Composition of Titan's lower atmosphere and simple su Cassiniâ€Huygens probe gas chromatograph mass spec

Journal of Geophysical Research 115, DOI: 10.1029/2010je003659

Citation Report

#	Article	IF	CITATIONS
1	Sounding the interior of Titan's lakes by using Micro-Electro-Mechanical Systems (MEMS). , 2011, , .		0
2	The spectroscopy and thermochemistry of phenylallyl radical chromophores. Chemical Science, 2011, 2, 1755.	3.7	26
3	Simulating the one-dimensional structure of Titan's upper atmosphere: 3. Mechanisms determining methane escape. Journal of Geophysical Research, 2011, 116, .	3.3	24
4	SEASONAL CHANGES IN TITAN'S SURFACE TEMPERATURES. Astrophysical Journal Letters, 2011, 737, L15.	3.0	33
5	REMOVAL OF TITAN'S ATMOSPHERIC NOBLE GASES BY THEIR SEQUESTRATION IN SURFACE CLATHRATES. Astrophysical Journal Letters, 2011, 740, L9.	3.0	28
6	First results of <i>Herschel </i> -SPIRE observations of Titan. Astronomy and Astrophysics, 2011, 536, L2.	2.1	30
7	Direct detection of the Enceladus water torus with <i>Herschel</i> . Astronomy and Astrophysics, 2011, 532, L2.	2.1	59
8	The structure of Titan's atmosphere from Cassini radio occultations. Icarus, 2011, 215, 460-474.	1.1	46
9	Doubly-charged ions in the planetary ionospheres: a review. Physical Chemistry Chemical Physics, 2011, 13, 18264.	1.3	92
10	The composition of liquid methane–nitrogen aerosols in Titan's lower atmosphere from Monte Carlo simulations. Icarus, 2011, 212, 779-789.	1.1	12
11	Organic chemistry on the surface of Titan. Rendiconti Lincei, 2011, 22, 183-189.	1.0	13
12	Airfoil sampling of a pulsed Laval beam with tunable vacuum ultraviolet synchrotron ionization quadrupole mass spectrometry: Application to low-temperature kinetics and product detection. Review of Scientific Instruments, 2011, 82, 124102.	0.6	20
13	A model for the vertical sound speed and absorption profiles in Titan's atmosphere based on <i>Cassini-Huygens</i> data. Journal of the Acoustical Society of America, 2012, 131, 3671-3679.	0.5	19
14	Hydrogen and methane in Titan's atmosphere: chemistry, diffusion, escape, and the Hunten limiting flux principle ¹ This article is part of a Special Issue that honours the work of Dr. Donald M. Hunten FRSC who passed away in December 2010 after a very illustrious career Canadian Journal of Physics, 2012, 90, 795-805.	0.4	26
15	RAPID ASSOCIATION REACTIONS AT LOW PRESSURE: IMPACT ON THE FORMATION OF HYDROCARBONS ON TITAN. Astrophysical Journal, 2012, 744, 11.	1.6	54
16	THERMAL AND CHEMICAL STRUCTURE VARIATIONS IN TITAN'S STRATOSPHERE DURING THE <i>CASSINI</i> MISSION. Astrophysical Journal, 2012, 760, 144.	1.6	25
17	THE ¹² C/ ¹³ C RATIO ON TITAN FROM <i>CASSINI</i> INMS MEASUREMENTS AND IMPLICATIONS FOR THE EVOLUTION OF METHANE. Astrophysical Journal, 2012, 749, 160.	1.6	66
18	ISOTOPIC RATIOS IN TITAN's METHANE: MEASUREMENTS AND MODELING. Astrophysical Journal, 2012, 749, 159.	1.6	91

TITATION REDORT

#	Article	IF	CITATIONS
19	Experimental simulations of CH ₄ evaporation on Titan. Geophysical Research Letters, 2012, 39, .	1.5	14
20	The Huygens surface science package (SSP): Flight performance review and lessons learned. Planetary and Space Science, 2012, 70, 28-45.	0.9	13
21	Titan's photochemical model: Further update, oxygen species, and comparison with Triton and Pluto. Planetary and Space Science, 2012, 73, 318-326.	0.9	53
22	Titan Tholins: Simulating Titan Organic Chemistry in the Cassini-Huygens Era. Chemical Reviews, 2012, 112, 1882-1909.	23.0	193
23	The abundance of H2 in Titan's troposphere from the Cassini CIRS investigation. Planetary and Space Science, 2012, 69, 89-99.	0.9	29
24	NMR identification of hexamethylenetetramine and its precursor in Titan tholins: Implications for Titan prebiotic chemistry. Icarus, 2012, 220, 627-634.	1.1	23
25	Water vapor in Titan's stratosphere from Cassini CIRS far-infrared spectra. Icarus, 2012, 220, 855-862.	1.1	39
26	Life in the Saturnian Neighborhood. Cellular Origin and Life in Extreme Habitats, 2012, , 485-522.	0.3	0
27	Is Titan's shape caused by its meteorology and carbon cycle?. Geophysical Research Letters, 2012, 39, .	1.5	84
28	The CH ₄ structure in Titan's upper atmosphere revisited. Journal of Geophysical Research, 2012, 117, .	3.3	61
29	Observations of Titan's Northern lakes at 5μm: Implications for the organic cycle and geology. Icarus, 2012, 221, 768-786.	1.1	72
30	The abundance, vertical distribution and origin of H2O in Titan's atmosphere: Herschel observations and photochemical modelling. Icarus, 2012, 221, 753-767.	1.1	61
31	The structure of Titan's atmosphere from Cassini radio occultations: Occultations from the Prime and Equinox missions. Icarus, 2012, 221, 1020-1031.	1.1	58
32	Prebiotic-like chemistry on Titan. Chemical Society Reviews, 2012, 41, 5380.	18.7	82
33	lce structures, patterns, and processes: A view across the icefields. Reviews of Modern Physics, 2012, 84, 885-944.	16.4	277
34	Radiative transfer analyses of Titan's tropical atmosphere. Icarus, 2012, 218, 975-988.	1.1	29
35	Geomorphological significance of Ontario Lacus on Titan: Integrated interpretation of Cassini VIMS, ISS and RADAR data and comparison with the Etosha Pan (Namibia). Icarus, 2012, 218, 788-806.	1.1	55
36	An empirical line list for methane in the 1.26–1.71μm region for planetary investigations (T=80–300K). Application to Titan. Icarus, 2012, 219, 110-128.	1.1	60

#	Article	IF	CITATIONS
37	Clues on the importance of comets in the origin and evolution of the atmospheres of Titan and Earth. Planetary and Space Science, 2012, 60, 3-9.	0.9	19
38	Titan's internal structure and the evolutionary consequences. Planetary and Space Science, 2012, 60, 10-17.	0.9	86
39	Applications of a new set of methane line parameters to the modeling of Titan's spectrum in the 1.58μm window. Planetary and Space Science, 2012, 61, 85-98.	0.9	99
40	The reflectivity spectrum and opposition effect of Titan's surface observed by Huygens' DISR spectrometers. Planetary and Space Science, 2012, 60, 342-355.	0.9	14
41	The surface energy balance at the Huygens landing site and the moist surface conditions on Titan. Planetary and Space Science, 2012, 60, 376-385.	0.9	25
42	Titan's surface and atmosphere from Cassini/VIMS data with updated methane opacity. Icarus, 2013, 226, 470-486.	1.1	92
43	Titan's atmosphere and surface liquid: New calculation using Statistical Associating Fluid Theory. Icarus, 2013, 222, 53-72.	1.1	60
44	Equation of state for solid solution–liquid–vapor equilibria at cryogenic conditions. Fluid Phase Equilibria, 2013, 360, 320-331.	1.4	11
45	Timescale for oceans in the past of Titan. Planetary and Space Science, 2013, 78, 22-24.	0.9	13
46	A model of variability in Titan's atmospheric structure. Planetary and Space Science, 2013, 86, 45-56.	0.9	14
47	A facility for simulating Titan's environment. Advances in Space Research, 2013, 51, 1213-1220.	1.2	12
48	The composition of ternary N2/CH4/C2H6 cloud droplets under Titan conditions: Monte Carlo simulations and experiment. Molecular Physics, 2013, 111, 2233-2242.	0.8	1
49	Identification of nitrogenous organic species in Titan aerosols analogs: Nitrogen fixation routes in early atmospheres. Icarus, 2013, 226, 33-40.	1.1	22
50	The two-micron spectral characteristics of the Titanian haze derived from Cassini/VIMS solar occultation spectra. Planetary and Space Science, 2013, 88, 93-99.	0.9	8
51	Phase equilibria in the H2O–CO2 system between 250–330K and 0–1.7GPa: Stability of the CO2 hydrates and H2O-ice VI at CO2 saturation. Geochimica Et Cosmochimica Acta, 2013, 119, 322-339.	1.6	49
52	Cryovolcanism on Titan: New results from Cassini RADAR and VIMS. Journal of Geophysical Research E: Planets, 2013, 118, 416-435.	1.5	128
53	Upper limits for PH3 and H2S in Titan's atmosphere from Cassini CIRS. Icarus, 2013, 224, 253-256.	1.1	12
54	A geochemical model of non-ideal solutions in the methane–ethane–propane–nitrogen–acetylene system on Titan. Geochimica Et Cosmochimica Acta, 2013, 115, 217-240.	1.6	55

#	Article	IF	CITATIONS
55	Morphotectonic features on Titan and their possible origin. Planetary and Space Science, 2013, 77, 104-117.	0.9	26
56	CRITICAL REVIEW OF N, N ⁺ , N ⁺ ₂ , N ⁺⁺ , And N ⁺⁺ ₂ MAIN PRODUCTION PROCESSES AND REACTIONS OF RELEVANCE TO TITAN'S ATMOSPHERE. Astrophysical Journal, Supplement Series, 2013, 204, 20.	3.0	118
57	Refined <i>ab initio</i> intermolecular ground-state potential energy surface for the He–C ₂ H ₂ van der Waals complex. Molecular Physics, 2013, 111, 1173-1177.	0.8	14
58	Constraints on Titan's middle atmosphere ammonia abundance from Herschel/SPIRE sub-millimetre spectra. Planetary and Space Science, 2013, 75, 136-147.	0.9	50
59	Phase shift cavity ring down and Fourier transform infrared measurements of C–H vibrational transitions, energy levels, and intensities of (CH3)3Si–C≡C–H. Journal of Chemical Physics, 2013, 139, 014311.	1.2	2
60	A TRANSMISSION SPECTRUM OF TITAN'S NORTH POLAR ATMOSPHERE FROM A SPECULAR REFLECTION OF THE SUN. Astrophysical Journal, 2013, 777, 161.	1.6	23
61	DETECTION OF PROPENE IN TITAN'S STRATOSPHERE. Astrophysical Journal Letters, 2013, 776, L14.	3.0	84
62	The solubility of ⁴⁰ Ar and ⁸⁴ Kr in liquid hydrocarbons: Implications for Titan's geological evolution. Geophysical Research Letters, 2013, 40, 2935-2940.	1.5	26
63	Atmospheric Prebiotic Chemistry and Organic Hazes. Current Organic Chemistry, 2013, 17, 1710-1723.	0.9	48
64	Titan's surface geology. , 2014, , 63-101.		8
66	The origin and evolution of Titan. , 0, , 29-62.		4
67	Thermal structure of Titan's troposphere and middle atmosphere. , 2014, , 102-121.		2
68	The composition of Titan's atmosphere. , 2014, , 158-189.		14
69	Storms, clouds, and weather. , 2014, , 190-223.		9
70	Chemistry of Titan's atmosphere. , 2014, , 224-284.		23
71	Titan's upper atmosphere/exosphere, escape processes, and rates. , 2014, , 355-375.		7
72	Surface albedo spectral properties of geologically interesting areas on Titan. Journal of Geophysical Research E: Planets, 2014, 119, 1729-1747.	1.5	30
73	INFRARED SPECTRA OF ACETYLENE DILUTED IN SOLID NITROGEN UPON IRRADIATION WITH VACUUM ULTRAVIOLET LIGHT AND ELECTRONS. Astrophysical Journal, Supplement Series, 2014, 212, 7.	3.0	12

#	Article	IF	CITATIONS
74	Science goals and mission concept for the future exploration of Titan and Enceladus. Planetary and Space Science, 2014, 104, 59-77.	0.9	15
75	Scientific rationale for Saturn× ³ s in situ exploration. Planetary and Space Science, 2014, 104, 29-47.	0.9	49
76	TOWARD A UNIQUE NITROGEN ISOTOPIC RATIO IN COMETARY ICES. Astrophysical Journal Letters, 2014, 780, L17.	3.0	78
77	Solubility and stability investigation of Titan aerosol analogs: New insight from NMR analysis. Icarus, 2014, 232, 54-59.	1.1	12
78	Chemical composition of Titan's atmosphere and ionosphere: Observations and the photochemical model. Icarus, 2014, 236, 83-91.	1.1	108
79	The distribution of methane in Titan's stratosphere from Cassini/CIRS observations. Icarus, 2014, 231, 323-337.	1.1	43
80	Silence on Shangri-La: Attenuation of Huygens acoustic signals suggests surface volatiles. Planetary and Space Science, 2014, 90, 72-80.	0.9	12
81	Non-uniform global methane distribution in Titan's troposphere evidenced by Cassini radio occultations. Icarus, 2014, 231, 1-12.	1.1	8
82	Titan's surface composition and atmospheric transmission with solar occultation measurements by Cassini VIMS. Icarus, 2014, 243, 158-172.	1.1	23
83	A comprehensive NMR structural study of Titan aerosol analogs: Implications for Titan's atmospheric chemistry. Icarus, 2014, 243, 31-38.	1.1	22
84	The Titan Haze Simulation experiment on COSmIC: Probing Titan's atmospheric chemistry at low temperature. Icarus, 2014, 243, 325-336.	1.1	32
85	Dissolution of benzene, naphthalene, and biphenyl in a simulated Titan lake. Icarus, 2014, 242, 74-81.	1.1	47
86	Titan's past and future: 3D modeling of a pure nitrogen atmosphere and geological implications. Icarus, 2014, 241, 269-279.	1.1	24
87	The methane mole fraction in Titan's stratosphere from DISR measurements during the Huygens probe's descent. Icarus, 2014, 242, 64-73.	1.1	46
88	Subsidence-induced methane clouds in Titan's winter polar stratosphere and upper troposphere. Icarus, 2014, 243, 129-138.	1.1	24
89	Transient climate effects of large impacts on Titan. Icarus, 2014, 229, 378-391. The origin of nitrogen on Jupiter and Saturn from the <mml:math< td=""><td>1.1</td><td>13</td></mml:math<>	1.1	13
90	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si70.gif" overflow="scroll"> <mml:mrow><mml:msup><mml:mrow /><mml:mrow><mml:mn>15</mml:mn></mml:mrow></mml:mrow </mml:msup></mml:mrow> N/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si71.gif"</mml:math 	1.1	44
91	overflow="scroll"> <mml:mrow><mml:msup><mml:mrow /><mml:mrow><mml:mn>14</mml:mn>Experimental investigation of methane hydrates dissociation up to 5GPa: Implications for Titan's interior. Physics of the Earth and Planetary Interiors, 2014, 229, 144-152.</mml:mrow></mml:mrow </mml:msup></mml:mrow>	0.7	22

#	Article	IF	CITATIONS
92	PROTOSOLAR AMMONIA AS THE UNIQUE SOURCE OF TITAN's NITROGEN. Astrophysical Journal Letters, 2014, 788, L24.	3.0	74
93	Identification of nitrogenous organic species in Titan aerosols analogs: Implication for prebiotic chemistry on Titan and early Earth. Icarus, 2014, 238, 86-92.	1.1	37
94	Titan's internal structure inferred from its gravity field, shape, and rotation state. Icarus, 2014, 237, 29-41.	1.1	69
95	Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles. Earth and Planetary Science Letters, 2014, 393, 2-13.	1.8	26
96	Developing a self onsistent description of Titan's upper atmosphere without hydrodynamic escape. Journal of Geophysical Research: Space Physics, 2014, 119, 4957-4972.	0.8	38
97	<i>Herschel</i> /PACS spectroscopy of trace gases of the stratosphere of Titan. Astronomy and Astrophysics, 2014, 561, A4.	2.1	35
98	The flushing of Ligeia: Composition variations across Titan's seas in a simple hydrological model. Geophysical Research Letters, 2014, 41, 5764-5770.	1.5	38
99	Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies. Life, 2015, 5, 1652-1686.	1.1	55
100	EFFECTS OF NITROGEN PHOTOABSORPTION CROSS SECTION RESOLUTION ON MINOR SPECIES VERTICAL PROFILES IN TITAN'S UPPER ATMOSPHERE. Astrophysical Journal Letters, 2015, 801, L14.	3.0	9
101	XENON IN THE PROTOPLANETARY DISK (PPD-Xe). Astrophysical Journal Letters, 2015, 806, L30.	3.0	6
102	Evolution of Titan's atmosphere during the Late Heavy Bombardment. Icarus, 2015, 257, 324-335.	1.1	10
103	Cometary Isotopic Measurements. Space Science Reviews, 2015, 197, 47-83.	3.7	112
104	Meteorological insights from planetary heat flow measurements. Icarus, 2015, 250, 262-267.	1.1	6
105	COSIMA calibration for the detection and characterization of the cometary solid organic matter. Planetary and Space Science, 2015, 105, 1-25.	0.9	16
106	Noble gases, nitrogen, and methane from the deep interior to the atmosphere of Titan. Icarus, 2015, 250, 570-586.	1.1	41
107	Planetary Atmospheres. , 2015, , 429-472.		16
108	Nitrogen isotope variations in the Solar System. Nature Geoscience, 2015, 8, 515-522.	5.4	147
109	The Origin of the Natural Satellites. , 2015, , 559-604.		20

	СІТА	tion Report	-
#	Article	IF	Citations
110	Solvation of nitrogen compounds in Titan's seas, precipitates, and atmosphere. Icarus, 2015, 256, 1-	-12. 1.1	18
111	NMR study of the potential composition of Titan× ³ s lakes. Planetary and Space Science, 2015, 109-110, 149-153.	0.9	3
112	Comparative planetology of the history of nitrogen isotopes in the atmospheres of Titan and Mars. Icarus, 2015, 254, 259-261.	1.1	13
113	Optical constants of Titan aerosols and their tholins analogs: Experimental results and modeling/observational data. Planetary and Space Science, 2015, 109-110, 159-174.	0.9	31
114	Constraints from Comets on the Formation and Volatile Acquisition of the Planets and Satellites. Space Science Reviews, 2015, 197, 297-342.	3.7	25
115	Titan's liquids: Exotic behavior and its implications on global fluid circulation. Icarus, 2015, 250, 64-7	'5. 1.1	38
116	Seasonal variations in Titan's middle atmosphere during the northern spring derived from Cassini/CIRS observations. Icarus, 2015, 250, 95-115.	1.1	99
117	Titan's atmosphere as observed by Cassini/VIMS solar occultations: CH4, CO and evidence for C2H6 absorption. Icarus, 2015, 248, 1-24.	1.1	64
118	ACETYLENE ON TITAN'S SURFACE. Astrophysical Journal, 2016, 828, 55.	1.6	36
119	Isotopic ratio of nitrogen on Titan: Photochemical interpretation. Planetary and Space Science, 2016, 134, 61-63.	0.9	31
120	Habitability of planets on eccentric orbits: Limits of the mean flux approximation. Astronomy and Astrophysics, 2016, 591, A106.	2.1	69
121	<i>Ab initio</i> 3D potential energy and dipole moment surfaces for the CH4–Ar complex: Collision-induced intensity and dimer content. Journal of Chemical Physics, 2016, 144, 054304.	1.2	10
122	ALMA OBSERVATIONS OF HCN AND ITS ISOTOPOLOGUES ON TITAN. Astronomical Journal, 2016, 152, 4	42. 1.9	54
123	Isotopic ratios of H, C, N, O, and S in comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy). Astronomy and Astrophysics, 2016, 589, A78.	/ 2.1	66
124	Vertical structure and optical properties of Titan's aerosols from radiance measurements made inside and outside the atmosphere. Icarus, 2016, 270, 355-375.	e 1.1	52
125	Meridional variation in tropospheric methane on Titan observed with AO spectroscopy at Keck and VLT. Icarus, 2016, 270, 376-388.	1.1	24
126	Cryolava flow destabilization of crustal methane clathrate hydrate on Titan. Icarus, 2016, 274, 23-32.	1.1	9
127	Isotopic constraints on the source of Pluto× ³ s nitrogen and the history of atmospheric escape. Planetary and Space Science, 2016, 130, 104-109.	0.9	4

	CITATION	KEPORT	
#	Article	IF	CITATIONS
128	The Lakes and Seas of Titan. Annual Review of Earth and Planetary Sciences, 2016, 44, 57-83.	4.6	118
129	Heat Rejection in the Titan Surface Environment: Potential Impact on Science Investigations. Journal of Thermophysics and Heat Transfer, 2016, 30, 257-265. Ion-neutral reaction of <mml:math <="" altimg="si1.gif" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>0.9</td><td>9</td></mml:math>	0.9	9
130	overflow="scroll"> <mml:mrow><mml:msub><mml:mi mathvariant="normal">C<mml:mn>2</mml:mn></mml:mi </mml:msub><mml:msub><mml:mi mathvariant="normal">H<mml:mn>2</mml:mn></mml:mi </mml:msub><mml:msup><mml:mi mathvariant="normal">N<mml:mo>+</mml:mo></mml:mi </mml:msup></mml:mrow> with	1.7	4
131	CH4: An experimental and theoretical study. Molecular Astrophysics, 2016, 5, 9-22. Aerocapture design study for a Titan polar orbiter. , 2016, , .		1
132	A NEW ASTROBIOLOGICAL MODEL OF THE ATMOSPHERE OF TITAN. Astrophysical Journal, 2016, 829, 79.	1.6	71
133	Enantioselective Gas Chromatography in Search of the Origin of Biomolecular Asymmetry in Outer Space. Israel Journal of Chemistry, 2016, 56, 1016-1026.	1.0	13
134	ISOTOPIC RATIOS OF CARBON AND OXYGEN IN TITAN'S CO USING ALMA. Astrophysical Journal Letters, 2016, 821, L8.	3.0	46
135	Titan's surface spectra at the Huygens landing site and Shangri-La. Icarus, 2016, 270, 291-306.	1.1	14
136	The electrical properties of Titan's surface at the Huygens landing site measured with the PWA–HASI Mutual Impedance Probe. New approach and new findings. Icarus, 2016, 270, 272-290.	1.1	11
137	Search for methane isotope fractionation due to Rayleigh distillation on Titan. Icarus, 2016, 275, 232-238.	1.1	2
138	Reactive scattering of an electronically-excited nitrogen atom with H 2 and its isotopic variants:N(2D)+H2/D2/T2. Computational and Theoretical Chemistry, 2016, 1081, 38-43.	1.1	1
139	Near-infrared spectra of liquid/solid acetylene under Titan relevant conditions and implications for Cassini/VIMS detections. Icarus, 2016, 270, 429-434.	1.1	4
140	The 6–7 μm spectrum of Titan from ISO/SWS observations. Icarus, 2016, 270, 389-398.	1.1	2
141	Composition, seasonal change, and bathymetry of Ligeia Mare, Titan, derived from its microwave thermal emission. Journal of Geophysical Research E: Planets, 2016, 121, 233-251.	1.5	44
142	13C and 15N fractionation of CH4/N2 mixtures during photochemical aerosol formation: Relevance to Titan. Icarus, 2016, 270, 421-428.	1.1	31
143	Genesis of volatile components at Saturn's regular satellites. Origin of Titan's atmosphere. Geochemistry International, 2016, 54, 7-26.	0.2	8
144	Cryogenic propulsion for the Titan Orbiter Polar Surveyor (TOPS) mission. Cryogenics, 2016, 74, 81-87.	0.9	3
145	Titan's temporal evolution in stratospheric trace gases near the poles. Icarus, 2016, 270, 409-420.	1.1	40

#	Article	IF	CITATIONS
146	Titan Science with the <i>James Webb Space Telescope</i> . Publications of the Astronomical Society of the Pacific, 2016, 128, 018007.	1.0	19
147	SURFACE TEMPERATURES ON TITAN DURING NORTHERN WINTER AND SPRING. Astrophysical Journal Letters, 2016, 816, L17.	3.0	47
148	New benzene absorption cross sections in the VUV, relevance for Titan's upper atmosphere. Icarus, 2016, 265, 95-109.	1.1	19
149	Temporal variations of Titan's surface with Cassini/VIMS. Icarus, 2016, 270, 85-99.	1.1	29
150	Low-Temperature Alkaline pH Hydrolysis of Oxygen-Free Titan Tholins: Carbonates' Impact. Astrobiology, 2017, 17, 8-26.	1.5	19
151	3D modeling of organic haze in Pluto's atmosphere. Icarus, 2017, 287, 72-86.	1.1	46
152	Nitrogen condensation in Titan's atmosphere under contemporary atmospheric composition. Icarus, 2017, 289, 120-133.	1.1	4
153	Titan's atmosphere and climate. Journal of Geophysical Research E: Planets, 2017, 122, 432-482.	1.5	228
154	Laboratory measurements of nitrogen dissolution in Titan lake fluids. Icarus, 2017, 289, 94-105.	1.1	35
155	Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. Science, 2017, 356, 155-159.	6.0	396
156	The origin of inner Solar System water. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20150384.	1.6	46
157	Titan Atmospheric Entry Radiative Heating. , 2017, , .		20
158	Huygens probe: A retrospective and lessons for the future. , 2017, , .		2
159	Experimental determination of acetylene and ethylene solubility in liquid methane and ethane: Implications to Titan's surface. Geochimica Et Cosmochimica Acta, 2017, 208, 86-101.	1.6	17
160	A whiff of nebular gas in Titan's atmosphere – Potential implications for the conditions and timing of Titan's formation. Icarus, 2017, 293, 231-242.	1.1	8
161	Electrification of sand on Titan and its influence on sediment transport. Nature Geoscience, 2017, 10, 260-265.	5.4	39
162	The photochemical fractionation of oxygen isotopologues in Titan's atmosphere. Icarus, 2017, 291, 17-30.	1.1	26
163	Detection of CO and HCN in Pluto's atmosphere with ALMA. Icarus, 2017, 286, 289-307.	1.1	89

		CITATION REP	ORT	
#	Article		IF	CITATIONS
164	Heat transport in the high-pressure ice mantle of large icy moons. Icarus, 2017, 285, 252-26	52.	1.1	47
165	Inventive processes in nature: from information origin in chemical evolution to technologica exhaustion. Earth Perspectives Transdisciplinarity Enabled, 2017, 4, .	1	1.4	1
166	Water and Volatiles in the Outer Solar System. Space Science Reviews, 2017, 212, 835-875		3.7	44
167	The formation and evolution of Titan's winter polar vortex. Nature Communications, 20	17, 8, 1586.	5.8	41
168	Extreme enrichment in atmospheric ¹⁵ N ¹⁵ N. Science Advances eaao6741.	, 2017, 3,	4.7	31
169	The near-surface methane humidity on Titan. Icarus, 2017, 286, 270-279.		1.1	27
170	Upper Atmospheres and Ionospheres of Planets and Satellites. , 2017, , 1-26.			0
171	The Structure of Titan's N ₂ and CH ₄ Coronae. Astronomical J 271.	ournal, 2017, 154,	1.9	6
172	Titan's cold case files - Outstanding questions after Cassini-Huygens. Planetary and Space S 2018, 155, 50-72.	cience,	0.9	37
173	The Acetylene-Ammonia Co-crystal on Titan. ACS Earth and Space Chemistry, 2018, 2, 366-3	375.	1.2	30
174	Seasonal Evolution of Titan's Stratosphere Near the Poles. Astrophysical Journal Letters, 201 L30.	18, 854,	3.0	43
175	Electrical Properties of Tholins and Derived Constraints on the Huygens Landing Site Compo the Surface of Titan. Journal of Geophysical Research E: Planets, 2018, 123, 807-822.	bsition at	1.5	5
176	Geological Evolution of Titan's Equatorial Regions: Possible Nature and Origin of the Dune N Journal of Geophysical Research E: Planets, 2018, 123, 1089-1112.	Naterial.	1.5	28
177	Retrieval of H2O abundance in Titan's stratosphere: A (re)analysis of CIRS/Cassini and P. observations. Icarus, 2018, 311, 288-305.	ACS/Herschel	1.1	5
178	Water and the Interior Structure of Terrestrial Planets and Icy Bodies. Space Science Review 214, 1.	s, 2018,	3.7	33
179	The Spectral Nature of Titan's Major Geomorphological Units: Constraints on Surface Comp Journal of Geophysical Research E: Planets, 2018, 123, 489-507.	osition.	1.5	33
180	Water Reservoirs in Small Planetary Bodies: Meteorites, Asteroids, and Comets. Space Scien 2018, 214, 1.	ce Reviews,	3.7	88
181	Seasonal radiative modeling of Titan's stratospheric temperatures at low latitudes. Icarus, 2 437-450.	018, 302,	1.1	21

#	Article	IF	CITATIONS
182	Study of Titan's fall southern stratospheric polar cloud composition with Cassini/CIRS: Detection of benzene ice. Icarus, 2018, 310, 89-104. New accurate theoretical line lists of 12CH4 and 13CH4 in the 0a€"13400Åcm <mml:math< td=""><td>1.1</td><td>46</td></mml:math<>	1.1	46
183	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"> <mml:msup><mml:mrow /><mml:mrow><mml:mo>â^`</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:mrow </mml:msup> range: Application to the modeling of methane absorption in Titan's atmosphere. Icarus. 2018. 303.	1.1	47
184	114-130. Strategies for Detecting Biological Molecules on Titan. Astrobiology, 2018, 18, 571-585.	1.5	33
185	A post-Cassini view of Titan's methane-based hydrologic cycle. Nature Geoscience, 2018, 11, 306-313.	5.4	59
186	Scientific rationale for Uranus and Neptune in situ explorations. Planetary and Space Science, 2018, 155, 12-40.	0.9	69
187	The photochemical fractionation of nitrogen isotopologues in Titan's atmosphere. Icarus, 2018, 307, 371-379.	1.1	11
188	Role of the global water ocean on the evolution of Titan's primitive atmosphere. Icarus, 2018, 310, 127-139.	1.1	7
189	Spatial variations in Titan's atmospheric temperature: ALMA and Cassini comparisons from 2012 to 2015. Icarus, 2018, 307, 380-390.	1.1	16
190	Multiphase-equilibria analysis: Application in modeling the atmospheric and lacustrine chemical systems of Saturn's moon Titan. Fluid Phase Equilibria, 2018, 458, 153-169.	1.4	15
191	An analytical solubility model for nitrogen–methane–ethane ternary mixtures. Icarus, 2018, 299, 175-186.	1.1	11
192	Titan Lakes Simulation System (TiLSS): A cryogenic experimental setup to simulate Titan's liquid hydrocarbon surfaces. Review of Scientific Instruments, 2018, 89, 124502.	0.6	0
193	The Origin and Evolution of Saturn, with Exoplanet Perspective. , 2018, , 5-43.		23
194	Detection of Prebiotic Molecules in Plasma and Photochemical Aerosol Analogs Using GC/MS/MS Techniques. Astrophysical Journal, 2018, 865, 133.	1.6	25
195	Kinetics of D/H isotope fractionation between molecular hydrogen and water. Geochimica Et Cosmochimica Acta, 2018, 242, 191-212.	1.6	15
196	Upper Atmospheres and Ionospheres of Planets and Satellites. , 2018, , 349-374.		1
197	The Solar System as a Benchmark for Exoplanet Systems Interpretation. , 2018, , 421-444.		0
198	Seasonal evolution of C ₂ N ₂ , C ₃ H ₄ , and C ₄ H ₂ abundances in Titan's lower stratosphere. Astronomy and Astrophysics, 2018, 609, A64.	2.1	32
199	Primordial N2 provides a cosmochemical explanation for the existence of Sputnik Planitia, Pluto. Icarus, 2018, 313, 79-92.	1.1	21

#	Article	IF	CITATIONS
200	Interferometric Imaging of Titan's HC ₃ N, H ¹³ CCCN, and HCCC ¹⁵ N. Astrophysical Journal Letters, 2018, 859, L15.	3.0	17
201	SPRITE: A Saturn probe new frontiers mission. , 2018, , .		4
202	Krypton isotopes and noble gas abundances in the coma of comet 67P/Churyumov-Gerasimenko. Science Advances, 2018, 4, eaar6297.	4.7	52
203	Detection Opportunity for Aromatic Signature in Titan's Aerosols in the 4.1–5.3 μm Range. Astrophysical Journal Letters, 2018, 861, L25.	3.0	2
204	Binary-Phase Acetonitrile and Water Aerosols: Infrared Studies and Theoretical Simulation at Titan Atmosphere Conditions. ACS Earth and Space Chemistry, 2018, 2, 811-820.	1.2	5
205	Exploring the Potential of Combustion on Titan. SAE International Journal of Aerospace, 0, 11, 27-46.	4.0	3
206	A model intercomparison of Titan's climate and low-latitude environment. Icarus, 2019, 333, 113-126.	1.1	36
207	TEAM - Titan Exploration Atmospheric Microprobes. , 2019, , .		0
208	Modeling Binary Mixtures of Water + Light Hydrocarbon Using the Perturbed-Chain Statistical Associating Fluid Theory with Induced Association: Improvement in Describing All Equilibrium Phases. ACS Earth and Space Chemistry, 2019, 3, 2569-2581.	1.2	1
209	The Equation of State of MH-III: A Possible Deep CH ₄ Reservoir in Titan, Super-Titan Exoplanets, and Moons. Astrophysical Journal, 2019, 882, 71.	1.6	6
210	Measurement of CH ₃ D on Titan at Submillimeter Wavelengths. Astronomical Journal, 2019, 157, 219.	1.9	8
211	Contributions from Accreted Organics to Titan's Atmosphere: New Insights from Cometary and Chondritic Data. Astrophysical Journal, 2019, 871, 59.	1.6	39
212	Cassini-Huygens' exploration of the Saturn system: 13 years of discovery. Science, 2019, 364, 1046-1051.	6.0	35
213	Modeling early Titan's ocean composition. Icarus, 2019, 333, 61-70.	1.1	16
214	Ethane in Titan's Stratosphere from <i>Cassini</i> CIRS Far- and Mid-infrared Spectra. Astronomical Journal, 2019, 157, 160.	1.9	13
215	Seasonal Evolution of Titan's Stratosphere During the Cassini Mission. Geophysical Research Letters, 2019, 46, 3079-3089.	1.5	37
217	The Solar System. , 2019, , 1-10.		0
218	Atmospheric Structure. , 2019, , 11-29.		0

#	Article	IF	CITATIONS
220	Aerosol Extinction and Scattering. , 2019, , 52-64.		0
221	Quantitative Spectroscopy. , 2019, , 65-77.		0
222	Spectrographs. , 2019, , 78-85.		0
223	Spectroscopic Methods to Study Planetary Atmospheres. , 2019, , 86-102.		0
224	Solar Radiation, Its Absorption in the Atmospheres, and Airglow. , 2019, , 103-119.		0
225	Chemical Kinetics. , 2019, , 120-139.		0
226	Photochemical Modeling. , 2019, , 140-154.		0
229	Titan. , 2019, , 367-442.		0
230	Triton. , 2019, , 443-466.		0
231	Pluto and Charon. , 2019, , 467-496.		0
234	Jupiter formed as a pebble pile around the N ₂ ice line. Astronomy and Astrophysics, 2019, 632, L11.	2.1	48
235	Altitude-Controlled Light Gas Balloons for Venus and Titan Exploration. , 2019, , .		10
236	A Co-Crystal between Acetylene and Butane: A Potentially Ubiquitous Molecular Mineral on Titan. ACS Earth and Space Chemistry, 2019, 3, 2808-2815.	1.2	19
237	Simulating the density of organic species in the atmosphere of Titan with a coupled ion-neutral photochemical model. Icarus, 2019, 324, 120-197.	1.1	125
238	Orbitally and geographically caused seasonal asymmetry in Titan's tropospheric climate and its implication for the lake distribution. Icarus, 2019, 317, 337-353.	1.1	20
239	Spatial and seasonal variations in C3H hydrocarbon abundance in Titan's stratosphere from Cassini CIRS observations. Icarus, 2019, 317, 454-469.	1.1	17
240	Photoreactivity of condensed acetylene on Titan aerosols analogues. Icarus, 2019, 321, 358-366.	1.1	11
941	Seasonal evolution of temperatures in Titan's lower stratosphere Icarus 2020 344 113188	11	13

	CITATION	Report	
#	Article	IF	Citations
242	Titan's ionospheric chemistry, fullerenes, oxygen, galactic cosmic rays and the formation of exobiological molecules on and within its surfaces and lakes. Icarus, 2020, 344, 113246.	1.1	11
243	N2 and H2 broadened isobutane infrared absorption cross sections and butane upper limits on Titan. Icarus, 2020, 344, 113460.	1.1	9
244	Titan's neutral atmosphere seasonal variations up to the end of the Cassini mission. Icarus, 2020, 344, 113413.	1.1	14
245	Mapping the zonal structure of Titan's northern polar vortex. Icarus, 2020, 337, 113441.	1.1	12
246	On the H2 abundance and ortho-to-para ratio in Titan's troposphere. Icarus, 2020, 344, 113261.	1.1	7
247	Protein Stability in Titan's Subsurface Water Ocean. Astrobiology, 2020, 20, 190-198.	1.5	1
248	Identifiable Acetylene Features Predicted for Young Earth-like Exoplanets with Reducing Atmospheres Undergoing Heavy Bombardment. Astrophysical Journal, 2020, 888, 21.	1.6	25
249	Seasonal changes in the middle atmosphere of Titan from Cassini/CIRS observations: Temperature and trace species abundance profiles from 2004 to 2017. Icarus, 2020, 344, 113547.	1.1	22
250	Decomposition of electron ionization mass spectra for space application using a Monte arlo approach. Rapid Communications in Mass Spectrometry, 2020, 34, e8684.	0.7	8
251	Shift in the Raman symmetric stretching band of N ₂ , CO ₂ , and CH ₄ as a function of temperature, pressure, and density. Journal of Raman Spectroscopy, 2020, 51, 555-568.	1.2	19
252	MINIATURIZATION IN MASS SPECTROMETRY. Mass Spectrometry Reviews, 2020, 39, 453-470.	2.8	40
253	Escape and evolution of Titan's N2 atmosphere constrained by 14N/15N isotope ratios. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2020-2035.	1.6	8
254	The Bathymetry of Moray Sinus at Titan's Kraken Mare. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006558.	1.5	10
255	On the Habitability and Future Exploration of Ocean Worlds. Space Science Reviews, 2020, 216, 1.	3.7	36
256	Properties and Behavior of the Acetonitrile–Acetylene Co-Crystal under Titan Surface Conditions. ACS Earth and Space Chemistry, 2020, 4, 1375-1385.	1.2	13
257	On the methylacetylene abundance and nitrogen isotope ratio in Pluto's atmosphere. Planetary and Space Science, 2020, 192, 105044.	0.9	6
258	One-Pot Hydrogen Cyanide-Based Prebiotic Synthesis of Canonical Nucleobases and Glycine Initiated by High-Velocity Impacts on Early Earth. Astrobiology, 2020, 20, 1476-1488.	1.5	24
259	Nitrogen Atmospheres of the Icy Bodies in the Solar System. Space Science Reviews, 2020, 216, 1.	3.7	11

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
260	The chemical composition of impact craters on Titan. Astronomy and Astrophysics, 2020, 641, A16.	2.1	11
261	IN SITU MASS SPECTROMETERS FOR APPLICATIONS IN SPACE. Mass Spectrometry Reviews, 2020, 40, 670-691.	2.8	5
262	Gas-grain model of carbon fractionation in dense molecular clouds. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4663-4679.	1.6	23
263	Chemical and Isotopic Composition Measurements on Atmospheric Probes Exploring Uranus and Neptune. Space Science Reviews, 2020, 216, 1.	3.7	5
264	Air-sea interactions on Titan: Lake evaporation, atmospheric circulation, and cloud formation. Icarus, 2020, 351, 113903.	1.1	6
265	Hydrogen, Hydrocarbons, and Habitability Across the Solar System. Elements, 2020, 16, 47-52.	0.5	22
266	Dynamics of Titan's high-pressure ice layer. Earth and Planetary Science Letters, 2020, 545, 116416.	1.8	12
267	Ice-Ocean Exchange Processes in the Jovian and Saturnian Satellites. Space Science Reviews, 2020, 216, 1.		43
268	Phoebe's carbon isotope composition as evidence for self-shielding in the solar nebula. Icarus, 2020, 345, 113714.		5
269	Potential vorticity structure of Titan's polar vortices from Cassini CIRS observations. Icarus, 2021, 354, 114030.		17
270	The effect of Europa and Enceladus analog seawater composition on isotopic measurements of volatile CO2. Icarus, 2021, 358, 114216.	1.1	1
271	Ethane clathrate hydrate infrared signatures for solar system remote sensing. Icarus, 2021, 357, 114255.	1.1	5
272	Quantitative study of methane-nitrogen mixed clathrates using gas chromatography and Raman spectroscopy for their detection in icy surfaces of the outer solar system. Icarus, 2021, 358, 114182.	1.1	3
273	Bond-forming and electron-transfer reactivity between Ar2+ and N2. Physical Chemistry Chemical Physics, 2021, 23, 11287-11299.	1.3	4
274	<i>Ab initio</i> investigation of the CO–N2 quantum scattering: The collisional perturbation of the pure rotational R(0) line in CO. Journal of Chemical Physics, 2021, 154, 054314.	1.2	8
275	Formation Conditions of Titan's and Enceladus's Building Blocks in Saturn's Circumplanetary Disk. Planetary Science Journal, 2021, 2, 50.	1.5	2
276	Detectability of biosignatures on LHS 1140 b. Astronomy and Astrophysics, 2021, 647, A48.	2.1	20
277	Classification of the Biogenicity of Complex Organic Mixtures for the Detection of Extraterrestrial Life, 2021, 11, 234.	1.1	12

#	Article		CITATIONS
278	Titan's Interior Structure and Dynamics After the Cassini-Huygens Mission. Annual Review of Earth and Planetary Sciences, 2021, 49, 579-607.	4.6	17
279	Firstâ€Principles Diffusivity Ratios for Atmospheric Isotope Fractionation on Mars and Titan. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006857.	1.5	2
280	Life as the Only Reason for the Existence of N2–O2-Dominated Atmospheres. Astronomy Reports, 2021, 65, 275-296.	0.2	12
281	Cryovolcanism and Degassing on Titan, a Moon of Saturn. Journal of Volcanology and Seismology, 2021, 15, 201-215.	0.2	1
282	Latitudinal Distribution of Ethane Precipitation on Titan Modulated by Topography and Orbital Forcing and Its Implication for Titan's Surface Evolution. Planetary Science Journal, 2021, 2, 86.	1.5	0
283	How to Identify Exoplanet Surfaces Using Atmospheric Trace Species in Hydrogen-dominated Atmospheres. Astrophysical Journal, 2021, 914, 38.	1.6	30
284	Investigating the Condensation of Benzene (C ₆ H ₆) in Titan's South Polar Cloud System with a Combination of Laboratory, Observational, and Modeling Tools. Planetary Science Journal, 2021, 2, 121.	1.5	4
285	Exploration of Enceladus and Titan: investigating ocean worlds' evolution and habitability in the Saturn system. Experimental Astronomy, 2022, 54, 877-910.	1.6	3
286	Science Goals and Objectives for the Dragonfly Titan Rotorcraft Relocatable Lander. Planetary Science Journal, 2021, 2, 130.	1.5	80
287	Distribution and intensity of water ice signature in South Xanadu and Tui Regio. Icarus, 2021, 364, 114464.	1.1	7
288	Tracking Short-term Variations in the Haze Distribution of Titan's Atmosphere with SINFONI VLT. Planetary Science Journal, 2021, 2, 180.	1.5	3
289	Vertical compositional variations of liquid hydrocarbons in Titan's alkanofers. Astronomy and Astrophysics, 2021, 653, A80.	2.1	3
290	The HITRAN2020 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 277, 107949.	1.1	770
291	Photochemistry of benzene (C6H6) hydrogen cyanide (HCN) co-condensed ices part 1: A source of solid-state production of volatile nitrile compounds in Titan's stratosphere. Icarus, 2021, 368, 114595.	1.1	2
292	Titan occultations of Orion's belt observed with Cassini/UVIS. Icarus, 2021, 368, 114587.	1.1	3
293	Nitrogen in the Stratosphere of Titan from Cassini CIRS Infrared Spectroscopy. Thirty Years of Astronomical Discovery With UKIRT, 2013, , 123-143.	0.3	2
294	Titan. , 2015, , 2506-2523.		2
296	Low CO/CO ₂ ratios of comet 67P measured at the Abydos landing site by the <i>Ptolemy</i> mass spectrometer. Astronomy and Astrophysics, 2015, 583, A42.	2.1	23

#	Article	IF	CITATIONS
297	Anisotropic thermal expansion of the acetylene–ammonia co-crystal under Titan's conditions. Journal of Applied Crystallography, 2020, 53, 1524-1530.	1.9	7
298	Comparative Climatology of Terrestrial Planets. , 2013, , .		6
299	The Dynamical Evolution of the Asteroid Belt. , 2015, , .		23
300	Formation, Composition, and History of the Pluto System: A Post-New Horizons Synthesis. , 2020, , 1-1.		4
301	Hydrocarbons and degassing processes of Saturn's satellite Titan. Lithosphere (Russian Federation), 2020, 20, 873-895.	0.1	1
303	Pluto's Ultraviolet Spectrum, Surface Reflectance, and Airglow Emissions. Astronomical Journal, 2020, 159, 274.	1.9	12
304	C ₂ N ₂ Vertical Profile in Titan's Stratosphere. Astronomical Journal, 2020, 160, 178.	1.9	3
305	Detection of Cyclopropenylidene on Titan with ALMA. Astronomical Journal, 2020, 160, 205.	1.9	36
306	Experimental Investigation of the Acetylene–Benzene Cocrystal on Titan. Planetary Science Journal, 2020, 1, 76.	1.5	9
307	Planetary Mass Spectrometry for Agnostic Life Detection in the Solar System. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	19
308	The Role of Impacts on the Atmospheres on the Moons of Outer Giants. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	0
309	Identification of DNA Bases and Their Cations in Astrochemical Environments: Computational Spectroscopy of Thymine as a Test Case. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	0
310	Lacustrine Features (Titan). , 2014, , 1-14.		0
311	Titan. , 2014, , 1-19.		0
312	Lacustrine Features (Titan). , 2015, , 1094-1105.		0
313	Die Ursprünge des Lebendigen. , 2017, , 153-220.		0
314	Water and Volatiles in the Outer Solar System. Space Sciences Series of ISSI, 2017, , 191-231.	0.0	0
315	Cometary Isotopic Measurements. , 2017, , 47-83.		0

#	Article	IF	CITATIONS
316	Constraints from Comets on the Formation and Volatile Acquisition of the Planets and Satellites. , 2017, , 297-342.		0
317	The Solar System as a Benchmark for Exoplanet Systems Interpretation. , 2018, , 1-24.		Ο
318	Water Reservoirs in Small Planetary Bodies: Meteorites, Asteroids, and Comets. Space Sciences Series of ISSI, 2018, , 35-81.	0.0	0
319	Water and the Interior Structure of Terrestrial Planets and Icy Bodies. Space Sciences Series of ISSI, 2018, , 343-375.	0.0	0
320	Titan., 2019,, 1-19.		0
321	Ursprung und Evolution des Lebendigen. , 2019, , 193-279.		0
322	Molecular hydrogen in the upper atmospheres of Saturn and Titan. Icarus, 2022, 376, 114876.	1.1	2
323	Science goals and new mission concepts for future exploration of Titan's atmosphere, geology and habitability: titan POlar scout/orbitEr and in situ lake lander and DrONe explorer (POSEIDON). Experimental Astronomy, 2022, 54, 911-973.	1.6	5
324	Cryovolcanism. , 2022, , 161-234.		3
325	Out of Thin Air? Astrobiology and Atmospheric Chemotrophy. Astrobiology, 2022, , .	1.5	5
326	Trajectory-based Simulation of Far-infrared Collision-induced Absorption Profiles of CH ₄ –N ₂ for Modeling Titan's Atmosphere. Astrophysical Journal, Supplement Series, 2022, 258, 33.	3.0	4
327	Ground-based HCN submillimetre measurements in Titan's atmosphere: an intercomparison with <i>Herschel</i> observations. Astronomy and Astrophysics, 2022, 658, A88.	2.1	5
328	The Titan Haze Simulation (THS) experiment on COSmIC. Part III. XANES study of laboratory analogs of Titan tholins. Icarus, 2022, 376, 114841.	1.1	6
329	Bimolecular reactions of S ²⁺ with Ar, H ₂ and N ₂ : reactivity and dynamics. Physical Chemistry Chemical Physics, 2022, 24, 8113-8128.	1.3	0
330	MEMS GC Column Performance for Analyzing Organics and Biological Molecules for Future Landed Planetary Missions. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	5
331	Chemistry in Acetonitrile–Water Films Induced by Slow (<15 eV) Electrons: Application to the Earth and Space Chemistry, 2022, 6, 1126-1132.	1.2	6
332	Analytical Chemistry Throughout This Solar System. Annual Review of Analytical Chemistry, 2022, 15, 197-219.	2.8	2
333	The Role of Atmospheric Exchange in Falseâ€Positive Biosignature Detection. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	4

		CITATION REPORT		
#	Article		IF	CITATIONS
334	New Constraints on Titan's Stratospheric n-Butane Abundance. Planetary Science Journ	nal, 2022, 3, 59.	1.5	2
335	Paleoclimate Evolution on Titan After Episodic Massive Methane Outgassing Simulated by Climate Model. Journal of Geophysical Research E: Planets, 2021, 126, .	a Global	1.5	2
336	Strong Isotope-dependent Photodissociation Branching Ratios of N ₂ and The Implications for the ¹⁴ N/ ¹⁵ N Isotope Fractionation in Titan's At Astrophysical Journal, 2021, 923, 196.		1.6	12
337	Convection behind the Humidification of Titan's Stratosphere. Astrophysical Journal, 20	021, 922, 239.	1.6	3
338	Methods and limitations of stable isotope measurements via direct elution of chromatogra using gas chromotography-Orbitrap mass spectrometry. International Journal of Mass Spec 2022, 477, 116848.	iphic peaks ctrometry,	0.7	12
339	Analysis of four solar occultations by Titan's atmosphere with the infrared channel of t instrument: Haze, CH ₄ , CH ₃ D, and CO vertical profiles. Astronom Astrophysics, 2022, 666, A140.		2.1	3
340	TRAPPIST-1h as an Exo-Titan. I. The Role of Assumptions about Atmospheric Parameters in an Exoplanet Atmosphere. Astrophysical Journal, 2022, 930, 73.	Understanding	1.6	0
341	Bimolecular reactions of CH ₂ CN ²⁺ with Ar, N ₂ and and dynamics. Physical Chemistry Chemical Physics, 0, , .	CO: reactivity	1.3	0
342	Vertical Distribution of Cyclopropenylidene and Propadiene in the Atmosphere of Titan. Ast Journal, 2022, 933, 230.	trophysical	1.6	3
343	Hydrocarbon chemistry in the atmosphere of a Warmer Exo-Titan. Frontiers in Astronomy a Sciences, 0, 9, .	and Space	1.1	1
344	Influence of observed seasonally varying composition on Titan's stratospheric circulation 2023, 390, 115291.	on. Icarus,	1.1	5
345	1,3-Butadiene on Titan: Crystal Structure, Thermal Expansivity, and Raman Signatures. ACS Space Chemistry, 2022, 6, 2274-2281.	Earth and	1.2	3
346	ORACLE: A Sample-Return Mission to Titan. , 2022, , .			0
347	Air–Sea Interactions on Titan: Effect of Radiative Transfer on the Lake Evaporation and A Circulation. Planetary Science Journal, 2022, 3, 232.	tmospheric	1.5	2
348	In situ organic biosignature detection techniques for space applications. Frontiers in Astro Space Sciences, 0, 9, .	nomy and	1.1	7
349	Hydrocarbon lakes and seas & internal ocean on Titan—Resemblance with primitive prebiotic chemistry. , 2023, , 617-672.	earth's		0
350	Dragonfly : Entry and Descent one Titan Year after Huygens. , 2023, , .			1
351	The Fermi Paradox and Astrobiology. , 2023, , 209-266.			0

#	Article	IF	Citations
352	Experimental determination of interaction between the radiation fields of Dragonfly's MMRTG and Titan's environment II: Gamma induced atmospheric conductivity. Acta Astronautica, 2023, 208, 91-95.	1.7	0
353	Molecular Structure, Dynamics, and Vibrational Spectroscopy of the Acetylene:Ammonia (1:1) Plastic Co-Crystal at Titan Conditions. ACS Earth and Space Chemistry, 2023, 7, 479-489.	1.2	2
354	Leto Mission Concept for Green Reconnaissance of the Marius Hills Lunar Pit. Planetary Science Journal, 2023, 4, 26.	1.5	1
355	Simulation of Cocrystal Formation in Planetary Atmospheres: The C ₆ H ₆ H ₆ H ₂ Cocrystal Produced by Gas Deposition. Journal of Physical Chemistry A, 2023, 127, 2322-2335.	1.1	0
356	Updated Radiative Transfer Model for Titan in the Near-infrared Wavelength Range: Validation against Huygens Atmospheric and Surface Measurements and Application to the Cassini/VIMS Observations of the Dragonfly Landing Area. Planetary Science Journal, 2023, 4, 44.	1.5	0
357	Decomposition of Benzene during Impacts in N ₂ -dominated Atmospheres. Astrophysical Journal, 2023, 945, 149.	1.6	2
363	Feature Extraction and Classification from Planetary Science Datasets enabled by Machine Learning. , 2023, , .		1
366	Titan. , 2023, , 3054-3072.		0

Titan, Enceladus, and other icy moons of Saturn. , 2024, , 315-356.

0