Genetic Evidence for High-Altitude Adaptation in Tibet

Science 329, 72-75 DOI: 10.1126/science.1189406

Citation Report

#	Article	IF	CITATIONS
1	Ancient Atmospheres and the Evolution of Oxygen Sensing Via the Hypoxia-Inducible Factor in Metazoans. Physiology, 2010, 25, 272-279.	1.6	108
2	Exome sequencing: the sweet spot before whole genomes. Human Molecular Genetics, 2010, 19, R145-R151.	1.4	263
3	Evidence for a Genetic Basis for Altitude Illness: 2010 Update. High Altitude Medicine and Biology, 2010, 11, 349-368.	0.5	67
4	The molecular basis of autosomal recessive diseases among the Arabs and Druze in Israel. Human Genetics, 2010, 128, 473-479.	1.8	30
5	Seeing the forest through the geneâ \in trees. Evolutionary Anthropology, 2010, 19, 210-221.	1.7	14
6	Ten years of genetics and genomics: what have we achieved and where are we heading?. Nature Reviews Genetics, 2010, 11, 723-733.	7.7	65
7	The role played by natural selection on Mendelian traits in humans. Annals of the New York Academy of Sciences, 2010, 1214, 1-17.	1.8	25
9	Fine-scale population structure and the era of next-generation sequencing. Human Molecular Genetics, 2010, 19, R221-R226.	1.4	25
10	Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. Journal of Experimental Biology, 2010, 213, 4125-4136.	0.8	347
11	<i>EGLN1</i> involvement in high-altitude adaptation revealed through genetic analysis of extreme constitution types defined in Ayurveda. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18961-18966.	3.3	152
12	Genes for High Altitudes. Science, 2010, 329, 40-41.	6.0	83
13	Hypoxia-Inducible Factors and the Response to Hypoxic Stress. Molecular Cell, 2010, 40, 294-309.	4.5	1,930
14	Toward a more uniform sampling of human genetic diversity: A survey of worldwide populations by high-density genotyping. Genomics, 2010, 96, 199-210.	1.3	73
15	Living the high life: high-altitude adaptation. Genome Biology, 2010, 11, 133.	13.9	83
18	Will Blood Tell? Three Recent Articles Demonstrate Genetic Selection in Tibetans. High Altitude Medicine and Biology, 2010, 11, 307-308.	0.5	6
19	High altitude hypoxia environment changes of the content of RAAS and right ventricular ACE2 activity in adult SD rats. , 2011, , .		0
20	Mitochondrial nt3010G-nt3970C haplotype is implicated in high-altitude adaptation of Tibetans. Mitochondrial DNA, 2011, 22, 181-190.	0.6	22
21	Genetic Changes in Tibet. High Altitude Medicine and Biology, 2011, 12, 101-102.	0.5	12

#	Article	IF	CITATIONS
22	Lipid Profile and Its Association with Risk Factors for Coronary Heart Disease in the Highlanders of Lhasa, Tibet. High Altitude Medicine and Biology, 2011, 12, 57-63.	0.5	42
23	Giant sucking sound: can physiology fill the intellectual void left by the reductionists?. Journal of Applied Physiology, 2011, 111, 335-342.	1.2	34
24	Race and IQ in the postgenomic age: The microcephaly case. BioSocieties, 2011, 6, 420-446.	0.8	20
25	Maximum-likelihood estimation of recent shared ancestry (ERSA). Genome Research, 2011, 21, 768-774.	2.4	142
26	Hypoxia: Adapting to High Altitude by Mutating <i>EPAS-1</i> , the Gene Encoding HIF-2α. High Altitude Medicine and Biology, 2011, 12, 157-167.	0.5	99
27	Induction of hypoxia inducible factor (HIF-1α) in rat kidneys by iron chelation with the hydroxypyridinone, CP94. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 262-268.	0.9	22
28	Oxygen Sensing, Homeostasis, and Disease. New England Journal of Medicine, 2011, 365, 537-547.	13.9	877
29	The HIF Pathway and Erythrocytosis. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 165-192.	9.6	150
30	Ambient Oxygen Promotes Tumorigenesis. PLoS ONE, 2011, 6, e19785.	1.1	35
31	Genomic Analysis of High-Altitude Adaptation. Current Sports Medicine Reports, 2011, 10, 59-61.	0.5	9
32	Enhanced AFLP genome scans detect local adaptation in highâ€altitude populations of a small rodent (<i>Microtus arvalis</i>). Molecular Ecology, 2011, 20, 1450-1462.	2.0	126
33	Ten questions about systems biology. Journal of Physiology, 2011, 589, 1017-1030.	1.3	76
34	Ten questions for evolutionary studies of disease vulnerability. Evolutionary Applications, 2011, 4, 264-277.	1.5	60
35	Humans at high altitude: Hypoxia and fetal growth. Respiratory Physiology and Neurobiology, 2011, 178, 181-190.	0.7	204
36	Regulation of bone marrow hematopoietic stem cell is involved in high-altitude erythrocytosis. Experimental Hematology, 2011, 39, 37-46.	0.2	42
37	Genome-wide Comparison of African-Ancestry Populations from CARe and Other Cohorts Reveals Signals of Natural Selection. American Journal of Human Genetics, 2011, 89, 368-381.	2.6	79
38	Cerebrovascular reactivity among native-raised high altitude residents: an fMRI study. BMC Neuroscience, 2011, 12, 94.	0.8	28
39	Population level determinants of acute mountain sickness among young men: a retrospective study. BMC Public Health, 2011, 11, 740.	1.2	7

#	Article	IF	CITATIONS
40	Lowland origin women raised at high altitude are not protected against lower uteroplacental O ₂ delivery during pregnancy or reduced birth weight. American Journal of Human Biology, 2011, 23, 509-516.	0.8	31
41	Peopling the Tibetan Plateau: Insights from Archaeology. High Altitude Medicine and Biology, 2011, 12, 141-147.	0.5	140
42	'ome on the Range: Altitude Adaptation, Positive Selection, and Himalayan Genomics. High Altitude Medicine and Biology, 2011, 12, 133-139.	0.5	24
43	Matrix Metalloproteinase (MMP)-9 Induced by Wnt Signaling Increases the Proliferation and Migration of Embryonic Neural Stem Cells at Low O2 Levels. Journal of Biological Chemistry, 2011, 286, 17649-17657.	1.6	81
44	High altitude hypoxia Environment changes of the content of AVP. , 2011, , .		0
45	Genetic Variations in Tibetan Populations and High-Altitude Adaptation at the Himalayas. Molecular Biology and Evolution, 2011, 28, 1075-1081.	3.5	327
46	A Genome-Wide Search for Signals of High-Altitude Adaptation in Tibetans. Molecular Biology and Evolution, 2011, 28, 1003-1011.	3.5	311
47	Molecular Adaptation of Modern Human Populations. International Journal of Evolutionary Biology, 2011, 2011, 1-8.	1.0	15
48	Identification of Metabolic Modifiers That Underlie Phenotypic Variations in Energy-Balance Regulation. Diabetes, 2011, 60, 726-734.	0.3	13
49	Highland Plains People AVP Gene Polymorphism and the Relationship between Hypoxic Adaptation. Applied Mechanics and Materials, 0, 140, 63-67.	0.2	0
50	Adaptive selection of an incretin gene in Eurasian populations. Genome Research, 2011, 21, 21-32.	2.4	19
51	Exciting Times in the Study of Permanent Residents of High Altitude. High Altitude Medicine and Biology, 2011, 12, 1-1.	0.5	6
52	Rapid Recent Human Evolution and the Accumulation of Balanced Genetic Polymorphisms. High Altitude Medicine and Biology, 2011, 12, 149-155.	0.5	13
53	B-type natriuretic peptide, vascular endothelial growth factor, endothelin-1, and nitric oxide synthase in chronic mountain sickness. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1427-H1433.	1.5	30
54	Hypoxia. 5. Hypoxia and hematopoiesis. American Journal of Physiology - Cell Physiology, 2011, 300, C1215-C1222.	2.1	51
55	Identification of chicken eNOS gene and differential expression in highland versus lowland chicken breeds. Poultry Science, 2012, 91, 2275-2281.	1.5	3
56	A Quantitative Comparison of the Similarity between Genes and Geography in Worldwide Human Populations. PLoS Genetics, 2012, 8, e1002886.	1.5	106
57	Crohn's Disease and Genetic Hitchhiking at IBD5. Molecular Biology and Evolution, 2012, 29, 101-111.	3.5	52

#	Article	IF	CITATIONS
58	Genome-wide scan with nearly 700 000 SNPs in two Sardinian sub-populations suggests some regions as candidate targets for positive selection. European Journal of Human Genetics, 2012, 20, 1155-1161.	1.4	20
59	Phenotypic plasticity in blood-oxygen transport in highland and lowland deer mice. Journal of Experimental Biology, 2013, 216, 1167-73.	0.8	33
60	Oxygen levels and the regulation of cell adhesion in the nervous system. Cell Adhesion and Migration, 2012, 6, 49-58.	1.1	9
61	Cardiac adaptive mechanisms of Tibetan antelope (Pantholops hodgsonii) at high altitudes. American Journal of Veterinary Research, 2012, 73, 809-813.	0.3	17
62	Cardiovascular and renal effects of chronic exposure to high altitude. Nephrology Dialysis Transplantation, 2012, 27, iv11-iv16.	0.4	43
63	Hypoxia Response in Asthma. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 1-10.	1.4	62
64	Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7391-7396.	3.3	129
65	Genomic insights into adaptation to high-altitude environments. Heredity, 2012, 108, 354-361.	1.2	153
66	Common Polymorphisms in Angiogenesis. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006510-a006510.	2.9	19
68	Peopling the Tibetan plateau: migrants, genes, and genetic adaptations. , 2012, , 342-372.		2
69	An environmental analysis of genes associated with schizophrenia: hypoxia and vascular factors as interacting elements in the neurodevelopmental model. Molecular Psychiatry, 2012, 17, 1194-1205.	4.1	95
70	Genetic adaptation to high altitude in the Ethiopian highlands. Genome Biology, 2012, 13, R1.	13.9	327
71	Genetic determinants of right-ventricular remodeling after tetralogy of Fallot repair. Pediatric Research, 2012, 72, 407-413.	1.1	47
73	Evidence of widespread selection on standing variation in Europe at height-associated SNPs. Nature Genetics, 2012, 44, 1015-1019.	9.4	315
74	Metabolic insight into mechanisms of high-altitude adaptation in Tibetans. Molecular Genetics and Metabolism, 2012, 106, 244-247.	0.5	68
75	Adaptive and Maladaptive Cardiorespiratory Responses to Continuous and Intermittent Hypoxia Mediated by Hypoxia-Inducible Factors 1 and 2. Physiological Reviews, 2012, 92, 967-1003.	13.1	502
76	Late Pleistocene climate change and the global expansion of anatomically modern humans. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16089-16094.	3.3	157
77	Hypoxic Pulmonary Vasoconstriction. Physiological Reviews, 2012, 92, 367-520.	13.1	568

#	Article	IF	CITATIONS
78	Genetic Adaptation of the Hypoxia-Inducible Factor Pathway to Oxygen Pressure among Eurasian Human Populations. Molecular Biology and Evolution, 2012, 29, 3359-3370.	3.5	29
79	Genetic explorations of recent human metabolic adaptations: hypotheses and evidence. Biological Reviews, 2012, 87, 838-855.	4.7	18
80	Expression of fetal hemoglobin in adult humans exposed to high altitude hypoxia. Blood Cells, Molecules, and Diseases, 2012, 48, 147-153.	0.6	22
81	Hypoxia-Inducible Factors in Physiology and Medicine. Cell, 2012, 148, 399-408.	13.5	2,540
82	Frequency distribution of single nucleotide polymorphisms in P-selectin gene in Chinese Tibetan and Han populations. Gene, 2012, 499, 352-356.	1.0	4
83	Toward understanding the genetic basis of adaptation to high-elevation life in poikilothermic species: A comparative transcriptomic analysis of two ranid frogs, Rana chensinensis and R. kukunoris. BMC Genomics, 2012, 13, 588.	1.2	55
84	High-Altitude Medicine. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 1229-1237.	2.5	175
87	EPAS1 and EGLN1 associations with high altitude sickness in Han and Tibetan Chinese at the Qinghai–Tibetan Plateau. Blood Cells, Molecules, and Diseases, 2012, 49, 67-73.	0.6	54
88	The Genetic Architecture of Adaptations to High Altitude in Ethiopia. PLoS Genetics, 2012, 8, e1003110.	1.5	178
89	Genetic and Environmental Influences on Gas Exchange. , 2012, 2, 2595-2614.		8
90	Interactions among Vascular-Tone Modulators Contribute to High Altitude Pulmonary Edema and Augmented Vasoreactivity in Highlanders. PLoS ONE, 2012, 7, e44049.	1.1	36
91	Witnessing Phenotypic and Molecular Evolution in the Fruit Fly. Evolution: Education and Outreach, 2012, 5, 629-634.	0.3	2
92	AKT3, ANGPTL4, eNOS3, and VEGFA associations with high altitude sickness in Han and Tibetan Chinese at the Qinghai-Tibetan Plateau. International Journal of Hematology, 2012, 96, 200-213.	0.7	43
93	Red Blood Cell Volume and the Capacity for Exercise at Moderate to High Altitude. Sports Medicine, 2012, 42, 643-663.	3.1	10
94	Gene Polymorphisms and High-Altitude Pulmonary Edema Susceptibility: A 2011 Update. Respiration, 2012, 84, 155-162.	1.2	31
95	A Major Genome Region Underlying Artemisinin Resistance in Malaria. Science, 2012, 336, 79-82.	6.0	334
96	Characterization of the transcriptome of an ecologically important avian species, the Vinous-throated Parrotbill Paradoxornis webbianus bulomachus (Paradoxornithidae; Aves). BMC Genomics, 2012, 13, 149.	1.2	12
97	Protective Effect of Total Flavonoids of Seabuckthorn (Hippophae rhamnoides) in Simulated High-Altitude Polycythemia in Rats. Molecules, 2012, 17, 11585-11597.	1.7	14

#	Article	IF	CITATIONS
98	<i>CYBA</i> and <i>GSTP1</i> variants associate with oxidative stress under hypobaric hypoxia as observed in high-altitude pulmonary oedema. Clinical Science, 2012, 122, 299-311.	1.8	24
99	Developmental and genetic components explain enhanced pulmonary volumes of female peruvian quechua. American Journal of Physical Anthropology, 2012, 148, 534-542.	2.1	21
100	The yak genome and adaptation to life at high altitude. Nature Genetics, 2012, 44, 946-949.	9.4	708
101	Genetic determinants of Tibetan high-altitude adaptation. Human Genetics, 2012, 131, 527-533.	1.8	124
102	Spatially and temporally varying selection on intrapopulation quantitative trait loci for a life history tradeâ€off in <i>Mimulus guttatus</i> . Molecular Ecology, 2012, 21, 3718-3728.	2.0	85
103	Two new mutations in the <i>HIF2A</i> gene associated with erythrocytosis. American Journal of Hematology, 2012, 87, 439-442.	2.0	37
104	Nitric oxide signaling in hypoxia. Journal of Molecular Medicine, 2012, 90, 217-231.	1.7	113
105	High altitude adaptation in Daghestani populations from the Caucasus. Human Genetics, 2012, 131, 423-433.	1.8	31
106	Foot-and-mouth disease virus carrier status in Bos grunniens yaks. Virology Journal, 2013, 10, 81.	1.4	7
107	Regulation of erythropoiesis by hypoxia-inducible factors. Blood Reviews, 2013, 27, 41-53.	2.8	522
108	Multiscale modeling of the causal functional roles of nsSNPs in a genome-wide association study: application to hypoxia. BMC Genomics, 2013, 14, S9.	1.2	6
109	Predictive Risk Factors of Cardiorespiratory Abnormality for Upper Gastrointestinal Endoscopy in Tibet. Digestive Diseases and Sciences, 2013, 58, 1668-1675.	1.1	1
110	Selection and Adaptation in the Human Genome. Annual Review of Genomics and Human Genetics, 2013, 14, 467-489.	2.5	116
111	Whole-Genome Sequencing Uncovers the Genetic Basis of Chronic Mountain Sickness in Andean Highlanders. American Journal of Human Genetics, 2013, 93, 452-462.	2.6	115
112	Genetic Analysis of Hypoxia Tolerance and Susceptibility in <i>Drosophila</i> and Humans. Annual Review of Genomics and Human Genetics, 2013, 14, 25-43.	2.5	45
113	Regulation of hypoxiaâ€inducible factor in kidney disease. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 148-157.	0.9	112
114	Fetal Reprogramming and Senescence in Hypoplastic Left Heart Syndrome and in Human Pluripotent Stem Cells during Cardiac Differentiation. American Journal of Pathology, 2013, 183, 720-734.	1.9	65
115	Family-based genome-wide copy number scan identifies five new genes of dyslexia involved in dendritic spinal plasticity. Journal of Human Genetics, 2013, 58, 539-547.	1.1	43

		REPORT	
#	Article	IF	CITATIONS
116	Detecting Natural Selection in Genomic Data. Annual Review of Genetics, 2013, 47, 97-120.	3.2	584
117	High-altitude physiology: lessons from Tibet. , 2013, , .		0
118	mtDNA Lineage Expansions in Sherpa Population Suggest Adaptive Evolution in Tibetan Highlands. Molecular Biology and Evolution, 2013, 30, 2579-2587.	3.5	52
119	Genetic Evidence of Paleolithic Colonization and Neolithic Expansion of Modern Humans on the Tibetan Plateau. Molecular Biology and Evolution, 2013, 30, 1761-1778.	3.5	194
120	Human adaptability studies at high altitude: Research designs and major concepts during fifty years of discovery. American Journal of Human Biology, 2013, 25, 141-147.	0.8	51
121	Efficient utilization of aerobic metabolism helps Tibetan locusts conquer hypoxia. BMC Genomics, 2013, 14, 631.	1.2	29
122	Dovetailing biology and chemistry: integrating the Gene Ontology with the ChEBI chemical ontology. BMC Genomics, 2013, 14, 513.	1.2	45
123	A genome wide study of genetic adaptation to high altitude in feral Andean Horses of the páramo. BMC Evolutionary Biology, 2013, 13, 273.	3.2	37
124	Population Genomics of Human Adaptation. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 123-143.	3.8	81
125	Recent human adaptation: genomic approaches, interpretation and insights. Nature Reviews Genetics, 2013, 14, 692-702.	7.7	105
126	Robust Identification of Local Adaptation from Allele Frequencies. Genetics, 2013, 195, 205-220.	1.2	518
127	The gut in iron homeostasis: role of HIF-2 under normal and pathological conditions. Blood, 2013, 122, 885-892.	0.6	90
128	Endothelial PAS Domain Protein 1 Chr2:46441523(hg18) Polymorphism Is Associated With Susceptibility to High Altitude Pulmonary Edema in Han Chinese. Wilderness and Environmental Medicine, 2013, 24, 315-320.	0.4	13
129	Different evolutionary patterns of hypoxiaâ€inducible factor α (HIFâ€Î±) isoforms in the basal branches of Actinopterygii and Sarcopterygii. FEBS Open Bio, 2013, 3, 479-483.	1.0	18
130	Porcine colonization of the Americas: a 60k SNP story. Heredity, 2013, 110, 321-330.	1.2	58
131	Stepwise colonization of the Andes by Ruddy Ducks and the evolution of novel βâ€globin variants. Molecular Ecology, 2013, 22, 1231-1249.	2.0	12
132	Population genomics based on low coverage sequencing: how low should we go?. Molecular Ecology, 2013, 22, 3028-3035.	2.0	181
133	Detecting Signatures of Selection Through Haplotype Differentiation Among Hierarchically Structured Populations. Genetics, 2013, 193, 929-941.	1.2	340

ARTICLE IF CITATIONS # Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nature 134 5.8 229 Communications, 2013, 4, 2071. Many ways to die, one way to arrive: how selection acts through pregnancy. Trends in Genetics, 2013, 29, 585-592. 136 Erythropoietin. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a011619-a011619. 2.9 198 Graduated effects of high-altitude hypoxia and highland ancestry on birth size. Pediatric Research, 84 2013, 74, 633-638. Differential Regulation of Pulmonary Vascular Cell Growth by Hypoxia-Inducible Transcription Factor–1α and Hypoxia-Inducible Transcription Factor–2α. American Journal of Respiratory Cell and 138 1.4 43 Molecular Biology, 2013, 49, 78-85. Genomic Analysis of Natural Selection and Phenotypic Variation in High-Altitude Mongolians. PLoS Genetics, 2013, 9, e1003634. 1.5 Genetic Signatures Reveal High-Altitude Adaptation in a Set of Ethiopian Populations. Molecular 140 3.5 173 Biology and Evolution, 2013, 30, 1877-1888. PPAR-α as a Key Nutritional and Environmental Sensor for Metabolic Adaptation. Advances in Nutrition, 2.9 2013, 4, 439-452. $\langle i \rangle$ EGLN1 $\langle i \rangle$ variants influence expression and $\langle i \rangle$ S $\langle i \rangle$ a \langle scp \rangle O $\langle scp \rangle$ 2 levels to associate with 142 1.8 41 high-altitude pulmonary oedema and adaptation. Clinical Science, 2013, 124, 479-489. The Peroxisome Proliferator–Activated Receptor β∫î´ Agonist GW0742 has Direct Protective Effects on 143 0.8 Right Heart Hypertrophy. Pulmonary Circulation, 2013, 3, 926-935. Inferring Selection Intensity and Allele Age from Multilocus Haplotype Structure. G3: Genes, Genomes, 144 0.8 26 Genetics, 2013, 3, 1429-1442. Bioenergetics in human evolution and disease: implications for the origins of biological complexity and the missing genetic variation of common diseases. Philosophical Transactions of the Royal 1.8 Society B: Biological Sciences, 2013, 368, 20120267. Identification of a Tibetan-Specific Mutation in the Hypoxic Gene EGLN1 and Its Contribution to High-Altitude Adaptation. Molecular Biology and Evolution, 2013, 30, 1889-1898. 146 3.5 151 Possible Positive Selection for an Arsenic-Protective Haplotype in Humans. Environmental Health 2.8 44 Perspectives, 2013, 121, 53-58. Prolyl Hydroxylase Domain Protein 2 (PHD2) Binds a Pro-Xaa-Leu-Glu Motif, Linking It to the Heat Shock 148 1.6 51 Protein 90 Pathway. Journal of Biological Chemistry, 2013, 288, 9662-9674. Genomeâ€wide copy number scan identifies disruption of <i>PCDH11X</i> in developmental dyslexia. 149 36 American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 889-897. Responses of Han Migrants Compared to Tibetans at High Altitude. American Journal of Human Biology, 150 0.8 12 2013, 25, 169-178. Altitude effects on growth of indigenous children in Oaxaca, Southern Mexico. American Journal of 151 2.1 Physical Anthropology, 2013, 152, 1-10.

#	Article	IF	CITATIONS
152	GENETIC VARIATION IN HIF SIGNALING UNDERLIES QUANTITATIVE VARIATION IN PHYSIOLOGICAL AND LIFE-HISTORY TRAITS WITHIN LOWLAND BUTTERFLY POPULATIONS. Evolution; International Journal of Organic Evolution, 2013, 67, 1105-1115.	1.1	39
153	Draft genome sequence of the Tibetan antelope. Nature Communications, 2013, 4, 1858.	5.8	229
154	Andean and Tibetan patterns of adaptation to high altitude. American Journal of Human Biology, 2013, 25, 190-197.	0.8	115
155	Widespread phenotypic and genetic divergence along altitudinal gradients in animals. Journal of Evolutionary Biology, 2013, 26, 2527-2543.	0.8	96
156	Erythrocytosis: the HIF pathway in control. Blood, 2013, 122, 1122-1128.	0.6	91
157	Congenital erythrocytosis associated with gain-of-function HIF2A gene mutations and erythropoietin levels in the normal range. Haematologica, 2013, 98, 1624-1632.	1.7	27
158	Why It Is Hard to Find Genes Associated With Social Science Traits: Theoretical and Empirical Considerations. American Journal of Public Health, 2013, 103, S152-S166.	1.5	52
159	Expression profiling analysis of hypoxic pulmonary disease. Genetics and Molecular Research, 2013, 12, 4162-4170.	0.3	11
160	Systems biology approach to study the high altitude adaptation in tibetans. Brazilian Archives of Biology and Technology, 2013, 56, 53-60.	0.5	5
161	Hypoxia Inducible Factor 3α Plays a Critical Role in Alveolarization and Distal Epithelial Cell Differentiation during Mouse Lung Development. PLoS ONE, 2013, 8, e57695.	1.1	25
162	Unravelling the Complexity of Human Olfactory Receptor Repertoire by Copy Number Analysis across Population Using High Resolution Arrays. PLoS ONE, 2013, 8, e66843.	1.1	13
163	A Divergent Artiodactyl MYADM-like Repeat Is Associated with Erythrocyte Traits and Weight of Lamb Weaned in Domestic Sheep. PLoS ONE, 2013, 8, e74700.	1.1	15
164	Mitochondrial DNA 10609T Promotes Hypoxia-Induced Increase of Intracellular ROS and Is a Risk Factor of High Altitude Polycythemia. PLoS ONE, 2014, 9, e87775.	1.1	17
165	Adaptive Human CDKAL1 Variants Underlie Hormonal Response Variations at the Enteroinsular Axis. PLoS ONE, 2014, 9, e105410.	1.1	6
166	The role of PHD2 mutations in the pathogenesis of erythrocytosis. Hypoxia (Auckland, N Z), 2014, 2, 71.	1.9	39
168	α1-A680T Variant in GUCY1A3 as a Candidate Conferring Protection From Pulmonary Hypertension Among Kyrgyz Highlanders. Circulation: Cardiovascular Genetics, 2014, 7, 920-929.	5.1	23
169	Defective Tibetan PHD2 Binding to p23 Links High Altitude Adaption to Altered Oxygen Sensing. Journal of Biological Chemistry, 2014, 289, 14656-14665.	1.6	66
170	Acute environmental hypoxia induces LC3 lipidation in a genotypeâ€dependent manner. FASEB Journal, 2014, 28, 1022-1034.	0.2	48

# 171	ARTICLE Population history and genomic signatures for high-altitude adaptation in Tibetan pigs. BMC Genomics, 2014, 15, 834.	IF 1.2	Citations
172	Trouble at the races. Investigative Genetics, 2014, 5, 14.	3.3	1
173	The Genetic Basis of Chronic Mountain Sickness. Physiology, 2014, 29, 403-412.	1.6	27
174	Hypoxia Adaptations in the Grey Wolf (Canis lupus chanco) from Qinghai-Tibet Plateau. PLoS Genetics, 2014, 10, e1004466.	1.5	169
175	High-Altitude Medicine: The Path from Genomic Insight to Clinical Applications. , 2014, , 217-228.		1
176	High Altitude. , 2014, , .		23
177	Oxidative stress at high altitude: genotype–phenotype correlations. Advances in Genomics and Genetics, 2014, , 29.	0.8	1
178	Adaptation to High Altitude: Phenotypes and Genotypes. Annual Review of Anthropology, 2014, 43, 251-272.	0.4	118
179	Ascent to altitude as a weight loss method: The good and bad of hypoxia inducible factor activation. Obesity, 2014, 22, 311-317.	1.5	59
180	Family based genomeâ€wide copy number scan identifies complex rearrangements at 17q21.31 in dyslexics. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2014, 165, 572-580.	1.1	16
181	Vascular Endothelial Growth Factor-A Is Associated with Chronic Mountain Sickness in the Andean Population. High Altitude Medicine and Biology, 2014, 15, 146-154.	0.5	16
183	King of the Mountains: Tibetan and Sherpa Physiological Adaptations for Life at High Altitude. Physiology, 2014, 29, 388-402.	1.6	119
184	Increased bloodâ€oxygen binding affinity in Tibetan and Han Chinese residents at 4200 m. Experimental Physiology, 2014, 99, 1624-1635.	0.9	27
185	Parallel signatures of selection in temporally isolated lineages of pink salmon. Molecular Ecology, 2014, 23, 2473-2485.	2.0	22
187	An EPAS1 Haplotype Is Associated With High Altitude Polycythemia in Male Han Chinese at the Qinghai-Tibetan Plateau. Wilderness and Environmental Medicine, 2014, 25, 392-400.	0.4	16
188	Cognitive Impairments at High Altitudes and Adaptation. High Altitude Medicine and Biology, 2014, 15, 141-145.	0.5	92
189	Decreased plasma soluble erythropoietin receptor in high-altitude excessive erythrocytosis and Chronic Mountain Sickness. Journal of Applied Physiology, 2014, 117, 1356-1362.	1.2	36
190	High altitude medicine in China in the 21st century: opportunities and challenges. Military Medical Research, 2014, 1, 17.	1.9	4

#	Article	IF	CITATIONS
191	Impact of copy number variations burden on coding genome in humans using integrated high resolution arrays. Genetical Research, 2014, 96, e17.	0.3	3
192	Private haplotypes can reveal local adaptation. BMC Genetics, 2014, 15, 61.	2.7	26
193	CardioGxE, a catalog of gene-environment interactions for cardiometabolic traits. BioData Mining, 2014, 7, 21.	2.2	54
194	Role of Hypoxia-Inducible Factors in Acute Kidney Injury. Nephron Clinical Practice, 2014, 127, 70-74.	2.3	19
195	Tibetans living at sea level have a hyporesponsive hypoxia-inducible factor system and blunted physiological responses to hypoxia. Journal of Applied Physiology, 2014, 116, 893-904.	1.2	97
196	Human Evolution at High Altitude. , 2014, , 357-377.		3
197	Genetic variability of VEGF pathway genes in six randomized phase III trials assessing the addition of bevacizumab to standard therapy. Angiogenesis, 2014, 17, 909-920.	3.7	40
198	Deciphering the Genetic Blueprint behind Holstein Milk Proteins and Production. Genome Biology and Evolution, 2014, 6, 1366-1374.	1.1	37
199	Insertion-deletions burden in copy number polymorphisms of the Tibetan population. Indian Journal of Human Genetics, 2014, 20, 166.	0.7	1
200	Role of prostacyclin in pulmonary hypertension. Global Cardiology Science & Practice, 2014, 2014, 53.	0.3	55
201	Whole genome sequencing of Ethiopian highlanders reveals conserved hypoxia tolerance genes. Genome Biology, 2014, 15, R36.	13.9	71
202	Potential of pollen and non-pollen palynomorph records from Tso Moriri (Trans-Himalaya, NW India) for reconstructing Holocene limnology and human–environmental interactions. Quaternary International, 2014, 348, 113-129.	0.7	53
203	Genome-scale analysis of demographic history and adaptive selection. Protein and Cell, 2014, 5, 99-112.	4.8	10
204	Transcriptome sequencing and phylogenomic resolution within Spalacidae (Rodentia). BMC Genomics, 2014, 15, 32.	1.2	37
205	Genes, Evolution and Intelligence. Behavior Genetics, 2014, 44, 549-577.	1.4	59
206	On Detecting Incomplete Soft or Hard Selective Sweeps Using Haplotype Structure. Molecular Biology and Evolution, 2014, 31, 1275-1291.	3.5	335
207	Population Variation Revealed High-Altitude Adaptation of Tibetan Mastiffs. Molecular Biology and Evolution, 2014, 31, 1200-1205.	3.5	130
208	Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia. Genome Research, 2014, 24, 1308-1315.	2.4	235

# 209	ARTICLE Less is more: blunted responses to hypoxia revealed in sea-level Tibetans. Journal of Applied Physiology, 2014, 116, 711-712.	IF 1.2	CITATIONS
210	Human adaptation to the hypoxia of high altitude: the Tibetan paradigm from the pregenomic to the postgenomic era. Journal of Applied Physiology, 2014, 116, 875-884.	1.2	91
211	High Altitude Primates. , 2014, , .		8
212	Oxygen sensing and metabolic homeostasis. Molecular and Cellular Endocrinology, 2014, 397, 51-58.	1.6	89
213	Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nature Reviews Drug Discovery, 2014, 13, 852-869.	21.5	291
214	Exercise Capacity and Selected Physiological Factors by Ancestry and Residential Altitude: Cross-Sectional Studies of 9–10-Year-Old Children in Tibet. High Altitude Medicine and Biology, 2014, 15, 162-169.	0.5	13
215	Genetic Convergence in the Adaptation of Dogs and Humans to the High-Altitude Environment of the Tibetan Plateau. Genome Biology and Evolution, 2014, 6, 2122-2128.	1.1	146
216	Hypoxia and Environmental Epigenetics. High Altitude Medicine and Biology, 2014, 15, 323-330.	0.5	22
217	Natural selection for the Duffy-null allele in the recently admixed people of Madagascar. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140930.	1.2	55
218	Cardiovascular function in healthy Himalayan high-altitude dwellers. Atherosclerosis, 2014, 236, 47-53.	0.4	30
219	Toward a new history and geography of human genes informed by ancient DNA. Trends in Genetics, 2014, 30, 377-389.	2.9	227
220	Tissue Hypoxia: Implications for the Respiratory Clinician. Respiratory Care, 2014, 59, 1590-1596.	0.8	76
221	PHENOTYPIC PLASTICITY AND EPIGENETIC MARKING: AN ASSESSMENT OF EVIDENCE FOR GENETIC ACCOMMODATION. Evolution; International Journal of Organic Evolution, 2014, 68, 656-672.	1.1	214
222	Adaptations to local environments in modern human populations. Current Opinion in Genetics and Development, 2014, 29, 1-8.	1.5	70
223	Human high-altitude adaptation: forward genetics meets the HIF pathway. Genes and Development, 2014, 28, 2189-2204.	2.7	271
224	Nitric Oxide and Hypoxia Signaling. Vitamins and Hormones, 2014, 96, 161-192.	0.7	41
225	Evaluating the possibility of detecting evidence of positive selection across Asia with sparse genotype data from the HUGO Pan-Asian SNP Consortium. BMC Genomics, 2014, 15, 332.	1.2	9
226	Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 2014, 512, 194-197.	13.7	904

		Citation R	EPORT	
#	Article		IF	CITATIONS
227	A genetic mechanism for Tibetan high-altitude adaptation. Nature Genetics, 2014, 46,	951-956.	9.4	322
228	Importance of Functional Ingredients in Yak Milk-Derived Food on Health of Tibetan No Under High-Altitude Stress: A Review. Critical Reviews in Food Science and Nutrition, 2	mads Living 014, 54, 292-302.	5.4	116
229	Widespread Signals of Convergent Adaptation to High Altitude in Asia and America. Ar of Human Genetics, 2014, 95, 394-407.	nerican Journal	2.6	131
230	High altitude genetic adaptation in Tibetans: No role of increased hemoglobin–oxygo Cells, Molecules, and Diseases, 2014, 53, 27-29.	en affinity. Blood	0.6	21
231	Admixture facilitates genetic adaptations to high altitude in Tibet. Nature Communicat 3281.	ions, 2014, 5,	5.8	172
232	Differential highâ€altitude adaptation and restricted gene flow across a midâ€elevatio <scp>A</scp> ndean titâ€tyrant flycatchers. Molecular Ecology, 2014, 23, 3551-3565.	n hybrid zone in	2.0	46
233	Hepatitis B virus infection in Latin America: A genomic medicine approach. World Jourr Gastroenterology, 2014, 20, 7181.	ial of	1.4	62
234	Global patterns of large copy number variations in the human genome reveal complexi chromosome organization. Genetical Research, 2015, 97, e18.	ty in	0.3	3
235	Adaptive genetic changes related to haemoglobin concentration in native highâ€ e ltitu Experimental Physiology, 2015, 100, 1263-1268.	de Tibetans.	0.9	31
236	Seaâ€level haemoglobin concentration is associated with greater exercise capacity in 1 4200Âm. Experimental Physiology, 2015, 100, 1256-1262.	ībetan males at	0.9	14
239	Influence of a high-altitude hypoxic environment on human plasma microRNA profiles. Reports, 2015, 5, 15156.	Scientific	1.6	34
240	Genetic adaptations of the plateau zokor in high-elevation burrows. Scientific Reports,	2015, 5, 17262.	1.6	48
241	Genetic variants of endothelial PAS domain protein 1 are associated with susceptibility mountain sickness in individuals unaccustomed to high altitude: A nested case-control Experimental and Therapeutic Medicine, 2015, 10, 907-914.		0.8	14
242	Polymorphism profiling of nine high altitude relevant candidate gene loci in acclimatize and adapted natives. BMC Genetics, 2015, 16, 112.	ed sojourners	2.7	19
243	Metabolic aspects of highâ \in altitude adaptation in Tibetans. Experimental Physiology, 2	2015, 100, 1247-1255.	0.9	48
244	Conditional entropy in variation-adjusted windows detects selection signatures associate expression quantitative trait loci (eQTLs). BMC Genomics, 2015, 16, S8.	ated with	1.2	3
245	Combined genetic effects of EGLN1 and VWF modulate thrombotic outcome in hypox Ayurgenomics approach. Journal of Translational Medicine, 2015, 13, 184.	a revealed by	1.8	38
246	Iron, oxygen, and the pulmonary circulation. Journal of Applied Physiology, 2015, 119,	1421-1431.	1.2	22

#	Article	IF	CITATIONS
247	Higher androgen bioactivity is associated with excessive erythrocytosis and chronic mountain sickness in Andean Highlanders: a review. Andrologia, 2015, 47, 729-743.	1.0	18
248	Low haemoglobin concentration in Tibetan males is associated with greater highâ€altitude exercise capacity. Journal of Physiology, 2015, 593, 3207-3218.	1.3	47
249	Hypoxia-related gene expression in porcine skeletal muscle tissues at different altitude. Genetics and Molecular Research, 2015, 14, 11587-11593.	0.3	19
250	Affect of Early Life Oxygen Exposure on Proper Lung Development and Response to Respiratory Viral Infections. Frontiers in Medicine, 2015, 2, 55.	1.2	18
251	Neonatal Variables, Altitude of Residence and Aymara Ancestry in Northern Chile. PLoS ONE, 2015, 10, e0121834.	1.1	10
252	A Novel Candidate Region for Genetic Adaptation to High Altitude in Andean Populations. PLoS ONE, 2015, 10, e0125444.	1.1	46
253	Predicting Carriers of Ongoing Selective Sweeps without Knowledge of the Favored Allele. PLoS Genetics, 2015, 11, e1005527.	1.5	19
254	HIF2A Variants Were Associated with Different Levels of High-Altitude Hypoxia among Native Tibetans. PLoS ONE, 2015, 10, e0137956.	1.1	15
255	A Comprehensive MicroRNA Expression Profile Related to Hypoxia Adaptation in the Tibetan Pig. PLoS ONE, 2015, 10, e0143260.	1.1	26
256	Alpin- und Höhenmedizin. , 2015, , .		3
257	Genetic differences and aberrant methylation in the apelin system predict the risk of high-altitude pulmonary edema. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6134-6139.	3.3	47
258	Revisiting classic clines in Drosophila melanogaster in the age of genomics. Trends in Genetics, 2015, 31, 434-444.	2.9	148
259	A 3.4-kb Copy-Number Deletion near EPAS1 Is Significantly Enriched in High-Altitude Tibetans but Absent from the Denisovan Sequence. American Journal of Human Genetics, 2015, 97, 54-66.	2.6	69
260	Yak Response to High-Altitude Hypoxic Stress by Altering mRNA Expression and DNA Methylation of Hypoxia-Inducible Factors. Animal Biotechnology, 2015, 26, 222-229.	0.7	30
261	Characterization of the hypoxia-inducible factor 1 alpha gene in the sperm whale, beluga whale, and Yangtze finless porpoise. Marine Biology, 2015, 162, 1201-1213.	0.7	13
262	Prevalence of hypertension at high altitude: cross-sectional survey in Ladakh, Northern India 2007-2011. BMJ Open, 2015, 5, e007026-e007026.	0.8	33
263	High Twin Resemblance for Sensitivity to Hypoxia. Medicine and Science in Sports and Exercise, 2015, 47, 74-81.	0.2	12
264	Iron Homeostasis and Pulmonary Hypertension. Circulation Research, 2015, 116, 1680-1690.	2.0	97

#	Article	IF	CITATIONS
265	The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cellÂtransition. Nature Cell Biology, 2015, 17, 1523-1535.	4.6	360
266	Anthropometric Measures of 9- to 10-Year-Old Native Tibetan Children Living at 3700 and 4300 m Above Sea Level and Han Chinese Living at 3700 m. Medicine (United States), 2015, 94, e1516.	0.4	14
267	Archaic inheritance: supporting high-altitude life in Tibet. Journal of Applied Physiology, 2015, 119, 1129-1134.	1.2	31
268	New genetic and physiological factors for excessive erythrocytosis and Chronic Mountain Sickness. Journal of Applied Physiology, 2015, 119, 1481-1486.	1.2	22
269	Oxidized Low Density Lipoprotein Among the Elderly in Qinghai-Tibet Plateau. Wilderness and Environmental Medicine, 2015, 26, 343-349.	0.4	5
270	A Preliminary Genome-Wide Association Study of Acute Mountain Sickness Susceptibility in a Group of Nepalese Pilgrims Ascending to 4380 m. High Altitude Medicine and Biology, 2015, 16, 290-297.	0.5	6
271	The Local HIF-2α/EPO Pathway in the Bone Marrow is Associated with Excessive Erythrocytosis and the Increase in Bone Marrow Microvessel Density in Chronic Mountain Sickness. High Altitude Medicine and Biology, 2015, 16, 318-330.	0.5	18
272	Comprehensive Transcriptome Analysis Reveals Accelerated Genic Evolution in a Tibet Fish, Gymnodiptychus pachycheilus. Genome Biology and Evolution, 2015, 7, 251-261.	1.1	112
273	Pathophysiology and Treatment of High-Altitude Pulmonary Vascular Disease. Circulation, 2015, 131, 582-590.	1.6	108
274	High-altitude medicine. Lancet Respiratory Medicine,the, 2015, 3, 12-13.	5.2	18
275	Pooled Sequencing and Rare Variant Association Tests for Identifying the Determinants of Emerging Drug Resistance in Malaria Parasites. Molecular Biology and Evolution, 2015, 32, 1080-1090.	3.5	34
275 276		3.5 0.6	34 3
	Drug Resistance in Malaria Parasites. Molecular Biology and Evolution, 2015, 32, 1080-1090. The complete mitochondrial genome sequence of the Tibetan red fox (<i>Vulpes vulpes montana</i>).		
276	Drug Resistance in Malaria Parasites. Molecular Biology and Evolution, 2015, 32, 1080-1090. The complete mitochondrial genome sequence of the Tibetan red fox (<i>Vulpes vulpes montana</i>). Mitochondrial DNA, 2015, 26, 739-741. Uterine artery blood flow, fetal hypoxia and fetal growth. Philosophical Transactions of the Royal	0.6	3
276 277	 Drug Resistance in Malaria Parasites. Molecular Biology and Evolution, 2015, 32, 1080-1090. The complete mitochondrial genome sequence of the Tibetan red fox (<i>Vulpes vulpes montana</i>). Mitochondrial DNA, 2015, 26, 739-741. Uterine artery blood flow, fetal hypoxia and fetal growth. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140068. High-altitude ancestry and hypoxia acclimation have distinct effects on exercise capacity and muscle phenotype in deer mice. American Journal of Physiology - Regulatory Integrative and Comparative 	0.6	3 95
276 277 278	 Drug Resistance in Malaria Parasites. Molecular Biology and Evolution, 2015, 32, 1080-1090. The complete mitochondrial genome sequence of the Tibetan red fox (<i>Vulpes vulpes montana</i>). Mitochondrial DNA, 2015, 26, 739-741. Uterine artery blood flow, fetal hypoxia and fetal growth. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140068. High-altitude ancestry and hypoxia acclimation have distinct effects on exercise capacity and muscle phenotype in deer mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R779-R791. A Genetic Predisposition Score Associates with Reduced Aerobic Capacity in Response to Acute 	0.6 1.8 0.9	3 95 101
276 277 278 279	 Drug Resistance in Malaria Parasites. Molecular Biology and Evolution, 2015, 32, 1080-1090. The complete mitochondrial genome sequence of the Tibetan red fox (<i>Vulpes vulpes montana</i>). Mitochondrial DNA, 2015, 26, 739-741. Uterine artery blood flow, fetal hypoxia and fetal growth. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140068. High-altitude ancestry and hypoxia acclimation have distinct effects on exercise capacity and muscle phenotype in deer mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R779-R791. A Genetic Predisposition Score Associates with Reduced Aerobic Capacity in Response to Acute Normobaric Hypoxia in Lowlanders. High Altitude Medicine and Biology, 2015, 16, 34-42. The PCR-SSCP and DNA sequencing methods detecting genetic mutations of EGLN1 gene in different 	0.6 1.8 0.9 0.5	3 95 101 6

#	Article	IF	CITATIONS
283	Adaptive Evolution as a Predictor of Species-Specific Innate Immune Response. Molecular Biology and Evolution, 2015, 32, 1717-1729.	3.5	39
284	Endothelin receptor B, a candidate gene from human studies at high altitude, improves cardiac tolerance to hypoxia in genetically engineered heterozygote mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10425-10430.	3.3	45
285	Haplotype Allele Frequency (HAF) Score: Predicting Carriers of Ongoing Selective Sweeps Without Knowledge of the Adaptive Allele. Lecture Notes in Computer Science, 2015, , 276-280.	1.0	1
286	Increased prevalence of EPAS1 variant in cattle with high-altitude pulmonary hypertension. Nature Communications, 2015, 6, 6863.	5.8	69
287	Humans In Hypoxia: A Conspiracy Of Maladaptation?!. Physiology, 2015, 30, 304-316.	1.6	67
288	Novel SNP of EPAS1 gene associated with higher hemoglobin concentration revealed the hypoxia adaptation of yak (Bos grunniens). Journal of Integrative Agriculture, 2015, 14, 741-748.	1.7	15
289	HIF Hydroxylase Pathways in Cardiovascular Physiology and Medicine. Circulation Research, 2015, 117, 65-79.	2.0	132
290	Lungs at high-altitude: genomic insights into hypoxic responses. Journal of Applied Physiology, 2015, 119, 1-15.	1.2	24
291	CYP17A1 and CYP2E1 variants associated with high altitude polycythemia in Tibetans at the Qinghai-Tibetan Plateau. Gene, 2015, 566, 257-263.	1.0	18
292	Inferring positive selection in humans from genomic data. Investigative Genetics, 2015, 6, 5.	3.3	27
293	A Positive Correlation between Elevated Altitude and Frequency of Mutant Alleles at the EPAS1 and HBB Loci in Chinese Indigenous Dogs. Journal of Genetics and Genomics, 2015, 42, 173-177.	1.7	9
294	Mitochondrial responses to extreme environments: insights from metabolomics. Extreme Physiology and Medicine, 2015, 4, 7.	2.5	14
295	Association Between Serum Concentrations of Hypoxia Inducible Factor Responsive Proteins and Excessive Erythrocytosis in High Altitude Peru. High Altitude Medicine and Biology, 2015, 16, 26-33.	0.5	11
297	Evidence for archaic adaptive introgression in humans. Nature Reviews Genetics, 2015, 16, 359-371.	7.7	471
298	Human Adaptation to Arsenic-Rich Environments. Molecular Biology and Evolution, 2015, 32, 1544-1555.	3.5	113
299	Transcriptome analysis of the plateau fish (Triplophysa dalaica): Implications for adaptation to hypoxia in fishes. Gene, 2015, 565, 211-220.	1.0	50
300	Genomic approaches to studying human-specific developmental traits. Development (Cambridge), 2015, 142, 3100-3112.	1.2	26
301	Biogeographic history and high-elevation adaptations inferred from the mitochondrial genome of Glyptosternoid fishes (Sisoridae, Siluriformes) from the southeastern Tibetan Plateau. BMC Evolutionary Biology, 2015, 15, 233.	3.2	35

			2
#	ARTICLE	IF	CITATIONS
302	EPAS1 Gene Polymorphisms Are Associated With High Altitude Polycythemia in Tibetans at the Qinghai-Tibetan Plateau. Wilderness and Environmental Medicine, 2015, 26, 288-294.	0.4	18
303	A probabilistic method for testing and estimating selection differences between populations. Genome Research, 2015, 25, 1903-1909.	2.4	10
304	Exploring evidence of positive selection reveals genetic basis of meat quality traits in Berkshire pigs through whole genome sequencing. BMC Genetics, 2015, 16, 104.	2.7	32
305	Convergent evolution of SOCS4 between yak and Tibetan antelope in response to high-altitude stress. Gene, 2015, 572, 298-302.	1.0	15
306	Altitude Adaptation: A Glimpse Through Various Lenses. High Altitude Medicine and Biology, 2015, 16, 125-137.	0.5	121
307	Genetic selection by high altitude: Beware of experiments at ambient conditions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10080-10081.	3.3	3
308	Suppression of erythropoiesis by dietary nitrate. FASEB Journal, 2015, 29, 1102-1112.	0.2	16
309	A hidden Markov model for investigating recent positive selection through haplotype structure. Theoretical Population Biology, 2015, 99, 18-30.	0.5	41
310	Cenozoic vertebrate evolution and paleoenvironment in Tibetan Plateau: Progress and prospects. Gondwana Research, 2015, 27, 1335-1354.	3.0	54
311	Novel genomic signals of recent selection in an Ethiopian population. European Journal of Human Genetics, 2015, 23, 1085-1092.	1.4	25
312	Exonic versus intronic SNPs: contrasting roles in revealing the population genetic differentiation of a widespread bird species. Heredity, 2015, 114, 1-9.	1.2	32
313	Lower mitochondrial DNA content relates to high-altitude adaptation in Tibetans. Mitochondrial DNA, 2016, 27, 753-757.	0.6	10
314	Clinical iron deficiency disturbs normal human responses to hypoxia. Journal of Clinical Investigation, 2016, 126, 2139-2150.	3.9	82
315	Dietary Variation and Evolution of Gene Copy Number among Dog Breeds. PLoS ONE, 2016, 11, e0148899.	1.1	28
316	A Genome-Wide Search for Greek and Jewish Admixture in the Kashmiri Population. PLoS ONE, 2016, 11, e0160614.	1.1	8
317	Elevation of Circulating miR-210-3p in High-Altitude Hypoxic Environment. Frontiers in Physiology, 2016, 7, 84.	1.3	28
318	Genetic Adaptation of Giant Lobelias (Lobelia aberdarica and Lobelia telekii) to Different Altitudes in East African Mountains. Frontiers in Plant Science, 2016, 7, 488.	1.7	9
320	Whole-Genome Sequencing of Native Sheep Provides Insights into Rapid Adaptations to Extreme Environments. Molecular Biology and Evolution, 2016, 33, 2576-2592.	3.5	271

#	Article	IF	CITATIONS
321	<i>HMOX2</i> Functions as a Modifier Gene for High-Altitude Adaptation in Tibetans. Human Mutation, 2016, 37, 216-223.	1.1	40
322	Genomewide scan for adaptive differentiation along altitudinal gradient in the Andrew's toad <i>Bufo andrewsi</i> . Molecular Ecology, 2016, 25, 3884-3900.	2.0	38
323	Cardiovascular function in term fetal sheep conceived, gestated and studied in the hypobaric hypoxia of the Andean <i>altiplano</i> . Journal of Physiology, 2016, 594, 1231-1245.	1.3	22
324	Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis. , 2016, 6, 1345-1385.		97
325	Chest circumference and sitting height among children and adolescents from Lhasa, tibet compared to other high altitude populations. American Journal of Human Biology, 2016, 28, 197-202.	0.8	12
326	Selection for populationâ€specific adaptation shaped patterns of variation in the photoperiod pathway genes in <i>Arabidopsis lyrata</i> during postâ€glacial colonization. Molecular Ecology, 2016, 25, 581-597.	2.0	11
327	Glucose intolerance associated with hypoxia in people living at high altitudes in the Tibetan highland. BMJ Open, 2016, 6, e009728.	0.8	37
328	Genomic analysis identified a potential novel molecular mechanism for high-altitude adaptation in sheep at the Himalayas. Scientific Reports, 2016, 6, 29963.	1.6	36
329	MtDNA analysis reveals enriched pathogenic mutations in Tibetan highlanders. Scientific Reports, 2016, 6, 31083.	1.6	22
330	Understanding rare and common diseases in the context of human evolution. Genome Biology, 2016, 17, 225.	3.8	76
331	Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Scientific Reports, 2016, 6, 38932.	1.6	132
332	Assessments Hematology of De-adaptation to High Altitude Tibetans in Tibet. , 2016, , .		0
333	Analysis of High-altitude Syndrome and the Underlying Gene Polymorphisms Associated with Acute Mountain Sickness after a Rapid Ascent to High-altitude. Scientific Reports, 2016, 6, 38323.	1.6	14
334	Genomic Analysis Reveals Hypoxia Adaptation in the Tibetan Mastiff by Introgression of the Grey Wolf from the Tibetan Plateau. Molecular Biology and Evolution, 2017, 34, msw274.	3.5	75
335	miRâ€17/20 Controls Prolyl Hydroxylase 2 (PHD2)/Hypoxiaâ€Inducible Factor 1 (HIF1) to Regulate Pulmonary Artery Smooth Muscle Cell Proliferation. Journal of the American Heart Association, 2016, 5, .	1.6	41
336	Controlling false discoveries in genome scans for selection. Molecular Ecology, 2016, 25, 454-469.	2.0	210
337	Determinants of ventilation and pulmonary artery pressure during early acclimatization to hypoxia in humans. Journal of Physiology, 2016, 594, 1197-1213.	1.3	19
338	Fifteen years of genomewide scans for selection: trends, lessons and unaddressed genetic sources of complication. Molecular Ecology, 2016, 25, 5-23.	2.0	154

#	Article	IF	CITATIONS
339	The association of angiotensin-converting enzyme gene insertion/deletion polymorphisms with adaptation to high altitude: A meta-analysis. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2016, 17, 147032031562741.	1.0	14
340	The cultural context of biological adaptation to high elevation Tibet. Archaeological Research in Asia, 2016, 5, 4-11.	0.2	18
341	Energy metabolism and the highâ€altitude environment. Experimental Physiology, 2016, 101, 23-27.	0.9	72
342	Shared Genetic Signals of Hypoxia Adaptation in <i>Drosophila</i> and in High-Altitude Human Populations. Molecular Biology and Evolution, 2016, 33, 501-517.	3.5	44
343	On the pivotal role of PPARa in adaptation of the heart to hypoxia and why fat in the diet increases hypoxic injury. FASEB Journal, 2016, 30, 2684-2697.	0.2	54
344	Genetic signals of high-altitude adaptation in amphibians: a comparative transcriptome analysis. BMC Genetics, 2016, 17, 134.	2.7	21
345	Genetics of human origin and evolution: high-altitude adaptations. Current Opinion in Genetics and Development, 2016, 41, 8-13.	1.5	80
346	Evidence for and Against Genetic Predispositions to Acute and Chronic Altitude Illnesses. High Altitude Medicine and Biology, 2016, 17, 281-293.	0.5	25
347	Different gene expressions between cattle and yak provide insights into highâ€altitude adaptation. Animal Genetics, 2016, 47, 28-35.	0.6	31
348	Rich diversity and potency of skin antioxidant peptides revealed a novel molecular basis for high-altitude adaptation of amphibians. Scientific Reports, 2016, 6, 19866.	1.6	41
349	Neutral Evolution, Population Genetic Tests of. , 2016, , 112-118.		2
350	Worldwide genetic and cultural change in human evolution. Current Opinion in Genetics and Development, 2016, 41, 85-92.	1.5	22
351	The Pulmonary Vascular Research Institute. Pulmonary Circulation, 2016, 6, 1-2.	0.8	1
352	Pulmonary Vascular and Ventricular Dysfunction in the Susceptible Patient (2015 Grover Conference) Tj ETQq1 1	0,784314	rgBT /Overle
353	High-resolution arrays reveal burden of copy number variations on Parkinson disease genes associated with increased disease risk in random cohorts. Neurological Research, 2016, 38, 775-785.	0.6	4
354	Identifying molecular signatures of hypoxia adaptation from sex chromosomes: A case for Tibetan Mastiff based on analyses of X chromosome. Scientific Reports, 2016, 6, 35004.	1.6	12
355	Environmental extremes: origins, consequences and amelioration in humans. Experimental Physiology, 2016, 101, 1-14.	0.9	17
356	Identification of novel serum peptide biomarkers for high-altitude adaptation: a comparative approach. Scientific Reports, 2016, 6, 25489.	1.6	9

#	Article	IF	CITATIONS
357	Senp1 drives hypoxia-induced polycythemia via GATA1 and Bcl-xL in subjects with Monge's disease. Journal of Experimental Medicine, 2016, 213, 2729-2744.	4.2	29
358	Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Scientific Reports, 2016, 6, 26770.	1.6	110
359	Forkhead Transcription Factor 3a (FOXO3a) Modulates Hypoxia Signaling via Up-regulation of the von Hippel-Lindau Gene (VHL). Journal of Biological Chemistry, 2016, 291, 25692-25705.	1.6	27
360	Hypoxia, AMPK activation and uterine artery vasoreactivity. Journal of Physiology, 2016, 594, 1357-1369.	1.3	51
362	Perinatal Disruptions of Lung Development: Mechanisms and Implications for Chronic Lung Diseases. , 0, , 269-285.		0
363	Planting and Its Discontents: Or How Nomads Produced Spaces of Resistance in China's Erstwhile Xikang Province. Resilience: A Journal of the Environmental Humanities, 2016, 3, 112.	0.0	Ο
364	Milk at altitude: Human milk macronutrient composition in a highâ€altitude adapted population of tibetans. American Journal of Physical Anthropology, 2016, 159, 233-243.	2.1	41
365	The Zinc Finger of Prolyl Hydroxylase Domain Protein 2 Is Essential for Efficient Hydroxylation of Hypoxia-Inducible Factor α. Molecular and Cellular Biology, 2016, 36, 2328-2343.	1.1	15
366	Long-term genetic stability and a high-altitude East Asian origin for the peoples of the high valleys of the Himalayan arc. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7485-7490.	3.3	151
367	Wide distribution and altitude correlation of an archaic high-altitude-adaptive EPAS1 haplotype in the Himalayas. Human Genetics, 2016, 135, 393-402.	1.8	41
368	Characterization of obsidian from the Tibetan Plateau by XRF and NAA. Journal of Archaeological Science: Reports, 2016, 5, 392-399.	0.2	6
369	Dynamics of Dark-Fly Genome Under Environmental Selections. G3: Genes, Genomes, Genetics, 2016, 6, 365-376.	0.8	10
370	Lung Circulation. , 2016, 6, 897-943.		90
371	Analysis of the erythropoietin of a Tibetan Plateau schizothoracine fish (Gymnocypris dobula) reveals enhanced cytoprotection function in hypoxic environments. BMC Evolutionary Biology, 2016, 16, 11.	3.2	44
372	Comprehensive Transcriptome Analysis of Six Catfish Species from an Altitude Gradient Reveals Adaptive Evolution in Tibetan Fishes. G3: Genes, Genomes, Genetics, 2016, 6, 141-148.	0.8	49
373	A biogeographic perspective on early human colonization of the Tibetan Plateau. Archaeological Research in Asia, 2016, 5, 33-43.	0.2	16
374	Exome sequencing reveals genetic differentiation due to high-altitude adaptation in the Tibetan cashmere goat (Capra hircus). BMC Genomics, 2016, 17, 122.	1.2	87
375	Conceptualizing the Tibetan Plateau: Environmental constraints on the peopling of the "Third Pole― Archaeological Research in Asia, 2016, 5, 24-32.	0.2	26

#	Article	IF	CITATIONS
376	Ethnically distinct populations of historical Tibet exhibit distinct autosomal STR compositions. Gene, 2016, 578, 74-84.	1.0	2
377	The complete mitochondrial genome sequence of the Tibetan wolf (<i>Canis lupus laniger</i>). Mitochondrial DNA, 2016, 27, 7-8.	0.6	4
378	A single-tube 27-plex SNP assay for estimating individual ancestry and admixture from three continents. International Journal of Legal Medicine, 2016, 130, 27-37.	1.2	39
379	Characterising private and shared signatures of positive selection in 37 Asian populations. European Journal of Human Genetics, 2017, 25, 499-508.	1.4	22
380	Tracing the peopling of the world through genomics. Nature, 2017, 541, 302-310.	13.7	562
381	Down-Regulation of <i>EPAS1</i> Transcription and Genetic Adaptation of Tibetans to High-Altitude Hypoxia. Molecular Biology and Evolution, 2017, 34, msw280.	3.5	87
382	Cortical Thickness of Native Tibetans in the Qinghai-Tibetan Plateau. American Journal of Neuroradiology, 2017, 38, 553-560.	1.2	13
383	Discovery of a murine model of clinical PAH: Mission impossible?. Trends in Cardiovascular Medicine, 2017, 27, 229-236.	2.3	17
384	Human Biological and Psychological Diversity. Evolutionary Psychological Science, 2017, 3, 159-180.	0.8	32
385	Genetic Adaptation of Schizothoracine Fish to the Phased Uplifting of the Qinghai–Tibetan Plateau. G3: Genes, Genomes, Genetics, 2017, 7, 1267-1276.	0.8	29
386	Gene sequence variations and expression patterns of mitochondrial genes are associated with the adaptive evolution of two Gynaephora species (Lepidoptera: Lymantriinae) living in different high-elevation environments. Gene, 2017, 610, 148-155.	1.0	31
387	<scp>Clear</scp> : Composition of Likelihoods for Evolve and Resequence Experiments. Genetics, 2017, 206, 1011-1023.	1.2	32
388	Genome research elucidating environmental adaptation: Dark-fly project as a case study. Current Opinion in Genetics and Development, 2017, 45, 97-102.	1.5	2
389	Elevated hemoglobin is associated with cerebral infarction in Tibetan patients with primary hemorrhagic neurovascular diseases. Clinical Neurology and Neurosurgery, 2017, 157, 46-50.	0.6	6
390	Genetic heterogeneity underlying variation in a locally adaptive clinal trait in Pinus sylvestris revealed by a Bayesian multipopulation analysis. Heredity, 2017, 118, 413-423.	1.2	15
391	Comparative transcriptomic and proteomic analyses provide insights into the key genes involved in high-altitude adaptation in the Tibetan pig. Scientific Reports, 2017, 7, 3654.	1.6	38
392	Habitat Variability and Ethnic Diversity in Northern Tibetan Plateau. Scientific Reports, 2017, 7, 918.	1.6	10
393	Ethnically Tibetan women in Nepal with low hemoglobin concentration have better reproductive outcomes. Evolution, Medicine and Public Health, 2017, 2017, 82-96.	1.1	28

# 394	ARTICLE The caterpillar fungus, Ophiocordyceps sinensis, genome provides insights into highland adaptation of fungal pathogenicity. Scientific Reports, 2017, 7, 1806.	IF 1.6	Citations
395	Sequence analysis of chromosome 1 revealed different selection patterns between Chinese wild mice and laboratory strains. Molecular Genetics and Genomics, 2017, 292, 1111-1121.	1.0	2
396	Crossâ€altitude analysis suggests a turning point at the elevation of 4,500 m for polycythemia prevalence in Tibetans. American Journal of Hematology, 2017, 92, E552-E554.	2.0	12
397	Metabolic basis to Sherpa altitude adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6382-6387.	3.3	162
398	Altitude sickness and altitude adaptation. Acta Physiologica, 2017, 220, 303-306.	1.8	3
399	Genetic signatures of high-altitude adaptation in Tibetans. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4189-4194.	3.3	181
400	Reduced cancer mortality at high altitude: The role of glucose, lipids, iron and physical activity. Experimental Cell Research, 2017, 356, 209-216.	1.2	17
401	Sequence and functional characterization of hypoxia-inducible factors, HIF1α, HIF2αa, and HIF3α, from the estuarine fish, <i>Fundulus heteroclitus</i> . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R412-R425.	0.9	16
402	Living in an adaptive world: Genomic dissection of the genus Homo and its immune response. Journal of Experimental Medicine, 2017, 214, 877-894.	4.2	34
403	The association between cardiorespiratory fitness and pulmonary diffusing capacity. Respiratory Physiology and Neurobiology, 2017, 241, 28-35.	0.7	17
404	Adaptive capabilities and fitness consequences associated with pollution exposure in fish. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160042.	1.8	63
405	High-altitude adaptation in humans: from genomics to integrative physiology. Journal of Molecular Medicine, 2017, 95, 1269-1282.	1.7	76
406	Natural Selection on Genes Related to Cardiovascular Health in High-Altitude Adapted Andeans. American Journal of Human Genetics, 2017, 101, 752-767.	2.6	99
407	WHAT ABOUT THE RESPIRATORY SYSTEM. Series on Bioengineering and Biomedical Engineering, 2017, , 111-146.	0.1	0
408	New Insights into the Genetic Basis of Monge's Disease and Adaptation to High-Altitude. Molecular Biology and Evolution, 2017, 34, 3154-3168.	3.5	31
409	Measuring high-altitude adaptation. Journal of Applied Physiology, 2017, 123, 1371-1385.	1.2	125
410	A Mountain or a Plateau? Hematological Traits Vary Nonlinearly with Altitude in a Highland Lizard. Physiological and Biochemical Zoology, 2017, 90, 638-645.	0.6	26
411	Evolution of mitochondrial energy metabolism genes associated with hydrothermal vent adaption of Alvinocaridid shrimps. Genes and Genomics, 2017, 39, 1367-1376.	0.5	21

#	Article	IF	CITATIONS
412	The genetic admixture in Tibetan‥i Corridor. American Journal of Physical Anthropology, 2017, 164, 522-532.	2.1	35
413	Epigenomics and human adaptation to high altitude. Journal of Applied Physiology, 2017, 123, 1362-1370.	1.2	47
414	Comparative transcriptomic analysis of Tibetan Gynaephora to explore the genetic basis of insect adaptation to divergent altitude environments. Scientific Reports, 2017, 7, 16972.	1.6	15
415	An Unbiased Estimator of Gene Diversity with Improved Variance for Samples Containing Related and Inbred Individuals of any Ploidy. G3: Genes, Genomes, Genetics, 2017, 7, 671-691.	0.8	26
416	Prevalence and Ethnic Pattern of Diabetes and Prediabetes in China in 2013. JAMA - Journal of the American Medical Association, 2017, 317, 2515.	3.8	1,345
417	Genome-wide identification of genes probably relevant to the adaptation of schizothoracins (Teleostei: Cypriniformes) to the uplift of the Qinghai-Tibet Plateau. BMC Genomics, 2017, 18, 310.	1.2	10
418	Differentiated demographic histories and local adaptations between Sherpas and Tibetans. Genome Biology, 2017, 18, 115.	3.8	67
419	Association Between Plasma N-Acylethanolamides and High Hemoglobin Concentration in Southern Peruvian Highlanders. High Altitude Medicine and Biology, 2017, 18, 322-329.	0.5	7
420	Plasma Proteomics of Ladakhi Natives Reveal Functional Regulation Between Renin–Angiotensin System and eNOS–cGMP Pathway. High Altitude Medicine and Biology, 2017, 18, 27-36.	0.5	6
421	Hypoxia potentially promotes Tibetan longevity. Cell Research, 2017, 27, 302-305.	5.7	16
422	Human genetic adaptation to high altitudes: Current status and future prospects. Quaternary International, 2017, 461, 4-13.	0.7	63
423	Sherpas share genetic variations with Tibetans for highâ€altitude adaptation. Molecular Genetics & Genomic Medicine, 2017, 5, 76-84.	0.6	17
424	Leveraging Multiple Populations across Time Helps Define Accurate Models of Human Evolution: A Reanalysis of the Lactase Persistence Adaptation. Human Biology, 2017, 89, 81.	0.4	8
425	Hypoxia and Pulmonary Hypertension. , 2017, , .		3
426	Twin Resemblance in Muscle HIF-1α Responses to Hypoxia and Exercise. Frontiers in Physiology, 2016, 7, 676.	1.3	15
427	Epigenetic changes by DNA methylation in chronic and intermittent hypoxia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L1096-L1100.	1.3	61
428	Adaptive Evolution of Energy Metabolism-Related Genes in Hypoxia-Tolerant Mammals. Frontiers in Genetics, 2017, 8, 205.	1.1	34
429	Thin Air Resulting in High Pressure: Mountain Sickness and Hypoxia-Induced Pulmonary Hypertension. Canadian Respiratory Journal, 2017, 2017, 1-17.	0.8	32

#	Article	IF	CITATIONS
430	The Contribution of Genetic Ancestry From Archaic Humans to Modern Humans. , 2017, , 55-63.		0
431	Gene expression variations in high-altitude adaptation: a case study of the Asiatic toad (Bufo) Tj ETQq1 1 0.7843	814.rgBT /0 2.9	Overlock 10 T
432	EP300基å›é€šè;‡è°ƒæŽ§ä,€æ°§åŒ–æ°®å•̂æ^ů,®åŠ©è—œ—뺺ç¾≇€,应é«~原低氧çŽ ⁻ 境. Zoological Res	ear ol g 201	.7, B& , 163-17
433	Fetal Growth Restriction at High Altitude: Clinical Observations. , 2018, , 423-434.		1
434	Fetal Growth Restriction at High Altitude: Basic Cellular and Subcellular Physiologic Considerations. , 2018, , 435-499.		0
435	Metabolic adjustment to high-altitude hypoxia: from genetic signals to physiological implications. Biochemical Society Transactions, 2018, 46, 599-607.	1.6	61
436	Temperature gradient affects differentiation of gene expression and SNP allele frequencies in the dominant Lake Baikal zooplankton species. Molecular Ecology, 2018, 27, 2544-2559.	2.0	15
437	Genetic diversity and phylogenetic characteristics of Chinese Tibetan and Yi minority ethnic groups revealed by non-CODIS STR markers. Scientific Reports, 2018, 8, 5895.	1.6	31
438	Characterization of the acute heat stress response in gilts: III. Genome-wide association studies of thermotolerance traits in pigs. Journal of Animal Science, 2018, 96, 2074-2085.	0.2	23
439	PGG.Population: a database for understanding the genomic diversity and genetic ancestry of human populations. Nucleic Acids Research, 2018, 46, D984-D993.	6.5	12
440	Physiological and Genetic Adaptations to Diving in Sea Nomads. Cell, 2018, 173, 569-580.e15.	13.5	129
441	A highâ€density <scp>SNP</scp> chip for genotyping great tit (<i>Parus major</i>) populations and its application to studying the genetic architecture of exploration behaviour. Molecular Ecology Resources, 2018, 18, 877-891.	2.2	36
442	High Altitude and Cancer Mortality. High Altitude Medicine and Biology, 2018, 19, 116-123.	0.5	23
443	Frequency of Polycythemia and Other Abnormalities in a Tibetan Herdsmen Population Residing in the Kham Area of Sichuan Province, China. Wilderness and Environmental Medicine, 2018, 29, 18-28.	0.4	7
444	Spatial pattern and variations in the prevalence of congenital heart disease in children aged 4–18â€ ⁻ years in the Qinghai-Tibetan Plateau. Science of the Total Environment, 2018, 627, 158-165.	3.9	13
445	Differentiation analysis for estimating individual ancestry from the Tibetan Plateau by an archaic altitude adaptation EPAS1 haplotype among East Asian populations. International Journal of Legal Medicine, 2018, 132, 1527-1535.	1.2	0
446	Whole genome variant analysis in three ethnically diverse Indians. Genes and Genomics, 2018, 40, 497-510.	0.5	3
447	Identifying Genetic Differences Between Dongxiang Blue-Shelled and White Leghorn Chickens Using Sequencing Data. G3: Genes, Genomes, Genetics, 2018, 8, 469-476.	0.8	11

#	Article	IF	CITATIONS
448	Selection on the morphology–physiologyâ€performance nexus: Lessons from freshwater stickleback morphs. Ecology and Evolution, 2018, 8, 1286-1299.	0.8	9
449	Combination of 247 Genome-Wide Association Studies Reveals High Cancer Risk as a Result of Evolutionary Adaptation. Molecular Biology and Evolution, 2018, 35, 473-485.	3.5	43
450	Blunted nitric oxide regulation in Tibetans under high-altitude hypoxia. National Science Review, 2018, 5, 516-529.	4.6	30
451	Adaptive Transcriptome Profiling of Subterranean Zokor, Myospalax baileyi, to High- Altitude Stresses in Tibet. Scientific Reports, 2018, 8, 4671.	1.6	10
452	Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: Lessons from AltitudeOmics. Journal of Biological Chemistry, 2018, 293, 6659-6671.	1.6	57
453	Respiratory Health Benefits and Risks of Living at Moderate Altitude. High Altitude Medicine and Biology, 2018, 19, 109-115.	0.5	11
454	Un viaje entre la hipoxia de la gran altitud y la hipoxia del enfermo crÃtico: ¿qué puede enseñarnos en la compresión y manejo de las enfermedades crÃticas?. Medicina Intensiva, 2018, 42, 380-390.	0.4	12
455	Why are tropical mountain passes "low―for some species? Genetic and stableâ€isotope tests for differentiation, migration and expansion in elevational generalist songbirds. Journal of Animal Ecology, 2018, 87, 741-753.	1.3	16
456	Evolutionary significance of selected EDAR variants in Tibetan high-altitude adaptations. Science China Life Sciences, 2018, 61, 68-78.	2.3	1
458	Genomes reveal marked differences in the adaptive evolution between orangutan species. Genome Biology, 2018, 19, 193.	3.8	18
459	The Contribution of Genetic Variants of the Peroxisome Proliferator-Activated Receptor-Alpha Gene to High-Altitude Hypoxia Adaptation in Sherpa Highlanders. High Altitude Medicine and Biology, 2023, 24, 186-192.	0.5	6
460	Genetic variation in PTPN1 contributes to metabolic adaptation to high-altitude hypoxia in Tibetan migratory locusts. Nature Communications, 2018, 9, 4991.	5.8	50
461	Analysis of mitochondrial DNA sequence and copy number variation across five high-altitude species and their low-altitude relatives. Mitochondrial DNA Part B: Resources, 2018, 3, 847-851.	0.2	11
462	The transcriptomic landscape of yaks reveals molecular pathways for high altitude adaptation. Genome Biology and Evolution, 2019, 11, 72-85.	1.1	41
463	Hemoglobin Concentration in Children at Different Altitudes in Peru: Proposal for [Hb] Correction for Altitude to Diagnose Anemia and Polycythemia. High Altitude Medicine and Biology, 2018, 19, 398-403.	0.5	22
464	Responses to Environmental Stressors in Developing Animals: Costs and Benefits of Phenotypic Plasticity. , 2018, , 97-113.		6
465	The genomic basis of environmental adaptation in house mice. PLoS Genetics, 2018, 14, e1007672.	1.5	65
466	Haplotype Loci Under Selection in Canadian Durum Wheat Germplasm Over 60 Years of Breeding: Association With Grain Yield, Quality Traits, Protein Loss, and Plant Height. Frontiers in Plant Science, 2018 9, 1589	1.7	29

#	Article	IF	CITATIONS
467	Evidence of polygenic adaptation to high altitude from Tibetan and Sherpa genomes. Genome Biology and Evolution, 2018, 10, 2919-2930.	1.1	39
468	Evolution within a language: environmental differences contribute to divergence of dialect groups. BMC Evolutionary Biology, 2018, 18, 132.	3.2	15
469	The effect of exposure to high altitude and low oxygen on intestinal microbial communities in mice. PLoS ONE, 2018, 13, e0203701.	1.1	44
470	Hypoxia causes reductions in birth weight by altering maternal glucose and lipid metabolism. Scientific Reports, 2018, 8, 13583.	1.6	19
471	The Macrogenoeconomics of Comparative Development. Journal of Economic Literature, 2018, 56, 1119-1155.	4.5	49
472	Detecting past and ongoing natural selection among ethnically Tibetan women at high altitude in Nepal. PLoS Genetics, 2018, 14, e1007650.	1.5	43
473	Different Erythrocyte MicroRNA Profiles in Low- and High-Altitude Individuals. Frontiers in Physiology, 2018, 9, 1099.	1.3	23
474	Largeâ€effect loci affect survival in Tasmanian devils (<i>Sarcophilus harrisii</i>) infected with a transmissible cancer. Molecular Ecology, 2018, 27, 4189-4199.	2.0	45
475	Demographic History and Genetic Adaptation in the Himalayan Region Inferred from Genome-Wide SNP Genotypes of 49 Populations. Molecular Biology and Evolution, 2018, 35, 1916-1933.	3.5	36
476	Selection and environmental adaptation along a path to speciation in the Tibetan frog <i>Nanorana parkeri</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5056-E5065.	3.3	49
477	Proteomics Analysis of Testis of Rats Fed a High-Fat Diet. Cellular Physiology and Biochemistry, 2018, 47, 378-389.	1.1	11
478	The Effect of Hypoxia on Cardiovascular Disease: Friend or Foe?. High Altitude Medicine and Biology, 2018, 19, 124-130.	0.5	38
479	Hypoxia inducible factor 2α (HIF2α/EPAS1) is associated with development of pulmonary hypertension in severe congenital diaphragmatic hernia patients. Pulmonary Circulation, 2018, 8, 1-4.	0.8	5
480	Defining the â€~generalist specialist' niche for Pleistocene Homo sapiens. Nature Human Behaviour, 2018, 2, 542-550.	6.2	132
481	Comparative genomic investigation of high-elevation adaptation in ectothermic snakes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8406-8411.	3.3	119
482	Reactive Oxygen Species and Pulmonary Vasculature During Hypobaric Hypoxia. Frontiers in Physiology, 2018, 9, 865.	1.3	44
483	Human adaptation to extreme environmental conditions. Current Opinion in Genetics and Development, 2018, 53, 77-82.	1.5	43
484	Extreme Terrestrial Environments: Life in Thermal Stress and Hypoxia. A Narrative Review. Frontiers in Physiology, 2018, 9, 572.	1.3	53

	CITA	ation Report	
#	Article	IF	CITATIONS
485	Gestational Hypoxia and Developmental Plasticity. Physiological Reviews, 2018, 98, 1241-1334.	13.1	123
486	Associations of high-altitude polycythemia with polymorphisms in PIK3CD and COL4A3 in Tibetan populations. Human Genomics, 2018, 12, 37.	1.4	16
487	Navigating the Interface Between Landscape Genetics and Landscape Genomics. Frontiers in Genetics, 2018, 9, 68.	1.1	82
488	Whole-Genome Resequencing of Red Junglefowl and Indigenous Village Chicken Reveal New Insights on the Genome Dynamics of the Species. Frontiers in Genetics, 2018, 9, 264.	1.1	84
489	A journey between high altitude hypoxia and critical patient hypoxia: What can it teach us about compression and the management of critical disease?. Medicina Intensiva (English Edition), 2018, 42, 380-390.	0.1	7
490	Hypoxia-inducible factor cell non-autonomously regulates C. elegans stress responses and behavior via a nuclear receptor. ELife, 2018, 7, .	2.8	16
491	Association of EGLN1 genetic polymorphisms with SpO2 responses to acute hypobaric hypoxia in a Japanese cohort. Journal of Physiological Anthropology, 2018, 37, 9.	1.0	15
492	Selection scan reveals three new loci related to high altitude adaptation in Native Andeans. Scientific Reports, 2018, 8, 12733.	1.6	21
493	The first draft genome of Lophophorus: A step forward for Phasianidae genomic diversity and conservation. Genomics, 2019, 111, 1209-1215.	1.3	9
494	Genetic variability of hypoxiaâ€inducible factor alpha (<i>HIFA</i>) genes in familial erythrocytosis: Analysis of the literature and genome databases. European Journal of Haematology, 2019, 103, 287-29	9. 1.1	12
495	Prioritizing natural-selection signals from the deep-sequencing genomic data suggests multi-variant adaptation in Tibetan highlanders. National Science Review, 2019, 6, 1201-1222.	4.6	30
496	Population Genomics Analysis Revealed Origin and High-altitude Adaptation of Tibetan Pigs. Scientific Reports, 2019, 9, 11463.	1.6	44
497	The Genetic Architecture of Chronic Mountain Sickness in Peru. Frontiers in Genetics, 2019, 10, 690.	1.1	12
498	The increase in hemoglobin concentration with altitude varies among human populations. Annals of the New York Academy of Sciences, 2019, 1450, 204-220.	1.8	61
499	EPAS1 Gain-of-Function Mutation Contributes to High-Altitude Adaptation in Tibetan Horses. Molecular Biology and Evolution, 2019, 36, 2591-2603.	3.5	80
500	YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nature Communications, 2019, 10, 4892.	5.8	256
501	An Efficient Short Blind Proxy Re-signatures Scheme. Journal of Physics: Conference Series, 2019, 1302, 022006.	, 0.3	0
502	<i>PPARA</i> genetic variants increase the risk for cardiac pumping function reductions following acute highâ€altitude exposure: A selfâ€controlled study. Molecular Genetics & Genomic Medicine, 2019, 7, e00919.	0.6	2

#	Article	IF	CITATIONS
503	Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice. PLoS Genetics, 2019, 15, e1008420.	1.5	52
504	Iron insufficiency diminishes the erythropoietic response to moderate altitude exposure. Journal of Applied Physiology, 2019, 127, 1569-1578.	1.2	13
505	Gestational Hypoxia and Programing of Lung Metabolism. Frontiers in Physiology, 2019, 10, 1453.	1.3	7
506	DNA Methylation Changes Are Associated With an Incremental Ascent to High Altitude. Frontiers in Genetics, 2019, 10, 1062.	1.1	25
507	PGG.SNV: understanding the evolutionary and medical implications of human single nucleotide variations in diverse populations. Genome Biology, 2019, 20, 215.	3.8	30
508	Impact of the Microbiome on the Human Genome. Trends in Parasitology, 2019, 35, 809-821.	1.5	5
509	Pulmonary Vascular Pressure Response to Acute Cold Exposure in Kyrgyz Highlanders. High Altitude Medicine and Biology, 2019, 20, 375-382.	0.5	3
510	Association of Age with the Expression of Hypoxia-Inducible Factors HIF-11±, HIF-21±, HIF-31± and VEGF in Lung and Heart of Tibetan Sheep. Animals, 2019, 9, 673.	1.0	15
511	Population History and Altitude-Related Adaptation in the Sherpa. Frontiers in Physiology, 2019, 10, 1116.	1.3	16
512	Acute Mountain Sickness Is Associated With a High Ratio of Endogenous Testosterone to Estradiol After High-Altitude Exposure at 3,700 m in Young Chinese Men. Frontiers in Physiology, 2019, 9, 1949.	1.3	9
513	Genomic signatures of high-altitude adaptation in Ethiopian sheep populations. Genes and Genomics, 2019, 41, 973-981.	0.5	68
515	Insights into hypoxic adaptation in Tibetan chicken embryos from comparative proteomics. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2019, 31, 100602.	0.4	9
516	Convergent evolution in human and domesticate adaptation to high-altitude environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180235.	1.8	90
517	Genetic structure and forensic characteristics of Tibeto-Burman-speaking Ü-Tsang and Kham Tibetan Highlanders revealed by 27 Y-chromosomal STRs. Scientific Reports, 2019, 9, 7739.	1.6	19
518	Congenital and evolutionary modulations of hypoxia sensing and their erythroid phenotype. Current Opinion in Physiology, 2019, 7, 27-32.	0.9	6
519	Use and interpretation of hemoglobin concentrations for assessing anemia status in individuals and populations: results from a WHO technical meeting. Annals of the New York Academy of Sciences, 2019, 1450, 5-14.	1.8	60
520	Prevalence and ethnic pattern of overweight and obesity among middle-aged and elderly adults in China. European Journal of Preventive Cardiology, 2019, 26, 1785-1789.	0.8	13
521	UNVEILing connections between genotype, phenotype, and fitness in natural populations. Molecular Ecology, 2019, 28, 1866-1876.	2.0	14

#	Article	IF	CITATIONS
522	Genetic polymorphism and phylogenetic differentiation of the Huaxia Platinum System in three Chinese minority ethnicities. Scientific Reports, 2019, 9, 3371.	1.6	19
524	Revisiting the role of hypoxia-inducible factors in pulmonary hypertension. Current Opinion in Physiology, 2019, 7, 33-40.	0.9	14
525	Gene expression analysis of the tibetan grassland caterpillars (Lepidoptera: Lymantriinae: Gynaephora) in response to high-altitude stress. AIP Conference Proceedings, 2019, , .	0.3	0
526	Genome-wide DNA methylation profiles in Tibetan and Yorkshire pigs under high-altitude hypoxia. Journal of Animal Science and Biotechnology, 2019, 10, 25.	2.1	29
529	Natural selection on TMPRSS6 associated with the blunted erythropoiesis and improved blood viscosity in Tibetan pigs. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2019, 233, 11-22.	0.7	9
530	Metabolomic and lipidomic plasma profile changes in human participants ascending to Everest Base Camp. Scientific Reports, 2019, 9, 2297.	1.6	31
531	Exaptation at the molecular genetic level. Science China Life Sciences, 2019, 62, 437-452.	2.3	13
532	Genetic variants at the <i>EGLN1</i> locus associated with highâ€altitude adaptation in Tibetans are absent or found at low frequency in highland Andeans. Annals of Human Genetics, 2019, 83, 171-176.	0.3	19
533	Characterization and discrimination of Tibetan and Duroc × (Landrace × Yorkshire) pork using label-free quantitative proteomics analysis. Food Research International, 2019, 119, 426-435.	2.9	16
534	Association Between Single Nucleotide Polymorphisms in PPARA and EPAS1 Genes and High-Altitude Appetite Loss in Chinese Young Men. Frontiers in Physiology, 2019, 10, 59.	1.3	10
535	Genome editing and selection based on genes associated with sports athletic performance. Synthesis Philosophica, 2019, 34, 323-340.	0.1	2
536	Monk on fire: The meditative mind of a burning monk. Cogent Psychology, 2019, 6, .	0.6	1
537	The overlooked significance of plasma volume for successful adaptation to high altitude in Sherpa and Andean natives. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16177-16179.	3.3	58
538	Association of <i>EGLN1</i> gene with high aerobic capacity of Peruvian Quechua at high altitude. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24006-24011.	3.3	41
539	Comparative genome analyses reveal the unique genetic composition and selection signals underlying the phenotypic characteristics of three Chinese domestic goat breeds. Genetics Selection Evolution, 2019, 51, 70.	1.2	26
540	An Aptitude for Altitude: Are Epigenomic Processes Involved?. Frontiers in Physiology, 2019, 10, 1397.	1.3	4
541	Whole-Genome Sequencing Identifies the Egl Nine Homologue 3 (egln3/phd3) and Protein Phosphatase 1 Regulatory Inhibitor Subunit 2 (PPP1R2P1) Associated with High-Altitude Polycythemia in Tibetans at High Altitude. Disease Markers, 2019, 2019, 1-8.	0.6	4
542	LINE-1 and <i>EPAS1</i> DNA methylation associations with high-altitude exposure. Epigenetics, 2019, 14, 1-15.	1.3	44

#	Article	IF	CITATIONS
543	Metformin Affects Heme Function as a Possible Mechanism of Action. G3: Genes, Genomes, Genetics, 2019, 9, 513-522.	0.8	12
544	Protein kinase C binding protein 1 inhibits hypoxia-inducible factor-1 in the heart. Cardiovascular Research, 2019, 115, 1332-1342.	1.8	6
545	The Genome Landscape of Tibetan Sheep Reveals Adaptive Introgression from Argali and the History of Early Human Settlements on the Qinghai–Tibetan Plateau. Molecular Biology and Evolution, 2019, 36, 283-303.	3.5	84
546	Differentiations of geographic distribution and subsistence strategies between Tibetan and other major ethnic groups are determined by the physical environment in Hehuang Valley. Science China Earth Sciences, 2019, 62, 412-422.	2.3	10
547	Convergent evolution on the hypoxia-inducible factor (HIF) pathway genes EGLN1 and EPAS1 in high-altitude ducks. Heredity, 2019, 122, 819-832.	1.2	52
548	Evolved Mechanisms of Aerobic Performance and Hypoxia Resistance in High-Altitude Natives. Annual Review of Physiology, 2019, 81, 561-583.	5.6	67
549	Hypoxia-inducible factor 1 signalling, metabolism and its therapeutic potential in cardiovascular disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 831-843.	1.8	72
550	Novel insight into the genetic basis of high-altitude pulmonary hypertension in Kyrgyz highlanders. European Journal of Human Genetics, 2019, 27, 150-159.	1.4	14
551	<i>De novo</i> assembly of a Tibetan genome and identification of novel structural variants associated with high-altitude adaptation. National Science Review, 2020, 7, 391-402.	4.6	28
552	Whole mitochondrial genome analysis of highland Tibetan ethnicity using massively parallel sequencing. Forensic Science International: Genetics, 2020, 44, 102197.	1.6	18
553	Increased hypoxic proliferative response and gene expression in erythroid progenitor cells of Andean highlanders with chronic mountain sickness. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R49-R56.	0.9	16
554	Identification of key HIF-1 \hat{l} ± target genes that regulate adaptation to hypoxic conditions in Tibetan chicken embryos. Gene, 2020, 729, 144321.	1.0	8
555	Convergent genomic signatures of high-altitude adaptation among domestic mammals. National Science Review, 2020, 7, 952-963.	4.6	52
556	Target Oxygen Levels and Critical Care of the Newborn. Current Pediatric Reviews, 2020, 16, 2-5.	0.4	3
557	Metabolic adaptation to high altitude. Current Opinion in Endocrine and Metabolic Research, 2020, 11, 33-41.	0.6	20
558	Individual variations and sex differences in hemodynamics with percutaneous arterial oxygen saturation (SpO2) in young Andean highlanders in Bolivia. Journal of Physiological Anthropology, 2020, 39, 31.	1.0	6
559	Transcriptomic Changes in Young Japanese Males After Exposure to Acute Hypobaric Hypoxia. Frontiers in Genetics, 2020, 11, 559074.	1.1	8
560	Differences in Tolerance to Hypoxia: Physiological, Biochemical, and Molecular-Biological Characteristics. Biomedicines, 2020, 8, 428.	1.4	37

#	Article	IF	CITATIONS
561	Geographical ancestry affects normal hemoglobin values in high-altitude residents. Journal of Applied Physiology, 2020, 129, 1451-1459.	1.2	5
562	Detection of Selection Signatures Underlying Production and Adaptive Traits Based on Whole-Genome Sequencing of Six Donkey Populations. Animals, 2020, 10, 1823.	1.0	7
563	Evaluation of Linear Growth at Higher Altitudes. JAMA Pediatrics, 2020, 174, 977.	3.3	12
564	Genomic Analyses Reveal Genetic Adaptations to Tropical Climates in Chickens. IScience, 2020, 23, 101644.	1.9	28
565	Chromatin accessibility landscape and regulatory network of high-altitude hypoxia adaptation. Nature Communications, 2020, 11, 4928.	5.8	43
566	Tool for genomic selection and breeding to evolutionary adaptation: Development of a 100K single nucleotide polymorphism array for the honey bee. Ecology and Evolution, 2020, 10, 6246-6256.	0.8	23
567	Effect of EGLN1 Genetic Polymorphisms on Hemoglobin Concentration in Andean Highlanders. BioMed Research International, 2020, 2020, 1-16.	0.9	3
568	Associations Between High-Altitude Residence and End-Stage Kidney Disease in Chinese Patients with Type 2 Diabetes. High Altitude Medicine and Biology, 2020, 21, 396-405.	0.5	7
569	Population genomic data in spider mites point to a role for local adaptation in shaping range shifts. Evolutionary Applications, 2020, 13, 2821-2835.	1.5	13
570	Effects of Aging on Expression of Mic60 and OPA1 and Mitochondrial Morphology in Myocardium of Tibetan Sheep. Animals, 2020, 10, 2160.	1.0	2
572	Identifying Candidate Genes for Hypoxia Adaptation of Tibet Chicken Embryos by Selection Signature Analyses and RNA Sequencing. Genes, 2020, 11, 823.	1.0	6
573	Vascular homeostasis at highâ€altitude: role of genetic variants and transcription factors. Pulmonary Circulation, 2020, 10, 1-11.	0.8	6
574	Cross-Species Insights Into Genomic Adaptations to Hypoxia. Frontiers in Genetics, 2020, 11, 743.	1.1	48
575	Adaptive Potential of the Heme Oxygenase/Carbon Monoxide Pathway During Hypoxia. Frontiers in Physiology, 2020, 11, 886.	1.3	19
576	Iron deficiency is a possible risk factor causing right heart failure in Tibetan children living in high altitude area. Medicine (United States), 2020, 99, e21133.	0.4	3
577	Comparative microRNA Transcriptomes in Domestic Goats Reveal Acclimatization to High Altitude. Frontiers in Genetics, 2020, 11, 809.	1.1	12
578	Genome-Wide Association Study Using Individual Single-Nucleotide Polymorphisms and Haplotypes for Erythrocyte Traits in Alpine Merino Sheep. Frontiers in Genetics, 2020, 11, 848.	1.1	7
579	EPAS1 and VEGFA gene variants are related to the symptoms of acute mountain sickness in Chinese Han population: a cross-sectional study. Military Medical Research, 2020, 7, 35.	1.9	6

#	Article	IF	Citations
580	Comprehensive analysis of IncRNA and mRNA expression changes in Tibetan chicken lung tissue between three developmental stages. Animal Genetics, 2020, 51, 731-740.	0.6	4
581	Comparative transcriptome analysis reveals regulatory genes involved in cold tolerance and hypoxic adaptation of high-altitude Tibetan bumblebees. Apidologie, 2020, 51, 1166-1181.	0.9	6
582	Transcriptome analysis identified long non-coding RNAs involved in the adaption of yak to high-altitude environments. Royal Society Open Science, 2020, 7, 200625.	1.1	7
583	Human adaptation to hypoxia in critical illness. Journal of Applied Physiology, 2020, 129, 656-663.	1.2	15
584	De Novo Transcriptomic and Metabolomic Analyses Reveal the Ecological Adaptation of High-Altitude Bombus pyrosoma. Insects, 2020, 11, 631.	1.0	11
585	Adaptive selection drives TRPP3 loss-of-function in an Ethiopian population. Scientific Reports, 2020, 10, 20999.	1.6	2
586	Good vacation and job rotation systems were beneficial for the hemoglobin level of workers at high altitude, a cross-sectional study along the Qinghai Tibet railway, China. International Journal of Industrial Ergonomics, 2020, 80, 103055.	1.5	3
587	Genomic analysis of Asian honeybee populations in China reveals evolutionary relationships and adaptation to abiotic stress. Ecology and Evolution, 2020, 10, 13427-13438.	0.8	8
588	Population genomics of East Asian ethnic groups. Hereditas, 2020, 157, 49.	0.5	18
589	Tibetan <i>PHD2</i> , an allele with loss-of-function properties. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12230-12238.	3.3	20
590	Early adjustments in mitochondrial structure and function in skeletal muscle to high altitude: design and rationale of the first study from the Kilimanjaro Biobank. Biophysical Reviews, 2020, 12, 793-798.	1.5	2
591	Long-read human genome sequencing and its applications. Nature Reviews Genetics, 2020, 21, 597-614.	7.7	542
592	Seq-ing Higher Ground: Functional Investigation of Adaptive Variation Associated With High-Altitude Adaptation. Frontiers in Genetics, 2020, 11, 471.	1.1	10
593	Susceptibility to high-altitude pulmonary edema is associated with circulating miRNA levels under hypobaric hypoxia conditions. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L360-L368.	1.3	8
594	Association of <i>EPAS1</i> and <i>PPARA</i> Gene Polymorphisms with High-Altitude Headache in Chinese Han Population. BioMed Research International, 2020, 2020, 1-11.	0.9	2
595	EDN1 gene potentially involved in the development of acute mountain sickness. Scientific Reports, 2020, 10, 5414.	1.6	3
596	Population Genomic Analysis of Two Endemic Schizothoracins Reveals Their Genetic Differences and Underlying Selection Associated with Altitude and Temperature. Animals, 2020, 10, 447.	1.0	5
597	Cardiovascular responses to progressive hypoxia in ducks native to high altitude in the Andes. Journal of Experimental Biology, 2020, 223, .	0.8	11

#	Article	IF	CITATIONS
598	Neural network correlates of highâ€altitude adaptive genetic variants in Tibetans: A pilot, exploratory study. Human Brain Mapping, 2020, 41, 2406-2430.	1.9	9
599	Phenotypic Variation in Mitochondria-Related Performance Traits Across New Zealand Snail Populations. Integrative and Comparative Biology, 2020, 60, 275-287.	0.9	8
600	Mitochondrial DNA genomes revealed different patterns of high-altitude adaptation in high-altitude Tajiks compared with Tibetans and Sherpas. Scientific Reports, 2020, 10, 10592.	1.6	8
601	Comparative transcriptomic and proteomic analyses provide insights into functional genes for hypoxic adaptation in embryos of Tibetan chickens. Scientific Reports, 2020, 10, 11213.	1.6	16
602	Phylogenetic perspective on the relationships and evolutionary history of the Acipenseriformes. Genomics, 2020, 112, 3511-3517.	1.3	26
604	2019 Nobel Prize in Physiology or Medicine. Physiology, 2020, 35, 81-83.	1.6	5
605	Himalayan wolf distribution and admixture based on multiple genetic markers. Journal of Biogeography, 2020, 47, 1272-1285.	1.4	19
607	From Summary Statistics to Gene Trees: Methods for Inferring Positive Selection. Trends in Genetics, 2020, 36, 243-258.	2.9	28
608	Selection signatures for highâ€altitude adaptation in ruminants. Animal Genetics, 2020, 51, 157-165.	0.6	34
609	Plateau Grass and Greenhouse Flower? Distinct Genetic Basis of Closely Related Toad Tadpoles Respectively Adapted to High Altitude and Karst Caves. Genes, 2020, 11, 123.	1.0	4
610	Genetic Screen for Cell Fitness in High or Low Oxygen Highlights Mitochondrial and Lipid Metabolism. Cell, 2020, 181, 716-727.e11.	13.5	126
611	Variability in hypoxic response: Could genetics play a role?. Journal of Physiology, 2020, 598, 1805-1806.	1.3	4
612	Highâ€∎ltitude adaptations mitigate risk for hypertension and diabetesâ€∎ssociated anemia. American Journal of Physical Anthropology, 2020, 172, 156-164.	2.1	6
613	Insights into phylogeny, age and evolution of Allium (Amaryllidaceae) based on the whole plastome sequences. Annals of Botany, 2020, 125, 1039-1055.	1.4	49
614	The Genomics of Human Local Adaptation. Trends in Genetics, 2020, 36, 415-428.	2.9	75
615	Uncovering the role of a positive selection site of wax ester synthase/diacylglycerol acyltransferase in two closely related Stipa species in wax ester synthesis under drought stress. Journal of Experimental Botany, 2020, 71, 4159-4170.	2.4	7
616	High-altitude adaptation in a flutter of sparrows. National Science Review, 2020, 7, 130-131.	4.6	0
617	Genetics of pulmonary hypertension and high-altitude pulmonary edema. Journal of Applied Physiology, 2020, 128, 1432-1438.	1.2	15

ARTICLE IF CITATIONS # Dual role of the Lâ€arginine–ADMA–NO pathway in systemic hypoxic vasodilation and pulmonary 618 0.8 19 hypoxic vasoconstriction. Pulmonary Circulation, 2020, 10, 23-30. The Genomics and Genetics of Oxygen Homeostasis. Annual Review of Genomics and Human Genetics, 619 2.5 2020, 21, 183-204. Characterisation of the gut microbial community of rhesus macaques in high-altitude environments. 620 1.3 25 BMC Microbiology, 2020, 20, 68. Hypoxiaâ€induced pulmonary hypertension—Utilizing experiments of nature. British Journal of Pharmacology, 2021, 178, 121-131. Effects of genetics and altitude on lung function. Clinical Respiratory Journal, 2021, 15, 247-256. 622 0.6 4 Identifying adaptive alleles in the human genome: from selection mapping to functional validation. 1.8 Human Genetics, 2021, 140, 241-276. Hematologic and spirometric characteristics of Tajik and Kyrgyz highlanders in the Pamir Mountains. 624 0.8 2 American Journal of Human Biology, 2021, 33, e23459. Genetic polymorphisms associated with high-altitude adaptation in a BaltÃ-population. Meta Gene, 2021, 0.3 27, 100836. Microgeographical adaptation corresponds to elevational distributions of congeneric montane 626 2.0 15 grasshoppers. Molecular Ecology, 2021, 30, 481-498. Physiological Genomics of Adaptation to High-Altitude Hypoxia. Annual Review of Animal Biosciences, 3.6 2021, 9, 149-171. Genome-Wide Epigenetic Signatures of Adaptive Developmental Plasticity in the Andes. Genome Biology 628 1.1 14 and Evolution, 2021, 13, . VHL gene methylation contributes to excessive erythrocytosis in chronic mountain sickness rat model by upregulating the HIF-2α/EPO pathway. Life Sciences, 2021, 266, 118873. WY14643 improves left ventricular myocardial mitochondrial and systolic functions in obese rats 630 2.0 6 under chronic persistent hypoxia via the PPARα pathway. Life Sciences, 2021, 266, 118888. Genomic adaptations to cerealâ€based diets contribute to mitigate metabolic risk in some human 1.5 populations of East Asian ancestry. Evolutionary Applications, 2021, 14, 297-313. 632 Control of Breathing., 2021, , 205-218. 1 Genomes reveal selective sweeps in kiang and donkey for high-altitude adaptation. Zoological Research, 2021, 42, 450-460. Population Genomics of High-Altitude Adaptation. Evolutionary Studies, 2021, , 67-100. 634 0.2 0 The ancient origins of the wealth of nations., 2021, , 675-717.

#	Article	IF	CITATIONS
636	Positive Selection in Human Populations: Practical Aspects and Current Knowledge. Evolutionary Studies, 2021, , 29-65.	0.2	1
637	Gene expression plasticity and desert adaptation in house mice*. Evolution; International Journal of Organic Evolution, 2021, 75, 1477-1491.	1.1	23
638	Protective Effects from the Ischemic/Hypoxic Stress Induced by Labor in the High-Altitude Tibetan Placenta. Reproductive Sciences, 2021, 28, 659-664.	1.1	5
639	Genome-wide comparative analyses reveal selection signatures underlying adaptation and production in Tibetan and Poll Dorset sheep. Scientific Reports, 2021, 11, 2466.	1.6	15
640	Influence of iron manipulation on hypoxic pulmonary vasoconstriction and pulmonary reactivity during ascent and acclimatization to 5050Âm. Journal of Physiology, 2021, 599, 1685-1708.	1.3	17
641	Selective Sweeps Uncovering the Genetic Basis of Horn and Adaptability Traits on Fine-Wool Sheep in China. Frontiers in Genetics, 2021, 12, 604235.	1.1	2
642	Differential Brain and Muscle Tissue Oxygenation Responses to Exercise in Tibetans Compared to Han Chinese. Frontiers in Physiology, 2021, 12, 617954.	1.3	4
643	Multiple mechanisms drive genomic adaptation to extreme O2 levels in Drosophila melanogaster. Nature Communications, 2021, 12, 997.	5.8	6
644	Effects of altitude on human oral microbes. AMB Express, 2021, 11, 41.	1.4	15
645	Impacts of Changes in Atmospheric O2 on Human Physiology. Is There a Basis for Concern?. Frontiers in Physiology, 2021, 12, 571137.	1.3	10
646	High-Altitude Adaptation: Mechanistic Insights from Integrated Genomics and Physiology. Molecular Biology and Evolution, 2021, 38, 2677-2691.	3.5	60
649	KLF4, a Key Regulator of a Transitive Triplet, Acts on the TGF-Î ² Signaling Pathway and Contributes to High-Altitude Adaptation of Tibetan Pigs. Frontiers in Genetics, 2021, 12, 628192.	1.1	7
650	A worldwide map of swine short tandem repeats and their associations with evolutionary and environmental adaptations. Genetics Selection Evolution, 2021, 53, 39.	1.2	9
651	Comparison of hematological traits and oxygenation properties of hemoglobins from highland and lowland Asiatic toad (Bufo gargarizans). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2021, 191, 1019-1029.	0.7	4
652	Molecular mechanisms detected in yak lung tissue via transcriptome-wide analysis provide insights into adaptation to high altitudes. Scientific Reports, 2021, 11, 7786.	1.6	9
654	Elevational niche-shift migration: Why the degree of elevational change matters for the ecology, evolution, and physiology of migratory birds. Auk, 2021, 138, .	0.7	15
655	Depression and Related Factors in Patients with Parkinson's Disease at High Altitude. Neuropsychiatric Disease and Treatment, 2021, Volume 17, 1353-1362.	1.0	6
656	To breathe or not to breathe: Understanding how oxygen sensing contributes to age-related phenotypes. Ageing Research Reviews, 2021, 67, 101267.	5.0	13

#	Article	IF	Citations
657	Broad Concordance in the Spatial Distribution of Adaptive and Neutral Genetic Variation across an Elevational Gradient in Deer Mice. Molecular Biology and Evolution, 2021, 38, 4286-4300.	3.5	13
658	Therapeutic inhibition of HIF-2α reverses polycythemia and pulmonary hypertension in murine models of human diseases. Blood, 2021, 137, 2509-2519.	0.6	24
659	Hypoxia and Inflammation: Insights From High-Altitude Physiology. Frontiers in Physiology, 2021, 12, 676782.	1.3	82
660	PPARs in liver physiology. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166097.	1.8	33
661	The history and evolution of the Denisovan- <i>EPAS1</i> haplotype in Tibetans. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	48
662	Heterogeneity in Hematological Parameters of High and Low Altitude Tibetan Populations. Journal of Blood Medicine, 2021, Volume 12, 287-298.	0.7	11
663	Gain-of-function Tibetan PHD2D4E;C127S variant suppresses monocyte function: A lesson in inflammatory response to inspired hypoxia. EBioMedicine, 2021, 68, 103418.	2.7	8
664	Correlations Between Intestinal Microbial Community and Hematological Profile in Native Tibetans and Han Immigrants. Frontiers in Microbiology, 2021, 12, 615416.	1.5	8
665	Man is a "Rope―Stretched Between Virosphere and Humanoid Robots: On the Urgent Need of an Ethical Code for Ecosystem Survival. Foundations of Science, 2022, 27, 311-325.	0.4	3
666	Introgressive Hybridization and Hypoxia Adaptation in High-Altitude Vertebrates. Frontiers in Genetics, 2021, 12, 696484.	1.1	3
667	Association Between 17β-Estradiol Receptors and Nitric Oxide Signaling Augments High-Altitude Adaptation of Ladakhi Highlanders. High Altitude Medicine and Biology, 2021, 22, 174-183.	0.5	6
669	Correlation of DNA methylation patterns to the phenotypic features of Tibetan elite alpinists in extreme hypoxia. Journal of Genetics and Genomics, 2021, 48, 928-935.	1.7	7
670	The association between sarcopenia susceptibility and polymorphisms of FTO , ACVR2B , and IRS1 in Tibetans. Molecular Genetics & Genomic Medicine, 2021, 9, e1747.	0.6	2
671	Phenotypic differences between highlanders and lowlanders in Papua New Guinea. PLoS ONE, 2021, 16, e0253921.	1.1	4
672	Reusability report: Compressing regulatory networks to vectors for interpreting gene expression and genetic variants. Nature Machine Intelligence, 2021, 3, 576-580.	8.3	3
673	Myoblast differentiation of C2C12 cell may related with oxidative stress. Intractable and Rare Diseases Research, 2021, 10, 173-178.	0.3	2
674	Smoothing Out the Peaks and Valleys of High-Altitude Sleep Apnea. Chest, 2021, 160, 411-412.	0.4	0
675	Exposomes to Exosomes: Exosomes as Tools to Study Epigenetic Adaptive Mechanisms in High-Altitude Humans. International Journal of Environmental Research and Public Health, 2021, 18, 8280.	1.2	3

#	Article	IF	CITATIONS
676	Evolutionary origin of species diversity on the Qinghai–Tibet Plateau. Journal of Systematics and Evolution, 2021, 59, 1142-1158.	1.6	55
677	Hominin occupation of the Tibetan Plateau during the Last Interglacial Complex. Quaternary Science Reviews, 2021, 265, 107047.	1.4	14
678	Cell-Free Hemoglobin Does Not Attenuate the Effects of SARS-CoV-2 Spike Protein S1 Subunit in Pulmonary Endothelial Cells. International Journal of Molecular Sciences, 2021, 22, 9041.	1.8	13
679	Megabase-scale presence-absence variation with Tripsacum origin was under selection during maize domestication and adaptation. Genome Biology, 2021, 22, 237.	3.8	21
680	Serum Inflammatory Factor Profiles in the Pathogenesis of High-Altitude Polycythemia and Mechanisms of Acclimation to High Altitudes. Mediators of Inflammation, 2021, 2021, 1-9.	1.4	12
681	OSL Chronology of the Siling Co Paleolithic Site in Central Tibetan Plateau. Frontiers in Earth Science, 2021, 9, .	0.8	10
682	Phosphorylated protein modification analysis on normal liver and Exoâ€celiac liver of <i>Glyptosternum maculatum</i> . Journal of Fish Biology, 2021, 99, 1696-1707.	0.7	2
683	Origin and Spread of the ALDH2 Glu504Lys Allele. Phenomics, 2021, 1, 222-228.	0.9	6
684	Phenotypic and genomic adaptations to the extremely high elevation in plateau zokor (<i>Myospalax) Tj ETQq0</i>	0 0 rgBT /(2.6	Dverlock 10 T
685	Selection pressure at altitude for genes related to alcohol metabolism: A role for endogenous enteric ethanol synthesis?. Experimental Physiology, 2021, 106, 2155-2167.	0.9	0
685 686		0.9	0
	enteric ethanol synthesis?. Experimental Physiology, 2021, 106, 2155-2167. Altered Hypoxia-Induced and Heat Shock Protein Immunostaining in Secondary Hair Follicles		
686	enteric ethanol synthesis?. Experimental Physiology, 2021, 106, 2155-2167. Altered Hypoxia-Induced and Heat Shock Protein Immunostaining in Secondary Hair Follicles Associated with Changes in Altitude and Temperature in Tibetan Cashmere Goats. Animals, 2021, 11, 2798. Recent progress in research on the gut microbiota and highland adaptation on the Qinghaiâ€Tibet	1.0	2
686 687	enteric ethanol synthesis?. Experimental Physiology, 2021, 106, 2155-2167. Altered Hypoxia-Induced and Heat Shock Protein Immunostaining in Secondary Hair Follicles Associated with Changes in Altitude and Temperature in Tibetan Cashmere Goats. Animals, 2021, 11, 2798. Recent progress in research on the gut microbiota and highland adaptation on the Qinghaiâ€Tibet Plateau. Journal of Evolutionary Biology, 2021, 34, 1514-1530. Towards a unified framework to study causality in Earth–life systems. Molecular Ecology, 2021, 30,	1.0 0.8	2 20
686 687 688	 enteric ethanol synthesis?. Experimental Physiology, 2021, 106, 2155-2167. Altered Hypoxia-Induced and Heat Shock Protein Immunostaining in Secondary Hair Follicles Associated with Changes in Altitude and Temperature in Tibetan Cashmere Goats. Animals, 2021, 11, 2798. Recent progress in research on the gut microbiota and highland adaptation on the Qinghaiâ€Tibet Plateau. Journal of Evolutionary Biology, 2021, 34, 1514-1530. Towards a unified framework to study causality in Earth–life systems. Molecular Ecology, 2021, 30, 5628-5642. Genome-wide CNV analysis reveals variants associated with high-altitude adaptation and meat traits in 	1.0 0.8 2.0	2 20 4
686 687 688 689	enteric ethanol synthesis?. Experimental Physiology, 2021, 106, 2155-2167. Altered Hypoxia-Induced and Heat Shock Protein Immunostaining in Secondary Hair Follicles Associated with Changes in Altitude and Temperature in Tibetan Cashmere Goats. Animals, 2021, 11, 2798. Recent progress in research on the gut microbiota and highland adaptation on the Qinghaiâ€Tibet Plateau. Journal of Evolutionary Biology, 2021, 34, 1514-1530. Towards a unified framework to study causality in Earth–life systems. Molecular Ecology, 2021, 30, 5628-5642. Genome-wide CNV analysis reveals variants associated with high-altitude adaptation and meat traits in Qaidam cattle. Electronic Journal of Biotechnology, 2021, 54, 8-16. Quantitative proteomics reveals tissue-specific toxic mechanisms for acute hydrogen sulfide-induced	1.0 0.8 2.0 1.2	2 20 4 6
 686 687 688 689 690 	enteric ethanol synthesis?. Experimental Physiology, 2021, 106, 2155-2167. Altered Hypoxia-Induced and Heat Shock Protein Immunostaining in Secondary Hair Follicles Associated with Changes in Altitude and Temperature in Tibetan Cashmere Goats. Animals, 2021, 11, 2798. Recent progress in research on the gut microbiota and highland adaptation on the Qinghaiâ€Tibet Plateau. Journal of Evolutionary Biology, 2021, 34, 1514-1530. Towards a unified framework to study causality in Earth–life systems. Molecular Ecology, 2021, 30, 5628-5642. Genome-wide CNV analysis reveals variants associated with high-altitude adaptation and meat traits in Qaidam cattle. Electronic Journal of Biotechnology, 2021, 54, 8-16. Quantitative proteomics reveals tissue-specific toxic mechanisms for acute hydrogen sulfide-induced injury of diverse organs in pig. Science of the Total Environment, 2022, 806, 150365. Modern Human Biological Adaptations to High-Altitude Environments in the Andean Archaeological	1.0 0.8 2.0 1.2	2 20 4 6 0

#	Article	IF	CITATIONS
695	Caution is needed on the effect of altitude on the pathogenesis of SAR-CoV-2 virus. Respiratory Physiology and Neurobiology, 2020, 279, 103464.	0.7	15
696	Chapter 10. Types of spread zones. Cognitive Linguistic Studies in Cultural Contexts, 2015, , 261-286.	0.4	7
702	The 2019 Nobel Prize honors fundamental discoveries in hypoxia response. Journal of Clinical Investigation, 2019, 130, 4-6.	3.9	17
703	Translational repression of HIF2α expression in mice with Chuvash polycythemia reverses polycythemia. Journal of Clinical Investigation, 2018, 128, 1317-1325.	3.9	24
704	Characteristics of Cerebral Stroke in the Tibet Autonomous Region of China. Medical Science Monitor, 2020, 26, e919221.	0.5	9
705	Erythropoietin regulation of red blood cell production: from bench to bedside and back. F1000Research, 2020, 9, 1153.	0.8	37
706	Differential expression of skeletal muscle mitochondrial proteins in yak, dzo, and cattle: a proteomics-based study. Journal of Veterinary Medical Science, 2020, 82, 1178-1186.	0.3	10
707	Evolutionary history of Tibetans inferred from whole-genome sequencing. PLoS Genetics, 2017, 13, e1006675.	1.5	89
708	On the Origin of Tibetans and Their Genetic Basis in Adapting High-Altitude Environments. PLoS ONE, 2011, 6, e17002.	1.1	126
709	Common Molecular Etiologies Are Rare in Nonsyndromic Tibetan Chinese Patients with Hearing Impairment. PLoS ONE, 2012, 7, e30720.	1.1	25
710	A Preliminary Study of Copy Number Variation in Tibetans. PLoS ONE, 2012, 7, e41768.	1.1	37
711	Genetic Variants in EPAS1 Contribute to Adaptation to High-Altitude Hypoxia in Sherpas. PLoS ONE, 2012, 7, e50566.	1.1	63
712	Shared and Unique Signals of High-Altitude Adaptation in Geographically Distinct Tibetan Populations. PLoS ONE, 2014, 9, e88252.	1.1	44
713	The Andean Adaptive Toolkit to Counteract High Altitude Maladaptation: Genome-Wide and Phenotypic Analysis of the Collas. PLoS ONE, 2014, 9, e93314.	1.1	55
714	Wnt Pathway Activation Increases Hypoxia Tolerance during Development. PLoS ONE, 2014, 9, e103292.	1.1	8
715	Genomic Scan Reveals Loci under Altitude Adaptation in Tibetan and Dahe Pigs. PLoS ONE, 2014, 9, e110520.	1.1	42
716	Exploring the Genetic Basis of Adaptation to High Elevations in Reptiles: A Comparative Transcriptome Analysis of Two Toad-Headed Agamas (Genus Phrynocephalus). PLoS ONE, 2014, 9, e112218.	1.1	27
717	Microarray Analysis of Copy Number Variants on the Human Y Chromosome Reveals Novel and Frequent Duplications Overrepresented in Specific Haplogroups. PLoS ONE, 2015, 10, e0137223.	1.1	17

#	Article	IF	CITATIONS
718	Changes in the Anatomic and Microscopic Structure and the Expression of HIF-1α and VEGF of the Yak Heart with Aging and Hypoxia. PLoS ONE, 2016, 11, e0149947.	1.1	25
719	Toward Understanding the Genetic Basis of Yak Ovary Reproduction: A Characterization and Comparative Analyses of Estrus Ovary Transcriptiome in Yak and Cattle. PLoS ONE, 2016, 11, e0152675.	1.1	33
720	Gene Co-Expression Network Analysis Unraveling Transcriptional Regulation of High-Altitude Adaptation of Tibetan Pig. PLoS ONE, 2016, 11, e0168161.	1.1	32
721	A longitudinal cline characterizes the genetic structure of human populations in the Tibetan plateau. PLoS ONE, 2017, 12, e0175885.	1.1	15
722	Evolutionary selected Tibetan variants of HIF pathway and risk of lung cancer. Oncotarget, 2017, 8, 11739-11747.	0.8	15
723	Beluga whale pVHL enhances HIF-2α activity via inducing HIF-2α proteasomal degradation under hypoxia. Oncotarget, 2017, 8, 42272-42287.	0.8	18
724	Associations of high altitude polycythemia with polymorphisms in <i>EPHA2</i> and <i>AGT</i> in Chinese Han and Tibetan populations. Oncotarget, 2017, 8, 53234-53243.	0.8	14
725	Associations of high altitude polycythemia with polymorphisms in <i>EPAS1, ITGA6</i> and <i>ERBB4</i> in Chinese Han and Tibetan populations. Oncotarget, 2017, 8, 86736-86746.	0.8	13
726	Red Blood Cell Volume and the Capacity for Exercise at Moderate to High Altitude. Sports Medicine, 2012, , 1.	3.1	3
727	Comparative iTRAQ Proteomics Identified Myocardium Proteins Associated with Hypoxia of Yak. Current Proteomics, 2019, 16, 314-329.	0.1	1
728	GCH1基å›åœ¨è—æ—é«~原é€,应ä,åŧ挥作ç"∵. Zoological Research, 2017, 38, 155-162.	0.9	14
729	Genomic insights into ruminant evolution: from past to future prospects. Zoological Research, 2019, 40, 476-487.	0.9	11
730	Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys. Zoological Research, 2020, 41, 3-19.	0.9	19
731	Importance of Testosterone on Adaptation at High Altitude. International Journal of Medical and Surgical Sciences, 2018, 2, 689-697.	0.0	1
732	Emergence of Evolutionary Medicine: Publication Trends from 1991–2010. Journal of Evolutionary Medicine, 2012, 1, 1-12.	0.5	19
733	Population genetic variations of the matrix metalloproteinases-3 gene revealed hypoxia adaptation in domesticated yaks (Bos grunniens). Asian-Australasian Journal of Animal Sciences, 2019, 32, 1801-1808.	2.4	2
734	Cytoprotection by a naturally occurring variant of ATP5G1 in Arctic ground squirrel neural progenitor cells. ELife, 2020, 9, .	2.8	9
735	<i>EPAS1</i> variants in high altitude Tibetan wolves were selectively introgressed into highland dogs. PeerJ, 2017, 5, e3522.	0.9	27

#	Article	IF	CITATIONS
736	Genome methylation and regulatory functions for hypoxic adaptation in Tibetan chicken embryos. PeerJ, 2017, 5, e3891.	0.9	17
737	Comparative analysis of the microRNA transcriptome between yak and cattle provides insight into high-altitude adaptation. PeerJ, 2017, 5, e3959.	0.9	43
738	Ontogeny of Carbon Monoxide-Related Gene Expression in a Deep-Diving Marine Mammal. Frontiers in Physiology, 2021, 12, 762102.	1.3	5
739	Migration effects on the intestinal microbiota of Tibetans. PeerJ, 2021, 9, e12036.	0.9	4
740	Possible association between a polymorphism of EPAS1 gene and persistent pulmonary hypertension of the newborn: a case-control study. Jornal De Pediatria, 2022, 98, 383-389.	0.9	2
741	Same total normal forms sperm counts of males from Lhasa and Shanghai, China. Environmental Science and Pollution Research, 2022, 29, 18820-18831.	2.7	1
744	Population Genetics in the Genomic Era. , 0, , .		0
745	Women at altitude. , 2012, , 404-407.		0
747	HIF-1 and EGLN1 Under Hypobaric Hypoxia: Regulation of Master Regulator Paradigm. , 2014, , 81-91.		0
748	EPAS1 (Endothelial PAS Domain Protein 1). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2014, , .	0.1	0
751	Barley fuelled farmers' spread onto Tibetan plateau. Nature, 0, , .	13.7	0
754	A COMPARATIVE STUDY OF PEFR AND MVV BETWEEN INDIAN BORN TIBETAN YOUTHS AND INDIAN YOUTHS. Journal of Evolution of Medical and Dental Sciences, 2015, 4, 748-754.	0.1	1
755	Human Adaptation to Life at High Altitude. , 2016, , 109-126.		0
757	Domiciliary Oxygen: Facts and fallacies. Clinical Research and Trials, 2017, 3, .	0.1	0
759	UneÂperspective génétique surÂnotre histoireÂ: migrations humaines etÂadaptation ÃÂl'environnement 2017, , 33-60.	• ,	0
763	Respiratorische Farbstoffe unter Hypoxiebedingungen. , 2019, , 367-382.		0
766	Newborn anthropometry, maternal capital, and altitude in the highland population from the province of Jujuy, Argentina. American Journal of Physical Anthropology, 2021, 175, 25-35.	2.1	1
767	Identification of primary copy number variations reveal enrichment of Calcium, and MAPK pathways sensitizing secondary sites for autism. Egyptian Journal of Medical Human Genetics, 2020, 21, .	0.5	0

<u></u>		D	_
	ON	NEDC	ND T
CITATI		NLPU	VIC I

#	Article	IF	CITATIONS
768	Limitations for Extraterrestrial Colonisation and Civilisation Built and the Potential for Human Enhancements. Space and Society, 2020, , 71-93.	1.6	4
774	Population genetic studies in the genomic sequencing era. Zoological Research, 2015, 36, 223-32.	0.6	6
775	The effect of traditional Tibetan guozhuang dance on vascular health in elderly individuals living at high altitudes. American Journal of Translational Research (discontinued), 2020, 12, 4550-4560.	0.0	1
776	Lung transcriptome analysis for the identification of genes involved in the hypoxic adaptation of plateau pika (Ochotona curzoniae). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2022, 41, 100943.	0.4	3
778	Adaptation of mammals to hypoxia. Animal Models and Experimental Medicine, 2021, 4, 311-318.	1.3	12
779	High-altitude adaptation: Role of genetic and epigenetic factors. Journal of Biosciences, 2021, 46, 1.	0.5	4
781	Denisovans and Homo sapiens on the Tibetan Plateau: dispersals and adaptations. Trends in Ecology and Evolution, 2022, 37, 257-267.	4.2	17
782	High-Altitude Erythrocytosis: Mechanisms of Adaptive and Maladaptive Responses. Physiology, 2022, 37, 175-186.	1.6	12
783	Comparative Transcriptome Analyses of Gayal (Bos frontalis), Yak (Bos grunniens), and Cattle (Bos) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 5
784	Comprehensive Analysis of Long Non-coding RNA and mRNA Transcriptomes Related to Hypoxia Adaptation in Tibetan Sheep. Frontiers in Veterinary Science, 2021, 8, 801278.	0.9	4
786	Prediction of High-Altitude Cardiorespiratory Fitness Impairment Using a Combination of Physiological Parameters During Exercise at Sea Level and Genetic Information in an Integrated Risk Model. Frontiers in Cardiovascular Medicine, 2021, 8, 719776.	1.1	3
787	Role of mitochondrial genetic interactions in determining adaptation to high altitude human population. Scientific Reports, 2022, 12, 2046.	1.6	4
788	High Altitude Pregnancies and Vascular Dysfunction: Observations From Latin American Studies. Frontiers in Physiology, 2021, 12, 786038.	1.3	6
	Gut Virome of the World's Highest-Elevation Lizard Species (<i>Phrynocephalus erythrurus</i> and) Tj ETQq1	1 0.7843	14 rgBT /Ov

	10, 2010/221.		
791	The Antarctic Weddell seal genome reveals evidence of selection on cardiovascular phenotype and lipid handling. Communications Biology, 2022, 5, 140.	2.0	5
792	Addition of glomerular lesion severity improves the value of anemia status for the prediction of renal outcomes in Chinese patients with type 2 diabetes. Renal Failure, 2022, 44, 346-357.	0.8	5
793	The Asparagine Hydroxylase FIH: A Unique Oxygen Sensor. Antioxidants and Redox Signaling, 2022, 37, 913-935.	2.5	19
794	Gut microbiota insights into human adaption to highâ€plateau diet. , 2022, 1, .		3

#	Article	IF	CITATIONS
795	Individual variations and sex differences in hemodynamics and percutaneous arterial oxygen saturation (SpO2) in Tibetan highlanders of Tsarang in the Mustang district of Nepal. Journal of Physiological Anthropology, 2022, 41, 9.	1.0	3
796	Ancient genomes from the Himalayas illuminate the genetic history of Tibetans and their Tibeto-Burman speaking neighbors. Nature Communications, 2022, 13, 1203.	5.8	25
797	Sustaining Resources for <i>Homo Martis</i> : The Potential Application of Synthetic Biology for the Settlement of Mars. Studia Humana, 2022, 11, 1-16.	0.1	0
798	Notch Signaling and Cross-Talk in Hypoxia: A Candidate Pathway for High-Altitude Adaptation. Life, 2022, 12, 437.	1.1	8
799	Consecutive chorioangiomas in the same pregnancy: A clinical case and review of literature. Health Science Reports, 2022, 5, e566.	0.6	3
800	The genomic basis of high-elevation adaptation in wild house mice (<i>Mus musculus domesticus</i>) from South America. Genetics, 2022, 220, .	1.2	7
801	Is Hypoxic/Altitude Training an Important Topic in the Field of Hypoxia?. Journal of Science in Sport and Exercise, 0, , .	0.4	4
802	Variations in HIF-1α Contributed to High Altitude Hypoxia Adaptation via Affected Oxygen Metabolism in Tibetan Sheep. Animals, 2022, 12, 58.	1.0	4
803	Dysregulation of the Nitric Oxide/Dimethylarginine Pathway in Hypoxic Pulmonary Vasoconstriction—Molecular Mechanisms and Clinical Significance. Frontiers in Medicine, 2022, 9, 835481.	1.2	8
847	Comparative analysis of long noncoding RNA and mRNA expression provides insights into adaptation to hypoxia in Tibetan sheep. Scientific Reports, 2022, 12, 6597.	1.6	3
849	Grasping the genetic determinants of human adaptations: the "Kings of the Mountains" (Sherpa) case study. Journal of Anthropological Sciences, 2019, 96, 1-7.	0.4	1
850	Clinicopathological characteristics of high-altitude polycythemia-related kidney disease in Tibetan inhabitants. Kidney International, 2022, 102, 196-206.	2.6	13
851	The Impact of Active Screening and Management on COVID-19 in Plateau Region of Sichuan, China. Frontiers in Medicine, 2022, 9, .	1.2	1
852	A highland-adaptation mutation of the Epas1 protein increases its stability and disrupts the circadian clock in the plateau pika. Cell Reports, 2022, 39, 110816.	2.9	8
853	How Placenta Promotes the Successful Reproduction in High-Altitude Populations: A Transcriptome Comparison between Adaptation and Acclimatization. Molecular Biology and Evolution, 2022, 39, .	3.5	8
854	Altitude-Induced Sleep Apnea Is Highly Dependent on Ethnic Background (Sherpa Vs. Tamang). High Altitude Medicine and Biology, 2022, 23, 165-172.	0.5	5
856	Human adaptation to high altitude: a review of convergence between genomic and proteomic signatures. Human Genomics, 2022, 16, .	1.4	19
857	Cognitive Function Mainly Shaped by Socioeconomic Status Rather Than Chronic Hypoxia in Adolescents at High Altitude. High Altitude Medicine and Biology, 0, , .	0.5	0

#	Article	IF	CITATIONS
858	A Study on the Molecular Mechanism of High Altitude Heart Disease in Children. Pharmacogenomics and Personalized Medicine, 0, Volume 15, 721-731.	0.4	3
859	Chromosome-level Genome Assembly of the High-altitude Leopard (<i>Panthera pardus</i>) Sheds Light on Its Environmental Adaptation. Genome Biology and Evolution, 0, , .	1.1	1
860	Genomic insight into the population history and biological adaptations of high-altitude Tibetan highlanders in Nagqu. Frontiers in Ecology and Evolution, 0, 10, .	1.1	1
861	The impact of COVID-19 on populations living at high altitude: Role of hypoxia-inducible factors (HIFs) signaling pathway in SARS-CoV-2 infection and replication. Frontiers in Physiology, 0, 13, .	1.3	5
862	Genetic characterization of the highlander Tibetan population from Qinghai-Tibet Plateau revealed by X chromosomal STRs. PLoS ONE, 2022, 17, e0271769.	1.1	4
863	Time Domains of Hypoxia Responses and -Omics Insights. Frontiers in Physiology, 0, 13, .	1.3	10
864	Effects of high-altitude hypoxic environment on colonic inflammation, intestinal barrier and gut microbiota in three-way crossbred commercial pigs. Frontiers in Microbiology, 0, 13, .	1.5	2
865	Adaptive cardiorespiratory changes to chronic continuous and intermittent hypoxia. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, , 103-123.	1.0	6
866	Modified Metabolism and Response to UV Radiation: Gene Expression Variations Along an Elevational Gradient in the Asiatic Toad (Bufo gargarizans). Journal of Molecular Evolution, 2022, 90, 389-399.	0.8	0
867	Physiological and pathophysiological aspects of short-term middle-altitude adaptation in humans. Cardiovascular Therapy and Prevention (Russian Federation), 2022, 21, 3306.	0.4	Ο
868	Physiological and pathophysiological aspects of short-term middle-altitude adaptation in humans. Cardiovascular Therapy and Prevention (Russian Federation), 2022, 21, 3306.	0.4	0
869	The human brain in a high altitude natural environment: A review. Frontiers in Human Neuroscience, 0, 16, .	1.0	11
870	Genetic adaptation of skin pigmentation in highland Tibetans. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
871	Genomic evidence reveals intraspecific divergence of the hotâ€spring snake (<i>Thermophis baileyi</i>), an endangered reptile endemic to the Qinghaiâ€Tibet plateau. Molecular Ecology, 2023, 32, 1335-1350.	2.0	6
873	Genetic and immune changes in Tibetan high-altitude populations contribute to biological adaptation to hypoxia. Environmental Health and Preventive Medicine, 2022, 27, 39-39.	1.4	7
874	Genomic signatures reveal selection in Lingxian white goose. Poultry Science, 2022, , 102269.	1.5	6
876	Microevolutionary mechanism of highâ€altitude adaptation in Tibetan chicken populations from an elevation gradient. Evolutionary Applications, 2022, 15, 2100-2112.	1.5	3
877	Identification of candidate genes related to highland adaptation from multiple Chinese local chicken breeds by whole genome sequencing analysis. Animal Genetics, 2023, 54, 55-67.	0.6	2

#	ARTICLE	IF	Citations
878	The HMOX2 polymorphism contributes to the carotid body chemoreflex in European sea-level residents by regulating hypoxic ventilatory responses. Frontiers in Medicine, 0, 9, .	1.2	2
879	Plasma exosomal microRNA expression profiles in patients with high-altitude polycythemia. Blood Cells, Molecules, and Diseases, 2023, 98, 102707.	0.6	0
880	Markhor-derived Introgression of a Genomic Region Encompassing <i>PAPSS2</i> Confers High-altitude Adaptability in Tibetan Goats. Molecular Biology and Evolution, 2022, 39, .	3.5	9
882	Genetics of High-Altitude Pulmonary Edema. Heart Failure Clinics, 2023, 19, 89-96.	1.0	1
883	Review of the relationship and underlying mechanisms between the Qinghai–Tibet plateau and host intestinal flora. Frontiers in Microbiology, 0, 13, .	1.5	3
884	Regulation of yak longissimus lumborum energy metabolism and tenderness by the AMPK/SIRT1 signaling pathways during postmortem storage. PLoS ONE, 2022, 17, e0277410.	1.1	3
885	A pleiotropic hypoxia-sensitive <i>EPAS1</i> enhancer is disrupted by adaptive alleles in Tibetans. Science Advances, 2022, 8, .	4.7	7
886	Transcriptome analysis of pika heart tissue reveals mechanisms underlying the adaptation of a keystone species on the roof of the world. Frontiers in Genetics, 0, 13, .	1.1	0
887	Transcriptomic Analyses Suggest the Adaptation of Bumblebees to High Altitudes. Insects, 2022, 13, 1173.	1.0	0
888	Cultural and demic co-diffusion of Tubo Empire on Tibetan Plateau. IScience, 2022, 25, 105636.	1.9	6
889	Wholeâ€genome identification of transposable elements reveals the equine repetitive element insertion polymorphism in Chinese horses. Animal Genetics, 0, , .	0.6	0
890	Mimicking Gene–Environment Interaction of Higher Altitude Dwellers by Intermittent Hypoxia Training: COVID-19 Preventive Strategies. Biology, 2023, 12, 6.	1.3	0
891	Disparities in the prevalence of screened depression at different altitudes in Peru: A retrospective analysis of the ENDES 2019. PLoS ONE, 2022, 17, e0278947.	1.1	2
892	Molecular Mechanisms of High-Altitude Acclimatization. International Journal of Molecular Sciences, 2023, 24, 1698.	1.8	22
893	Natural selection of immune and metabolic genes associated with health in two lowland Bolivian populations. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	8
894	Towards the multileveled and processual conceptualisation of racialised individuals in biomedical research. SynthÃ^se, 2023, 201, .	0.6	3
895	The metabolic adaptation in wild vertebrates via omics approaches. , 0, , .		1
896	Is there still evolution in the human population?. Biologia Futura, 2022, 73, 359-374.	0.6	1

Сітаті	on Report	
	IF	Citations
aptability in Tibetan		0

897	187. Markhor-derived introgression of <i>PAPSS2</i> confers high-altitude adaptability in Tibetan goats. , 2022, , .		0
898	Analysis of dog breed diversity using a composite selection index. Scientific Reports, 2023, 13, .	1.6	3
899	Brain Structural and Functional Alterations in Native Tibetans Living at High Altitude. Neuroscience, 2023, , .	1.1	2
900	Consistent differences in brain structure and functional connectivity in high-altitude native Tibetans and immigrants. Brain Imaging and Behavior, 0, , .	1.1	4
901	Pangenome obtained by long-read sequencing of 11 genomes reveal hidden functional structural variants in pigs. IScience, 2023, 26, 106119.	1.9	8
902	Effect of High-Altitude Exposure on the Heart. , 2023, 3, 48-53.		0
903	The Oxygen Cascade from Atmosphere to Mitochondria as a Tool to Understand the (Mal)adaptation to Hypoxia. International Journal of Molecular Sciences, 2023, 24, 3670.	1.8	3
904	Hypoxia induces alterations in tRNA modifications involved in translational control. BMC Biology, 2023, 21, .	1.7	5
905	Diet and high altitude strongly drive convergent adaptation of gut microbiota in wild macaques, humans, and dogs to high altitude environments. Frontiers in Microbiology, 0, 14, .	1.5	3
906	"What We Know and What We Do Not Know about Evolutionary Genetic Adaptation to High Altitude Hypoxia in Andean Aymaras― Genes, 2023, 14, 640.	1.0	0
907	Manipulation of iron status on cerebral blood flow at high altitude in lowlanders and adapted highlanders. Journal of Cerebral Blood Flow and Metabolism, 2023, 43, 1166-1179.	2.4	0
908	A novel mechanism for high-altitude adaptation in hemoglobin of black-spotted frog (Pelophylax) Tj ETQq1 1 0.78	4314 rgBT 1.1	/Overlock
909	Research Progress of Plateau Red Blood Cell Increase. Advances in Clinical Medicine, 2023, 13, 3241-3245.	0.0	0
910	The genetic basis of plumage coloration and elevation adaptation in a clade of recently diverged alpine and arctic songbirds. Evolution; International Journal of Organic Evolution, 2023, 77, 705-717.	1.1	0
911	Divergent contributions of coding and noncoding sequences to initial highâ€eltitude adaptation in passerine birds endemic to the Qinghai–Tibet Plateau. Molecular Ecology, 2023, 32, 3524-3540.	2.0	3
912	Uncoiling the Scroll of High-altitude Population Imaging: Native Brains in Tibet. Neuroscience, 2023, , .	1.1	0
913	The Increase in Hemoglobin Concentration With Altitude Differs Between World Regions and Is Less in Children Than in Adults. HemaSphere, 2023, 7, e854.	1.2	1
914	A gene-level test for directional selection on gene expression. Genetics, 2023, 224, .	1.2	2

#

ARTICLE

#	Article	IF	CITATIONS
915	Large-scale genome sequencing redefines the genetic footprints of high-altitude adaptation in Tibetans. Genome Biology, 2023, 24, .	3.8	13
916	Global dispersal and adaptive evolution of domestic cattle: a genomic perspective. Stress Biology, 2023, 3, .	1.5	3
917	Metagenome and metabolome insights into the energy compensation and exogenous toxin degradation of gut microbiota in high-altitude rhesus macaques (Macaca mulatta). Npj Biofilms and Microbiomes, 2023, 9, .	2.9	0
936	Chronic Mountain Sickness (Monge's Disease). , 2023, , 83-97.		0
939	More than a decade of genetic research on the Denisovans. Nature Reviews Genetics, 0, , .	7.7	1
943	Cardiovascular physiology and pathophysiology at high altitude. Nature Reviews Cardiology, 2024, 21, 75-88.	6.1	1
953	Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	2