CITATION REPORT List of articles citing

DOI: 10.3109/15376516.2010.485227 Toxicology Mechanisms and Methods, 2010, 20, 279-86.

Source: https://exaly.com/paper-pdf/49451705/citation-report.pdf

Version: 2024-04-19

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
48	Persistent polar depletion of stratospheric ozone and emergent mechanisms of ultraviolet radiation-mediated health dysregulation. <i>Reviews on Environmental Health</i> , 2012 , 27, 103-16	3.8	12
47	The trouble with salmon: relating pollutant exposure to toxic effect in species with transformational life histories and lengthy migrations. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2013 , 70, 1252-1264	2.4	17
46	Sulforaphane inhibits CYP1A1 activity and promotes genotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in vitro. <i>Toxicology and Applied Pharmacology</i> , 2013 , 269, 226-32	4.6	1
45	Neurotoxicity of neem commercial formulation (Azadirachta indica A. Juss) in adult zebrafish (Danio rerio). <i>Environmental Toxicology and Pharmacology</i> , 2013 , 36, 1276-82	5.8	16
44	Assessment of energetic costs of AhR activation by Ehaphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis. <i>Toxicology and Applied Pharmacology</i> , 2013 , 271, 86-94	4.6	3
43	Molecular characterization of the aryl hydrocarbon receptor (AhR) pathway in goldfish (Carassius auratus) exposure to TCDD: the mRNA and protein levels. <i>Fish and Shellfish Immunology</i> , 2013 , 35, 469-7	7 \$ ·3	11
42	The AhR twist: ligand-dependent AhR signaling and pharmaco-toxicological implications. <i>Drug Discovery Today</i> , 2013 , 18, 479-86	8.8	86
41	GFP transgenic medaka (Oryzias latipes) under the inducible cyp1a promoter provide a sensitive and convenient biological indicator for the presence of TCDD and other persistent organic chemicals. <i>PLoS ONE</i> , 2013 , 8, e64334	3.7	23
40	Detoxification. 2014 , 87-98		2
39	Bioaccumulation, biotransformation, and toxicity of BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47 in early life-stages of zebrafish (Danio rerio). <i>Environmental Science & Environmental Science & Environmen</i>	10.3	56
38	Sodium fluoride affects zebrafish behaviour and alters mRNA expressions of biomarker genes in the brain: Role of Nrf2/Keap1. <i>Environmental Toxicology and Pharmacology</i> , 2015 , 40, 352-9	5.8	29
37	Effects of pharmaceuticals present in aquatic environment on Phase I metabolism in fish. <i>Environmental Toxicology and Pharmacology</i> , 2015 , 40, 430-44	5.8	77
36	Sodium fluoride generates ROS and alters transcription of genes for xenobiotic metabolizing enzymes in adult zebrafish (Danio rerio) liver: expression pattern of Nrf2/Keap1 (INrf2). <i>Toxicology Mechanisms and Methods</i> , 2015 , 25, 364-73	3.6	28
35	Autism genes are selectively targeted by environmental pollutants including pesticides, heavy metals, bisphenol A, phthalates and many others in food, cosmetics or household products. <i>Neurochemistry International</i> , 2016 ,	4.4	55
34	Effects of diluted bitumen exposure on juvenile sockeye salmon: From cells to performance. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 354-360	3.8	39
33	Sex-dependent effects of subacute mercuric chloride exposure on histology, antioxidant status and immune-related gene expression in the liver of adult zebrafish (Danio rerio). <i>Chemosphere</i> , 2017 , 188, 1-9	8.4	31
32	Simvastatin modulates gene expression of key receptors in zebrafish embryos. <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , 2017 , 80, 465-476	3.2	12

(2020-2017)

31	Transcriptional response in rainbow trout (Oncorhynchus mykiss) B cells and thrombocytes following in vivo exposure to benzo[a]pyrene. <i>Environmental Toxicology and Pharmacology</i> , 2017 , 53, 212-218	5.8	10
30	Expression of aryl hydrocarbon receptor-regulated genes and superoxide dismutase in the Antarctic eelpout Pachycara brachycephalum exposed to benzo[a]pyrene. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 1487-1495	3.8	1
29	Hypersensitive assessment of aryl hydrocarbon receptor transcriptional activity using a novel truncated cyp1a promoter in zebrafish. <i>FASEB Journal</i> , 2018 , 32, 2814-2826	0.9	8
28	Transcriptional inhibition of TCDD-mediated induction of cytochrome P450 1A1 and alteration of protein expression in a zebrafish hepatic cell line following the administration of TCDD and Cd. <i>Toxicology Letters</i> , 2018 , 282, 121-135	4.4	9
27	Generation and application of a novel transgenic zebrafish line Tg(cyp1a:mCherry) as an in vivo assay to sensitively monitor PAHs and TCDD in the environment. <i>Journal of Hazardous Materials</i> , 2018 , 344, 723-732	12.8	18
26	Toxicity in Aquatic Environments: The Cocktail Effect. 2018 , 203-234		2
25	Health and environmental effects of persistent organic pollutants. <i>Journal of Molecular Liquids</i> , 2018 , 263, 442-453	6	284
24	Characterization of the Aryl Hydrocarbon Receptor (AhR) Pathway in and Mechanistic Exploration of the Reduced Sensitivity of AhR2a. <i>Environmental Science & Environmental Sci</i>	10.3	3
23	Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. <i>International Journal of Environmental Research and Public Health</i> , 2019 , 16,	4.6	80
22	Application of magnetic composites for the removal of organic pollutants from wastewaters: a mini-review. <i>Materials Today: Proceedings</i> , 2019 , 19, 910-916	1.4	2
21	Self-protective transcriptional alterations in ZF4 cells exposed to Pb(NO) and AgNO. <i>Journal of Biochemical and Molecular Toxicology</i> , 2019 , 33, e22408	3.4	5
20	Transcriptomic analysis of Anabas testudineus and its defensive mechanisms in response to persistent organic pollutants exposure. <i>Science of the Total Environment</i> , 2019 , 669, 621-630	10.2	8
19	Aryl hydrocarbon receptor ligands increase ABC transporter activity and protein expression in killifish (Fundulus heteroclitus) renal proximal tubules. <i>Biological Chemistry</i> , 2019 , 400, 1335-1345	4.5	7
18	Applicability of in vitro methods in evaluating the biotransformation of polycyclic aromatic hydrocarbons (PAHs) in fish: Advances and challenges. <i>Science of the Total Environment</i> , 2019 , 671, 685	-6 ¹⁹ 5 ²	17
17	Immunotoxicity of petroleum hydrocarbons and microplastics alone or in combination to a bivalve species: Synergic impacts and potential toxication mechanisms. <i>Science of the Total Environment</i> , 2020 , 728, 138852	10.2	21
16	The molecular mechanism of AhR-ARNT-XREs signaling pathway in the detoxification response induced by polycyclic aromatic hydrocarbons (PAHs) in clam Ruditapes philippinarum. <i>Environmental Research</i> , 2020 , 183, 109165	7.9	13
15	Effects of diluted bitumen exposure on Atlantic salmon smolts: Molecular and metabolic responses in relation to swimming performance. <i>Aquatic Toxicology</i> , 2020 , 221, 105423	5.1	5
14	Generation and application of a Tg(cyp1a:egfp) transgenic marine medaka (Oryzias melastigma) line as an in vivo assay to sensitively detect dioxin-like compounds in the environment. <i>Journal of Hazardous Materials</i> , 2020 , 391, 122192	12.8	8

Persistent Organic Pollutants (POPs) in Environment and its Health Impact. 2021, 71-91

12	Plant Occurring Flavonoids as Modulators of the Aryl Hydrocarbon Receptor. <i>Molecules</i> , 2021 , 26,	4.8	11
11	Zebrafish as the toxicant screening model: Transgenic and omics approaches. <i>Aquatic Toxicology</i> , 2021 , 234, 105813	5.1	10
10	Autism genes are selectively targeted by environmental pollutants including pesticides, heavy metals, bisphenol A, phthalates and many others in food, cosmetics or household products.		O
9	Multiple Effects of Oil and Its Components in Fish. <i>Marine Biology</i> , 2014 , 3-34		3
8	Molecular characterization of the aryl hydrocarbon receptor 2 gene in black rockfish, Sebastes schlegelii, and its expression patterns upon exposure to benzo[a]pyrene, 2,3,7,8-tetrachlorodibenzo-p-dioxin, and Ehaphthoflavone. <i>Journal of Applied Toxicology</i> , 2021 ,	4.1	
7	Impacts of Human-Induced Pollution on Wild Fish Welfare. Animal Welfare, 2020, 487-507	1	
6	Effect of polyaromatic hydrocarbons on cellular cytochrome P450 1A induction. <i>Ocean and Coastal Research</i> , 69,		1
5	Effects of microplastics and food particles on organic pollutants bioaccumulation in equi-fugacity and above-fugacity scenarios <i>Science of the Total Environment</i> , 2021 , 152548	10.2	1
4	A review on polycyclic aromatic hydrocarbons distribution in freshwater ecosystems and their toxicity to benthic fauna <i>Science of the Total Environment</i> , 2022 , 153282	10.2	2
3	Aryl hydrocarbon receptor agonist diuron and its metabolites cause reproductive disorders in male marine medaka (Oryzias melastigma). <i>Chemosphere</i> , 2022 , 305, 135388	8.4	О
2	Cinnabarinic acid provides hepatoprotection against non-alcoholic fatty liver disease. JPET-AR-2022-00	01301	1
1	Age matters: Comparing life-stage responses to diluted bitumen exposure in coho salmon (Oncorhynchus kisutch). 2022 , 253, 106350		О