sensors as diagnostic tools in clinic applications: a review. Journal of Materials Chemistry B, 2023, 11, 6762-6781.	5.8	6
686	Design of biosensor based on graphene oxide/WO3/polyvinylidene fluoride. Optical and Quantum Electronics, 2023, 55, .	3.3	2
687	Solid-state reaction process for metal oxide nanostructures. , 2023, , 77-94.		0
688	Glucose Biosensor: Basic Principles, Evolution and Practical Application. , 0, 55, 193-198.		O
689	Conductive Biofilm Propolis-Based: Electrochemical Determination of Hydroxymethylfurfural in Honey. Food Analytical Methods, 0, , .	2.6	0
690	Non-enzymatic electrochemical sensor for wearable monitoring of sweat biomarkers: A mini-review. Current Research in Biotechnology, 2023, 6, 100143.	3.7	4
691	Recent Development on Sensing Strategies for Small Molecules Detections. Journal of Fluorescence, $0, , .$	2. 5	3
692	Non-enzymatic amperometric glucose sensing on CuO/mesoporous TiO ₂ modified glassy carbon electrode. RSC Advances, 2023, 13, 26275-26286.	3.6	1
693	High performance nonenzymatic electrochemical sensors <i>via</i> thermally grown Cu native oxides (CuNOx) towards sweat glucose monitoring. Analyst, The, 0, , .	3.5	1
694	Electroanalytical Study of SSeNPs–CGA–FTO Electrochemical Sensor Towards the Detection of H2O2. Journal of Electronic Materials, 2023, 52, 6800-6814.	2.2	0
695	Road Map of Semiconductor Metal-Oxide-Based Sensors: A Review. Sensors, 2023, 23, 6849.	3.8	1
696	Glucose Monitoring Techniques and Their Calibration. , 2023, , 1855-1877.		0
697	Incorporation of nickel particles into a polyaniline thin film for non-enzymatic glucose sensing in alkaline medium. Journal of Applied Electrochemistry, 2024, 54, 851-863.	2.9	0
699	Semiconducting Metal Oxides: Microstructure and Sensing Performance., 2023, , 149-187.		0
700	Facile synthesis of NaTaO3 nanoparticles and fabrication of nanostructured NaTaO3 for detection of dopamine. Inorganic Chemistry Communication, 2023, 158, 111427.	3.9	0
701	Nonlinear Optical Properties of Metal Oxide Nanostructures. Progress in Optical Science and Photonics, 2023, , 133-158.	0.5	0
702	Hierarchical & Ditra-porous copper cobaltite flakes with honeycomb-like physiognomies for highly efficient non-enzymatic glucose sensing. New Journal of Chemistry, 0, , .	2.8	0
703	Composites of Co-Ti-Mn substituted M-type barium hexaferrite and CuO: Structural, optical, electromagnetic and X-band absorption for commercial applications. Journal of Magnetism and Magnetic Materials, 2023, 588, 171402.	2.3	O

#	Article	IF	CITATIONS
704	Investigation of optical and structural properties of copper oxide nanoparticles synthesized via green method using Bougainvillea leaves extract. Nano Structures Nano Objects, 2023, 36, 101051.	3.5	1
705	Advances in nanostructured material-based non-enzymatic electrochemical glucose sensors. Analytical Methods, 2023, 15, 6344-6361.	2.7	0
706	New Au/chitosan nanocomposite modified carbon paste sensor for voltammetric detection of nicotine. Scientific Reports, 2023, 13 , .	3.3	0
707	Metal Oxide Nanostructure for Biomedical Applications. , 2024, , 43-69.		0
708	Non-enzymatic glucose electrochemical sensor based on nitrogen-doped graphene modified with polyaniline and Fe3O4@MIL-101-NH2 nano framework. Inorganic Chemistry Communication, 2024, 159, 111812.	3.9	0
709	Simultaneous pH and glucose sensing and its relation in a non-enzymatic glucose sensor. MRS Communications, 2024, 14, 96-102.	1.8	0
711	Metal oxide nanomaterials based electrochemical and optical biosensors for biomedical applications: Recent advances and future prospectives. Environmental Research, 2024, 247, 118002.	7.5	0
712	Wearable Electrochemical Biosensors for Glucose Monitoring. , 2024, , 35-66.		0
713	Safety, health, and regulation issues of nanostructured biosensors. , 2024, , 525-539.		0
714	Metal oxides for biophotonics. , 2024, , 443-475.		0
715	Developments in inorganic and organic based nanostructured materials for electrochemical biosensing applications. , 2024, , 37-56.		0
716	Development of AlGaN/GaN MOSHEMT biosensors: State-of-the-art review and future directions. Materials Science in Semiconductor Processing, 2024, 174, 108225.	4.0	0
717	A Pathway to Optimal Multivariate Synthesis of Fe2O3-CuO Bimetal Oxide Hybrid Nanoparticles: Transformation Through Mathematical Modelling. Jom, 0, , .	1.9	0
718	Ultraâ€Sensitive and Stable Multiplexed Biosensors Array in Fully Printed and Integrated Platforms for Reliable Perspiration Analysis. Advanced Materials, 0, , .	21.0	0