Radial anisotropy in the crust of SE Tibet and SW China

Geophysical Research Letters 37, DOI: 10.1029/2010gl044981

Citation Report

#	Article	IF	CITATIONS
1	Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography. Journal of Geophysical Research, 2010, 115, .	3.3	254
2	Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography. Journal of Geophysical Research, 2011, 116, .	3.3	134
3	A synoptic view of the distribution and connectivity of the midâ€crustal low velocity zone beneath Tibet. Journal of Geophysical Research, 2012, 117, .	3.3	214
4	Seismic Imaging of Microblocks and Weak Zones in the Crust Beneath the Southeastern Margin of the Tibetan Plateau. , 0, , .		11
5	Upper- and mid-crustal radial anisotropy beneath the central Himalaya and southern Tibet from seismic ambient noise tomography. Geophysical Journal International, 2012, 189, 1169-1182.	2.4	42
6	Roles of quartz and mica in seismic anisotropy of mylonites. Geophysical Journal International, 2012, 190, 1123-1134.	2.4	44
7	Crustal radial anisotropy across Eastern Tibet and the Western Yangtze Craton. Journal of Geophysical Research: Solid Earth, 2013, 118, 4226-4252.	3.4	126
8	Distinct variations of crustal shear wave velocity structure and radial anisotropy beneath the North China Craton and tectonic implications. Gondwana Research, 2013, 23, 25-38.	6.0	70
9	Crustal radial anisotropy beneath the Dabie orogenic belt from ambient noise tomography. Geophysical Journal International, 2013, 195, 1149-1164.	2.4	49
10	Source directionality of ambient seismic noise inferred from threeâ€component beamforming. Journal of Geophysical Research: Solid Earth, 2013, 118, 240-248.	3.4	43
11	Crustal structure beneath SE Tibet from joint analysis of receiver functions and Rayleigh wave dispersion. Geophysical Research Letters, 2014, 41, 1479-1484.	4.0	63
12	Low wave speed zones in the crust beneath SE Tibet revealed by ambient noise adjoint tomography. Geophysical Research Letters, 2014, 41, 334-340.	4.0	92
13	Shear-velocity structure, radial anisotropy and dynamics of the Tibetan crust. Geophysical Journal International, 2014, 199, 1395-1415.	2.4	48
14	Partially melted, mica-bearing crust in Central Tibet. Tectonics, 2014, 33, 1408-1424.	2.8	108
15	Shallow crustal radial anisotropy beneath the Tehran basin of Iran from seismic ambient noise tomography. Physics of the Earth and Planetary Interiors, 2014, 231, 16-29.	1.9	27
16	Similarities between the Th/U map of the western US crystalline basement and the seismic properties of the underlying lithosphere. Earth and Planetary Science Letters, 2014, 391, 243-254.	4.4	9
17	Anisotropic upper crust above the aftershock zone of the 2013 M s 7.0 L ushan earthquake from the shear wave splitting analysis. Geochemistry, Geophysics, Geosystems, 2015, 16, 3679-3696.	2.5	9
18	Crust and Lithospheric Structure - Seismic Imaging and Monitoring with Ambient Noise Correlations. , 2015, , 391-417.		40

#	Article	IF	CITATIONS
19	Anisotropic lowâ€velocity lower crust beneath the northeastern margin of <scp>T</scp> ibetan <scp>P</scp> lateau: Evidence for crustal channel flow. Geochemistry, Geophysics, Geosystems, 2015, 16, 4223-4236.	2.5	35
20	Radial anisotropy in the crust beneath the northeastern Tibetan Plateau from ambient noise tomography. Journal of Earth Science (Wuhan, China), 2015, 26, 864-871.	3.2	10
21	Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions. Earth and Planetary Science Letters, 2015, 415, 16-24.	4.4	229
22	Crustal shear wave velocity and radial anisotropy beneath the Rio Grande rift from ambient noise tomography. Journal of Geophysical Research: Solid Earth, 2015, 120, 1005-1019.	3.4	17
23	A method for inversion of layered shear wavespeed azimuthal anisotropy from Rayleigh wave dispersion using the Neighborhood Algorithm. Earthquake Science, 2015, 28, 59-69.	0.9	12
24	Inferring the oriented elastic tensor from surface wave observations: preliminary application across the western United States. Geophysical Journal International, 2015, 201, 996-1021.	2.4	38
25	Crustal anisotropy in northeastern Tibetan Plateau inferred from receiver functions: Rock textures caused by metamorphic fluids and lower crust flow?. Tectonophysics, 2015, 661, 66-80.	2.2	37
26	Crustal layering in northeastern Tibet: a case study based on joint inversion of receiver functions and surface wave dispersion. Geophysical Journal International, 2015, 203, 692-706.	2.4	33
27	Age and anatomy of the Gongga Shan batholith, eastern Tibetan Plateau, and its relationship to the active Xianshui-he fault. , 2016, 12, 948-970.		38
28	Radial anisotropy beneath northeast <scp>T</scp> ibet, implications for lithosphere deformation at a restraining bend in the <scp>K</scp> unlun fault and its vicinity. Geochemistry, Geophysics, Geosystems, 2016, 17, 3674-3690.	2.5	27
29	A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophysical Journal International, 2016, 206, 954-979.	2.4	260
30	The anisotropic structure in the crust in the northern part of North China from ambient seismic noise tomography. Geophysical Journal International, 2016, 204, 1649-1661.	2.4	8
31	Crustal and upper-mantle structure of the southeastern Tibetan Plateau from joint analysis of surface wave dispersion and receiver functions. Journal of Asian Earth Sciences, 2016, 117, 52-63.	2.3	67
32	Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data. Geophysical Journal International, 2016, 204, 167-179.	2.4	71
33	Rupture mechanism and seismotectonics of the <i>M_s</i> 6.5 Ludian earthquake inferred from threeâ€dimensional magnetotelluric imaging. Geophysical Research Letters, 2017, 44, 1275-1285.	4.0	54
34	3D v P and v S models of southeastern margin of the Tibetan plateau from joint inversion of body-wave arrival times and surface-wave dispersion data. Earthquake Science, 2017, 30, 17-32.	0.9	3
35	Extensive seismic anisotropy in the lower crust of Archean metamorphic terrain, South India, inferred from ambient noise tomography. Tectonophysics, 2017, 694, 164-180.	2.2	8
36	Crustal Anisotropy Across Eastern Tibet and Surroundings Modeled as a Depth-Dependent Tilted Hexagonally Symmetric Medium. Geophysical Journal International, 0, , ggx004.	2.4	15

CITATION REPORT

#	Article	IF	CITATIONS
37	Crustal radial anisotropy beneath Cameroon from ambient noise tomography. Tectonophysics, 2017, 696-697, 37-51.	2.2	20
38	Analytical and numerical simulations of uplift processes at the Tibet-Sichuan boundary. Earthquake Science, 2017, 30, 135-143.	0.9	1
39	Electrical conductivity of the plagioclase–NaCl–water system and its implication for the high conductivity anomalies in the mid-lower crust of Tibet Plateau. Contributions To Mineralogy and Petrology, 2018, 173, 1.	3.1	15
40	Bayesian inversion of surface-wave data for radial and azimuthal shear-wave anisotropy, with applications to central Mongolia and west-central Italy. Geophysical Journal International, 2018, 213, 278-300.	2.4	13
41	Crustal wave speed structure of North Texas and Oklahoma based on ambient noise cross-correlation functions and adjoint tomography. Geophysical Journal International, 2018, 214, 716-730.	2.4	9
42	Crustal and uppermost mantle structures of the South China from joint analysis of receiver functions and Rayleigh wave dispersions. Physics of the Earth and Planetary Interiors, 2018, 278, 16-25.	1.9	16
43	Crustal Azimuthal Anisotropy Beneath the Southeastern Tibetan Plateau and its Geodynamic Implications. Journal of Geophysical Research: Solid Earth, 2018, 123, 9733-9749.	3.4	36
44	Crustal Structure of Yunnan Province of China from Teleseismic Receiver Functions: Implications for Regional Crust Evolution. Journal of Earth Science (Wuhan, China), 2018, 29, 1419-1430.	3.2	5
45	Midcrustal Deformation in the Central Andes Constrained by Radial Anisotropy. Journal of Geophysical Research: Solid Earth, 2018, 123, 4798-4813.	3.4	33
46	Crustal Structure of Southwest China and Northern Vietnam From Ambient Noise Tomography: Implication for the Largeâ€Scale Material Transport Model in SE Tibet. Tectonics, 2018, 37, 1492-1506.	2.8	47
47	A new geodynamic model related to seismicity beneath the southeastern margin of the Tibetan Plateau revealed by regional tomography. Geophysical Journal International, 2018, 214, 933-951.	2.4	11
48	A new crustal shear-velocity model in Southwest China from joint seismological inversion and its implications for regional crustal dynamics. Geophysical Journal International, 0, , .	2.4	18
49	Direct Inversion for Threeâ€Dimensional Shear Wave Speed Azimuthal Anisotropy Based on Surface Wave Ray Tracing: Methodology and Application to Yunnan, Southwest China. Journal of Geophysical Research: Solid Earth, 2019, 124, 11394-11413.	3.4	43
50	Crustal P wave velocity structure beneath the SE margin of the Tibetan Plateau from Deep Seismic Sounding results. Tectonophysics, 2019, 755, 109-126.	2.2	6
51	Study on the mantle discontinuity structures beneath Northeast China with time–frequency phase-weighted stacks of ambient noise correlations. Geophysical Journal International, 2019, 218, 1490-1501.	2.4	4
52	Complex deformation within the crust and upper mantle beneath SE Tibet revealed by anisotropic Rayleigh wave tomography. Physics of the Earth and Planetary Interiors, 2019, 286, 165-178.	1.9	10
53	Crustal shear wave velocity and radial anisotropy in the Xiaojiang fault zone system (SE Tibet) revealed by ambient noise interferometry. Tectonophysics, 2020, 792, 228594.	2.2	15
54	Upper Mantle Anisotropy beneath the Western Segment, NW Indian Himalaya, Using Shear Wave Splitting. Lithosphere, 2020, 2020, .	1.4	6

	CITATION REPORT	
Article	IF	CITATIONS
High resolution crustal model of SE Tibet from joint inversion of seismic P-wave travel-times and Bouguer gravity anomalies and its implication for the crustal channel flow. Tectonophysics, 2020, 792, 228580.	2.2	13
A Middle Crustal Channel of Radial Anisotropy Beneath the Northeastern Basin and Range. Tectoni 2020, 39, e2020TC006140.	cs, 2.8	5
The Frequencyâ€Bessel Spectrograms of Multicomponent Crossâ€Correlation Functions From Seis Ambient Noise. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019630.	smic 3.4	34
Highâ€Resolution 3â€D Shear Wave Velocity Model of the Tibetan Plateau: Implications for Crusta Deformation and Porphyry Cu Deposit Formation. Journal of Geophysical Research: Solid Earth, 202125, e2019JB019215.	l 20, 3.4	29
Surface-Wave Tomography of Eastern and Central Tibet from Two-Plane-Wave Inversion: Rayleigh-Wave and Love-Wave Phase Velocity Maps. Bulletin of the Seismological Society of Ameri 2020, 110, 1359-1371.	ca, 2.3	7
The 3D Seismic Azimuthal Anisotropies and Velocities in the Eastern Tibetan Plateau Extracted by a Azimuthâ€Dependent Dispersion Curve Inversion Method. Tectonics, 2020, 39, e2019TC005747.	an 2.8	19
Shear Velocity and Radial Anisotropy beneath Southwestern Canada: Evidence for Crustal Extensio and Thickâ€Skinned Tectonics. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB02	n 3.4 18310.	7
Sharp Lateral Moho Variations Across the SE Tibetan Margin and Their Implications for Plateau Growth. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018117.	3.4	27
Direct Surface Wave Radial Anisotropy Tomography in the Crust of the Eastern Himalayan Syntaxis Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018257.	S. 3.4	20
Upper crustal shear wave velocity and radial anisotropy beneath Jeju Island volcanoes from ambien noise tomography. Geophysical Journal International, 2021, 225, 1332-1348.	t 2.4	8
Lowâ€Velocity Zones and Negative Radial Anisotropy Beneath the Plume Perturbed Northwestern Volcanic Province. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020295.	Deccan 3.4	12
Weak Crust in Southeast Tibetan Plateau Revealed by Lgâ€Wave Attenuation Tomography: Implica for Crustal Material Escape. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB0207	ations 3.4 48. 3.4	24
Geophysical constraints on the nature of lithosphere in central and eastern Tibetan plateau. Tectonophysics, 2021, 804, 228722.	2.2	21
Crustal Radial Anisotropy of the Iran Plateau Inferred From Ambient Noise Tomography. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020236.	3.4	10
The Community Velocity Model V.1.0 of Southwest China, Constructed from Joint Body- and Surface-Wave Travel-Time Tomography. Seismological Research Letters, 2021, 92, 2972-2987.	1.9	71
Surface-wave tomography of the Emeishan large igneous province (China): Magma storage system hidden hotspot track, and its impact on the Capitanian mass extinction. Geology, 2021, 49, 1032-	, 1037. 4.4	32

71	Radial Anisotropy in East Asia From Multimode Surface Wave Tomography. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021201.	3.4	7
73	Characterization of Seismic Noise in an Oil Field Using Passive Seismic Data from a Hydraulic Fracturing Operation. Pure and Applied Geophysics, 2021, 178, 3849-3868.	1.9	1

#

			2
#	ARTICLE	IF	CITATIONS
74	Noise-based Seismic Tomography at the Valhall Oil Field with Using Scholte and Love Waves. , 2015, , .		1
75	Geometry-preserving full-waveform tomography and its application in the Longmen Shan area. Science China Earth Sciences, 2022, 65, 437-448.	5.2	3

CITATION REPORT

76 基于程凼æ−¹ç¨‹çš"远震æˆåƒæ−¹æ³•åæ¼"éẻè−é«ĩ原东åŒ−ç¼ĩ速度å'Œå¾"å'å₃åå¹¼,性结æž". SΩᡌENTIA SUNICA Terra

77	Velocity structure and radial anisotropy beneath the northeastern Tibetan Plateau revealed by eikonal equation-based teleseismic P-wave traveltime tomography. Science China Earth Sciences, 2022, 65, 824-844.	5.2	6
78	Radial anisotropy in the crust beneath Fujian and the Taiwan strait from direct surface-wave tomography. Tectonophysics, 2022, 827, 229270.	2.2	3
79	Rayleighâ€Love Discrepancy Highlights Temporal Changes in Nearâ€Surface Radial Anisotropy After the 2004 Great Sumatra Earthquake. Journal of Geophysical Research: Solid Earth, 2021, 126, .	3.4	0
81	Crustal Structure of the Indochina Peninsula From Ambient Noise Tomography. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	1
82	Crustal anisotropy and deformation of the southeastern Tibetan Plateau revealed by seismic anisotropy of mylonitic amphibolites. Journal of Structural Geology, 2022, 159, 104605.	2.3	6
83	Crustal structure beneath the northeastern margin of the Tibetan plateau and its surrounding regions revealed by direct surface wave radial anisotropy tomography. Tectonophysics, 2022, 838, 229501.	2.2	4
84	Nucleation mechanism of the 2021 Mw 7.4 Maduo earthquake, NE Tibetan Plateau: Insights from seismic tomography and numerical modeling. Tectonophysics, 2022, 839, 229528.	2.2	10
85	Pronounced Seismic Anisotropy in Kanto Sedimentary Basin: A Case Study of Using Dense Arrays, Ambient Noise Seismology, and Multiâ€Modal Surfaceâ€Wave Imaging. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	9
86	Arrayâ€based teleseismic Love wave tomography. Journal of Geophysical Research: Solid Earth, 0, , .	3.4	1
87	Crustal azimuthal anisotropy in the lateral collision zone of the SE margin of the Tibetan Plateau and its tectonic implications. Geophysical Journal International, 2023, 234, 1-11.	2.4	5
88	Crustal radial anisotropy shear wave velocity of SE Tibet from ambient noise tomography. Tectonophysics, 2023, 852, 229756.	2.2	1
89	Rigid widths of active block boundary faults and crustal layered anisotropy in the intersection of faults Honghe and Xiaojiang in the SE margin of the Tibetan plateau. Geophysical Journal International, 0, , .	2.4	0
90	Crustal and Upper Mantle Velocity Structure of SE Tibet From Joint Inversion of Rayleigh Wave Phase Velocity and Teleseismic Body Wave Data. Journal of Geophysical Research: Solid Earth, 2023, 128, .	3.4	1
91	On the Accuracy of Surface-Wave Dispersion Measurements from Horizontal-Component Ambient Noise Cross Correlations. Seismological Research Letters, 0, , .	1.9	0
92	Electrical Response of a Reactivated Ancient Suture Revealed by Threeâ€Dimensional Magnetotelluric Inversion Across the Jinsha River Suture, Northern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 2023, 128, .	3.4	0

ARTICLE

IF CITATIONS

93 基于å⁻†é›†æµåЍå⁰é~µæž"建çš"å∙œ»‡åœ°åŒºé«~å^†è¾¨çއå...¬å...±é€Ÿåº¦æ¨¡åž‹<bold&gt;2.0&am**øJs**;/bold&**a**mp;gt;ç%

94	Continental Fragments in the South China Block: Constraints From Crustal Radial Anisotropy. Journal of Geophysical Research: Solid Earth, 2023, 128, .	3.4	0
95	Constructing a 3â€Ð Radially Anisotropic Crustal Velocity Model for Oklahoma Using Full Waveform Inversion. Journal of Geophysical Research: Solid Earth, 2023, 128, .	3.4	1
96	Topography effect on seismic waveform tomography: a quantitative study. Geophysical Journal International, 2024, 237, 302-314.	2.4	0
97	Ambient noise multimode surface wave tomography. Progress in Earth and Planetary Science, 2024, 11, .	3.0	0
98	Southeastward extrusion of the Tibetan Plateau limited by the strong Emeishan large igneous province from earthquake surface wave tomography. Physics of the Earth and Planetary Interiors, 2024, 348, 107153.	1.9	0