Pathological role of interleukin 17 in mice subjected to r infection with <i>Mycobacterium tuberculosis</i>

Journal of Experimental Medicine 207, 1609-1616 DOI: 10.1084/jem.20100265

Citation Report

#	Article	IF	CITATIONS
1	IL-17 and Th17 cells in tuberculosis. Cytokine and Growth Factor Reviews, 2010, 21, 455-462.	7.2	254
2	The role of Th17 cytokines in primary mucosal immunity. Cytokine and Growth Factor Reviews, 2010, 21, 443-448.	7.2	154
3	TH17 Cytokines in Primary Mucosal Immunity. , 2011, , 243-256.		0
4	The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunology, 2011, 4, 261-270.	6.0	395
5	Role of innate cytokines in mycobacterial infection. Mucosal Immunology, 2011, 4, 252-260.	6.0	265
6	TLR2 deficiency by compromising p19 (IL-23) expression limits Th 17 cell responses to Mycobacterium tuberculosis. International Immunology, 2011, 23, 89-96.	4.0	28
7	Targeting Syk-Card9-activating C-type lectin receptors by vaccine adjuvants: Findings, implications and open questions. Immunobiology, 2011, 216, 1184-1191.	1.9	45
8	Cellular response to mycobacteria: balancing protection and pathology. Trends in Immunology, 2011, 32, 66-72.	6.8	69
9	Th1/Th17 Cell Induction and Corresponding Reduction in ATP Consumption following Vaccination with the Novel Mycobacterium tuberculosis Vaccine MVA85A. PLoS ONE, 2011, 6, e23463.	2.5	39
10	Risk of tuberculosis in a large sample of patients with coeliac disease - a nationwide cohort study. Alimentary Pharmacology and Therapeutics, 2011, 33, 689-696.	3.7	37
11	For better or for worse: the immune response against <i>Mycobacterium tuberculosis</i> balances pathology and protection. Immunological Reviews, 2011, 240, 235-251.	6.0	144
12	Quantitative events determine the differentiation and function of helper T cells. Nature Immunology, 2011, 12, 288-294.	14.5	58
13	Comparing efficacy of BCG/lactoferrin primary vaccination versus booster regimen. Tuberculosis, 2011, 91, S90-S95.	1.9	15
14	Phase IIb randomized trial of adjunct immunotherapy in patients with first-diagnosed tuberculosis, relapsed and multi-drug-resistant (MDR) TB. Journal of Immune Based Therapies and Vaccines, 2011, 9, 3.	2.4	16
15	Production of a Particulate Hepatitis C Vaccine Candidate by an Engineered Lactococcus lactis Strain. Applied and Environmental Microbiology, 2011, 77, 8516-8522.	3.1	53
16	IL-23 Is Required for Long-Term Control of <i>Mycobacterium tuberculosis</i> and B Cell Follicle Formation in the Infected Lung. Journal of Immunology, 2011, 187, 5402-5407.	0.8	172
17	Transcriptional Suppression of IL-27 Production by <i>Mycobacterium tuberculosis</i> -Activated p38 MAPK via Inhibition of AP-1 Binding. Journal of Immunology, 2011, 186, 5885-5895.	0.8	28
18	Recombinant BCG ΔureC hly+ Induces Superior Protection Over Parental BCG by Stimulating a Balanced Combination of Type 1 and Type 17 Cytokine Responses. Journal of Infectious Diseases, 2011, 204, 1573-1584.	4.0	137

TION RE

#	Article	IF	CITATIONS
19	Outbreaks of Mycobacterium Tuberculosis MDR Strains Induce High IL-17 T-Cell Response in Patients With MDR Tuberculosis That Is Closely Associated With High Antigen Load. Journal of Infectious Diseases, 2011, 204, 1054-1064.	4.0	95
20	CD4 T Cells Promote Rather than Control Tuberculosis in the Absence of PD-1–Mediated Inhibition. Journal of Immunology, 2011, 186, 1598-1607.	0.8	269
21	Regulation of neutrophils by interferon-Î ³ limits lung inflammation during tuberculosis infection. Journal of Experimental Medicine, 2011, 208, 2251-2262.	8.5	314
22	The <i>M. tuberculosis</i> Phosphate-Binding Lipoproteins PstS1 and PstS3 Induce Th1 and Th17 Responses That Are Not Associated with Protection against <i>M. tuberculosis</i> Infection. Clinical and Developmental Immunology, 2011, 2011, 1-11.	3.3	18
23	Early Secreted Antigen ESAT-6 of Mycobacterium tuberculosis Promotes Protective T Helper 17 Cell Responses in a Toll-Like Receptor-2-dependent Manner. PLoS Pathogens, 2011, 7, e1002378.	4.7	137
24	Vaccines against Tuberculosis: Where Are We and Where Do We Need to Go?. PLoS Pathogens, 2012, 8, e1002607.	4.7	381
25	The Immunological Footprint of Mycobacterium tuberculosis T-cell Epitope Recognition. Journal of Infectious Diseases, 2012, 205, S301-S315.	4.0	24
26	Differential Arabinan Capping of Lipoarabinomannan Modulates Innate Immune Responses and Impacts T Helper Cell Differentiation. Journal of Biological Chemistry, 2012, 287, 44173-44183.	3.4	14
27	Early Secreted Antigenic Target of 6-kDa Protein of <i>Mycobacterium tuberculosis</i> Primes Dendritic Cells To Stimulate Th17 and Inhibit Th1 Immune Responses. Journal of Immunology, 2012, 189, 3092-3103.	0.8	40
28	Current and novel approaches to vaccine development against tuberculosis. Frontiers in Cellular and Infection Microbiology, 2012, 2, 154.	3.9	28
29	Adjunct Immunotherapies for Tuberculosis. Journal of Infectious Diseases, 2012, 205, S325-S334.	4.0	70
30	Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3168-76.	7.1	377
31	New pathways of protective and pathological host defense to mycobacteria. Trends in Microbiology, 2012, 20, 419-428.	7.7	132
32	Vaccine-Induced Th17 Cells Are Maintained Long-Term Postvaccination as a Distinct and Phenotypically Stable Memory Subset. Infection and Immunity, 2012, 80, 3533-3544.	2.2	130
33	Blockade of IL-10 Signaling during Bacillus Calmette-Guérin Vaccination Enhances and Sustains Th1, Th17, and Innate Lymphoid IFN-γ and IL-17 Responses and Increases Protection to <i>Mycobacterium tuberculosis</i> Infection. Journal of Immunology, 2012, 189, 4079-4087.	0.8	147
34	Floating between the poles of pathology and protection: can we pin down the granuloma in tuberculosis?. Current Opinion in Microbiology, 2012, 15, 63-70.	5.1	53
35	Neutrophils in tuberculosis: friend or foe?. Trends in Immunology, 2012, 33, 14-25.	6.8	279
36	Tuberculosis vaccine development: strength lies in tenacity. Trends in Immunology, 2012, 33, 373-379.	6.8	67

#	Article	IF	CITATIONS
37	Protection versus pathology in tuberculosis: recent insights. Current Opinion in Immunology, 2012, 24, 431-437.	5.5	36
38	Early secretory antigenic target-6 of Mycobacterium tuberculosis: enigmatic factor in pathogen–host interactions. Microbes and Infection, 2012, 14, 1220-1226.	1.9	7

Cord factors from atypical mycobacteria (Mycobacterium alvei, Mycobacterium brumae) stimulate the secretion of some pro-inflammatory cytokines of relevance in tuberculosis. Microbiology (United) Tj ETQq0 0 0 rgB1.¢Overlock00 Tf 50 6

40	The knowns and unknowns of the immunopathogenesis of tuberculosis [State of the art]. International Journal of Tuberculosis and Lung Disease, 2012, 16, 1424-1432.	1.2	41
41	Variation of Mycobacterium tuberculosis Antigen-Specific IFN-γ and IL-17 Responses in Healthy Tuberculin Skin Test (TST)-Positive Human Subjects. PLoS ONE, 2012, 7, e42716.	2.5	6
42	Natural Transmission of Plasmodium berghei Exacerbates Chronic Tuberculosis in an Experimental Co-Infection Model. PLoS ONE, 2012, 7, e48110.	2.5	27
43	Double Edge Sword: The Role of Neutrophils in Tuberculosis. , 2012, , .		3
44	Revisiting the role of the granuloma in tuberculosis. Nature Reviews Immunology, 2012, 12, 352-366.	22.7	687
45	A role of IL-17A in modulating intracellular survival ofMycobacterium bovisBCG in murine macrophages. Immunology, 2013, 140, n/a-n/a.	4.4	9
46	Diverse novel functions of neutrophils in immunity, inflammation, and beyond. Journal of Experimental Medicine, 2013, 210, 1283-1299.	8.5	572
47	Mycobacteria-Infected Dendritic Cells Attract Neutrophils That Produce IL-10 and Specifically Shut Down Th17 CD4 T Cells through Their IL-10 Receptor. Journal of Immunology, 2013, 191, 3818-3826.	0.8	54
48	S100A8/A9 Proteins Mediate Neutrophilic Inflammation and Lung Pathology during Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1137-1146.	5.6	216
49	Vaccination against tuberculosis: How can we better BCG?. Microbial Pathogenesis, 2013, 58, 2-16.	2.9	71
50	Cytokines in the Balance of Protection and Pathology During Mycobacterial Infections. Advances in Experimental Medicine and Biology, 2013, 783, 121-140.	1.6	55
51	The Immune Response in Tuberculosis. Annual Review of Immunology, 2013, 31, 475-527.	21.8	1,108
52	Interleukin-17-dependent CXCL13 mediates mucosal vaccine–induced immunity against tuberculosis. Mucosal Immunology, 2013, 6, 972-984.	6.0	154
53	T Cell–Mediated Host Immune Defenses in the Lung. Annual Review of Immunology, 2013, 31, 605-633.	21.8	187
54	Mice genetically inactivated in interleukinâ€17 <scp>A</scp> receptor are defective in longâ€term control of <i><scp>M</scp>ycobacterium tuberculosis</i> infection. Immunology, 2013, 140, 220-231.	4.4	61

#	Article	IF	CITATIONS
55	<i><scp>M</scp>ycobacterium tuberculosis</i> <scp>P</scp> st <scp>S</scp> 1 amplifies <scp>IFN</scp> â€i³ and induces <scp>IL</scp> â€i7/ <scp>IL</scp> â€i2 responses by unrelated memory <scp>CD</scp> 4 ⁺ <scp>T</scp> cells via dendritic cell activation. European Journal of Immunology, 2013, 43, 2386-2397.	2.9	21
56	Tuberculosis vaccines: Time to think about the next generation. Seminars in Immunology, 2013, 25, 172-181.	5.6	125
57	Lack of <i>Mycobacterium tuberculosis</i> –specific interleukinâ€17A–producing CD4 ⁺ TÂcells in active disease. European Journal of Immunology, 2013, 43, 939-948.	2.9	60
58	TLR9 Activation Dampens the Early Inflammatory Response to Paracoccidioides brasiliensis, Impacting Host Survival. PLoS Neglected Tropical Diseases, 2013, 7, e2317.	3.0	18
59	Trachoma: Protective and Pathogenic Ocular Immune Responses to Chlamydia trachomatis. PLoS Neglected Tropical Diseases, 2013, 7, e2020.	3.0	111
60	B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response. PLoS Pathogens, 2013, 9, e1003472.	4.7	93
61	Postexposure Subunit Vaccination against Chronic Enteric Mycobacterial Infection in a Natural Host. Infection and Immunity, 2013, 81, 1990-1995.	2.2	16
62	Systems approach to tuberculosis vaccine development. Respirology, 2013, 18, 412-420.	2.3	26
63	Dynamics of immune effector mechanisms during infection with <i><scp>M</scp>ycobacterium avium</i> in <scp>C</scp> 57 <scp>BL</scp> /6 mice. Immunology, 2013, 140, 232-243.	4.4	23
64	Evaluation of the overall IFN-Î ³ and IL-17 pro-inflammatory responses after DNA therapy of tuberculosis. Human Vaccines and Immunotherapeutics, 2013, 9, 1093-1103.	3.3	10
65	IL-22 Is Mainly Produced by IFNÎ ³ -Secreting Cells but Is Dispensable for Host Protection against Mycobacterium tuberculosis Infection. PLoS ONE, 2013, 8, e57379.	2.5	41
66	Perspectives for Developing New Tuberculosis Vaccines Derived from the Pathogenesis of Tuberculosis: I. Basic Principles, II. Preclinical Testing, and III. Clinical Testing. Vaccines, 2013, 1, 58-76.	4.4	0
67	The Frequencies of IFNγ+IL2+TNFα+ PPD-Specific CD4+CD45RO+ T-Cells Correlate with the Magnitude of the QuantiFERON® Gold In-Tube Response in a Prospective Study of Healthy Indian Adolescents. PLoS ONE, 2014, 9, e101224.	2.5	8
68	Immunity to Tuberculosis and Novel Therapeutic Strategies. Clinical Immunology, Endocrine and Metabolic Drugs, 2014, 1, 46-60.	0.3	3
69	SOCS3 and STAT3, major controllers of the outcome of infection with Mycobacterium tuberculosis. Seminars in Immunology, 2014, 26, 518-532.	5.6	59
71	Recent advances towards tuberculosis control: vaccines and biomarkers. Journal of Internal Medicine, 2014, 275, 467-480.	6.0	89
72	Novel vaccine approaches for protection against intracellular pathogens. Current Opinion in Immunology, 2014, 28, 58-63.	5.5	47
73	<i>Mycobacterium tuberculosis</i> Impairs Dendritic Cell Functions through the Serine Hydrolase Hip1. Journal of Immunology, 2014, 192, 4263-4272.	0.8	64

#	Article	IF	CITATIONS
74	In search of a new paradigm for protective immunity to TB. Nature Reviews Microbiology, 2014, 12, 289-299.	28.6	259
75	Protective CD4 T Cells Targeting Cryptic Epitopes of <i>Mycobacterium tuberculosis</i> Resist Infection-Driven Terminal Differentiation. Journal of Immunology, 2014, 192, 3247-3258.	0.8	69
76	Progress in tuberculosis vaccine development and host-directed therapies—a state of the art review. Lancet Respiratory Medicine,the, 2014, 2, 301-320.	10.7	195
77	In vitro activation of mouse neutrophils by recombinant human interferon-gamma: Increased phagocytosis and release of reactive oxygen species and pro-inflammatory cytokines. International Immunopharmacology, 2014, 18, 228-235.	3.8	45
78	Effects of Bacille Calmette-Guérin after the first demyelinating event in the CNS. Neurology, 2014, 82, 41-48.	1.1	128
79	Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: Immunity interruptus. Seminars in Immunology, 2014, 26, 559-577.	5.6	53
80	Role of Th1/Th17 Balance Regulated by T-bet in a Mouse Model of <i>Mycobacterium avium</i> Complex Disease. Journal of Immunology, 2014, 192, 1707-1717.	0.8	38
81	CD4+ T Cells Contain Early Extrapulmonary Tuberculosis (TB) Dissemination and Rapid TB Progression and Sustain Multieffector Functions of CD8+ T and CD3â^' Lymphocytes: Mechanisms of CD4+ T Cell Immunity. Journal of Immunology, 2014, 192, 2120-2132.	0.8	71
82	Agreement between QuantiFERON®-TB Cold In-Tube and the tuberculin skin test and predictors of positive test results in Warao Amerindian pediatric tuberculosis contacts. BMC Infectious Diseases, 2014, 14, 383.	2.9	15
83	Novel Vaccination Strategies against Tuberculosis. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a018523-a018523.	6.2	131
84	Directing traffic: <scp>IL</scp> â€17 and <scp>IL</scp> â€22 coordinate pulmonary immune defense. Immunological Reviews, 2014, 260, 129-144.	6.0	163
85	The role of gamma delta T cells in immunity to Mycobacterium bovis infection in cattle. Veterinary Immunology and Immunopathology, 2014, 159, 133-143.	1.2	32
86	Relevance of bovine tuberculosis research to the understanding of human disease: Historical perspectives, approaches, and immunologic mechanisms. Veterinary Immunology and Immunopathology, 2014, 159, 113-132.	1.2	54
87	Enhanced effect of BCG vaccine against pulmonary <i>Mycobacterium tuberculosis</i> infection in mice with lung Th17 response to mycobacterial heparinâ€binding hemagglutinin adhesin antigen. Microbiology and Immunology, 2015, 59, 735-743.	1.4	12
88	Expression Pattern of Transcription Factors and Intracellular Cytokines Reveals That Clinically Cured Tuberculosis Is Accompanied by an Increase in <i>Mycobacterium</i> -Specific Th1, Th2, and Th17 Cells. BioMed Research International, 2015, 2015, 1-14.	1.9	16
89	Multiplex Analysis of Pro- or Anti-Inflammatory Serum Cytokines and Chemokines in relation to Gender and Age among Tanzanian Tuberculous Lymphadenitis Patients. Tuberculosis Research and Treatment, 2015, 2015, 1-6.	0.6	5
90	Complexity and Controversies over the Cytokine Profiles of T Helper Cell Subpopulations in Tuberculosis. Journal of Immunology Research, 2015, 2015, 1-13.	2.2	38
91	Cytokine and lipid mediator networks in tuberculosis. Immunological Reviews, 2015, 264, 264-275.	6.0	128

#	Article	IF	CITATIONS
92	Acquired immunodeficiencies and tuberculosis: focus on <scp>HIV</scp> / <scp>AIDS</scp> and diabetes mellitus. Immunological Reviews, 2015, 264, 121-137.	6.0	87
93	Biology of IL-27 and its Role in the Host Immunity against <i>Mycobacterium Tuberculosis</i> . International Journal of Biological Sciences, 2015, 11, 168-175.	6.4	46
94	Impaired M. tuberculosis Antigen-Specific IFN-Î ³ Response without IL-17 Enhancement in Patients with Severe Cavitary Pulmonary Tuberculosis. PLoS ONE, 2015, 10, e0127087.	2.5	17
95	Detecting Antibody-Labeled BCG MNPs Using a Magnetoresistive Biosensor and Magnetic Labeling Technique. Journal of Nano Research, 2015, 35, 92-103.	0.8	1
96	Immune requirements for protective Th17 recall responses to Mycobacterium tuberculosis challenge. Mucosal Immunology, 2015, 8, 1099-1109.	6.0	75
97	Innate and Adaptive Cellular Immune Responses to <i>Mycobacterium tuberculosis</i> Infection. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a018424.	6.2	116
98	<i>Mycobacterium tuberculosis</i> RpfE promotes simultaneous Th1―and Th17â€type Tâ€cell immunity via TLR4â€dependent maturation of dendritic cells. European Journal of Immunology, 2015, 45, 1957-1971.	2.9	60
99	Detecting Antibody-Labeled BCG MNPs Using a Magnetoresistive Biosensor and Magnetic Labeling Technique. Journal of Nano Research, 0, 34, 49-60.	0.8	7
100	<scp>T_H</scp> 17 cells, interleukinâ€17 and interferonâ€Î³ in patients and households contacts of leprosy with multibacillary and paucibacillary forms before and after the start of chemotherapy treatment. Journal of the European Academy of Dermatology and Venereology, 2015, 29, 1354-1361.	2.4	13
101	BCG vaccination-induced long-lasting control of Mycobacterium tuberculosis correlates with the accumulation of a novel population of CD4+IL-17+TNF+IL-2+ T cells. Vaccine, 2015, 33, 85-91.	3.8	42
102	Immunity and Immunopathology in the Tuberculous Granuloma. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a018499.	6.2	121
103	Inflammation and tuberculosis: hostâ€directed therapies. Journal of Internal Medicine, 2015, 277, 373-387.	6.0	103
104	Prominent contribution of Th1, Th17, and Tregs to the host response during M. neoaurum infection. Genetics and Molecular Research, 2016, 15, .	0.2	3
105	IL-1β, But Not Programed Death-1 and Programed Death Ligand Pathway, Is Critical for the Human Th17 Response to Mycobacterium tuberculosis. Frontiers in Immunology, 2016, 7, 465.	4.8	16
106	Overexpression of RORÎ ³ t Enhances Pulmonary Inflammation after Infection with Mycobacterium Avium. PLoS ONE, 2016, 11, e0147064.	2.5	13
107	Vaccination with an Attenuated Mutant of Ehrlichia chaffeensis Induces Pathogen-Specific CD4+ T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host. PLoS ONE, 2016, 11, e0148229.	2.5	28
108	Monocyte-derived dendritic cells early exposed to Mycobacterium tuberculosis induce an enhanced T helper 17 response and transfer mycobacterial antigens. International Journal of Medical Microbiology, 2016, 306, 541-553.	3.6	16
109	Decreased IL-17 during treatment of sputumÂsmear-positive pulmonary tuberculosisÂdue to increased regulatory T cells and IL-10. Journal of Translational Medicine, 2016, 14, 179.	4.4	24

	Сітатіо	n Report	
#	Article	IF	CITATIONS
110	Involvement of ILâ€17Aâ€producing TCR γδT cells in late protective immunity against pulmonary <i>Mycobacterium tuberculosis</i> infection. Immunity, Inflammation and Disease, 2016, 4, 401-412.	2.7	18
111	CD4+ and Î ³ δT Cells are the main Producers of IL-22 and IL-17A in Lymphocytes from Mycobacterium bovis-infected Cattle. Scientific Reports, 2016, 6, 29990.	3.3	49
112	Innate Immune Responses to Tuberculosis. Microbiology Spectrum, 2016, 4, .	3.0	47
113	The Memory Immune Response to Tuberculosis. Microbiology Spectrum, 2016, 4, .	3.0	14
114	Vaccination of cattle with a high dose of BCG vaccine 3 weeks after experimental infection with Mycobacterium bovis increased the inflammatory response, but not tuberculous pathology. Tuberculosis, 2016, 99, 120-127.	1.9	9
115	HIV Skews the Lineage-Defining Transcriptional Profile of <i>Mycobacterium tuberculosis</i> –Specific CD4+ T Cells. Journal of Immunology, 2016, 196, 3006-3018.	0.8	27
116	Modulation of human T cell cytokines by the Mycobacterium tuberculosis -secreted protein Wag31. Tuberculosis, 2016, 101, S99-S104.	1.9	10
118	Poly- <i>N</i> -Acetylglucosamine Production by Staphylococcus epidermidis Cells Increases Their <i>In Vivo</i> Proinflammatory Effect. Infection and Immunity, 2016, 84, 2933-2943.	2.2	9
119	Cytokines and Chemokines in <i>Mycobacterium tuberculosis</i> Infection. Microbiology Spectrum, 2016, 4, .	3.0	309
120	Boosting BCG-primed responses with a subunit Apa vaccine during the waning phase improves immunity and imparts protection against Mycobacterium tuberculosis. Scientific Reports, 2016, 6, 25837.	3.3	16
121	Delivery of LLKKK18 loaded into self-assembling hyaluronic acid nanogel for tuberculosis treatment. Journal of Controlled Release, 2016, 235, 112-124.	9.9	80
122	TB/HIV pleurisy reduces Th17 lymphocyte proportion independent of the cytokine microenvironment. Tuberculosis, 2016, 99, 92-99.	1.9	4
123	Early Secreted Antigenic Target of 6Â <scp>kD</scp> a of <i>Mycobacterium tuberculosis</i> Stimulates Macrophage Chemoattractant Proteinâ€1 Production by Macrophages and Its Regulation by p38 Mitogenâ€Activated Protein Kinases and Interleukinâ€4. Scandinavian Journal of Immunology, 2016, 84, 39-48.	2.7	9
124	Postprimary Tuberculosis and Macrophage Necrosis: Is There a Big ConNECtion?. MBio, 2016, 7, e01589-15.	4.1	15
125	Post-exposure vaccination with the vaccine candidate Bacillus Calmette–Guérin ΔureC::hly induces superior protection in a mouse model of subclinical tuberculosis. Microbes and Infection, 2016, 18, 364-368.	1.9	19
126	Molecular Determinants in Phagocyte-Bacteria Interactions. Immunity, 2016, 44, 476-491.	14.3	190
127	Interleukin-17A as a Biomarker for Bovine Tuberculosis. Vaccine Journal, 2016, 23, 168-180.	3.1	47
128	Pulmonary but Not Subcutaneous Delivery of BCG Vaccine Confers Protection to Tuberculosis-Susceptible Mice by an Interleukin 17–Dependent Mechanism. Journal of Infectious Diseases 2016 213 831839	4.0	120

#	Article	IF	CITATIONS
129	The Goldilocks model of immune symbiosis with Mycobacteria and Candida colonizers. Cytokine, 2017, 97, 49-65.	3.2	15
130	Th1 Differentiation Drives the Accumulation of Intravascular, Non-protective CD4ÂT Cells during Tuberculosis. Cell Reports, 2017, 18, 3091-3104.	6.4	94
131	Sendai Virus Mucosal Vaccination Establishes Lung-Resident Memory CD8ÂT Cell Immunity and Boosts BCG-Primed Protection against TB in Mice. Molecular Therapy, 2017, 25, 1222-1233.	8.2	46
132	Imbalance of Th17 and Treg in peripheral blood mononuclear cells of active tuberculosis patients. Brazilian Journal of Infectious Diseases, 2017, 21, 155-161.	0.6	23
133	Striking the right immunological balance prevents progression of tuberculosis. Inflammation Research, 2017, 66, 1031-1056.	4.0	11
134	A Multistage Subunit Vaccine Effectively Protects Mice Against Primary Progressive Tuberculosis, Latency and Reactivation. EBioMedicine, 2017, 22, 143-154.	6.1	29
135	T Cell Production of GM-CSF Protects the Host during Experimental Tuberculosis. MBio, 2017, 8, .	4.1	31
136	Screening and identification of IncRNAs as potential biomarkers for pulmonary tuberculosis. Scientific Reports, 2017, 7, 16751.	3.3	30
137	<i>Mycobacterium tuberculosis</i> multi-drug-resistant strain M induces IL-17+IFNγ– CD4+ T cell expansion through an IL-23 and TGF-β-dependent mechanism in patients with MDR-TB tuberculosis. Clinical and Experimental Immunology, 2016, 187, 160-173.	2.6	23
138	Innate Immune Responses to Tuberculosis. , 2017, , 1-31.		0
139	Cytokines and Chemokines inMycobacterium tuberculosisInfection. , 2017, , 33-72.		10
140	The Memory Immune Response to Tuberculosis. , 2017, , 95-115.		1
141	Perspectives for Developing New Tuberculosis Vaccines Derived from the Pathogenesis of Tuberculosis. , 2017, , 33-44.		0
142	Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Frontiers in Immunology, 2017, 8, 294.	4.8	56
143	Immune Responses to Bacillus Calmette–Guérin Vaccination: Why Do They Fail to Protect against Mycobacterium tuberculosis?. Frontiers in Immunology, 2017, 8, 407.	4.8	116
144	Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity. Frontiers in Immunology, 2017, 8, 1755.	4.8	26
145	Risk of Tuberculosis Reactivation in Patients with Rheumatoid Arthritis, Ankylosing Spondylitis, and Psoriatic Arthritis Receiving Non-Anti-TNF-Targeted Biologics. Mediators of Inflammation, 2017, 2017, 1-15.	3.0	93
146	Normal and Abnormal Neutrophil Physiology in the Newborn. , 2017, , 1216-1229.e4.		1

#	Article	IF	CITATIONS
147	Engaging the CD40-CD40L pathway augments T-helper cell responses and improves control of Mycobacterium tuberculosis infection. PLoS Pathogens, 2017, 13, e1006530.	4.7	51
148	Delta inulin-based adjuvants promote the generation of polyfunctional CD4+ T cell responses and protection against Mycobacterium tuberculosis infection. Scientific Reports, 2017, 7, 8582.	3.3	57
149	The Immune Response to <i>Mycobacterium tuberculosis</i> in HIV-1-Coinfected Persons. Annual Review of Immunology, 2018, 36, 603-638.	21.8	85
150	The patterns of in vitro cell-death and inflammatory cytokines induced by distinct BCG vaccine strains are differentially induced in human mononuclear cells. Human Vaccines and Immunotherapeutics, 2018, 14, 28-35.	3.3	11
151	Detection of BCG bacteria using a magnetoresistive biosensor: A step towards a fully electronic platform for tuberculosis point-of-care detection. Biosensors and Bioelectronics, 2018, 100, 259-265.	10.1	50
152	Interleukinâ€17 family cytokines in protective immunity against infections: role of hematopoietic cellâ€derived and nonâ€hematopoietic cellâ€derived interleukinâ€17s. Microbiology and Immunology, 2018, 62, 1-13.	1.4	84
153	Pathogenesis of HIV-1 and Mycobacterium tuberculosis co-infection. Nature Reviews Microbiology, 2018, 16, 80-90.	28.6	227
154	Granulomatous Response to Mycobacterium tuberculosis Infection. , 2018, , 41-66.		2
155	The Immunoregulation of Th17 in Host against Intracellular Bacterial Infection. Mediators of Inflammation, 2018, 2018, 1-13.	3.0	58
156	Mycobacterium tuberculosis Invasion of the Human Lung: First Contact. Frontiers in Immunology, 2018, 9, 1346.	4.8	29
157	Mycobacterium tuberculosis PPE60 antigen drives Th1/Th17 responses via Toll-like receptor 2–dependent maturation of dendritic cells. Journal of Biological Chemistry, 2018, 293, 10287-10302.	3.4	40
158	Ag85-focused T-cell immune response controls Mycobacterium avium chronic infection. PLoS ONE, 2018, 13, e0193596.	2.5	6
159	Tuberculosis Vaccine Development: Progress in Clinical Evaluation. Clinical Microbiology Reviews, 2019, 33, .	13.6	70
160	Macrophage infection with combinations of BCG mutants reduces induction of TNF- $\hat{1}$ ±, IL-6, IL-1 $\hat{1}^2$ and increases IL-4. Tuberculosis, 2019, 115, 42-48.	1.9	4
161	The Immune Escape Mechanisms of Mycobacterium Tuberculosis. International Journal of Molecular Sciences, 2019, 20, 340.	4.1	217
162	The generation of Tâ€cell memory to protect against tuberculosis. Immunology and Cell Biology, 2019, 97, 656-663.	2.3	23
163	Moving tuberculosis vaccines from theory to practice. Nature Reviews Immunology, 2019, 19, 550-562.	22.7	101
164	Deciphering protective immunity against tuberculosis: implications for vaccine development. Expert Review of Vaccines, 2019, 18, 353-364.	4.4	22

#	Article	IF	CITATIONS
165	The Role of Infection in Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Mediators of Inflammation, 2019, 2019, 1-10.	3.0	38
166	Treating to Target(s) With Interleukin-17 Inhibitors. Journal of Cutaneous Medicine and Surgery, 2019, 23, 3S-34S.	1.2	6
167	Pl3-Kinase Î1̂ ³ Catalytic Isoforms Regulate the Th-17 Response in Tuberculosis. Frontiers in Immunology, 2019, 10, 2583.	4.8	3
168	Imbalance of NET and Alpha-1-Antitrypsin in Tuberculosis Patients Is Related With Hyper Inflammation and Severe Lung Tissue Damage. Frontiers in Immunology, 2018, 9, 3147.	4.8	29
169	Myeloid HIFâ€lα regulates pulmonary inflammation during experimental Mycobacterium tuberculosis infection. Immunology, 2020, 159, 121-129.	4.4	17
170	7-oxo-DHEA enhances impaired M. tuberculosis-specific T cell responses during HIV-TB coinfection. Journal of Biomedical Science, 2020, 27, 20.	7.0	4
171	Heterologous Boosting With Listeria-Based Recombinant Strains in BCG-Primed Mice Improved Protection Against Pulmonary Mycobacterial Infection. Frontiers in Immunology, 2020, 11, 2036.	4.8	5
172	Type I IFN exacerbates disease in tuberculosis-susceptible mice by inducing neutrophil-mediated lung inflammation and NETosis. Nature Communications, 2020, 11, 5566.	12.8	106
173	<i>Paracoccidioides brasiliensis</i> activates mesenchymal stem cells through TLR2, TLR4, and Dectin-1. Medical Mycology, 2021, 59, 149-157.	0.7	14
174	The immune landscape in tuberculosis reveals populations linked to disease and latency. Cell Host and Microbe, 2021, 29, 165-178.e8.	11.0	98
175	MAIT cell-directed therapy of Mycobacterium tuberculosis infection. Mucosal Immunology, 2021, 14, 199-208.	6.0	57
176	Mycobacterium tuberculosis Rv0580c Impedes the Intracellular Survival of Recombinant Mycobacteria, Manipulates the Cytokines, and Induces ER Stress and Apoptosis in Host Macrophages via NF-κB and p38/JNK Signaling. Pathogens, 2021, 10, 143.	2.8	2
177	Neutrophils Modulate Fibrogenesis in Chronic Pulmonary Diseases. Frontiers in Medicine, 2021, 8, 616200.	2.6	21
178	Exaggerated IL-17A activity in human in vivo recall responses discriminates active tuberculosis from latent infection and cured disease. Science Translational Medicine, 2021, 13, .	12.4	27
179	Balance between Protection and Pathogenic Response to Aerosol Challenge with Mycobacterium tuberculosis (Mtb) in Mice Vaccinated with TriFu64, a Fusion Consisting of Three Mtb Antigens. Vaccines, 2021, 9, 519.	4.4	4
180	A century of BCG: Impact on tuberculosis control and beyond. Immunological Reviews, 2021, 301, 98-121.	6.0	37
181	Antigen-specific antibody and polyfunctional T cells generated by respiratory immunization with protective Burkholderia I"tonB I"hcp1 live attenuated vaccines. Npj Vaccines, 2021, 6, 72.	6.0	12
182	Mycobacterium tuberculosis stimulates IL-1β production by macrophages in an ESAT-6 dependent manner with the involvement of serum amyloid A3. Molecular Immunology, 2021, 135, 285-293.	2.2	8

#	Article	IF	CITATIONS
183	Characterizing Early T Cell Responses in Nonhuman Primate Model of Tuberculosis. Frontiers in Immunology, 2021, 12, 706723.	4.8	9
184	Role of hematopoietic cells in Mycobacterium tuberculosis infection. Tuberculosis, 2021, 130, 102109.	1.9	6
187	Tuberculosis following PD-1 blockade for cancer immunotherapy. Science Translational Medicine, 2019, 11, .	12.4	141
188	Yin and yang of interleukin-17 in host immunity to infection. F1000Research, 2017, 6, 741.	1.6	65
189	Efficacy of Mycobacterium indicus pranii Immunotherapy as an Adjunct to Chemotherapy for Tuberculosis and Underlying Immune Responses in the Lung. PLoS ONE, 2012, 7, e39215.	2.5	60
190	A New Recombinant BCG Vaccine Induces Specific Th17 and Th1 Effector Cells with Higher Protective Efficacy against Tuberculosis. PLoS ONE, 2014, 9, e112848.	2.5	40
191	IL-17RA in Non-Hematopoietic Cells Controls CXCL-1 and 5 Critical to Recruit Neutrophils to the Lung of Mycobacteria-Infected Mice during the Adaptive Immune Response. PLoS ONE, 2016, 11, e0149455.	2.5	66
192	Depletion of Neutrophils Promotes the Resolution of Pulmonary Inflammation and Fibrosis in Mice Infected with Paracoccidioides brasiliensis. PLoS ONE, 2016, 11, e0163985.	2.5	35
193	Update on the Development of TB Vaccines. Current Pharmaceutical Biotechnology, 2014, 14, 940-946.	1.6	6
194	Role of cytokines and other factors involved in theMycobacterium tuberculosisinfection. World Journal of Immunology, 2015, 5, 16.	0.5	30
195	Molecular Level Insights Into the Structural and Dynamic Factors Driving Cytokine Function. Frontiers in Molecular Biosciences, 2021, 8, 773252.	3.5	2
196	Advancing Adjuvants for Mycobacterium tuberculosis Therapeutics. Frontiers in Immunology, 2021, 12, 740117.	4.8	10
197	Is IL-17 Required to Control Tuberculosis?. , 2013, , 189-205.		0
198	Toward novel vaccines against tuberculosis: current hopes and obstacles. Yale Journal of Biology and Medicine, 2010, 83, 209-15.	0.2	21
199	Virtual high-throughput screening: potential inhibitors for the mycobacterial α-subunit of tryptophan synthase. Molecular Simulation, 2022, 48, 342-353.	2.0	1
200	Improving Assignments for Therapeutic and Prophylactic Treatment Within TB Households. A Potential for Immuno-Diagnosis?. Frontiers in Immunology, 2022, 13, 801616.	4.8	1
201	Immunological Assessment of Chitosan or Trimethyl Chitosan-Coated PLGA Nanospheres Containing Fusion Antigen as the Novel Vaccine Candidates Against Tuberculosis. AAPS PharmSciTech, 2022, 23, 15.	3.3	8
210	Monocytes Elicit a Neutrophil-Independent Th1/Th17 Response Upon Immunization With a Mincle-Dependent Glycolipid Adjuvant. Frontiers in Immunology, 2022, 13, 880474.	4.8	3

#	Article	IF	CITATIONS
211	Mycobacterium tuberculosis impedes CD40-dependent notch signaling to restrict Th17 polarization during infection. IScience, 2022, 25, 104305.	4.1	6
212	Mycobacterium tuberculosis infection drives a type I IFN signature in lung lymphocytes. Cell Reports, 2022, 39, 110983.	6.4	20
213	T cell responses to Mycobacterium indicus pranii immunotherapy and adjunctive glucocorticoid therapy in tuberculous pericarditis. Vaccine: X, 2022, 11, 100177.	2.1	2
214	High-Dose Rifampicin Mediated Systemic Alterations of Cytokines, Chemokines, Growth Factors, Microbial Translocation Markers, and Acute-Phase Proteins in Pulmonary Tuberculosis. Frontiers in Pharmacology, 0, 13, .	3.5	0
215	Defining the role of neutrophils in the lung during infection: Implications for tuberculosis disease. Frontiers in Immunology, 0, 13, .	4.8	6
216	Superinfection with SARS-CoV-2 Has Deleterious Effects on Mycobacterium bovis BCG Immunity and Promotes Dissemination of Mycobacterium tuberculosis. Microbiology Spectrum, 2022, 10, .	3.0	16
217	Inflammation-mediated tissue damage in pulmonary tuberculosis and host-directed therapeutic strategies. Seminars in Immunology, 2023, 65, 101672.	5.6	23
218	Correlation between serum IL-17 levels with Erythrocyte Sedimentation Rate (ESR) and C-Reactive Protein (CRP) levels of new cases of pulmonary tuberculosis at Sanglah Central General Hospital, Bali, Indonesia. Indonesia Journal of Biomedical Science, 2022, 16, 70-73.	0.0	0
219	The Double Game Played by Th17 Cells in Infection: Host Defense and Immunopathology. Pathogens, 2022, 11, 1547.	2.8	14
220	Towards the development of subunit vaccines against tuberculosis: The key role of adjuvant. Tuberculosis, 2023, 139, 102307.	1.9	6
221	A MAPS Vaccine Induces Multipronged Systemic and Tissue-Resident Cellular Responses and Protects Mice against Mycobacterium tuberculosis. MBio, 2023, 14, .	4.1	1
222	Immunogenicity and efficacy analyses of EPC002, ECA006, and EPCP009 protein subunit combinations as tuberculosis vaccine candidates. Vaccine, 2023, 41, 3836-3846.	3.8	3
223	Heterologous mRNA-protein vaccination with Tc24 induces a robust cellular immune response against Trypanosoma cruzi, characterized by an increased level of polyfunctional CD8+ T-cells. Current Research in Immunology, 2023, 4, 100066.	2.8	2
225	Atg8ylation as a host-protective mechanism against Mycobacterium tuberculosis. , 0, 1, .		0
227	Helper T cell bias following tuberculosis chemotherapy identifies opportunities for therapeutic vaccination to prevent relapse. Npj Vaccines, 2023, 8, .	6.0	0
228	The Microbial Tryptophan Metabolite Contributes to the Remission of <i>Salmonella typhimurium</i> Infection in Mice. Journal of Immunology, 0, , .	0.8	0
229	<i>Mycobacterium tuberculosis</i> antigen 85B modifies BCG-induced antituberculosis immunity and favors pathogen survival. Journal of Leukocyte Biology, 0, , .	3.3	0