Investigation on dynamical interaction between a heavy

Vehicle System Dynamics 48, 923-944 DOI: 10.1080/00423110903243166

Citation Report

#	Article	IF	CITATIONS
1	Directional Control of a Driver-Heavy-Vehicle Closed-Loop System. Advanced Engineering Forum, 2011, 2-3, 33-38.	0.3	0
2	Discrete Element Modeling of Pavement-Wheel Frictional Force. , 2012, , .		0
3	Structural Optimization of a Heavy-Duty Truck Based on a Virtual Prototype Model. Applied Mechanics and Materials, 2012, 253-255, 2121-2124.	0.2	1
4	Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load. Journal of Sound and Vibration, 2012, 331, 2426-2442.	2.1	113
5	An overview on vehicle dynamics. International Journal of Dynamics and Control, 2013, 1, 385-395.	1.5	49
6	A Nonlinear Vehicle-Road Coupled Model for Dynamics Research. Journal of Computational and Nonlinear Dynamics, 2013, 8, .	0.7	13
7	Driver Steering Control and Full Vehicle Dynamics Study Based on a Nonlinear Three-Directional Coupled Heavy-Duty Vehicle Model. Mathematical Problems in Engineering, 2014, 2014, 1-16.	0.6	5
8	Vibration of vehicle–pavement coupled system based on a Timoshenko beam on a nonlinear foundation. Journal of Sound and Vibration, 2014, 333, 6623-6636.	2.1	54
9	Effectiveness of vehicle weight enforcement in a developing country using weigh-in-motion sorting system considering vehicle by-pass and enforcement capability. IATSS Research, 2014, 37, 124-129.	1.8	23
10	Periodic responses of a pulleyâ^'belt system with one-way clutch under inertia excitation. Journal of Sound and Vibration, 2015, 353, 308-326.	2.1	38
11	Nonlinear dynamics of axially moving viscoelastic Timoshenko beam under parametric and external excitations. Applied Mathematics and Mechanics (English Edition), 2015, 36, 971-984.	1.9	49
12	Dynamic Analysis of a Pavement Structure Under a Vehicle's Moving Load. , 2015, , 95-159.		0
14	Modeling and Dynamic Analysis of Vehicle–Road Coupled Systems. , 2015, , 215-250.		3
15	Parameter Design of Vehicle–Road System with Low Dynamic Interaction. , 2015, , 251-274.		0
17	Dynamic response of non-uniform beam subjected to moving load and resting on non-linear viscoelastic foundation. Beni-Suef University Journal of Basic and Applied Sciences, 2015, 4, 192-199.	0.8	14
18	Bifurcation and chaotic threshold of Duffing system with jump discontinuities. European Physical Journal Plus, 2016, 131, 1.	1.2	7
19	Chaotic threshold for a class of impulsive differential system. Nonlinear Dynamics, 2016, 83, 2229-2240.	2.7	29
20	Vibration reduction in beam bridge under moving loads using nonlinear smooth and discontinuous oscillator. Advances in Mechanical Engineering, 2016, 8, 168781401665256.	0.8	7

#	Article	IF	CITATIONS
21	Steady-state responses of a belt-drive dynamical system under dual excitations. Acta Mechanica Sinica/Lixue Xuebao, 2016, 32, 156-169.	1.5	20
22	Parameter identification of hysteresis nonlinear dynamic model for piezoelectric positioning system based on the improved particle swarm optimization method. Advances in Mechanical Engineering, 2017, 9, 168781401770281.	0.8	7
23	Measurement and Finite Element Modeling of the Pavement Response to Superloads. , 2017, , .		2
24	Nonlinear dynamic analysis for coupled vehicle-bridge system with harmonic excitation. Meccanica, 2017, 52, 2219-2243.	1.2	1
25	Mechanical Response of Typical Cement Concrete Pavements under Impact Loading. Mathematical Problems in Engineering, 2017, 2017, 1-13.	0.6	5
26	Dynamic and steady analysis of a 2-DOF vehicle system by modified incremental harmonic balance method. Nonlinear Dynamics, 2019, 98, 75-94.	2.7	9
27	Modeling and dynamic analysis of a vehicle-flexible pavement coupled system subjected to road surface excitation. Journal of Mechanical Science and Technology, 2019, 33, 3115-3125.	0.7	19
28	Elastic and viscoelastic foundations: a review on linear and nonlinear vibration modeling and applications. Nonlinear Dynamics, 2019, 97, 853-895.	2.7	101
29	Decoupled technique for dynamic response of vehicle-pavement systems. Engineering Structures, 2019, 191, 264-279.	2.6	15
30	Dynamic Analysis of Beams on Fractional Viscoelastic Foundation Subject to a Multiple Harmonic Moving Loads. , 2019, , .		1
31	Overloading among crash-involved vehicles in China: identification of factors associated with overloading and crash severity. Injury Prevention, 2019, 25, 36-46.	1.2	11
32	An optimization design method for a body mounting system of a heavy vehicle. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233, 1352-1362.	0.7	2
33	Dynamics of vehicle–pavement system based on a viscoelastic Euler–Bernoulli beam model. International Journal of Pavement Engineering, 2020, 21, 1669-1682.	2.2	9
34	Analysis and improvement of freight transport using software products. IOP Conference Series: Materials Science and Engineering, 2020, 898, 012033.	0.3	0
35	Truck suspension incorporating inerters to minimise road damage. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234, 2693-2705.	1.1	9
36	Convergent term of the Galerkin truncation for dynamic response of sandwich beams on nonlinear foundations. Journal of Sound and Vibration, 2020, 483, 115514.	2.1	15
37	Consideration on lateral vibration of automobiles in quasi-planar model with wheel separation and road deformation taken into account. Journal of Vibroengineering, 2021, 23, 256-272.	0.5	0
38	Consideration of longitudinal vibration of automobiles in planar model with taking road deformation and loss of contact into account. Journal of Vibroengineering, 0, , .	0.5	0

#	Article	IF	CITATIONS
39	The Scheme to Determine the Convergence Term of the Galerkin Method for Dynamic Analysis of Sandwich Plates on Nonlinear Foundations. Acta Mechanica Solida Sinica, 2021, 34, 1-11.	1.0	13
40	Overloading Among Crash-Involved Vehicles in China: Identification of Factors Associated with Overloading and Crash Severity. , 2021, , 95-120.		0
41	Dynamic behaviour of pavement on a two-parameter viscoelastic foundation subjected to loads moving with variable speeds. International Journal of Pavement Engineering, 2022, 23, 3425-3443.	2.2	8
42	Influence of vehicle-road coupled vibration on tire adhesion based on nonlinear foundation. Applied Mathematics and Mechanics (English Edition), 2021, 42, 607-624.	1.9	6
43	Vibration Analysis of Two-Axle Automobiles in Spatial Model with Wheel Separation. Journal of Vibration Engineering and Technologies, 0, , 1.	1.3	0
44	Prediction of Premature Cracking in Jointed Plain Concrete Pavements. Journal of Transportation Engineering Part B: Pavements, 2021, 147, 04021013.	0.8	0
45	A critical review of vehicle-pavement interaction mechanism in evaluating flexible pavement performance characteristics. Road Materials and Pavement Design, 2022, 23, 735-769.	2.0	8
46	Dynamic Characteristics of Coupled Vehicle–Track–Tunnel Interaction System. International Journal of Simulation Modelling, 2016, 16, 658-669.	0.6	1
47	Improved Analytical Model and Algorithm for Computing Expansive Soil–Induced Stresses in Pavements. International Journal of Geomechanics, 2021, 21, .	1.3	3
48	Dynamic response analysis of vehicle and asphalt pavement coupled system with the excitation of road surface unevenness. Applied Mathematical Modelling, 2022, 104, 421-438.	2.2	37
49	Establishment of an Eleven-Freedom-Degree Coupling Dynamic Model of Heavy Vehicle-Pavement. Symmetry, 2022, 14, 250.	1.1	3
50	Analysis of the running quality and road friendliness of the virtual track train in multiple running stages between stations. Journal of Mechanical Science and Technology, 2022, 36, 593-605.	0.7	4
51	Piezoelectric Energy Harvesting from Roadways under Open-Traffic Conditions: Analysis and Optimization with Scaling Law Method. Energies, 2022, 15, 3395.	1.6	4
52	Semi-analytical solution to the steady-state periodic dynamic response of an infinite beam carrying a moving vehicle. International Journal of Mechanical Sciences, 2022, 226, 107409.	3.6	5
53	A New Approach to Predict Dynamic Loads Considering Highway Alignment Using Data Mining Techniques. Applied Sciences (Switzerland), 2022, 12, 5719.	1.3	0
54	Study on Vehicle Vibration Response under the Condition of 3D Tire–Pavement Contact for Unmanned Driving. Journal of Transportation Engineering Part B: Pavements, 2023, 149, .	0.8	1
55	Analysis of the Performance of Quasi-zero Stiffness Isolator on the Reduction of Vibration on a Multi-span Continuous Beam Bridge Under Moving Mass. Journal of Vibration Engineering and Technologies, 2023, 11, 3999-4013.	1.3	1
56	A reduced-plate model transmission method for fast dynamic analysis of vehicle–pavement interaction. Journal of Sound and Vibration, 2023, 548, 117554.	2.1	0

CITATION REPORT

#	Article	IF	CITATIONS
57	A Dynamic Response Analysis of Vehicle Suspension System. Applied Sciences (Switzerland), 2023, 13, 2127.	1.3	2