Design and Kinematic Modeling of Constant Curvature

International Journal of Robotics Research 29, 1661-1683 DOI: 10.1177/0278364910368147

Citation Report

#	Article	IF	CITATIONS
1	Equilibrium Conformations of Concentric-tube Continuum Robots. International Journal of Robotics Research, 2010, 29, 1263-1280.	5.8	181
2	A pilot investigation of continuum robots as a design alternative for upper extremity exoskeletons. , 2011, , .		8
3	Compliant motion control for continuum robots with intrinsic actuation sensing. , 2011, , .		35
4	Modelling of multisection bionic manipulator: Application to RobotinoXT. , 2011, , .		16
5	Novel modal approach for kinematics of multisection continuum arms. , 2011, , .		63
6	A modeling approach for continuum robotic manipulators: Effects of nonlinear internal device friction. , 2011, , .		63
7	Modeling and Control of a Continuum Style Microrobot for Endovascular Surgery. IEEE Transactions on Robotics, 2011, 27, 1024-1030.	7.3	57
8	Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading. , 2011, 27, 1033-1044.		422
9	Toward robotic needle steering in lung biopsy: a tendon-actuated approach. Proceedings of SPIE, 2011, ,	0.8	22
10	Learning a Curvature Dynamic Model of an Octopus-inspired Soft Robot Arm Using Flexure Sensors. Procedia Computer Science, 2011, 7, 294-296.	1.2	7
11	Computing Jacobians and compliance matrices for externally loaded continuum robots. , 2011, , .		68
12	A learning algorithm for visual pose estimation of continuum robots. , 2011, , .		17
13	Deflection-based force sensing for continuum robots: A probabilistic approach. , 2011, , .		64
14	Modeling and control of a planar continuum robot. , 2011, , .		24
15	Towards closed loop control of a continuum robotic manipulator for medical applications. , 2011, , .		63
16	Teleoperation control of a redundant continuum manipulator using a non-redundant rigid-link master. , 2012, , .		9
17	A three-dimensional curvature-based beam model for measuring mechanical properties on an automated bone testing system. , 2012, , .		0
18	Forward kinematics of a compliant pneumatically actuated redundant manipulator. , 2012, , .		18

#	Article	IF	CITATIONS
19	Learning-based configuration estimation of a multi-segment continuum robot. , 2012, , .		15
20	Development and initial testing of a prototype concentric tube robot for surgical interventions. , 2012, , .		2
21	Configuration comparison for surgical robotic systems using a single access port and continuum mechanisms. , 2012, , .		12
22	A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm. Bioinspiration and Biomimetics, 2012, 7, 025006.	1.5	160
23	Mechanics and manipulation of planar elastic kinematic chains. , 2012, , .		8
24	Design of soft robotic actuators using fluid-filled fiber-reinforced elastomeric enclosures in parallel combinations. , 2012, , .		84
25	Design, development and evaluation of a highly versatile robot platform for minimally invasive single-port surgery. , 2012, , .		16
26	Continuum Manipulator Statics Based on the Principle of Virtual Work. , 2012, , .		17
27	Design of a Quadramanual Robot for Single-Nostril Skull Base Surgery. , 2012, , .		17
28	Achieving Dexterous Manipulation for Minimally Invasive Surgical Robots Through the Use of Hydraulics. , 2012, , .		4
29	Bond Graph Modelling of In Vivo Robot for Biopsy. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 421-426.	0.4	1
30	Kinematics-Based Detection and Localization of Contacts Along Multisegment Continuum Robots. IEEE Transactions on Robotics, 2012, 28, 291-302.	7.3	98
31	Integration and preliminary evaluation of an Insertable Robotic Effectors Platform for Single Port Access Surgery. , 2012, , .		67
32	Cable length estimation for a compliant surgical manipulator. , 2012, , .		27
33	Design of a bending mechanism for automated cystoscope. , 2012, , .		3
34	Shape modeling of a concentric-tube continuum robot. , 2012, , .		8
35	A general mechanical model for tendon-driven continuum manipulators. , 2012, , .		31
36	Geometric modelling of multisection bionic manipulator: Experimental validation on RobotinoXT. , 2012, , .		18

#	Article	IF	CITATIONS
37	Elastomeric Origami: Programmable Paperâ€Elastomer Composites as Pneumatic Actuators. Advanced Functional Materials, 2012, 22, 1376-1384.	7.8	504
38	An endoscopic continuum testbed for finalizing system characteristics of a surgical robot for NOTES procedures. , 2013, , .		15
39	Forward kinematic analysis of in-vivo robot for stomach biopsy. Journal of Robotic Surgery, 2013, 7, 281-287.	1.0	8
40	Equivalent pin models for dynamic analysis of compound rigid-flexure multi-body systems. , 2013, , .		0
41	Characteristics identification of continuum robots for exact modeling. , 2013, , .		9
42	Adaptive Undulatory Locomotion of a C. elegans Inspired Robot. IEEE/ASME Transactions on Mechatronics, 2013, 18, 439-448.	3.7	26
43	Mechanics and Quasi-Static Manipulation of Planar Elastic Kinematic Chains. IEEE Transactions on Robotics, 2013, 29, 1-14.	7.3	11
44	Considering Endoscopic Design: A Snakebot Prototype. IEEE Pulse, 2013, 4, 30-35.	0.1	Ο
45	Multi-segment continuum robot shape estimation using passive cable displacement. , 2013, , .		24
46	Robot strings: Long, thin continuum robots. , 2013, , .		35
47	Debulking From Within: A Robotic Steerable Cannula for Intracerebral Hemorrhage Evacuation. IEEE Transactions on Biomedical Engineering, 2013, 60, 2567-2575.	2.5	100
48			
	Visual servo control of cable-driven soft robotic manipulator. , 2013, , .		30
49	Visual servo control of cable-driven soft robotic manipulator. , 2013, , . Analysis on the configuration and simulation of a new robot composed with hybrid joints. , 2013, , .		30 2
49 50	Visual servo control of cable-driven soft robotic manipulator. , 2013, , . Analysis on the configuration and simulation of a new robot composed with hybrid joints. , 2013, , . Haptic feedback and control of a flexible surgical endoscopic robot. Computer Methods and Programs in Biomedicine, 2013, 112, 260-271.	2.6	30 2 42
49 50 51	Visual servo control of cable-driven soft robotic manipulator. , 2013, , . Analysis on the configuration and simulation of a new robot composed with hybrid joints. , 2013, , . Haptic feedback and control of a flexible surgical endoscopic robot. Computer Methods and Programs in Biomedicine, 2013, 112, 260-271. Compliant joint design and flexure finger dynamic analysis using an equivalent pin model. Mechanism and Machine Theory, 2013, 70, 338-353.	2.6 2.7	30 2 42 27
49 50 51 52	Visual servo control of cable-driven soft robotic manipulator. , 2013, , . Analysis on the configuration and simulation of a new robot composed with hybrid joints. , 2013, , . Haptic feedback and control of a flexible surgical endoscopic robot. Computer Methods and Programs in Biomedicine, 2013, 112, 260-271. Compliant joint design and flexure finger dynamic analysis using an equivalent pin model. Mechanism and Machine Theory, 2013, 70, 338-353. Swimming like algae: biomimetic soft artificial cilia. Journal of the Royal Society Interface, 2013, 10, 20120666.	2.6 2.7 1.5	30 2 42 27 68
 49 50 51 52 53 	Visual servo control of cable-driven soft robotic manipulator. , 2013, , . Analysis on the configuration and simulation of a new robot composed with hybrid joints. , 2013, , . Haptic feedback and control of a flexible surgical endoscopic robot. Computer Methods and Programs in Biomedicine, 2013, 112, 260-271. Compliant joint design and flexure finger dynamic analysis using an equivalent pin model. Mechanism and Machine Theory, 2013, 70, 338-353. Swimming like algae: biomimetic soft artificial cilia. Journal of the Royal Society Interface, 2013, 10, 20120666. Highly deformable 3-D printed soft robot generating inching and crawling locomotions with variable friction legs. , 2013, , .	2.6 2.7 1.5	30 2 42 27 68 118

#	Article	IF	CITATIONS
55	A flexure-based wrist for needle-sized surgical robots. , 2013, , .		4
56	A continuum manipulator made of interlocking fibers. , 2013, , .		30
57	Modeling tendon-sheath mechanism with flexible configurations for robot control. Robotica, 2013, 31, 1131-1142.	1.3	28
58	Introducing STRAS: A new flexible robotic system for minimally invasive surgery. , 2013, , .		29
59	A variable curvature modeling approach for kinematic control of continuum manipulators. , 2013, , .		26
60	Master/slave control of flexible instruments for minimally invasive surgery. , 2013, , .		7
61	On using an array of fiber Bragg grating sensors for closed-loop control of flexible minimally invasive surgical instruments. , 2013, , .		50
62	Design, modeling and control of a pneumatically actuated manipulator inspired by biological continuum structures. Bioinspiration and Biomimetics, 2013, 8, 036008.	1.5	120
63	Towards snake-like soft robots: Design of fluidic fiber-reinforced elastomeric helical manipulators. , 2013, , .		22
64	Self-motion analysis of extensible continuum manipulators. , 2013, , .		11
65	STIFF-FLOP surgical manipulator: Mechanical design and experimental characterization of the single module. , 2013, , .		188
66	Experimental characterisation of a biologically inspired 3D steering needle. , 2013, , .		29
67	Constrained motion control of multisegment continuum robots for transurethral bladder resection and surveillance. , 2013, , .		12
68	Force and moment generation of fiber-reinforced pneumatic soft actuators. , 2013, , .		15
69	Mechanics-based kinematic modeling of a continuum manipulator. , 2013, , .		4
70	A feed-forward neural network learning the inverse kinetics of a soft cable-driven manipulator moving in three-dimensional space. , 2013, , .		76
71	Design and Analysis of a Bio-Inspired Wire-Driven Multi-Section Flexible Robot. International Journal of Advanced Robotic Systems, 2013, 10, 209.	1.3	140
72	An Analytic Method for the Kinematics and Dynamics of a Multiple-Backbone Continuum Robot. International Journal of Advanced Robotic Systems, 2013, 10, 84	1.3	67

	Сітя	ation Report	
#	Article	IF	CITATIONS
73	Force and Hydraulic Displacement Amplification of Fiber Reinforced Soft Actuators. , 2013, , .		7
74	The Importance of Continuous and Discrete Elements in Continuum Robots. International Journal of Advanced Robotic Systems, 2013, 10, 165.	1.3	23
75	Continuous Backbone "Continuum―Robot Manipulators. ISRN Robotics, 2013, 2013, 1-19.	1.3	267
77	Dynamics Modeling of a Continuum Robotic Arm with a Contact Point in Planar Grasp. Journal of Robotics, 2014, 2014, 1-13.	0.6	15
78	Mechanical implementation of postural synergies using a simple continuum mechanism. , 2014, , .		10
79	Soft Robotics Technologies to Address Shortcomings in Today's Minimally Invasive Surgery: The STIFF-FLOP Approach. Soft Robotics, 2014, 1, 122-131.	4.6	411
80	Task-space position control of concentric-tube robot with inaccurate kinematics using approximate Jacobian. , 2014, , .		14
81	Whole arm planning for a soft and highly compliant 2D robotic manipulator. , 2014, , .		85
82	Mechatronics modeling of a branching tendon-driven robot. , 2014, , .		2
83	Dynamic modeling of constant curvature continuum robots using the Euler-Lagrange formalism. , 2014, , .		41
84	Development of a maneuverable flexible manipulator for minimally invasive surgery with varied stiffness. Artificial Life and Robotics, 2014, 19, 340-346.	0.7	8
85	Robotic assistance for manipulating a flexible endoscope. , 2014, , .		7
86	Expanding workspace of underactuated flexible manipulators by actively deploying constraints. , 2014, , .		15
87	Kinematic Modeling of an EAP Actuated Continuum Robot for Active Micro-endoscopy. , 2014, , 457-46	5.	6
88	Finite circular elements for modeling of continuum robots. , 2014, , .		4
89	MR compatible continuum robot based on closed elastica with bending and twisting. , 2014, , .		9
90	Workspace characterization for concentric tube continuum robots. , 2014, , .		38
91	Estimating contact force for steerable ablation catheters based on shape analysis. , 2014, , .		20

#	Article	IF	Citations
92	Six Dimensional Compliance Analysis of Ortho-Planar Springs for a Continuum Manipulator. , 2014, , .		2
93	Towards the Development of a Low-Cost Minimally Invasive Highly Articulated MRI-Compatible Neurosurgical Robot. , 2014, , .		0
94	Model-Based Shape Estimation for Soft Robotic Manipulators: The Planar Case. Journal of Mechanisms and Robotics, 2014, 6, .	1.5	31
95	A Pilot Study of a Continuum Shoulder Exoskeleton for Anatomy Adaptive Assistances. Journal of Mechanisms and Robotics, 2014, 6, .	1.5	15
96	Mechanics Modeling of Multisegment Rod-Driven Continuum Robots. Journal of Mechanisms and Robotics, 2014, 6, .	1.5	66
97	On the kinematic modeling of a class of continuum manipulators. , 2014, , .		4
98	Extended kinematic mapping of tendon-driven continuum robot for neuroendoscopy. , 2014, , .		11
99	Statics modeling of planar continuum robots using virtual energy method. , 2014, , .		3
100	A new coefficient-adaptive orthonormal basis function model structure for identifying a class of pneumatic soft actuators. , 2014, , .		5
101	Empirical investigation of closed-loop control of extensible continuum manipulators. , 2014, , .		24
102	A new approach to solve inverse kinematics of a planar flexible continuum robot. , 2014, , .		8
103	Using Lie algebra for shape estimation of medical snake robots. , 2014, , .		11
104	Compliance computation for continuum types of robots. , 2014, , .		6
105	A foldable stereo vision unit for Single Port Access Laparoscopy. , 2014, , .		6
106	Towards kinematic modeling of a multi-DOF tendon driven robotic catheter. , 2014, 2014, 3009-12.		3
107	Null space redundancy learning for a flexible surgical robot. , 2014, , .		2
108	Qualitative approach for inverse kinematic modeling of a Compact Bionic Handling Assistant trunk. , 2014, , .		21
109	Design and control of a soft and continuously deformable 2D robotic manipulation system. , 2014, , .		163

#	Article	IF	CITATIONS
110	A new mechanism structure and kinematics solution for continuous robot. , 2014, , .		0
111	Computational Kinematics. Mechanisms and Machine Science, 2014, , .	0.3	4
112	Model-Less Feedback Control of Continuum Manipulators in Constrained Environments. IEEE Transactions on Robotics, 2014, 30, 880-889.	7.3	191
113	Neural Networks based approach for inverse kinematic modeling of a Compact Bionic Handling Assistant trunk. , 2014, , .		26
114	Quasi-static manipulation of a Kirchhoff elastic rod based on a geometric analysis of equilibrium configurations. International Journal of Robotics Research, 2014, 33, 48-68.	5.8	125
115	Effects of tools inserted through snake-like surgical manipulators. , 2014, 2014, 6854-8.		5
116	An experimental kinestatic comparison between continuum manipulators with structural variations. , 2014, , .		18
117	A preliminary study on using a Robotically-Actuated Delivery Sheath (RADS) for transapical aortic valve implantation. , 2014, , .		13
118	Continuum worm-like robotic mechanism with decentral control architecture. , 2014, , .		4
119	Design of a hyper-redundant continuum manipulator for intra-cavity tasks. , 2014, , .		1
120	Fuzzy logic control of a continuum manipulator for surgical applications. , 2014, , .		11
121	Needle path planning and steering in a three-dimensional non-static environment using two-dimensional ultrasound images. International Journal of Robotics Research, 2014, 33, 1361-1374.	5.8	107
122	Advances in Robot Kinematics. , 2014, , .		6
123	Toward parallel continuum manipulators. , 2014, , .		83
124	A Variable Curvature Continuum Kinematics for Kinematic Control of the Bionic Handling Assistant. IEEE Transactions on Robotics, 2014, 30, 935-949.	7.3	247
125	Needle Steering in 3-D Via Rapid Replanning. IEEE Transactions on Robotics, 2014, 30, 853-864.	7.3	115
126	Design and preliminary experimentation of a continuum exoskeleton for self-provided bilateral rehabilitation. , 2014, , .		4
127	Modeling and simulation of passive catheter based on piecewise constant curvature method. , 2014, , .		4

#	Article	IF	CITATIONS
128	Control of the coupled motion of a 6 DoF robotic arm and a continuum manipulator for the treatment of pelvis osteolysis. , 2014, 2014, 6521-5.		18
129	An Efficient Static Model for Steerablè Catheters. , 2014, , .		3
130	Underactuated miniature bending joint composed of serial pulleyless rolling joints. Advanced Robotics, 2014, 28, 1-14.	1.1	20
131	A modeling approach for robotic catheters: effects of nonlinear internal device friction. Advanced Robotics, 2014, 28, 557-572.	1.1	35
132	Trajectory optimization of pneumatically actuated, redundant continuum manipulators. , 2014, , .		9
133	Inverse Kinematic modeling of a class of continuum bionic handling arm. , 2014, , .		13
134	Continuum Robot Dynamics Utilizing the Principle of Virtual Power. IEEE Transactions on Robotics, 2014, 30, 275-287.	7.3	183
135	Dynamic Model of a Multibending Soft Robot Arm Driven by Cables. IEEE Transactions on Robotics, 2014, 30, 1109-1122.	7.3	328
136	Compliant Motion Control for Multisegment Continuum Robots With Actuation Force Sensing. IEEE Transactions on Robotics, 2014, 30, 890-902.	7.3	99
137	Design of flexonic mobile node using 3D compliant beam for smooth manipulation and structural obstacle avoidance. , 2014, , .		11
138	An Efficient Static Analysis of Continuum Robots. Journal of Mechanisms and Robotics, 2014, 6, .	1.5	12
139	Design of a Stiff Steerable Grasper for Sinus Surgery1. Journal of Medical Devices, Transactions of the ASME, 2014, 8, .	0.4	2
140	Experimental Characterization and Control of Miniaturized Pneumatic Artificial Muscle. Journal of Medical Devices, Transactions of the ASME, 2014, 8, .	0.4	9
141	A Variable Structure Controller for a Class of Hyper-redundant Arms. , 2014, , .		0
142	Dynamic Modeling and Image-based Adaptive Visual Servoing of Cable-driven Soft Robotic Manipulator. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 11884-11889.	0.4	8
143	Qualitative approach for forward kinematic modeling of a Compact Bionic Handling Assistant trunk. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 9353-9358.	0.4	16
144	Locomotion modeling of an actinomorphic soft robot actuated by SMA springs. , 2014, , .		6
145	Kinematics modeling for a kinematic-mechanics coupling continuum manipulator. , 2014, , .		2

#	Article	IF	CITATIONS
146	Predicting kinematic configuration from string length for a snake-like manipulator not exhibiting constant curvature bending. , 2014, , .		14
147	Preliminary study of utilizing plastic tubes as a component of continuum robots. , 2014, , .		4
148	Real-Time Shape Estimation for Wire-Driven Flexible Robots With Multiple Bending Sections Based on Quadratic Bézier Curves. IEEE Sensors Journal, 2015, 15, 6326-6334.	2.4	82
149	HelixFlex : bioinspired maneuverable instrument for skull base surgery. Bioinspiration and Biomimetics, 2015, 10, 066013.	1.5	30
150	Points-Based Safe Path Planning of Continuum Robots. International Journal of Advanced Robotic Systems, 2015, 12, 107.	1.3	11
151	An Origami Parallel Structure Integrated Deployable Continuum Robot. , 2015, , .		3
152	A New Continuum Robot With Crossed Elastic Strips: Extensible Sections With Only One Actuator per Section. , 2015, , .		4
153	Slithering towards autonomy: a self-contained soft robotic snake platform with integrated curvature sensing. Bioinspiration and Biomimetics, 2015, 10, 055001.	1.5	59
154	Efficient Spatial Dynamics for Continuum Arms. , 2015, , .		2
155	A cross-helical tendons actuated dexterous continuum manipulator. , 2015, , .		1
156	Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot. Bioinspiration and Biomimetics, 2015, 10, 035003.	1.5	217
157	The kinematic synthesis of a spatial, hyper-redundant system based on binary electromagnetic actuators. , 2015, , .		8
158	Design, fabrication and control of soft robots. Nature, 2015, 521, 467-475.	13.7	3,902
159	Dexterity and functionality enhancement of the SJTU Unfoldable Robotic System. , 2015, , .		0
160	A 7.5mm Steiner chain fibre-optic system for multi-segment flex sensing. , 2015, , .		5
161	Model-free control framework for multi-limb soft robots. , 2015, , .		23
162	Robotic Flexible Laparoscope with position retrieving system for assistive minimally invasive surgery. , 2015, , .		4
163	A tendon-driven continuum robot with extensible sections. , 2015, , .		67

#	Article	IF	CITATIONS
164	Design Considerations for a Hyper-Redundant Pulleyless Rolling Joint With Elastic Fixtures. IEEE/ASME Transactions on Mechatronics, 2015, 20, 2841-2852.	3.7	58
165	Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator. , 2015, , .		32
166	Design of hyper redundant robot using ball screw mechanism approach. , 2015, , .		3
167	Continuum Robots for Medical Applications: A Survey. IEEE Transactions on Robotics, 2015, 31, 1261-1280.	7.3	1,005
168	Biologically inspired vine-like and tendril-like robots. , 2015, , .		17
169	A novel tele-operated flexible surgical arm with optimal trajectory tracking aiming for minimally invasive neurosurgery. , 2015, , .		8
170	A hand-held flexible mechatronic device for arthroscopy. , 2015, , .		10
171	Soft and Stretchable Sensor Using Biocompatible Electrodes and Liquid for Medical Applications. Soft Robotics, 2015, 2, 146-154.	4.6	92
172	Autonomous Object Manipulation Using a Soft Planar Grasping Manipulator. Soft Robotics, 2015, 2, 155-164.	4.6	147
173	Domain decomposition approach for FEM quasistatic modeling and control of Continuum Robots with rigid vertebras. , 2015, , .		12
174	Workspace calculating and kinematic modelling of a flexible continuum manipulator constructed by steel-wires. Industrial Robot, 2015, 42, 565-571.	1.2	11
175	Estimating the configuration of a continuum dexterous manipulator with variable curvature bending using partial shape-sensing. , 2015, 2015, 5268-71.		0
176	Efficient computation of multiple coupled Cosserat rod models for real-time simulation and control of parallel continuum manipulators. , 2015, , .		58
177	Tendons, concentric tubes, and a bevel tip: Three steerable robots in one transoral lung access system. , 2015, 2015, 5378-5383.		28
178	Dynamic Modeling of Bellows-Actuated Continuum Robots Using the Euler–Lagrange Formalism. IEEE Transactions on Robotics, 2015, 31, 1483-1496.	7.3	118
179	Macrobend optical sensing for pose measurement in soft robot arms. Smart Materials and Structures, 2015, 24, 125024.	1.8	108
180	Autonomous robotic refueling of an unmanned surface vehicle in varying sea states. , 2015, , .		11
181	Smooth on-line path planning for needle steering with non-linear constraints. , 2015, , .		4

ARTICLE IF CITATIONS Dynamic Modeling for a Continuum Robot With Compliant Structure., 2015,,. 9 182 A novel constrained tendon-driven serpentine manipulator., 2015, , . Kinematics Modeling of a Notched Continuum Manipulator. Journal of Mechanisms and Robotics, 2015, 184 1.5 29 7, . Design Choices in Needle Steeringâ€"A Review. IEEE/ASME Transactions on Mechatronics, 2015, 20, 2172-2183. Design and control of a novel compliant differential shape memory alloy actuator. Sensors and 186 2.0 79 Actuators A: Physical, 2015, 225, 71-80. Inverse kinematics and control of 4-degree-of-freedom wire-actuated in vivo robot. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2015, 229, 77-91. A Novel Robotic Platform for Laser-Assisted Transurethral Surgery of the Prostate. IEEE Transactions 188 2.531 on Biomedical Engineering, 2015, 62, 489-500. Modeling and Estimation of Tip Contact Force for Steerable Ablation Catheters. IEEE Transactions on 2.5 66 Biomedical Engineering, 2015, 62, 1404-1415. 190 The shape control of tentacle arms. Robotica, 2015, 33, 684-703. 1.3 8 Tendon-Driven Continuum Robot for Endoscopic Surgery: Preclinical Development and Validation of a Tension Propagation Model. IEEE/ASME Transactions on Mechatronics, 2015, 20, 2252-2263. Hand-held transendoscopic robotic manipulators: A transurethral laser prostate surgery case study. 192 5.8 73 International Journal of Robotics Research, 2015, 34, 1559-1572. Shape reconstruction for wire-driven flexible robots based on Bézier curve and electromagnetic positioning. Mechatronics, 2015, 29, 28-35. Soft robotics for engineers. HKIE Transactions, 2015, 22, 88-97. 194 1.9 36 Spatial kinematic modeling of a long and thin continuum robotic cable., 2015, , . Electromagnetic Positioning for Tip Tracking and Shape Sensing of Flexible Robots. IEEE Sensors 196 2.4 94 Journal, 2015, 15, 4565-4575. Design and Modeling of Generalized Fiber-Reinforced Pneumatic Soft Actuators. IEEE Transactions on Robotics, 2015, 31, 536-545. 130 Flexing into motion: A locomotion mechanism for soft robots. International Journal of Non-Linear 198 1.4 28 Mechanics, 2015, 74, 7-17. Modeling Cable and Guide Channel Interaction in a High-Strength Cable-Driven Continuum 199 Manipulator. IEEE/ASME Transactions on Mechatronics, 2015, 20, 2876-2889.

		15	0
#		IF	CITATIONS
200	configuration comparison among Rinematically optimized continuum manipulators for robotic surgeries through a single access port. Robotica, 2015, 33, 2025-2044.	1.3	34
201	Tackling friction - an analytical modeling approach to understanding friction in single tendon driven continuum manipulators. , 2015, , .		22
202	A decoupled sliding mode control for a continuum arm. Advanced Robotics, 2015, 29, 831-845.	1.1	14
203	Constraint-Based Interaction Control of Robots Featuring Large Compliance and Deformation. IEEE Transactions on Robotics, 2015, 31, 1252-1260.	7.3	12
204	Accurate and Efficient Dynamics for Variable-Length Continuum Arms: A Center of Gravity Approach. Soft Robotics, 2015, 2, 96-106.	4.6	62
205	A wrist for needle-sized surgical robots. , 2015, 2015, 1776-1781.		66
206	Tendon and pressure actuation for a bio-inspired manipulator based on an antagonistic principle. , 2015, , .		73
207	Neural Network and Jacobian Method for Solving the Inverse Statics of a Cable-Driven Soft Arm With Nonconstant Curvature. IEEE Transactions on Robotics, 2015, 31, 823-834.	7.3	155
208	Learning the inverse kinetics of an octopus-like manipulator in three-dimensional space. Bioinspiration and Biomimetics, 2015, 10, 035006.	1.5	47
209	Configuration space impedance control for continuum manipulators. , 2015, , .		5
210	Model-based feedforward position control of constant curvature continuum robots using feedback linearization. , 2015, , .		57
211	A novel continuum robotic cable aimed at applications in space. Advanced Robotics, 2015, 29, 861-875.	1.1	34
212	Model-based Force Estimation for Intra-cardiac Catheters. IEEE/ASME Transactions on Mechatronics, 2015, , 1-1.	3.7	25
213	Continuum robots for space applications based on layer-jamming scales with stiffening capability. , 2015, , .		33
214	Swept Source Optical Coherence Tomography Endomicroscope Based on Vertically Integrated Mirau Micro Interferometer: Concept and Technology. IEEE Sensors Journal, 2015, 15, 7061-7070.	2.4	10
215	Embedded electro-conductive yarn for shape sensing of soft robotic manipulators. , 2015, 2015, 8026-9.		37
216	Development of the SJTU Unfoldable Robotic System (SURS) for Single Port Laparoscopy. IEEE/ASME Transactions on Mechatronics, 2015, 20, 2133-2145.	3.7	165
217	A unified system identification approach for a class of pneumatically-driven soft actuators. Robotics and Autonomous Systems, 2015, 63, 136-149.	3.0	13

#	Article	IF	CITATIONS
218	Kinematic Calibration of a Multisection Bionic Manipulator. IEEE/ASME Transactions on Mechatronics, 2015, 20, 663-674.	3.7	70
219	Kinematic Analysis of Continuum Robot Consisted of Driven Flexible Rods. Mathematical Problems in Engineering, 2016, 2016, 1-7.	0.6	16
220	Application of robotics in gastrointestinal endoscopy: A review. World Journal of Gastroenterology, 2016, 22, 1811.	1.4	68
221	Learning Global Inverse Kinematics Solutions for a Continuum Robot. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2016, , 47-54.	0.3	28
222	Endoscopes and robots for tight surgical spaces: use of precurved elastic elements to enhance curvature. Proceedings of SPIE, 2016, , .	0.8	1
223	Teleoperation mappings from rigid link robots to their extensible continuum counterparts. , 2016, , .		11
224	Learning the inverse kinematics of tendon-driven soft manipulators with K-nearest Neighbors Regression and Gaussian Mixture Regression. , 2016, , .		15
225	A geometry deformation model for compound continuum manipulators with external loading. , 2016, , \cdot		13
226	A Four Degree of Freedom Robot for Positioning Ultrasound Imaging Catheters. Journal of Mechanisms and Robotics, 2016, 8, 0510161-510169.	1.5	6
227	Static modeling and analysis of continuum surgical robots. , 2016, , .		7
228	The design of a four DOFs light manipulator used for a dangerous environment detection robot. , 2016, , .		0
229	Design, fabrication and kinematic modeling of a 3D-motion soft robotic arm. , 2016, , .		20
230	Design and prototyping of a concentric wire-driven manipulator. , 2016, , .		1
231	Medical telerobotic systems: current status and future trends. BioMedical Engineering OnLine, 2016, 15, 96.	1.3	104
232	Design and fabrication of a disposable micro end effector for concentric tube robots. , 2016, , .		6
233	Towards safer obstacle avoidance for continuum-style manipulator in dynamic environments. , 2016, , .		7
234	Preliminary design and study of a bio-inspired wire-driven serpentine robotic manipulator with direct drive capability. , 2016, , .		4
235	A Rigid Mechanism With Uniform, Variable Curvature1. Journal of Medical Devices, Transactions of the ASME, 2016, 10, .	0.4	1

#	Article	IF	CITATIONS
236	A Low-Cost Soft Coiled Sensor for Soft Robots. , 2016, , .		11
237	An experimental comparison of four different structures for continuum manipulators. , 2016, , .		1
238	Design and kinematic modeling of a concentric wire-driven mechanism targeted for minimally invasive surgery. , 2016, , .		14
239	Design and closed-loop control of a tri-layer Polypyrrole based telescopic soft robot. , 2016, , .		8
240	Implicit active constraints for safe and effective guidance of unstable concentric tube robots. , 2016, ,		10
241	Locomotion and gait analysis of multi-limb soft robots driven by smart actuators. , 2016, , .		9
242	Stiffness-based modelling of a hydraulically-actuated soft robotics manipulator. , 2016, , .		21
243	Real-time pose estimation and obstacle avoidance for multi-segment continuum manipulator in dynamic environments. , 2016, , .		15
244	Kinematic modeling and observer based control of soft robot using real-time Finite Element Method. , 2016, , .		43
245	Three-Dimensional Passivity-Based Dynamic Control for Tendon-Driven Catheters. MATEC Web of Conferences, 2016, 42, 01008.	0.1	0
246	Design of a Steerable Guide for Laser Interstitial Thermal Therapy of Brain Tumors1. Journal of Medical Devices, Transactions of the ASME, 2016, 10, .	0.4	1
247	Design of a three-segment continuum robot for minimally invasive surgery. Robotics and Biomimetics, 2016, 3, 2.	1.7	11
248	Development of a dexterous continuum manipulator for exploration and inspection in confined spaces. Industrial Robot, 2016, 43, 284-295.	1.2	33
249	Visual design and verification tool for collision-free dexterous patient specific neurosurgical instruments. Proceedings of SPIE, 2016, , .	0.8	1
250	Soft Robots and Kangaroo Tails: Modulating Compliance in Continuum Structures Through Mechanical Layer Jamming. Soft Robotics, 2016, 3, 54-63.	4.6	71
251	A Novel 4-DOF Origami Grasper With an SMA-Actuation System for Minimally Invasive Surgery. IEEE Transactions on Robotics, 2016, 32, 484-498.	7.3	108
252	Kinematic Control of Continuum Manipulators Using a Fuzzy-Model-Based Approach. IEEE Transactions on Industrial Electronics, 2016, 63, 5022-5035.	5.2	59
253	Medical Robotics and Computer-Integrated Surgery. Springer Handbooks, 2016, , 1657-1684.	0.3	198

# 254	ARTICLE Positioning evaluation of tendonâ€driven flexible manipulators based on interval analysis. Electronics Letters, 2016, 52, 1748-1749.	IF 0.5	Citations 3
255	Challenges in creating long continuum robots. , 2016, , .		7
256	Design and shape control of a three-section continuum robot. , 2016, , .		6
257	Online TCP trajectory planning for redundant continuum manipulators using quadratic programming. , 2016, , .		13
258	Snake-Like and Continuum Robots. Springer Handbooks, 2016, , 481-498.	0.3	57
259	Circumnutation: From Plants to Robots. Lecture Notes in Computer Science, 2016, , 1-11.	1.0	4
260	Design and Locomotion Control of a Soft Robot Using Friction Manipulation and Motor–Tendon Actuation. IEEE Transactions on Robotics, 2016, 32, 949-959.	7.3	77
261	A starfish robot based on soft and smart modular structure (SMS) actuated by SMA wires. Bioinspiration and Biomimetics, 2016, 11, 056012.	1.5	64
262	Distributed Inverse Kinematics for Shape-changing Robotic Materials. Procedia Technology, 2016, 26, 4-11.	1.1	10
263	Transferring autonomous reaching and targeting behaviors for cable-driven robots in minimally invasive surgery. , 2016, , .		1
264	Development of a snake-like dexterous manipulator for skull base surgery. , 2016, 2016, 5087-5090.		12
265	Large-deflection statics analysis of active cardiac catheters through co-rotational modelling. , 2016, 2016, 2133-2136.		0
266	Embodiment design of soft continuum robots. Advances in Mechanical Engineering, 2016, 8, 168781401664330.	0.8	21
267	Kinematics and performance analysis of a novel concentric tube robotic structure with embedded soft micro-actuation. Mechanism and Machine Theory, 2016, 104, 234-254.	2.7	34
268	Investigation of effects of dynamics on intrinsic wrench sensing in continuum robots. , 2016, , .		13
269	A structurally flexible humanoid spine based on a tendon-driven elastic continuum. , 2016, , .		21
270	Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator. International Journal of Robotics Research, 2016, 35, 1000-1019.	5.8	161
271	A survey on actuators-driven surgical robots. Sensors and Actuators A: Physical, 2016, 247, 323-354.	2.0	137

#	Article	IF	CITATIONS
272	Biomimetic flexible robot arm design and kinematic analysis of a novel flexible robot arm. , 2016, , .		5
273	Control of a hybrid robotic system for computer-assisted interventions in dynamic environments. International Journal of Computer Assisted Radiology and Surgery, 2016, 11, 1371-1383.	1.7	7
274	Inverse kinematics and design of a novel 6-DoF handheld robot arm. , 2016, , .		4
275	Compensation for unconstrained catheter shaft motion in cardiac catheters. , 2016, 2016, 4436-4442.		5
276	Robot tongues in space: continuum surfaces for robotic grasping and manipulation. Proceedings of SPIE, 2016, , .	0.8	0
277	Real-time planner for multi-segment continuum manipulator in dynamic environments. , 2016, , .		24
278	A Novel Continuum Robot Using Twin-Pivot Compliant Joints: Design, Modeling, and Validation. Journal of Mechanisms and Robotics, 2016, 8, .	1.5	60
279	An Extensible Continuum Robot With Integrated Origami Parallel Modules. Journal of Mechanisms and Robotics, 2016, 8, .	1.5	92
280	Shape Change Through Programmable Stiffness. Springer Tracts in Advanced Robotics, 2016, , 893-907.	0.3	13
281	Tendon-driven continuum robot for neuroendoscopy: validation of extended kinematic mapping for hysteresis operation. International Journal of Computer Assisted Radiology and Surgery, 2016, 11, 589-602.	1.7	56
282	<i>Softworms</i> : the design and control of non-pneumatic, 3D-printed, deformable robots. Bioinspiration and Biomimetics, 2016, 11, 025001.	1.5	182
283	A Novel Continuum Manipulator Design Using Serially Connected Double-Layer Planar Springs. IEEE/ASME Transactions on Mechatronics, 2016, 21, 1281-1292.	3.7	75
284	Steering of Multisegment Continuum Manipulators Using Rigid-Link Modeling and FBC-Based Shape Sensing. IEEE Transactions on Robotics, 2016, 32, 372-382.	7.3	103
285	A soft robotic spine with tunable stiffness based on integrated ball joint and particle jamming. Mechatronics, 2016, 33, 84-92.	2.0	51
286	Visual Marker Based Shape Recognition System for Continuum Manipulators. Advances in Intelligent Systems and Computing, 2016, , 435-445.	0.5	0
287	A Soft Modular Manipulator for Minimally Invasive Surgery: Design and Characterization of a Single Module. IEEE Transactions on Robotics, 2016, 32, 187-200.	7.3	191
288	Design of a Novel Flexible Endoscope—Cardioscope. Journal of Mechanisms and Robotics, 2016, 8, .	1.5	37
289	Development of Multisegment Steering Mechanism and 3-D Panorama for Automated Bladder Surveillance System. IEEE/ASME Transactions on Mechatronics, 2016, 21, 993-1003.	3.7	6

#	Article	IF	CITATIONS
290	Six-Dimensional Compliance Analysis and Validation of Orthoplanar Springs. Journal of Mechanical Design, Transactions of the ASME, 2016, 138, .	1.7	16
291	Analysis and heading control of continuum planar snake robot based on kinematics and a general solution thereof. Advanced Robotics, 2016, 30, 301-314.	1.1	8
292	The Flexible Neck Mechanism Design and Control of a Turtle Robot for Performance at Digital Stage. Mechanisms and Machine Science, 2016, , 521-532.	0.3	0
293	Hybrid Approach for Modeling and Solving of Kinematics of a Compact Bionic Handling Assistant Manipulator. IEEE/ASME Transactions on Mechatronics, 2016, 21, 1326-1335.	3.7	53
294	A novel constrained wire-driven flexible mechanism and its kinematic analysis. Mechanism and Machine Theory, 2016, 95, 59-75.	2.7	98
295	Design, kinematics, and control of a soft spatial fluidic elastomer manipulator. International Journal of Robotics Research, 2016, 35, 840-869.	5.8	255
296	Hybrid motion/force control of multi-backbone continuum robots. International Journal of Robotics Research, 2016, 35, 422-434.	5.8	114
297	Interleaved Continuum-Rigid Manipulation: An Approach to Increase the Capability of Minimally Invasive Surgical Systems. IEEE/ASME Transactions on Mechatronics, 2017, 22, 29-40.	3.7	25
298	Bond Graph Modelling and Control of Hyper-Redundant Miniature Robot for In-Vivo Biopsy. , 2017, , 451-495.		1
299	Dexterity Analysis of Three 6-DOF Continuum Robots Combining Concentric Tube Mechanisms and Cable-Driven Mechanisms. IEEE Robotics and Automation Letters, 2017, 2, 514-521.	3.3	42
300	A survey on dielectric elastomer actuators for soft robots. Bioinspiration and Biomimetics, 2017, 12, 011003.	1.5	323
301	A plant-inspired robot with soft differential bending capabilities. Bioinspiration and Biomimetics, 2017, 12, 015001.	1.5	60
302	Model predictive control of a robotically actuated delivery sheath for beating heart compensation. International Journal of Robotics Research, 2017, 36, 193-209.	5.8	21
303	Design and evaluation of a variable stiffness manual operating platform for laparoendoscopic single site surgery (LESS). International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 13, e1797.	1.2	23
304	Autonomous Control of Continuum Robot Manipulators for Complex Cardiac Ablation Tasks. Journal of Medical Robotics Research, 2017, 02, 1750002.	1.0	32
305	Effective Manipulation in Confined Spaces of Highly Articulated Robotic Instruments for Single Access Surgery. IEEE Robotics and Automation Letters, 2017, 2, 1704-1711.	3.3	32
306	Optimization-Based Inverse Model of Soft Robots With Contact Handling. IEEE Robotics and Automation Letters, 2017, 2, 1413-1419.	3.3	65
307	Continuum Reconfigurable Parallel Robots for Surgery: Shape Sensing and State Estimation With Uncertainty. IEEE Robotics and Automation Letters, 2017, 2, 1617-1624.	3.3	33

ARTICLE IF CITATIONS Design, Fabrication, and Testing of a Needle-Sized Wrist for Surgical Instruments. Journal of Medical 308 0.4 59 Devices, Transactions of the ASME, 2017, 11, 0145011-145019. Design of a Compact Actuation and Control System for Flexible Medical Robots. IEEE Robotics and 309 3.3 29 Automation Letters, 2017, 2, 1579-1585. A soft robotics nonlinear hybrid position/force control for tendon driven catheters. International 310 1.6 18 Journal of Control, Automation and Systems, 2017, 15, 54-63. An adaptive and fully automatic method for estimating the 3D position of bendable instruments using endoscopic images. International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 13, 1.2 e1812. Soft-Material Robotics. Foundations and Trends in Robotics, 2017, 5, 191-259. 312 5.0 42 Backlash characterization and position control of a robotic catheter manipulator using experimentally-based kinematic model. Mechatronics, 2017, 44, 94-106. A General Friction Model of Discrete Interactions for Tendon Actuated Dexterous Manipulators. 314 1.529 Journal of Mechanisms and Robotics, 2017, 9, . Iterative Jacobian-Based Inverse Kinematics and Open-Loop Control of an MRI-Guided Magnetically 3.7 36 Actuated Steerable Catheter System. IEEE/ASME Transactions on Mechatronics, 2017, 22, 1765-1776. On the development of rod-based models for pneumatically actuated soft robot arms: A five-parameter 316 1.3 35 constitutive relation. International Journal of Solids and Structures, 2017, 120, 226-235. Modeling and analysis of a parallel continuum robot using artificial neural network., 2017,,. Screw-Based Modeling of Soft Manipulators With Tendon and Fluidic Actuation. Journal of 318 1.5 30 Mechanisms and Robotics, 2017, 9,. A metaheuristic approach to solve inverse kinematics of continuum manipulators. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2017, 231, 319 0.7 380-394. 320 Robot tendrils: Long, thin continuum robots for inspection in space operations., 2017,,. 30 Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems. Soft Robotics, 2017, 4, 4.6 29 261-273. A framework for the automated design and modelling of soft robotic systems. CIRP Annals -322 42 1.7 Manufacturing Technology, 2017, 66, 9-12. Concentric Tube Robots: Rapid, Stable Path-Planning and Guidance for Surgical Use. IEEE Robotics and 2.2 Automation Magazine, 2017, 24, 42-53. Design of a discrete bending joint using multiple unit PREF joints for isotropic 2-DOF motion. 324 1.6 6 International Journal of Control, Automation and Systems, 2017, 15, 64-72. Concentric agonist-antagonist robots for minimally invasive surgeries. Proceedings of SPIE, 2017, , .

#	Article	IF	Citations
326	Design and Implementation of a Leg–Wheel Robot: Transleg. Journal of Mechanisms and Robotics, 2017, 9, .	1.5	20
327	Kinematic model to control the end-effector of a continuum robot for multi-axis processing. Robotica, 2017, 35, 224-240.	1.3	28
328	Workspace Analysis of Tendon-Driven Continuum Robots Based on Mechanical Interference Identification. Journal of Mechanical Design, Transactions of the ASME, 2017, 139, .	1.7	17
329	Elastic Stability of Cosserat Rods and Parallel Continuum Robots. IEEE Transactions on Robotics, 2017, 33, 718-733.	7.3	67
330	Bond Graphs for Modelling, Control and Fault Diagnosis of Engineering Systems. , 2017, , .		16
331	Modeling and Estimation of Friction, Extension, and Coupling Effects in Multisegment Continuum Robots. IEEE/ASME Transactions on Mechatronics, 2017, 22, 909-920.	3.7	63
332	Design of a Pneumatic Muscle Based Continuum Robot With Embedded Tendons. IEEE/ASME Transactions on Mechatronics, 2017, 22, 751-761.	3.7	59
333	Algorithms for Automatically Pointing Ultrasound Imaging Catheters. IEEE Transactions on Robotics, 2017, 33, 81-91.	7.3	21
334	Interaction Forces of Soft Fiber Reinforced Bending Actuators. IEEE/ASME Transactions on Mechatronics, 2017, 22, 717-727.	3.7	130
335	Robust Control of Continuum Robots using Interval Arithmetic. IFAC-PapersOnLine, 2017, 50, 5660-5665.	0.5	14
336	On the influence of pseudoelastic material behaviour in planar shape-memory tubular continuum structures. Smart Materials and Structures, 2017, 26, 125024.	1.8	10
337	Toward Transoral Peripheral Lung Access: Combining Continuum Robots and Steerable Needles. Journal of Medical Robotics Research, 2017, 02, 1750001.	1.0	48
338	A two-level approach for solving the inverse kinematics of an extensible soft arm considering viscoelastic behavior. , 2017, , .		42
339	Nonparametric Online Learning Control for Soft Continuum Robot: An Enabling Technique for Effective Endoscopic Navigation. Soft Robotics, 2017, 4, 324-337.	4.6	89
340	Roboscope: A flexible and bendable surgical robot for single portal Minimally Invasive Surgery. , 2017, ,		21
341	Model based control of fiber reinforced elastofluidic enclosures. , 2017, , .		12
342	Modeling parallel continuum robots with general intermediate constraints. , 2017, , .		25
343	Series pneumatic artificial muscles (sPAMs) and application to a soft continuum robot. , 2017, 2017, 5503-5510.		111

ARTICLE IF CITATIONS # Experimental validation of the pseudo-rigid-body model of the MRI-actuated catheter., 2017, 2017, 344 15 3600-3605. Moving frames and the characterization of curves that lie on a surface. Journal of Geometry, 2017, 345 0.1 108, 1091-1113. Toward Effective Soft Robot Control via Reinforcement Learning. Lecture Notes in Computer Science, 346 1.0 29 2017, , 173-184. Predictive filtering in motion compensation with steerable cardiac catheters., 2017, 2017, 4830-4836. 347 Design of a cable-driven hyper-redundant robot with experimental validation. International Journal of 348 1.3 56 Advanced Robotic Systems, 2017, 14, 172988141773445. Wireless Acoustic-Surface Actuators for Miniaturized Endoscopes. ACS Applied Materials & amp; 349 4.0 Interfaces, 2017, 9, 42536-42543. A framework for the kinematic modeling of soft material robots combining finite element analysis and 350 43 piecewise constant curvature kinematics., 2017,,. Towards Extending Forward Kinematic Models on Hyper-Redundant Manipulator to Cooperative 0.3 Bionic Arms. Journal of Physics: Conference Series, 2017, 783, 012056. Shape-Reconstruction-Based Force Sensing Method for Continuum Surgical Robots With Large 352 3.3 43 Deformation. IEEE Robotics and Automation Letters, 2017, 2, 1972-1979. Integrated Simultaneous Detection of Tactile and Bending Cues for Soft Robotics. Soft Robotics, 2017, 4.6 34 4,400-410. Kinematic modeling of hyper redundant robot using ball screw mechanism approach., 2017,,. 354 1 Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey. IEEE 262 Transactions on Biomedical Engineering, 2017, 64, 1665-1678. Dynamic Control of the Bionic Handling Assistant. IEEE/ASME Transactions on Mechatronics, 2017, 22, 356 3.7 109 6-17. Visual Servoing of Soft Robot Manipulator in Constrained Environments With an Adaptive 3.7 Controller. IEEE/ASME Transactions on Mechatronics, 2017, 22, 41-50. Multi-target Planar Needle Steering with a Bio-inspired Needle Design. Mechanisms and Machine 358 0.3 6 Science, 2017, , 51-60. Framework of modelling concentric tube robot and comparison on computational efficiency. 1.2 Meccanica, 2017, 52, 2201-2217. Using a Compliant, Unactuated Tail to Manipulate Objects. IEEE Robotics and Automation Letters, 2017, 360 3.3 7 2, 223-230. Continuum Robot Surfaces: Smart Saddles and Seats. Lecture Notes in Mechanical Engineering, 2017, 97-105.

# 362	ARTICLE Three-Dimensional Dynamics for Cable-Driven Soft Manipulator. IEEE/ASME Transactions on Mechatronics, 2017, 22, 18-28.	IF 3.7	CITATIONS
363	Kinematic comparison of surgical tendon-driven manipulators and concentric tube manipulators. Mechanism and Machine Theory, 2017, 107, 148-165.	2.7	135
364	Soft actuators with screen-printed curvature sensors. , 2017, , .		6
365	New cable-driven continuun robot with only one actuator. , 2017, , .		6
366	Precise motion control of concentric-tube robot based on visual servoing. , 2017, , .		10
367	Design and verification of a flexible device for steering a tethered capsule endoscope in the stomach. , 2017, , .		5
368	Granular jamming manipulator filled with new organic materials. , 2017, , .		1
369	Implicit active constraints for concentric tube robots based on analysis of the safe and dexterous workspace. , 2017, , .		11
370	Preliminary study on magnetic tracking based navigation for wire-driven flexible robot. , 2017, , .		3
371	Continuum robots for multi-scale motion: Micro-scale motion through equilibrium modulation. , 2017, , .		8
372	Preliminary results on OCT-based position control of a concentric tube robot. , 2017, , .		11
373	FEM-based soft robotic control framework for intracavitary navigation. , 2017, , .		14
374	Design and kinematic analysis of an elephant-trunk-like robot with shape memory alloy actuators. , 2017, , .		6
375	Pilot study on shape sensing for continuum tubular robot with multi-magnet tracking algorithm. , 2017, , .		9
376	Orientation estimation of a continuum manipulator in a phantom lung. , 2017, , .		2
377	FEM-based training of artificial neural networks for modular soft robots. , 2017, , .		28
378	Prototype development of a hand-held steerable tool for hip arthroscopy. , 2017, , .		6
379	A spring-like pipe climbing gait for the snake robot. , 2017, , .		5

#	Apticie	IF	CITATIONS
#	Active Sheath Mechanism based on Closed Elastica for Endoscope and Steerable Needle. Journal of	IF 0.1	CHATIONS
380	Japan Society of Computer Aided Surgery, 2017, 19, 5-16.	0.1	0
381	A wire-driven continuum manipulator model without assuming shape curvature constancy. , 2017, , .		17
382	A generalised, modular, approach for the forward kinematics of continuum soft robots with sections of constant curvature. , 2017, , .		3
383	Design and analysis of an origami continuum manipulation module with torsional strength. , 2017, , .		28
384	Force sensing in continuum manipulators using fiber Bragg grating sensors. , 2017, , .		37
385	Introducing BigMag — A novel system for 3D magnetic actuation of flexible surgical manipulators. , 2017, , .		46
386	A spatial soft module actuated by SMA coil. , 2017, , .		4
387	On the merits of helical tendon routing in continuum robots. , 2017, , .		31
388	SIMBA: Tendon-Driven Modular Continuum Arm with Soft Reconfigurable Gripper. Frontiers in Robotics and AI, 2017, 4, .	2.0	45
389	A Geometry Deformation Model for Braided Continuum Manipulators. Frontiers in Robotics and Al, 2017, 4, .	2.0	43
390	Continuum Manipulator with Rubber Skin Layer including Pulling-wire Mechanism. Journal of the Robotics Society of Japan, 2017, 35, 221-229.	0.0	4
391	Shape tracking and navigation for continuum surgical robot based on magnetic tracking. , 2017, , .		5
392	Abnormalities in Mitral Valve of Heart Detection and Analysis Using Echocardiography Images. , 2017, , .		0
393	Identification and Position Control of a Continuum Robotic Arm. , 2017, , .		6
394	Model-Free Control for Continuum Robots Based on an Adaptive Kalman Filter. IEEE/ASME Transactions on Mechatronics, 2018, 23, 286-297.	3.7	125
395	Eye-in-Hand Visual Servoing of Concentric Tube Robots. IEEE Robotics and Automation Letters, 2018, 3, 2315-2321.	3.3	38
396	Review on Otological Robotic Systems: Toward Microrobot-Assisted Cholesteatoma Surgery. IEEE Reviews in Biomedical Engineering, 2018, 11, 125-142.	13.1	31
397	Needle-tissue interactive mechanism and steering control in image-guided robot-assisted minimally invasive surgery: a review. Medical and Biological Engineering and Computing, 2018, 56, 931-949.	1.6	35

#	Article	IF	CITATIONS
398	Experimental validation of robot-assisted cardiovascular catheterization: model-based versus model-free control. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 797-804.	1.7	10
399	Vision-Based Sensing of External Forces Acting on Soft Robots Using Finite Element Method. IEEE Robotics and Automation Letters, 2018, 3, 1529-1536.	3.3	26
400	Screen-Printed Curvature Sensors for Soft Robots. IEEE Sensors Journal, 2018, 18, 223-230.	2.4	70
401	Parallel Continuum Robots: Modeling, Analysis, and Actuation-Based Force Sensing. IEEE Transactions on Robotics, 2018, 34, 29-47.	7.3	95
402	Softer is Harder: What Differentiates Soft Robotics from Hard Robotics?. MRS Advances, 2018, 3, 1557-1568.	0.5	84
403	Developing a Kinematically Similar Master Device for Extensible Continuum Robot Manipulators. Journal of Mechanisms and Robotics, 2018, 10, .	1.5	19
404	Cooperative Continuum Robots: Concept, Modeling, and Workspace Analysis. IEEE Robotics and Automation Letters, 2018, 3, 426-433.	3.3	23
405	Slit Tubes for Semisoft Pneumatic Actuators. Advanced Materials, 2018, 30, 1704446.	11.1	68
406	Design, characterization and applications of a novel soft actuator driven by flexible shafts. Mechanism and Machine Theory, 2018, 122, 197-218.	2.7	44
407	Control Strategies for Soft Robotic Manipulators: A Survey. Soft Robotics, 2018, 5, 149-163.	4.6	412
408	Electromagnetically Responsive Soft-Flexible Robots and Sensors for Biomedical Applications and Impending Challenges. Series in Bioengineering, 2018, , 43-72.	0.3	11
409	Magnetic Tracking in Medical Robotics. Series in Bioengineering, 2018, , 141-162.	0.3	1
410	A Comparison of Constant Curvature Forward Kinematics for Multisection Continuum Manipulators. , 2018, , .		21
411	Developments and Control of Biocompatible Conducting Polymer for Intracorporeal Continuum Robots. Annals of Biomedical Engineering, 2018, 46, 1511-1521.	1.3	15
412	Development of a Novel Continuum Robotic System for Maxillary Sinus Surgery. IEEE/ASME Transactions on Mechatronics, 2018, 23, 1226-1237.	3.7	62
413	A Bio-inspired Soft Robotic Arm: Kinematic Modeling and Hydrodynamic Experiments. Journal of Bionic Engineering, 2018, 15, 204-219.	2.7	45
414	Design and control of a tendon-driven continuum robot. Transactions of the Institute of Measurement and Control, 2018, 40, 3263-3272.	1.1	52
415	Reducing Actuator Requirements in Continuum Robots Through Optimized Cable Routing. Soft Robotics, 2018, 5, 109-118.	4.6	15

#	Article	IF	CITATIONS
416	Dynamic Modeling of a Class of Continuum Manipulators in Fixed Orientation. Journal of Intelligent and Robotic Systems: Theory and Applications, 2018, 91, 413-424.	2.0	30
417	Modeling and Experimental Evaluation of Bending Behavior of Soft Pneumatic Actuators Made of Discrete Actuation Chambers. Soft Robotics, 2018, 5, 24-35.	4.6	128
418	Design, Sensing, and Planning: Fundamentally Coupled Problems for Continuum Robots. Springer Proceedings in Advanced Robotics, 2018, , 267-282.	0.9	3
419	Kinematics optimization and static analysis of a modular continuum robot used for minimally invasive surgery. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2018, 232, 135-148.	1.0	11
420	A Loop-Shaped Flexible Mechanism for Robotic Needle Steering. IEEE Robotics and Automation Letters, 2018, 3, 648-655.	3.3	14
421	Control Space Reduction and Real-Time Accurate Modeling of Continuum Manipulators Using Ritz and Ritz–Galerkin Methods. IEEE Robotics and Automation Letters, 2018, 3, 328-335.	3.3	80
422	Development of a novel robotic platform with controllable stiffness manipulation arms for laparoendoscopic singleâ€site surgery (LESS). International Journal of Medical Robotics and Computer Assisted Surgery, 2018, 14, e1838.	1.2	31
423	Three-Dimensional Printable Origami Twisted Tower: Design, Fabrication, and Robot Embodiment. IEEE Robotics and Automation Letters, 2018, 3, 116-123.	3.3	46
424	Advances on the Application and Research of Surgical Robots. , 2018, , .		0
425	Collision Free Path Planning for Multi-Section Continuum Manipulators Based on a Modal Method. , 2018, , .		7
426	Research on Bending and Torsion Properties of Bionic Square Continuum Robot. , 2018, , .		1
427	Modeling and Experiment of Three-cavity Soft Manipulator. , 2018, , .		1
428	Kinematic Optimization of a Continuum Surgical Manipulator. , 2018, , .		8
429	A Kinematic Model for Soft Robot Based on Double Laminate Plate Theory. , 2018, , .		0
430	Modeling and Model-free Fuzzy Control of a Continuum Robotic Arm. , 2018, , .		6
431	FBC-Based Control of a Continuum Manipulator Interacting with Obstacles. , 2018, , .		20
432	A Novel Tele-operated Flexible Manipulator Based on the da-Vinci Research Kit. , 2018, , .		2
433	Decentralized Control of Distributed Actuation in a Segmented Soft Robot Arm. , 2018, , .		9

#	Article	IF	CITATIONS
434	Shape Modeling of a Parallel Soft Panel Continuum Robot. , 2018, , .		1
435	Real-time Dynamic Models for Soft Bending Actuators. , 2018, , .		4
436	Development and Evaluation of an Intuitive Flexible Interface for Teleoperating Soft Growing Robots. , 2018, , .		29
437	Dynamic Modeling of Soft Manipulators Actuated by Twisted-and-Coiled Actuators. , 2018, , .		2
438	Integrated Curvature Sensing of Soft Bending Actuators Using Inertial Measurement Units. , 2018, , .		2
439	Design and Analysis of a Cable-Driven Flexible Finger Based On Continuum Mechanism. , 2018, , .		1
440	A New Solution for the Inverse Kinematics of Concentric-Tube Robots. , 2018, , .		4
441	Mobile Continuum Robot with Unlimited Extensible Sections. , 2018, , .		4
442	A Double-jaw Hand that Mimics A Mouth of the Moray Eel. , 2018, , .		3
443	RRT*-smooth Algorithm Applied to Motion Planning of Concentric Tube Robots. , 2018, , .		3
444	Optimal actuator location for electro-active polymer actuated endoscope ⎠âŽThe authors gratefully acknowledge the support of the ANR-DFG (French-German) project INFIDHEM with Reference Code ANR-16-CE92-0028 and the support of the ENSMM BQR project with Reference Code BQR ENSMM Nº06.2017. IFAC-PapersOnLine, 2018, 51, 199-204.	0.5	2
445	Control of a piecewise constant curvature continuum manipulator via policy search method. , 2018, , .		4
446	3D-PSA: A 3D Pneumatic Soft Actuator with Extending and Omnidirectional Bending Motion. , 2018, , .		8
447	Position Control of Continuum Manipulator with Twin-Pivot Compliant Joints. , 2018, , .		0
448	Study on Vibration Analyze and Control of Continuum Robot. , 2018, , .		1
449	Robust Control of Tendon Driven Continuum Robots. , 2018, , .		5
450	Control Design for Soft Robots based on Reduced Order Model. IEEE Robotics and Automation Letters, 2018, , 1-1.	3.3	32
451	Continuum Robot Control Based on Virtual Discrete-Jointed Robot Models. , 2018, , .		5

#	Article	IF	Citations
452	Steerable catheters for minimally invasive surgery: a review and future directions. Computer Assisted Surgery, 2018, 23, 21-41.	0.6	98
453	Design and Development of a Slender Dual-Structure Continuum Robot for In-Situ Aeroengine Repair. , 2018, , .		36
454	Modeling of notched variable stiffness continuum flexible Snake-like Robot. , 2018, , .		6
455	Design and Control of a Soft Combined Actuator. , 2018, , .		0
456	A Cable-Driven Redundant Spatial Manipulator with Improved Stiffness and Load Capacity. , 2018, , .		27
457	Robust Model-Predictive Deformation Control of a Soft Object by Using a Flexible Continuum Robot. , 2018, , .		8
458	Statics of Continuum Space Manipulators With Nonconstant Curvature via Pseudorigid-Body 3R Model. IEEE Access, 2018, 6, 70854-70865.	2.6	31
459	Localized online learning-based control of a soft redundant manipulator under variable loading. Advanced Robotics, 2018, 32, 1168-1183.	1.1	20
460	Optical Sensing and Control Methods for Soft Pneumatically Actuated Robotic Manipulators. , 2018, , .		8
461	Underwater Dynamic Modeling for a Cable-Driven Soft Robot Arm. IEEE/ASME Transactions on Mechatronics, 2018, 23, 2726-2738.	3.7	38
462	Vine-Inspired Continuum Tendril Robots and Circumnutations. Robotics, 2018, 7, 58.	2.1	41
463	Obstacle-Aided Navigation of a Soft Growing Robot. , 2018, , .		35
464	Adaptive visual servoing control for an underwater soft robot. Assembly Automation, 2018, 38, 669-677.	1.0	13
465	Shape-Changing Materials Using Variable Stiffness and Distributed Control. Soft Robotics, 2018, 5, 737-747.	4.6	9
466	A Transient FEA-based Methodology for Designing Soft Surgical Manipulators. , 2018, , .		3
467	Systematic engineering design helps creating new soft machines. Robotics and Biomimetics, 2018, 5, 5.	1.7	17
468	Discrete Cosserat Approach for Multisection Soft Manipulator Dynamics. IEEE Transactions on Robotics, 2018, 34, 1518-1533.	7.3	176
469	Distal End Force Sensing with Optical Fiber Bragg Gratings for Tendon-Sheath Mechanisms in Flexible Endoscopic Robots. , 2018, , .		21

#	Article	IF	CITATIONS
470	Design, Modeling and Control of a 2-DoF Robotic Guidewire. , 2018, , .		29
471	A Nonlinear Control Strategy for Extensible Continuum Robots. , 2018, , .		6
472	Shape Sensing of Flexible Manipulators With Visual Occlusion Based on Bezier Curve. IEEE Sensors Journal, 2018, 18, 8133-8142.	2.4	19
473	OmniSkins: Robotic skins that turn inanimate objects into multifunctional robots. Science Robotics, 2018, 3, .	9.9	97
474	A Geometric and Unified Approach for Modeling Soft-Rigid Multi-Body Systems with Lumped and Distributed Degrees of Freedom. , 2018, , .		32
475	FABRIKc: an Efficient Iterative Inverse Kinematics Solver for Continuum Robots. , 2018, , .		22
476	Continuum Delta Robot: a Novel Translational Parallel Robot with Continuum Joints. , 2018, , .		13
477	Modeling of Soft Manipulators with Couplings between Actuations and Body Deformations. , 2018, , .		1
478	Medical Technologies and Challenges of Robot-Assisted Minimally Invasive Intervention and Diagnostics. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1, 465-490.	7.5	120
479	Image-Guided Dual Master–Slave Robotic System for Maxillary Sinus Surgery. IEEE Transactions on Robotics, 2018, 34, 1098-1111.	7.3	38
480	Research on Stiffness of Multibackbone Continuum Robot Based on Screw Theory and Euler-Bernoulli Beam. Mathematical Problems in Engineering, 2018, 2018, 1-16.	0.6	3
481	Towards creating a flexible shape senor for soft robots. , 2018, , .		4
482	Stiffness Control for Soft Surgical Manipulators. International Journal of Humanoid Robotics, 2018, 15, 1850021.	0.6	12
483	Helical actuation on a soft inflated robot body. , 2018, , .		31
484	Design of an Interactive Control System for a Multisection Continuum Robot. IEEE/ASME Transactions on Mechatronics, 2018, 23, 2379-2389.	3.7	32
485	Modular Continuum Manipulator: Analysis and Characterization of Its Basic Module. Biomimetics, 2018, 3, 3.	1.5	31
486	An Analytical Loading Model for <inline-formula> <tex-math notation="LaTeX">\$n\$ </tex-math </inline-formula> -Tendon Continuum Robots. IEEE Transactions on Robotics, 2018, 34, 1215-1225.	7.3	50
487	An inverse kinematics method of a soft robotic arm with three-dimensional locomotion for underwater manipulation. , 2018, , .		15

#	Article	IF	CITATIONS
488	Differential kinematics for a tendon-driven snake-like robot. , 2018, , .		1
489	Analytic solutions for the static equilibrium configurations of externally loaded cantilever soft robotic arms. , 2018, , .		6
490	State and stiffness estimation using robotic fabrics. , 2018, , .		13
491	Dynamic control of soft robots interacting with the environment. , 2018, , .		129
492	Motion modelling and error compensation of a cable-driven continuum robot for applications to minimally invasive surgery. International Journal of Medical Robotics and Computer Assisted Surgery, 2018, 14, e1932.	1.2	15
493	Modeling of Continuum Manipulators Using Pythagorean Hodograph Curves. Soft Robotics, 2018, 5, 425-442.	4.6	56
494	Lubrication regime analysis for spherical pump. Industrial Lubrication and Tribology, 2018, 70, 1437-1446.	0.6	11
495	Design and modeling of a soft robotic surface with hyperelastic material. Mechanism and Machine Theory, 2018, 130, 109-122.	2.7	38
496	Chip-on-tip endoscope incorporating a soft robotic pneumatic bending microactuator. Biomedical Microdevices, 2018, 20, 73.	1.4	33
497	Parameter estimation and modeling of a pneumatic continuum manipulator with asymmetric building blocks. , 2018, , .		13
498	Strategies to Control Performance of 3D-Printed, Cable-Driven Soft Polymer Actuators: From Simple Architectures to Gripper Prototype. Polymers, 2018, 10, 846.	2.0	24
499	Kinematics, Dynamics, and Control of a Cable-Driven Hyper-Redundant Manipulator. IEEE/ASME Transactions on Mechatronics, 2018, 23, 1693-1704.	3.7	130
500	From Differential Geometry of Curves to Helical Kinematics of Continuum Robots Using Exponential Mapping. Springer Proceedings in Advanced Robotics, 2019, , 319-326.	0.9	7
501	Pose Characterization and Analysis of Soft Continuum Robots With Modeling Uncertainties Based on Interval Arithmetic. IEEE Transactions on Automation Science and Engineering, 2019, 16, 570-584.	3.4	18
502	Spine-Inspired Continuum Soft Exoskeleton for Stoop Lifting Assistance. IEEE Robotics and Automation Letters, 2019, 4, 4547-4554.	3.3	66
503	Design and Modeling of an Extensible Soft Robotic Arm. IEEE Robotics and Automation Letters, 2019, 4, 4208-4215.	3.3	26
504	Elephant's Trunk Robot: An Extremely Versatile Under-Actuated Continuum Robot Driven by a Single Motor. Journal of Mechanisms and Robotics, 2019, 11, .	1.5	26
505	A Reconfigurable Variable Stiffness Manipulator by a Sliding Layer Mechanism. , 2019, , .		8

#	ARTICLE	IF	CITATIONS
 506	Modeling Variable Curvature Parallel Continuum Robots Using Euler Curves. , 2019, , .		27
507	TREE: A Variable Topology, Branching Continuum Robot. , 2019, , .		8
508	Image-based hysteresis compensator for a flexible endoscopic surgery robot. , 2019, , .		4
509	Cerebellum-inspired approach for adaptive kinematic control of soft robots. , 2019, , .		11
510	Near-optimal Smooth Path Planning for Multisection Continuum Arms. , 2019, , .		13
511	Nonlinear System Identification of Soft Robot Dynamics Using Koopman Operator Theory. , 2019, , .		41
512	Model-Based Estimation of the Gravity-Loaded Shape and Scene Depth for a Slim 3-Actuator Continuum Robot with Monocular Visual Feedback. , 2019, , .		4
513	Self-Supervised Surgical Tool Segmentation using Kinematic Information. , 2019, , .		23
514	An Integrator-Backstepping Control Approach for Three-Dimensional Needle Steering. IEEE/ASME Transactions on Mechatronics, 2019, 24, 2204-2214.	3.7	5
515	Statics analysis of an extensible continuum manipulator with large deflection. Mechanism and Machine Theory, 2019, 141, 245-266.	2.7	16
517	A Novel Discrete Wire-Driven Continuum Robot Arm with Passive Sliding Disc: Design, Kinematics and Passive Tension Control. Robotics, 2019, 8, 51.	2.1	28
518	Design of a Modular Continuum-Articulated Laparoscopic Robotic Tool With Decoupled Kinematics. IEEE Robotics and Automation Letters, 2019, 4, 3545-3552.	3.3	20
519	Configuration Transition Control of a Continuum Surgical Manipulator for Improved Kinematic Performance. IEEE Robotics and Automation Letters, 2019, 4, 3750-3757.	3.3	19
520	A Soft Actuator with Tunable Mechanical Configurations for Object Grasping Based on Sensory Feedback. , 2019, , .		5
521	Development of Novel Bevel-Geared 5 mm Articulating Wrist for Micro-Laparoscopy Instrument. IEEE Robotics and Automation Letters, 2019, 4, 3711-3718.	3.3	8
522	Design and Development of a Novel SMA Actuated Multi-DOF Soft Robot. IEEE Access, 2019, 7, 75073-75080.	2.6	37
523	Center-of-Gravity-Based Approach for Modeling Dynamics of Multisection Continuum Arms. IEEE Transactions on Robotics, 2019, 35, 1097-1108.	7.3	22
524	Geometric Calibration of Continuum Robots: Joint Space and Equilibrium Shape Deviations. IEEE Transactions on Robotics, 2019, 35, 387-402.	7.3	32

#	Article	IF	CITATIONS
525	Planar locomotion of earthworm-like metameric robots. International Journal of Robotics Research, 2019, 38, 1751-1774.	5.8	27
526	A geometric approach for follow-the-leader motion of serpentine manipulator. International Journal of Advanced Robotic Systems, 2019, 16, 172988141987463.	1.3	11
527	Kinematic Model and Real-Time Path Generator for a Wire-Driven Surgical Robot Arm with Articulated Joint Structure. Applied Sciences (Switzerland), 2019, 9, 4114.	1.3	18
528	Design and Modeling of a Parallel-Pipe-Crawling Pneumatic Soft Robot. IEEE Access, 2019, 7, 134301-134317.	2.6	52
529	Kinematics Modeling of a Twisted and Coiled Polymer-Based Elastomer Soft Robot. IEEE Access, 2019, 7, 136792-136800.	2.6	10
530	Combining Differential Kinematics and Optical Flow for Automatic Labeling of Continuum Robots in Minimally Invasive Surgery. Frontiers in Robotics and AI, 2019, 6, 86.	2.0	5
531	Dynamic modeling and simulation of inchworm movement towards bio-inspired soft robot design. Bioinspiration and Biomimetics, 2019, 14, 066012.	1.5	20
532	Development of a cost-effective actuation unit for three DOF concentric tube robot in minimally invasive surgery. , 2019, , .		1
533	Design of a Modular Continuum Robot Segment for use in a General Purpose Manipulator. , 2019, , .		7
534	Information Processing Capability of Soft Continuum Arms. , 2019, , .		3
535	Modified Pre-stretching Assembly Method for Cable-Driven Systems. Chinese Journal of Mechanical Engineering (English Edition), 2019, 32, .	1.9	1
536	On the use of soft continuum robots for remote measurement tasks in constrained environments: a brief overview of applications. , 2019, , .		14
537	Position control of medical cable-driven flexible instruments by combining machine learning and kinematic analysis. , 2019, , .		13
538	Shape Memory Alloy Driven Soft Robot Design and Position Control Using Continuous Reinforcement Learning. , 2019, , .		4
539	Kinematic Modeling of A Constant Curvature Continuum Manipulator Using Finite Element Analysis. , 2019, , .		2
540	Modeling of a joint-type flexible endoscope based on elastic deformation and internal friction. Advanced Robotics, 2019, 33, 985-995.	1.1	3
541	Monitoring and Control of Position and Attitude of Flexible Manipulator with Three Degrees of Freedom. , 2019, , .		3

		15	0.5.5.5.0.0
#	ARTICLE Vision-Based 3-D Control of Magnetically Actuated Catheter Using BigMag—An Array of Mobile	IF	CHATIONS
543	Electromagnetic Coils. IEEE/ASME Transactions on Mechatronics, 2019, 24, 505-516.	3.7	65
544	Elasticity Versus Hyperelasticity Considerations in Quasistatic Modeling of a Soft Finger-Like Robotic Appendage for Real-Time Position and Force Estimation. Soft Robotics, 2019, 6, 228-249.	4.6	35
545	Designing, Prototyping, and Testing a Flexible Suturing Robot for Transanal Endoscopic Microsurgery. IEEE Robotics and Automation Letters, 2019, 4, 1669-1675.	3.3	21
546	IMU-Based Active Safe Control of a Variable Stiffness Soft Actuator. IEEE Robotics and Automation Letters, 2019, 4, 1247-1254.	3.3	14
547	Vision-Based Online Learning Kinematic Control for Soft Robots Using Local Gaussian Process Regression. IEEE Robotics and Automation Letters, 2019, 4, 1194-1201.	3.3	80
548	Kinematics and statics of eccentric soft bending actuators with external payloads. Mechanism and Machine Theory, 2019, 139, 526-541.	2.7	38
549	Design and Analysis of a Square-Shaped Continuum Robot With Better Grasping Ability. IEEE Access, 2019, 7, 57151-57162.	2.6	19
550	Inverse Kinematics with a Geometrical Approximation for Multi-Segment Flexible Curvilinear Robots. Robotics, 2019, 8, 48.	2.1	12
551	CurviPicker: a continuum robot for pick-and-place tasks. Assembly Automation, 2019, 39, 410-421.	1.0	7
552	Dynamic Motion Control of Multi-Segment Soft Robots Using Piecewise Constant Curvature Matched with an Augmented Rigid Body Model. , 2019, , .		102
553	Model of a Coil-Reinforced Cylindrical Soft Actuator. Applied Sciences (Switzerland), 2019, 9, 2109.	1.3	9
554	Generalized Delta Mechanisms from Soft Actuators. , 2019, , .		4
555	Intelligent Liquid Integrated Functional Entity: A Basic Way to Innovate Future Advanced Biomimetic Soft Robotics. Advanced Intelligent Systems, 2019, 1, 1900017.	3.3	11
556	A review on recent advances in soft surgical robots for endoscopic applications. International Journal of Medical Robotics and Computer Assisted Surgery, 2019, 15, e2010.	1.2	82
557	On the Kinematic Model of Continuum Robots with Spatially Varying Nonlinear Stiffness. , 2019, , .		0
558	Shape and contact force estimation of continuum manipulators using pseudo rigid body models. Mechanism and Machine Theory, 2019, 139, 34-45.	2.7	58
559	Wire-driven flexible manipulator with constrained spherical joints for minimally invasive surgery. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1365-1377.	1.7	9
560	Kinematic analysis and navigation method of a cableâ€driven continuum robot used for minimally invasive surgery. International Journal of Medical Robotics and Computer Assisted Surgery, 2019, 15, e2007.	1.2	17

#	Article	IF	CITATIONS
561	An Opposite-Bending-and-Extension Soft Robotic Manipulator for Delicate Grasping in Shallow Water. Frontiers in Robotics and AI, 2019, 6, 26.	2.0	41
562	Marionette-based programming of a soft textile inflatable actuator. Sensors and Actuators A: Physical, 2019, 291, 93-98.	2.0	10
563	Experimental statics calibration of a multi-constraint parallel continuum robot. Mechanism and Machine Theory, 2019, 136, 72-85.	2.7	26
564	Dynamic Modeling of Fiber-Reinforced Soft Manipulator: A Visco-Hyperelastic Material-Based Continuum Mechanics Approach. Soft Robotics, 2019, 6, 305-317.	4.6	58
565	Reachability Improvement of a Climbing Robot Based on Large Deformations Induced by Tri-Tube Soft Actuators. Soft Robotics, 2019, 6, 483-494.	4.6	42
566	Computing Pressure-Deformation Maps for Braided Continuum Robots. Frontiers in Robotics and Al, 2019, 6, 4.	2.0	2
567	Kinematic and Dynamic Modeling and Simulation Analysis of a Cable-Driven Continuum Robot. Lecture Notes in Mechanical Engineering, 2019, , 27-37.	0.3	0
568	Robotic Skins That Learn to Control Passive Structures. IEEE Robotics and Automation Letters, 2019, 4, 2485-2492.	3.3	15
569	A soft crawling robot driven by single twisted and coiled actuator. Sensors and Actuators A: Physical, 2019, 291, 80-86.	2.0	58
570	Exact Task Execution in Highly Under-Actuated Soft Limbs: An Operational Space Based Approach. IEEE Robotics and Automation Letters, 2019, 4, 2508-2515.	3.3	12
571	Motion planning and control for endoscopic operations of continuum manipulators. Intelligent Service Robotics, 2019, 12, 159-166.	1.6	10
572	A Method for Selecting the Next Best Angle-of-Approach for Touch-Based Identification of Beam Members in Truss Structures. IEEE Sensors Journal, 2019, 19, 3939-3949.	2.4	1
573	A comprehensive static model of cable-driven multi-section continuum robots considering friction effect. Mechanism and Machine Theory, 2019, 135, 130-149.	2.7	85
574	Modified Roller Coaster Surface in Space. Mathematics, 2019, 7, 195.	1.1	6
575	Experimental Characterisation of Hydraulic Fiber-Reinforced Soft Actuators for Worm-Like Robots. , 2019, , .		5
576	Design and Kinematics on Biased Channel Retractable Continuum Robot. , 2019, , .		0
577	Towards the Design and Development of a Pediatric Neuroendoscope Tool. , 2019, , .		7
578	Design of a Cable Driven Floating Robotic Arm with Continuum Joints. , 2019, , .		1

#	Article	IF	CITATIONS
579	Linear vs. Nonlinear Modeling of Continuum Robotic Arms Using Data-Driven Method. , 2019, , .		5
580	Modeling and analysis of soft manipulator considering coupling effect between actuators. , 2019, , .		Ο
581	Closed Loop Control of a Continuum Surgical Manipulator for Improved Absolute Positioning Accuracy. , 2019, , .		1
582	Research on Shape Perception of the Soft Gripper Based on Triboelectric Nanogenerator. , 2019, , .		3
583	Design Strategy for a Surgical Manipulator based on a Compliant Mechanism : Rigidity and Range of Motion: Finding the Optimized Balance. , 2019, , .		1
584	Kinematic Modeling of a Soft Pneumatic Actuator Using Cubic Hermite Splines. , 2019, , .		8
585	Characterizing Environmental Interactions for Soft Growing Robots. , 2019, , .		22
586	The Modeling and Visual Control Simulation of Articulated Serpentine Manipulator. , 2019, , .		1
587	Motion Planning for a Continuum Robotic Mobile Lamp: Defining and Navigating the Configuration Space. , 2019, , .		8
588	An Analytical Tension Model for Continuum Robots with <i>n</i> Generally Positioned Tendons. Journal of Medical Robotics Research, 2019, 04, 1942003.	1.0	2
589	Modeling, Simulation and Experimental Validation of a Tendon-driven Soft-arm Robot Configuration - A Continuum Mechanics Method. , 2019, , .		3
590	A Learning-based Inverse Kinematics Solver for a Multi-Segment Continuum Robot in Robot-Independent Mapping. , 2019, , .		11
591	Improved Mechanical Design and Simplified Motion Planning of Hybrid Active and Passive Cable-Driven Segmented Manipulator with Coupled Motion. , 2019, , .		15
592	Behavioral Assessment of Various Control Laws Formulations for Position Tracking of Multi-sectioning Modeled Continuum Robots. , 2019, , .		3
593	Closed-Form Equations and Experimental Verification for Soft Robot Arm Based on Cosserat Theory. , 2019, , .		4
594	Design, Modeling and Testing of a Flagellum-inspired Soft Underwater Propeller Exploiting Passive Elasticity. , 2019, , .		2
595	Design and Modeling of a Biomimetic Wire-driven Soft Robotic Fish. , 2019, , .		2
596	Dimension Reduced Instantaneous Inverse Kinematics for Configuration Variable Limits of Continuum Manipulators. , 2019, , .		4

#	Article	IF	CITATIONS
597	A 3D Static Modeling Method and Experimental Verification of Continuum Robots Based on Pseudo-Rigid Body Theory. , 2019, , .		16
598	Design and Preliminary Testing of a Continuum Assistive Robotic Manipulator. Robotics, 2019, 8, 84.	2.1	4
599	Variable Stiffness Model Construction and Simulation Verification of Coupled Notch Continuum Manipulator. IEEE Access, 2019, 7, 154761-154769.	2.6	8
600	Non-linear System Identification and State Estimation in a Pneumatic Based Soft Continuum Robot. , 2019, , .		11
601	Modelling of Continuum Robotic Arm Using Artificial Neural Network (ANN). , 2019, , .		8
602	Model Predictive Force Control for Robots in compliant Environments with guaranteed Maximum Force. , 2019, , .		4
603	Design and Optimization of Concentric Tube Robots Based on Surgical Tasks, Anatomical Constraints and Follow-the-Leader Deployment. IEEE Access, 2019, 7, 173612-173625.	2.6	18
604	Mechanical behaviors of jammable robotic structures; prediction and computation. International Journal of Intelligent Robotics and Applications, 2019, 3, 71-86.	1.6	2
605	Probabilistic Kinematic Model of a Robotic Catheter for 3D Position Control. Soft Robotics, 2019, 6, 184-194.	4.6	22
606	Optimization of Neural Network Hyperparameters for Modeling of Soft Pneumatic Actuators. Mechanisms and Machine Science, 2019, , 199-206.	0.3	4
607	Study on stretch-retractable single-section continuum manipulator. Advanced Robotics, 2019, 33, 1-12.	1.1	21
608	A robotic laparoscopic tool with enhanced capabilities and modular actuation. Science China Technological Sciences, 2019, 62, 47-59.	2.0	10
609	A Geometrically Exact Model for Soft Continuum Robots: The Finite Element Deformation Space Formulation. Soft Robotics, 2019, 6, 790-811.	4.6	151
610	Application-Driven Design of Soft, 3-D Printed, Pneumatic Actuators With Bellows. IEEE/ASME Transactions on Mechatronics, 2019, 24, 78-87.	3.7	106
611	Configuration Estimation for Accurate Position Control of Large-Scale Soft Robots. IEEE/ASME Transactions on Mechatronics, 2019, 24, 88-99.	3.7	41
612	IUTAM Symposium on Intelligent Multibody Systems – Dynamics, Control, Simulation. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2019, , .	0.1	0
613	Developing a 3-D, Lumped-Mass Model to Present Behaviour of Large Deformation Surface Based Continuum Robots. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2019, , 133-147.	0.1	4
614	Continuum Robot Stiffness Under External Loads and Prescribed Tendon Displacements. IEEE Transactions on Robotics, 2019, 35, 403-419.	7.3	112

		CITATION REPORT		
#	Article		IF	CITATIONS
615	A Soft, Steerable Continuum Robot That Grows via Tip Extension. Soft Robotics, 2019,	, 6, 95-108.	4.6	130
616	Kinematics of Continuum Robots With Constant Curvature Bending and Extension Ca Journal of Mechanisms and Robotics, 2019, 11, .	pabilities.	1.5	30
617	Whole-Body Motion Planning. , 2019, , 1575-1599.			1
618	Composed continuum mechanism for compliant mechanical postural synergy: An anth hand design example. Mechanism and Machine Theory, 2019, 132, 108-122.	ropomorphic	2.7	22
619	Soft Poly-Limbs: Toward a New Paradigm of Mobile Manipulation for Daily Living Tasks 2019, 6, 38-53.	. Soft Robotics,	4.6	59
620	Shape Control for the Elastica Through Load Optimization. Journal of Applied Mechani Transactions ASME, 2019, 86, .	CS,	1.1	2
621	Design and Implementation of a Soft Robotic Arm Driven by SMA Coils. IEEE Transactic Electronics, 2019, 66, 6108-6116.	ons on Industrial	5.2	95
622	Haptic Telerobotic Cardiovascular Intervention: A Review of Approaches, Methods, and Perspectives. IEEE Reviews in Biomedical Engineering, 2020, 13, 32-50.	Future	13.1	54
623	An elastica robot: Tip-control in tendon-actuated elastic arms. Extreme Mechanics Lett 100584.	ers, 2020, 34,	2.0	1
624	Analysis of Twist Deformation in Wire-driven Continuum Surgical Robot. International Control, Automation and Systems, 2020, 18, 10-20.	Journal of	1.6	15
625	Trunk-like Soft Actuator: Design, Modeling, and Experiments. Robotica, 2020, 38, 732	-746.	1.3	12
626	Design and development of a soft robotic manipulator. International Journal of Mechan Materials in Design, 2020, 16, 309-321.	nics and	1.7	14
627	Flexible Robot With Variable Stiffness in Transoral Surgery. IEEE/ASME Transactions on 2020, 25, 1-10.	Mechatronics,	3.7	58
628	STRAS: A Modular and Flexible Telemanipulated Robotic Device for Intraluminal Surger 123-146.	y. , 2020, ,		11
629	Applications of Flexible Robots in Endoscopic Surgery. , 2020, , 303-322.			5
630	Robotics In Vivo: A Perspective on Human–Robot Interaction in Surgical Robotics. An Control, Robotics, and Autonomous Systems, 2020, 3, 221-242.	nnual Review of	7.5	23
631	Magnetic Continuum Device with Variable Stiffness for Minimally Invasive Surgery. Adv Intelligent Systems, 2020, 2, 1900086.	vanced	3.3	92
632	Smart Composites and Hybrid Soft-Foldable Technologies for Minimally Invasive Surgio 2020, , 323-340.	al Robots. ,		2
#	ARTICLE	IF	CITATIONS	
-----	--	-----	-----------	
633	Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment. International Journal of Robotics Research, 2020, 39, 490-513.	5.8	151	
634	Vine Robots. IEEE Robotics and Automation Magazine, 2020, 27, 120-132.	2.2	97	
635	Adaptive robust control for a soft robotic snake: A smooth-zone approach. Applied Mathematical Modelling, 2020, 80, 454-471.	2.2	20	
636	Control Oriented Modeling of Soft Robots: The Polynomial Curvature Case. IEEE Robotics and Automation Letters, 2020, 5, 290-298.	3.3	75	
638	The longest soft robotic arm. International Journal of Non-Linear Mechanics, 2020, 119, 103354.	1.4	11	
639	Force Sensing With 1Âmm Fiber Bragg Gratings for Flexible Endoscopic Surgical Robots. IEEE/ASME Transactions on Mechatronics, 2020, 25, 371-382.	3.7	48	
640	3D Pose and Curvature Estimation of Bendable Interventional Device using Single-view X-ray Image. , 2020, 2020, 4732-4736.		1	
641	Mechanics for Tendon Actuated Multisection Continuum Arms. , 2020, , .		10	
642	A Dexterous Tip-extending Robot with Variable-length Shape-locking. , 2020, , .		18	
643	A Novel Underactuated End-Effector for Planar Sequential Grasping of Multiple Objects. , 2020, , .		4	
644	Learning to Control Reconfigurable Staged Soft Arms. , 2020, , .		2	
645	Research on Modeling and Simulation of Cable-driven Bionic Octopus Arm based on SimMechanics. , 2020, , .		2	
646	Modeling and Control of Aerial Continuum Manipulation Systems: A Flying Continuum Robot Paradigm. IEEE Access, 2020, 8, 176883-176894.	2.6	21	
647	A Review on Flexible Robotic Systems for Minimally Invasive Surgery. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 631-644.	5.9	77	
648	An obstacle-interaction planning method for navigation of actuated vine robots. , 2020, , .		19	
649	Modeling and experimental analysis of a multi-rod parallel continuum robot using the Cosserat theory. Robotics and Autonomous Systems, 2020, 134, 103650.	3.0	8	
650	Dynamic modeling, simulation and design of smart membrane systems driven by soft actuators of multilayer dielectric elastomers. Nonlinear Dynamics, 2020, 102, 1463-1483.	2.7	15	
651	Modeling and Experimental Verification of a Cable-Constrained Synchronous Rotating Mechanism Considering Friction Effect. IEEE Robotics and Automation Letters, 2020, 5, 5464-5471.	3.3	12	

		CITATION RE	PORT	
#	Article		IF	CITATIONS
652	Modal-Based Kinematics and Contact Detection of Soft Robots. Soft Robotics, 2021, 8, 3	298-309.	4.6	47
653	Self-Sensing and Feedback Control for a Twin Coil Spring-Based Flexible Ultrasonic Moto Robotics and Automation Letters, 2020, 5, 5425-5431.	r. IEEE	3.3	4
654	Modelling and control of an IPMC actuated flexible structure: A lumped port Hamiltoniar Control Engineering Practice, 2020, 101, 104498.	ı approach.	3.2	17
655	Teleoperation Control Design with Virtual Force Feedback for the Cable-Driven Hyper-Re- Continuum Manipulator. Applied Sciences (Switzerland), 2020, 10, 8031.	dundant	1.3	6
656	Design, Modeling, Control, and Application of Everting Vine Robots. Frontiers in Robotic 7, 548266.	s and Al, 2020,	2.0	33
657	Dynamic Analysis of an Underwater Cable-Driven Manipulator with a Fluid-Power Buoyar Regulation System. Micromachines, 2020, 11, 1042.	су	1.4	6
658	Toward Vision-based Adaptive Configuring of A Bidirectional Two-Segment Soft Continu Manipulator. , 2020, , .	um		11
659	Modeling, Calibration, and Evaluation of a Tendon-Actuated Planar Parallel Continuum R Robotics and Automation Letters, 2020, 5, 5811-5818.	bbot. IEEE	3.3	30
660	Towards <i>In Situ</i> Backlash Estimation of Continuum Robots Using an Endoscopic (Robotics and Automation Letters, 2020, 5, 4788-4795.	Camera. IEEE	3.3	11
661	Design of Tendon-Driven Mechanism Using Geometrical Condition. Actuators, 2020, 9, 4	-8.	1.2	1
662	Dynamic modeling of soft continuum manipulators using lie group variational integratio 2020, 15, e0236121.	η. PLoS ONE,	1.1	8
663	An Origami Continuum Robot Capable of Precise Motion Through Torsionally Stiff Body Inverse Kinematics. Soft Robotics, 2021, 8, 371-386.	and Smooth	4.6	71
664	A Model-Based Cascaded Control Concept for the Bionic Motion Robot. , 2020, , .			4
665	Parallel Helix Actuators for Soft Robotic Applications. Frontiers in Robotics and AI, 2020,	7, 119.	2.0	8
666	3D/4D-printed bending-type soft pneumatic actuators: fabrication, modelling, and contro Physical Prototyping, 2020, 15, 373-402.	ol. Virtual and	5.3	103
667	Slack and Excessive Loading Avoidance in <i>n</i> -Tendon Continuum Robots. IEEE Acce 138730-138742.	ess, 2020, 8,	2.6	1
668	Data–Driven Disturbance Observers for Estimating External Forces on Soft Robots. IEE Automation Letters, 2020, 5, 5717-5724.	E Robotics and	3.3	42
669	Wire-Tension Feedback Control for Continuum Manipulator to Improve Load Manipulabi 2020, , .	lity Feature. ,		3

#	Article	IF	CITATIONS
670	A Closed-Loop Controller for a Continuum Surgical Manipulator Based on a Specially Designed Wrist Marker and Stereo Tracking. , 2020, , .		6
671	FEM-Based Mechanics Modeling of Bio-Inspired Compliant Mechanisms for Medical Applications. IEEE Transactions on Medical Robotics and Bionics, 2020, 2, 364-373.	2.1	26
672	Design and Mathematical Model for Bending Pneumatic Soft Actuators with Asymmetric Cavity. , 2020, , \cdot		1
673	Model-Based Manipulation of Linear Flexible Objects: Task Automation in Simulation and Real World. Machines, 2020, 8, 46.	1.2	15
674	Modeling and Experiments on the Swallowing and Disgorging Characteristics of an Underwater Continuum Manipulator. , 2020, , .		8
675	Salamanderbot: A soft-rigid composite continuum mobile robot to traverse complex environments. , 2020, , .		6
676	A Continuum Manipulator with Closed-form Inverse Kinematics and Independently Tunable Stiffness. , 2020, , .		4
677	Human Interface for Teleoperated Object Manipulation with a Soft Growing Robot. , 2020, , .		16
678	Depth-based Visual Predictive Control of Tendon-Driven Continuum Robots. , 2020, , .		8
679	Variable Topology "Tree-Like―Continuum Robots for Remote Inspection and Cleaning. , 2020, , .		0
680	Strain-based Pose Estimation for a Flexonic Mobile Node with Field Sensing Method. , 2020, , .		0
681	Design and Implement of Shape Detection for the Soft Manipulator. , 2020, , .		5
682	A Consensus Strategy for Decentralized Kinematic Control of Multi-Segment Soft Continuum Robots. , 2020, , .		3
683	Bilateral Teleoperation of Soft Robots under Piecewise Constant Curvature Hypothesis: An Experimental Investigation. , 2020, , .		6
684	Spline-Based Modeling and Control of Soft Robots. , 2020, , .		2
685	Nonlinear Model Predictive Growth Control of a Class of Plant-Inspired Soft Growing Robots. IEEE Access, 2020, 8, 214495-214503.	2.6	8
686	One-Shot kinesthetic programming by demonstration for soft collaborative robots. Mechatronics, 2020, 70, 102418.	2.0	13
687	Distance-directed Target Searching for a Deep Visual Servo SMA Driven Soft Robot Using Reinforcement Learning. Journal of Bionic Engineering, 2020, 17, 1126-1138.	2.7	28

#	Article	IF	Citations
688	Recent Advances in Design and Actuation of Continuum Robots for Medical Applications. Actuators, 2020, 9, 142.	1.2	43
689	Flow driven robotic navigation of microengineered endovascular probes. Nature Communications, 2020, 11, 6356.	5.8	58
690	Simultaneous Motion and Force Sensing for a Flexure Finger. , 2020, , .		1
691	A Haptic Continuum Interface for the Teleoperation of Extensible Continuum Manipulators. IEEE Robotics and Automation Letters, 2020, 5, 1875-1882.	3.3	12
692	Stiffness Analysis of a Pneumatic Soft Manipulator Based on Bending Shape Prediction. IEEE Access, 2020, 8, 82227-82241.	2.6	8
693	Position and Force Control of a Soft Pneumatic Actuator. Soft Robotics, 2020, 7, 550-563.	4.6	27
694	Biomedical soft robots: current status and perspective. Biomedical Engineering Letters, 2020, 10, 369-385.	2.1	47
695	A Proprioceptive Soft Tentacle Gripper Based on Crosswise Stretchable Sensors. IEEE/ASME Transactions on Mechatronics, 2020, 25, 1841-1850.	3.7	34
696	Design and Characterization of a Modular Hybrid Continuum Robotic Manipulator. IEEE/ASME Transactions on Mechatronics, 2020, 25, 2812-2823.	3.7	23
697	Development and Stability Analysis of an Imitation Learning-Based Pose Planning Approach for Multi-Section Continuum Robot. IEEE Access, 2020, 8, 99366-99379.	2.6	19
698	Towards an Untethered Knit Fabric Soft Continuum Robotic Module with Embedded Fabric Sensing. , 2020, , .		5
699	A New Exploration Strategy for Soft Robots Based on Proprioception. , 2020, , .		2
700	Closed-Form Non-Singular Constant-Curvature Continuum Manipulator Kinematics. , 2020, , .		12
701	A Survey on Mechanical Solutions for Hybrid Mobile Robots. Robotics, 2020, 9, 32.	2.1	21
702	Image-based Approach to Reconstruct Curling in Continuum Structures. , 2020, , .		5
703	Extensible High Force Manipulator For Complex Exploration. , 2020, , .		3
704	An Easy Use Auxiliary Arm: Design and Control of a Portable Continuum Manipulator for Enhanced Dexterity by Soft-Rigid Arms Collaboration. , 2020, , .		2
705	A proposed soft pneumatic actuator control based on angle estimation from data-driven model. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234, 612-625.	1.0	19

#	Article	IF	CITATIONS
706	Novel Bending and Helical Extensile/Contractile Pneumatic Artificial Muscles Inspired by Elephant Trunk. Soft Robotics, 2020, 7, 597-614.	4.6	90
707	Design and Development of a Growing Pneumatic Soft Robot. Soft Robotics, 2020, 7, 521-533.	4.6	28
708	Kinematic Modeling and Visual Servo Control of a Soft-Bodied Magnetic Anchored and Guided Endoscope. IEEE/ASME Transactions on Mechatronics, 2020, 25, 1531-1542.	3.7	17
709	Kinematic Modeling and Trajectory Tracking Control of an Octopus-Inspired Hyper-Redundant Robot. IEEE Robotics and Automation Letters, 2020, 5, 3460-3467.	3.3	30
710	Robust navigation of a soft growing robot by exploiting contact with the environment. International Journal of Robotics Research, 2020, 39, 1724-1738.	5.8	42
711	A Learnt Approach for the Design of Magnetically Actuated Shape Forming Soft Tentacle Robots. IEEE Robotics and Automation Letters, 2020, 5, 3937-3944.	3.3	46
712	Inverse displacement analysis of a hyper-redundant bionic trunk-like robot. International Journal of Advanced Robotic Systems, 2020, 17, 172988142090322.	1.3	0
713	Kinematic Evaluation of a Series of Soft Actuators in Designing an Eel-inspired Robot. , 2020, , .		5
714	Nonlinear Model based Dynamic Control of Pneumatic driven Quasi Continuum Manipulators. , 2020, ,		7
715	First-Order Dynamic Modeling and Control of Soft Robots. Frontiers in Robotics and Al, 2020, 7, 95.	2.0	28
716	Concentric Tube Robots for Minimally Invasive Surgery: Current Applications and Future Opportunities. IEEE Transactions on Medical Robotics and Bionics, 2020, 2, 410-424.	2.1	49
717	Coordinated variable impedance control for multi-segment cable-driven continuum manipulators. Mechanism and Machine Theory, 2020, 153, 103969.	2.7	16
718	Development of Continuum Spine Mechanism for Humanoid Robot: Biomimetic Supple and Curvilinear Spine Driven by Tendon. , 2020, , .		4
719	Challenges of continuum robots in clinical context: a review. Progress in Biomedical Engineering, 2020, 2, 032003.	2.8	116
720	FEM Based Workspace Estimation for Soft Robots: a Forward-Backward Interval Analysis Approach. , 2020, , .		5
721	Bio-inspired design of alternate rigid-flexible segments to improve the stiffness of a continuum manipulator. Science China Technological Sciences, 2020, 63, 1549-1559.	2.0	4
722	A Lightweight Simulation Model for Soft Robot's Locomotion and its Application to Trajectory Optimization. IEEE Robotics and Automation Letters, 2020, 5, 1199-1206.	3.3	9

#	Article	IF	CITATIONS
724	Modular Soft Robotics: Modular Units, Connection Mechanisms, and Applications. Advanced Intelligent Systems, 2020, 2, 1900166.	3.3	47
725	Laser-Profiled Continuum Robot with Integrated Tension Sensing for Simultaneous Shape and Tip Force Estimation. Soft Robotics, 2020, 7, 421-443.	4.6	52
726	Automatically steering cardiac catheters in vivo with respiratory motion compensation. International Journal of Robotics Research, 2020, 39, 586-597.	5.8	17
727	Modeling and Task-Oriented Optimization of Contact-Aided Continuum Robots. IEEE/ASME Transactions on Mechatronics, 2020, 25, 1444-1455.	3.7	25
728	Online Disturbance Estimation for Improving Kinematic Accuracy in Continuum Manipulators. IEEE Robotics and Automation Letters, 2020, 5, 2642-2649.	3.3	16
729	SLAM-Based Follow-the-Leader Deployment of Concentric Tube Robots. IEEE Robotics and Automation Letters, 2020, 5, 548-555.	3.3	14
730	Novel block mechanism for rolling joints in minimally invasive surgery. Mechanism and Machine Theory, 2020, 147, 103774.	2.7	7
731	Soft Robotics: A Review of Recent Developments of Pneumatic Soft Actuators. Actuators, 2020, 9, 3.	1.2	183
732	On an Improved State Parametrization for Soft Robots With Piecewise Constant Curvature and Its Use in Model Based Control. IEEE Robotics and Automation Letters, 2020, 5, 1001-1008.	3.3	110
733	Visual Servo of a 6-DOF Robotic Stereo Flexible Endoscope Based on da Vinci Research Kit (dVRK) System. IEEE Robotics and Automation Letters, 2020, 5, 820-827.	3.3	20
735	Design and Kinematics Analysis of a Robotic Pediatric Neuroendoscope Tool Body. IEEE/ASME Transactions on Mechatronics, 2020, 25, 985-995.	3.7	36
736	Concentric Precurved Bellows: New Bending Actuators for Soft Robots. IEEE Robotics and Automation Letters, 2020, 5, 1215-1222.	3.3	7
737	KNTU hand and application of MAG index for form closure grasp. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	0.8	2
738	Modeling and Experimental Study of a Novel Multi-DOF Parallel Soft Robot. IEEE Access, 2020, 8, 62932-62942.	2.6	9
739	Active Modeling and Compensation for the Hysteresis of a Robotic Flexible Ureteroscopy. IEEE Access, 2020, 8, 100620-100630.	2.6	11
740	Modeling and analysis of soft robotic fingers using the fin ray effect. International Journal of Robotics Research, 2020, 39, 1686-1705.	5.8	41
741	Geometric constraint-based modeling and analysis of a novel continuum robot with Shape Memory Alloy initiated variable stiffness. International Journal of Robotics Research, 2020, 39, 1620-1634.	5.8	95
742	Design, implementation, and control of a deformable manipulator robot based on a compliant spine. International Journal of Robotics Research, 2020, 39, 1604-1619.	5.8	36

#	Article	IF	CITATIONS
743	Energy-shaping control of soft continuum manipulators with in-plane disturbances. International Journal of Robotics Research, 2021, 40, 236-255.	5.8	37
744	Dynamic Control of Multisection Three-Dimensional Continuum Manipulators Based on Virtual Discrete-Jointed Robot Models. IEEE/ASME Transactions on Mechatronics, 2021, 26, 777-788.	3.7	39
745	Twisted-and-Coiled Actuators with Free Strokes Enable Soft Robots with Programmable Motions. Soft Robotics, 2021, 8, 213-225.	4.6	50
746	A soft manipulator for efficient delicate grasping in shallow water: Modeling, control, and real-world experiments. International Journal of Robotics Research, 2021, 40, 449-469.	5.8	118
747	Analysis and Synthesis of Compliant Parallel Mechanisms—Screw Theory Approach. Springer Tracts in Advanced Robotics, 2021, , .	0.3	7
748	Real-Time Kinematics of Continuum Robots: Modelling and Validation. Robotics and Computer-Integrated Manufacturing, 2021, 67, 102019.	6.1	33
749	Finite Element Modeling of Soft Fluidic Actuators: Overview and Recent Developments. Advanced Intelligent Systems, 2021, 3, 2000187.	3.3	130
750	3D Printing Materials for Soft Robotics. Advanced Materials, 2021, 33, e2003387.	11.1	173
751	Magnetic Control of a Flexible Needle in Neurosurgery. IEEE Transactions on Biomedical Engineering, 2021, 68, 616-627.	2.5	46
752	Development and validation of an automated FEM-based design optimization tool for continuum compliant structures. International Journal of Mechanics and Materials in Design, 2021, 17, 245-269.	1.7	8
753	Control of a flexible bevel-tipped needle using super-twisting controller based sliding mode observer. ISA Transactions, 2021, 109, 186-198.	3.1	13
754	Design, modelling and validation of a novel extra slender continuum robot for in-situ inspection and repair in aeroengine. Robotics and Computer-Integrated Manufacturing, 2021, 67, 102054.	6.1	75
755	Fluid-driven artificial muscles: bio-design, manufacturing, sensing, control, and applications. Bio-Design and Manufacturing, 2021, 4, 123-145.	3.9	40
756	Static modeling and analysis of soft manipulator considering environment contact based on segmented constant curvature method. Industrial Robot, 2021, 48, 233-246.	1.2	9
757	Learning Optimal Fin-Ray Finger Design for Soft Grasping. Frontiers in Robotics and AI, 2020, 7, 590076.	2.0	7
758	Task-oriented optimal dimensional synthesis of robotic manipulators with limited mobility. Robotics and Computer-Integrated Manufacturing, 2021, 69, 102096.	6.1	26
759	Research and analysis of stiffness-enhanced soft gripper. Journal of Intelligent and Fuzzy Systems, 2021, 40, 6231-6238.	0.8	1
760	A variational formulation for motion design of adaptive compliant structures. International Journal for Numerical Methods in Engineering, 2021, 122, 972-1000.	1.5	9

#	Article	IF	CITATIONS
761	Model-free motion control of continuum robots based on a zeroing neurodynamic approach. Neural Networks, 2021, 133, 21-31.	3.3	23
762	Construction of Controller Model of Notch Continuum Manipulator for Laryngeal Surgery Based on Hybrid Method. IEEE/ASME Transactions on Mechatronics, 2021, 26, 1022-1032.	3.7	20
763	A generalizable equilibrium model for bending soft arms with longitudinal actuators. International Journal of Robotics Research, 2021, 40, 148-177.	5.8	12
764	Model-based online learning and adaptive control for a "human-wearable soft robot―integrated system. International Journal of Robotics Research, 2021, 40, 256-276.	5.8	56
765	Quasi-static modeling of a novel growing soft-continuum robot. International Journal of Robotics Research, 2021, 40, 86-98.	5.8	19
766	<i>TMTDyn</i> : A Matlab package for modeling and control of hybrid rigid–continuum robots based on discretized lumped systems and reduced-order models. International Journal of Robotics Research, 2021, 40, 296-347.	5.8	52
767	Jacobian-Based Inverse Kinematics Analysis of a Pneumatic Actuated Continuum Manipulator. Lecture Notes in Mechanical Engineering, 2021, , 3-13.	0.3	2
768	Design and Validation of a Novel Fuzzy-Logic-Based Static Feedback Controller for Tendon-Driven Continuum Robots. IEEE/ASME Transactions on Mechatronics, 2021, 26, 3010-3021.	3.7	33
769	Cable-Movable Rolling Joint to Expand Workspace Under High External Load in a Hyper-Redundant Manipulator. IEEE/ASME Transactions on Mechatronics, 2022, 27, 501-512.	3.7	13
770	High-performance soft wearable robots for human augmentation and gait rehabilitation. , 2021, , 1-38.		2
771	An Electrohydraulic Control Device With Decoupling Effect for Three-Chamber Soft Actuators. IEEE/ASME Transactions on Mechatronics, 2022, 27, 1683-1691.	3.7	2
772	Distributed Parameter Modeling and Boundary Control of an Octopus Tentacle-Inspired Soft Robot. IEEE Transactions on Control Systems Technology, 2022, 30, 1244-1256.	3.2	8
773	Switching Between Continuum and Discrete States in a Continuum Robot With Dislocatable Joints. IEEE Access, 2021, 9, 34859-34867.	2.6	3
774	Model-Based Control and External Load Estimation of an Extensible Soft Robotic Arm. Frontiers in Robotics and Al, 2020, 7, 586490.	2.0	8
775	Verticalized-Tip Trajectory Tracking of a 3D-Printable Soft Continuum Robot: Enabling Surgical Blood Suction Automation. IEEE/ASME Transactions on Mechatronics, 2022, 27, 1545-1556.	3.7	13
776	Development of a Soft Robot Based Photodynamic Therapy for Pancreatic Cancer. IEEE/ASME Transactions on Mechatronics, 2021, 26, 2977-2985.	3.7	10
777	Efficient Inverse Kinematics and Planning of a Hybrid Active and Passive Cable-Driven Segmented Manipulator. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 4233-4246.	5.9	11
778	Kinematic Modeling and Control of Variable Curvature Soft Continuum Robots. IEEE/ASME Transactions on Mechatronics, 2021, 26, 3175-3185.	3.7	54

#	Article		CITATIONS
779	Force from Shape—Estimating the Location and Magnitude of the External Force on Flexible Instruments. IEEE Transactions on Robotics, 2021, 37, 1826-1833.	7.3	21
780	An Angle–Axis Space-Based Orientability Index Characterizing Complete Orientations. IEEE/ASME Transactions on Mechatronics, 2022, 27, 880-891.	3.7	1
781	Cosserat Rod-Based Dynamic Modeling of Tendon-Driven Continuum Robots: A Tutorial. IEEE Access, 2021, 9, 68703-68719.	2.6	42
782	Technical Validation of Multi-Section Robotic Bronchoscope With First Person View Control for Transbronchial Biopsies of Peripheral Lung. IEEE Transactions on Biomedical Engineering, 2021, 68, 3534-3542.	2.5	7
783	Characterization and Analysis of Extensile Fluidic Artificial Muscles. Actuators, 2021, 10, 26.	1.2	9
784	A Hybrid Hand–Eye Calibration Method for Multilink Cable-Driven Hyper-Redundant Manipulators. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-13.	2.4	8
785	Variable-Stiffness Control of a Dual-Segment Soft Robot Using Depth Vision. IEEE/ASME Transactions on Mechatronics, 2022, 27, 1034-1045.	3.7	15
786	Forward Kinematic Modeling of Conical-Shaped Continuum Manipulators. Robotica, 2021, 39, 1760-1778.	1.3	7
787	Control of a Robotic Flexible Endoscope Holder for Laparoscopic Surgery. Journal of Medical Devices, Transactions of the ASME, 2021, 15, .	0.4	1
788	Harnessing the Multistability of Kresling Origami for Reconfigurable Articulation in Soft Robotic Arms. Soft Robotics, 2022, 9, 212-223.	4.6	55
789	How to Model Tendon-Driven Continuum Robots and Benchmark Modelling Performance. Frontiers in Robotics and Al, 2020, 7, 630245.	2.0	84
790	Deformation model and experimental evaluation of a contractable and bendable wire-pulling mechanism with embedded soft tubes for a robotic tongue. ROBOMECH Journal, 2021, 8, .	0.9	1
791	A Review of 3Dâ€Printable Soft Pneumatic Actuators and Sensors: Research Challenges and Opportunities. Advanced Intelligent Systems, 2021, 3, 2000223.	3.3	75
792	Closed-loop control of soft continuum manipulators under tip follower actuation. International Journal of Robotics Research, 2021, 40, 923-938.	5.8	30
793	Beyond Constant Curvature: A New Mechanics Model for Unidirectional Notched-Tube Continuum Wrists. Journal of Medical Robotics Research, 2021, 06, 2140004.	1.0	8
794	Scaling Up Soft Robotics: A Meter-Scale, Modular, and Reconfigurable Soft Robotic System. Soft Robotics, 2022, 9, 324-336.	4.6	23
795	Kinematic Modelling and Motion Analysis of a Humanoid Torso Mechanism. Applied Sciences (Switzerland), 2021, 11, 2607.	1.3	7
796	Research and Design of Fast and Light Bearing Gripper Manipulator Summary. IOP Conference Series: Earth and Environmental Science, 2021, 714, 032069.	0.2	0

#	Article	IF	CITATIONS
797	Two Actuation Methods for a Complete Morphing System Composed of a VGTM and a Compliant Parallel Mechanism. Journal of Mechanisms and Robotics, 2021, 13, .	1.5	9
798	A New Extensible Continuum Manipulator Using Flexible Parallel Mechanism and Rigid Motion Transmission. Journal of Mechanisms and Robotics, 2021, 13, .	1.5	4
799	Bioâ€inspired Soft Grippers Based on Impactive Gripping. Advanced Science, 2021, 8, 2002017.	5.6	68
800	Synchronized Motion Profiles for Inverse-Dynamics-Based Online Control of Three Inextensible Segments of Trunk-Type Robot Actuators. Applied Sciences (Switzerland), 2021, 11, 2946.	1.3	1
801	Guidance for Acupuncture Robot with Potentially Utilizing Medical Robotic Technologies. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-11.	0.5	4
802	Modeling and Reconstruction of State Variables for Low-Level Control of Soft Pneumatic Actuators. Frontiers in Robotics and Al, 2021, 8, 557830.	2.0	7
803	Honeycomb Jamming: An Enabling Technology of Variable Stiffness Reconfiguration. Soft Robotics, 2021, 8, 720-734.	4.6	9
804	Magnetic Control of a Steerable Guidewire Under Ultrasound Guidance Using Mobile Electromagnets. IEEE Robotics and Automation Letters, 2021, 6, 1280-1287.	3.3	47
805	A Hybrid Active and Passive Cable-Driven Segmented Redundant Manipulator: Design, Kinematics, and Planning. IEEE/ASME Transactions on Mechatronics, 2021, 26, 930-942.	3.7	47
806	Configuration Tracking for Soft Continuum Robotic Arms Using Inverse Dynamic Control of a Cosserat Rod Model. , 2021, , .		11
807	A Magnetic Continuum Robot With Multi-Mode Control Using Opposite-Magnetized Magnets. IEEE Robotics and Automation Letters, 2021, 6, 2485-2492.	3.3	34
808	Piecewise constant strain kinematic model of externally loaded concentric tube robots. Mechatronics, 2021, 74, 102502.	2.0	7
809	Optimal Design of Continuum Robots With Reachability Constraints. IEEE Robotics and Automation Letters, 2021, 6, 3902-3909.	3.3	5
810	A Variable Curvature Model for Multi-Backbone Continuum Robots to Account for Inter-Segment Coupling and External Disturbance. IEEE Robotics and Automation Letters, 2021, 6, 1590-1597.	3.3	19
811	Multi-Scale Motion of Soft Continuum Robots using Tendons, Eccentric Rods, and a Cam. , 2021, , .		2
812	Hysteresis Modeling of Robotic Catheters Based on Long Short-Term Memory Network for Improved Environment Reconstruction. IEEE Robotics and Automation Letters, 2021, 6, 2106-2113.	3.3	30
813	RoBoa: Construction and Evaluation of a Steerable Vine Robot for Search and Rescue Applications. , 2021, , .		21
814	Dexterity Analysis based on Jacobian and Performance Optimization for Multi-segment Continuum Robots. Journal of Mechanisms and Robotics, 0, , 1-13.	1.5	8

		CITATION REPORT	
#	Article	IF	CITATIONS
815	Model-Free Reinforcement Learning with Ensemble for a Soft Continuum Robot Arm. , 2021, , .		14
816	A Kinematic Bottleneck Approach for Pose Regression of Flexible Surgical Instruments Directly F Images. IEEE Robotics and Automation Letters, 2021, 6, 2938-2945.	rom 3.3	14
817	A Lightweight Soft Gripper Driven by Self-Sensing Super-Coiled Polymer Actuator. IEEE Robotics Automation Letters, 2021, 6, 2775-2782.	and 3.3	18
818	Soft Robotic Manipulators: Designs, Actuation, Stiffness Tuning, and Sensing. Advanced Materia Technologies, 2021, 6, 2100018.	ils 3.0	66
819	Adaptive Control of Soft Robots Based on an Enhanced 3D Augmented Rigid Robot Matching. ,	2021,,.	10
820	Design and Modelling of a Continuum Robot for Distal Lung Sampling in Mechanically Ventilated Patients in Critical Care. Frontiers in Robotics and Al, 2021, 8, 611866.	d 2.0	5
821	PDE modeling and control of a cylindrical soft manipulator with bounded cable tension. , 2021,	, .	1
822	Intelligent Soft Surgical Robots for Nextâ€Generation Minimally Invasive Surgery. Advanced Inte Systems, 2021, 3, 2100011.	lligent 3.3	55
823	An Origami-Based Soft Robotic Actuator for Upper Gastrointestinal Endoscopic Applications. Frontiers in Robotics and Al, 2021, 8, 664720.	2.0	17
824	Everting of tubular net structures based on Shape Memory Alloys. Engineering Research Express 3, 025028.	, 2021, 0.8	Ο
825	Dynamic Modeling, Analysis, and Design Synthesis of a Reduced Complexity Quadruped with a Serpentine Robotic Tail. Integrative and Comparative Biology, 2021, 61, 464-477.	0.9	4
826	Robust Multimodal Indirect Sensing for Soft Robots Via Neural Network-Aided Filter-Based Estimation. Soft Robotics, 2022, 9, 591-612.	4.6	20
827	Dynamics of Continuum and Soft Robots: A Strain Parameterization Based Approach. IEEE Trans on Robotics, 2021, 37, 847-863.	actions 7.3	77
828	An Integrated Kinematic Modeling and Experimental Approach for an Active Endoscope. Frontier Robotics and AI, 2021, 8, 667205.	rs in 2.0	1
829	Data-Driven Control of Soft Robots Using Koopman Operator Theory. IEEE Transactions on Robo 2021, 37, 948-961.	otics, 7.3	90
830	Structured Ecological Cultivation with Autonomous Robots in Indoor Agriculture. , 2021, , .		13
831	A New Approach of Soft Joint Based on a Cable-Driven Parallel Mechanism for Robotic Applicatic Mathematics, 2021, 9, 1468.	ns. 1.1	5
832	1, 2-23.	1.0	7

ARTICLE IF CITATIONS # Task space adaptation via the learning of gait controllers of magnetic soft millirobots. International 833 5.8 10 Journal of Robotics Research, 2021, 40, 1331-1351. Tracking Control of a Miniature 2-DOF Manipulator With Hydrogel Actuators. IEEE Robotics and 834 3.3 Automation Letters, 2021, 6, 4774-4781. Fusing Dexterity and Perception for Soft Robot-Assisted Minimally Invasive Surgery: What We Learnt 835 1.3 13 from STIFF-FLOP. Applied Sciences (Switzerland), 2021, 11, 6586. Kinematic Model Predictive Control for a Novel Tethered Aerial Cable-Driven Continuum Robot., 2021, A Dexterous Origami-inspired Soft (DOIS) Robot for Objects Reorientation and Overturn., 2021,,. 837 1 Dynamic Model and Analysis of Soft Manipulator Facing Underwater Complex Environment., 2021, , . 839 Novel Planar Continuum Robot with Spiral Pulley Actuation and Gear Synced Body., 2021, , . 0 Kinematics of Three Segment Continuum Robot for Surgical Application. Lecture Notes in Mechanical 840 Engineering, 2022, , 1011-1021. Workspace Evaluation of Robotino-XT Under Reconfiguration. Lecture Notes in Mechanical 841 0.3 0 Engineering, 2022, , 281-288. Inverse Kinematics Formulations of a Continuum Endoscope for a View Adjustment Similar to the da 842 Vinci Endoscope., 2021,,. A Multi-Contact-Aided Continuum Manipulator With Anisotropic Shapes. IEEE Robotics and 843 12 3.3 Automation Letters, 2021, 6, 4560-4567. Comparison of Inverse Kinematics Algorithms for Multi-Section Continuum Robots. Mekhatronika, 844 0.2 Avtomatizatsiya, Upravlenie, 2021, 22, 420-424. Minimal twist accretive growth with spatial curve evolution. Mathematical Methods in the Applied 845 1.2 0 Sciences, 0, , . New continuum surgical robot based on hybrid concentric tube-tendon driven mechanism. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering 846 1.1 Science, 2021, 235, 7550-7568. Inverse Kinematics of Concentric Tube Robots in the Presence of Environmental Constraints. Applied 847 0.51 Bionics and Biomechanics, 2021, 2021, 1-12. Discrete Cosserat Method for Soft Manipulators Workspace Estimation: An Optimization-Based 848 Approach. Journal of Mechanisms and Robotics, 2022, 14, . Kinematic modeling and solution of rigid-flexible and variable-diameter underwater continuous 849 1.35 manipulator with load. Robotica, 2022, 40, 1020-1035. Bayesian Optimization for Design of Multi-Actuator Soft Catheter Robots. IEEE Transactions on 2.1 Medical Robotics and Bionics, 2021, 3, 725-737.

#	Article	IF	CITATIONS
851	Kinetostatics modeling and analysis of parallel continuum manipulators. Mechanism and Machine Theory, 2021, 163, 104380.	2.7	19
852	Kinematics modeling and grasping experiment of pneumatic four-finger flexible robotic hand. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 7894-7906.	1.1	4
853	Soft Robotics: Morphology and Morphology-inspired Motion Strategy. IEEE/CAA Journal of Automatica Sinica, 2021, 8, 1500-1522.	8.5	24
854	Hybrid rigid-continuum dual-arm space robots: Modeling, coupling analysis, and coordinated motion planning. Aerospace Science and Technology, 2021, 116, 106861.	2.5	20
855	Design of a dexterous robotic surgical instrument with a novel bending mechanism. International Journal of Medical Robotics and Computer Assisted Surgery, 2022, 18, e2334.	1.2	4
856	Development and analysis of a bio-inspired wire-driven variable stiffness double spring based tapered multi-section flexible robot. Industrial Robot, 2022, 49, 187-199.	1.2	1
857	Design and Analysis of a Fully Actuated Cable-Driven Joint for Hyper-Redundant Robots With Optimal Cable Routing. Journal of Mechanisms and Robotics, 2022, 14, .	1.5	9
858	Design and kinematic modeling of an origami-inspired cable-driven flexible arm. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236, 233-245.	1.1	1
859	A Survey for Machine Learning-Based Control of Continuum Robots. Frontiers in Robotics and AI, 2021, 8, 730330.	2.0	40
860	Profile and contact force estimation of cable-driven continuum robots in presence of obstacles. Mechanism and Machine Theory, 2021, 164, 104404.	2.7	10
861	Nonlinear disturbance observers for robotic continuum manipulators. Mechatronics, 2021, 78, 102518.	2.0	20
862	Design and Analysis of High-Stiffness Hyperredundant Manipulator With Sigma-Shaped Wire Path and Rolling Joints. IEEE Robotics and Automation Letters, 2021, 6, 7357-7364.	3.3	9
863	An Efficient Follow-the-Leader Strategy for Continuum Robot Navigation and Coiling. IEEE Robotics and Automation Letters, 2021, 6, 7493-7500.	3.3	25
864	Closed-Loop Position Control for Growing Robots Via Online Jacobian Corrections. IEEE Robotics and Automation Letters, 2021, 6, 6820-6827.	3.3	10
865	Workspace Boundary Estimation for Soft Manipulators Using a Continuation Approach. IEEE Robotics and Automation Letters, 2021, 6, 7169-7176.	3.3	4
866	Closed-Loop Pose Control and Automated Suturing of Continuum Surgical Manipulators With Customized Wrist Markers Under Stereo Vision. IEEE Robotics and Automation Letters, 2021, 6, 7137-7144.	3.3	12
867	Towards Safe Control of Continuum Manipulator Using Shielded Multiagent Reinforcement Learning. IEEE Robotics and Automation Letters, 2021, 6, 7461-7468.	3.3	19
868	Design and dynamic modeling of a continuum and compliant manipulator with large workspace. Mechanism and Machine Theory, 2021, 164, 104413.	2.7	9

#	Article	IF	CITATIONS
869	Constrained visual predictive control of tendon-driven continuum robots. Robotics and Autonomous Systems, 2021, 145, 103856.	3.0	8
870	A modular approach for dynamic modeling of multisegment continuum robots. Mechanism and Machine Theory, 2021, 165, 104429.	2.7	23
871	Design of a planar hyper-redundant lockable mechanism for shape morphing using a centralized actuation method. Mechanism and Machine Theory, 2021, 165, 104439.	2.7	6
872	Adaptive Control of Soft Robots Based on an Enhanced 3D Augmented Rigid Robot Matching. , 2021, 5, 1934-1939.		12
873	Development of a Multi-Cable-Driven Continuum Robot Controlled by Parallel Platforms. Journal of Mechanisms and Robotics, 2021, 13, .	1.5	2
874	Research on energy consumption of fiber-reinforced fluidic soft actuators. Smart Materials and Structures, 2021, 30, 025036.	1.8	8
875	Modeling and Experimental Validation for a Large-Scale and Ultralight Inflatable Robotic Arm. IEEE/ASME Transactions on Mechatronics, 2022, 27, 418-429.	3.7	5
876	MR-Tracked Deflectable Stylet for Gynecologic Brachytherapy. IEEE/ASME Transactions on Mechatronics, 2022, 27, 407-417.	3.7	9
877	Inverse Kinematic Model of a Cable-Driven Continuum Manipulator. Lecture Notes in Mechanical Engineering, 2021, , 553-564.	0.3	2
878	Continuum Robot Proprioception: The Ionic Liquid Approach. IEEE Transactions on Robotics, 2022, 38, 526-535.	7.3	9
879	Hierarchical control of soft manipulators towards unstructured interactions. International Journal of Robotics Research, 2021, 40, 411-434.	5.8	52
880	Highly dexterous 2â€module soft robot for intraâ€organ navigation in minimally invasive surgery. International Journal of Medical Robotics and Computer Assisted Surgery, 2018, 14, e1875.	1.2	79
881	Design and Characterization of a 3D Printed Soft Pneumatic Actuator. Mechanisms and Machine Science, 2020, , 488-495.	0.3	9
883	Static Modeling of Multisection Soft Continuum Manipulator for Stiff-Flop Project. Advances in Intelligent Systems and Computing, 2014, , 365-375.	0.5	19
884	Investigation of Error Propagation in Multi-backbone Continuum Robots. , 2014, , 385-394.		10
885	Contribution to Inverse Kinematic Modeling of a Planar Continuum Robot Using a Particle Swarm Optimization. Applied Condition Monitoring, 2015, , 141-150.	0.4	5
886	Concentric Tube Robots: The State of the Art and Future Directions. Springer Tracts in Advanced Robotics, 2016, , 253-269.	0.3	109
887	A Material-Based Model for the Simulation and Control of Soft Robot Actuator. Lecture Notes in Computer Science, 2017, , 557-569.	1.0	3

#	Article	IF	CITATIONS
888	Mechanics of Continuum Manipulators, a Comparative Study of Five Methods with Experiments. Lecture Notes in Computer Science, 2017, , 686-702.	1.0	40
890	Mechanics of Continuum Robots with External Loading and General Tendon Routing. Springer Tracts in Advanced Robotics, 2014, , 645-654.	0.3	8
891	Equilibrium Configurations of a Kirchhoff Elastic Rod under Quasi-static Manipulation. Springer Tracts in Advanced Robotics, 2013, , 71-87.	0.3	7
892	Multi-section Continuum Robot for Endoscopic Surgical Clipping of Intracranial Aneurysms. Lecture Notes in Computer Science, 2013, 16, 364-371.	1.0	11
893	In Vivo Inspection of the Olfactory Epithelium: Feasibility of Robotized Optical Biopsy. Annals of Biomedical Engineering, 2018, 46, 1951-1961.	1.3	11
894	Preliminary study on magnetic tracking-based planar shape sensing and navigation for flexible surgical robots in transoral surgery: methods and phantom experiments. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 241-251.	1.7	20
895	Variable Impedance Control of Cable Actuated Continuum Manipulators. International Journal of Control, Automation and Systems, 2020, 18, 1839-1852.	1.6	12
896	Disturbance Observer Based Control for Quasi Continuum Manipulators. IFAC-PapersOnLine, 2020, 53, 9808-9813.	0.5	8
897	Goal-directed tail use in Colombian spider monkeys (Ateles fusciceps rufiventris) is highly lateralized Journal of Comparative Psychology (Washington, D C: 1983), 2018, 132, 40-47.	0.3	8
898	Design and modeling of a hydraulic soft actuator with three degrees of freedom. Smart Materials and Structures, 2020, 29, 125017.	1.8	19
899	Learning Closed Loop Kinematic Controllers for Continuum Manipulators in Unstructured Environments. Soft Robotics, 2017, 4, 285-296.	4.6	84
901	Solving Cosserat Rod Models via Collocation and the Magnus Expansion. , 2020, , .		20
902	Optimal Design of Soft Continuum Magnetic Robots under Follow-the-leader Shape Forming Actuation. , 2020, , .		11
903	Towards FBG-Based Shape Sensing for Micro-Scale and Meso-Scale Continuum Robots With Large Deflection. IEEE Robotics and Automation Letters, 2020, 5, 1712-1719.	3.3	36
904	Design and experimental validation of a cable-driven continuum manipulator and soft gripper. , 2019, , .		4
905	Approximate Piecewise Constant Curvature Equivalent Model and Their Application to Continuum Robot Configuration Estimation. , 2020, , .		12
906	Robotized Catheter With Enhanced Distal Targeting for Peripheral Pulmonary Biopsy. IEEE/ASME Transactions on Mechatronics, 2021, 26, 2451-2461.	3.7	9
907	Modelling the Soft Robot <i>Kyma</i> Based on Realâ€Time Finite Element Method. Computer Graphics Forum, 2020, 39, 289-302.	1.8	8

#	Article	IF	CITATIONS
908	A Lumped-Mass Model for Large Deformation Continuum Surfaces Actuated by Continuum Robotic Arms. Journal of Mechanisms and Robotics, 2020, 12, .	1.5	17
909	Synthesizing Mechanical Chains for Morphing Between Spatial Curves. Journal of Mechanisms and Robotics, 2020, 12, .	1.5	2
910	Modeling and Analysis of a Planar Soft Panel Continuum Mechanism. Journal of Mechanisms and Robotics, 2020, 12, .	1.5	6
911	Dynamic Modeling of the Cable-Driven Continuum Robots in Hybrid Position-Force Actuation Mode. Journal of Mechanisms and Robotics, 2020, 12, .	1.5	8
912	A Monolithic Compliant Continuum Manipulator: A Proof-of-Concept Study. Journal of Mechanisms and Robotics, 2020, 12, .	1.5	13
913	Design and Kinematic Analysis of a Flexible-Link Parallel Mechanism With a Spatially Quasi-Translational End Effector. Journal of Mechanisms and Robotics, 2021, 13, .	1.5	13
914	Synthesizing Mechanical Chains for Morphing Between Spatial Curves. , 2019, , .		2
915	SNAKE-LIKE ROBOTS FOR MINIMALLY INVASIVE, SINGLE-PORT, AND INTRALUMINAL SURGERIES. , 2018, , 203-243.		31
916	Reality-Assisted Evolution of Soft Robots through Large-Scale Physical Experimentation: A Review. Artificial Life, 2021, 26, 484-506.	1.0	26
917	Joint-level force sensing for indirect hybrid force/position control of continuum robots with friction. International Journal of Robotics Research, 2021, 40, 764-781.	5.8	16
918	Separation method of bending and torsion in shape sensing based on FBG sensors array. Optics Express, 2020, 28, 9367.	1.7	38
919	Reduced Order vs. Discretized Lumped System Models with Absolute and Relative States for Continuum Manipulators. , 0, , .		14
920	Optimization of concentric tube continuum robot based on accuracy and overall length of the robot via genetic algorithm. , 2020, , 007-012.		1
921	Dynamic Modeling of a Spatial Cable-Driven Continuum Robot Using Euler-Lagrange Method. International Journal of Engineering and Technology Innovation, 2019, 10, 60-74.	0.5	17
922	Robots Hiper-Redundantes: Clasificación, Estado del Arte y Problemática. RIAI - Revista Iberoamericana De Automatica E Informatica Industrial, 2018, 15, 351.	0.6	11
923	From the Human Spine to Hyperredundant Robots: The ERMIS Mechanism. ISRN Robotics, 2013, 2013, 1-9.	1.3	6
924	A Continuum Robot with Twin-Pivot Structure: The Kinematics and Shape Estimation. Lecture Notes in Computer Science, 2021, , 466-475.	1.0	5
925	Geometric Solutions for General Actuator Routing on Inflated-Beam Soft Growing Robots. IEEE Transactions on Robotics, 2022, 38, 1820-1840.	7.3	8

#	ARTICLE Follow-the-Leader Deployment of the Interlaced Continuum Robot Based on the Unpowered Lock	IF	CITATIONS
926	Mechanism. Lecture Notes in Computer Science, 2021, , 448-459.	1.0	3
921	Compensating for drimodeled forces using Neural Networks in Soft Manipulator Planning., 2021, , .		0
928	Smooth Path Planning for Continuum Arms. , 2021, , .		5
929	Kinetostatics for variable cross-section continuum manipulators. , 2021, , .		3
930	Towards a Multi-imager Compatible Continuum Robot with Improved Dynamics Driven by Modular SMA. , 2021, , .		8
931	A Translational Parallel Continuum Robot Reinforced by Origami and Cross-Routing Tendons. , 2021, , .		0
932	Adaptive Tracking Control of Soft Robots Using Integrated Sensing Skins and Recurrent Neural Networks. , 2021, , .		2
933	Using Euler Curves to Model Continuum Robots. , 2021, , .		7
934	Screw theory-based stiffness analysis for a fluidic-driven soft robotic manipulator. , 2021, , .		4
935	Soft Robot Optimal Control Via Reduced Order Finite Element Models. , 2021, , .		13
936	Image-Guided Control of an Endoscopic Robot for OCT Path Scanning. IEEE Robotics and Automation Letters, 2021, 6, 5881-5888.	3.3	13
937	Comparison of Three Meta-heuristic Algorithms for Solving Inverse Kinematics Problems of Variable Curvature Continuum Robots. , 2021, , .		6
938	Toward Semi-Autonomous Stiffness Adaptation of Pneumatic Soft Robots: Modeling and Validation. , 2021, , .		5
939	Configuration Estimation of Continuum Robots Using Piecewise Constant Curvature Generalized Epi-Polar Constraint Model. , 2021, , .		0
940	Real-Time Shape Estimation for Concentric Tube Continuum Robots with a Single Force/Torque Sensor. Frontiers in Robotics and Al, 2021, 8, 734033.	2.0	1
942	On the Mathematical Modeling of Slender Biomedical Continuum Robots. Frontiers in Robotics and Al, 2021, 8, 732643.	2.0	10
943	From Theoretical Work to Clinical Translation: Progress in Concentric Tube Robots. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 335-359.	7.5	22
944	Automated 3-D Deformation of a Soft Object Using a Continuum Robot. IEEE Transactions on Automation Science and Engineering, 2021, 18, 2076-2086.	3.4	10

#	Article	IF	CITATIONS
945	A Simulator for Designing Control Schemes for a Teleoperated Flexible Robotic System. Lecture Notes in Computer Science, 2013, , 90-104.	1.0	0
946	New Approach to Modeling a planar flexible continuum robot simulating elephant trunk. Journal of New Technology and Materials, 2013, 3, 8-13.	0.4	0
948	Shape Modeling of Continuous-Curvature Continuum Robots. Mechanisms and Machine Science, 2014, , 75-83.	0.3	1
949	Design of a Stereo Handheld Camera Tool for Single Port Laparoscopy. Lecture Notes in Computer Science, 2014, , 299-310.	1.0	0
952	Whole-Body Motion Planning. , 2017, , 1-26.		0
953	Steerable Needle Based on Active Sheath Mechanism. Journal of the Robotics Society of Japan, 2017, 35, 539-547.	0.0	0
954	Constant Curvature Kinematic Model Analysis and Experimental Validation for Tendon Driven Continuum Manipulators. , 2018, , .		2
955	A Two-Level Approach to Motion Planning of Soft Variable-Length Manipulators. Advances in Intelligent Systems and Computing, 2019, , 409-426.	0.5	0
956	Solving Inverse Kinematics of a Planar Dual-Backbone Continuum Robot Using Neural Network. Mechanisms and Machine Science, 2019, , 355-361.	0.3	2
957	Inverse Kinematics (IK) Solution of a Robotic Manipulator using PYTHON. Journal of Mechatronics and Robotics, 2019, 3, 542-551.	0.2	3
958	An Active Steering Soft Robot for Small-Bore T-Branch Pipeline. Lecture Notes in Computer Science, 2019, , 556-567.	1.0	0
959	Kinematics Analyzing of a Spatial Multi-Section Continuum Robot. , 0, , .		0
960	Inverse Kinematics for Steerable Concentric Continuum Robots. Smart Innovation, Systems and Technologies, 2020, , 89-100.	0.5	4
961	Master Device With Bending Safety for Flexible Surgical Robots. Journal of Mechanisms and Robotics, 2020, 12, .	1.5	4
962	Compliance Parameterization andÂOptimization of Compliant Parallel Mechanisms. Springer Tracts in Advanced Robotics, 2021, , 99-120.	0.3	0
963	Kinematic Model Analysis and ROS Control of Cable Driven Continuous Robot Manipulator. Lecture Notes in Electrical Engineering, 2021, , 384-393.	0.3	0
964	Analysis of a novel manipulator with low melting point alloy initiated stiffness variation and shape detection for minimally invasive surgery. Industrial Robot, 2021, 48, 247-258.	1.2	2
965	Kinematics analysis and experimental study on three-dimensional space bending flexible pneumatic arm. Advances in Mechanical Engineering, 2020, 12, 168781402098515.	0.8	0

#	Article	IF	Citations
966	A Kind of Kinematics Modeling of 2 DOFs Notched Continuum Manipulator. , 2020, , .		0
967	The role of semantics in the perceptual organization of shape. Scientific Reports, 2020, 10, 22141.	1.6	2
968	Experiments on Oscillation Control of a Continuum Soft Robotic Manipulator. Lecture Notes in Mechanical Engineering, 2021, , 557-571.	0.3	0
970	Real-Time Multi-Object Magnetic Tracking for Multi-Arm Continuum Robots. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-9.	2.4	6
971	Grasp synthesis of continuum robots. Mechanism and Machine Theory, 2022, 168, 104575.	2.7	7
972	Learning-Based Approaches for Forward Kinematic Modeling of Continuum Manipulators. IFAC-PapersOnLine, 2020, 53, 9899-9904.	0.5	4
973	A Basic Idea of Identifying the Stiffness of an Elastic Rod along its Backbone. , 2019, , .		2
974	Curvature and Force Estimation for a Soft Finger using an EKF with Unknown Input Optimization. IFAC-PapersOnLine, 2020, 53, 8506-8512.	0.5	3
975	LPV framework for Non-Linear Dynamic Control of Soft Robots using Finite Element Model. IFAC-PapersOnLine, 2020, 53, 7312-7318.	0.5	7
976	A Model-Based Method for Predicting the Shapes of Planar Single-Segment Continuum Manipulators With Consideration of Friction and External Force. Journal of Mechanisms and Robotics, 2020, 12, .	1.5	9
977	Experimental study on dynamic performance of pneumatic flexible manipulator with single degree of freedom. Vibroengineering PROCEDIA, 2020, 30, 9-14.	0.3	0
978	Model-predictive reference trajectory planning for redundant pneumatic collaborative robots. Automatisierungstechnik, 2020, 68, 360-374.	0.4	1
979	A Bioinspired Soft Robot Combining the Growth Adaptability of Vine Plants with a Coordinated Control System. Research, 2021, 2021, 9843859.	2.8	6
980	Design and Validation of a Novel Cable-Driven Hyper-Redundant Robot Based on Decoupled Joints. Journal of Robotics, 2021, 2021, 1-16.	0.6	3
981	A Semilinear Parameter-Varying Observer Method for Fabric-Reinforced Soft Robots. Frontiers in Robotics and Al, 2021, 8, 749591.	2.0	6
982	Shape estimation of a large workspace continuum manipulator with fusion of inertial sensors. Mechatronics, 2021, 80, 102684.	2.0	6
983	Gain Optimization of Kinematic Control for Wire-driven Surgical Robot with Layered Joint Structure Considering Actuation Velocity Bound. The Journal of Korea Robotics Society, 2020, 15, 212-220.	0.2	2
984	Static Modeling of a Miniaturized Continuum Robot for Surgical Interventions and Displacement Analysis under Lateral External Loads. The Journal of Korea Robotics Society, 2020, 15, 301-308.	0.2	0

#	Article	IF	CITATIONS
985	Hybrid force/position control for quasi continuum manipulators. Automatisierungstechnik, 2020, 68, 854-862.	0.4	4
986	Dynamics modeling and analysis of cable-driven segmented manipulator considering friction effects. Mechanism and Machine Theory, 2022, 169, 104633.	2.7	14
987	Design and analysis of hybrid-driven origami continuum robots with extensible and stiffness-tunable sections. Mechanism and Machine Theory, 2022, 169, 104607.	2.7	19
988	A Novel Modular Segment Design for a Snake-like Robotic Manipulator. , 2021, , .		0
989	Data-driven geometric system identification for shape-underactuated dissipative systems. Bioinspiration and Biomimetics, 2022, 17, 026004.	1.5	1
990	Stochastic spatio-temporal optimization for control and co-design of systems in robotics and applied physics. Autonomous Robots, 2022, 46, 283-306.	3.2	5
991	Review of soft fluidic actuators: classification and materials modeling analysis. Smart Materials and Structures, 2022, 31, 013001.	1.8	31
992	On trajectory tracking control of fluid-driven actuators. Automatisierungstechnik, 2021, 69, 970-980.	0.4	3
993	Tele-Operated Oropharyngeal Swab (TOOS) Robot Enabled by TSS Soft Hand for Safe and Effective Sampling. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 1040-1053.	2.1	18
994	Shape Reconstruction Processes for Interventional Application Devices: State of the Art, Progress, and Future Directions. Frontiers in Robotics and Al, 2021, 8, 758411.	2.0	13
995	Efficient Path Planning of Soft Robotic Arms in the Presence of Obstacles. IFAC-PapersOnLine, 2021, 54, 586-591.	0.5	5
996	Finite-Time Observer-Based Variable Impedance Control of Cable-Driven Continuum Manipulators. IEEE Transactions on Human-Machine Systems, 2022, 52, 26-40.	2.5	5
997	Dynamic Modeling of Tendon-Driven Co-Manipulative Continuum Robots. IEEE Robotics and Automation Letters, 2022, 7, 1643-1650.	3.3	8
998	Soft Actuator with Programmable Design: Modeling, Prototyping, and Applications. Soft Robotics, 2022, 9, 907-925.	4.6	8
999	DNN-Based Predictive Model for a Batoid-Inspired Soft Robot. IEEE Robotics and Automation Letters, 2022, 7, 1024-1031.	3.3	1
1000	FEM-based trajectory tracking control of a soft trunk robot. Robotics and Autonomous Systems, 2022, 150, 103961.	3.0	6
1001	Neural-based Inverse Kinematical Analysis for Bio-inspired Cable-driven Robotic Manipulator. , 2020, , .		0
1002	Toward Analytical Modeling and Evaluation of Curvature-Dependent Distributed Friction Force in Tendon-Driven Continuum Manipulators. , 2020, , .		4

#	Article	IF	CITATIONS
1003	Reconfigurable Soft Flexure Hinges via Pinched Tubes. , 2020, , .		6
1004	A Discrete-Jointed Robot Model Based Control Strategy for Spatial Continuum Manipulators. , 2020, , .		4
1005	Exploiting the Morphology of a Shape Memory Spring as the Active Backbone of a Highly Dexterous Tendril Robot (ATBR). , 2020, , .		2
1006	Design and Modeling of a Parallel Shifted-Routing Cable-Driven Continuum Manipulator for Endometrial Regeneration Surgery. , 2020, , .		5
1007	Sim2Real2Sim: Bridging the Gap Between Simulation and Real-World in Flexible Object Manipulation. , 2020, , .		15
1008	Adaptive neural network control for a soft robotic manipulator. , 2020, , .		1
1009	Development of a Semi-Rigid Tendon Actuated Limb for Robotics Applications. , 2020, , .		0
1010	Design of coaxial intervention catheter robot for Endoscopic Retrograde Cholangio-Pancreatography. , 2020, , .		0
1011	Bending Deformation Relation with Various Materials for a Soft Pneumatic Actuator. , 2021, , .		0
1012	Nonlinear Model Predictive Control for Pneumatic Driven Quasi Continuum Manipulators. , 2021, , .		0
1013	Shape-centric Modeling for Soft Robot Inchworm Locomotion. , 2021, , .		5
1014	Dynamics Computation of a Hybrid Multi-link Humanoid Robot Integrating Rigid and Soft Bodies. , 2021,		3
1015	Task Driven Skill Learning in a Soft-Robotic Arm. , 2021, , .		2
1016	Analytical Modeling of a Soft Pneu-net Actuator Based on Finite Strain Beam Theory. , 2021, , .		1
1017	Dynamic modelling and visco-elastic parameter identification of a fibre-reinforced soft fluidic elastomer manipulator. , 2021, , .		6
1018	Trajectory Tracking of Soft Continuum Robots with Unknown Models Based on Varying Parameter Recurrent Neural Networks. , 2021, , .		2
1019	A Lagrangian Dynamic Model for Soft Cylindrical Robots Without Internal Holonomic Constraint. , 2021, , .		2
1020	Learning-Based Approach to Inverse Kinematics of Wheeled Mobile Continuum Manipulators. IEEE/ASME Transactions on Mechatronics, 2022, 27, 3451-3462.	3.7	3

#	Article	IF	CITATIONS
1021	Impact of Generic Tendon Routing on Tension Loss of Tendon-Driven Continuum Manipulators With Planar Deformation. IEEE Robotics and Automation Letters, 2022, 7, 3624-3631.	3.3	5
1022	Underwater Soft Robotics: A Review of Bioinspiration in Design, Actuation, Modeling, and Control. Micromachines, 2022, 13, 110.	1.4	42
1023	Modeling and control strategies for flexible devices. , 2022, , 187-213.		3
1024	FEM-Based Exterior Workspace Boundary Estimation for Soft Robots via Optimization. IEEE Robotics and Automation Letters, 2022, 7, 3672-3678.	3.3	3
1025	Kinestatic Modeling of a Spatial Screw-Driven Continuum Robot. IEEE Robotics and Automation Letters, 2022, 7, 3563-3570.	3.3	4
1026	Physics-Informed Modeling and Control of Multi-Actuator Soft Catheter Robots. Frontiers in Robotics and Al, 2021, 8, 772628.	2.0	1
1027	Review on generic methods for mechanical modeling, simulation and control of soft robots. PLoS ONE, 2022, 17, e0251059.	1.1	29
1028	Modeling of Fluidic Prestressed Composite Actuators With Application to Soft Robotic Grippers. IEEE Transactions on Robotics, 2022, 38, 2166-2178.	7.3	9
1029	Optimization of Stress Distribution in Tendon-Driven Continuum Robots Using Fish-Tail-Inspired Method. IEEE Robotics and Automation Letters, 2022, 7, 3380-3387.	3.3	16
1030	A Study on Position Control of a Continuum Arm Using MAML (Model-Agnostic Meta-Learning) for Adapting Different Loading Conditions. IEEE Access, 2022, 10, 14980-14992.	2.6	2
1031	Inverse Kinematics and Dexterous Workspace Formulation for 2-Segment Continuum Robots With Inextensible Segments. IEEE Robotics and Automation Letters, 2022, 7, 510-517.	3.3	5
1032	Design and Characteristics of 3D Magnetically Steerable Guidewire System for Minimally Invasive Surgery. IEEE Robotics and Automation Letters, 2022, 7, 4040-4046.	3.3	22
1033	Dynamic Modeling and Experimental Validation of a Water Hydraulic Soft Manipulator Based on an Improved Newton—Euler Iterative Method. Micromachines, 2022, 13, 130.	1.4	9
1034	Kinematics Modeling of Soft Manipulator Interacting with Environment Using Segmented Variable Curvature Method. International Journal of Control, Automation and Systems, 2022, 20, 255-267.	1.6	4
1035	Design and Optimization of a 3D Printed Distal Flexible Joint for Endoscopic Surgery. IEEE Transactions on Medical Robotics and Bionics, 2022, 4, 38-49.	2.1	16
1036	Soft Pneumatic Actuator Model Based on a Pressure-Dependent Spatial Nonlinear Rod Theory. IEEE Robotics and Automation Letters, 2022, 7, 2471-2478.	3.3	6
1037	A Modular Lockable Mechanism for Tendon-Driven Robots: Design, Modeling and Characterization. IEEE Robotics and Automation Letters, 2022, 7, 2023-2030.	3.3	9
1038	Continuum analysis of a soft bending actuator dynamics. Mechatronics, 2022, 83, 102739.	2.0	6

	Сітатіо	n Report	
# 1039	ARTICLE Equivalent-Input-Disturbance-Based Dynamic Tracking Control for Soft Robots via Reduced-Order Finite-Element Models. IEEE/ASME Transactions on Mechatronics, 2022, 27, 4078-4089.	IF 3.7	CITATIONS 8
1040	Continuum Robots for Medical Interventions. Proceedings of the IEEE, 2022, 110, 847-870.	16.4	80
1041	Dynamics modeling of a 2-DoFs cable-driven continuum robot. World Journal of Engineering, 2023, 20, 631-640.	1.0	2
1042	Redundancy and overactuation in cephalopod-inspired soft robot arms. Bioinspiration and Biomimetics, 2022, 17, 036004.	1.5	1
1043	A review of soft manipulator research, applications, and opportunities. Journal of Field Robotics, 2022, 39, 281-311.	3.2	46
1044	Flexible Sliding-teeth-array Mechanism for Hollow Joint Module with Smooth Outline. , 2022, , .		0
1045	Design, Kinematic Modeling, and Validation of a Robotic-Assisted Transesophageal Echocardiography System. , 2022, , .		2
1046	Model-Free Visual Control forÂContinuum Robot Manipulators viaÂOrientation Adaptation. Springer Proceedings in Advanced Robotics, 2022, , 959-970.	0.9	3
1047	Kinematic Control for Crossed-Fiber-Reinforced Soft Manipulator Using Sparse Bayesian Learning. IEEE/ASME Transactions on Mechatronics, 2022, 27, 611-622.	3.7	4
1048	An Accurate Position Acquisition Method of a Hyper-Redundant Arm With Load. IEEE Sensors Journal, 2022, 22, 8986-8995.	2.4	1
1049	Shape Tracking and Feedback Control of Cardiac Catheter Using MRI-Guided Robotic Platform—Validation With Pulmonary Vein Isolation Simulator in MRI. IEEE Transactions on Robotics, 2022, 38, 2781-2798.	7.3	18
1050	Control Strategies for Soft Robot Systems. Advanced Intelligent Systems, 2022, 4, .	3.3	64
1051	Geometrically Exact Finite Element Formulation for Tendon-Driven Continuum Robots. Acta Mechanica Solida Sinica, 2022, 35, 552-570.	1.0	6
1052	Design, Modeling, and Kinematics Analysis of a Modular Cable-Driven Manipulator. Journal of Mechanisms and Robotics, 2022, 14, .	1.5	8

Pneumatic Soft Robots: Challenges and Benefits. Actuators, 2022, 11, 92. 1053

1054	Visual servoing of continuum robots: Methods, challenges, and prospects. International Journal of Medical Robotics and Computer Assisted Surgery, 2022, 18, e2384.	1.2	11
1055	Model-Based Nonlinear Feedback Controllers for Pressure Control of Soft Pneumatic Actuators Using On/Off Valves. Frontiers in Robotics and Al, 2022, 9, 818187.	2.0	3
1056	Workspace Analysis of Cable-driven Continuum Manipulator with Cable-constrained Synchronous Rotating Mechanism. Journal of Physics: Conference Series, 2022, 2216, 012047.	0.3	0

1.2

39

#	Article	IF	CITATIONS
1057	Characterization of Soft 3D Printed Actuators for Parallel Networks. IEEE Robotics and Automation Letters, 2022, 7, 5342-5348.	3.3	1
1058	Controlling Soft Robotic Arms Using Continual Learning. IEEE Robotics and Automation Letters, 2022, 7, 5469-5476.	3.3	8
1059	Efficient pneumatic actuation modeling using hybrid physics-based and data-driven framework. Cell Reports Physical Science, 2022, 3, 100842.	2.8	7
1060	Sim-to-Real for Soft Robots Using Differentiable FEM: Recipes for Meshing, Damping, and Actuation. IEEE Robotics and Automation Letters, 2022, 7, 5015-5022.	3.3	19
1061	Constrained Motion Planning of a Cable-Driven Soft Robot With Compressible Curvature Modeling. IEEE Robotics and Automation Letters, 2022, 7, 4813-4820.	3.3	15
1062	Kinematics analysis and trajectory planning of a continuum manipulator. International Journal of Mechanical Sciences, 2022, 222, 107206.	3.6	13
1063	Design, modeling, and workspace analysis of an extensible rod-driven Parallel Continuum Robot. Mechanism and Machine Theory, 2022, 172, 104798.	2.7	11
1064	A robotic surgical tool with continuum wrist, kinematically optimized curved stem, and collision avoidance kinematics for single port procedure. Mechanism and Machine Theory, 2022, 173, 104863.	2.7	2
1065	Modeling and Robust Adaptive Control for Tendon-Driven with Bending Tip Systems. , 2021, , .		0
1066	Cruciate-Ligament-Inspired Compliant Joints: Application to 3D-Printed Continuum Surgical Robots. , 2021, 2021, 4645-4648.		4
1067	A Soft Robotic Gripper Based on Bioinspired Fingers. , 2021, 2021, 4570-4573.		0
1068	Toward Learning Context-Dependent Tasks from Demonstration for Tendon-Driven Surgical Robots. , 2021, , .		1
1069	A Preliminary Study of Soft Material Robotic Modelling: Finite Element Method and Cosserat Rod Model. , 2021, , .		7
1070	An orthogonal calibration method for the multi-core fiber shape sensor. , 2021, , .		0
1071	Synchronous Motion Generation of Multiple Continuum Robots Based on a Jacobian-Estimation Strategy. , 2021, , .		1
1072	A Novel 3D Ring-Based Flapper Valve for Soft Robotic Applications. Robotics, 2022, 11, 2.	2.1	0
1073	Design and Experiment of a Soft Gripper Based on Cable-Driven Continuum Structures. , 2021, , .		1
1074	A Variable-Cross-Sectional Continuum Manipulator capable of grasping by whole-arm wrapping. , 2021,		1

C	.	Depart
	ON	REDUBT
CILAI		KLI OKI

#	Article	IF	CITATIONS
1075	Customizing skills for assistive robotic manipulators, an inverse reinforcement learning approach with error-related potentials. Communications Biology, 2021, 4, 1406.	2.0	23
1076	A Q-learning Control Method for a Soft Robotic Arm Utilizing Training Data from a Rough Simulator. , 2021, , .		4
1077	Modelling ofÂCable-Driven Continuum Robots withÂGeneral Cable Routing: aÂComparison. Mechanisms and Machine Science, 2022, , 345-353.	0.3	3
1078	Swing up Control of a Soft Inverted Pendulum with Revolute Base. , 2021, , .		3
1079	Manipulability and Robustness Optimization of the Cable-Driven Redundant Soft Manipulator. , 2021, , .		0
1080	Modeling and Control of Soft Robotic Tail Based Aerial Maneuvering (STAM) System: Towards Agile Self-Righting with a Soft Tail. , 2021, , .		2
1081	A Cable-Driven Hyper-Redundant Robot with Angular Sensing. , 2021, , .		0
1082	Novel Design of a Cable-Driven Continuum Robot With Multiple Motion Patterns. IEEE Robotics and Automation Letters, 2022, 7, 6163-6170.	3.3	25
1083	Bending Properties of an Extensile Fluidic Artificial Muscle. Frontiers in Robotics and AI, 2022, 9, 804095.	2.0	0
1090	Kinematic Modelling of a Bioinspired Two Sections Serial Continuum Robot (SCR). Mechanisms and Machine Science, 2022, , 247-255.	0.3	3
1091	Analytical Modeling of a Soft Pneu-Net Actuator Subjected to Planar Tip Contact. IEEE Transactions on Robotics, 2022, 38, 2720-2733.	7.3	11
1092	Soft Robot-Assisted Minimally Invasive Surgery and Interventions: Advances and Outlook. Proceedings of the IEEE, 2022, 110, 871-892.	16.4	15
1093	Joint-Space Kinematic Control of a Bionic Continuum Manipulator in Real-Time by Using Hybrid Approach. IEEE Access, 2022, 10, 47031-47050.	2.6	5
1094	Public Opinion About the Benefit, Risk, and Acceptance of Aerial Manipulation Systems. IEEE Transactions on Human-Machine Systems, 2022, 52, 1069-1085.	2.5	4
1095	Augmented Reality-Assisted Autonomous View Adjustment of a 6-DOF Robotic Stereo Flexible Endoscope. IEEE Transactions on Medical Robotics and Bionics, 2022, 4, 356-367.	2.1	14
1096	A Data-Efficient Model-Based Learning Framework for the Closed-Loop Control of Continuum Robots. , 2022, , .		4
1097	Trajectory Optimization for Thermally-Actuated Soft Planar Robot Limbs. , 2022, , .		3
1098	Tractable and Intuitive Dynamic Model for Soft Robots via the Recursive Newton-Euler Algorithm. , 2022, , .		1

#	Article	IF	CITATIONS
1099	Sensing soft robots' shape with cameras: an investigation on kinematics-aware SLAM. , 2022, , .		1
1100	Model-Based Control of Planar Piezoelectric Inchworm Soft Robot for Crawling in Constrained Environments. , 2022, , .		9
1101	Stretching the Boundary: Shell Finite Elements for Pneumatic Soft Actuators. , 2022, , .		4
1102	Kinematic Modeling of Handed Shearing Auxetics via Piecewise Constant Curvature. , 2022, , .		1
1103	A Modular Soft Robotic Arm with Embedded Tactile Sensors for Proprioception. , 2022, , .		1
1104	Motion modeling of cable-driven continuum robots using vector form intrinsic finite element method. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2022, 45, 423-436.	0.6	1
1105	Design and Analysis of a Novel Variable Stiffness Continuum Robot With Built-in Winding-Styled Ropes. IEEE Robotics and Automation Letters, 2022, 7, 6375-6382.	3.3	12
1106	Bond graph modeling of a spatial multi-section soft bionic robot. Mechanism and Machine Theory, 2022, 174, 104902.	2.7	5
1107	Coupling Effect Suppressed Compact Surgical Robot with 7-Axis Multi-Joint Using Wire-Driven Method. Mathematics, 2022, 10, 1698.	1.1	4
1108	Dynamic Analysis and Optimal Parameter Design of Flexible Composite Structures via Absolute Nodal Coordinate Formulation. Journal of Shanghai Jiaotong University (Science), 0, , .	0.5	0
1109	Towards Developing a Simple Lumped Parameter-based State Estimator for PneuNets. , 2021, , .		0
1110	Design and kinematic of a dexterous bioinspired elephant trunk robot with variable diameter. Bioinspiration and Biomimetics, 2022, 17, 046016.	1.5	5
1111	Simplified dynamical model and experimental verification of an underwater hydraulic soft robotic arm. Smart Materials and Structures, 2022, 31, 075011.	1.8	5
1112	Hybrid-Structure Hand-Held Robotic Endoscope for Sinus Surgery With Enhanced Distal Dexterity. IEEE/ASME Transactions on Mechatronics, 2022, 27, 1863-1872.	3.7	6
1113	Soft Pneumatic Actuators: A Review of Design, Fabrication, Modeling, Sensing, Control and Applications. IEEE Access, 2022, 10, 59442-59485.	2.6	72
1114	A minimally designed soft crawling robot for robust locomotion in unstructured pipes. Bioinspiration and Biomimetics, 2022, 17, 056001.	1.5	6
1115	Design, Modelling and Implementation of a Foldable Pneumatic Soft Manipulator. Microgravity Science and Technology, 2022, 34, .	0.7	6
1116	A 3D printed variable cross-section pneumatic soft manipulator with high-precision positioning capability: Design and control implementation. Sensors and Actuators A: Physical, 2022, 342, 113644.	2.0	3

0			n	
	ΙΤΔΤ	$1 \cap N$	INE	DUBT
<u> </u>	/			

#	Article	IF	CITATIONS
1117	Curvature-Based Control for Low-Inertia Systems. IEEE Transactions on Power Systems, 2022, 37, 4149-4152.	4.6	2
1118	A Novel Underactuated Continuum Robot With Shape Memory Alloy Clutches. IEEE/ASME Transactions on Mechatronics, 2022, 27, 5339-5350.	3.7	20
1119	General Forward Kinematics for Tendon-Driven Continuum Robots. IEEE Access, 2022, 10, 60330-60340.	2.6	4
1120	An Optical Curvature Sensor forÂSoft Robots. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2022, , 125-132.	0.3	2
1121	Dexterity Analysis and Motion Optimization of In-Situ Torsionally-Steerable Flexible Surgical Robots. IEEE Robotics and Automation Letters, 2022, 7, 8347-8354.	3.3	6
1122	Shape Representation and Modeling of Tendon-Driven Continuum Robots Using Euler Arc Splines. IEEE Robotics and Automation Letters, 2022, 7, 8114-8121.	3.3	6
1123	Nonlinear model predictive control of a class of continuum robots using kinematic and dynamic models. FME Transactions, 2022, 50, 339-350.	0.7	9
1124	Position-Access Workspace of Slender Soft Manipulators. Journal of Mechanisms and Robotics, 0, , 1-12.	1.5	0
1125	Distributed Artificial Intelligence as a Means to Achieve Self-X-Functions for Increasing Resilience: the First Steps. , 2022, , .		2
1126	CRRIK: A Fast Heuristic Algorithm for the Inverse Kinematics of Continuum Robot. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 105, .	2.0	9
1127	Design and modeling of a novel soft parallel robot driven by endoskeleton pneumatic artificial muscles. Frontiers of Mechanical Engineering, 2022, 17, .	2.5	2
1128	A Review on Wire-Driven Flexible Robot Manipulators. Recent Patents on Engineering, 2022, 17, .	0.3	1
1129	A deep neural network approach for accurate 3D shape estimation of soft manipulator with vision correction. Sensors and Actuators A: Physical, 2022, 344, 113692.	2.0	6
1130	Advancement of Flexible Robot Technologies for Endoluminal Surgeries. Proceedings of the IEEE, 2022, 110, 909-931.	16.4	24
1131	Design and Experimental Characterization of a Push-Pull Flexible Rod-Driven Soft-Bodied Robot. IEEE Robotics and Automation Letters, 2022, 7, 8933-8940.	3.3	9
1132	Shape Reconstruction of Soft Manipulators Using Vision and IMU Feedback. IEEE Robotics and Automation Letters, 2022, 7, 9589-9596.	3.3	6
1133	Magnetic Soft Continuum Robots With Braided Reinforcement. IEEE Robotics and Automation Letters, 2022, 7, 9770-9777.	3.3	9
1134	Magnetically Steerable Asymmetric Magnetized Soft Continuum Robot (AMSCR) for Minimally Invasive Surgery. , 2022, , .		0

#	Article	IF	CITATIONS
1135	A Switchable Rigid-Continuum Robot Arm: Design and Testing. , 2022, , .		1
1136	Orientation to Pose: Continuum Robots Shape Reconstruction Based on the Multi-Attitude Solving Approach. , 2022, , .		3
1137	Adaptive Dynamic Sliding Mode Control of Soft Continuum Manipulators. , 2022, , .		7
1138	Dual-scale robotic solution for middle ear surgery. , 2022, , .		3
1139	Forward Kinematics and Control of a Segmented Tunable-Stiffness 3-D Continuum Manipulator. , 2022, , .		1
1140	3D Printing of Concrete with a Continuum Robot Hose Using Variable Curvature Kinematics. , 2022, , .		6
1141	Compensating for Material Deformation in Foldable Robots via Deep Learning â ${f \in}{f \bullet}$ A Case Study. , 2022, , .		0
1142	SMORS: A soft multirotor UAV for multimodal locomotion and robust interaction. , 2022, , .		1
1143	Reproduction of Human Demonstrations with a Soft-Robotic Arm based on a Library of Learned Probabilistic Movement Primitives. , 2022, , .		4
1144	Progress, Challenges, and Prospects of Soft Robotics for Space Applications. Advanced Intelligent Systems, 2023, 5, .	3.3	31
1145	Closed-Loop Trajectory Tracking Control of a Cable-Driven Continuum Robot With Integrated Draw Tower Grating Sensor Feedback. Journal of Mechanisms and Robotics, 2022, 14, .	1.5	5
1146	Skin wrinkles and folds enable asymmetric stretch in the elephant trunk. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
1147	Design, kinematic modeling and evaluation of a novel soft prosthetic hand with abduction joints. Medicine in Novel Technology and Devices, 2022, 15, 100151.	0.9	1
1148	Modeling and Analysis of Tendon-Driven Parallel Continuum Robots Under Constant Curvature and Pseudo-Rigid-Body Assumptions. Journal of Mechanisms and Robotics, 2023, 15, .	1.5	4
1149	Easy-to-Deploy Combined Nasal/Throat Swab Robot With Sampling Dexterity and Resistance to External Interference. IEEE Robotics and Automation Letters, 2022, 7, 9699-9706.	3.3	8
1150	On the Stability of the Soft Pendulum With Affine Curvature: Open-Loop, Collocated Closed-Loop, and Switching Control. , 2023, 7, 385-390.		2
1151	A Hydrogel-Based Self-Sensing Underwater Actuator. SSRN Electronic Journal, 0, , .	0.4	0
1153	A Novel Compact Underactuated Tendon-Driven Mechanism with Shape Memory Alloys. , 2022, , .		1

#	Article	IF	CITATIONS
1154	A Survey on Design, Actuation, Modeling, and Control of Continuum Robot. Cyborg and Bionic Systems, 2022, 2022, .	3.7	27
1155	Equivalent Dynamic Analysis of a Cable-Driven Snake Arm Maintainer. Applied Sciences (Switzerland), 2022, 12, 7494.	1.3	0
1156	Design and Development of Wire-Driven Pulley Guided Continuum Robot (WPGCR) Arm and Friction Analysis. , 2022, , .		1
1157	Obstacle Avoidance Path Planning and Motion Control for a Multi-Joint Soft Manipulator. , 2022, , .		2
1158	Inverse-Free Tracking Control of Continuum Robots with Unknown Models Based on Gradient Neural Networks. , 2022, , .		0
1159	A Reliable Algorithm for Obtaining All-Inclusive Inverse Kinematics' Solutions and Redundancy Resolution of Continuum Robots. Arabian Journal for Science and Engineering, 2023, 48, 3351-3366.	1.7	2
1160	Kinematic Modelling for Hyper-Redundant Robots—A Structured Guide. Mathematics, 2022, 10, 2891.	1.1	4
1161	A bioinspired fishbone continuum robot with rigid-flexible-soft coupling structure. Bioinspiration and Biomimetics, 2022, 17, 066012.	1.5	4
1162	SpringWorm: A Soft Crawling Robot with a Large-Range Omnidirectional Deformable Rectangular Spring for Control Rod Drive Mechanism Inspection. Soft Robotics, 2023, 10, 280-291.	4.6	7
1163	A concise guide to modelling the physics of embodied intelligence in soft robotics. Nature Reviews Physics, 2022, 4, 595-610.	11.9	36
1164	3D Curvature-Based Tip Load Estimation for Continuum Robots. IEEE Robotics and Automation Letters, 2022, 7, 10526-10533.	3.3	8
1165	Deep Learning-Based 3D Pose Reconstruction of an Underwater Soft Robotic Hand and Its Biomimetic Evaluation. IEEE Robotics and Automation Letters, 2022, 7, 11070-11077.	3.3	4
1166	Environmental Interaction With Continuum Robots Exploiting Impact. IEEE Robotics and Automation Letters, 2022, 7, 10136-10143.	3.3	4
1167	Design and analysis of a novel hybrid-driven continuum robot with variable stiffness. Mechanism and Machine Theory, 2022, 177, 105067.	2.7	7
1168	An Experimental Validation of the Polynomial Curvature Model: Identification and Optimal Control of a Soft Underwater Tentacle. IEEE Robotics and Automation Letters, 2022, 7, 11410-11417.	3.3	12
1169	Data-Driven Control for Continuum Robots Based on Discrete Zeroing Neural Networks. IEEE Transactions on Industrial Informatics, 2023, 19, 7088-7098.	7.2	5
1170	Modeling the Soft Bellows of the Bionic Soft Arm. IFAC-PapersOnLine, 2022, 55, 229-234.	0.5	4
1171	A Flexible Rod-Driven Multimode Spatial Variable Geometry Truss Manipulator for Morphing Wings. Lecture Notes in Computer Science, 2022, , 529-540.	1.0	0

#	Article	IF	CITATIONS
1172	A New Geometric Method for Solving the Inverse Kinematics of Two-Segment Continuum Robot. Lecture Notes in Computer Science, 2022, , 101-112.	1.0	0
1173	Kinematic Representation of a Biomimetic Squid Soft Robot's Arms in a Simulation Environment. Mechanisms and Machine Science, 2022, , 61-68.	0.3	0
1174	Design, Sensing, and Control of a Magnetic Compliant Continuum Manipulator. IEEE Transactions on Medical Robotics and Bionics, 2022, 4, 910-921.	2.1	5
1175	Cable Decoupling and Cable-Based Stiffening of Continuum Robots. IEEE Access, 2022, 10, 104852-104862.	2.6	1
1176	Research on the Inverse Kinematics Prediction of a Soft Biomimetic Actuator via BP Neural Network. IEEE Access, 2022, 10, 78691-78701.	2.6	3
1177	Shape Estimation of Soft Manipulators using Piecewise Continuous Pythagorean-Hodograph Curves. , 2022, , .		0
1178	A Magnetically Steerable and Automatically Propulsion Guidewire Robot System for Vascular Interventional Surgery. , 2022, , .		0
1179	Design and Implementation of a Cable-Driven Dexterous Continuum Manipulators in Confined Space Usage. , 2022, , .		0
1180	Stiffness Adaptation of a Hybrid Soft Surgical Robot for Improved Safety in Interventional Surgery. , 2022, , .		5
1181	Design of a Lightweight and Deployable Soft Robotic Arm. Robotics, 2022, 11, 88.	2.1	8
1182	Curvature Correction of a Notched Continuum Robot Based on a Static Model Considering Large Deformation and Friction Effect. Machines, 2022, 10, 778.	1.2	1
1183	Lagrangian and Quasi-Lagrangian Models for Noninertial Pneumatic Soft Cylindrical Robots. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2022, 144, .	0.9	3
1184	Dynamic Task Space Control Enables Soft Manipulators to Perform Realâ€World Tasks. Advanced Intelligent Systems, 2023, 5, .	3.3	8
1185	Design of a Hall effect sensor controlled brittle star inspired composite robotic limb. Engineering Research Express, 2022, 4, 036001.	0.8	0
1186	Design and Kinematic Analysis of Cable-Driven Target Spray Robot for Citrus Orchards. Applied Sciences (Switzerland), 2022, 12, 9379.	1.3	4
1186 1187	Design and Kinematic Analysis of Cable-Driven Target Spray Robot for Citrus Orchards. Applied Sciences (Switzerland), 2022, 12, 9379. A Novel Cable-Driven Soft Robot for Surgery. Journal of Shanghai Jiaotong University (Science), 2024, 29, 60-72.	1.3 0.5	4
1186 1187 1188	Design and Kinematic Analysis of Cable-Driven Target Spray Robot for Citrus Orchards. Applied Sciences (Switzerland), 2022, 12, 9379.A Novel Cable-Driven Soft Robot for Surgery. Journal of Shanghai Jiaotong University (Science), 2024, 29, 60-72.Characterization of continuum robot arms under reinforcement learning and derived improvements. Frontiers in Robotics and Al, 0, 9, .	1.3 0.5 2.0	4 2 1

#	Article	IF	CITATIONS
1190	Design, Mobility Analysis and Gait Planning of a Leech-like Soft Crawling Robot with Stretching and Bending Deformation. Journal of Bionic Engineering, 2023, 20, 69-80.	2.7	5
1191	Genetic Algorithm-based Optimal Design Strategy of a Continuum Surgical Manipulator. International Journal of Control, Automation and Systems, 2022, 20, 3312-3320.	1.6	0
1192	Review of research on path planning and control methods of flexible steerable needle puncture robot. Computer Assisted Surgery, 2022, 27, 91-112.	0.6	5
1193	Design of Pneumatically Actuated Soft Robotic Gripper for Gripping Cylindrical Objects of Varying Diameters. Lecture Notes in Mechanical Engineering, 2023, , 547-558.	0.3	0
1194	Energy-saving trajectory optimization of a fluidic soft robotic arm. Smart Materials and Structures, 2022, 31, 115011.	1.8	3
1195	Kinematics and Stiffness Modeling of Soft Robot With a Concentric Backbone. Journal of Mechanisms and Robotics, 2023, 15, .	1.5	7
1196	Development of a cable-driven continuum robot having a large workspace (Mechanism design of a) Tj ETQq0 0 0	rgBT /Ove 0.1	erlock 10 Tf 5 0
1197	Model and Control of Hybrid Hard-soft Robots Using Model Predictive Control. , 2022, , .		1
1198	A 3-D Haptic Trackball Interface for Teleoperating Continuum Robots. , 2022, , .		0
1199	Continuum robots for endoscopic sinus surgery: Recent advances, challenges, and prospects. International Journal of Medical Robotics and Computer Assisted Surgery, 2023, 19, .	1.2	1
1202	Modular robotic platform for precision neurosurgery with a bio-inspired needle: System overview and first in-vivo deployment. PLoS ONE, 2022, 17, e0275686.	1.1	7
1203	3D Concrete Printing with Macro-micro Robots. Lecture Notes in Networks and Systems, 2023, , 493-498.	0.5	0
1204	Design and Test of an Active Pneumatic Soft Wrist for Soft Grippers. Actuators, 2022, 11, 311.	1.2	2
1205	A Hydrogel-Based Self-Sensing Underwater Actuator. Micromachines, 2022, 13, 1779.	1.4	0
1206	Extensible Continuum Manipulator Toward In-situ Explosive Ordnance Disposal. Journal of Mechanisms and Robotics, 2023, 15, .	1.5	1
1207	Continuum robot state estimation using Gaussian process regression on SE(3). International Journal of Robotics Research, 2022, 41, 1099-1120.	5.8	7
1208	A Geometrically Exact Assumed Strain Modes Approach for the Geometrico- and Kinemato-Static Modelings of Continuum Parallel Robots. IEEE Transactions on Robotics, 2023, 39, 1527-1543.	7.3	5
1209	Snakelike and Continuum Robots: A Review of Reviews. , 2022, , 1-14.		0

#	Article	IF	Citations
1210	Position and Orientation Control of Multisection Magnetic Soft Microcatheters. IEEE/ASME Transactions on Mechatronics, 2023, 28, 907-918.	3.7	8
1211	Hyper-Redundant Manipulators for Operations in Confined Space: Typical Applications, Key Technologies, and Grand Challenges. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58, 4928-4937.	2.6	3
1212	Epipolar Geometryâ€Based Visual Servoing of Soft Endoscopic Manipulator for Transoral Laser Ablation. Advanced Intelligent Systems, 2022, 4, .	3.3	2
1213	General compensation control method of flexible manipulator driven by tendon-sheath mechanism. Journal of Physics: Conference Series, 2022, 2364, 012019.	0.3	0
1214	A Geometric Kinematic Model for Flexible Voxel-Based Robots. Soft Robotics, 0, , .	4.6	0
1215	Position-based dynamics simulator of vessel deformations for path planning in robotic endovascular catheterization. Medical Engineering and Physics, 2022, 110, 103920.	0.8	2
1216	A cableâ€driven highly compact single port laparoscopic surgical robot with sequentially inserted arms. International Journal of Medical Robotics and Computer Assisted Surgery, 2023, 19, .	1.2	1
1217	Bioinspired Soft Wrist Based on Multicable Jamming With Hybrid Motion and Stiffness Control for Dexterous Manipulation. IEEE/ASME Transactions on Mechatronics, 2023, 28, 1256-1267.	3.7	1
1218	Learning 3D shape proprioception for continuum soft robots with multiple magnetic sensors. Soft Matter, 2022, 19, 44-56.	1.2	7
1219	Design and control of an aerial-ground tethered tendon-driven continuum robot with hybrid routing. Robotics and Autonomous Systems, 2023, 161, 104344.	3.0	1
1220	Design and Dynamic Modelling of Chain Telescopic Robot. Mechanism and Machine Theory, 2023, 181, 105204.	2.7	0
1221	Shape Sensing of Flexible Robots Based on Deep Learning. IEEE Transactions on Robotics, 2023, 39, 1580-1593.	7.3	8
1222	A Continuum Robot for Remote Applications: From Industrial to Medical Surgery With Slender Continuum Robots. IEEE Robotics and Automation Magazine, 2023, 30, 94-105.	2.2	7
1223	Inverse Kinematic Model of Continuum Robots Using Artificial Neural Network. , 2022, , .		3
1224	Kinematics and Dexterity Analysis of a Compound Continuum Manipulator for Minimally Invasive Surgical. , 2022, , .		1
1225	Development and Control of a Flexible Actuation-Based Delta Robot. , 2022, , .		1
1226	A novel obstacle avoidance heuristic algorithm of continuum robot based on FABRIK. Science China Technological Sciences, 2022, 65, 2952-2966.	2.0	0
1227	Variable Stiffness Strategies for Multi-Segment Soft Robot Actuator. , 2022, , .		0

#	Article	IF	CITATIONS
1228	Image Servo Tracking of a Flexible Manipulator Prototype with Connected Continuum Kinematic Modules. Actuators, 2022, 11, 360.	1.2	5
1229	The Caturo: A Submillimeter Diameter Glass Concentric Tube Robot with High Curvature. Advanced Intelligent Systems, 2023, 5, .	3.3	3
1230	Current Engineering Developments for Robotic Systems in Flexible Endoscopy. Techniques and Innovations in Gastrointestinal Endoscopy, 2023, 25, 67-81.	0.4	3
1231	Static Modeling of a Class of Stiffness-Adjustable Snake-like Robots with Gravity Compensation. Robotics, 2023, 12, 2.	2.1	2
1232	Design and control of a new electrostrictive polymer based continuum actuator for endoscopic robot. Journal of Intelligent Material Systems and Structures, 2023, 34, 1355-1365.	1.4	2
1233	Modeling and Control of a Soft Robotic Arm Based on a Fractional Order Control Approach. Fractal and Fractional, 2023, 7, 8.	1.6	5
1234	Comparison of Modern Control Methods for Soft Robots. Sensors, 2022, 22, 9464.	2.1	5
1235	A Biomimetic Method to Replicate the Natural Fluid Movements of Swimming Snakes to Design Aquatic Robots. Biomimetics, 2022, 7, 223.	1.5	9
1236	Multiple aspects grasp quality evaluation in underactuated grasp of tendon-driven continuum robots. Intelligent Service Robotics, 0, , .	1.6	0
1237	FABRIK-based comparison of the inverse kinematic algorithms operation results for multi-section continuum robots. Proceedings of Higher Educational Institutions ĐœĐ°chine Building, 2022, , 34-45.	0.1	0
1238	Dynamic Modeling of Underwater Snake Robot by Hybrid Rigid-Soft Actuation. Journal of Marine Science and Engineering, 2022, 10, 1914.	1.2	3
1239	Machine Learning Amplified Control System for HASEL Actuator Soft Robot System. Journal of Physics: Conference Series, 2022, 2405, 012026.	0.3	0
1240	Fabrication, control, and modeling of robots inspired by flagella and cilia. Bioinspiration and Biomimetics, 2023, 18, 011003.	1.5	2
1241	Automatic Tracking of Surgical Instruments with a Continuum Laparoscope Using Dataâ€Driven Control in Robotic Surgery. Advanced Intelligent Systems, 2023, 5, .	3.3	1
1243	A Survey of Transoral Robotic Mechanisms: Distal Dexterity, Variable Stiffness, and Triangulation. Cyborg and Bionic Systems, 2023, 4, .	3.7	1
1244	MRI-Conditional Eccentric-Tube Injection Needle: Design, Fabrication, and Animal Trial. IEEE/ASME Transactions on Mechatronics, 2023, 28, 2405-2410.	3.7	1
1245	A Preprogrammable Continuum Robot Inspired by Elephant Trunk for Dexterous Manipulation. Soft Robotics, 2023, 10, 636-646.	4.6	9
1246	Soft Robots Modeling: A Structured Overview. IEEE Transactions on Robotics, 2023, 39, 1728-1748.	7.3	54

#	Article	IF	CITATIONS
1247	Robust Position Control of a Continuum Manipulator Based on Selective Approach and Koopman Operator. IEEE Transactions on Industrial Electronics, 2023, 70, 12522-12532.	5.2	4
1248	Design and Control of a Multiple-Section Continuum Robot With a Hybrid Sensing System. IEEE/ASME Transactions on Mechatronics, 2023, 28, 1522-1533.	3.7	2
1249	Lie Group Formulation and Sensitivity Analysis for Shape Sensing of Variable Curvature Continuum Robots With General String Encoder Routing. IEEE Transactions on Robotics, 2023, 39, 2308-2324.	7.3	5
1250	Modelling of Tendon-Driven Continuum Robot Based on Constraint Analysis and Pseudo-Rigid Body Model. IEEE Robotics and Automation Letters, 2023, 8, 989-996.	3.3	3
1251	Contact-implicit Trajectory and Grasp Planning for Soft Continuum Manipulators. , 2022, , .		3
1252	Design and Modelling of A Spring-Like Continuum Joint with Variable Pitch for Endoluminal Surgery. , 2022, , .		0
1253	The Probabilistic Robot Kinematics Model and its Application to Sensor Fusion. , 2022, , .		1
1254	A Geometric Design Approach for Continuum Robots by Piecewise Approximation of Freeform Shapes. , 2022, , .		1
1255	FBG-Based Variable-Length Estimation for Shape Sensing of Extensible Soft Robotic Manipulators. , 2022, , .		4
1256	Design of a modular continuum robot with alterable compliance using tubular-actuation. , 2022, , .		Ο
1257	Planar Modeling and Sim-to-Real of a Tethered Multimaterial Soft Swimmer Driven by Peano-HASELs. , 2022, , .		4
1258	Robotic Actuation and Control of a Catheter for Structural Intervention Cardiology. , 2022, , .		4
1259	Towards Adaptive Continuous Control of Soft Robotic Manipulator using Reinforcement Learning. , 2022, , .		3
1260	A Proprioceptive Method for Soft Robots Using Inertial Measurement Units. , 2022, , .		5
1261	Design, Teleoperation Control and Experimental Validation of a Dexterous Robotic Flexible Endoscope for Laparoscopic Surgery. , 2022, , .		1
1262	Prismatic Soft Actuator Augments the Workspace of Soft Continuum Robots. , 2022, , .		1
1263	Application of Piece-wise Constant Strain Model to Flexible Deformation Calculation of Sports Prosthesis and Stiffness Estimation. , 2022, , .		1
1264	Dynamic Modeling of a Soft Laparoscope: A Deep Neural Network Approach. , 2022, , .		0

#	Article	IF	CITATIONS
1265	Inverse Kinematics of Hybrid Multi-link System and its Application to Motion Capture for Athlete Wearing Sports Prosthesis. , 2022, , .		0
1266	Kinematic and Static Analyses of Tendon-driven Surgical Robots with Lockable Joints. , 2022, , .		0
1267	PDE-based Dynamic Control and Estimation of Soft Robotic Arms. , 2022, , .		3
1268	An End-to-End Proprioception Framework for Soft Continuum Robot. , 2022, , .		2
1269	Design and path planning for a Worm-Snake-Inspired Metameric(WSIM) Robot. , 2022, , .		0
1270	Design and Kinematic Modeling of a Concentric Torsionally-Steerable Flexible Surgical Robot. , 2022, , .		0
1271	Design, Kinematics and Control of a Modular Cable-Driven Manipulator for Fine Manipulation. , 2022, ,		1
1272	Data-Driven Predictive Disturbance Observer for Quasi Continuum Manipulators. , 2022, , .		0
1273	Design and path tracking control of a continuum robot for maxillary sinus surgery. International Journal of Computer Assisted Radiology and Surgery, 0, , .	1.7	0
1274	Passivity-Based Task Space Control of Hybrid Rigid-Soft (HyRiSo) Robots with Parametric Uncertainty. , 2022, , .		0
1276	Kinematic modelling and design of a tendon actuated soft manipulator. IFAC-PapersOnLine, 2022, 55, 13-18.	0.5	0
1277	Kinematics analysis, motion planning and control of the continuum manipulator in minimally invasive surgery. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2023, 237, 3665-3679.	1.1	1
1278	Singularity analysis of 3-DOF planar parallel continuum robots with constant curvature links. Frontiers in Robotics and AI, 0, 9, .	2.0	1
1279	SoRoForge: End-to-End Soft Actuator Design. IEEE Transactions on Automation Science and Engineering, 2023, 20, 1475-1486.	3.4	3
1280	Automatic intraluminal scanning with a steerable endoscopic optical coherence tomography catheter for gastroenterology applications. Journal of Optical Microsystems, 2023, 3, .	0.9	0
1281	Discrete Cosserat Static Model-Based Control of Soft Manipulator. IEEE Robotics and Automation Letters, 2023, 8, 1739-1746.	3.3	2
1282	Electromagnetic Actuated Flexible Laser Fiber Steering Monitoring Based on Self-Sensation and Precalibration. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-13.	2.4	0
1283	In vivo bioprinting: Broadening the therapeutic horizon for tissue injuries. Bioactive Materials, 2023, 25, 201-222.	8.6	9

#	Article	IF	CITATIONS
1284	Pose Measurement and Contact Training of a Fabric-Reinforced Inflatable Soft Robot. , 2023, , .		0
1285	Miniaturized Soft Continuum Robot with Integrated Vision: Statics Analysis. , 2023, , .		1
1286	Toward Continuum Robot Tentacles for Lung Interventions: Exploring Folding Support Disks. IEEE Robotics and Automation Letters, 2023, 8, 3494-3501.	3.3	4
1287	A dexterous motion control method of rope driven snake manipulator considering the rope-hole properties. Mechanism and Machine Theory, 2023, 183, 105219.	2.7	1
1288	Design and Modeling of Fabric-Shelled Pneumatic Bending Soft Actuators. IEEE Robotics and Automation Letters, 2023, 8, 3110-3117.	3.3	2
1289	Asymmetric Continuum Robots. IEEE Robotics and Automation Letters, 2023, 8, 1279-1286.	3.3	3
1290	A Hybrid Controller for a Soft Pneumatic Manipulator Based on Model Predictive Control and Iterative Learning Control. Sensors, 2023, 23, 1272.	2.1	3
1291	Modeling and Adaptive Neural Network Control for a Soft Robotic Arm With Prescribed Motion Constraints. IEEE/CAA Journal of Automatica Sinica, 2023, 10, 501-511.	8.5	3
1292	Piecewise Linear Strain Cosserat Model for Soft Slender Manipulator. IEEE Transactions on Robotics, 2023, 39, 2342-2359.	7.3	6
1293	Mechanics of fiber-reinforced soft manipulators based on inhomogeneous Cosserat rod theory. Mechanics of Advanced Materials and Structures, 0, , 1-13.	1.5	2
1294	Use of Finite Elements in the Training of a Neural Network for the Modeling of a Soft Robot. Biomimetics, 2023, 8, 56.	1.5	8
1295	An iterative path-following method for hyper-redundant snake-like manipulator with joint limits. Industrial Robot, 2023, 50, 505-519.	1.2	2
1296	Developing an Energy-Based Three-Dimensional Pseudo-Rigid-Body Model Founded on Kirchhoff Rod Theory for Magnetic Continuum Robots. , 2022, , .		0
1297	Bioinspired Continuum Robots with Programmable Stiffness by Harnessing Phase Change Materials. Advanced Materials Technologies, 2023, 8, .	3.0	3
1298	A Novel Space Robot with Triple Cable-Driven Continuum Arms for Space Grasping. Micromachines, 2023, 14, 416.	1.4	0
1299	Proprioceptive Touch of a Soft Actuator Containing an Embedded Intrinsically Soft Sensor using Kinesthetic Feedback. Journal of Intelligent and Robotic Systems: Theory and Applications, 2023, 107, .	2.0	4
1300	Curvature-based force estimation for an elastic tube. Robotica, 2023, 41, 1749-1761.	1.3	1
1301	Design and Analysis of a Yoshimura Continuum Actuator. , 2022, , .		1
#	Article	IF	CITATIONS
------	--	-----	-----------
1302	Robust tracking control of unknown models for space in-cabin robots with a pneumatic continuum arm. Complex & Intelligent Systems, 0, , .	4.0	1
1303	Plant-Inspired Soft Growing Robots: A Control Approach Using Nonlinear Model Predictive Techniques. Applied Sciences (Switzerland), 2023, 13, 2601.	1.3	1
1304	A Novel and Practicable Approach for Determining the Beam Parameters of Soft Pneumatic Multi-Chamber Bending Actuators. Applied Sciences (Switzerland), 2023, 13, 2822.	1.3	0
1305	Kinetostatic Modeling of Continuum Delta Robot With Variable Curvature Continuum Joints. Journal of Mechanisms and Robotics, 2023, 15, .	1.5	2
1306	A Versatile Continuum Gripping Robot with a Concealable Gripper. Cyborg and Bionic Systems, 2023, 4, .	3.7	1
1307	Shape Reconstruction for Continuum Robot Based on Pythagorean Hodograph–Bézier Curve With IMU and Vision Sensors. IEEE Sensors Journal, 2023, 23, 8535-8544.	2.4	6
1308	Design and kinematics of a lightweight cruciform continuum robot. Mechanical Sciences, 2023, 14, 99-109.	0.5	0
1309	Magnetically Actuated Continuum Medical Robots: A Review. Advanced Intelligent Systems, 2023, 5, .	3.3	22
1310	A pain in the neck: prototyping and testing of a patient simulator neck for spinal immobilization training. Design for Health, 2023, 7, 42-63.	0.4	0
1311	Design and Kinematics of a Robotic Instrument for Natural Orifice Transluminal Endoscopic Surgery. IEEE/ASME Transactions on Mechatronics, 2023, 28, 2840-2851.	3.7	2
1312	Adaptive control of a soft pneumatic actuator using experimental characterization data. Frontiers in Robotics and Al, 0, 10, .	2.0	0
1313	Development of a cable-driven redundant space manipulator with large bending angle by combining quaternion joints and segmented coupled linkages mechanism. Chinese Journal of Aeronautics, 2023, 36, 483-499.	2.8	4
1314	A Hierarchical Design Framework for the Design of Soft Robots. Mathematical and Computational Applications, 2023, 28, 47.	0.7	1
1315	Continuum Robots: An Overview. Advanced Intelligent Systems, 2023, 5, .	3.3	21
1316	AeCoM: An Aerial Continuum Manipulator With IMU-Based Kinematic Modeling and Tendon-Slacking Prevention. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53, 4740-4752.	5.9	1
1317	Design and Fabrication of Concentric Tube Robots: A Survey. IEEE Transactions on Robotics, 2023, 39, 2510-2528.	7.3	4
1318	Two-Dimensional Shape and Distal Force Estimation for the Continuum Robot Based on Learning From the Proximal Sensors. IEEE Sensors Journal, 2023, 23, 10836-10846.	2.4	5
1319	Inverse kinematic model of multi-section continuum robots using particle swarm optimization and comparison to four meta-heuristic approaches. Simulation, 2023, 99, 817-830.	1.1	2

#	Article	IF	CITATIONS
1320	基于åŒèžºçº1æ−œé½¿è½®ç®¡çš"æ−°åž‹åŒå¿ƒç®¡æœºå™¨ä≌. Journal of Shanghai Jiaotong University (Sciend	ce) , D, , .	0
1321	Modeling of and Experimenting with Concentric Tube Robots: Considering Clearance, Friction and Torsion. Sensors, 2023, 23, 3709.	2.1	3
1322	Telerobotic Transcatheter Delivery System for Mitral Valve Implant. IEEE Robotics and Automation Letters, 2023, 8, 3629-3636.	3.3	1
1323	Engineers in Medicine: Foster Innovation by Traversing Boundaries. Critical Reviews in Biomedical Engineering, 2023, , .	0.5	Ο
1324	Ablation Study of a Dynamic Model for a 3D-Printed Pneumatic Soft Robotic Arm. IEEE Access, 2023, 11, 37840-37853.	2.6	4
1325	End Motion Path Analysis of Notched Variable Cross-section Flexible Manipulator Based on 3R Pseudo-Rigid Body Model. Journal of Physics: Conference Series, 2023, 2477, 012068.	0.3	0
1326	Bio-inspired a novel dual-cross-module sections cable-driven continuum robot: design, kinematics modeling and workspace analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45, .	0.8	1
1327	Separable Tendon-Driven Robotic Manipulator with a Long, Flexible, Passive Proximal Section. Journal of Mechanisms and Robotics, 0, , 1-18.	1.5	1
1328	Bio-inspired skeletal model and kinematics of humanoid spine and ribs. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , 095440622311668.	1.1	0
1329	A Fast Soft Robotic Laser Sweeping System Using Data-Driven Modeling Approach. IEEE Transactions on Robotics, 2023, 39, 3043-3058.	7.3	3
1330	Cosserat Rod Modeling of Continuum Robots from Newtonian and Lagrangian Perspectives. IEEE Transactions on Robotics, 2023, 39, 2360-2378.	7.3	10
1331	Continuum Robots for Space Applications. Mechanisms and Machine Science, 2023, , 129-139.	0.3	0
1332	Analytic Formulation of Kinematics for a Planar Continuum Parallel Manipulator with Large-Deflection Links. Journal of Intelligent and Robotic Systems: Theory and Applications, 2023, 107, .	2.0	1
1334	A Kinematic Analysis of a New LARMbot Torso Design. Mechanisms and Machine Science, 2023, , 74-81.	0.3	0
1335	Dynamic Modeling and Control of Continuum Robots Using an Optimized PID Control. , 2023, , .		0
1341	Design and Evaluation of a Flexible Sensorized Robotic OCT Neuroendoscope. , 2023, , .		0
1342	A Radial Folding Mechanism to Enable Surgical Continuum Manipulators to Fit Through Smaller Ports. , 2023, , .		0
1345	An Optimized Cable Layout Method for Cable-Driven Continuum Robots. Lecture Notes in Mechanical Engineering, 2023, , 491-500.	0.3	0

#	Article	IF	CITATIONS
1347	FBCCD: A Forward and Backward Cyclic Iterative Solver for the Inverse Kinematics of Continuum Robot. Lecture Notes in Mechanical Engineering, 2023, , 329-345.	0.3	0
1361	Kinematic-Model-Free Tip Position Control of Reconfigurable and Growing Soft Continuum Robots. , 2023, , .		1
1362	Linear Kinematics for General Constant Curvature and Torsion Manipulators. , 2023, , .		2
1363	Plant-inspired behavior-based controller to enable reaching in redundant continuum robot arms. , 2023, , .		0
1364	Reduced finite element modelling and closed-loop control of pneumatic-driven soft continuum robots. , 2023, , .		1
1365	Dynamic model of an online programmable textile soft actuator. , 2023, , .		0
1366	Policy Adaptation using an Online Regressing Network in a Soft Robotic Arm. , 2023, , .		2
1367	Piecewise Affine Curvature model: a Reduced-Order Model for Soft Robot-Environment Interaction Beyond PCC. , 2023, , .		5
1368	Multi-modal Sensor Fusion for Learning Rich Models for Interacting Soft Robots. , 2023, , .		2
1369	Non-Cooperative Space Object Capture and Manipulation with Soft Robotics. , 2023, , .		0
1370	An Optical Shape Sensor for Integration in Soft Grippers. , 2023, , .		0
1371	Development of a Modular and Submersible Soft Robotic Arm and Corresponding Learned Kinematics Models. , 2023, , .		2
1372	Smell Driven Navigation for Soft Robotic Arms: Artificial Nose and Control. , 2023, , .		0
1373	Learning a Controller for Soft Robotic Arms and Testing its Generalization to New Observations, Dynamics, and Tasks. , 2023, , .		1
1375	Modelling Handed Shearing Auxetics: Selective Piecewise Constant Strain Kinematics and Dynamic Simulation. , 2023, , .		1
1380	Towards Biomechanics-Aware Design of a Steerable Drilling Robot for Spinal Fixation Procedures with Flexible Pedicle Screws. , 2023, , .		2
1386	Accelerated Learning and Control of Robots with Uncertain Kinematics and Unknown Disturbances. , 2023, , .		0
1387	Task Space Tracking of Soft Manipulators: Inner-Outer Loop Control Based on Cosserat-Rod Models. , 2023, , .		0

#	Article	IF	CITATIONS
1388	Simultaneous Motion and Stiffness Control for Soft Pneumatic Manipulators based on a Lagrangian-based Dynamic Model. , 2023, , .		1
1389	Feedback Control for Inflatable Soft Robotic Finger Touch Detection Based on Static Pressure-Resistance Characteristics. , 2023, , .		0
1390	Image Segmentation for Continuum Robots from a Kinematic Prior. , 2023, , .		0
1392	A Fast Geometric Framework for Dynamic Cosserat Rods with Discrete Actuated Joints. , 2023, , .		0
1393	Twist Snake: Plastic table-top cable-driven robotic arm with all motors located at the base link. , 2023, , \cdot		0
1394	Direct and inverse modeling of soft robots by learning a condensed FEM model. , 2023, , .		0
1397	A Novel Concentric Tube Steerable Drilling Robot for Minimally Invasive Treatment of Spinal Tumors Using Cavity and U-shape Drilling Techniques. , 2023, , .		0
1398	On Tendon Driven Continuum Robots with Compressible Backbones. , 2023, , .		1
1399	Image-based Pose Estimation and Shape Reconstruction for Robot Manipulators and Soft, Continuum Robots via Differentiable Rendering. , 2023, , .		3
1400	A Soft Robot with Three Dimensional Shape Sensing and Contact Recognition Multi-Modal Sensing via Tunable Soft Optical Sensors. , 2023, , .		1
1412	Soft robotics in medical applications: State of the art, challenges, and recent advances. , 2023, , 25-61.		0
1418	The Piecewise Constant Curvature Model for the Forward and Inverse Kinematics of Continuum Robot Based on Lie Theory. , 2023, , .		0
1419	Concentric Tube Robot for Intrathecal Drug Administration. , 2023, , .		0
1420	Visual-Servo Based End-Effector Control for Continuum Robots. , 2023, , .		0
1421	Design and Modeling of a Cable-driven Continuum Robot Considering Large Load. , 2023, , .		0
1422	Design and Modeling of a Cable-Driven Hollow Continuum Manipulator. , 2023, , .		1
1435	Independent Tendons Increase Stiffness of Continuum Robots without Actuator Coupling. , 2023, , .		0
1436	Motion Dynamics Modeling and Fault Detection of a Soft Trunk Robot. , 2023, , .		3

		15	0
#	ARTICLE	IF	CITATIONS
1440	Structure design and kinematics modeling of a new continuum parallel robot. , 2023, , .		0
1441	Development of a Soft Leg-Wheel Hybrid Module Inspired by Bacterial Flagella. , 2023, , .		Ο
1443	Reduced-Order Modeling ofÂaÂSoft Anthropomorphic Finger forÂPiano Keystrokes. Lecture Notes in Computer Science, 2023, , 405-416.	1.0	0
1448	Dynamic Modeling and Real-time Simulation of Soft Manipulator. , 2023, , .		0
1452	Inverse Kinematics of a Fabric-reinforced Inflatable Soft Robot. , 2023, , .		0
1463	Research on Structure Design and Drive Control of Soft Joint on Underwater Snake-Like Robot. Lecture Notes in Computer Science, 2023, , 297-308.	1.0	0
1466	Soft tissue surgical robot for minimally invasive surgery: a review. Biomedical Engineering Letters, 2023, 13, 561-569.	2.1	0
1472	Kinematics Study for Linkage System (Parallel Robotics System): linkage system of patient positioning system PPS to accurately position a human body for radiosurgery treatment. , 2023, , .		2
1477	Virtual Tendon-Based Inverse Kinematics of Tendon-Driven Flexible Continuum Manipulators. , 2023, , .		0
1478	Design Optimization of a Tendon-Driven Continuum Robot. Mechanisms and Machine Science, 2023, , 106-116.	0.3	0
1479	Obtaining Desired Shapes of Cable-Driven Continuum Robots Using General Cable Routing. Mechanisms and Machine Science, 2023, , 130-138.	0.3	0
1483	IoT-enabled monitoring and controlling system for robotic operations. AIP Conference Proceedings, 2023, , .	0.3	0
1486	Learning-Based Inverse Kinematics Identification of the Tendon-Driven Robotic Manipulator for Minimally Invasive Surgery. , 2023, , .		0
1490	Image-Guided Teleoperation for Soft Bronchoscopy Robot. , 2023, , .		0
1499	Soft Cap for Vine Robots. , 2023, , .		0
1500	Implementation of a Cosserat Rod-Based Configuration Tracking Controller on a Multi-Segment Soft Robotic Arm. , 2023, , .		0
1502	Stable Real-Time Feedback Control of a Pneumatic Soft Robot. , 2023, , .		0
1503	Shape Control of Variable Length Continuum Robots Using Clothoid-Based Visual Servoing. , 2023, , .		0

#	Article	IF	CITATIONS
1506	Thermally Drawn Monolithic Polymer Continuum Robot with Laser Cutting Profile. , 2023, , .		0
1507	Motion Control Utilizing Surrogate Model for A Soft Actuator Driven by Airbag-typed Cells. , 2023, , .		0
1508	Hand exoskeleton for rehabilitation using a flexible screw mechanism. , 2023, , .		0
1509	Dynamic modeling and Control of a Soft Robotic Arm Using a Piecewise Universal Joint Model. , 2023, ,		1
1510	Timoshenko Beam-based Analytical Formulation and Numerical Simulation of Continuum Soft-bodied Robotic Arms. , 2023, , .		0
1512	Soft actuators in surgical robotics: a state-of-the-art review. Intelligent Service Robotics, 0, , .	1.6	0
1514	Theoretics of Zhang Neurodynamics Models for Position-Orientation Control of Soft Continuum Robots from Kinematic Modeling to Noise Suppression. , 2023, , .		0
1515	Design, modeling, and evaluation of parallel continuum robots: A survey. Science China Technological Sciences, 2024, 67, 673-695.	2.0	0
1517	A Robotized Soft Endoscope with Stereo Vision for Upper Gastrointestinal Endoscopic Submucosal Dissection (ESD). , 2023, , .		1
1518	Surgical Continuum Manipulator Control Using Multiagent Team Deep Q Learning. , 2023, , .		0
1521	Control Framework for Position Control of Three-Segment Tendon-Driven Continuum Robot. Lecture Notes in Mechanical Engineering, 2024, , 183-192.	0.3	0
1522	A State-of-the-Art Design: Applying Forward Kinematics to Improve Patient Positioning in Radiosurgery. , 2023, , .		1
1530	Continuum elastic dynamic model for variable stiffness soft aerial robots with morphing capabilities. , 2024, , .		0
1531	Kinetostatic Analysis of a Spatial Soft Pneumatic Manipulator Including Gravity Effect. , 2023, , .		0
1535	Control-Oriented Modeling of a Soft Manipulator Using the Learning-Based Koopman Operator. , 2023, , .		0
1542	Finite Element Analysis and Error Compensation for Wrinkled Bellow-Like Soft Robotic Manipulator Kinematics Modeling. Lecture Notes in Electrical Engineering, 2024, , 498-513.	0.3	0
1546	Genetic Algorithm Application in Continuum Robot Optimization. Springer Tracts in Nature-inspired Computing, 2024, , 269-287.	1.2	0
1553	A Hybrid Control Approach forÂaÂPneumatic-Actuated Soft Robot. Springer Proceedings in Advanced Robotics, 2024, , 19-35.	0.9	0

ARTICLE

IF CITATIONS