Ultrahigh Porosity in Metal-Organic Frameworks

Science 329, 424-428

DOI: 10.1126/science.1192160

Citation Report

#	Article	IF	CITATIONS
6	FUELS – HYDROGEN STORAGE Metal–Organic Frameworks. , 2009, , 493-496.		2
7	A Simulation Study of Hydrogen in Metal–Organic Frameworks. Adsorption Science and Technology, 2010, 28, 823-835.	3.2	14
8	De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry, 2010, 2, 944-948.	13.6	1,535
9	Porous organic molecules. Nature Chemistry, 2010, 2, 915-920.	13.6	440
10	Model, make, measure. Nature Chemistry, 2010, 2, 909-911.	13.6	16
11	Enzymatic actuators. Nature Chemistry, 2010, 2, 911-911.	13.6	2
12	Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation. Chemistry of Materials, 2010, 22, 5964-5972.	6.7	512
13	Linker-Directed Vertex Desymmetrization for the Production of Coordination Polymers with High Porosity. Journal of the American Chemical Society, 2010, 132, 13941-13948.	13.7	184
14	High Surface Area Networks from Tetrahedral Monomers: Metal-Catalyzed Coupling, Thermal Polymerization, and "Click―Chemistry. Macromolecules, 2010, 43, 8531-8538.	4.8	203
15	Pore Space Partition and Charge Separation in Cage-within-Cage Indiumâ^'Organic Frameworks with High CO ₂ Uptake. Journal of the American Chemical Society, 2010, 132, 17062-17064.	13.7	339
16	Coordination Copolymerization Mediated by Zn ₄ O(CO ₂ R) ₆ Metal Clusters: a Balancing Act between Statistics and Geometry. Journal of the American Chemical Society, 2010, 132, 15005-15010.	13.7	140
17	Functional Mesoporous Metalâ^'Organic Frameworks for the Capture of Heavy Metal lons and Size-Selective Catalysis. Inorganic Chemistry, 2010, 49, 11637-11642.	4.0	283
18	X-ray absorption spectroscopies: useful tools to understand metallorganic frameworks structure and reactivity. Chemical Society Reviews, 2010, 39, 4885.	38.1	130
19	Azulene based metal–organic frameworks for strong adsorption of H2. Chemical Communications, 2010, 46, 7981.	4.1	57
20	Novel metal–organic frameworks (MOFs) based on heterometallic nodes and 5-methylisophthalate linkers. CrystEngComm, 2011, 13, 1765.	2.6	9
21	New alkali earth metal–organic frameworks with a very high thermal stability: synthesis, crystal structure, and characterization of AE[NC5H3(CO2)2] (AE = Ba or Sr). CrystEngComm, 2011, 13, 4599.	2.6	19
22	Fundamental and functional aspects of mesoscopic architectures with examples in physics, cell biology, and chemistry. Critical Reviews in Biochemistry and Molecular Biology, 2011, 46, 310-326.	5.2	5
23	The self-assembly of single-walled metal–organic nanotubes constructed from CuCl2 chains and ditetrazoles. CrystEngComm, 2011, 13, 6610.	2.6	14

#	Article	IF	CITATIONS
24	Solvent-mediated crystal-to-crystal transformation within the $CoBr2(1,4-dioxane)m(H2O)n$ family (m =) Tj $ETQq0$	0 0 0 rgBT	Oyerlock 10
25	A new method for screening potential sll and sH hydrogen clathrate hydrate promoters with model potentials. Physical Chemistry Chemical Physics, 2011, 13, 13410.	2.8	17
26	Synthesis, structure, surface photovoltage and magnetic properties of a novel 3D homochiral manganese phosphonate with right-handed helical chains. CrystEngComm, 2011, 13, 3317.	2.6	43
27	High capacity CO2 adsorption in a Mg(ii)-based phosphine oxide coordination material. Chemical Communications, 2011, 47, 4899.	4.1	48
28	Hydrothermal syntheses, structures and luminescent properties of Zn(ii) coordination polymers assembled with benzene-1,2,3-tricarboxylic acid involving in situ ligand reactions. CrystEngComm, 2011, 13, 2764.	2.6	50
29	Analysis of hydrogen storage in nanoporous materials for low carbon energy applications. Faraday Discussions, 2011, 151, 59.	3.2	26
30	A mesoporous metal–organic framework constructed from a nanosized C3-symmetric linker and [Cu24(isophthalate)24] cuboctahedra. Chemical Communications, 2011, 47, 9995.	4.1	130
31	Surface functionalization of metal–organic polyhedron for homogeneous cyclopropanation catalysis. Chemical Communications, 2011, 47, 4968.	4.1	98
32	Trigonal Rigid Triphenols: Self-Assembly and Multicomponent Lattice Inclusion. Crystal Growth and Design, 2011, 11, 3406-3417.	3.0	12
33	Highly Porous Cross-Linked Polymers for Catalytic Asymmetric Diethylzinc Addition to Aldehydes. ACS Catalysis, 2011, 1, 691-697.	11.2	91
34	Crystal Engineering Using a "Turtlebug―Algorithm: A <i>de Novo</i> Approach to the Design of Binodal Metal–Organic Frameworks. Crystal Growth and Design, 2011, 11, 3686-3693.	3.0	12
35	Tunable Coordinative Assembly of a Disc-Like Molecule and Metal lons: From Mirospheres to Microtubes and Microrods. Chemistry of Materials, 2011, 23, 1505-1511.	6.7	28
36	Car–Parrinello Simulations of Prussian Blue: Structure, Dynamics, and Electronic Properties. Journal of Physical Chemistry C, 2011, 115, 13560-13565.	3.1	4
37	Molecule and Electron Transfer through Coordination-Based Molecular Assemblies. Journal of the American Chemical Society, 2011, 133, 14264-14266.	13.7	22
38	Density Functional Theory Study of the Carbonyl-ene Reaction of Encapsulated Formaldehyde in Cu(I), Ag(I), and Au(I) Exchanged FAU Zeolites. Journal of Physical Chemistry A, 2011, 115, 12486-12492.	2.5	36
39	(Di)-aminoguanidine Functionalization through Transamination: An Avenue to an Auspicious Class of Supramolecular Synthons. Crystal Growth and Design, 2011, 11, 4034-4043.	3.0	12
40	Porous Nitrogen Rich Cadmium-Tetrazolate Based Metal Organic Framework (MOF) for H ₂ and CO ₂ Uptake. Crystal Growth and Design, 2011, 11, 5176-5181.	3.0	54
41	Adsorption of Gases in Microporous Organic Molecular Crystal, a Multiscale Computational Investigation. Journal of Physical Chemistry C, 2011, 115, 4935-4942.	3.1	13

#	Article	IF	CITATIONS
42	A Highly Porous Interpenetrated Metal–Organic Framework from the Use of a Novel Nanosized Organic Linker. Inorganic Chemistry, 2011, 50, 11297-11299.	4.0	33
43	Improved H ₂ Storage in Zeolitic Imidazolate Frameworks Using Li ⁺ , Na ⁺ , and K ⁺ Dopants, with an Emphasis on Delivery H ₂ Uptake. Journal of Physical Chemistry C, 2011, 115, 3507-3512.	3.1	37
44	Three New Coordination Polymers Based on One Reduced Symmetry Tripodal Linker. Crystal Growth and Design, 2011, 11, 3115-3121.	3.0	67
45	Metal Alkoxide Functionalization in Metalâ^'Organic Frameworks for Enhanced Ambient-Temperature Hydrogen Storage. Journal of Physical Chemistry C, 2011, 115, 2066-2075.	3.1	111
46	Pressure- and Heat-Induced Insertion of CO $<$ sub $>$ 2 $<$ /sub $>$ into an Auxetic Small-Pore Zeolite. Journal of the American Chemical Society, 2011, 133, 1674-1677.	13.7	59
47	MOF-5: Enthalpy of Formation and Energy Landscape of Porous Materials. Journal of the American Chemical Society, 2011, 133, 9184-9187.	13.7	55
48	Novel Route to Size-Controlled Fe–MIL-88B–NH ₂ Metal–Organic Framework Nanocrystals. Langmuir, 2011, 27, 15261-15267.	3.5	224
49	Enhanced CO ₂ Binding Affinity of a High-Uptake <i>rht</i> -Type Metalâ^'Organic Framework Decorated with Acylamide Groups. Journal of the American Chemical Society, 2011, 133, 748-751.	13.7	722
50	CO2 selectivity of a 1D microporous adenine-based metal–organic framework synthesised in water. Chemical Communications, 2011, 47, 3389.	4.1	92
51	Computer simulations for the adsorption and separation of CO2/CH4/H2/N2 gases by UMCM-1 and UMCM-2 metal organic frameworks. Journal of Materials Chemistry, 2011, 21, 11259.	6.7	79
52	Design of Porous Coordination Polymers/Metal-Organic Frameworks: Past, Present and Future., 2011, , 1-21.		6
53	Catalysis by metal–organic frameworks: fundamentals and opportunities. Physical Chemistry Chemical Physics, 2011, 13, 6388.	2.8	365
54	Synthesis and characterization of zinc-organic frameworks with 1,4-benzenedicarboxylic acid and azobenzene-4,4 \hat{a} e²-dicarboxylic acid. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2011, 2, 025008.	1.5	7
55	Microporous metal–organic frameworks for acetylene storage and separation. CrystEngComm, 2011, 13, 5983.	2.6	163
56	Neutron Scattering and Spectroscopic Studies of Hydrogen Adsorption in Cr ₃ (BTC) ₂ —A Metalâ~Organic Framework with Exposed Cr ²⁺ Sites. Journal of Physical Chemistry C, 2011, 115, 8414-8421.	3.1	50
57	Lithium-doped MOF impregnated with lithium-coated fullerenes: A hydrogen storage route for high gravimetric and volumetric uptakes at ambient temperatures. Chemical Communications, 2011, 47, 7698.	4.1	60
58	Ultrahigh CO2 adsorption capacity on carbon molecular sieves at room temperature. Chemical Communications, 2011, 47, 6840.	4.1	166
59	Characterisation of porous hydrogen storage materials: carbons, zeolites, MOFs and PIMs. Faraday Discussions, 2011, 151, 75.	3.2	7 5

#	ARTICLE	IF	Citations
60	Structural diversity and fluorescent properties of Zn(ii)/Cd(ii) coordination polymers with a versatile tecton 2-(carboxymethoxy)benzoic acid and N-donor co-ligands. CrystEngComm, 2011, 13, 6601.	2.6	46
61	Effects of Metal lons and Ligand Functionalization on Hydrogen Storage in Metal–Organic Frameworks by Spillover. Journal of Physical Chemistry C, 2011, 115, 13829-13836.	3.1	34
62	Porous metal–organic frameworks as platforms for functional applications. Chemical Communications, 2011, 47, 3351.	4.1	798
63	Incorporation of active metal sites in MOFs via in situ generated ligand deficient metal–linker complexes. Chemical Communications, 2011, 47, 11882.	4.1	35
64	Tuning the moisture stability of metal–organic frameworks by incorporating hydrophobic functional groups at different positions of ligands. Chemical Communications, 2011, 47, 7377.	4.1	230
65	Isoreticular Expansion of Metal–Organic Frameworks with Triangular and Square Building Units and the Lowest Calculated Density for Porous Crystals. Inorganic Chemistry, 2011, 50, 9147-9152.	4.0	322
66	Chiral Metal–Organic Frameworks for High-Resolution Gas Chromatographic Separations. Journal of the American Chemical Society, 2011, 133, 11892-11895.	13.7	293
67	Role of solvents in coordination supramolecular systems. Chemical Communications, 2011, 47, 5958.	4.1	624
68	Screening Metal–Organic Frameworks by Analysis of Transient Breakthrough of Gas Mixtures in a Fixed Bed Adsorber. Journal of Physical Chemistry C, 2011, 115, 12941-12950.	3.1	197
69	Construction of Polyoxometalate-Based Inorganic–Organic Compounds Using Silver(I) Double Helicates as Secondary Building Blocks. Inorganic Chemistry, 2011, 50, 7907-7909.	4.0	37
70	Series of Porous 3-D Coordination Polymers Based on Iron(III) and Porphyrin Derivatives. Chemistry of Materials, 2011, 23, 4641-4651.	6.7	73
71	Terbium-based infinite coordination polymer hollow microspheres: preparation and white-light emission. Journal of Materials Chemistry, 2011, 21, 16574.	6.7	111
72	Solid-state hydrogen storage for mobile applications: Quo Vadis?. Energy and Environmental Science, 2011, 4, 2495.	30.8	112
73	Top-down fabrication of crystalline metal–organic framework nanosheets. Chemical Communications, 2011, 47, 8436.	4.1	301
74	Gas storage in porous aromatic frameworks (PAFs). Energy and Environmental Science, 2011, 4, 3991.	30.8	429
75	Controllable self-assembly of four new metal–organic frameworks based on different phosphomolybdate clusters by altering the molar ratio of H3PO4 and Na2MoO4. CrystEngComm, 2011, 13, 2479.	2.6	86
76	Controllable assembly of four new POM-based supramolecular compounds by altering the POM secondary building units from pseudo-Keggin to classical Keggin. CrystEngComm, 2011, 13, 2687.	2.6	37
77	Controllable self-assembly of two novel metal–organic frameworks based on different tetradentate in situ ligands. CrystEngComm, 2011, 13, 649-655.	2.6	46

#	Article	IF	CITATIONS
78	Effective hydrogen storage: a strategic chemistry challenge. Faraday Discussions, 2011, 151, 399.	3.2	103
79	Helical Water Chain Mediated Proton Conductivity in Homochiral Metal–Organic Frameworks with Unprecedented Zeolitic <i>unh</i> >-Topology. Journal of the American Chemical Society, 2011, 133, 17950-17958.	13.7	354
80	Solvent Induced Diverse Dimensional Coordination Assemblies of Cupric Benzotriazole-5-carboxylate: Syntheses, Crystal Structures, and Magnetic Properties. Inorganic Chemistry, 2011, 50, 11032-11038.	4.0	68
81	Pore with Gate: Enhancement of the Isosteric Heat of Adsorption of Dihydrogen via Postsynthetic Cation Exchange in Metalâ^'Organic Frameworks. Inorganic Chemistry, 2011, 50, 9374-9384.	4.0	84
82	Amino Functionalized SiO2nanoparticles for seeding MOF-5. IOP Conference Series: Materials Science and Engineering, 2011, 18, 052006.	0.6	1
83	Metal-Specific Interactions of H ₂ Adsorbed within Isostructural Metal–Organic Frameworks. Journal of the American Chemical Society, 2011, 133, 20310-20318.	13.7	73
84	Theoretical Study of Amino Acid Interaction with Metal Organic Frameworks. Journal of Physical Chemistry Letters, 2011, 2, 272-275.	4.6	16
85	Adsorption of CO2 on PbO at ambient temperature. Applied Surface Science, 2011, 258, 950-954.	6.1	4
86	A first principles study of gas adsorption on charged CuBTC. Computational and Theoretical Chemistry, 2011, 976, 153-160.	2.5	58
87	Synthesis, crystal structures and thermal analysis of two new coordination polymers. Comptes Rendus Chimie, 2011, 14, 991-996.	0.5	2
88	Thioether Side Chains Improve the Stability, Fluorescence, and Metal Uptake of a Metal–Organic Framework. Chemistry of Materials, 2011, 23, 2940-2947.	6.7	145
89	Porous Organic Polymers in Catalysis: Opportunities and Challenges. ACS Catalysis, 2011, 1, 819-835.	11.2	818
90	Metalâ^'Organic Frameworks as Adsorbents for Hydrogen Purification and Precombustion Carbon Dioxide Capture. Journal of the American Chemical Society, 2011, 133, 5664-5667.	13.7	465
91	Expanding Applications of Metalâ^'Organic Frameworks: Zeolite Imidazolate Framework ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction. ACS Catalysis, 2011, 1, 120-127.	11.2	574
92	Molecular transport in nanopores: a theoretical perspective. Physical Chemistry Chemical Physics, 2011, 13, 15350.	2.8	137
93	Microcontact Click Printing for Templating Ultrathin Films of Metalâ^'Organic Frameworksâ€. Langmuir, 2011, 27, 1341-1345.	3.5	31
95	Structural Isomerism and Effect of Fluorination on Gas Adsorption in Copper-Tetrazolate Based Metal Organic Frameworks. Chemistry of Materials, 2011, 23, 2908-2916.	6.7	79
96	Pore with gate: modulating hydrogen storage in metal-organic framework materials via cation exchange. Faraday Discussions, 2011, 151, 19.	3.2	48

#	Article	IF	CITATIONS
97	Two Azolium Rings Are Better Than One: A Strategy for Controlling Catenation and Morphology in Zn and Cu Metal–Organic Frameworks. Crystal Growth and Design, 2011, 11, 4747-4750.	3.0	47
98	Frontier of Inorganic Synthesis and Preparative Chemistry (II)-Designed Synthesisâ€"Inorganic Crystalline Porous Materials., 2011,, 555-586.		1
99	High-Throughput Study of the Cu(CH ₃ Co) _{A·H₂Oâ^'5-Nitroisophthalic Acidâ^'Heterocyclic Ligand System: Synthesis, Structure, Magnetic, and Heterogeneous Catalytic Studies of Three Copper Nitroisophthalates. Crystal Growth and Design, 2011, 11, 1357-1369.}	3.0	29
100	Two- and Three-Dimensional Silver(I)-Organic Networks Generated from Mono- and Dicarboxylphenylethynes. Inorganic Chemistry, 2011, 50, 9097-9105.	4.0	37
101	Fluorescent nanoparticles based on a microporous organic polymer network: fabrication and efficient energy transfer to surface-bound dyes. Chemical Communications, 2011, 47, 9612.	4.1	96
102	Towards applications of metal–organic frameworks in catalysis: Friedel–Crafts acylation reaction over IRMOF-8 as an efficient heterogeneous catalyst. Journal of Molecular Catalysis A, 2011, 349, 28-35.	4.8	68
103	Synthesis, structure and topological analysis of a novel 3D Cu coordination polymer from a flexible ligand of 1,3,5-triazine-2,4,6-triamine hexaacetic acid and coligand ethylenediamine. Inorganic Chemistry Communication, 2011, 14, 1924-1927.	3.9	12
104	Synthesis, crystal structure, and luminescent property of a three-dimensional (3day) microporous Cd(II) metal-organic framework (MOF) based on mixed ligands. Inorganic Chemistry Communication, 2011, 14, 1952-1956.	3.9	13
105	Two Novel Zinc(II) Metal–Organic Frameworks Based on Triazole-Carboxylate Shared Paddle-Wheel Units: Synthesis, Structure, and Gas Adsorption. Crystal Growth and Design, 2011, 11, 2811-2816.	3.0	37
106	pH Dependent Structural Diversity of Metal Complexes with 5-(4 <i>H</i> -1,2,4-Triazol-4-yl)benzene-1,3-dicarboxylic Acid. Crystal Growth and Design, 2011, 11, 1901-1912.	3.0	127
107	A non-interpenetrated porous metal–organic framework with high gas-uptake capacity. Chemical Communications, 2011, 47, 9861.	4.1	106
108	Highly Dispersed Palladium(II) in a Defective Metal–Organic Framework: Application to C–H Activation and Functionalization. Journal of the American Chemical Society, 2011, 133, 20138-20141.	13.7	166
109	Three-Dimensional Porous Cd(II) Coordination Polymer with Large One-Dimensional Hexagonal Channels: High Pressure CH4and H2Adsorption Studies. Inorganic Chemistry, 2011, 50, 539-544.	4.0	72
110	Soft porous crystal meets TCNQ: charge transfer-type porous coordination polymers. Journal of Materials Chemistry, 2011, 21, 5537.	6.7	54
111	The current status of hydrogen storage in metal–organic frameworks—updated. Energy and Environmental Science, 2011, 4, 2721.	30.8	429
112	Use of confocal fluorescence microscopy to compare different methods of modifying metal–organic framework (MOF) crystals with dyes. CrystEngComm, 2011, 13, 2828.	2.6	47
113	Influence of MILâ€101 Doping by Ionic Clusters on Hydrogen Storage Performance up to 1900 Bar. Chemistry - an Asian Journal, 2011, 6, 1854-1859.	3.3	23
114	Porous Interpenetrating Metalâ^'Organic Frameworks with Hierarchical Nodes. Crystal Growth and Design, 2011, 11, 1798-1806.	3.0	38

#	Article	IF	CITATIONS
115	From Metal–Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake. Journal of the American Chemical Society, 2011, 133, 11854-11857.	13.7	1,071
116	Materials and Transducers Toward Selective Wireless Gas Sensing. Chemical Reviews, 2011, 111, 7315-7354.	47.7	250
117	Complete Series of Monohalogenated Isoreticular Metal–Organic Frameworks: Synthesis and the Importance of Activation Method. Crystal Growth and Design, 2011, 11, 4309-4312.	3.0	53
118	Design of Covalent Organic Frameworks for Methane Storage. Journal of Physical Chemistry A, 2011, 115, 13852-13857.	2.5	92
119	Precise Control and Consecutive Modulation of Spin Transition Temperature Using Chemical Migration in Porous Coordination Polymers. Journal of the American Chemical Society, 2011, 133, 8600-8605.	13.7	191
120	3D Chiral Microporous (10,3)-a Topology Metal–Organic Framework Containing Large Helical Channels. Crystal Growth and Design, 2011, 11, 2510-2514.	3.0	21
121	Active-Site-Accessible, Porphyrinic Metalâ^'Organic Framework Materials. Journal of the American Chemical Society, 2011, 133, 5652-5655.	13.7	415
122	Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science and Technology, 2011, 1, 856.	4.1	281
123	Synthesis, Crystal Structure and Luminescent Properties of One Silver Complex with 3,5-Diphenylpyrazole. Journal of Chemical Crystallography, 2011, 41, 1612-1615.	1.1	3
124	A Ladder-like Coordination Polymer [Sr(H2O)4(CuL)2]·(CuL)·2.25H2O Constructed From Metallo-Ligand Na[CuL] and Sr(NO3)2: Crystal Structure and ESR Study. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 165-170.	3.7	4
125	Nickel-catalyzed synthesis of nanoporous organic frameworks and their potential use in gas storage applications. Research on Chemical Intermediates, 2011, 37, 747-757.	2.7	38
126	Molecular mechanism of hydrocarbons binding to the metal–organic framework. Chemical Physics Letters, 2011, 501, 455-460.	2.6	10
127	The construction of a new POMs-based inorganic–organic hybrid framework involving in-situ ligand conversion from 1,3-bis(4-pyridyl)propane to isonicotinic acid. Inorganica Chimica Acta, 2011, 370, 203-206.	2.4	15
128	Two copper(II) complexes with 4-benzoylpyridine ligand: Synthesis, crystal structure and luminescent properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 79, 1338-1344.	3.9	16
129	Recent advance in porous coordination polymers from the viewpoint of crystalline-state transformation. Science China Chemistry, 2011, 54, 1371-1394.	8.2	35
130	Porous coordination polymers based on three planar rigid ligands. Science China Chemistry, 2011, 54, 1395-1406.	8.2	32
131	Liquid-phase epitaxy of metal organic framework thin films. Science China Chemistry, 2011, 54, 1851-1866.	8.2	47
132	Oneâ€Pot Synthesis of Silica@Coordination Polymer Coreâ€"Shell Microspheres with Controlled Shell Thickness. Advanced Materials, 2011, 23, 1716-1719.	21.0	76

#	ARTICLE	IF	CITATIONS
133	Highly Stable Porous Polymer Networks with Exceptionally High Gasâ€Uptake Capacities. Advanced Materials, 2011, 23, 3723-3725.	21.0	528
134	Chiral Nanoporous Metalâ€Organic Frameworks with High Porosity as Materials for Drug Delivery. Advanced Materials, 2011, 23, 5629-5632.	21.0	378
135	Mesoporous Metalâ€Organic Frameworks with Sizeâ€tunable Cages: Selective CO ₂ Uptake, Encapsulation of Ln ³⁺ Cations for Luminescence, and Columnâ€Chromatographic Dye Separation. Advanced Materials, 2011, 23, 5015-5020.	21.0	321
136	Superior CO ₂ Adsorption Capacity on Nâ€doped, Highâ€Surfaceâ€Area, Microporous Carbons Templated from Zeolite. Advanced Energy Materials, 2011, 1, 678-683.	19.5	328
137	Crystal Structures and Physical Properties of Three New Manganeseâ€Based Coordination Polymers with <i>p</i> àêBiphenyldicarboxylic Acid Linkers. European Journal of Inorganic Chemistry, 2011, 2011, 549-555.	2.0	6
147	Metal–Organic Frameworks with Incorporated Carbon Nanotubes: Improving Carbon Dioxide and Methane Storage Capacities by Lithium Doping. Angewandte Chemie - International Edition, 2011, 50, 491-494.	13.8	255
148	Metal–Organic Conjugated Microporous Polymers. Angewandte Chemie - International Edition, 2011, 50, 1072-1075.	13.8	318
149	Nanoporous Organics Enter the Cage Age. Angewandte Chemie - International Edition, 2011, 50, 996-998.	13.8	98
150	Hydrogen Storage by Cryoadsorption in Ultrahighâ€Porosity Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2011, 50, 581-582.	13.8	104
151	A Metal–Organic Framework with Optimized Open Metal Sites and Pore Spaces for High Methane Storage at Room Temperature. Angewandte Chemie - International Edition, 2011, 50, 3178-3181.	13.8	340
152	Phosphorescent Nanoscale Coordination Polymers as Contrast Agents for Optical Imaging. Angewandte Chemie - International Edition, 2011, 50, 3696-3700.	13.8	232
153	Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture. Angewandte Chemie - International Edition, 2011, 50, 11586-11596.	13.8	1,025
154	Porous Indium–Organic Frameworks and Systematization of Structural Building Blocks. Angewandte Chemie - International Edition, 2011, 50, 8858-8862.	13.8	137
155	A Microporous Copper Metal–Organic Framework with High H ₂ and CO ₂ Adsorption Capacity at Ambient Pressure. Angewandte Chemie - International Edition, 2011, 50, 10344-10348.	13.8	106
156	A Highly Porous Metal–Organic Framework: Structural Transformations of a Guestâ€Free MOF Depending on Activation Method and Temperature. Chemistry - A European Journal, 2011, 17, 7251-7260.	3.3	145
157	Probing the Dynamics of CO ₂ and CH ₄ within the Porous Zirconium Terephthalate UiOâ€66(Zr): A Synergic Combination of Neutron Scattering Measurements and Molecular Simulations. Chemistry - A European Journal, 2011, 17, 8882-8889.	3.3	137
158	Highâ€Throughput and Timeâ€Resolved Energyâ€Dispersive Xâ€Ray Diffraction (EDXRD) Study of the Formation of CAUâ€1â€(OH) ₂ : Microwave and Conventional Heating. Chemistry - A European Journal, 2011, 17, 6462-6468.	3.3	84
159	Route to a Family of Robust, Nonâ€interpenetrated Metal–Organic Frameworks with ptoâ€ike Topology. Chemistry - A European Journal, 2011, 17, 13007-13016.	3.3	127

#	Article	IF	CITATIONS
160	A new lanthanide metal-organic framework with (3,6)-connected topology based on novel tricarboxylate ligand. Inorganic Chemistry Communication, 2011, 14, 978-981.	3.9	29
161	A 2D Zn(II) coordination polymer constructed by right-handed and left-handed Zn–Hbci–Zn helical chains and μ2-H2O bridges (H3bci=bis(2-carboxyethyl)isocyanurate). Inorganic Chemistry Communication, 2011, 14, 1107-1110.	3.9	4
162	Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordination Chemistry Reviews, 2011, 255, 1791-1823.	18.8	1,805
163	Towards rapid computational screening of metal-organic frameworks for carbon dioxide capture: Calculation of framework charges via charge equilibration. Chemical Engineering Journal, 2011, 171, 775-781.	12.7	141
164	Synthesis, characterization and hydrogen adsorption on metal-organic frameworks Al, Cr, Fe and Ga-BTB. Chemical Engineering Journal, 2011, 171, 517-525.	12.7	20
165	Methane storage in wet carbon of tailored pore sizes. Carbon, 2011, 49, 3731-3736.	10.3	50
166	Effect of platinum doping of activated carbon on hydrogen storage behaviors of metal-organic frameworks-5. International Journal of Hydrogen Energy, 2011, 36, 8381-8387.	7.1	70
167	Enhancement of CO2/CH4 selectivity in metal-organic frameworks containing lithium cations. Microporous and Mesoporous Materials, 2011, 141, 231-235.	4.4	128
168	Unusual adsorption behavior of a highly flexible copper-based MOF. Microporous and Mesoporous Materials, 2011, 142, 592-600.	4.4	37
169	Electron delocalization in cyanide-bridged coordination polymer electrodes for Li-ion batteries studied by soft x-ray absorption spectroscopy. Physical Review B, 2011, 84, .	3.2	38
170	Synthesis, Characterization and Photoluminescence of 1,1'-Thiene-2,5-Diyldibutane-1,3-Diketone. Advanced Materials Research, 2011, 239-242, 2448-2451.	0.3	0
171	Computational structure characterisation tools in application to ordered and disordered porous materials. Molecular Simulation, 2011, 37, 1248-1257.	2.0	548
172	Design of Improved Metal-Organic Framework (MOF) H2 Adsorbents. Polymers, 2011, 3, 2133-2141.	4.5	8
173	Pre-combustion CO2 capture by transition metal ions embedded in phthalocyanine sheets. Journal of Chemical Physics, 2012, 136, 234703.	3.0	30
174	One polyoxometalate-based hybrid 3-D network: synthesis, structure, photo- and electro-catalytic properties. Journal of Coordination Chemistry, 2012, 65, 3254-3263.	2.2	8
175	Three Mn(II) complexes with 1,3-bis(4-pyridyl)propane and their supramolecular nets. Journal of Coordination Chemistry, 2012, 65, 2500-2509.	2.2	3
176	CO2 Adsorption of Metal Organic Framework Material Cu-BTC via Different Preparation Routes. Communications in Computer and Information Science, 2012, , 244-251.	0.5	2
177	Poly[[dodecaaqua(Î⅓44-benzene-1,4-dicarboxylato)(μ2-4,4′-bipyridine-κ2N:N′)dicerium(III)] bis(benzene-1,4-dicarboxylate)]. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m643-m644.	0.2	2

#	Article	IF	CITATIONS
178	NMR Study of HD Adsorbed in a Z-type Metal-Organic Framework. Journal of Physics: Conference Series, 2012, 400, 012024.	0.4	2
179	Synthesis, Crystal Structures, and Properties of a Series of Coordination Polymers Employing R4-Terephthalate (R = H, F, Cl, Br) and 4,4′-Bipyridine as Bridging Ligands. Bulletin of the Chemical Society of Japan, 2012, 85, 1102-1111.	3.2	4
180	Counter-cation modulation of hydrogen and methane storage in a sodalite-type porous metal–organic framework. Chemical Communications, 2012, 48, 12002.	4.1	61
181	User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture. Journal of Materials Chemistry, 2012, 22, 15540.	6.7	130
182	Conformational Locking by Design: Relating Strain Energy with Luminescence and Stability in Rigid Metal–Organic Frameworks. Journal of the American Chemical Society, 2012, 134, 19596-19599.	13.7	176
183	CO2 Capture by Metal–Organic Frameworks with van der Waals Density Functionals. Journal of Physical Chemistry A, 2012, 116, 4957-4964.	2.5	92
184	Structures, Luminescence, and Magnetic Properties of Several Three-Dimensional Lanthanide–Organic Frameworks Comprising 4-Carboxyphenoxy Acetic Acid. Crystal Growth and Design, 2012, 12, 5203-5210.	3.0	55
185	Novel (3,4,6)-Connected Metal–Organic Framework with High Stability and Gas-Uptake Capability. Inorganic Chemistry, 2012, 51, 8402-8408.	4.0	47
186	Synthesis of Hierarchical Porous Carbon Monoliths with Incorporated Metal–Organic Frameworks for Enhancing Volumetric Based CO ₂ Capture Capability. ACS Applied Materials & Lamp; Interfaces, 2012, 4, 6125-6132.	8.0	126
187	Microporous metal–organic framework containing cages with adjustable portal dimensions for adsorptive CO2 separation. RSC Advances, 2012, 2, 11566.	3.6	4
188	Synthesis, structures, and luminescent properties of four new 3D lanthanide metalâ \in organic frameworks with fluorescent whitener, 4,4â \in 2-biphenyldicarboxylate and 1,10-phenanthroline. Inorganic Chemistry Communication, 2012, 24, 114-117.	3.9	11
189	GCMC investigation into adamantane-based aromatic frameworks with diamond-like structure as high-capacity hydrogen storage materials. Physical Chemistry Chemical Physics, 2012, 14, 2391.	2.8	7
190	Highly-connected, porous coordination polymers based on [M4($\hat{1}\frac{1}{4}$ 3-OH)2] (M = Coll and Nill) clusters: different networks, adsorption and magnetic properties. Dalton Transactions, 2012, 41, 4199.	3.3	67
192	Synthesis of Superparamagnetic Nanoporous Iron Oxide Particles with Hollow Interiors by Using Prussian Blue Coordination Polymers. Chemistry of Materials, 2012, 24, 2698-2707.	6.7	163
193	Temperature-Dependent in Situ Reduction of 4,4′-Azobispyridine via Solvothermal Reaction. Crystal Growth and Design, 2012, 12, 2079-2088.	3.0	65
194	Post-Combustion CO ₂ Capture Using Solid Sorbents: A Review. Industrial & Description of the Review of t	3.7	1,524
195	In situ fabrication of metal–organic hybrid gels in a capillary for online enrichment of trace analytes in aqueous samples. Chemical Communications, 2012, 48, 3966.	4.1	44
196	Influence of sterically non-hindering methyl groups on adsorption properties of two classical zinc and copper MOF types. Comptes Rendus Chimie, 2012, 15, 866-877.	0.5	17

#	Article	IF	CITATIONS
197	Prediction of Structure and Properties of Boron-Based Covalent Organic Frameworks by a First-Principles Derived Force Field. Journal of Physical Chemistry C, 2012, 116, 4921-4929.	3.1	52
198	Progress on first-principles-based materials design for hydrogen storage. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19893-19899.	7.1	73
199	Dimensionality Transformation through Paddlewheel Reconfiguration in a Flexible and Porous Zn-Based Metal–Organic Framework. Journal of the American Chemical Society, 2012, 134, 20466-20478.	13.7	85
200	Paal–Knorr reaction catalyzed by metal–organic framework IRMOF-3 as an efficient and reusable heterogeneous catalyst. Journal of Molecular Catalysis A, 2012, 363-364, 178-185.	4.8	46
201	A Zeolite Imidazolate Framework ZIF-8 Catalyst for Friedel-Crafts Acylation. Chinese Journal of Catalysis, 2012, 33, 688-696.	14.0	102
202	The arylation of aldehydes with arylboronic acids using metal-organic framework Ni(HBTC)BPY as an efficient heterogeneous catalyst. Journal of Molecular Catalysis A, 2012, 365, 95-102.	4.8	25
203	A Route to Bimodal Micro-Mesoporous Metal–Organic Frameworks Nanocrystals. Crystal Growth and Design, 2012, 12, 1008-1013.	3.0	81
204	Ruthenium Complexation in an Aluminium Metal–Organic Framework and Its Application in Alcohol Oxidation Catalysis. Chemistry - A European Journal, 2012, 18, 15337-15344.	3.3	107
205	Molecular Gauge Blocks for Building on the Nanoscale. Chemistry - A European Journal, 2012, 18, 15632-15649.	3.3	24
206	Nanomaterials and processes for carbon capture and conversion into useful byâ€products for a sustainable energy future. , 2012, 2, 419-444.		34
207	Improving comparability of hydrogen storage capacities ofÂnanoporous materials. International Journal of Hydrogen Energy, 2012, 37, 2728-2736.	7.1	22
208	Structural diversity through tuning pillar: Porous robust [Zn3(FDA)3·bpp·H2O]·2H2O and 3-/3-D dual interpenetrating [Zn·(FDA)·bipy]·2H2O. Inorganic Chemistry Communication, 2012, 25, 86-88.	3.9	11
209	Novel 3D bismuth-based coordination polymers: Synthesis, structure, and second harmonic generation properties. Journal of Solid State Chemistry, 2012, 195, 94-100.	2.9	28
211	Variations of Structures and Gas Sorption Properties of Three Coordination Polymers Induced by Fluorine Atom Positions in Azamacrocyclic Ligands. Inorganic Chemistry, 2012, 51, 1874-1880.	4.0	26
212	Materials design and modification on amide-based composites for hydrogen storage. Progress in Natural Science: Materials International, 2012, 22, 550-560.	4.4	39
213	Riboflavin Chelated Luminescent Metal–Organic Framework: Identified by Liquid-Assisted Grinding for Large-Molecule Sensing via Chromaticity Coordinates. Crystal Growth and Design, 2012, 12, 3181-3190.	3.0	19
214	Morphology-controlled synthesis of porous polymer nanospheres for gas absorption and bioimaging applications. Journal of Materials Chemistry, 2012, 22, 9861.	6.7	29
215	A novel 1D independent metal–organic nanotube based on cyclotriveratrylene ligand. CrystEngComm, 2012, 14, 112-115.	2.6	31

#	Article	IF	CITATIONS
216	Pair distribution function-derived mechanism of a single-crystal to disordered to single-crystal transformation in a hemilabile metal–organic framework. Chemical Science, 2012, 3, 2559.	7.4	34
217	A robust doubly interpenetrated metal–organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. Chemical Communications, 2012, 48, 6493.	4.1	224
218	Aza-heterocyclic ligand assisted assembly of new cobalt MOFs with pcu and graphite related structures. Dalton Transactions, 2012, 41, 4135.	3.3	34
219	Two chiral Zn(ii) metal–organic frameworks with dinuclear Zn2(COO)3 secondary building units: a 2-D (6,3) net and a 3-D 3-fold interpenetrating (3,5)-connected network. CrystEngComm, 2012, 14, 6952.	2.6	15
220	A pcu-type metal–organic framework based on covalently quadruple cross-linked supramolecular building blocks (SBBs): structure and adsorption properties. CrystEngComm, 2012, 14, 1929.	2.6	34
221	Syntheses, crystal structures and luminescent properties of Zn(ii)/Cd(ii) supramolecular complexes incorporating 4-sulfinobenzoate and its in situ oxidized ligand. CrystEngComm, 2012, 14, 3501.	2.6	14
222	Improving the performance of a poorly adsorbing porous material: template mediated addition of microporosity to a crystalline submicroporous MOF. Chemical Communications, 2012, 48, 907-909.	4.1	21
223	Stepwise assembly of homochiral coordination polymers based on the precursor of an enantiopure Yb3Mn6 cluster. Dalton Transactions, 2012, 41, 10518.	3.3	6
224	Pure and mixed gas adsorption of CH4 and N2 on the metal–organic framework Basolite® A100 and a novel copper-based 1,2,4-triazolyl isophthalate MOF. Journal of Materials Chemistry, 2012, 22, 10274.	6.7	115
225	Isomeric phenylenediacetates as modular tectons for a series of ZnII/CdII coordination polymers incorporating flexible bis(imidazole) co-ligands. CrystEngComm, 2012, 14, 4745.	2.6	48
226	Controllable synthesis of a non-interpenetrating microporous metal–organic framework based on octahedral cage-like building units for highly efficient reversible adsorption of iodine. Chemical Communications, 2012, 48, 10001.	4.1	70
227	Selective CO2 adsorption in a metal–organic framework constructed from an organic ligand with flexible joints. Chemical Communications, 2012, 48, 9168.	4.1	59
228	Inorganic–organic hybrid compounds based on novel lanthanide-antimony oxohalide nanoclusters. Dalton Transactions, 2012, 41, 9879.	3.3	13
229	Chiral transformations of achiral porous metal–organic frameworks via a stepwise approach. Chemical Communications, 2012, 48, 10419.	4.1	30
230	Controllable synthesis of microporous, nanotubular and mesocage-like metal–organic frameworks by adjusting the reactant ratio and modulated luminescence properties of Alq3@MOF composites. Journal of Materials Chemistry, 2012, 22, 17947.	6.7	40
231	Extending the family of Zn-based MOFs: synthetic approaches to chiral framework structures and MOFs with large pores and channels. Chemical Communications, 2012, 48, 3638.	4.1	17
232	ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane. Chemical Communications, 2012, 48, 3173.	4.1	232
233	A novel kind of coordination polymers employing 2,5-diamino-1,4-benzenedithiol as a bridging ligand: synthesis, structure, optical and magnetic properties. RSC Advances, 2012, 2, 6570.	3.6	17

#	ARTICLE	IF	CITATIONS
234	Acetylene and argon adsorption in a supramolecular organic zeolite. Physical Chemistry Chemical Physics, 2012, 14, 311-317.	2.8	20
235	An unusual (4,10)-connected 3-D metal–organic framework based on non-planar tricarboxyl tecton and tetracadmium(ii) secondary building units. CrystEngComm, 2012, 14, 5299.	2.6	19
236	Solvent-Controlled Syntheses, Structure, and Magnetic Properties of Trinuclear Mn(II)-Based Metal–Organic Frameworks. Crystal Growth and Design, 2012, 12, 5693-5700.	3.0	37
237	Pillared Covalent Organic Frameworks with Balanced Volumetric and Gravimetric Hydrogen Uptake. Journal of Physical Chemistry C, 2012, 116, 1479-1484.	3.1	19
238	Lipid-coated nanoscale coordination polymers for targeted delivery of antifolates to cancer cells. Chemical Science, 2012, 3, 198-204.	7.4	160
239	Calculation and visualization of free energy barriers for several VOCs and TNT in HKUST-1. Physical Chemistry Chemical Physics, 2012, 14, 15438.	2.8	13
240	Effect of Lithium Doping into MIL-53(Al) through Thermal Decomposition of Anion Species on Hydrogen Adsorption. Journal of Physical Chemistry C, 2012, 116, 10260-10265.	3.1	32
241	High and selective CO2 capture by two mesoporous acylamide-functionalized rht-type metal–organic frameworks. Chemical Communications, 2012, 48, 7025.	4.1	174
242	Ab Initio Prediction of Adsorption Isotherms for Small Molecules in Metal–Organic Frameworks: The Effect of Lateral Interactions for Methane/CPO-27-Mg. Journal of the American Chemical Society, 2012, 134, 18354-18365.	13.7	90
243	Absorption of Hydrogen Bond Donors by Pyridyl Bis-Urea Crystals. Chemistry of Materials, 2012, 24, 4773-4781.	6.7	9
244	Theoretical Hydrogen Cryostorage in Doped MIL-101(Cr) Metal–Organic Frameworks. Journal of Physical Chemistry C, 2012, 116, 10504-10509.	3.1	30
245	Theoretical Prediction of High Pressure Methane Adsorption in Porous Aromatic Frameworks (PAFs). Langmuir, 2012, 28, 14405-14414.	3.5	22
246	Synthesis, Structures, and Properties of Two Three-Dimensional Metal–Organic Frameworks, Based on Concurrent Ligand Extension. Inorganic Chemistry, 2012, 51, 6498-6506.	4.0	70
247	Structural diversity of cobalt(II) coordination compounds involving bent imidazole ligand: A route from 0D dimer to 3D coordination polymer. Polyhedron, 2012, 44, 179-186.	2.2	26
248	Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?. Journal of the American Chemical Society, 2012, 134, 15016-15021.	13.7	1,497
249	Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nature Communications, 2012, 3, 954.	12.8	716
250	Porosity in metal–organic frameworks following thermolytic postsynthetic deprotection: gas sorption, dye uptake and covalent derivatisation. CrystEngComm, 2012, 14, 5701.	2.6	32
251	Covalent organic frameworks. Chemical Society Reviews, 2012, 41, 6010.	38.1	2,409

#	Article	IF	CITATIONS
252	Robust Metal–Organic Framework with An Octatopic Ligand for Gas Adsorption and Separation: Combined Characterization by Experiments and Molecular Simulation. Chemistry of Materials, 2012, 24, 18-25.	6.7	88
253	Solution-Phase Monitoring of the Structural Evolution of a Molybdenum Blue Nanoring. Journal of the American Chemical Society, 2012, 134, 3816-3824.	13.7	90
254	Coordination Polymers of Copper and Zinc Ions with a Linear Linker Having Imidazole at Each End and an Azo Moiety in the Middle: Pedal Motion, Gas Adsorption, and Emission Studies. Crystal Growth and Design, 2012, 12, 5025-5034.	3.0	46
255	Effect of Nanochannel Dimension on the Transport of Water Molecules. Journal of Physical Chemistry B, 2012, 116, 5925-5932.	2.6	90
256	Progress in adsorption-based CO ₂ capture by metal–organic frameworks. Chemical Society Reviews, 2012, 41, 2308-2322.	38.1	1,205
257	Metal–organic frameworks for catalysis: the Knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst. Catalysis Science and Technology, 2012, 2, 521-528.	4.1	177
258	Perylene Based Porous Polyimides: Tunable, High Surface Area with Tetrahedral and Pyramidal Monomers. Chemistry of Materials, 2012, 24, 969-971.	6.7	115
259	CH4 storage and CO2 capture in highly porous zirconium oxide based metal–organic frameworks. Chemical Communications, 2012, 48, 9831.	4.1	180
260	Discovery, development, and functionalization of Zr(<scp>iv</scp>)-based metal–organic frameworks. CrystEngComm, 2012, 14, 4096-4104.	2.6	282
261	Design Strategies for Shape-Persistent Covalent Organic Polyhedrons (COPs) through Imine Condensation/Metathesis. Journal of Organic Chemistry, 2012, 77, 7392-7400.	3.2	41
262	Conductive metal–organic frameworks and networks: fact or fantasy?. Physical Chemistry Chemical Physics, 2012, 14, 13120.	2.8	258
263	Two hybrid polyoxometalate-pillared metal–organic frameworks. Dalton Transactions, 2012, 41, 11783.	3.3	27
264	Separation of CO2–CH4 mixtures in the mesoporous MIL-100(Cr) MOF: experimental and modelling approaches. Dalton Transactions, 2012, 41, 4052.	3.3	78
265	Confinement effects in the hydrogen adsorption on paddle wheel containing metal–organic frameworks. Physical Chemistry Chemical Physics, 2012, 14, 2508.	2.8	29
266	Microporous metal–organic frameworks for storage and separation of small hydrocarbons. Chemical Communications, 2012, 48, 11813.	4.1	297
267	Understanding excess uptake maxima for hydrogen adsorption isotherms in frameworks with rht topology. Chemical Communications, 2012, 48, 10496.	4.1	50
268	Comparison of the Effect of Functional Groups on Gas-Uptake Capacities by Fixing the Volumes of Cages A and B and Modifying the Inner Wall of Cage C in rht-Type MOFs. Inorganic Chemistry, 2012, 51, 10350-10355.	4.0	89
269	A microporous, moisture-stable, and amine-functionalized metal–organic framework for highly selective separation of CO ₂ from CH ₄ . Chemical Communications, 2012, 48, 1135-1137.	4.1	73

#	Article	IF	CITATIONS
270	A highly porous metal–organic framework, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake. Chemical Communications, 2012, 48, 10841.	4.1	197
271	Saturation properties of a supercritical gas sorbed in nanoporous materials. Physical Chemistry Chemical Physics, 2012, 14, 16544.	2.8	9
272	H ₂ storage in isostructural UiO-67 and UiO-66 MOFs. Physical Chemistry Chemical Physics, 2012, 14, 1614-1626.	2.8	415
273	Metal organic frameworks for electrochemical applications. Energy and Environmental Science, 2012, 5, 9269.	30.8	767
274	Reversible phase transformation in proton conducting Strandberg-type POM based metal organic material. Chemical Communications, 2012, 48, 266-268.	4.1	134
275	Accurate Ab Initio-Based Force Field for Predictive CO ₂ Uptake Simulations in MOFs and ZIFs: Development and Applications for MTV-MOFs. Journal of Physical Chemistry C, 2012, 116, 20254-20261.	3.1	39
276	Advanced fabrication of metal–organic frameworks: template-directed formation of polystyrene@ZIF-8 core–shell and hollow ZIF-8 microspheres. Chemical Communications, 2012, 48, 221-223.	4.1	252
279	Crystal Engineering of a Microporous, Catalytically Active fcu Topology MOF Using a Customâ€Designed Metalloporphyrin Linker. Angewandte Chemie - International Edition, 2012, 51, 10082-10085.	13.8	154
280	Magnesium Nanocrystals Embedded in a Metal–Organic Framework: Hybrid Hydrogen Storage with Synergistic Effect on Physi―and Chemisorption. Angewandte Chemie - International Edition, 2012, 51, 9814-9817.	13.8	141
281	Supramolecular Approach by Using Jahn–Teller Sites to Construct a {Mn ₁₃ }â€Based Coordination Polymer and Modify its Magnetic Properties. Chemistry - A European Journal, 2012, 18, 13984-13988.	3.3	30
282	Dye Encapsulation Inside a New Mesoporous Metal–Organic Framework for Multifunctional Solvatochromicâ€Response Function. Chemistry - A European Journal, 2012, 18, 13299-13303.	3.3	86
283	Preparation of Various Prussian Blue Analogue Hollow Nanocubes with Single Crystalline Shells. European Journal of Inorganic Chemistry, 2012, 2012, 4795-4799.	2.0	82
284	Tuning the Adsorption Properties of UiO-66 via Ligand Functionalization. Langmuir, 2012, 28, 15606-15613.	3.5	505
285	Cooperative Template-Directed Assembly of Mesoporous Metal–Organic Frameworks. Journal of the American Chemical Society, 2012, 134, 126-129.	13.7	330
286	Exceptional surface area from coordination copolymers derived from two linear linkers of differing lengths. Chemical Science, 2012, 3, 2429.	7.4	63
287	Structures and properties of lanthanide metal–organic frameworks based on a 1,2,3-triazole-containing tetracarboxylate ligand. Dalton Transactions, 2012, 41, 12790.	3.3	50
288	Synthesis, Crystal Structure, and Characterization of a Novel One-Dimensional Helical Chain Cobalt(II) Coordination Polymer. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 475-479.	0.6	2
289	Methane storage in advanced porous materials. Chemical Society Reviews, 2012, 41, 7761.	38.1	716

#	Article	IF	CITATIONS
290	Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF). Energy and Environmental Science, 2012, 5, 8370.	30.8	234
291	Alkaline earth imidazolate coordination polymers by solvent free melt synthesis as potential host lattices for rare earth photoluminescence: xâ^ž[AE(lm)2(lmH)2–3], Mg, Ca, Sr, Ba, x = 1–2. Dalton Transactions, 2012, 41, 4067.	3.3	33
293	Highly biocompatible, hollow coordination polymer nanoparticles as cisplatin carriers for efficient intracellular drug delivery. Chemical Communications, 2012, 48, 5151.	4.1	157
294	Graphene oxide derived carbons (GODCs): synthesis and gas adsorption properties. Energy and Environmental Science, 2012, 5, 6453.	30.8	169
295	Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework. Nature Communications, 2012, 3, 604.	12.8	356
296	Direct Carbonization of Al-Based Porous Coordination Polymer for Synthesis of Nanoporous Carbon. Journal of the American Chemical Society, 2012, 134, 2864-2867.	13.7	588
297	A new series of isoreticular copper-based metal–organic frameworks containing non-linear linkers with different group 14 central atoms. Journal of Materials Chemistry, 2012, 22, 10294.	6.7	9
298	Designing Higher Surface Area Metal–Organic Frameworks: Are Triple Bonds Better Than Phenyls?. Journal of the American Chemical Society, 2012, 134, 9860-9863.	13.7	198
299	Activated carbon monoliths for gas storage at room temperature. Energy and Environmental Science, 2012, 5, 9833.	30.8	109
300	Urea Metal–Organic Frameworks as Effective and Size-Selective Hydrogen-Bond Catalysts. Journal of the American Chemical Society, 2012, 134, 3334-3337.	13.7	292
301	Nanosponges for hydrogen storage. Journal of Materials Chemistry, 2012, 22, 10134.	6.7	69
302	Highly selective CO2 capture of an agw-type metal–organic framework with inserted amides: experimental and theoretical studies. Chemical Communications, 2012, 48, 3058.	4.1	166
303	General Relationship between Hydrogen Adsorption Capacities at 77 and 298 K and Pore Characteristics of the Porous Adsorbents. Journal of Physical Chemistry C, 2012, 116, 10529-10540.	3.1	50
304	Improving the hydrogen storage capacity of metal organic framework by chemical functionalization. International Journal of Hydrogen Energy, 2012, 37, 16070-16077.	7.1	30
305	Diffusion of long chain n-alkanes in the metal–organic framework MIL-47(V): A combination of neutron scattering experiments and molecular dynamics simulations. Microporous and Mesoporous Materials, 2012, 164, 259-265.	4.4	33
306	A Review of CO2 Capture by Absorption and Adsorption. Aerosol and Air Quality Research, 2012, 12, 745-769.	2.1	1,313
307	Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology. Nature Communications, 2012, 3, 642.	12.8	145
308	Enhanced isosteric heat of H2 adsorption by inclusion of crown ethers in a porous metal–organic framework. Chemical Communications, 2012, 48, 3400.	4.1	26

#	Article	IF	Citations
309	Insight into the Correlation between Net Topology and Ligand Coordination Mode in New Lanthanide MOFs Heterogeneous Catalysts: A Theoretical and Experimental Approach. Crystal Growth and Design, 2012, 12, 5535-5545.	3.0	45
310	Postsynthetic Lithium Modification of Covalent-Organic Polymers for Enhancing Hydrogen and Carbon Dioxide Storage. Journal of Physical Chemistry C, 2012, 116, 5974-5980.	3.1	95
311	Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. Journal of Materials Chemistry, 2012, 22, 21849.	6.7	289
312	Glucose-Promoted Zn-Based Metal–Organic Framework/Graphene Oxide Composites for Hydrogen Sulfide Removal. ACS Applied Materials & Interfaces, 2012, 4, 4942-4947.	8.0	144
313	Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm, 2012, 14, 492-498.	2.6	284
314	Ab Initio Parametrized Force Field for the Flexible Metal–Organic Framework MIL-53(Al). Journal of Chemical Theory and Computation, 2012, 8, 3217-3231.	5.3	69
315	Size- and shape-controlled synthesis of Prussian Blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process. CrystEngComm, 2012, 14, 3387.	2.6	143
316	Assessment of hydrogen storage by physisorption in porous materials. Energy and Environmental Science, 2012, 5, 8294.	30.8	7 5
317	Stepwise adsorption in a mesoporous metal–organic framework: experimental and computational analysis. Chemical Communications, 2012, 48, 3297.	4.1	60
318	Porous coordination polymers constructed from anisotropic metal–carboxylate–pyridyl clusters. Pure and Applied Chemistry, 2012, 85, 405-416.	1.9	14
319	Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Transactions, 2012, 41, 6906.	3.3	544
320	Construction of Lanthanide–Organic Frameworks from 2-(pyridine-3-yl)-1 <i>H</i> -4,5-imidazoledicarboxylate and Oxalate. Crystal Growth and Design, 2012, 12, 4225-4229.	3.0	21
321	Non-interpenetrated IRMOF-8: synthesis, activation, and gas sorption. Chemical Communications, 2012, 48, 9828.	4.1	49
322	The effects of electronic polarization on water adsorption in metal-organic frameworks: H2O in MIL-53(Cr). Journal of Chemical Physics, 2012, 137, 054704.	3.0	45
323	Facile and rapid fabrication of nanostructured lanthanide coordination polymers as selective luminescent probes in aqueous solution. Journal of Materials Chemistry, 2012, 22, 6819.	6.7	161
324	High H ₂ Uptake in Li-, Na-, K-Metalated Covalent Organic Frameworks and Metal Organic Frameworks at 298 K. Journal of Physical Chemistry A, 2012, 116, 1621-1631.	2.5	72
325	Selective CO ₂ Capture from Flue Gas Using Metal–Organic Frameworks―A Fixed Bed Study. Journal of Physical Chemistry C, 2012, 116, 9575-9581.	3.1	176
326	From Nonporous to Porous Doubly-Pillared-Layer Framework: Control over Interpenetration via Shape Alteration of Layer Apertures. Crystal Growth and Design, 2012, 12, 1626-1631.	3.0	21

#	Article	IF	Citations
327	A Combined Experimental-Computational Study on the Effect of Topology on Carbon Dioxide Adsorption in Zeolitic Imidazolate Frameworks. Journal of Physical Chemistry C, 2012, 116, 24084-24090.	3.1	112
328	Ultrasensitive Humidity Detection Using Metal–Organic Framework-Coated Microsensors. Analytical Chemistry, 2012, 84, 7043-7051.	6.5	111
329	Highly selective acetone fluorescent sensors based on microporous Cd(ii) metal–organic frameworks. Journal of Materials Chemistry, 2012, 22, 23201.	6.7	140
330	A novel Zn ₄ O-based triazolyl benzoate MOF: synthesis, crystal structure, adsorption properties and solid state ¹³ C NMR investigations. Dalton Transactions, 2012, 41, 817-824.	3.3	15
331	Coercing bisphosphonates to kill cancer cells with nanoscale coordination polymers. Chemical Communications, 2012, 48, 2668.	4.1	97
332	New Porous Crystals of Extended Metal-Catecholates. Chemistry of Materials, 2012, 24, 3511-3513.	6.7	618
333	Unusual room temperature CO2 uptake in a fluoro-functionalized MOF: insight from Raman spectroscopy and theoretical studies. Chemical Communications, 2012, 48, 8487.	4.1	78
334	Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst. Electrochemistry Communications, 2012, 25, 70-73.	4.7	259
335	Metal–Organic Frameworks for Removal of Xe and Kr from Nuclear Fuel Reprocessing Plants. Langmuir, 2012, 28, 11584-11589.	3.5	172
336	lodine Confinement into Metal–Organic Frameworks (MOFs): Low-Temperature Sintering Glasses To Form Novel Glass Composite Material (GCM) Alternative Waste Forms. Industrial & Engineering Chemistry Research, 2012, 51, 614-620.	3.7	156
337	Immobilizing Highly Catalytically Active Pt Nanoparticles inside the Pores of Metal–Organic Framework: A Double Solvents Approach. Journal of the American Chemical Society, 2012, 134, 13926-13929.	13.7	834
338	Two Large-Pore Metal–Organic Frameworks Derived from a Single Polytopic Strut. Crystal Growth and Design, 2012, 12, 1075-1080.	3.0	31
339	Keggin polyanion and copper cluster based coordination polymer towards model for complex nanosystem. Dalton Transactions, 2012, 41, 5468.	3.3	12
340	Mechanical, Electronic, and Adsorption Properties of Porous Aromatic Frameworks. Journal of Physical Chemistry C, 2012, 116, 22878-22884.	3.1	22
341	Novel Carbon Materials for CO2 Adsorption. , 2012, , 583-603.		5
342	Structural determination of a highly stable metal-organic framework with possible application to interim radioactive waste scavenging: Hf-UiO-66. Physical Review B, 2012, 86, .	3.2	196
343	Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane. Bulletin of Chemical Reaction Engineering and Catalysis, 2012, 7, .	1.1	0
344	Structural properties of metalâ€organic frameworks within the densityâ€functional based tightâ€binding method. Physica Status Solidi (B): Basic Research, 2012, 249, 335-342.	1.5	42

#	Article	IF	CITATIONS
345	Highly Luminescent Metal–Organic Frameworks Through Quantum Dot Doping. Small, 2012, 8, 80-88.	10.0	132
346	Fine tuning of the metal–organic framework Cu3(BTC)2 HKUST-1 crystal size in the 100 nm to 5 micron range. Journal of Materials Chemistry, 2012, 22, 13742.	6.7	158
347	Deconstructing the Crystal Structures of Metal–Organic Frameworks and Related Materials into Their Underlying Nets. Chemical Reviews, 2012, 112, 675-702.	47.7	1,942
348	Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 703-723.	47.7	1,085
349	Functional Group Modification of Metal–Organic Frameworks for CO ₂ Capture. Journal of Physical Chemistry C, 2012, 116, 10573-10579.	3.1	73
350	The Structure, Thermodynamics, and Solubility of Organic Crystals from Simulation with a Polarizable Force Field. Journal of Chemical Theory and Computation, 2012, 8, 1721-1736.	5. 3	77
351	Highly Porous 4,8-Connected Metal–Organic Frameworks: Synthesis, Characterization, and Hydrogen Uptake. Inorganic Chemistry, 2012, 51, 2503-2508.	4.0	24
352	Emerging concepts in solid-state hydrogen storage: the role of nanomaterials design. Energy and Environmental Science, 2012, 5, 5951.	30.8	130
353	Template-Directed Synthesis of Nets Based upon Octahemioctahedral Cages That Encapsulate Catalytically Active Metalloporphyrins. Journal of the American Chemical Society, 2012, 134, 928-933.	13.7	155
354	Single-Atom Ligand Changes Affect Breathing in an Extended Metal–Organic Framework. Inorganic Chemistry, 2012, 51, 5671-5676.	4.0	61
355	Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science, 2012, 336, 1018-1023.	12.6	1,729
356	Combining Coordination Modulation with Acid–Base Adjustment for the Control over Size of Metal–Organic Frameworks. Chemistry of Materials, 2012, 24, 444-450.	6.7	223
357	MOF-Derived Hierarchically Porous Carbon with Exceptional Porosity and Hydrogen Storage Capacity. Chemistry of Materials, 2012, 24, 464-470.	6.7	671
358	Metal–Organic Frameworks for Separations. Chemical Reviews, 2012, 112, 869-932.	47.7	5,588
359	Carbon Dioxide Capture in Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 724-781.	47.7	5,612
360	Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 782-835.	47.7	3,283
361	Mesoporous metal–organic frameworks: design and applications. Energy and Environmental Science, 2012, 5, 7508.	30.8	203
362	lonothermal syntheses, crystal structures and properties of three-dimensional rare earth metal–organic frameworks with 1,4-naphthalenedicarboxylic acid. Dalton Transactions, 2012, 41, 10576.	3.3	40

#	Article	IF	CITATIONS
363	Polyrotaxane metal–organic frameworks (PMOFs). Chemical Communications, 2012, 48, 7899.	4.1	167
364	Interplay of Metalloligand and Organic Ligand to Tune Micropores within Isostructural Mixed-Metal Organic Frameworks (M′MOFs) for Their Highly Selective Separation of Chiral and Achiral Small Molecules. Journal of the American Chemical Society, 2012, 134, 8703-8710.	13.7	326
365	Growth of preferential orientation of MIL-53(Al) film as nano-assembler. CrystEngComm, 2012, 14, 5487.	2.6	30
366	Amplified Luminescence Quenching of Phosphorescent Metal–Organic Frameworks. Journal of the American Chemical Society, 2012, 134, 3991-3994.	13.7	221
367	Selective CO2 uptake and inverse CO2/C2H2 selectivity in a dynamic bifunctional metal–organic framework. Chemical Science, 2012, 3, 2993.	7.4	117
368	Mesoporous metal–organic framework materials. Chemical Society Reviews, 2012, 41, 1677-1695.	38.1	830
369	A high connectivity metal–organic framework with exceptional hydrogen and methane uptake capacities. Chemical Science, 2012, 3, 3032.	7.4	75
370	Methane storage in metal organic frameworks. Journal of Materials Chemistry, 2012, 22, 16698.	6.7	153
371	Design and Synthesis of Mixed Valent Coordination Networks Containing Pyridine Appended Terpyridyl, Halide, and Dicarboxylates. Crystal Growth and Design, 2012, 12, 4264-4274.	3.0	23
372	Coordination-Chemistry Control of Proton Conductivity in the Iconic Metal–Organic Framework Material HKUST-1. Journal of the American Chemical Society, 2012, 134, 51-54.	13.7	382
373	Permanent Porous Materials from Discrete Organic Molecules—Towards Ultraâ€High Surface Areas. Chemistry - A European Journal, 2012, 18, 10082-10091.	3.3	201
374	Luminescence tuning of MOFs via ligand to metal and metal to metal energy transfer by co-doping of 2â^ž[Gd2Cl6(bipy)3]·2bipy with europium and terbium. Journal of Materials Chemistry, 2012, 22, 10179.	6.7	105
375	A Porous Metal-Organic Framework Based on Triazoledicarboxylate Ligands - Synthesis, Structure, and Gas-Sorption Studies. European Journal of Inorganic Chemistry, 2012, 2012, 3562-3568.	2.0	18
376	Recent advances in carbon dioxide capture with metalâ€organic frameworks. , 2012, 2, 239-259.		301
377	Metalâ€Organic Frameworks as Singleâ€Site Solid Catalysts for Asymmetric Reactions. Israel Journal of Chemistry, 2012, 52, 591-603.	2.3	41
378	Mn(II)-Based Porous Metal–Organic Framework Showing Metamagnetic Properties and High Hydrogen Adsorption at Low Pressure. Inorganic Chemistry, 2012, 51, 674-679.	4.0	79
379	A novel MOF with mesoporous cages for kinetic trapping of hydrogen. Chemical Communications, 2012, 48, 254-256.	4.1	41
380	A robust microporous metal–organic framework constructed from a flexible organic linker for acetylene storage at ambient temperature. Journal of Materials Chemistry, 2012, 22, 10195.	6.7	55

#	Article	IF	CITATIONS
381	Synthesis and Characterization of Metal Complexes with Mixed 4-Imidazole-Containing Tripodal Ligand and Varied Dicarboxylic Acid. Crystal Growth and Design, 2012, 12, 2315-2326.	3.0	50
382	Synthesis, Structure, and Magnetic Properties of a New Eight-Connected Metal–Organic Framework (MOF) based on Co ₄ Clusters. Inorganic Chemistry, 2012, 51, 4495-4501.	4.0	51
383	A family of 2D and 3D coordination polymers involving a trigonal tritopic linker. Dalton Transactions, 2012, 41, 4172.	3.3	25
384	A partially interpenetrated metal–organic framework for selective hysteretic sorption ofÂcarbon dioxide. Nature Materials, 2012, 11, 710-716.	27.5	430
385	High capacity gas storage in corrugated porous graphene with a specific surface area-lossless tightly stacking manner. Chemical Communications, 2012, 48, 6815.	4.1	79
386	Comparing van der Waals Density Functionals for CO ₂ Adsorption in Metal Organic Frameworks. Journal of Physical Chemistry C, 2012, 116, 16957-16968.	3.1	72
387	A novel method to improve the gas storage capacity of ZIF-8. Journal of Materials Chemistry, 2012, 22, 12246.	6.7	153
388	An unprecedented (4,10)-connected porous metal–organic framework containing two rare large secondary building units (SBUs). CrystEngComm, 2012, 14, 1538.	2.6	14
389	Porous organic molecular materials. CrystEngComm, 2012, 14, 1909.	2.6	205
390	Highly Potent Bactericidal Activity of Porous Metalâ€Organic Frameworks. Advanced Healthcare Materials, 2012, 1, 225-238.	7.6	136
391	Accessible Surface Area of Porous Materials: Understanding Theoretical Limits. Advanced Materials, 2012, 24, 3130-3133.	21.0	54
396	Polyamineâ€Tethered Porous Polymer Networks for Carbon Dioxide Capture from Flue Gas. Angewandte Chemie - International Edition, 2012, 51, 7480-7484.	13.8	518
397	Porous, Conductive Metalâ€Triazolates and Their Structural Elucidation by the Chargeâ€Flipping Method. Chemistry - A European Journal, 2012, 18, 10595-10601.	3.3	227
398	Direct Crystallographic Observation of Catalytic Reactions inside the Pores of a Flexible Coordination Polymer. Chemistry - A European Journal, 2012, 18, 6866-6872.	3.3	108
399	A Guestâ€Dependent Approach to Retain Permanent Pores in Flexible Metal–Organic Frameworks by Cation Exchange. Chemistry - A European Journal, 2012, 18, 7896-7902.	3.3	66
400	New Multifunctional Porous Materials Based on Inorganic–Organic Hybrid Singleâ€Walled Carbon Nanotubes: Gas Storage and Highâ€Sensitive Detection of Pesticides. Chemistry - A European Journal, 2012, 18, 11804-11810.	3.3	23
401	Control of Interpenetration and Gasâ€Sorption Properties of Metal–Organic Frameworks by a Simple Change in Ligand Design. Chemistry - A European Journal, 2012, 18, 8673-8680.	3.3	135
402	Fluorescent Microporous Organic Polymers: Potential Testbed for Optical Applications. Chemistry - A European Journal, 2012, 18, 10074-10080.	3.3	88

#	Article	IF	CITATIONS
403	An Isoreticular Family of Microporous Metal–Organic Frameworks Based on Zinc and 2‧ubstituted Imidazolateâ€4â€amideâ€5â€imidate: Syntheses, Structures and Properties. Chemistry - A European Journal, 201 18, 11630-11640.	2,3.3	26
404	Microwaveâ€Assisted Modular Fabrication of Nanoscale Luminescent Metalâ€Organic Framework for Molecular Sensing. ChemPhysChem, 2012, 13, 2734-2738.	2.1	67
405	Adsorption and Separation of Light Gases on an Aminoâ€Functionalized Metal–Organic Framework: An Adsorption and Inâ€Situ XRD Study. ChemSusChem, 2012, 5, 740-750.	6.8	115
406	Porous Metalloporphyrinic Frameworks Constructed from Metal 5,10,15,20-Tetrakis(3,5-biscarboxylphenyl)porphyrin for Highly Efficient and Selective Catalytic Oxidation of Alkylbenzenes. Journal of the American Chemical Society, 2012, 134, 10638-10645.	13.7	265
407	Hydrogen Storage in New Metal–Organic Frameworks. Journal of Physical Chemistry C, 2012, 116, 13143-13151.	3.1	174
408	Charge-transfer guest interactions in luminescent MOFs: implications for solid-state temperature and environmental sensing. Dalton Transactions, 2012, 41, 8869.	3.3	78
409	Photoresponse Characteristics of Archetypal Metal–Organic Frameworks. Journal of Physical Chemistry C, 2012, 116, 3112-3121.	3.1	32
410	Structural isomerism of an anionic nanoporous In-MOF with interpenetrated diamond-like topology. CrystEngComm, 2012, 14, 1819.	2.6	41
411	Tuning Metal–Organic Frameworks with Open-Metal Sites and Its Origin for Enhancing CO ₂ Affinity by Metal Substitution. Journal of Physical Chemistry Letters, 2012, 3, 826-829.	4.6	116
412	Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews, 2012, 112, 1196-1231.	47.7	2,699
413	Large-scale screening of hypothetical metal–organic frameworks. Nature Chemistry, 2012, 4, 83-89.	13.6	1,098
414	Molecular-Level Characterization of the Breathing Behavior of the Jungle-Gym-type DMOF-1 Metal–Organic Framework. Journal of the American Chemical Society, 2012, 134, 4207-4215.	13.7	87
415	Local intermolecular interactions for selective CO2 capture by zeolitic imidazole frameworks: energy decomposition analysis. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	8
416	Some properties of three-periodic sphere packings. Structural Chemistry, 2012, 23, 1079-1087.	2.0	6
417	The relevance of metal organic frameworks (MOFs) in inorganic materials chemistry. Journal of Chemical Sciences, 2012, 124, 339-353.	1.5	34
418	Structure–activity relationships of simple molecules adsorbed on CPO-27-Ni metal–organic framework: In situ experiments vs. theory. Catalysis Today, 2012, 182, 67-79.	4.4	67
419	Nanosize Zr-metal organic framework (UiO-66) for hydrogen and carbon dioxide storage. Chemical Engineering Journal, 2012, 187, 415-420.	12.7	227
420	Synthesis, structure, novel topology and reversible crystal-to-amorphous transformation of calcium coordination polymers from a flexible tripodal acid with additional amide groups. Inorganica Chimica Acta, 2012, 383, 305-311.	2.4	5

#	ARTICLE	IF	CITATIONS
421	Lithium doping on metal-organic frameworks for enhancing H2 Storage. International Journal of Hydrogen Energy, 2012, 37, 946-950.	7.1	64
422	MOF-5 and activated carbons as adsorbents for gas storage. International Journal of Hydrogen Energy, 2012, 37, 2370-2381.	7.1	119
423	Metal–organic framework MOF-199 as an efficient heterogeneous catalyst for the aza-Michael reaction. Applied Catalysis A: General, 2012, 425-426, 44-52.	4.3	137
424	A novel 3D (4,5,14)-connected layer-pillared metal-organic framework containing rare planar hexnuclear cadmium(II) clusters. Inorganic Chemistry Communication, 2012, 20, 312-316.	3.9	11
425	Epitaxially grown metal-organic frameworks. Materials Today, 2012, 15, 110-116.	14.2	117
426	Hydrothermal synthesis, crystal structures and photoluminescence properties of mixed europium–yttrium organic frameworks. Journal of Solid State Chemistry, 2012, 186, 165-170.	2.9	35
427	New metal-organic frameworks of $[M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)]$. H2O $(M=La, Ce)$ and $[Ce2(C2O4)(C6H6O7)2]$. 4H2O. Journal of Solid State Chemistry, 2012, 188, 77-83.	2.9	23
428	Effect of pore structures on selective gas sorption behavior of ultramicroporous MOFs. Microporous and Mesoporous Materials, 2012, 150, 32-37.	4.4	11
429	A microporous coordination polymer of 2,6-Naphthalenedicarboxylate and cobalt(II) showing reversible structural and functional transformation. Microporous and Mesoporous Materials, 2012, 157, 33-36.	4.4	8
430	The iron member of the CPO-27 coordination polymer series: Synthesis, characterization, and intriguing redox properties. Microporous and Mesoporous Materials, 2012, 157, 62-74. Structures and hydrogen adsorption of <mml:math <="" altimg="sil.gif" overflow="scroll" td=""><td>4.4</td><td>59</td></mml:math>	4.4	59
431	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	2.1	0
432	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevie. Physics Nanoporous organic polymer networks. Progress in Polymer Science, 2012, 37, 530-563.	24.7	1,029
433	Borromeanâ€Entanglementâ€Driven Assembly of Porous Molecular Architectures with Anionâ€Modified Pore Space. Chemistry - A European Journal, 2012, 18, 1924-1931.	3.3	36
434	Portraits of Porosity: Porous Structures Based on Metal Salen Complexes. European Journal of Inorganic Chemistry, 2012, 2012, 17-30.	2.0	40
435	Digital Microfluidic Highâ€Throughput Printing of Single Metalâ€Organic Framework Crystals. Advanced Materials, 2012, 24, 1316-1320.	21.0	88
436	Enhanced Binding Affinity, Remarkable Selectivity, and High Capacity of CO ₂ by Dual Functionalization of a <i>rht</i> ‶ype Metal–Organic Framework. Angewandte Chemie - International Edition, 2012, 51, 1412-1415.	13.8	430
437	Calixareneâ∈Based Nanoscale Coordination Cages. Angewandte Chemie - International Edition, 2012, 51, 1585-1588.	13.8	197
438	High Propene/Propane Selectivity in Isostructural Metal–Organic Frameworks with High Densities of Open Metal Sites. Angewandte Chemie - International Edition, 2012, 51, 1857-1860.	13.8	392

#	ARTICLE	IF	CITATIONS
439	Crystal Structures of a Series of 1,1-Spiro-bis(1,2,3,4-tetrahydronaphthalene)-Based Derivatives. Journal of Chemical Crystallography, 2012, 42, 111-118.	1.1	3
440	Amino Acid Based Dynamic Metal–Biomolecule Frameworks. Chemistry - A European Journal, 2013, 19, 11178-11183.	3.3	27
441	Synthesis of a honeycomb-like Cu-based metal–organic framework and its carbon dioxide adsorption behaviour. Dalton Transactions, 2013, 42, 2392-2398.	3.3	174
442	Spontaneous Resolution upon Crystallization of 3D, Chiral Inorganic Networks Assembled from Achiral, Polyoxometallate Units and Metal Ions. Crystal Growth and Design, 2013, 13, 3996-4001.	3.0	19
443	Limitations and high pressure behavior of MOF-5 for CO2 capture. Physical Chemistry Chemical Physics, 2013, 15, 14319.	2.8	42
444	Fundamental Aspects of H ₂ S Adsorption on CPO-27-Ni. Journal of Physical Chemistry C, 2013, 117, 15615-15622.	3.1	85
445	Gate effects in a hexagonal zinc-imidazolate-4-amide-5-imidate framework with flexible methoxy substituents and CO2 selectivity. Chemical Communications, 2013, 49, 7599.	4.1	35
446	Capturing CO ₂ with Amine-Impregnated Titanium Oxides. Energy & Capturing CO ₂ with Amine-Impregnated Titanium Oxides. Energy & Capturing CO ₂	5.1	57
447	Chiral microporous Ti(salan)-based metal–organic frameworks for asymmetric sulfoxidation. Chemical Communications, 2013, 49, 7120.	4.1	43
448	Nanoporous Structure of Semirigid Alternating Copolymers via Nitrogen Sorption and Molecular Simulation. Macromolecules, 2013, 46, 5968-5973.	4.8	15
449	Carborane-Based Metal–Organic Framework with High Methane and Hydrogen Storage Capacities. Chemistry of Materials, 2013, 25, 3539-3543.	6.7	115
450	The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids. RSC Advances, 2013, 3, 15518.	3.6	127
451	Expanding applications of copper-based metal–organic frameworks in catalysis: Oxidative C–O coupling by direct C–H activation of ethers over Cu2(BPDC)2(BPY) as an efficient heterogeneous catalyst. Journal of Catalysis, 2013, 306, 38-46.	6.2	69
452	Methane Storage in Metal–Organic Frameworks: Current Records, Surprise Findings, and Challenges. Journal of the American Chemical Society, 2013, 135, 11887-11894.	13.7	841
453	A Metal–Organic Framework Stabilizes an Occluded Photocatalyst. Chemistry - A European Journal, 2013, 19, 11194-11198.	3.3	65
454	Identification of solid-state forms of cucurbit[6]uril for carbon dioxide capture. CrystEngComm, 2013, 15, 1528.	2.6	32
455	Sorption of benzene vapors to flexible metal–organic framework [Zn2(bdc)2(dabco)]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 77, 205-211.	1.6	8
456	Single- and Double-Layer Structures and Sorption Properties of Two Microporous Metal–Organic Frameworks with Flexible Tritopic Ligand. Crystal Growth and Design, 2013, 13, 1458-1463.	3.0	42

#	ARTICLE	IF	CITATIONS
457	Synthesis and catalytic application in isobutane dehydrogenation of the mesoporous chromia/alumina catalysts based on a metal–organic framework. Microporous and Mesoporous Materials, 2013, 181, 182-191.	4.4	22
458	Conjugated microporous polymers: design, synthesis and application. Chemical Society Reviews, 2013, 42, 8012.	38.1	1,459
459	Nanostructured Adsorbents for Hydrogen Storage. , 2013, , 137-164.		6
460	A Copper Metal–Organic Framework as an Efficient and Recyclable Catalyst for the Oxidative Crossâ€Dehydrogenative Coupling of Phenols and Formamides. ChemCatChem, 2013, 5, 3068-3077.	3.7	47
461	Helical frontier orbitals of conjugated linear molecules. Chemical Science, 2013, 4, 4278.	7.4	72
462	Lipid-coated nanoscale coordination polymers for targeted cisplatin delivery. RSC Advances, 2013, 3, 14438.	3.6	63
463	Insight into the role of the oxidized graphite precursor on the properties of copper-based MOF/graphite oxide composites. Microporous and Mesoporous Materials, 2013, 179, 205-211.	4.4	25
464	Structural Diversity and Magnetic Properties of Five Cu(II) Complexes with Mixed Naphthalene-Based Dicarboxyl Tecton and Different N-Donor Co-Ligands. Australian Journal of Chemistry, 2013, 66, 963.	0.9	4
465	Metal–Organic Frameworks as A Tunable Platform for Designing Functional Molecular Materials. Journal of the American Chemical Society, 2013, 135, 13222-13234.	13.7	801
466	Selective anion exchange with nanogated isoreticular positive metal-organic frameworks. Nature Communications, 2013, 4, 2344.	12.8	336
467	Donation and scavenging of nitric oxide (NO) by flipping of the denticity of carboxylate ligand in novel ruthenium complexes: Photolability of the coordinated NO. Inorganica Chimica Acta, 2013, 405, 24-30.	2.4	13
468	Lithiumâ€Functionalized Metal–Organic Frameworks that Show >10 wt % H 2 Uptake at Ambient Temperature. ChemPhysChem, 2013, 14, 2698-2703.	2.1	6
469	A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels. Nature Communications, 2013, 4, 1774.	12.8	310
470	Linker extension through hard-soft selective metal coordination for the construction of a non-rigid metal-organic framework. Science China Chemistry, 2013, 56, 418-422.	8.2	20
471	Two cobalt(II) complexes with 5-(1H-benzotriazol-1-ylmethyl)isophthalate: synthesis, structural characterization and magnetism. Journal of Coordination Chemistry, 2013, 66, 1795-1804.	2.2	6
472	Carbon dioxide adsorption in microwave-synthesized metal organic framework CPM-5: Equilibrium and kinetics study. Microporous and Mesoporous Materials, 2013, 175, 85-91.	4.4	64
473	Adsorption in Metal-Organic Frameworks. , 2013, , 989-1006.		3
474	Open carbon frameworks - a search for optimal geometry for hydrogen storage. Journal of Molecular Modeling, 2013, 19, 4079-4087.	1.8	15

#	Article	IF	CITATIONS
475	Multipoint interactions enhanced H2 storage and organosulfur removal in a microporous metal $\hat{a} \in \text{"organic framework.}$ Journal of Materials Chemistry A, 2013, 1, 11111.	10.3	22
476	An alkaline one-pot metathesis reaction to give a [Cu3(BTC)2] MOF at r.t., with free Cu coordination sites and enhanced hydrogen uptake properties. RSC Advances, 2013, 3, 10962.	3.6	39
477	Thermodynamic study of sorption processes of gaseous benzene and water on metal–organic framework [Zn4(dmf)(ur)2(ndc)4]. Journal of Chemical Thermodynamics, 2013, 67, 128-133.	2.0	9
478	A highly porous interpenetrated MOF-5-type network based on bipyrazolate linkers. CrystEngComm, 2013, 15, 9352.	2.6	9
479	An rht type metal–organic framework based on small cubicuboctahedron supermolecular building blocks and its gas adsorption properties. New Journal of Chemistry, 2013, 37, 3662.	2.8	21
480	High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal–organic framework material HKUST-1. Chemical Physics, 2013, 427, 9-17.	1.9	14
481	Mapping of Functional Groups in Metal-Organic Frameworks. Science, 2013, 341, 882-885.	12.6	411
482	Fluorous Metal-Organic Frameworks with Enhanced Stability and High H2/CO2 Storage Capacities. Scientific Reports, 2013, 3, 3312.	3.3	136
483	Understanding Universal Adsorption Limits for Hydrogen Storage in Nano Porous Systems. Advanced Materials, 2013, 25, 5971-5974.	21.0	28
484	Supramolecular β-cyclodextrin–aniline system: a new class of amine on solid support for carbon dioxide capture with high amine efficiency. RSC Advances, 2013, 3, 24041.	3.6	9
485	Metal–organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy. Chemical Society Reviews, 2013, 42, 9304.	38.1	366
486	Liquid-Like Hydrogen Stored in Nanoporous Materials at 50 K Observed by in Situ Neutron Diffraction Experiments. Journal of Physical Chemistry C, 2013, 117, 3177-3184.	3.1	9
487	Hydrogen and methane storage in ultrahigh surface area Metal–Organic Frameworks. Microporous and Mesoporous Materials, 2013, 182, 185-190.	4.4	36
488	Rational Design and Synthesis of Hybrid Porous Polymers Derived from Polyhedral Oligomeric Silsesquioxanes via Heck Coupling Reactions. Macromolecular Rapid Communications, 2013, 34, 861-866.	3.9	68
489	MOF-76: from a luminescent probe to highly efficient U ^{VI} sorption material. Chemical Communications, 2013, 49, 10415-10417.	4.1	257
490	Structural Dynamism and Controlled Chemical Blocking/Unblocking of Active Coordination Space of a Soft Porous Crystal. Inorganic Chemistry, 2013, 52, 12784-12789.	4.0	16
491	Metal–Organic Framework-Immobilized Polyhedral Metal Nanocrystals: Reduction at Solid–Gas Interface, Metal Segregation, Core–Shell Structure, and High Catalytic Activity. Journal of the American Chemical Society, 2013, 135, 16356-16359.	13.7	119
492	Effect of Adsorbent History on Adsorption Characteristics of MIL-53(Al) Metal Organic Framework. Langmuir, 2013, 29, 12162-12167.	3.5	21

#	Article	IF	CITATIONS
493	Synthesis and gas sorption properties of halogen-doped mesoporous chromium(iii) terephthalate. Russian Chemical Bulletin, 2013, 62, 157-162.	1.5	8
494	Nanostructured adsorbents for hydrogen storage at ambient temperature: high-pressure measurements and factors influencing hydrogen spillover. RSC Advances, 2013, 3, 23935.	3.6	35
495	Dielectrophoresis-Assembled Zeolitic Imidazolate Framework Nanoparticle-Coupled Resonators for Highly Sensitive and Selective Gas Detection. Nano Letters, 2013, 13, 5271-5276.	9.1	72
496	High-rate synthesis of Cu–BTC metal–organic frameworks. Chemical Communications, 2013, 49, 11518.	4.1	127
497	Activation of metal–organic framework materials. CrystEngComm, 2013, 15, 9258.	2.6	239
498	Adsorption properties of the MOF-5 metal-organic framework in relation to water and benzene. Russian Journal of Applied Chemistry, 2013, 86, 1388-1391.	0.5	0
499	A Family of Metal–Organic Frameworks Based on Carboxylates and a Neutral, Long, and Rigid Ligand: Their Structural Revelation, Magnetic, and Luminescent Property Study. Crystal Growth and Design, 2013, 13, 5442-5449.	3.0	47
500	New Structural Topologies in a Series of 3d Metal Complexes with Isomeric Phenylenediacetates and 1,3,5-Tris(1-imidazolyl)benzene Ligand: Syntheses, Structures, and Magnetic and Luminescence Properties. Crystal Growth and Design, 2013, 13, 5335-5343.	3.0	64
501	The Chemistry and Applications of Metal-Organic Frameworks. Science, 2013, 341, 1230444.	12.6	12,032
502	Single-Crystal Structure of a Covalent Organic Framework. Journal of the American Chemical Society, 2013, 135, 16336-16339.	13.7	392
503	High-Capacity Gas Storage by a Microporous Oxalamide-Functionalized NbO-Type Metal–Organic Framework. Crystal Growth and Design, 2013, 13, 5001-5006.	3.0	71
504	Role of nanoconfinement on hydrogen sorption properties of metal nanoparticles hybrids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 439, 117-130.	4.7	78
505	Construction of Cu(ii) coordination polymers based on semi-rigid tetrahedral pyridine ligands. RSC Advances, 2013, 3, 25065.	3.6	14
506	High CO ₂ /CH ₄ and C2 Hydrocarbons/CH ₄ Selectivity in a Chemically Robust Porous Coordination Polymer. Advanced Functional Materials, 2013, 23, 3525-3530.	14.9	182
508	Construction of four new coordination polymers based on sulfone-4,4′-biphenyldicarboxylic acid ligand: Synthesis, structures and properties. Inorganic Chemistry Communication, 2013, 28, 41-48.	3.9	13
509	Synthesis and Crystal Structures of Various Phases of the Microporous Three-Dimensional Coordination Polymer [Zr(OH) ₂ (C ₂ O ₄)] _{<i>n</i>} . Crystal Growth and Design, 2013, 13, 5100-5106.	3.0	12
511	Modulating the packing of [Cu24(isophthalate)24] cuboctahedra in a triazole-containing metal–organic polyhedral framework. Chemical Science, 2013, 4, 1731.	7.4	123
512	Hybrid Bimetallic Metal–Organic Frameworks: Modulation of the Framework Stability and Ultralarge CO ₂ Uptake Capacity. Inorganic Chemistry, 2013, 52, 10869-10876.	4.0	77

#	Article	IF	CITATIONS
513	A series of coordination complexes based on unsymmetrical multicarboxylate ligands: syntheses, structures and properties. CrystEngComm, 2013, 15, 6769.	2.6	10
514	Insights into Multi-Objective Design of Metal–Organic Frameworks. Crystal Growth and Design, 2013, 13, 4208-4212.	3.0	21
515	Wings waving: coordinating solvent-induced structural diversity of new Cu(ii) flexible MOFs with crystal to crystal transformation and gas sorption capability. CrystEngComm, 2013, 15, 9513.	2.6	20
516	Volume shrinkage of a metal–organic framework host induced by the dispersive attraction of guest gas molecules. Physical Chemistry Chemical Physics, 2013, 15, 18822.	2.8	23
517	Realization of both high hydrogen selectivity and capacity in a guest responsive metal–organic framework. Journal of Materials Chemistry A, 2013, 1, 13502.	10.3	7
518	A highly porous agw-type metal–organic framework and its CO2 and H2 adsorption capacity. CrystEngComm, 2013, 15, 9348.	2.6	32
519	Bi-porous metal–organic framework with hydrophilic and hydrophobic channels: selective gas sorption and reversible iodine uptake studies. CrystEngComm, 2013, 15, 9465.	2.6	64
520	Metal–organic framework with two different types of rigid triscarboxylates: net topology and gas sorption behaviour. CrystEngComm, 2013, 15, 9491.	2.6	10
521	A highly porous 4,4-paddlewheel-connected NbO-type metal–organic framework with a large gas-uptake capacity. Dalton Transactions, 2013, 42, 11304.	3.3	34
522	A Family of Porous Lonsdaleite-e Networks Obtained through Pillaring of Decorated Kagomé Lattice Sheets. Journal of the American Chemical Society, 2013, 135, 14016-14019.	13.7	93
523	Metastable Interwoven Mesoporous Metal–Organic Frameworks. Inorganic Chemistry, 2013, 52, 11580-11584.	4.0	60
524	Building multiple adsorption sites in porous polymer networks for carbon capture applications. Energy and Environmental Science, 2013, 6, 3559.	30.8	130
525	Formation of a Metal–Organic Framework with High Surface Area and Gas Uptake by Breaking Edges Off Truncated Cuboctahedral Cages. Angewandte Chemie - International Edition, 2013, 52, 11282-11285.	13.8	56
526	Review of recent advances in carbon dioxide separation and capture. RSC Advances, 2013, 3, 22739.	3.6	632
527	Boron-substituted graphyne as a versatile material with high storage capacities of Li and H2: a multiscale theoretical study. Physical Chemistry Chemical Physics, 2013, 15, 16120.	2.8	96
528	Dipyridyl-type ligand-directed assembly of three cobalt(II) coordinated polymers based on carboxyphenylpropionate. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2013, 39, 571-578.	1.0	6
529	Chelation-driven fluorescence deactivation in three alkali earth metal MOFs containing 2,2 \hat{a} €2-dihydroxybiphenyl-4,4 \hat{a} €2-dicarboxylate. CrystEngComm, 2013, 15, 9722.	2.6	9
530	Three new solvent-directed 3D lead(ii)–MOFs displaying the unique properties of luminescence and selective CO2 sorption. Dalton Transactions, 2013, 42, 13590.	3.3	57

#	Article	IF	CITATIONS
531	Structural diversity and fluorescent properties of CdII coordination polymers with 5-halonicotinates regulated by solvent and ligand halogen-substituting effect. CrystEngComm, 2013, 15, 9713.	2.6	30
532	Hierarchically porous materials via assembly of nitrogen-rich polymer nanoparticles for efficient and selective CO2 capture. Journal of Materials Chemistry A, 2013, 1, 14862.	10.3	58
533	Guest responsivity of a two-dimensional coordination polymer incorporating a cholesterol-based co-ligand. Dalton Transactions, 2013, 42, 15893.	3.3	4
534	Exceptional function of nanoporous metal organic framework particles in emulsion stabilisation. Chemical Communications, 2013, 49, 8208.	4.1	61
535	Assembly of three-dimensional networks based upon silver–ethynide complexes bearing pyridyl and carboxylate groups. Dalton Transactions, 2013, 42, 4306.	3.3	14
536	A unique 3-D (3,18)-connected coordination framework based on a new type of {Zn18} double-stranded metallacrown. CrystEngComm, 2013, 15, 10171.	2.6	9
537	Quest for a highly connected robust porous metal–organic framework on the basis of a bifunctional linear linker and a rare heptanuclear zinc cluster. Chemical Communications, 2013, 49, 10516.	4.1	35
538	Programmed Pore Architectures in Modular Quaternary Metal–Organic Frameworks. Journal of the American Chemical Society, 2013, 135, 17731-17734.	13.7	170
539	H2 interaction with divalent cations in isostructural MOFs: a key study for variable temperature infrared spectroscopy. Dalton Transactions, 2013, 42, 12586.	3.3	31
540	Thermodynamic screening of metal-substituted MOFs for carbon capture. Physical Chemistry Chemical Physics, 2013, 15, 4573.	2.8	62
541	Bottomâ€Up Synthesis of Monodispersed Singleâ€Crystalline Cyanoâ€Bridged Coordination Polymer Nanoflakes. Angewandte Chemie - International Edition, 2013, 52, 1235-1239.	13.8	87
542	Rapid and enhanced activation of microporous coordination polymers by flowing supercritical CO2. Chemical Communications, 2013, 49, 1419.	4.1	63
543	Controlled Isotropic or Anisotropic Nanoscale Growth of Coordination Polymers: Formation of Hybrid Coordination Polymer Particles. ACS Nano, 2013, 7, 491-499.	14.6	94
544	Two New (3,6)-Connected Frameworks Based on an Unsymmetrical Tritopic Pyridyldicarboxylate Ligand and Co ₂ Dimer: Structures, Magnetic, and Sorption Properties. Crystal Growth and Design, 2013, 13, 701-707.	3.0	25
545	Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. Journal of Hazardous Materials, 2013, 244-245, 444-456.	12.4	1,140
546	A rhombus channel metal–organic framework comprised of Sr2+ and thiophene-2, 5-dicarboxylic acid exhibiting novel dielectric bistability. CrystEngComm, 2013, 15, 1264.	2.6	45
547	Kinetically Controlled Crystallization for Synthesis of Monodispersed Coordination Polymer Nanocubes and Their Selfâ€Assembly to Periodic Arrangements. Chemistry - A European Journal, 2013, 19, 1882-1885.	3.3	122
548	A Straight Forward Route for the Development of Metal–Organic Frameworks Functionalized with Aromatic â^'OH Groups: Synthesis, Characterization, and Gas (N ₂ , Ar, H ₂ ,) Tj ETQq1 1 855-862.	0.784314 4.0	rgBT/Overlo

#	Article	IF	CITATIONS
549	Impact of Metal and Anion Substitutions on the Hydrogen Storage Properties of M-BTT Metal–Organic Frameworks. Journal of the American Chemical Society, 2013, 135, 1083-1091.	13.7	139
550	Importance of small micropores in CO ₂ capture by phenolic resin-based activated carbon spheres. Journal of Materials Chemistry A, 2013, 1, 112-116.	10.3	383
551	Fine-Tuning Pore Size by Shifting Coordination Sites of Ligands and Surface Polarization of Metal–Organic Frameworks To Sharply Enhance the Selectivity for CO ₂ . Journal of the American Chemical Society, 2013, 135, 562-565.	13.7	329
552	A rare alb-4,8-Cmce metal–coordination network based on tetrazolate and phosphonate functionalized 1,3,5,7-tetraphenyladamantane. CrystEngComm, 2013, 15, 1235.	2.6	42
553	Enhanced isosteric heat, selectivity, and uptake capacity of CO ₂ adsorption in a metal-organic framework by impregnated metal ions. Chemical Science, 2013, 4, 685-690.	7.4	149
554	A Novel 2D Dipyrazol-Bridged Cadmium(II) Complex Based on Tetranuclear Cd4O4 Clusters: Synthesis, Structure and Luminescence. Journal of Cluster Science, 2013, 24, 605-617.	3.3	6
555	Modulating the structures of copper(I) cyanide coordination polymers by rigid bis(imidazole) ligands and solvents: An experimental and theoretical study. Journal of Molecular Structure, 2013, 1036, 235-243.	3.6	24
556	Enhancement of the hydrogen storage capacity of Mg(AlH ₄) ₂ by excess electrons: a DFT study. Physical Chemistry Chemical Physics, 2013, 15, 1216-1221.	2.8	17
557	Construction and Properties of Six Metal–Organic Frameworks Based on the Newly Designed 2-(<i>p</i> -Bromophenyl)-Imidazole Dicarboxylate Ligand. Crystal Growth and Design, 2013, 13, 367-376.	3.0	77
558	Syntheses, structures, photoluminescence, photocatalysis, and photoelectronic effects of 3D mixed high-connected metal–organic frameworks based on octanuclear and dodecanuclear secondary building units. Dalton Transactions, 2013, 42, 1567-1580.	3.3	81
559	Mechanism of Alcohol–Water Separation in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2013, 117, 4124-4130.	3.1	33
560	Synthesis and Photoluminescence Properties of Eu 3+ â€Doped Silica@Coordination Polymer Core–Shell Structures and Their Calcinated Silica@Gd 2 O 3 :Eu and Hollow Gd 2 O 3 :Eu Microsphere Products. Small, 2013, 9, 561-569.	10.0	34
561	Interpenetration of Metal Organic Frameworks for Carbon Dioxide Capture and Hydrogen Purification: Good or Bad?. Journal of Physical Chemistry C, 2013, 117, 71-77.	3.1	38
563	Self-assembly of tetrabromoterephthalic acid with different metal system: Diversity in dimensionalities, structures and gas adsorption. Polyhedron, 2013, 52, 553-559.	2.2	4
564	Theoretical study on porphyrin based covalent organic polyhedra as a hydrogen storage. International Journal of Hydrogen Energy, 2013, 38, 6234-6240.	7.1	8
565	Adsorption and separation of CH4/H2 in MIL-101s by molecular simulation study. Chemical Engineering Science, 2013, 98, 246-254.	3.8	20
566	Effect of metal alkoxide functionalization on hydrogen mobility in metal–organic frameworks. Chemical Physics Letters, 2013, 577, 76-81.	2.6	9
567	Synthesis and characterization of MOF-aminated graphite oxide composites for CO2 capture. Applied Surface Science, 2013, 284, 138-144.	6.1	88

#	Article	IF	Citations
568	Sr2+ and Cd2+ coordination polymers: the effect of the different coordinating behaviour of a newly designed tricarboxylic acid. CrystEngComm, 2013, 15, 9596.	2.6	21
569	Tetraethylenepentamine-Modified Silica Nanotubes for Low-Temperature CO ₂ Capture. Energy & Capture, 2013, 27, 7673-7680.	5.1	36
570	Design strategies for metal alkoxide functionalized metal–organic frameworks for ambient temperature hydrogen storage. Microporous and Mesoporous Materials, 2013, 171, 103-109.	4.4	21
571	Analysis of optimal conditions for adsorptive hydrogen storage in microporous solids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 437, 113-119.	4.7	16
572	Synthesis and characterization of d10 metal complexes with mixed 1,3-di(1H-imidazol-4-yl)benzene and multicarboxylate ligands. Journal of Solid State Chemistry, 2013, 202, 215-226.	2.9	18
573	Reprint of "Structural diversity of cobalt(II) coordination compounds involving bent imidazole ligand: A route from 0D dimer to 3D coordination polymer― Polyhedron, 2013, 52, 1481-1488.	2.2	9
574	Coordination pillared layers using a dinuclear $Mn(V)$ complex as a secondary building unit. Polyhedron, 2013, 52, 591-597.	2.2	16
575	Four novel coordination polymers of transition metals built using a semi rigid oxygen donor ligand: Crystal structures, novel topology and emission studies. Polyhedron, 2013, 50, 169-178.	2.2	20
576	Volumetric hydrogen adsorption capacity of densified MIL-101 monoliths. International Journal of Hydrogen Energy, 2013, 38, 7046-7055.	7.1	49
577	A Porous 4-Fold-Interpenetrated Chiral Framework Exhibiting Vapochromism, Single-Crystal-to-Single-Crystal Solvent Exchange, Gas Sorption, and a Poisoning Effect. Inorganic Chemistry, 2013, 52, 2353-2360.	4.0	114
578	Solvatochromic Behavior of Chiral Mesoporous Metal–Organic Frameworks and Their Applications for Sensing Small Molecules and Separating Cationic Dyes. Chemistry - A European Journal, 2013, 19, 3639-3645.	3.3	202
579	Metal–Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis, and Functionality of Metal–Organic Materials. Chemical Reviews, 2013, 113, 734-777.	47.7	2,588
580	A microporous metal–organic framework of a rare sty topology for high CH4 storage at room temperature. Chemical Communications, 2013, 49, 2043.	4.1	61
581	Mixedâ€Ligand Znâ€MOFs for Highly Luminescent Sensing of Nitro Compounds. Chemistry - an Asian Journal, 2013, 8, 982-989.	3.3	140
582	Control over Catenation in Pillared Paddlewheel Metal–Organic Framework Materials via Solvent-Assisted Linker Exchange. Chemistry of Materials, 2013, 25, 739-744.	6.7	135
583	pH-Dependent Interpenetrated, Polymorphic, Cd ²⁺ - and BTB-based Porous Coordination Polymers with Open Metal Sites. Crystal Growth and Design, 2013, 13, 981-985.	3.0	62
584	Hybrid Polyfunctional Systems Based on Nickel(II) Isonicotinate. European Journal of Inorganic Chemistry, 2013, 2013, 2580-2590.	2.0	19
585	Four Honeycomb Metal–Organic Frameworks with a Flexible Tripodal Polyaromatic Acid. Crystal Growth and Design, 2013, 13, 1429-1437.	3.0	36

#	Article	IF	CITATIONS
586	Ullmann-type coupling reaction using metal-organic framework MOF-199 as an efficient recyclable solid catalyst. Applied Catalysis A: General, 2013, 457, 69-77.	4.3	42
587	Expanded Porous MOF-505 Analogue Exhibiting Large Hydrogen Storage Capacity and Selective Carbon Dioxide Adsorption. Inorganic Chemistry, 2013, 52, 2823-2829.	4.0	91
588	Activated Carbon Spheres for CO ₂ Adsorption. ACS Applied Materials & Distribution amp; Interfaces, 2013, 5, 1849-1855.	8.0	402
589	The controlled regulation of morphology and size of HKUST-1 by "coordination modulation method― Microporous and Mesoporous Materials, 2013, 173, 181-188.	4.4	115
590	High CO ₂ /N ₂ Selectivity and H ₂ Adsorption of a Novel Porous Yttrium Metal–Organic Framework Based on <i>N,N′,N″</i> -Tris(isophthalyl)-1,3,5-benzenetricarboxamide. Crystal Growth and Design, 2013, 13, 1382-1385.	3.0	47
591	Modulation of the Interlayer Structures and Magnetic Behavior of 2D Spin rossover Coordination Polymers [Fe ^{II} (L) _{Pt^{II}(CN)₄]. European Journal of Inorganic Chemistry, 2013, 2013, 738-744.}	2.0	40
592	Crystalline Inorganic Frameworks with 56-Ring, 64-Ring, and 72-Ring Channels. Science, 2013, 339, 811-813.	12.6	158
593	Single-Crystal-to-Single-Crystal Transformation of a Novel 2-Fold Interpenetrated Cadmium-Organic Framework with Trimesate and 1,2-Bis(4-pyridyl)ethane into the Thermally Desolvated Form Which Exhibits Liquid and Gas Sorption Properties. Crystal Growth and Design, 2013, 13, 1526-1534.	3.0	30
594	Crystal transformation synthesis of a highly stable phosphonate MOF for selective adsorption of CO ₂ . CrystEngComm, 2013, 15, 2040-2043.	2.6	63
595	Water Sorption Cycle Measurements on Functionalized MIL-101Cr for Heat Transformation Application. Chemistry of Materials, 2013, 25, 790-798.	6.7	238
596	Reactivity of Surface Species in Heterogeneous Catalysts Probed by In Situ X-ray Absorption Techniques. Chemical Reviews, 2013, 113, 1736-1850.	47.7	553
597	Nanomaterials for energy conversion and storage. Chemical Society Reviews, 2013, 42, 3127.	38.1	1,356
598	Syntheses, structures, and photoluminescent properties of ten metal–organic frameworks constructed by a flexible tetracarboxylate ligand. CrystEngComm, 2013, 15, 2731.	2.6	45
599	Rb _j M _k [Fe(CN) ₆] _l (M = Co, Ni) Prussian Blue Analogue Hollow Nanocubes: a New Example of a Multilevel Pore System. Chemistry of Materials, 2013, 25, 42-47.	6.7	74
600	Catalytic chromium reduction using formic acid and metal nanoparticles immobilized in a metal–organic framework. Chemical Communications, 2013, 49, 3327.	4.1	205
601	Investigation on Hydrogenation of Metal–Organic Frameworks HKUST-1, MIL-53, and ZIF-8 by Hydrogen Spillover. Journal of Physical Chemistry C, 2013, 117, 7565-7576.	3.1	131
602	Mixedâ€Linker Hybrid Superpolyhedra for the Production of a Series of Largeâ€Pore Iron(III) Carboxylate Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2013, 52, 5056-5060.	13.8	97
603	Four novel isostructural coordination polymers {[M(H′L)2(H2O)2]·2DMF} [M=Zn(II), Cd(II), Mn(II) and Co(II)] built using a nitrogen and oxygen donor azo ligand: Crystal structures and fluorescence studies. Polyhedron, 2013, 54, 189-195.	2.2	13

#	Article	IF	CITATIONS
604	Pore Design of Two-Dimensional Coordination Polymers toward Selective Adsorption. Inorganic Chemistry, 2013, 52, 3634-3642.	4.0	89
605	Copperâ€Catalyzed Synthesis of αâ€Aryl Ketones by Metal–Organic Framework MOFâ€199 as an Efficient Heterogeneous Catalyst. ChemCatChem, 2013, 5, 1822-1831.	3.7	37
606	Grand canonical monte carlo modeling of hydrogen adsorption on phosphorus-doped open carbon framework. Adsorption, 2013, 19, 869-877.	3.0	6
607	Porous NbO-type metal–organic framework with inserted acylamide groups exhibiting highly selective CO2 capture. CrystEngComm, 2013, 15, 3517.	2.6	99
608	A three-dimensional manganese(II) metal–organic framework based on 5-methoxybenzene-1,3-dicarboxylic acid and exhibiting a pts net. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 483-485.	0.4	7
609	Shape- and Morphology-Controlled Sustainable Synthesis of Cu, Co, and In Metal Organic Frameworks with High CO ₂ Capture Capacity. ACS Sustainable Chemistry and Engineering, 2013, 1, 66-74.	6.7	54
610	Ligandâ€Free Copperâ€Catalyzed Coupling of Phenols with Nitroarenes by using a Metal–Organic Framework as a Robust and Recoverable Catalyst. ChemCatChem, 2013, 5, 2374-2381.	3.7	41
611	Semiconductor@Metal–Organic Framework Core–Shell Heterostructures: A Case of ZnO@ZIF-8 Nanorods with Selective Photoelectrochemical Response. Journal of the American Chemical Society, 2013, 135, 1926-1933.	13.7	691
612	Enhancement of CO2 adsorption and amine efficiency of titania modified by moderate loading of diethylenetriamine. Journal of Materials Chemistry A, 2013, 1, 6208.	10.3	63
613	Selective Dynamic CO ₂ Separations on Mg-MOF-74 at Low Pressures: A Detailed Comparison with 13X. Journal of Physical Chemistry C, 2013, 117, 9301-9310.	3.1	79
614	New metal–organic frameworks from triptycene: structural diversity from bulky bridges. Dalton Transactions, 2013, 42, 8026.	3.3	15
615	Stepwise Transformation of the Molecular Building Blocks in a Porphyrin-Encapsulating Metal–Organic Material. Journal of the American Chemical Society, 2013, 135, 5982-5985.	13.7	94
616	H3O2 Bridging Ligand in a Metal–Organic Framework. Insight into the Aqua-Hydroxo↔Hydroxyl Equilibrium: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society, 2013, 135, 5782-5792.	13.7	42
617	CFA-2 and CFA-3 (Coordination Framework Augsburg University-2 and -3); novel MOFs assembled from trinuclear Cu(i)/Ag(i) secondary building units and $3,3\hat{a}\in^2$ -tetraphenyl-bipyrazolate ligands. Dalton Transactions, 2013, 42, 6909.	3.3	32
618	Metal–organic frameworks as platforms for clean energy. Energy and Environmental Science, 2013, 6, 1656.	30.8	858
619	Growth of large single MOF crystals and effective separation of organic dyes. CrystEngComm, 2013, 15, 4094.	2.6	50
620	Twin Polymerization at Spherical Hard Templates: An Approach to Sizeâ€Adjustable Carbon Hollow Spheres with Micro―or Mesoporous Shells. Angewandte Chemie - International Edition, 2013, 52, 6088-6091.	13.8	123
621	Thermochemistry of Zeolitic Imidazolate Frameworks of Varying Porosity. Journal of the American Chemical Society, 2013, 135, 598-601.	13.7	112

#	Article	IF	CITATIONS
622	Carbon Dioxide Capture by PAFs and an Efficient Strategy To Fast Screen Porous Materials for Gas Separation. Journal of Physical Chemistry C, 2013, 117, 8353-8364.	3.1	62
623	Porous covalent–organic materials: synthesis, clean energy application and design. Journal of Materials Chemistry A, 2013, 1, 2691-2718.	10.3	329
624	Molecular Simulation of Carbon Capture in a Series of Isoreticular Zeolitic Imidazolate Materials. ACS Symposium Series, 2013, , 83-98.	0.5	0
625	Gas Storage in a Partially Fluorinated Highly Stable Three-Dimensional Porous Metal–Organic Framework. Inorganic Chemistry, 2013, 52, 7358-7366.	4.0	65
626	Interpenetration control in metal–organic frameworks for functional applications. Coordination Chemistry Reviews, 2013, 257, 2232-2249.	18.8	478
627	Superior Performance of Copper Based MOF and Aminated Graphite Oxide Composites as CO ₂ Adsorbents at Room Temperature. ACS Applied Materials & Interfaces, 2013, 5, 4951-4959.	8.0	93
628	Charge-Controlled Switchable CO ₂ Capture on Boron Nitride Nanomaterials. Journal of the American Chemical Society, 2013, 135, 8246-8253.	13.7	293
629	A chiral mixed metal–organic framework based on a Ni(saldpen) metalloligand: synthesis, characterization and catalytic performances. Dalton Transactions, 2013, 42, 9930.	3.3	97
630	A Combined Experimentalâ€"Computational Investigation of Methane Adsorption and Selectivity in a Series of Isoreticular Zeolitic Imidazolate Frameworks. Journal of Physical Chemistry C, 2013, 117, 10326-10335.	3.1	83
631	Polyethyleneimine Incorporated Metal-Organic Frameworks Adsorbent for Highly Selective CO2 Capture. Scientific Reports, 2013, 3, 1859.	3.3	223
632	Photo-oxidative enhancement of polymeric molecular sieve membranes. Nature Communications, 2013, 4, 1918.	12.8	117
633	Syntheses, Structures, and Luminescent Properties of Six New Zinc(II) Coordination Polymers Constructed by Flexible Tetracarboxylate and Various Pyridine Ligands. Crystal Growth and Design, 2013, 13, 3177-3187.	3.0	103
634	Adsorption on Fe-MOF-74 for C1–C3 Hydrocarbon Separation. Journal of Physical Chemistry C, 2013, 117, 12648-12660.	3.1	109
635	Hydrogen bonding and coordination bonding in the electronically excited states of Cu2(L)2 (L=5-(4-pyridyl)tetrazole)MeOH: A TDDFT study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 109, 14-22.	3.9	10
636	A new three-dimensional metal–organic framework constructed from 9,10-anthracene dibenzoate and Cd(<scp>ii</scp>) as a highly active heterogeneous catalyst for oxidation of alkylbenzenes. Dalton Transactions, 2013, 42, 484-491.	3.3	41
637	Thermochemistry of Paddle Wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1. Langmuir, 2013, 29, 8140-8145.	3.5	101
638	An open metal site metal–organic framework Cu(BDC) as a promising heterogeneous catalyst for the modified FriedlÃ ¤ der reaction. Applied Catalysis A: General, 2013, 464-465, 128-135.	4.3	51
640	A Family of Rare Earth Porous Coordination Polymers with Different Flexibility for CO ₂ /C ₂ H ₄ and CO ₂ /C ₂ H ₆ Separation. Inorganic Chemistry, 2013, 52, 8244-8249.	4.0	67

#	Article	IF	Citations
641	The effect of earth metal ion on the property of peptide-based metal–organic frameworks. CrystEngComm, 2013, 15, 5545.	2.6	12
642	A cobalt-based 3D porous framework with excellent catalytic ability for the selective oxidation of cis-cyclooctene. Dalton Transactions, 2013, 42, 9423.	3.3	17
643	Heterometallic coordination polymers based on dipeptide schiff base Cu(ii) metalloligand: synthesis, structures, and magnetic properties. CrystEngComm, 2013, 15, 6074.	2.6	13
644	Gas adsorption by nanoporous materials: Future applications and experimental challenges. MRS Bulletin, 2013, 38, 412-421.	3.5	65
645	Medical Applications of Solid Nitrosyl Complexes. Structure and Bonding, 2013, , 225-256.	1.0	4
646	The 3D porous metal–organic frameworks based on bis(pyrazinyl)–trizole: structures, photoluminescence and gas adsorption properties. CrystEngComm, 2013, 15, 5673.	2.6	26
647	Catenated metal-organic frameworks: Promising hydrogen purification materials and high hydrogen storage medium with further lithium doping. International Journal of Hydrogen Energy, 2013, 38, 9811-9818.	7.1	37
648	Template and coordination interactions of 4,4′-bipyridine (Bipy) in nickel(II) complexes of 2-propyl-4,5-dicarboxylate-imidazole. Journal of Molecular Structure, 2013, 1035, 94-100.	3.6	6
649	CHAPTER 7. Strategies for Creating Active Sites in MOFs. RSC Catalysis Series, 0, , 237-267.	0.1	5
650	Effect of lanthanide contraction on crystal structures of Ln(iii) coordination polymers with dinuclear SBUs based on 3-(4-hydroxypyridinium-1-yl) phthalic acid and oxalic acid. CrystEngComm, 2013, 15, 5910.	2.6	24
651	Advances in Hydrogen Storage in Carbon Materials. , 2013, , 269-291.		8
652	Synthesis of MOF-199 and application to CO 2 adsorption. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4, 035016.	1.5	29
653	Single- and Mixed-Linker Cr-MIL-101 Derivatives: A High-Throughput Investigation. Inorganic Chemistry, 2013, 52, 8521-8528.	4.0	110
654	Development of Computational Methodologies for Metal–Organic Frameworks and Their Application in Gas Separations. Chemical Reviews, 2013, 113, 8261-8323.	47.7	448
655	Highly Hydrophobic Isoreticular Porous Metal–Organic Frameworks for the Capture of Harmful Volatile Organic Compounds. Angewandte Chemie - International Edition, 2013, 52, 8290-8294.	13.8	264
656	A Solidâ€Solution Approach to Mixedâ€Metal Metal–Organic Frameworks – Detailed Characterization of Local Structures, Defects and Breathing Behaviour of Al/V Frameworks. European Journal of Inorganic Chemistry, 2013, 2013, 4546-4557.	2.0	69
657	Supramolecular self-assemblies as functional nanomaterials. Nanoscale, 2013, 5, 7098.	5.6	610
658	Homologous Critical Behavior in the Molecular Frameworks Zn(CN) ₂ and Cd(imidazolate) ₂ . Journal of the American Chemical Society, 2013, 135, 7610-7620.	13.7	85

#	Article	IF	CITATIONS
659	Cadmium(ii) and zinc(ii) complexes with rigid 1-(1H-imidazol-4-yl)-3-(4H-tetrazol-5-yl)benzene and varied carboxylate ligands. CrystEngComm, 2013, 15, 5713.	2.6	37
660	A zwitterionic metal–organic framework with free carboxylic acid sites that exhibits enhanced hydrogen adsorption energies. CrystEngComm, 2013, 15, 9408.	2.6	19
661	Construction of Six Coordination Polymers Based on a 5,5′-(1,2-Ethynyl)bis-1,3-benzenedicarboxylic Ligand: Synthesis, Structure, Gas Sorption, and Magnetic Properties. Crystal Growth and Design, 2013, 13, 1033-1044.	3.0	58
662	Systematic Formation of Multilayered Core–Shell Microspheres through the Multistep Growth of Coordination Polymers. Chemistry - A European Journal, 2013, 19, 6546-6550.	3.3	15
663	Evidence of Positronium Bloch States in Porous Crystals of Zn4O-Coordination Polymers. Physical Review Letters, 2013, 110, 197403.	7.8	23
664	Iron Metal–Organic Frameworks MILâ€88B and NH ₂ â€MILâ€88B for the Loading and Delivery of the Gasotransmitter Carbon Monoxide. Chemistry - A European Journal, 2013, 19, 6785-6790.	3.3	134
665	Functionalization of Open Two-Dimensional Metal–Organic Templates through the Selective Incorporation of Metal Atoms. Journal of Physical Chemistry C, 2013, 117, 8871-8877.	3.1	15
666	High H ₂ and CH ₄ Adsorption Capacity of a Highly Porous (2,3,4)-Connected Metal–Organic Framework. Crystal Growth and Design, 2013, 13, 2252-2255.	3.0	39
667	Copper MOF: scope and limitation in catalytic hydroxylation andÂnitration of aryl halides. Tetrahedron, 2013, 69, 6409-6414.	1.9	21
668	Microporous and mesoporous materials for gas storage and separation: a review. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 618-626.	1.5	39
669	Influences of lithium doping and fullerene impregnation on hydrogen storage in metal organic frameworks. Molecular Simulation, 2013, 39, 968-974.	2.0	12
670	Four Complexes with the Rigid Ligand 1,4â€Bis(1Hâ€imidazolâ€4â€yl)benzene and Varied Carboxylate Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1808-1814.	1.2	1
671	Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. Journal of Colloid and Interface Science, 2013, 389, 230-235.	9.4	196
672	Predicting the impact of functionalized ligands on CO2 adsorption in MOFs: A combined DFT and Grand Canonical Monte Carlo study. Microporous and Mesoporous Materials, 2013, 168, 225-238.	4.4	47
673	Metal–organic framework architecture with polyhedron-in-polyhedron and further polyhedral assembly. CrystEngComm, 2013, 15, 1036-1038.	2.6	23
674	A Melamineâ€Modified βâ€Zeolite with Enhanced CO ₂ Capture Properties. Energy Technology, 2013, 1, 345-349.	3.8	18
675	Tailored Design of Multiple Nanoarchitectures in Metal-Cyanide Hybrid Coordination Polymers. Journal of the American Chemical Society, 2013, 135, 384-391.	13.7	228
676	Encapsulated recyclable porous materials: an effective moisture-triggered fragrance release system. Chemical Communications, 2013, 49, 5724.	4.1	45

#	Article	IF	Citations
677	Ultrahigh Gas Storage both at Low and High Pressures in KOH-Activated Carbonized Porous Aromatic Frameworks. Scientific Reports, 2013, 3, 2420.	3.3	117
678	RESEARCH ON THE ADSORPTION OF O2 IN METAL–ORGANIC FRAMEWORKS WITH OPEN MANGANESE(II) COORDINATION SITES. Functional Materials Letters, 2013, 06, 1350004.	1.2	4
679	Low-Density, Low-Energy, Zeolites Assembled from Double-Layer Silica Sheets. Chemistry of Materials, 2013, 25, 3816-3821.	6.7	14
680	Surface and Bulk Integrations of Single-Layered Au or Ag Nanoparticles onto Designated Crystal Planes {110} or {100} of ZIF-8. Chemistry of Materials, 2013, 25, 1761-1768.	6.7	126
681	Four (5,5)-connected three-dimensional metal organic materials based on pentacarboxylate ligand: Synthesis, structures and characterization. CrystEngComm, 2013, 15, 6395.	2.6	10
682	Highly porous metal–organic framework sustained with 12-connected nanoscopic octahedra. Dalton Transactions, 2013, 42, 1708-1714.	3.3	61
683	Plasmonic Response of Ag―and Auâ€Infiltrated Crossâ€Linked Lysozyme Crystals. Advanced Functional Materials, 2013, 23, 281-290.	14.9	22
684	Experimental Characterization of Adsorption and Transport Properties for Advanced Thermo-Adsorptive Batteries. , 2013, , .		2
685	Combined study of structural properties on metal-organic frameworks with same topology but different linkers or metal. Journal of Physics: Conference Series, 2013, 430, 012134.	0.4	8
686	Enhancement of Carbon Dioxide Adsorption by Lithium Decorating and Fullerene Encapsulating in Metal-Organic Frameworks. Advanced Materials Research, 0, 773, 927-931.	0.3	0
687	Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities. Science and Technology of Nuclear Installations, 2013, 2013, 1-12.	0.8	134
688	Ab initio based large-scale screening of hypothetical MOFs for carbon capture application. Materials Research Society Symposia Proceedings, 2013, 1523, 0301.	0.1	0
689	Comparison of Gas Sorption Properties of Neutral and Anionic Metal–Organic Frameworks Prepared from the Same Building Blocks but in Different Solvent Systems. Chemistry - A European Journal, 2013, 19, 17432-17438.	3.3	52
690	NMR study of small molecule adsorption in MOF-74-Mg. Journal of Chemical Physics, 2013, 138, 154704.	3.0	31
691	Organic sol–gel synthesis of microporous molecular networks containing spirobifluorene and tetraphenylmethane nodes. Journal of Polymer Science Part A, 2013, 51, 1758-1766.	2.3	18
692	Adsorption of Carbon Dioxide by MIL-101(Cr): Regeneration Conditions and Influence of Flue Gas Contaminants. Scientific Reports, 2013, 3, 2916.	3.3	170
693	Large-Scale Generation and Screening of Hypothetical Metal-Organic Frameworks for Applications in Gas Storage and Separations. Topics in Current Chemistry, 2013, 345, 257-289.	4.0	8
694	Metal-organic frameworks as potential drug delivery systems. Expert Opinion on Drug Delivery, 2013, 10, 89-101.	5.0	325

#	Article	IF	CITATIONS
695	Four Coordination Polymers Containing 2, 6â€NaphthalenediÂcarboxylic Acid and 1, 10â€Phenanthroline: Synthesis, Structure, and Magnetic Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 626-632.	1.2	12
696	Simultaneous Presence of Both Open Metal Sites and Free Functional Organic Sites in a Noncentrosymmetric Dynamic Metal–Organic Framework with Bimodal Catalytic and Sensing Activities. Chemistry - A European Journal, 2013, 19, 16607-16614.	3.3	48
697	Expanded Organic Building Units for the Construction of Highly Porous Metal–Organic Frameworks. Chemistry - A European Journal, 2013, 19, 14886-14894.	3.3	66
698	Zeolitic imidazolate framework-coupled resonators for enhanced gas detection. Journal of Micromechanics and Microengineering, 2013, 23, 125027.	2.6	18
700	Adsorption of hydrogen on neutral and charged fullerene: Experiment and theory. Journal of Chemical Physics, 2013, 138, 074311.	3.0	56
701	Exâ€Situ NMR Relaxometry of Metal–Organic Frameworks for Rapid Surfaceâ€Area Screening. Angewandte Chemie, 2013, 125, 12265-12268.	2.0	8
702	Exâ€Situ NMR Relaxometry of Metal–Organic Frameworks for Rapid Surfaceâ€Area Screening. Angewandte Chemie - International Edition, 2013, 52, 12043-12046.	13.8	36
703	A Metallosupramolecular Octahedron Assembled from Twelve Copper(I) Metal lons and Six 4,4′â€(1,2â€Phenylene)bis(3,5â€dimethylpyrazolâ€1â€ide) Ligands. Zeitschrift Fur Anorganische Und Allgeme Chemie, 2013, 639, 1461-1471.	in ı e2	16
704	Assembly of Nickel(II) and Manganese(II) Coordination Polymers based on a Energetic Aromatic Dicarboxylic Acid Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 2290-2294.	1.2	5
705	Twisted Morphologies and Novel Chiral Macroporous Films from the Selfâ€Assembly of Optically Active Helical Polyphosphazene Block Copolymers. Chemistry - A European Journal, 2013, 19, 5644-5653.	3.3	23
707	Two 2D Metalâ€Organic Networks based on sâ€Block Metal Nodes (Li ⁺ and Mg ²⁺) and Rigid Imidazole/Carboxylate ÂFunctionalized Linkers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 569-574.	1.2	1
708	A Mn(II) Coordination Polymer with Sulfate and trans-1,2-Bis(4- pyridyl)ethylene Bridges: Synthesis, Structure, Magnetic and Ferroelectric Properties. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2013, 68, 877-884.	0.7	4
709	Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting. Beilstein Journal of Nanotechnology, 2013, 4, 638-648.	2.8	37
710	Crystal structure of catena-poly[aqua-µ-1,4-benzenedicarboxylato-κ2O:O'-3,5-dimethyl-4-phenyl-1,2,4-triazole-κN-zinc(II)] monohydrate, Zn(H2O)(C8H4O4)(C10H11N3)·H2O, C18H17N3O6Zn. Zeitschrift Fur Kristallographie - New Crystal Structures, 2013, 228, 337-338.	0.3	3
711	Material Demands for Storage Technologies in a Hydrogen Economy. Journal of Renewable Energy, 2013, 2013, 1-16.	3.6	20
712	Crystallography of metal–organic frameworks. IUCrJ, 2014, 1, 563-570.	2.2	62
713	Perspective: Metal-organic frameworksâ€"Opportunities and challenges. APL Materials, 2014, 2, .	5.1	3
716	Rational design and synthesis of a series of 3D lanthanide metal–organic frameworks with different structures driven by reaction conditions. CrystEngComm, 2014, 16, 10181-10188.	2.6	10

#	ARTICLE	IF	CITATIONS
718	Encapsulation of large dye molecules in hierarchically superstructured metal–organic frameworks. Dalton Transactions, 2014, 43, 17893-17898.	3.3	62
721	New Mechanistic Insight into Stepwise Metalâ€Center Exchange in a Metal–Organic Framework Based on Asymmetric Zn ₄ Clusters. Chemistry - A European Journal, 2014, 20, 2945-2952.	3.3	54
722	Enhanced Uptake and Selectivity of CO ₂ Adsorption in a Hydrostable Metal–Organic Frameworks via Incorporating Methylol and Methyl Groups. ACS Applied Materials & Diterfaces, 2014, 6, 16932-16940.	8.0	46
723	Core–shell polysiloxane–MOF 5 microspheres as a stationary phase for gas–solid chromatographic separation. RSC Advances, 2014, 4, 17429-17433.	3.6	21
724	Synthesis of a Rigid <i>C</i> _{3<i>v</i>} â€Symmetric Trisâ€salicylaldehyde as a Precursor for a Highly Porous Molecular Cube. Chemistry - A European Journal, 2014, 20, 16707-16720.	3.3	83
725	Design, preparation and application of conjugated microporous polymers. Polymer International, 2014, 63, 381-392.	3.1	97
726	Dissociative recombination of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msubsup> <mml:mi> LiH </mml:mi> <mp>Physical Review A, 2014, 89, .</mp></mml:msubsup></mml:mrow></mml:math>	ım l205 n>2	<n< td=""></n<>
727	Assembly of Interpenetration and Polycatenation Structures with a Vâ€shape Ligand Benzophenoneâ€4,4′â€dicarboxylic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1799-1804.	1.2	0
728	Syntheses, Crystal Structures, and Properties of Two 2-Fold Interpenetrating Metal–Organic Frameworks Based on a Trigonal Rigid Ligand. Crystal Growth and Design, 2014, 14, 6521-6527.	3.0	12
729	Hydrogen storage in a series of Zn-based IRMOFs studied by Sanchez–Lacombe equation of state. International Journal of Hydrogen Energy, 2014, 39, 21076-21082.	7.1	6
730	Zinc(II) and Cadmium(II) Complexes Based on 4,5â€Di(4′â€carboxylphenyl)phthalic Acid Ligand: Synthesis, Crystal Structure, and Luminescent Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1782-1788.	1.2	3
731	Evolution of an Adenine–Copper Cluster to a Highly Porous Cuboidal Framework: Solutionâ€Phase Ripening and Gasâ€Adsorption Properties. Chemistry - A European Journal, 2014, 20, 12262-12268.	3.3	29
733	A Stable Porous Anionic Metal–Organic Framework for Luminescence Sensing of Ln ³⁺ lons and Detection of Nitrobenzene. Chemistry - an Asian Journal, 2014, 9, 749-753.	3.3	77
734	Hydrogen adsorption in metal-organic frameworks: The role of nuclear quantum effects. Journal of Chemical Physics, 2014, 141, 064708.	3.0	28
736	A new 3D lanthanide metal-organic framework based on fluorescent whitener: Synthesis, structures, and luminescent properties. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2014, 40, 854-859.	1.0	1
738	CO2 Capture on Metal-Organic Framework and Graphene Oxide Composite Using a High-Pressure Static Adsorption Apparatus. Journal of Clean Energy Technologies, 0, , 34-37.	0.1	33
740	Loading MIL-53(Al) with Ag nanoparticles: Synthesis, structural stability and catalytic properties. International Journal of Hydrogen Energy, 2014, 39, 14496-14502.	7.1	22
741	Lithium-doped triazine-based graphitic C3N4 sheet for hydrogen storage at ambient temperature. Computational Materials Science, 2014, 81, 275-279.	3.0	75

#	Article	IF	CITATIONS
742	Lanthanide coordination polymers with pyridyl-N-oxide or carboxylate functionalised host ligands. CrystEngComm, 2014, 16, 3688-3693.	2.6	14
743	Computational design of tetrahedral silsesquioxane-based porous frameworks with diamond-like structure as hydrogen storage materials. Structural Chemistry, 2014, 25, 177-185.	2.0	12
744	Carbon dioxide capturing technologies: a review focusing on metal organic framework materials (MOFs). Environmental Science and Pollution Research, 2014, 21, 5427-5449.	5. 3	171
745	Mesoporous materials for clean energy technologies. Chemical Society Reviews, 2014, 43, 7681-7717.	38.1	422
746	Symmetryâ€Guided Synthesis of Highly Porous Metal–Organic Frameworks with Fluorite Topology. Angewandte Chemie - International Edition, 2014, 53, 815-818.	13.8	197
747	Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy and Environmental Science, 2014, 7, 1250-1280.	30.8	1,229
748	Coordination Polymer Nanobamboos of {Fe _{<i>x</i>} In _{1â^²<i>x</i>} }â€MILâ€88B: Induced Formation of a Virtual Inâ€MILâ€88B. Chemistry - A European Journal, 2014, 20, 5559-5564.	3.3	11
749	Metal–organic framework composites. Chemical Society Reviews, 2014, 43, 5468-5512.	38.1	1,901
750	Encapsulation of gases in powder solid matrices and their applications: A review. Powder Technology, 2014, 259, 87-108.	4.2	71
751	A novel nickel metal–organic framework with fluorite-like structure: gas adsorption properties and catalytic activity in Knoevenagel condensation. Dalton Transactions, 2014, 43, 3730.	3.3	83
752	Electronic Chemical Potentials of Porous Metal–Organic Frameworks. Journal of the American Chemical Society, 2014, 136, 2703-2706.	13.7	262
7 53	Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coordination Chemistry Reviews, 2014, 273-274, 76-86.	18.8	937
754	Ammonia Capture in Porous Organic Polymers Densely Functionalized with Brønsted Acid Groups. Journal of the American Chemical Society, 2014, 136, 2432-2440.	13.7	244
755	A new metal–organic framework with ultra-high surface area. Chemical Communications, 2014, 50, 3450.	4.1	178
756	Nickel-catalyzed oxidative coupling of alkynes and arylboronic acids using the metal–organic framework Ni ₂ (BDC) ₂ (DABCO) as an efficient heterogeneous catalyst. Catalysis Science and Technology, 2014, 4, 1276-1285.	4.1	34
757	Interaction of Various Gas Molecules with Paddle-Wheel-Type Open Metal Sites of Porous Coordination Polymers: Theoretical Investigation. Inorganic Chemistry, 2014, 53, 2417-2426.	4.0	21
758	Solventâ€Assisted Linker Exchange: An Alternative to the Deâ€Novo Synthesis of Unattainable Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2014, 53, 4530-4540.	13.8	339
759	Hydrothermal Synthesis, Characterization and Gas Adsorption Study of a Zn(II) Based 1D Coordination Polymer. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2014, 84, 213-219.	1.2	4

#	ARTICLE	IF	CITATIONS
760	Two copper(II) complexes based on N,N \hat{a} \in 2-bis(4-pyridinecarboxamide)-1,2-ethane and tricarboxylate ligands: a 5-fold interpenetrating 3 D network and a 1 D ribbon-like chain. Transition Metal Chemistry, 2014, 39, 343-351.	1.4	1
761	Enhanced CO2 adsorptivity of SWCNT by polycyclic aromatic hydrocarbon intercalation. Adsorption, 2014, 20, 301-309.	3.0	5
762	Solvothermal synthesis, crystal structure and photoluminescent property of a novel 3D [Ca2(HCOO)2(nds)(H2O)2] n. Chemical Research in Chinese Universities, 2014, 30, 9-12.	2.6	8
763	Ligand-free direct C-arylation of heterocycles with aryl halides over a metal-organic framework Cu2(BPDC)2(BPY) as an efficient and robust heterogeneous catalyst. Journal of Molecular Catalysis A, 2014, 391, 74-82.	4.8	33
764	Storage of molecular hydrogen into ZSM-5 zeolite in the ambient atmosphere by the sealing of the micropore outlet. Chemical Engineering and Processing: Process Intensification, 2014, 79, 1-6.	3.6	18
765	Single-crystal to single-crystal transformation from a hydrophilic–hydrophobic metal–organic framework to a layered coordination polymer. Inorganica Chimica Acta, 2014, 411, 128-133.	2.4	11
766	[M ₃ (μ ₃ -O)(O ₂ CR) ₆] and related trigonal prisms: versatile molecular building blocks for crystal engineering of metal–organic material platforms. Chemical Science, 2014, 5, 1269-1282.	7.4	124
767	ADSORPTION OF H ₂ ON FRAGMENTS OF MOF-210: A DFT INVESTIGATION. Surface Review and Letters, 2014, 21, 1450011.	1.1	4
768	Exploration of Structural Topologies in Metal–Organic Frameworks Based on 3-(4-Carboxyphenyl)propionic Acid, Their Synthesis, Sorption, and Luminescent Property Studies. Crystal Growth and Design, 2014, 14, 2022-2033.	3.0	46
769	Adsorption Characteristics of Metal–Organic Frameworks Containing Coordinatively Unsaturated Metal Sites: Effect of Metal Cations and Adsorbate Properties. Journal of Physical Chemistry C, 2014, 118, 6847-6855.	3.1	34
770	Heteroâ€Epitaxial Approach by Using Labile Coordination Sites to Prepare Catenated Metal–Organic Frameworks with High Surface Areas. Chemistry - A European Journal, 2014, 20, 3595-3599.	3.3	16
771	Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chemical Society Reviews, 2014, 43, 5867-5895.	38.1	739
772	High Pressure Adsorption of CO ₂ and CH ₄ on Zr-MOFs. Industrial & Engineering Chemistry Research, 2014, 53, 15500-15507.	3.7	63
773	Hydrogen storage materials. Mendeleev Communications, 2014, 24, 1-8.	1.6	26
774	Porous Materials for Carbon Dioxide Capture. Green Chemistry and Sustainable Technology, 2014, , .	0.7	19
775	High CO ₂ /N ₂ /O ₂ /CO separation in a chemically robust porous coordination polymer with low binding energy. Chemical Science, 2014, 5, 660-666.	7.4	181
776	Periodic DFT+D Molecular Modeling of the Zn-MOF-5(100)/(110)TiO2 Interface: Electronic Structure, Chemical Bonding, Adhesion, and Strain. Journal of Physical Chemistry C, 2014, 118, 8971-8981.	3.1	14
777	Effect of surface chemical and structural heterogeneity of copper-based MOF/graphite oxide composites on the adsorption of ammonia. Journal of Colloid and Interface Science, 2014, 417, 109-114.	9.4	51

#	Article	IF	CITATIONS
778	Composites of metal–organic frameworks: Preparation and application in adsorption. Materials Today, 2014, 17, 136-146.	14.2	349
779	Designs of fullerene-based frameworks for hydrogen storage. Journal of Materials Chemistry A, 2014, 2, 5910-5914.	10.3	64
780	Effect of purification conditions on gas storage and separations in a chromium-based metal–organic framework MIL-101. Microporous and Mesoporous Materials, 2014, 193, 160-165.	4.4	27
781	Gas storage scale-up at room temperature on high density carbon materials. Carbon, 2014, 76, 123-132.	10.3	33
782	Photoswitching CO ₂ Capture and Release in a Photochromic Diarylethene Metal–Organic Framework. Angewandte Chemie - International Edition, 2014, 53, 9298-9301.	13.8	238
783	Preparation of MOF(Fe) and its catalytic activity for oxygen reduction reaction in an alkaline electrolyte. Chinese Journal of Catalysis, 2014, 35, 185-195.	14.0	100
784	New photocatalyst for the degradation of organic dyes based on [Cu(ONCP)(4,4′-BPDA)1/2(H2O)·(4,4′-H2BPDA)]n. Inorganic Chemistry Communication, 2014, 47, 80-83.	3.9	11
785	Six d10 metal complexes containing multidentate dicyanoisophorone-triazolyl derivative: Structures and luminescent properties. Journal of Molecular Structure, 2014, 1068, 182-188.	3.6	4
786	Hydrogen storage in porous structures of adamantane-based nitrogen-heterocyclic ring with diamond-like structure. International Journal of Quantum Chemistry, 2014, 114, 1438-1444.	2.0	2
787	A Novel Bismuthâ€Based Metal–Organic Framework for High Volumetric Methane and Carbon Dioxide Adsorption. Chemistry - A European Journal, 2014, 20, 8024-8029.	3.3	67
789	Preparation of Ferrocene-Based Coordination Polymer Microspheres and Their Application in Hydrogen Storage. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 491-500.	3.7	5
790	In Situ Neutron Powder Diffraction and X-ray Photoelectron Spectroscopy Analyses on the Hydrogenation of MOF-5 by Pt-Doped Multiwalled Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 5691-5699.	3.1	17
791	Amine-functionalized metal-organic frameworks for the transesterification of triglycerides. Journal of Materials Chemistry A, 2014, 2, 7205-7213.	10.3	68
792	Metallacarborane-Based Metal–Organic Framework with a Complex Topology. Crystal Growth and Design, 2014, 14, 1324-1330.	3.0	28
793	The organic ligands with mixed N-/O-donors used in construction of functional metal–organic frameworks. CrystEngComm, 2014, 16, 3247.	2.6	124
794	Metal-organic frameworks in chromatography. Journal of Chromatography A, 2014, 1348, 1-16.	3.7	106
795	Amine-functionalized low-cost industrial grade multi-walled carbon nanotubes for the capture of carbon dioxide. Journal of Energy Chemistry, 2014, 23, 111-118.	12.9	61
796	Ab Initio Study of the Adsorption of CO ₂ on Functionalized Benzenes. ChemPhysChem, 2014, 15, 905-911.	2.1	15

#	Article	IF	CITATIONS
797	Temperature-controlled structural diversity of two Cd(II) coordination polymers based on a flexible tripodal multicarboxylate ligand. Inorganic Chemistry Communication, 2014, 45, 84-88.	3.9	14
798	A Metal–Organic Framework-Based Material for Electrochemical Sensing of Carbon Dioxide. Journal of the American Chemical Society, 2014, 136, 8277-8282.	13.7	218
799	Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2014, 70, 3-10.	1.1	246
800	Water-switching of spin crossover in a gold cluster supramolecular system: From metal–organic frameworks to catenane. Microporous and Mesoporous Materials, 2014, 197, 72-76.	4.4	7
801	Isomeric Ionic Lithium Isonicotinate Three-Dimensional Networks and Single-Crystal-to-Single-Crystal Rearrangements Generating Microporous Materials. Inorganic Chemistry, 2014, 53, 4956-4969.	4.0	22
802	High Methane Storage Capacity in Aluminum Metal–Organic Frameworks. Journal of the American Chemical Society, 2014, 136, 5271-5274.	13.7	410
803	A New Strategy for Storage and Transportation of Sensitive Highâ€Energy Materials: Guestâ€Dependent Energy and Sensitivity of 3D Metal–Organicâ€Frameworkâ€Based Energetic Compounds. Chemistry - A European Journal, 2014, 20, 7906-7910.	3.3	70
804	A Crystalline Porous Coordination Polymer Decorated with Nitroxyl Radicals Catalyzes Aerobic Oxidation of Alcohols. Journal of the American Chemical Society, 2014, 136, 7543-7546.	13.7	105
805	Postsynthetic modification of IRMOFâ€3 with a copper iminopyridine complex as heterogeneous catalyst for the synthesis of 2â€aminobenzothiazoles. Applied Organometallic Chemistry, 2014, 28, 198-203.	3.5	24
806	Enhanced noble gas adsorption in Ag@MOF-74Ni. Chemical Communications, 2014, 50, 466-468.	4.1	153
807	A highly porous NbO type metal–organic framework constructed from an expanded tetracarboxylate. Chemical Communications, 2014, 50, 1552.	4.1	44
808	Coexistence of cages and one-dimensional channels in a porous MOF with high H2 and CH4 uptakes. Chemical Communications, 2014, 50, 2834.	4.1	55
809	Cu-BTC/Aminated Graphite Oxide Composites As High-Efficiency CO ₂ Capture Media. ACS Applied Materials & Capture Media. ACS A	8.0	89
810	Topological Analysis of Metal–Organic Frameworks with Polytopic Linkers and/or Multiple Building Units and the Minimal Transitivity Principle. Chemical Reviews, 2014, 114, 1343-1370.	47.7	1,010
811	Handbook of Gas Sensor Materials. Integrated Analytical Systems, 2014, , .	0.4	48
812	A cubic luminescent graphene oxide functionalized Zn-based metal-organic framework composite for fast and highly selective detection of Cu2+ions in aqueous solution. Analyst, The, 2014, 139, 764-770.	3.5	26
813	Two luminescent metal–organic frameworks for the sensing of nitroaromatic explosives and DNA strands. Journal of Materials Chemistry A, 2014, 2, 2213-2220.	10.3	247
814	One-dimensional coordination polymers constructed from di- and trinuclear {3d–4f} tectons. A new useful spacer in crystal engineering: 1,3-bis(4-pyridyl)azulene. CrystEngComm, 2014, 16, 319-327.	2.6	20

#	Article	IF	Citations
815	Combinational Synthetic Approaches for Isoreticular and Polymorphic Metal–Organic Frameworks with Tuned Pore Geometries and Surface Properties. Chemistry of Materials, 2014, 26, 1711-1719.	6.7	38
816	Designable Yolk–Shell Nanoparticle@MOF Petalous Heterostructures. Chemistry of Materials, 2014, 26, 1119-1125.	6.7	207
817	A 2D metal–organic framework based on dizinc coordination units bridged through both flexible and rigid ligands. Journal of Molecular Structure, 2014, 1060, 94-101.	3.6	20
818	Four MOFs with 2,2′-dimethoxy-4,4′-biphenyldicarboxylic acid: syntheses, structures, topologies and properties. CrystEngComm, 2014, 16, 784-796.	2.6	55
819	Microporous Heptazine Functionalized (3,24)-Connected rht -Metal–Organic Framework: Synthesis, Structure, and Gas Sorption Analysis. Crystal Growth and Design, 2014, 14, 414-418.	3.0	71
820	Towards applications of metal–organic frameworks in catalysis: C–H direct activation of benzoxazole with aryl boronic acids using Ni ₂ (BDC) ₂ (DABCO) as an efficient heterogeneous catalyst. Catalysis Science and Technology, 2014, 4, 369-377.	4.1	58
821	Novel Trisphosphine Ligand Containing 1,3,5-Triazine Core, [2,4,6-C ₃ N ₃ {C ₆ H ₄ PPh ₂ - <i>p</i> } ₃ Synthesis and Transition Metal Chemistry. Inorganic Chemistry, 2014, 53, 1370-1381.	} 4.0	39
822	Metal–Organic Frameworks as Sensory Materials and Imaging Agents. Inorganic Chemistry, 2014, 53, 1916-1924.	4.0	354
823	Synthesis, structure and property of one porous Zn(salen)-based metal-metallosalen framework. Science China Chemistry, 2014, 57, 107-113.	8.2	7
824	Thermophysical properties of MOF-5 powders. Microporous and Mesoporous Materials, 2014, 185, 235-244.	4.4	67
825	Evaluating metal–organic frameworks for natural gas storage. Chemical Science, 2014, 5, 32-51.	7.4	1,038
826	Hydrogen Storage in Metal-Organic Frameworks: A Review. Electrochimica Acta, 2014, 128, 368-392.	5.2	329
827	Guestâ∈Responsive Function of a Dynamic Metalâ∈"Organic Framework with a Ï∈ Lewis Acidic Pore Surface. Chemistry - A European Journal, 2014, 20, 15303-15308.	3.3	43
828	Charge-transfer metal–organic frameworks based on CuCN architecture units: crystal structures, luminescence properties and theoretical investigations. RSC Advances, 2014, 4, 61200-61209.	3.6	7
829	Assembly of Four Kinds of Cages into Porous Metal–Organic Framework for Selective Sorption of Light Hydrocarbons. Crystal Growth and Design, 2014, 14, 6467-6471.	3.0	11
830	Research Update: A hafnium-based metal-organic framework as a catalyst for regioselective ring-opening of epoxides with a mild hydride source. APL Materials, $2014, 2, \ldots$	5.1	7
831	Microporous Hyper-Cross-Linked Aromatic Polymers Designed for Methane and Carbon Dioxide Adsorption. Journal of Physical Chemistry C, 2014, 118, 28699-28710.	3.1	101
832	Nanostructured and/or Nanoscale Lanthanide Metal-Organic Frameworks. Structure and Bonding, 2014, , 297-367.	1.0	9

#	Article	IF	CITATIONS
833	Gas adsorption properties of highly porous metal–organic frameworks containing functionalized naphthalene dicarboxylate linkers. Dalton Transactions, 2014, 43, 18017-18024.	3.3	80
834	Coordination polymers derived from pyridyl carboxylate ligands having an amide backbone: an attempt towards the selective separation of Cull cation following in situ crystallization under competitive conditions. CrystEngComm, 2014, 16, 7815-7829.	2.6	6
835	The influence of 1-alkyl-3-methyl imidazolium ionic liquids on a series of cobalt-1,4-benzenedicarboxylate metal–organic frameworks. CrystEngComm, 2014, 16, 10649-10657.	2.6	28
836	Two porous metal–organic frameworks containing zinc–calcium clusters and calcium cluster chains. CrystEngComm, 2014, 16, 8664-8668.	2.6	23
837	Multifarious zinc coordination polymers based on biphenyl-3,3 $\hat{a}\in^2$,5,5 $\hat{a}\in^2$ -tetracarboxylate and different flexibility of N-donor ligands. RSC Advances, 2014, 4, 32391.	3.6	23
838	Variation of CO2 adsorption in isostructural Cd(ii)/Co(ii) based MOFs by anion modulation. CrystEngComm, 2014, 16, 5012.	2.6	32
839	Synthesis of copolymerized porous organic frameworks with high gas storage capabilities at both high and low pressures. Chemical Communications, 2014, 50, 6134.	4.1	33
840	Design of tetraphenyl silsesquioxane based covalent-organic frameworks as hydrogen storage materials. Journal of Materials Chemistry A, 2014, 2, 18554-18561.	10.3	37
841	Bottom-up synthesis of cerium–citric acid coordination polymers hollow microspheres with tunable shell thickness and their corresponding porous CeO ₂ hollow spheres for Pt-based electrocatalysts. CrystEngComm, 2014, 16, 3387-3394.	2.6	34
842	Surfactant-free synthesis of a Fe3O4@ZIF-8 coreâ€"shell heterostructure for adsorption of methylene blue. CrystEngComm, 2014, 16, 3960.	2.6	150
843	Sorption of methane in a series of Zn-based MOFs studied by PHSC equation of state. Fluid Phase Equilibria, 2014, 381, 83-89.	2.5	10
844	A robust porous pillar-chained Cd-framework with selective sorption for CO2 and guest-driven tunable luminescence. CrystEngComm, 2014, 16, 3848.	2.6	18
845	A 3D Porous Metal Organic Framework Based on Infinite 1D Nickel(II) Chains with Rutile Topology Displaying Open Metal Sites. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 2123-2131.	1.2	9
846	Exceptional CO ₂ capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy and Environmental Science, 2014, 7, 335-342.	30.8	385
847	Mixed-ligand hydroxocopper(ii)/pyridazine clusters embedded into 3D framework lattices. Dalton Transactions, 2014, 43, 8530-8542.	3.3	17
848	Computation-Ready, Experimental Metal–Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals. Chemistry of Materials, 2014, 26, 6185-6192.	6.7	524
849	Novel coordination polymers of Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) tuned by different aromatic polycarboxylates: synthesis, structures and photocatalytic properties. CrystEngComm, 2014, 16, 6408-6416.	2.6	74
850	A dynamic study of the structural change in the binary network in response to guest inclusion. Physical Chemistry Chemical Physics, 2014, 16, 8778-8782.	2.8	25

#	Article	IF	CITATIONS
851	Theoretical modelling of adsorption of hydrogen onto graphene, MOFs and other carbon-basedÂsubstrates. Molecular Physics, 2014, 112, 2330-2338.	1.7	14
852	A family of microporous carbons prepared via a simple metal salt carbonization route with high selectivity for exceptional gravimetric and volumetric post-combustion CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 14696.	10.3	75
853	The ionothermal synthesis, structure, and magnetism–structure relationship of two biphenyl tetracarboxylic acid-based metal–organic frameworks. Dalton Transactions, 2014, 43, 16515-16521.	3.3	15
854	Coordination polymers for catalysis: enhancement of catalytic activity through hierarchical structuring. Chemical Communications, 2014, 50, 8543-8546.	4.1	47
855	A nitro-decorated NbO-type metal–organic framework with a highly selective CO ₂ uptake and CH ₄ storage capacity. CrystEngComm, 2014, 16, 6287-6290.	2.6	61
856	Control of porosity of novel carbazole-modified polytriazine frameworks for highly selective separation of CO ₂ –N ₂ . Journal of Materials Chemistry A, 2014, 2, 7795-7801.	10.3	72
857	ZIF-8 micromembranes for gas separation prepared on laser-perforated brass supports. Journal of Materials Chemistry A, 2014, 2, 11177-11184.	10.3	22
858	Polymorphism of metal–organic frameworks: direct comparison of structures and theoretical N ₂ -uptake of topological pto- and tbo-isomers. Chemical Communications, 2014, 50, 4207-4210.	4.1	45
859	Effects of substituent groups on the structures and luminescence properties of 2D/3D Cd ^{II} complexes with mixed rigid and flexible carboxylate ligands. RSC Advances, 2014, 4, 24183-24188.	3 . 6	18
860	Water transport through a transmembrane channel formed by arylene ethynylene macrocycles. RSC Advances, 2014, 4, 3245-3252.	3.6	8
861	Propargylamine synthesis via sequential methylation and C–H functionalization of N -methylanilines and terminal alkynes under metal–organic framework Cu 2 (BDC) 2 (DABCO) catalysis. Journal of Catalysis, 2014, 319, 258-264.	6.2	40
862	Three Porphyrin-Encapsulating Metal–Organic Materials with Ordered Metalloporphyrin Moieties. Crystal Growth and Design, 2014, 14, 1526-1530.	3.0	21
863	Directed Growth of Electroactive Metalâ€Organic Framework Thin Films Using Electrophoretic Deposition. Advanced Materials, 2014, 26, 6295-6300.	21.0	265
864	Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chemical Society Reviews, 2014, 43, 5618-5656.	38.1	476
865	Computational Design of Metal–Organic Frameworks Based on Stable Zirconium Building Units for Storage and Delivery of Methane. Chemistry of Materials, 2014, 26, 5632-5639.	6.7	191
866	Adsorption and Separation of Carbon Dioxide Using MIL-53(Al) Metal-Organic Framework. Industrial & Lamp; Engineering Chemistry Research, 2014, 53, 19747-19753.	3.7	35
867	Influence of Structural Heterogeneity on Diffusion of CH ₄ and CO ₂ in Silicon Carbide-Derived Nanoporous Carbon. Journal of Physical Chemistry C, 2014, 118, 11784-11798.	3.1	30
868	9.14 Preparative Electrochemistry for Organic Synthesis. , 2014, , 351-389.		3

#	Article	IF	CITATIONS
869	Enhanced water stability of a microporous acylamide-functionalized metal–organic framework via interpenetration and methyl decoration. CrystEngComm, 2014, 16, 9586-9589.	2.6	35
870	Monte Carlo Modeling of Carbon Dioxide Adsorption in Porous Aromatic Frameworks. Langmuir, 2014, 30, 4147-4156.	3.5	19
871	Hollow carbon nano-onions with hierarchical porosity derived from commercial metal organic framework. Carbon, 2014, 79, 302-309.	10.3	38
872	Enhanced selective CO ₂ adsorption on polyamine/MIL-101(Cr) composites. Journal of Materials Chemistry A, 2014, 2, 14658-14665.	10.3	121
874	Waterâ€Stable Zirconiumâ€Based Metal–Organic Framework Material with Highâ€Surface Area and Gasâ€Storage Capacities. Chemistry - A European Journal, 2014, 20, 12389-12393.	3.3	150
875	Ultrahigh porosity in mesoporous MOFs: promises and limitations. Chemical Communications, 2014, 50, 7089.	4.1	138
876	Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chemical Society Reviews, 2014, 43, 5896-5912.	38.1	721
877	Synthesis of Two Triarylboron-Functionalized Metal–Organic Frameworks: In Situ Decarboxylic Reaction, Structure, Photoluminescence, and Gas Adsorption Properties. Inorganic Chemistry, 2014, 53, 11206-11212.	4.0	32
878	Isoreticular Series of (3,24)-Connected Metal–Organic Frameworks: Facile Synthesis and High Methane Uptake Properties. Chemistry of Materials, 2014, 26, 1912-1917.	6.7	76
879	Recent progress on desiccant materials for solid desiccant cooling systems. Energy, 2014, 74, 280-294.	8.8	230
880	Size-Selective Crystallization of Homochiral Camphorate Metal–Organic Frameworks for Lanthanide Separation. Journal of the American Chemical Society, 2014, 136, 12572-12575.	13.7	138
881	Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes. Nature Communications, 2014, 5, 4813. Stepwise Crystallization: Illustrative Examples of the Use of Metalloligands	12.8	252
882	[Cu ₆ (<i>mna</i>) ₆] ^{6â€"} and [Ag ₆ (<i>Hmna</i>) ₂ (<i>mna</i>) _{4ĉ€"4â€" (<i>H</i><ci>H<ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H</ci><ci>H<td>3.0</td><td>37</td></ci></ci>}	3.0	37
883	Crystal Crowth and Design, 2014, 14, 4531-4544. Two-level nierarchical entangled framework in a novel copper(I) coordination polymer with multiform helical features and unprecedented self-penetrated subnet. Inorganica Chimica Acta, 2014, 423, 133-138.	2.4	6
884	Extended and functionalized porous iron(iii) tri- or dicarboxylates with MIL-100/101 topologies. Chemical Communications, 2014, 50, 6872.	4.1	93
885	Analysis of High and Selective Uptake of CO ₂ in an Oxamide ontaining {Cu ₂ (OOCR) ₄ }â€Based Metal–Organic Framework. Chemistry - A European Journal, 2014, 20, 7317-7324.	3.3	119
886	Melaleuca bark based porous carbons for hydrogen storage. International Journal of Hydrogen Energy, 2014, 39, 11661-11667.	7.1	50
887	Design of Superhydrophobic Porous Coordination Polymers through the Introduction of External Surface Corrugation by the Use of an Aromatic Hydrocarbon Building Unit. Angewandte Chemie - International Edition, 2014, 53, 8225-8230.	13.8	110

#	Article	IF	Citations
888	Perspective of microporous metal–organic frameworks for CO ₂ capture and separation. Energy and Environmental Science, 2014, 7, 2868.	30.8	693
889	In Situ Observation of Gating Phenomena in the Flexible Porous Coordination Polymer Zn ₂ (BPnDC) ₂ (bpy) (SNU-9) in a Combined Diffraction and Gas Adsorption Experiment. Inorganic Chemistry, 2014, 53, 1513-1520.	4.0	43
890	Structural Diversity and Photoluminescent Properties of Zinc Benzotriazole-5-carboxylate Coordination Polymers. Inorganic Chemistry, 2014, 53, 1500-1506.	4.0	55
891	Tuning of Adsorption and Magnetic Properties in a Series of Self-Templated Isostructural Ni(II) Metalâ°'Organic Frameworks. Crystal Growth and Design, 2014, 14, 716-722.	3.0	7
892	Methane storage in metal–organic frameworks. Chemical Society Reviews, 2014, 43, 5657-5678.	38.1	1,449
893	Secondary Building Unit (SBU) Controlled Formation of a Catalytically Active Metal–Organic Polyhedron (MOP) Derived from a Flexible Tripodal Ligand. Crystal Growth and Design, 2014, 14, 1331-1337.	3.0	44
894	How to Optimize the Electrostatic Interaction between a Solid Adsorbent and CO2. Journal of Physical Chemistry C, 2014, 118, 9458-9467.	3.1	5
895	Synthesis, Crystal Structures, Magnetic, and Thermal Properties of Divalent Metal Formate–Formamide Layered Compounds Inorganic Chemistry, 2014, 53, 244-256.	4.0	13
896	Improving Hydrothermal Stability and Catalytic Activity of Metal–Organic Frameworks by Graphite Oxide Incorporation. Journal of Physical Chemistry C, 2014, 118, 19910-19917.	3.1	100
897	Coating Two-Dimensional Nanomaterials with Metal–Organic Frameworks. ACS Nano, 2014, 8, 8695-8701.	14.6	168
898	Room temperature synthesis of metal organic framework MOF-2. Journal of Porous Materials, 2014, 21, 769-773.	2.6	63
899	Exploring the Limits of Methane Storage and Delivery in Nanoporous Materials. Journal of Physical Chemistry C, 2014, 118, 6941-6951.	3.1	108
900	Construction of Non-Interpenetrated Charged Metal–Organic Frameworks with Doubly Pillared Layers: Pore Modification and Selective Gas Adsorption. Inorganic Chemistry, 2014, 53, 7591-7598.	4.0	72
901	Hydrogen storage in a series of Zn-based MOFs studied by PHSC equation of state. International Journal of Hydrogen Energy, 2014, 39, 14851-14857.	7.1	11
902	Monomolecular sheets of propeller-shaped triethyl 4,4′,4′a€²-[benzene-1,3,5-triyltris(ethyne-2,1-diyl)]tribenzoate deuterochloroform monosolvate. Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 937-940.	0.5	0
903	Design of 3D 1,3,5,7-tetraphenyladamantane-based covalent organic frameworks as hydrogen storage materials. RSC Advances, 2014, 4, 24526-24532.	3.6	16
904	Organic Dicarboxylate Negative Electrode Materials with Remarkably Small Strain for Highâ€Voltage Bipolar Batteries. Angewandte Chemie - International Edition, 2014, 53, 11467-11472.	13.8	124
905	Electronic properties and hydrogen storage application of designed porous nanotubes from a polyphenylene network. International Journal of Hydrogen Energy, 2014, 39, 18966-18975.	7.1	33

#	Article	IF	CITATIONS
906	Synthesis and hydrogen adsorption properties of internally polarized 2,6-azulenedicarboxylate based metal–organic frameworks. Journal of Materials Chemistry A, 2014, 2, 18823-18830.	10.3	29
907	Porous Metal–Organic Frameworks for Gas Storage and Separation: What, How, and Why?. Journal of Physical Chemistry Letters, 2014, 5, 3468-3479.	4.6	505
908	Metal-organic frameworks with high tungstophosphoric acid loading as heterogeneous acid catalysts. Applied Catalysis A: General, 2014, 487, 110-118.	4.3	72
909	Molecular simulations of physical and chemical adsorption under gas and liquid environments using force field- and quantum mechanics-based methods. Molecular Simulation, 2014, 40, 678-689.	2.0	9
910	Nanoconfined gases, liquids and liquid crystals in porous materials. Molecular Simulation, 2014, 40, 698-712.	2.0	5
911	Hydrogen storage in nanoporous materials. , 2014, , 410-450.		2
913	Mesoporous non-siliceous inorganic–organic hybrids: a promising platform for designing multifunctional materials. New Journal of Chemistry, 2014, 38, 1905-1922.	2.8	48
914	Propargylamine synthesis via direct oxidative CC coupling reaction between N,N-dimethylanilines and terminal alkynes under metal–organic framework catalysis. Journal of Molecular Catalysis A, 2014, 395, 300-306.	4.8	35
915	Highly selective carbon dioxide uptake by a microporous kgm-pillared metal–organic framework with acylamide groups. CrystEngComm, 2014, 16, 5520.	2.6	21
916	Linear Coordination Polymers Assembled from Dinuclear Cu(I) Units: Interchain π–π and CH–π Interactions in Controlling Alignments of Polymeric Chains in Solid State. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 865-873.	3.7	2
917	High-pressure hydrogen storage on modified MIL-101 metal-organic framework. International Journal of Energy Research, 2014, 38, 1562-1570.	4.5	25
918	Hydrothermal syntheses of a series of cluster-based micro-porous luminescent cadmium(ii) metal–organic frameworks with 4-amino-benzene-1,2,4-triazole: topological diversity, gas absorption and photo-luminescent characterization. RSC Advances, 2014, 4, 25172.	3.6	24
919	Exploiting Weak Noncovalent Cation···π Interaction for Designing a Molecular Container for Storage of Methane Molecules with Lithiated Carbene Superbases. Journal of Physical Chemistry C, 2014, 118, 6680-6689.	3.1	12
921	Lewis Acid–Base Interactions between Polysulfides and Metal Organic Framework in Lithium Sulfur Batteries. Nano Letters, 2014, 14, 2345-2352.	9.1	623
922	Synthesis and Characterization of Two Lanthanide (Gd ³⁺ and Dy ³⁺)-Based Three-Dimensional Metal Organic Frameworks with Squashed Metallomacrocycle Type Building Blocks and Their Magnetic, Sorption, and Fluorescence Properties Study. Crystal Growth and Design, 2014, 14, 1287-1295.	3.0	93
923	Programming MIL-101Cr for selective and enhanced CO ₂ adsorption at low pressure by postsynthetic amine functionalization. Dalton Transactions, 2014, 43, 1338-1347.	3.3	69
924	Methane Adsorption in Metal–Organic Frameworks Containing Nanographene Linkers: A Computational Study. Journal of Physical Chemistry C, 2014, 118, 15573-15580.	3.1	17
925	Fluorocarbon adsorption in hierarchical porous frameworks. Nature Communications, 2014, 5, 4368.	12.8	104

#	Article	IF	CITATIONS
926	Defect Creation by Linker Fragmentation in Metal–Organic Frameworks and Its Effects on Gas Uptake Properties. Inorganic Chemistry, 2014, 53, 6914-6919.	4.0	118
927	Liquid phase stepwise growth of surface mounted metal–organic frameworks for exploratory research and development of applications. Inorganic Chemistry Frontiers, 2014, 1, 442.	6.0	56
928	Tetrahedral node diamondyne frameworks for CO2 adsorption and separation. Journal of Materials Chemistry A, 2014, 2, 4899.	10.3	16
929	In silico screening of metal organic framework for iodine capture and storage. Chemical Physics Letters, 2014, 610-611, 45-49.	2.6	54
930	Modification and application of cellulose fibers for the transport of carbonate ions. International Journal of Industrial Chemistry, 2014, 5, 1.	3.1	1
931	Polyurea networks via organic sol–gel crosslinking polymerization of tetrafunctional amines and diisocyanates and their selective adsorption and filtration of carbon dioxide. Polymer Chemistry, 2014, 5, 1124.	3.9	35
932	Network Flexibility: Control of Gate Opening in an Isostructural Series of Ag-MOFs by Linker Substitution. Inorganic Chemistry, 2014, 53, 7599-7607.	4.0	32
933	One-pot synthesis of magnetic particle-embedded porous carbon composites from metal–organic frameworks and their sorption properties. Chemical Communications, 2014, 50, 5476.	4.1	124
934	Nanoporous metal organic framework materials for smart applications. Materials Science and Technology, 2014, 30, 1598-1612.	1.6	87
935	One- and three-dimensional silver(I)-5-sulfosalicylate coordination polymers having ligand-supported and unsupported argentophilic interactions. Journal of Solid State Chemistry, 2014, 220, 70-78.	2.9	9
936	Nitrosyl Complexes in Inorganic Chemistry, Biochemistry and Medicine II. Structure and Bonding, 2014,	1.0	10
937	Targeted Structure Modulation of "Pillar-Layered―Metal–Organic Frameworks for CO2 Capture. Inorganic Chemistry, 2014, 53, 8985-8990.	4.0	82
938	Hydrothermal Synthesis and Characterization of a Novel 2D Luminescent Silver(I) Microporous Framework with 4â€(4â€Aminobenzene)â€1, 2, 4â€triazole using Tetranuclear Silver(I) Clusters as Secondary Building Blocks. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 2463-2467.	1.2	1
939	Porosity Enhancement of Carbazolic Porous Organic Frameworks Using Dendritic Building Blocks for Gas Storage and Separation. Chemistry of Materials, 2014, 26, 4023-4029.	6.7	160
940	A new microporous metal–organic framework with open metal sites and exposed carboxylic acid groups for selective separation of CO ₂ /CH ₄ and C ₂ H ₄ 4. RSC Advances, 2014, 4, 36419.	3.6	37
941	Experimental, DFT and quantum Monte Carlo studies of a series of peptide-based metal–organic frameworks: synthesis, structures and properties. Inorganic Chemistry Frontiers, 2014, 1, 526-533.	6.0	10
942	Control of Metal–Organic Framework Crystal Topology by Ligand Functionalization: Functionalized HKUST-1 Derivatives. Crystal Growth and Design, 2014, 14, 6122-6128.	3.0	48
943	Isostructural 1D coordination polymers of Zn(II), Cd(II) and Cu(II) with phenylpropynoic acid and DABCO as organic linkers. Journal of Molecular Structure, 2014, 1076, 280-284.	3.6	6

#	Article	IF	CITATIONS
944	Rationally Designed Nitrogen-Rich Metal–Organic Cube Material: An Efficient CO2 Adsorbent and H2 Confiner. Crystal Growth and Design, 2014, 14, 739-746.	3.0	33
945	Connection of zinc paddle-wheels in a pto-type metal–organic framework with 2-methylimidazolate and subsequent incorporation of charged organic guests. Chemical Communications, 2014, 50, 6785-6788.	4.1	8
946	Solvent evaporation mediated preparation of hierarchically porous metal organic framework-derived carbon with controllable and accessible large-scale porosity. Carbon, 2014, 71, 294-302.	10.3	77
947	In situ monitoring of structural changes during the adsorption on flexible porous coordination polymers by X-ray powder diffraction: Instrumentation and experimental results. Microporous and Mesoporous Materials, 2014, 188, 190-195.	4.4	58
948	Inelastic neutron scattering study of binding of para-hydrogen in an ultra-microporous metal–organic framework. Chemical Physics, 2014, 428, 111-116.	1.9	10
949	Preparation and Adsorption Performance of GrO@Cu-BTC for Separation of CO ₂ /CH ₄ . Industrial & Description of Engineering Chemistry Research, 2014, 53, 11176-11184.	3.7	124
950	Porous aromatic frameworks with anion-templated pore apertures serving as polymeric sieves. Nature Communications, 2014, 5, 4260.	12.8	132
951	A Family of Metalâ€Organic Frameworks Exhibiting Sizeâ€Selective Catalysis with Encapsulated Nobleâ€Metal Nanoparticles. Advanced Materials, 2014, 26, 4056-4060.	21.0	396
952	Ordered Mesoporous Metal–Organic Frameworks Incorporated with Amorphous TiO ₂ As Photocatalyst for Selective Aerobic Oxidation in Sunlight Irradiation. ACS Catalysis, 2014, 4, 1398-1403.	11.2	136
953	Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews, 2014, 43, 5561-5593.	38.1	1,792
954	Microporous Metal–Organic Frameworks for Gas Separation. Chemistry - an Asian Journal, 2014, 9, 1474-1498.	3.3	183
955	High-Throughput Screening of Porous Crystalline Materials for Hydrogen Storage Capacity near Room Temperature. Journal of Physical Chemistry C, 2014, 118, 5383-5389.	3.1	84
956	Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates. Nature Communications, 2014, 5, 3705.	12.8	143
957	Swellable, Water- and Acid-Tolerant Polymer Sponges for Chemoselective Carbon Dioxide Capture. Journal of the American Chemical Society, 2014, 136, 9028-9035.	13.7	201
958	Efficient refinement of a metal–organic framework MIL-53(Fe) by UV–vis irradiation in aqueous hydrogen peroxide solution. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 288, 55-59.	3.9	30
959	Size―and Shapeâ€Controlled Synthesis of Hexagonal Bipyramidal Crystals and Hollow Selfâ€Assembled Alâ€MOF Spheres. ChemSusChem, 2014, 7, 529-535.	6.8	30
960	Optimization of adsorption processes for climate control and thermal energy storage. International Journal of Heat and Mass Transfer, 2014, 77, 288-300.	4.8	54
961	Engineering of Band Gap in Metal–Organic Frameworks by Functionalizing Organic Linker: A Systematic Density Functional Theory Investigation. Journal of Physical Chemistry C, 2014, 118, 4567-4577.	3.1	97

#	Article	IF	CITATIONS
962	Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal–organic framework. Journal of Colloid and Interface Science, 2014, 430, 78-84.	9.4	84
964	Advancing Adsorption and Membrane Separation Processes for the Gigaton Carbon Capture Challenge. Annual Review of Chemical and Biomolecular Engineering, 2014, 5, 479-505.	6.8	79
965	A combined experimental and theoretical study of gas sorption on nanoporous silver triazolato metal–organic frameworks. Microporous and Mesoporous Materials, 2014, 183, 62-68.	4.4	15
966	Porous polyimides from polycyclic aromatic linkers: Selective CO2 capture and hydrogen storage. Polymer, 2014, 55, 1452-1458.	3.8	37
967	Syntheses, crystal structures and fluorescent properties of two d 10-metal coordination polymers based on 1,5-naphthalenedisulfonic acid. Journal of the Iranian Chemical Society, 2014, 11, 199-207.	2.2	3
968	Synthesis and Characterization of Functionalized Metal-organic Frameworks. Journal of Visualized Experiments, 2014, , e52094.	0.3	3
969	First In Situ NMR Observation of Hydrogen Adsorbed inside [Cu3(btc)2] at Ambient Temperature and Pressure. Chemistry Letters, 2014, 43, 1363-1364.	1.3	1
970	Structural and Morphological Transformations of In-MIL-68-Based Hexagonal Lumps to QMOF-2-Based Pointed Hexagonal Rods by Means of Destruction and Reconstruction Processes. European Journal of Inorganic Chemistry, 2014, 2014, 6220-6224.	2.0	10
972	Layered Graphene–Hexagonal BN Nanocomposites: Experimentally Feasible Approach to Chargeâ€Induced Switchable CO ₂ Capture. ChemSusChem, 2015, 8, 2987-2993.	6.8	43
973	Conductive Graphitic Carbon Nitride as an Ideal Material for Electrocatalytically Switchable CO2 Capture. Scientific Reports, 2015, 5, 17636.	3.3	60
974	Adsorption of Uranyl ions on Amine-functionalization of MIL-101(Cr) Nanoparticles by a Facile Coordination-based Post-synthetic strategy and X-ray Absorption Spectroscopy Studies. Scientific Reports, 2015, 5, 13514.	3.3	78
976	Crystal structure of poly[[(1,3-dimethyl-2-imidazolidinone-l̂º1O) zinc(ll)]-l̂¹¼-furan-2,5-dicarboxylato-l̂º4O,O′:O′′,O′′], [Zn(C5H10N2O)(C6H2O5)], C22H24N4O2 Kristallographie - New Crystal Structures, 2015, 230, 335-337.	1 223 n2. Zei	it s chrift Fur
977	Coordination polymers assembled from semirigid fluorene-based ligand: A couple of enantiomers. Journal of Solid State Chemistry, 2015, 231, 47-52.	2.9	13
981	Selective Photooxidation of a Mustardâ€Gas Simulant Catalyzed by a Porphyrinic Metal–Organic Framework. Angewandte Chemie - International Edition, 2015, 54, 9001-9005.	13.8	244
982	Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 14696-14700.	13.8	169
983	Versatile Tailoring of Paddleâ€Wheel Zn ^{II} Metal–Organic Frameworks through Singleâ€Crystalâ€toâ€Singleâ€Crystal Transformations. Chemistry - A European Journal, 2015, 21, 16083-16090.	3.3	35
984	Postâ€Synthetic Anisotropic Wetâ€Chemical Etching of Colloidal Sodalite ZIF Crystals. Angewandte Chemie - International Edition, 2015, 54, 14417-14421.	13.8	262
985	Highâ€ŧhroughput and comprehensive prediction of <scp>H</scp> ₂ adsorption in metalâ€organic frameworks under various conditions. AICHE Journal, 2015, 61, 2951-2957.	3.6	32

#	ARTICLE	IF	CITATIONS
987	Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art. ChemSusChem, 2015, 8, 2789-2825.	6.8	302
988	Ligand Symmetry Modulation for Designing a Mesoporous Metal–Organic Framework: Dual Reactivity to Transition and Lanthanide Metals for Enhanced Functionalization. Chemistry - A European Journal, 2015, 21, 9713-9719.	3.3	59
989	Metal–Organic Frameworkâ€Based Nanomedicine Platforms for Drug Delivery and Molecular Imaging. Small, 2015, 11, 4806-4822.	10.0	375
990	Phenyl Groups Result in the Highest Benzene Storage and Most Efficient Desulfurization in a Series of Isostructural Metal–Organic Frameworks. Chemistry - A European Journal, 2015, 21, 9784-9789.	3.3	41
991	A New Structural Family of Gasâ€Sorbing Coordination Polymers Derived from Phenolic Carboxylic Acids. Chemistry - A European Journal, 2015, 21, 18057-18061.	3.3	21
992	Generalized Mechanochemical Synthesis of Biomassâ€Derived Sustainable Carbons for High Performance CO ₂ Storage. Advanced Energy Materials, 2015, 5, 1500867.	19.5	130
994	Multiâ€frequency (S, X, Q and Wâ€band) EPR and ENDOR Study of Vanadium(IV) Incorporation in the Aluminium Metal–Organic Framework MILâ€53. ChemPhysChem, 2015, 16, 2968-2973.	2.1	18
995	Gas Sorption Properties of Isostructural Coâ€MOFs Containing Dipyridylporphyrin Linkers with Different Substituents at the 10,20â€∢i>meso⟨/i>â€Positions. European Journal of Inorganic Chemistry, 2015, 2015, 2989-2995.	2.0	6
997	((1H-tetrazol-5-yl) methyl) pyridine-based metal coordination complexes: in situ tetrazole synthesis, crystal structures, luminescence properties. CrystEngComm, 2015, 17, 1305-1317.	2.6	14
998	2D-cadmium MOF and gismondine-like zinc coordination network based on the N-(2-tetrazolethyl)-4′-glycine linker. New Journal of Chemistry, 2015, 39, 3982-3986.	2.8	3
999	The effect of the aliphatic carboxylate linkers on the electronic structures, chemical bonding and optical properties of the uranium-based metal–organic frameworks. RSC Advances, 2015, 5, 26735-26748.	3.6	9
1000	Highly Cost-Effective Nitrogen-Doped Porous Coconut Shell-Based CO ₂ Sorbent Synthesized by Combining Ammoxidation with KOH Activation. Environmental Science & Emp; Technology, 2015, 49, 7063-7070.	10.0	173
1001	Multifunctional Phosphate-Based Inorganic–Organic Hybrid Nanoparticles. Journal of the American Chemical Society, 2015, 137, 7329-7336.	13.7	71
1002	Mannitol-based acetal-linked porous organic polymers for selective capture of carbon dioxide over methane. Polymer Chemistry, 2015, 6, 5305-5312.	3.9	33
1003	Design and fabrication of mesoporous heterogeneous basic catalysts. Chemical Society Reviews, 2015, 44, 5092-5147.	38.1	323
1004	Flexible Solid Sorbents for CO2 CaptureÂand Separation. , 2015, , 149-176.		2
1005	Electrosynthesis of Metal–Organic Frameworks: Challenges and Opportunities. ChemElectroChem, 2015, 2, 462-474.	3.4	199
1006	Modulating structural dimensionality of cadmium(II) coordination polymers by means of pyrazole, tetrazole and pyrimidine derivative ligands. Journal of Molecular Structure, 2015, 1089, 135-145.	3.6	9

#	ARTICLE	IF	CITATIONS
1007	An In ^{III} -based anionic metal–organic framework: sensitization of lanthanide (III) ions and selective absorption and separation of cationic dyes. Journal of Materials Chemistry A, 2015, 3, 14157-14164.	10.3	128
1008	Modification and Potential Applications of Organic–Inorganic Non-Siliceous Hybrid Materials. Springer Briefs in Molecular Science, 2015, , 75-118.	0.1	0
1009	Function-led design of new porous materials. Science, 2015, 348, aaa8075.	12.6	1,272
1010	Hierarchical Heteroaggregation of Binary Metal-Organic Gels with Tunable Porosity and Mixed Valence Metal Sites for Removal of Dyes in Water. Scientific Reports, 2015, 5, 10556.	3.3	82
1011	A DFT/TDDFT mission to probe push–pull vinyl coupled thiophene oligomers for optoelectronic applications. RSC Advances, 2015, 5, 50353-50364.	3.6	22
1012	Synthesis, characterisation and fluorescence property of a new one-dimensional polymer constructed from 5-nitroisophthalic acid. Materials Research Innovations, 2015, 19, S5-223-S5-226.	2.3	0
1013	High-energy resolution X-ray absorption and emission spectroscopy reveals insight into unique selectivity of La-based nanoparticles for CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15803-15808.	7.1	46
1014	Visible Light-Triggered Capture and Release of CO ₂ from Stable Metal Organic Frameworks. Chemistry of Materials, 2015, 27, 7882-7888.	6.7	54
1015	Electronic and magnetic properties of DUT-8(Ni). Physical Chemistry Chemical Physics, 2015, 17, 17122-17129.	2.8	29
1016	Crystal structure of the inclusion compound of a porous metal-organic polymer with 2-cyclopentene-1-one. Journal of Structural Chemistry, 2015, 56, 1000-1002.	1.0	6
1017	A Molecular Artisans Guide to Supramolecular Coordination Complexes and Metal Organic Frameworks. Journal of Molecular and Engineering Materials, 2015, 03, 1540004.	1.8	3
1018	Carbon Capture and Storageâ^—. , 2015, , 329-366.		5
1019	Isosteric Heat of Potential Confinement in the Hydrogen Storage Material. Nano, 2015, 10, 1550120.	1.0	0
1020	Preparation of graphene/metal-organic composites and their adsorption performance for benzene and ethanol. New Carbon Materials, 2015, 30, 566-571.	6.1	28
1021	4-(4-Carboxyphenoxy)phthalate-based coordination polymers and their application in sensing nitrobenzene. Dalton Transactions, 2015, 44, 1655-1663.	3.3	43
1022	One-dimensional coordination supramolecular polymer [Cu(bipy)(SO4)]n as an adsorbent for adsorption and kinetic separation of anionic dyes. Chemical Engineering Journal, 2015, 265, 157-163.	12.7	63
1023	Interpenetration in coordination polymers: structural diversities toward porous functional materials. Materials Today, 2015, 18, 97-116.	14.2	57
1024	Exceptional Gas Adsorption Properties by Nitrogen-Doped Porous Carbons Derived from Benzimidazole-Linked Polymers. Chemistry of Materials, 2015, 27, 1349-1358.	6.7	220

#	Article	IF	CITATIONS
1025	Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal–Organic Framework-177. Journal of the American Chemical Society, 2015, 137, 2641-2650.	13.7	339
1026	Separation of CO ₂ from CH ₄ and CO ₂ capture in the presence of water vapour in NOTT-400. New Journal of Chemistry, 2015, 39, 2400-2403.	2.8	38
1027	Plasmonics-enhanced metal–organic framework nanoporous films for highly sensitive near-infrared absorption. Journal of Materials Chemistry C, 2015, 3, 2763-2767.	5. 5	41
1028	Low temperature synthesized carbon nanotube superstructures with superior CO ₂ and hydrogen storage capacity. Journal of Materials Chemistry A, 2015, 3, 5148-5161.	10.3	84
1029	Synthesis of metal–organic framework particles and thin films via nanoscopic metal oxide precursors. CrystEngComm, 2015, 17, 1728-1735.	2.6	15
1030	Protecting Metal–Organic Framework Crystals from Hydrolytic Degradation by Sprayâ€Dry Encapsulating Them into Polystyrene Microspheres. Advanced Materials, 2015, 27, 869-873.	21.0	90
1031	Utilizing transient breakthroughs for evaluating the potential of Kureha carbon for CO2 capture. Chemical Engineering Journal, 2015, 269, 135-147.	12.7	22
1032	A new mesoporous coordination polymer: synthesis, structure, and gas adsorption studies. CrystEngComm, 2015, 17, 2087-2090.	2.6	11
1033	Synthesis and energy applications of metal organic frameworks. Journal of Porous Materials, 2015, 22, 413-424.	2.6	17
1034	In situ synthesis of amide-imidate-imidazolate ligand and formation of metal-organic frameworks: Application for gas storage. Microporous and Mesoporous Materials, 2015, 216, 2-12.	4.4	10
1035	Functionalized Defects through Solvent-Assisted Linker Exchange: Synthesis, Characterization, and Partial Postsynthesis Elaboration of a Metal–Organic Framework Containing Free Carboxylic Acid Moieties. Inorganic Chemistry, 2015, 54, 1785-1790.	4.0	58
1036	Cyclic Dehydrogenation–(Re)Hydrogenation with Hydrogenâ€ 6 torage Materials: An Overview. Energy Technology, 2015, 3, 100-117.	3.8	39
1037	Predicting and creating 7-connected Zn ₄ O vertices for the construction of an exceptional metal–organic framework with nanoscale cages. CrystEngComm, 2015, 17, 1923-1926.	2.6	6
1038	Coordination polymers: Opportunities and challenges for monitoring volatile organic compounds. Progress in Polymer Science, 2015, 45, 102-118.	24.7	99
1039	The concept of mixed organic ligands in metal–organic frameworks: design, tuning and functions. Dalton Transactions, 2015, 44, 5258-5275.	3.3	225
1040	Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chemical Society Reviews, 2015, 44, 1922-1947.	38.1	348
1041	Filling Pore Space in a Microporous Coordination Polymer to Improve Methane Storage Performance. Langmuir, 2015, 31, 2211-2217.	3.5	39
1042	Chromium-based metal–organic framework/mesoporous carbon composite: synthesis, characterization and CO2 adsorption. Adsorption, 2015, 21, 77-86.	3.0	30

#	ARTICLE	IF	CITATIONS
1043	Structure-Assisted Functional Anchor Implantation in Robust Metal–Organic Frameworks with Ultralarge Pores. Journal of the American Chemical Society, 2015, 137, 1663-1672.	13.7	70
1044	Long lifetime photoluminescence emission of 3D cadmium metal–organic frameworks based on the 5-(4-pyridyl)tetrazole ligand. Inorganica Chimica Acta, 2015, 427, 131-137.	2.4	17
1045	Encapsulation of Heteropolyanionâ€Based Ionic Liquid within the Metal–Organic Framework MILâ€100(Fe) for Biodiesel Production. ChemCatChem, 2015, 7, 441-449.	3.7	127
1046	Asphalt-Derived High Surface Area Activated Porous Carbons for Carbon Dioxide Capture. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1376-1382.	8.0	108
1047	Metal organic framework synthesis in the presence of surfactants: towards hierarchical MOFs?. CrystEngComm, 2015, 17, 1693-1700.	2.6	78
1048	Lanthanide Metal-Organic Frameworks. Structure and Bonding, 2015, , .	1.0	33
1049	Structural study of Ni- or Mg-based complexes incorporated within UiO-66-NH2 framework and their impact on hydrogen sorption properties. Journal of Solid State Chemistry, 2015, 225, 209-215.	2.9	19
1050	"Heterogeneity within Order―in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 3417-3430.	13.8	465
1051	Highly selective luminescence sensing for Cu ²⁺ ions and selective CO ₂ capture in a doubly interpenetrated MOF with Lewis basic pyridyl sites. Dalton Transactions, 2015, 44, 4423-4427.	3.3	64
1052	Large-scale fabrication of porous carbon-decorated iron oxide microcuboids from Fe–MOF as high-performance anode materials for lithium-ion batteries. RSC Advances, 2015, 5, 7356-7362.	3.6	57
1053	Enhanced separation performance of a novel composite material GrO@MIL-101 for CO2/CH4 binary mixture. Chemical Engineering Journal, 2015, 266, 339-344.	12.7	106
1054	Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nature Communications, 2015, 6, 5979.	12.8	540
1055	Predesign and Systematic Synthesis of 11 Highly Porous Coordination Polymers with Unprecedented Topology. Inorganic Chemistry, 2015, 54, 1645-1649.	4.0	19
1056	Sequential Linker Installation: Precise Placement of Functional Groups in Multivariate Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 3177-3180.	13.7	323
1057	Highly enhanced and weakened adsorption properties of two MOFs by water vapor for separation of CO2/CH4 and CO2/N2 binary mixtures. Chemical Engineering Journal, 2015, 270, 385-392.	12.7	115
1058	Hierarchically structured porous organic polymer microspheres with built-in Fe ₃ O ₄ supraparticles: construction of dual-level pores for Pt-catalyzed enantioselective hydrogenation. Polymer Chemistry, 2015, 6, 2892-2899.	3.9	27
1059	A mesoporous metal–organic framework based on a shape-persistent macrocycle. Chemical Communications, 2015, 51, 6340-6342.	4.1	35
1060	A huge diamondoid metal–organic framework with a neo-mode of tenfold interpenetration. CrystEngComm, 2015, 17, 2935-2939.	2.6	12

#	Article	IF	CITATIONS
1061	A rationally designed amino-borane complex in a metal organic framework: a novel reusable hydrogen storage and size-selective reduction material. Chemical Communications, 2015, 51, 7610-7613.	4.1	44
1062	Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory. Journal of the American Chemical Society, 2015, 137, 3585-3591.	13.7	329
1063	Single-Crystal-to-Single-Crystal Metalation of a Metal–Organic Framework: A Route toward Structurally Well-Defined Catalysts. Inorganic Chemistry, 2015, 54, 2995-3005.	4.0	161
1064	Study of the temperature and solvent content effects on the structure of Cu–BTC metal organic framework for hydrogen storage. RSC Advances, 2015, 5, 24758-24768.	3.6	70
1065	Gas storage and separation in a water-stable [Cu ^{Sup> Sup> Cu^{Sup> Sup>}}	4.1	44
1066	Valorization of Lignin Waste: Carbons from Hydrothermal Carbonization of Renewable Lignin as Superior Sorbents for CO ₂ and Hydrogen Storage. ACS Sustainable Chemistry and Engineering, 2015, 3, 1658-1667.	6.7	144
1067	Hydrogen storage in Zr-fumarate MOF. International Journal of Hydrogen Energy, 2015, 40, 10542-10546.	7.1	63
1068	DFT-Derived Force Fields for Modeling Hydrocarbon Adsorption in MIL-47(V). Langmuir, 2015, 31, 8453-8468.	3.5	37
1069	Porous barium–organic frameworks with highly efficient catalytic capacity and fluorescence sensing ability. Journal of Materials Chemistry A, 2015, 3, 21545-21552.	10.3	46
1070	A zinc(II) metal organic framework based on flexible o-phenylenediacetate and rigid 4,4′-azobis(pyridine) ligands: Synthesis, crystal structure and hydrogen gas adsorption property. Polyhedron, 2015, 100, 108-113.	2.2	8
1071	Clinopyroxene and titanomagnetite cation redistributions at Mt. Etna volcano (Sicily, Italy): Footprints of the final solidification history of lava fountains and lava flows. Chemical Geology, 2015, 406, 45-54.	3.3	56
1072	Hygrothermal simulation-informed design of mesoporous desiccants for optimised energy efficiency of mixed mode air conditioning systems. Journal of Materials Chemistry A, 2015, 3, 17290-17303.	10.3	5
1073	A Family of Capsule-Based Coordination Polymers Constructed from a New Tetrakis(1,2,4-triazol-ylmethyl)resorcin[4]arene Cavitand and Varied Dicarboxylates for Selective Metal-Ion Exchange and Luminescent Properties. Crystal Growth and Design, 2015, 15, 3822-3831.	3.0	43
1074	Porous metal–organic frameworks with Lewis basic nitrogen sites for high-capacity methane storage. Energy and Environmental Science, 2015, 8, 2504-2511.	30.8	126
1075	Hybrid materials of Ni NP@MOF prepared by a simple synthetic method. Chemical Communications, 2015, 51, 12463-12466.	4.1	70
1076	lonic liquid directed syntheses of water-stable Eu– and Tb–organic-frameworks for aqueous-phase detection of nitroaromatic explosives. Dalton Transactions, 2015, 44, 14594-14603.	3.3	113
1077	Organic-acid-directed assembly of ironâ€"carbon oxides nanoparticles on coordinatively unsaturated metal sites of MIL-101 for green photochemical oxidation. Applied Catalysis B: Environmental, 2015, 179, 500-508.	20.2	60
1078	Dual template effect of supercritical CO ₂ in ionic liquid to fabricate a highly mesoporous cobalt metal–organic framework. Chemical Communications, 2015, 51, 13197-13200.	4.1	60

#	Article	IF	CITATIONS
1079	Multifunctional metal $\hat{a}\in$ organic frameworks: from academia to industrial applications. Chemical Society Reviews, 2015, 44, 6774-6803.	38.1	766
1080	Two solvent-dependent porous coordination polymers with –OH decorated ligands: unusual non-crystallographic net and fsh topology. CrystEngComm, 2015, 17, 5609-5613.	2.6	16
1081	Large-scale continuous hydrothermal production and activation of ZIF-8. Chemical Communications, 2015, 51, 12811-12814.	4.1	86
1082	Zinc and cadmium metal-directed coordination polymers: in situ flexible tetrazole ligand synthesis, structures, and properties. CrystEngComm, 2015, 17, 5814-5831.	2.6	28
1083	Synthesis of UiO-66-NH2 derived heterogeneous copper (II) catalyst and study of its application in the selective aerobic oxidation of alcohols. Journal of Molecular Catalysis A, 2015, 407, 53-59.	4.8	98
1084	Removal of the CO 2 from flue gas utilizing hybrid composite adsorbent MIL-53(Al)/GNP metal-organic framework. Microporous and Mesoporous Materials, 2015, 218, 144-152.	4.4	48
1085	A metal–organic framework based on cyclotriphosphazene-functionalized hexacarboxylate for selective adsorption of CO ₂ and C ₂ H ₆ over CH ₄ at room temperature. CrystEngComm, 2015, 17, 6314-6319.	2.6	24
1086	Highly selective self-condensation of cyclic ketones using MOF-encapsulating phosphotungstic acid for renewable high-density fuel. Green Chemistry, 2015, 17, 4473-4481.	9.0	144
1087	Exceptional adsorption-induced cluster and network deformation in the flexible metal–organic framework DUT-8(Ni) observed by in situ X-ray diffraction and EXAFS. Physical Chemistry Chemical Physics, 2015, 17, 17471-17479.	2.8	96
1088	High surface area and $\langle i \rangle Z \langle i \rangle$ and a thermally stable 8-fold polycatenated hydrogen-bonded framework. Chemical Communications, 2015, 51, 11642-11645.	4.1	124
1089	CO ₂ induced phase transitions in diamine-appended metal–organic frameworks. Chemical Science, 2015, 6, 5177-5185.	7.4	45
1090	Vapor-enhanced CO2 adsorption mechanism of composite PEI@ZIF-8 modified by polyethyleneimine for CO2/N2 separation. Chemical Engineering Journal, 2015, 280, 363-369.	12.7	94
1091	Understanding the Adsorption of PFOA on MIL-101(Cr)-Based Anionic-Exchange Metal–Organic Frameworks: Comparing DFT Calculations with Aqueous Sorption Experiments. Environmental Science & Environmental & Environm	10.0	205
1092	Spacer-Directed Selective Assembly of Copper Square or Hexagon and Ring-Stacks or Coordination Nanotubes. Inorganic Chemistry, 2015, 54, 6680-6686.	4.0	8
1093	Assembly of encapsulated water in hybrid bisamides: helical and zigzag water chains. CrystEngComm, 2015, 17, 1569-1575.	2.6	7
1094	Development of a Semiautomated Zero Length Column Technique for Carbon Capture Applications: Rapid Capacity Ranking of Novel Adsorbents. Industrial & Engineering Chemistry Research, 2015, 54, 6772-6780.	3.7	30
1095	Exploiting Synthetic Conditions to Promote Structural Diversity within the Scandium(III)/Pyrimidine-4,6-dicarboxylate System. Crystal Growth and Design, 2015, 15, 2352-2363.	3.0	31
1096	Tuning of ZIFâ€Derived Carbon with High Activity, Nitrogen Functionality, and Yield – A Case for Superior CO ₂ Capture. ChemSusChem, 2015, 8, 2123-2132.	6.8	197

#	Article	IF	CITATIONS
1097	Multifunctional Metal–Organic Frameworks for Photocatalysis. Small, 2015, 11, 3097-3112.	10.0	538
1098	High volumetric and energy densities of methane stored in nanoporous materials at ambient temperatures and moderate pressures. Chemical Engineering Journal, 2015, 272, 38-47.	12.7	20
1099	polyMOFs: A Class of Interconvertible Polymerâ€Metalâ€Organicâ€Framework Hybrid Materials. Angewandte Chemie - International Edition, 2015, 54, 6152-6157.	13.8	200
1100	Nitrogen-doped porous carbon spheres derived from <scp>d</scp> -glucose as highly-efficient CO ₂ sorbents. RSC Advances, 2015, 5, 37964-37969.	3.6	57
1101	A nanoporous 3D zinc(II) metal–organic framework for selective absorption of benzaldehyde and formaldehyde. Journal of Solid State Chemistry, 2015, 228, 36-41.	2.9	11
1102	Ancillary ligand-assisted assembly of C3-symmetric 4,4′,4″-nitrilotribenzoic acid with divalent Zn2+ ions: Syntheses, topological structures, and photoluminescence properties. Journal of Solid State Chemistry, 2015, 227, 155-164.	2.9	14
1103	Double-layer structure, sorption and magnetism properties of metal–organic frameworks with trigonal planar ligand. Inorganic Chemistry Communication, 2015, 55, 65-68.	3.9	0
1104	Syntheses, topological structures and properties of six metal–organic frameworks constructed from a flexible tetracarboxylate ligand. CrystEngComm, 2015, 17, 3162-3170.	2.6	19
1105	Synthesis and characterization of a new anionic zinc-adeninate metal–organic framework, [Zn3(ad)(BTC)2·(Me2NH2), 5.75 DMF, 0.25 H2O]. Journal of Porous Materials, 2015, 22, 867-875.	2.6	8
1106	Solvent-induced syntheses of three heterothiometallic W/S/Cu cluster-based coordination polymers with isomeric architectures and effective photocatalytic properties. Transition Metal Chemistry, 2015, 40, 405-412.	1.4	7
1107	Synthesis, Crystal Structure, Spectroscopic and Electrochemical Properties of a Copper Coordination Polymer with Unprecedented Topology. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 948-952.	1.2	0
1108	An experimental and simulation study of binary adsorption in metal–organic frameworks. Separation and Purification Technology, 2015, 146, 136-142.	7.9	6
1109	Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy and Environmental Science, 2015, 8, 1837-1866.	30.8	1,483
1110	Natural Gas Purification Using a Porous Coordination Polymer with Water and Chemical Stability. Inorganic Chemistry, 2015, 54, 4279-4284.	4.0	133
1111	Versatile rare earth hexanuclear clusters for the design and synthesis of highly-connected < b > ftw < /b > -MOFs. Chemical Science, 2015, 6, 4095-4102.	7.4	127
1112	Effect of various alkaline agents on the size and morphology of nano-sized HKUST-1 for CO ₂ adsorption. RSC Advances, 2015, 5, 27901-27911.	3.6	49
1113	H ₂ O Adsorption/Desorption in MOF-74: <i>Ab Initio</i> Molecular Dynamics and Experiments. Journal of Physical Chemistry C, 2015, 119, 13021-13031.	3.1	43
1114	A series of multidimensional MOFs incorporating a new N-heterocyclic building block: 5,5′-di(pyridin-4-yl)-3,3′-bi(1,2,4-triazole). RSC Advances, 2015, 5, 48596-48606.	3.6	5

#	Article	IF	CITATIONS
1115	Removal of CO \langle sub \rangle 2 \langle /sub \rangle from CH \langle sub \rangle 4 \langle /sub \rangle and CO \langle sub \rangle 2 \langle /sub \rangle capture in the presence of H \langle sub \rangle 2 \langle /sub \rangle 0 vapour in NOTT-401. Inorganic Chemistry Frontiers, 2015, 2, 442-447.	6.0	35
1116	Fluorescence detection of aromatic amines and photocatalytic degradation of rhodamine B under UV light irradiation by luminescent metal–organic frameworks. New Journal of Chemistry, 2015, 39, 4437-4444.	2.8	48
1117	Systematic Ligand Modulation Enhances the Moisture Stability and Gas Sorption Characteristics of Quaternary Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 3901-3909.	13.7	143
1118	Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture. Energy, 2015, 84, 75-82.	8.8	145
1119	Characteristics of flexibility in metal-organic framework solid solutions of composition [Zn2(BME-bdc)x(DB-bdc)2â^xxdabco]n: In situ powder X-ray diffraction, in situ NMR spectroscopy, and molecular dynamics simulations. Microporous and Mesoporous Materials, 2015, 216, 64-74.	4.4	41
1120	Metal–organic framework composites: from fundamentals to applications. Nanoscale, 2015, 7, 7482-7501.	5.6	410
1121	Removal of heavy metals from water through armchair carbon and boron nitride nanotubes: a computer simulation study. RSC Advances, 2015, 5, 25097-25104.	3.6	27
1122	Effect of Acid-Catalyzed Formation Rates of Benzimidazole-Linked Polymers on Porosity and Selective CO ₂ Capture from Gas Mixtures. Environmental Science & Environm	10.0	41
1123	Strategies to enhance CO ₂ capture and separation based on engineering absorbent materials. Journal of Materials Chemistry A, 2015, 3, 12118-12132.	10.3	98
1124	Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 2015, 44, 6804-6849.	38.1	1,190
1125	Metal organic frameworks for sensing applications. TrAC - Trends in Analytical Chemistry, 2015, 73, 39-53.	11.4	446
1126	Ultrahigh hydrogen storage capacity of novel porous aromatic frameworks. Journal of Materials Chemistry A, 2015, 3, 10724-10729.	10.3	23
1127	Stabilization of a highly porous metal–organic framework utilizing a carborane-based linker. Chemical Communications, 2015, 51, 6521-6523.	4.1	47
1128	Mesoporous Metal–Organic Frameworks with Sizeâ€, Shapeâ€, and Spaceâ€Distributionâ€Controlled Pore Structure. Advanced Materials, 2015, 27, 2923-2929.	21.0	217
1129	A new 3D cobalt (II) metal–organic framework nanostructure for heavy metal adsorption. Inorganica Chimica Acta, 2015, 430, 261-267.	2.4	70
1130	Postsynthetic modification of copper terephthalate metal-organic frameworks and their new application in preparation of samples containing heavy metal ions. Microporous and Mesoporous Materials, 2015, 210, 110-115.	4.4	32
1131	Stable porphyrin Zr and Hf metal–organic frameworks featuring 2.5 nm cages: high surface areas, SCSC transformations and catalyses. Chemical Science, 2015, 6, 3466-3470.	7.4	118
1132	Tunable Rare Earth fcu -MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction. Journal of the American Chemical Society, 2015, 137, 5034-5040.	13.7	308

#	Article	IF	CITATIONS
1133	Solvent-dependent luminescence behavior of a new charge-transfer Cu(I)-MOF: An experimental and theoretical investigation. Inorganic Chemistry Communication, 2015, 56, 41-44.	3.9	4
1134	CO ₂ Capture on <i>h</i> -BN Sheet with High Selectivity Controlled by External Electric Field. Journal of Physical Chemistry C, 2015, 119, 6912-6917.	3.1	183
1135	Organic and hybrid molecular systems. Mendeleev Communications, 2015, 25, 75-82.	1.6	170
1136	Solvent determines the formation and properties of metal–organic frameworks. RSC Advances, 2015, 5, 37691-37696.	3.6	95
1137	Quest for Highly Connected Metal–Organic Framework Platforms: Rare-Earth Polynuclear Clusters Versatility Meets Net Topology Needs. Journal of the American Chemical Society, 2015, 137, 5421-5430.	13.7	163
1138	Architectures varying from discrete molecular units to 2-dimensional coordination polymers and photoluminescence behavior of zinc and cadmium comprising an anionic zwitterion of rigid 4,5-dicarboxy-1,3-dimethyl-1H-imidazolium iodide. CrystEngComm, 2015, 17, 2754-2768.	2.6	11
1139	Photoluminescence Tuning and Water Detection of Yttrium Diazinedicarboxylate Materials through Lanthanide Doping. European Journal of Inorganic Chemistry, 2015, 2015, 2650-2663.	2.0	12
1140	Magnesium-based systems for carbon dioxide capture, storage and recycling: from leaves to synthetic nanostructured materials. RSC Advances, 2015, 5, 36192-36239.	3.6	61
1141	Selective carbon dioxide adsorption by mixed-ligand porous coordination polymers. CrystEngComm, 2015, 17, 8388-8413.	2.6	50
1142	Design of Pore Size and Functionality in Pillar-Layered Zn-Triazolate-Dicarboxylate Frameworks and Their High CO ₂ /CH ₄ and C2 Hydrocarbons/CH ₄ Selectivity. Inorganic Chemistry, 2015, 54, 9862-9868.	4.0	82
1143	What Matters to the Adsorptive Desulfurization Performance of Metal - Organic Frameworks?. Journal of Physical Chemistry C, 2015, 119, 21969-21977.	3.1	91
1144	Hollow Metal–Organic Framework Microparticles Assembled via a Self-Templated Formation Mechanism. Crystal Growth and Design, 2015, 15, 5169-5173.	3.0	52
1145	A zeolitic Cd(II) boron imidazolate framework with sensing and catalytic properties. Journal of Solid State Chemistry, 2015, 231, 185-189.	2.9	11
1146	Competitive adsorption of CO2/CH4 in porous boron nitride nanomaterials. Materials Letters, 2015, 161, 545-548.	2.6	17
1147	A luminescent dye@MOF as a dual-emitting platform for sensing explosives. Chemical Communications, 2015, 51, 17521-17524.	4.1	93
1148	High capacity hydrogen storage at room temperature via physisorption in a coordinatively unsaturated iron complex. International Journal of Hydrogen Energy, 2015, 40, 16330-16337.	7.1	10
1149	Hydrolytic Transformation of Microporous Metal–Organic Frameworks to Hierarchical Micro―and Mesoporous MOFs. Angewandte Chemie - International Edition, 2015, 54, 13273-13278.	13.8	186
1150	A cadmium(II)-based metal-organic framework material for the dispersive solid-phase extraction of polybrominated diphenyl ethers in environmental water samples. Journal of Chromatography A, 2015, 1422, 334-339.	3.7	33

#	Article	IF	CITATIONS
1151	Experimental and Theoretical Investigations of CO2Sorption by a 3D In-MOF with Multiple 1D Channels. European Journal of Inorganic Chemistry, 2015, 2015, 4038-4043.	2.0	7
1152	Enhanced Dynamic CO ₂ Adsorption Capacity and CO ₂ /CH ₄ Selectivity on Polyethylenimine-Impregnated UiO-66. Industrial & Engineering Chemistry Research, 2015, 54, 11151-11158.	3.7	93
1153	Synthesis of rigid ethynyl-bridged polytopic picolinate ligands for MOF applications. Tetrahedron Letters, 2015, 56, 6120-6122.	1.4	7
1154	Cation Exchange in Dynamic 3D Porous Magnets: Improvement of the Physical Properties. Inorganic Chemistry, 2015, 54, 10834-10840.	4.0	20
1155	Adsorption-Driven Heat Pumps: The Potential of Metal–Organic Frameworks. Chemical Reviews, 2015, 115, 12205-12250.	47.7	410
1156	Dual-Function Metal–Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants. ACS Nano, 2015, 9, 12358-12364.	14.6	207
1157	Crystal Structures, Magnetic Properties, and Electrochemical Properties of Coordination Polymers Based on the Tetra(4-pyridyl)-tetrathiafulvalene Ligand. Inorganic Chemistry, 2015, 54, 10766-10775.	4.0	50
1158	Metal-organic framework derived hierarchically porous nitrogen-doped carbon nanostructures as novel electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2015, 178, 287-293.	5. 2	50
1159	Synthesis of porous magnetic Fe3O4/Fe@ZnO coreâ€"shell heterostructure with superior capability for water treatment. Journal of Alloys and Compounds, 2015, 650, 463-469.	5.5	25
1160	A Family of Fe(II)/Cl Supramolecular Coordination Systems Incorporating 5,5′-Di(pyridin-2-yl)-3,3′-bi(1,2,4-triazole). Crystal Growth and Design, 2015, 15, 4394-4405.	3.0	15
1161	Multi-hydroxyl-containing porous organic polymers based on phenol formaldehyde resin chemistry with high carbon dioxide capture capacity. RSC Advances, 2015, 5, 71095-71101.	3.6	23
1162	Fabrication of a Substituted Imidazolate Material 1 (SIM-1) membrane using post synthetic modification (PSM) for pervaporation of water/ethanol mixtures. Journal of Porous Materials, 2015, 22, 1275-1284.	2.6	17
1163	Formation of hollow and mesoporous structures in single-crystalline microcrystals of metal–organic frameworks via double-solvent mediated overgrowth. Nanoscale, 2015, 7, 19408-19412.	5.6	77
1164	The direct synthesis of symmetrical disulfides and diselenides by metal–organic framework MOF-199 as an efficient heterogenous catalyst. RSC Advances, 2015, 5, 87564-87570.	3.6	27
1165	A Nanoscale Multiresponsive Luminescent Sensor Based on a Terbium(III) Metal–Organic Framework. Chemistry - an Asian Journal, 2015, 10, 1703-1709.	3.3	31
1166	Development Trends in Porous Adsorbents for Carbon Capture. Environmental Science & Emp; Technology, 2015, 49, 12641-12661.	10.0	94
1167	Regenerable magnesium-based sorbent for high-pressure and moderate-temperature CO2 capture: Physicochemical structures and capture performances. Fuel, 2015, 159, 559-569.	6.4	12
1168	Theoretical Investigation of Charge Transfer in Metal Organic Frameworks for Electrochemical Device Applications. Journal of Physical Chemistry C, 2015, 119, 24238-24247.	3.1	64

#	Article	IF	CITATIONS
1169	Three-dimensional hierarchical Prussian blue composed of ultrathin nanosheets: enhanced hetero-catalytic and adsorption properties. Chemical Communications, 2015, 51, 17568-17571.	4.1	53
1170	Efficient acetalization of benzaldehydes using UiO-66 and UiO-67: Substrates accessibility or Lewis acidity of zirconium. Applied Catalysis A: General, 2015, 506, 77-84.	4.3	61
1171	Dual Exchange in PCN-333: A Facile Strategy to Chemically Robust Mesoporous Chromium Metal–Organic Framework with Functional Groups. Journal of the American Chemical Society, 2015, 137, 11801-11809.	13.7	83
1172	Tetrahedral Tetraphosphonic Acids. New Building Blocks in Supramolecular Chemistry. Crystal Growth and Design, 2015, 15, 4925-4931.	3.0	21
1173	Porous Materials to Store Clear EnergyÂGasesâ^—. , 2015, , 297-327.		2
1174	Carbon dioxide capture in the presence of water vapour in InOF-1. Inorganic Chemistry Frontiers, 2015, 2, 898-903.	6.0	46
1175	Single cyanide-bridged Mo(W)/S/Cu cluster-based coordination polymers: Reactant- and stoichiometry-dependent syntheses, effective photocatalytic properties. Journal of Solid State Chemistry, 2015, 231, 230-238.	2.9	9
1176	Development of a Semiautomated Zero Length Column Technique for Carbon Capture Applications: Study of Diffusion Behavior of CO ₂ in MOFs. Industrial & Diffusion Behavior of CO ₂ in MOFs. Industrial & Diffusion Capture Applications: Research, 2015, 54, 5777-5783.	3.7	28
1177	MOF as a syringe pump for the controlled release of iodine catalyst in the synthesis of meso-thienyl dipyrromethanes. Chemical Communications, 2015, 51, 15526-15529.	4.1	16
1178	An unprecedented (4, 8)-connected self-penetrating Cu(I)-MOF constructed from the rare [Cu4l2]2+ cationic cluster and in situ generated tetrazole ligand. Inorganic Chemistry Communication, 2015, 61, 1-4.	3.9	7
1179	Oxidative cross-dehydrogenative coupling of amines and \hat{l} ±-carbonyl aldehydes over heterogeneous Cu-MOF-74 catalyst: A ligand- and base-free approach. Journal of Molecular Catalysis A, 2015, 409, 110-116.	4.8	29
1180	Metal–organic frameworks for applications in remediation of oxyanion/cation-contaminated water. CrystEngComm, 2015, 17, 7245-7253.	2.6	133
1181	Tuning the porosity through interpenetration of azobenzene-4,4′-dicarboxylate-based metal–organic frameworks. CrystEngComm, 2015, 17, 7636-7645.	2.6	15
1182	A role of steam activation on CO2 capture and separation of narrow microporous carbons produced from cellulose fibers. Energy, 2015, 91, 142-150.	8.8	66
1183	Compactivation: A mechanochemical approach to carbons with superior porosity and exceptional performance for hydrogen and CO2 storage. Nano Energy, 2015, 16, 173-185.	16.0	100
1184	MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc -MOF for CH ₄ , O ₂ , and CO ₂ Storage. Journal of the American Chemical Society, 2015, 137, 13308-13318.	13.7	632
1185	Optimised room temperature, water-based synthesis of CPO-27-M metal–organic frameworks with high space-time yields. Journal of Materials Chemistry A, 2015, 3, 20819-20826.	10.3	74
1186	Assessing the reliability of van der Waals DFT functionals to study the physisorption of molecular hydrogen on aromatic systems. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	6

#	Article	IF	CITATIONS
1187	New luminescent porous coordination polymers with an acylamide-decorated linker for anion recognition and reversible I ₂ accommodation. CrystEngComm, 2015, 17, 8226-8230.	2.6	13
1188	New 2-methyl benzimidazole based zinc carboxylates: Supramolecular structures, biomimetic proton conductivities and luminescent properties. Inorganica Chimica Acta, 2015, 437, 167-176.	2.4	14
1189	<i>In situ</i> variable-temperature single crystal X-ray diffraction studies of the single-crystal-to-single-crystal dehydration and rehydration of a mixed-ligand 2D zinc metal–organic framework using trimesate and 4,4′-bipyridine- <i>N</i> NN\$\delta \cdot \delta \cdot \delta \cdot \delta \d	2.6	14
1190	Supramolecular frameworks of binuclear dioxomolybdenum(<scp>vi< scp>) complexes with ONS donor ligands using 4,4′-azopyridine as a pillar: crystal structure, DFT calculations and biological study. New Journal of Chemistry, 2015, 39, 8681-8694.</scp>	2.8	19
1191	An amino-decorated NbO-type metal–organic framework for high C ₂ H ₂ storage and selective CO ₂ capture. RSC Advances, 2015, 5, 77417-77422.	3.6	53
1192	Heterogeneity within a Mesoporous Metal–Organic Framework with Three Distinct Metal-Containing Building Units. Journal of the American Chemical Society, 2015, 137, 13456-13459.	13.7	88
1193	Ultraporous, Water Stable, and Breathing Zirconium-Based Metal–Organic Frameworks with ftw Topology. Journal of the American Chemical Society, 2015, 137, 13183-13190.	13.7	149
1194	2D metal–organic networks based on asymmetric hexa-carboxylates and tetra-carboxylates ligands: A microporous Cl-pillared anionic bilayer and a neutral (4, 8)-net. Inorganica Chimica Acta, 2015, 438, 153-159.	2.4	2
1195	The roles of rod-packed organic units for preparing stable porous coordination polymers with carboxylate ligands. Inorganic Chemistry Communication, 2015, 61, 53-56.	3.9	3
1196	An unprecedented anionic Ln-MOF with a cage-within-cage motif: spontaneous reduction and immobilization of ion-exchanged Pd(<scp>ii</scp>) to Pd-NPs in the framework. Journal of Materials Chemistry A, 2015, 3, 24525-24531.	10.3	27
1197	Metal–Organic Frameworks in Adsorption-Driven Heat Pumps: The Potential of Alcohols as Working Fluids. Langmuir, 2015, 31, 12783-12796.	3.5	123
1198	Carbon nanodots functional MOFs composites by a stepwise synthetic approach: enhanced H ₂ storage and fluorescent sensing. CrystEngComm, 2015, 17, 1080-1085.	2.6	41
1200	Topology-Guided Design and Syntheses of Highly Stable Mesoporous Porphyrinic Zirconium Metal–Organic Frameworks with High Surface Area. Journal of the American Chemical Society, 2015, 137, 413-419.	13.7	352
1201	Cobalt–citrate framework armored with graphene oxide exhibiting improved thermal stability and selectivity for biogas decarburization. Journal of Materials Chemistry A, 2015, 3, 593-599.	10.3	71
1202	Hydrogen storage in a series of Zn-based MOFs studied by Sanchez–Lacombe equation of state. International Journal of Hydrogen Energy, 2015, 40, 1651-1656.	7.1	30
1203	Competitive adsorption of a binary CO $<$ sub $>$ 2 $<$ /sub $>$ â \in "CH $<$ sub $>$ 4 $<$ /sub $>$ mixture in nanoporous carbons: effects of edge-functionalization. Nanoscale, 2015, 7, 1002-1012.	5.6	145
1204	Tuning the Dimensionality of Polyoxometalate-Based Materials by Using a Mixture of Ligands. Crystal Growth and Design, 2015, 15, 449-456.	3.0	35
1205	Channel Partition into Nanoscale Polyhedral Cages of a Triple-Self-Interpenetrated Metal–Organic Framework with High CO ₂ Uptake. Inorganic Chemistry, 2015, 54, 10-12.	4.0	22

#	ARTICLE	IF	Citations
1206	Chemical and Structural Stability of Zirconiumâ€based Metal–Organic Frameworks with Large Threeâ€Dimensional Pores by Linker Engineering. Angewandte Chemie - International Edition, 2015, 54, 221-226.	13.8	141
1207	Assembly of metal–organic polyhedra into highly porous frameworks for ethene delivery. Chemical Communications, 2015, 51, 1046-1049.	4.1	65
1208	Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources. Green Chemistry, 2015, 17, 1500-1509.	9.0	263
1209	Tuning CO ₂ Uptake and Reversible Iodine Adsorption in Two Isoreticular MOFs through Ligand Functionalization. Chemistry - an Asian Journal, 2015, 10, 653-660.	3.3	66
1210	Adsorption and Dissociation of H2 on B n and MgB n (nÂ=Â2–7) Clusters: A DFT Investigation. Journal of Cluster Science, 2015, 26, 983-999.	3.3	9
1211	Dynamic structural transformations of coordination supramolecular systems upon exogenous stimulation. Chemical Communications, 2015, 51, 2768-2781.	4.1	104
1212	Great Prospects for PAF-1 and its derivatives. Materials Horizons, 2015, 2, 11-21.	12.2	75
1213	Differences in the adsorption and diffusion behaviour of water and non-polar gases in nanoporous carbon: role of cooperative effects of pore confinement and hydrogen bonding. Molecular Simulation, 2015, 41, 432-445.	2.0	17
1214	Thermally Robust 3-D Co-DpyDtolP-MOF with Hexagonally Oriented Micropores: Formation of Polyiodine Chains in a MOF Single Crystal. Crystal Growth and Design, 2015, 15, 268-277.	3.0	43
1215	Biomimicry in metal–organic materials. Coordination Chemistry Reviews, 2015, 293-294, 327-356.	18.8	128
1216	A review on solid adsorbents for carbon dioxide capture. Journal of Industrial and Engineering Chemistry, 2015, 23, 1-11.	5.8	540
1217	Benzene absorption in a protuberant-grid-type zinc(<scp>ii</scp>)–organic framework triggered by the migration of guest water molecules. Dalton Transactions, 2015, 44, 62-65.	3.3	10
1218	Nitrogen-doped porous aromatic frameworks for enhanced CO2 adsorption. Journal of Colloid and Interface Science, 2015, 438, 191-195.	9.4	32
1219	Improved hydrogen storage capacity by hydrogen spillover and fine structural characterization of MIL-100 metal organic frameworks. Research on Chemical Intermediates, 2015, 41, 7655-7667.	2.7	10
1220	Amine-modified ordered mesoporous silica: The effect of pore size on CO2 capture performance. Applied Surface Science, 2015, 324, 286-292.	6.1	92
1221	Density Functional Methods for Fast Screening of Metal–Organic Frameworks for Hydrogen Storage. Journal of Physical Chemistry C, 2015, 119, 5374-5385.	3.1	46
1222	A luminescent cadmium metal–organic framework for sensing of nitroaromatic explosives. Dalton Transactions, 2015, 44, 230-236.	3.3	137
1223	A new nanoporous nitrogen-doped highly-efficient carbonaceous CO2 sorbent synthesized with inexpensive urea and petroleum coke. Carbon, 2015, 81, 465-473.	10.3	158

#	Article	IF	Citations
1224	Modelling analysis of the structure and porosity of covalent triazine-based frameworks. Physical Chemistry Chemical Physics, 2015, 17, 817-823.	2.8	15
1225	Real-time monitoring of breathing of MIL-53(Al) by environmental SEM. Microporous and Mesoporous Materials, 2015, 203, 17-23.	4.4	33
1226	A Tridentate <i>In Situ</i> Generated Ligand Leading the Self-Assembly of a Transition Metal Coordination Polymer: Solvothermal Synthesis and Structural Characterization of 1D Cadmium Pyridine-2-Carboxylate. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 139-144.	0.6	2
1227	Alkali-treated titanium dioxide as adsorbent for CO2 capture from air. Microporous and Mesoporous Materials, 2015, 202, 241-249.	4.4	25
1228	The Lewis acidic and basic character of the internal HKUST-1 surface determined by inverse gas chromatography. CrystEngComm, 2015, 17, 438-447.	2.6	28
1229	Tuning metal sites of DABCO MOF for gas purification at ambient conditions. Microporous and Mesoporous Materials, 2015, 201, 277-285.	4.4	74
1230	Ship-in-a-bottle synthesis of amine-functionalized ionic liquids in NaY zeolite for CO2 capture. Scientific Reports, 2014, 4, 5997.	3.3	52
1231	Metal Organic Frameworks as Emerging Photocatalysts. , 0, , .		5
1232	Metalâ€Organic Frameworks and their Applications in Hydrogen and Oxygen Evolution Reactions. , 0, , .		5
1233	Technologies for Arsenic Removal from Water: Current Status and Future Perspectives. International Journal of Environmental Research and Public Health, 2016, 13, 62.	2.6	320
1234	A Heterobimetallic Anionic 3,6-Connected 2D Coordination Polymer Based on Nitranilate as Ligand. Polymers, 2016, 8, 89.	4.5	23
1235	The preparation of metal& ndash; organic frameworks and their biomedical application. International Journal of Nanomedicine, $2016, 11, 1187$.	6.7	85
1236	Metal Organic Frameworks as Catalysts for Organic Reactions. , 2016, , 13-40.		1
1237	Direct Evidence of CO ₂ Capture under Low Partial Pressure on a Pillared Metal–Organic Framework with Improved Stabilization through Intramolecular Hydrogen Bonding. ChemPlusChem, 2016, 81, 850-856.	2.8	21
1238	Synthesis, Structures, Magnetic and Luminescent Properties of a Series of Iron(II) and Zinc(II) Coordination Frameworks with Versatile 4â€Substitued 1, 2,4â€Triazole Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 260-267.	1.2	7
1239	Extended Linkers for Ultrahigh Surface Area Metal-Organic Frameworks. , 2016, , 271-307.		1
1240	Nuclear Magnetic Resonance of Metal-Organic Frameworks (MOFs). , 2016, , 607-628.		1
1241	The Utilization of Amide Groups To Expand and Functionalize Metal–Organic Frameworks Simultaneously. Chemistry - A European Journal, 2016, 22, 6277-6285.	3.3	83

#	Article	IF	CITATIONS
1242	A Multiresponsive Metal–Organic Framework: Direct Chemiluminescence, Photoluminescence, and Dual Tunable Sensing Applications. Advanced Functional Materials, 2016, 26, 393-398.	14.9	95
1243	Defectâ€Controlled Preparation of UiOâ€66 Metal–Organic Framework Thin Films with Molecular Sieving Capability. Chemistry - an Asian Journal, 2016, 11, 207-210.	3.3	19
1244	Novel Znâ€based MOFs stationary phase with large pores for capillary electrochromatography. Electrophoresis, 2016, 37, 2181-2189.	2.4	29
1245	Influence of Flexible Bis(benzimidazole) Derivatives on the Selfâ€assembly of Three Mixed Ligands Silver(I) Coordination Polymers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 618-625.	1.2	12
1246	Dynamic Entangled Porous Framework for Hydrocarbon (C2–C3) Storage, CO ₂ Capture, and Separation. Chemistry - A European Journal, 2016, 22, 6059-6070.	3.3	48
1247	Covalent Organic Frameworks for CO2Capture. Advanced Materials, 2016, 28, 2855-2873.	21.0	873
1248	Magnetic Metal–Organic Frameworks for Efficient Carbon Dioxide Capture and Remote Trigger Release. Advanced Materials, 2016, 28, 1839-1844.	21.0	107
1249	A novel carbonized polydopamine (Câ€PDA) adsorbent with high CO ₂ adsorption capacity and water vapor resistance. AICHE Journal, 2016, 62, 3730-3738.	3.6	43
1250	Controlled Generation of Singlet Oxygen in Living Cells with Tunable Ratios of the Photochromic Switch in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2016, 55, 7188-7193.	13.8	151
1251	Facile Synthesis of Au or Ag Nanoparticles-Embedded Hollow Carbon Microspheres from Metal-Organic Framework Hybrids and Their Efficient Catalytic Activities. Small, 2016, 12, 2425-2431.	10.0	45
1252	Metal Organic Framework 199- Catalyzed Domino Sulfur-Coupling and Transfer Reactions: The Direct Synthesis of Symmetric Diaryl Disulfides from Aryl Halides. Catalysis Letters, 2016, 146, 1497-1504.	2.6	8
1253	Highâ€Performance of Gas Hydrates in Confined Nanospace for Reversible CH ₄ /CO ₂ Storage. Chemistry - A European Journal, 2016, 22, 10028-10035.	3.3	19
1254	Designed metal–organic framework based on metal–organic polyhedron: Drug delivery. Inorganic Chemistry Communication, 2016, 71, 32-34.	3.9	31
1255	Calcium Vapor Adsorption on the Metal–Organic Framework NU-1000: Structure and Energetics. Journal of Physical Chemistry C, 2016, 120, 16850-16862.	3.1	16
1256	A Solventâ€Free Hotâ€Pressing Method for Preparing Metal–Organicâ€Framework Coatings. Angewandte Chemie - International Edition, 2016, 55, 3419-3423.	13.8	201
1257	Assembling Metal–Organic Frameworks in Ionic Liquids and Supercritical CO ₂ . Chemistry - an Asian Journal, 2016, 11, 2610-2619.	3.3	49
1258	Porosity Changes in a Metal–Organic Framework <scp>HKUST</scp> â€1 by Controlled Hydrolysis. Bulletin of the Korean Chemical Society, 2016, 37, 767-770.	1.9	0
1259	Nanocomposites of Platinum/Metal–Organic Frameworks Coated with Metal–Organic Frameworks with Remarkably Enhanced Chemoselectivity for Cinnamaldehyde Hydrogenation. ChemCatChem, 2016, 8, 946-951.	3.7	76

#	Article	IF	CITATIONS
1260	Intercalation of Varied Sulfonates into a Layered MOC: Confinement aused Tunable Luminescence and Novel Properties. Chemistry - A European Journal, 2016, 22, 5327-5334.	3.3	18
1261	Polymerâ€Derived Silicoboron Carbonitride Foams for CO ₂ Capture: From Design to Application as Scaffolds for the in Situ Growth of Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 8346-8357.	3.3	16
1262	Research Progress of Metalâ€Organic Frameworks Based on Aromatic Polycarboxylic Acid. Chinese Journal of Chemistry, 2016, 34, 143-156.	4.9	19
1263	Framework Isomerism: Highly Augmented Copper(II)â€Paddlewheelâ€ÂBased MOF with Unusual (3,4)â€Net Topology. European Journal of Inorganic Chemistry, 2016, 2016, 1939-1943.	2.0	11
1264	Vibrational–Structural Combined Study into Luminescent Mixed Copper(I)/Copper(II) Cyanide Coordination Polymers. European Journal of Inorganic Chemistry, 2016, 2016, 2975-2983.	2.0	11
1265	Robust Metalâ€Organic Frameworks Based on Tritopic Phosphonoaromatic Ligands. European Journal of Inorganic Chemistry, 2016, 2016, 4300-4309.	2.0	59
1266	Network Topology. , 0, , 5-40.		8
1267	Reticular Chemistry of Metal-Organic Frameworks Composed of Copper and Zinc Metal Oxide Secondary Building Units as Nodes., 0,, 41-72.		4
1268	Controlled Generation of Singlet Oxygen in Living Cells with Tunable Ratios of the Photochromic Switch in Metal–Organic Frameworks. Angewandte Chemie, 2016, 128, 7304-7309.	2.0	38
1269	Mathematical modeling of interaction energies between nanoscale objects: A review of nanotechnology applications. Advances in Mechanical Engineering, 2016, 8, 168781401667702.	1.6	8
1271	Materials design for electrocatalytic carbon capture. APL Materials, 2016, 4, .	5.1	20
1272	Pore size and interactions effect on removal of dyes with two lead(II) metal-organic frameworks. Materials Letters, 2016, 175, 1-4.	2.6	18
1273	High methane storage and working capacities in a NbO-type metal–organic framework. Dalton Transactions, 2016, 45, 7559-7562.	3.3	32
1274	Adsorption Properties of MFM-400 and MFM-401 with CO ₂ and Hydrocarbons: Selectivity Derived from Directed Supramolecular Interactions. Inorganic Chemistry, 2016, 55, 7219-7228.	4.0	41
1275	A novel bimetallic MIL-101(Cr, Mg) with high CO2 adsorption capacity and CO2/N2 selectivity. Chemical Engineering Science, 2016, 147, 109-117.	3.8	136
1276	Derivation and Decoration of Nets with Trigonal-Prismatic Nodes: A Unique Route to Reticular Synthesis of Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 5299-5307.	13.7	84
1277	Selective adsorption of arsenate and the reversible structure transformation of the mesoporous metal–organic framework MIL-100(Fe). Physical Chemistry Chemical Physics, 2016, 18, 10864-10867.	2.8	110
1278	Synthesis of imidazo[1,5-a]pyridines via oxidative amination of the C(sp ³)–H bond under air using metal–organic framework Cu-MOF-74 as an efficient heterogeneous catalyst. RSC Advances, 2016, 6, 36039-36049.	3.6	26

#	Article	IF	CITATIONS
1279	Low concentration CO2 capture using physical adsorbents: Are metal–organic frameworks becoming the new benchmark materials?. Chemical Engineering Journal, 2016, 296, 386-397.	12.7	260
1280	Rationally tuning the separation performances of [M3(HCOO)6] frameworks for CH4/N2 mixtures via metal substitution. Microporous and Mesoporous Materials, 2016, 225, 456-464.	4.4	40
1281	Role of Hydrogen Peroxide Preoxidizing on CO ₂ Adsorption of Nitrogen-Doped Carbons Produced from Coconut Shell. ACS Sustainable Chemistry and Engineering, 2016, 4, 2806-2813.	6.7	92
1282	The electrochemical properties, nitrogen adsorption, and photocatalytic activities of three 3D metal–organic frameworks bearing the rigid terphenyl tetracarboxylates ligands. CrystEngComm, 2016, 18, 3086-3094.	2.6	35
1283	Crystal structure of the inclusion compound of a porous metal-organic polymer with cymantrene. Journal of Structural Chemistry, 2016, 57, 413-416.	1.0	3
1284	A 2D zinc-organic network being easily exfoliated into isolated sheets. Journal of Molecular Structure, 2016, 1117, 135-139.	3.6	2
1285	Coordination polymers with mixed 1, 3-bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene and multicarboxylate ligands: Synthesis, structure and property. Microporous and Mesoporous Materials, 2016, 231, 163-170.	4.4	8
1286	Research trend of metal–organic frameworks: a bibliometric analysis. Scientometrics, 2016, 109, 481-513.	3.0	91
1287	Research on the theory and application of adsorbed natural gas used in new energy vehicles: A review. Frontiers of Mechanical Engineering, 2016, 11, 258-274.	4.3	28
1288	Enhanced gas sorption and breathing properties of the new sulfone functionalized COMOC-2 metal organic framework. Dalton Transactions, 2016, 45, 9485-9491.	3.3	26
1289	Probing the correlations between the defects in metal–organic frameworks and their catalytic activity by an epoxide ring-opening reaction. Chemical Communications, 2016, 52, 7806-7809.	4.1	177
1290	Outlook and challenges for hydrogen storage in nanoporous materials. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	129
1291	The usable capacity of porous materials for hydrogen storage. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	44
1292	Magnetic nanoporous hybrid carbon from core–shell metal–organic frameworks for glycan extraction. RSC Advances, 2016, 6, 34434-34438.	3.6	18
1293	Hydrogen and methane storage in adsorbent materials for automotive applications. International Journal of Energy Research, 2016, 40, 91-99.	4.5	20
1294	Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russian Chemical Reviews, 2016, 85, 280-307.	6.5	300
1295	Aging of the reaction mixture as a tool to modulate the crystallite size of UiO-66 into the low nanometer range. Chemical Communications, 2016, 52, 6411-6414.	4.1	39
1296	Application of iron-based metal–organic frameworks in catalysis: oxidant-promoted formation of coumarins using Fe ₃ O(BPDC) ₃ as an efficient heterogeneous catalyst. Catalysis Science and Technology, 2016, 6, 5916-5926.	4.1	25

#	Article	IF	CITATIONS
1297	1D to 3D and Chiral to Noncentrosymmetric Metal–Organic Complexes Controlled by the Amount of DEF Solvent: Photoluminescent and NLO Properties. Inorganic Chemistry, 2016, 55, 4199-4205.	4.0	30
1298	Recent progress and innovation in carbon capture and storage using bioinspired materials. Applied Energy, 2016, 172, 383-397.	10.1	28
1299	Thermodynamically Guided Synthesis of Mixed-Linker Zr-MOFs with Enhanced Tunability. Journal of the American Chemical Society, 2016, 138, 6636-6642.	13.7	232
1300	An unprecedented self-penetrating Cu(I)-MOF based on a new 1D meso-ladder + 2D meso-layer → 3D polycatenation subnet showing luminescent sensing for nitrobenzene. Inorganic Chemistry Communication, 2016, 69, 75-78.	3.9	7
1301	Hexagonal boron nitride and graphene in-plane heterostructures: An experimentally feasible approach to charge-induced switchable CO 2 capture. Chemical Physics, 2016, 478, 139-144.	1.9	25
1302	Nanovalved Adsorbents for CH ₄ Storage. Nano Letters, 2016, 16, 3309-3313.	9.1	17
1303	The role of metal–organic frameworks in a carbon-neutral energy cycle. Nature Energy, 2016, 1, .	39.5	374
1304	Improving Carbon Dioxide Storage Capacity of Metal Organic Frameworks by Lithium Alkoxide Functionalization: A Molecular Simulation Study. Journal of Physical Chemistry C, 2016, 120, 10311-10319.	3.1	57
1305	Engineering the proton conductivity of metal–organic hybrid materials by varying the coordination mode of the ligand. CrystEngComm, 2016, 18, 3300-3305.	2.6	11
1306	Classical density functional theory for gas separation in nanoporous materials and its application to CH4/H2 separation. Chemical Engineering Science, 2016, 149, 14-21.	3.8	9
1307	A dual-walled cage MOF as an efficient heterogeneous catalyst for the conversion of CO ₂ under mild and co-catalyst free conditions. Green Chemistry, 2016, 18, 4086-4091.	9.0	127
1308	Metal–organic frameworks@graphene hybrid aerogels for solid-phase extraction of non-steroidal anti-inflammatory drugs and selective enrichment of proteins. Analyst, The, 2016, 141, 4219-4226.	3.5	85
1309	High Gas Adsorption Capacity of an <i>agw</i> â€Type Metal–Organic Framework Decorated with Methyl Groups. European Journal of Inorganic Chemistry, 2016, 2016, 4727-4730.	2.0	2
1310	A Porous Zirconiumâ€Based Metalâ€Organic Framework with the Potential for the Separation of Butene Isomers. Chemistry - A European Journal, 2016, 22, 14988-14997.	3.3	57
1311	The construction, structures, and functions of pillared layer metal–organic frameworks. Inorganic Chemistry Frontiers, 2016, 3, 1208-1226.	6.0	83
1312	A luminescent metal–organic framework for highly selective sensing of nitrobenzene and aniline. RSC Advances, 2016, 6, 87945-87949.	3.6	42
1313	Solid Hydrogen Storage Materials: High Surface Area Adsorbents. Green Energy and Technology, 2016, , 241-251.	0.6	1
1314	Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage. Energy and Environmental Science, 2016, 9, 3279-3289.	30.8	231

#	Article	IF	CITATIONS
1315	Templating of carbon in zeolites under pressure: synthesis of pelletized zeolite templated carbons with improved porosity and packing density for superior gas (CO ₂ and H ₂) uptake properties. Journal of Materials Chemistry A, 2016, 4, 14254-14266.	10.3	35
1316	Metal–Organic Frameworks: Versatile Materials for Heterogeneous Photocatalysis. ACS Catalysis, 2016, 6, 7935-7947.	11.2	445
1317	lsotropic and Anisotropic Growth of Metal–Organic Framework (MOF) on MOF: Logical Inference on MOF Structure Based on Growth Behavior and Morphological Feature. Journal of the American Chemical Society, 2016, 138, 14434-14440.	13.7	178
1318	Water linked 3D coordination polymers: Syntheses, structures and applications. Journal of Solid State Chemistry, 2016, 244, 151-159.	2.9	11
1319	Ligand-oriented assembly of a porous metal–organic framework by [Cu ^I ₄ I ₄] clusters and paddle-wheel [Cu ^{II} ₂ (COO) ₄ (H ₂ O) ₂] subunits. CrystEngComm, 2016, 18, 8362-8365.	2.6	14
1320	Calcium-decorated carbon nanostructures for the selective capture of carbon dioxide. Physical Chemistry Chemical Physics, 2016, 18, 29086-29091.	2.8	15
1321	Multifunctional Porous Organic Polymers: Tuning of Porosity, CO ₂ , and H ₂ Storage and Visible-Light-Driven Photocatalysis. ACS Applied Materials & Samp; Interfaces, 2016, 8, 27669-27678.	8.0	128
1322	Recent developments in porous materials for H2 and CH4 storage. Tetrahedron Letters, 2016, 57, 4873-4881.	1.4	37
1323	Ligand and Metal Effects on the Stability and Adsorption Properties of an Isoreticular Series of MOFs Based on Tâ€Shaped Ligands and Paddleâ€Wheel Secondary Building Units. Chemistry - A European Journal, 2016, 22, 16147-16156.	3.3	43
1324	Effect of Diaminopropane on Formation of Triazine-based Covalent Organic Polymer for CO2 Capture. Procedia Engineering, 2016, 148, 184-188.	1.2	5
1325	Nanosizing a Metal–Organic Framework Enzyme Carrier for Accelerating Nerve Agent Hydrolysis. ACS Nano, 2016, 10, 9174-9182.	14.6	202
1326	Metal-Organic Frameworks and Related Materials. , 2016, , 33-109.		3
1327	Hydrogen storage in a layered flexible [Ni2(btc)(en)2]n coordination polymer. International Journal of Hydrogen Energy, 2016, 41, 22171-22181.	7.1	13
1328	Two New (3,6)-Connected MOFs with <i>eea</i> Topology and High CH ₄ Uptake. Crystal Growth and Design, 2016, 16, 6156-6159.	3.0	8
1329	High internal ionic liquid phase emulsion stabilized by metal–organic frameworks. Soft Matter, 2016, 12, 8841-8846.	2.7	38
1330	A highly porous rht-type acylamide-functionalized metal–organic framework exhibiting large CO ₂ uptake capabilities. Chemical Communications, 2016, 52, 12988-12991.	4.1	44
1331	Partitioning MOF-5 into Confined and Hydrophobic Compartments for Carbon Capture under Humid Conditions. Journal of the American Chemical Society, 2016, 138, 10100-10103.	13.7	214
1332	ZIF-derived nitrogen-doped carbon/3D graphene frameworks for all-solid-state supercapacitors. RSC Advances, 2016, 6, 76575-76581.	3.6	15

#	Article	IF	CITATIONS
1333	High yield and high packing density porous carbon for unprecedented CO ₂ capture from the first attempt at activation of air-carbonized biomass. Journal of Materials Chemistry A, 2016, 4, 13324-13335.	10.3	47
1334	Effect of the synthesis temperature on the dimensionality of hybrid fluorozincates. Journal of Fluorine Chemistry, 2016, 188, 164-170.	1.7	8
1335	Gas transport through mixed matrix membranes composed of polysulfone and copper terephthalate particles. Microporous and Mesoporous Materials, 2016, 235, 120-134.	4.4	15
1336	Tb(<scp>iii</scp>) postsynthetic functional coordination polymer coatings on ZnO micronanoarrays and their application in small molecule sensing. Journal of Materials Chemistry C, 2016, 4, 8466-8472.	5 . 5	27
1337	Four metal–organic frameworks based on a semirigid tripodal ligand and different secondary building units: structures and electrochemical performance. CrystEngComm, 2016, 18, 6841-6848.	2.6	23
1338	Synthesis and Characterization of Covalent Organic Polymer. Key Engineering Materials, 2016, 701, 270-274.	0.4	1
1339	From metal-organic frameworks to porous carbons: A promising strategy to prepare high-performance electrode materials for capacitive deionization. Carbon, 2016, 108, 433-439.	10.3	104
1340	2D Squaraineâ€Bridged Covalent Organic Polymers with Promising CO ₂ Storage and Separation Properties. ChemistrySelect, 2016, 1, 533-538.	1.5	8
1341	Steric effects of CO 2 binding to transition metal-benzene complexes: AÂfirst-principles study. Current Applied Physics, 2016, 16, 1124-1129.	2.4	8
1342	Synthesis of hybrid metal–organic frameworks of {Fe _x M _y M′ _{1â^'xâ^'y} }-MIL-88B and the use of anions to control their structural features. Nanoscale, 2016, 8, 16743-16751.	5.6	36
1343	Hydrogen adsorption in azolium and metalated N-heterocyclic carbene containing MOFs. CrystEngComm, 2016, 18, 7003-7010.	2.6	17
1344	Snapshots of encapsulated porphyrins and heme enzymes in metal-organic materials: A prevailing paradigm of heme mimicry. Coordination Chemistry Reviews, 2016, 326, 135-163.	18.8	24
1345	Proton Conducting Self-Assembled Metal–Organic Framework/Polyelectrolyte Hollow Hybrid Nanostructures. ACS Applied Materials & Damp; Interfaces, 2016, 8, 23015-23021.	8.0	46
1346	A magnesium-based bifunctional MOF: Studies on proton conductivity, gas and water adsorption. Inorganica Chimica Acta, 2016, 453, 321-329.	2.4	12
1347	A novel 3-D microporous magnesium-based metal–organic framework with open metal sites. RSC Advances, 2016, 6, 81485-81490.	3.6	13
1348	Postextraction Separation, On-Board Storage, and Catalytic Conversion of Methane in Natural Gas: A Review. Chemical Reviews, 2016, 116, 11436-11499.	47.7	176
1349	Performance Evaluation of Covalent Organic Polymer Adsorbent Prepared via Microwave Technique for CO2 and CH4 Adsorption. Procedia Engineering, 2016, 148, 249-253.	1.2	7
1350	Diffusion of CO ₂ in Large Crystals of Cu-BTC MOF. Journal of the American Chemical Society, 2016, 138, 11449-11452.	13.7	84

#	Article	IF	CITATIONS
1351	A microporous Cu-MOF with optimized open metal sites and pore spaces for high gas storage and active chemical fixation of CO ₂ . Chemical Communications, 2016, 52, 11147-11150.	4.1	119
1352	Frameworkâ€Copperâ€Catalyzed Câ°'N Crossâ€Coupling of Arylboronic Acids with Imidazole: Convenient and Ligandâ€Free Synthesis of Nâ€Arylimidazoles. ChemCatChem, 2016, 8, 2953-2960.	3.7	34
1353	Mechanochemically Activated, Calcium Oxideâ€Based, Magnesium Oxideâ€Stabilized Carbon Dioxide Sorbents. ChemSusChem, 2016, 9, 2380-2390.	6.8	40
1354	Nanostructured Ni compounds as electrode materials towards high-performance electrochemical capacitors. Journal of Materials Chemistry A, 2016, 4, 14509-14538.	10.3	95
1355	Ultrathin metalâ \in organic framework nanosheets for electrocatalytic oxygen evolution. Nature Energy, 2016, 1, .	39.5	1,979
1356	A Rigid Nested Metal–Organic Framework Featuring a Thermoresponsive Gating Effect Dominated by Counterions. Angewandte Chemie, 2016, 128, 15251-15254.	2.0	16
1357	Metal–Organic Framework@Microporous Organic Network as Adsorbent for Solid-Phase Microextraction. Analytical Chemistry, 2016, 88, 9364-9367.	6.5	109
1358	Hyperporous Carbons from Hypercrosslinked Polymers. Advanced Materials, 2016, 28, 9804-9810.	21.0	201
1359	Synthesis, Structure, and Properties of a Series of Chiral Coordination Polymers Based on (<i>R</i>)-4-(4-(1-Carboxyethoxy)phenoxy)-3-chlorobenzoic Acid. Crystal Growth and Design, 2016, 16, 5669-5677.	3.0	17
1360	A microporous Cu ²⁺ MOF based on a pyridyl isophthalic acid Schiff base ligand with high CO ₂ uptake. Inorganic Chemistry Frontiers, 2016, 3, 1527-1535.	6.0	22
1361	Hierarchically porous Co ₃ O ₄ /C nanowire arrays derived from a metal–organic framework for high performance supercapacitors and the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 16516-16523.	10.3	188
1362	Amide-CO ₂ Interaction Induced Gate-Opening Behavior for CO ₂ Adsorption in 2-Fold Interpenetrating Framework. ChemistrySelect, 2016, 1, 2923-2929.	1.5	14
1363	Temperature-Related Synthesis of Two Anionic Metal–Organic Frameworks with Distinct Performance in Organic Dye Adsorption. Crystal Growth and Design, 2016, 16, 5593-5597.	3.0	53
1364	A Seed-mediated Spray-drying Method for Facile Syntheses of Zr-MOF and a Pillared-layer-type MOF. Chemistry Letters, 2016, 45, 1313-1315.	1.3	6
1365	Cobalt-based metal organic framework with superior lithium anodic performance. Journal of Solid State Chemistry, 2016, 242, 71-76.	2.9	130
1366	Nitrogen-rich MOF derived porous Co ₃ O ₄ /N–C composites with superior performance in lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 13040-13045.	10.3	140
1367	Geometric tuning of thermal conductivity in three-dimensional anisotropic phononic crystals. Nanoscale, 2016, 8, 16612-16620.	5.6	22
1368	A spray-drying continuous-flow method for simultaneous synthesis and shaping of microspherical high nuclearity MOF beads. Reaction Chemistry and Engineering, 2016, 1, 533-539.	3.7	79

#	ARTICLE <mml:math <mml:mo="">â^'î²cmml:mo>â^'â^'<th>IF</th><th>CITATIONS</th></mml:math>	IF	CITATIONS
1369	mathvariant="normal">B <mml:msub><mml:mi mathvariant="normal">i<mml:mn>2</mml:mn></mml:mi </mml:msub> <mml:msub><mml:mi mathvariant="normal">O<mml:mn>3</mml:mn></mml:mi </mml:msub> under	3.2	16
1370	compression: Optical and elastic properties and electron density topology analysis. Physical Review B, Design and Synthesis of a Waterâ€Stable Anionic Uraniumâ€Based Metal–Organic Framework (MOF) with Ultra Large Pores. Angewandte Chemie - International Edition, 2016, 55, 10358-10362.	13.8	175
1371	Synthesis and Gas Storage Application of Hierarchically Porous Materials. Macromolecular Chemistry and Physics, 2016, 217, 1995-2003.	2.2	14
1372	High Methane Storage Working Capacity in Metal–Organic Frameworks with Acrylate Links. Journal of the American Chemical Society, 2016, 138, 10244-10251.	13.7	253
1373	Design and Synthesis of a Waterâ€Stable Anionic Uraniumâ€Based Metal–Organic Framework (MOF) with Ultra Large Pores. Angewandte Chemie, 2016, 128, 10514-10518.	2.0	44
1374	Emerging Multifunctional Metal–Organic Framework Materials. Advanced Materials, 2016, 28, 8819-8860.	21.0	1,227
1375	Synthesis of metal organic framework (MOF-5) with high selectivity for CO2/N2 separation in flue gas by maximum water concentration approach. Korean Journal of Chemical Engineering, 2016, 33, 2747-2755.	2.7	23
1376	Influence of Co-adsorbates on CO ₂ induced phase transition in functionalized pillared-layered metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 12963-12972.	10.3	25
1377	Observation of Binding and Rotation of Methane and Hydrogen within a Functional Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 9119-9127.	13.7	54
1378	Electrochemical Li-lon Intercalation in Octacyanotungstate-Bridged Coordination Polymer with Evidence of Three Magnetic Regimes. Inorganic Chemistry, 2016, 55, 7637-7646.	4.0	19
1379	Nanoscale Mn ^{II} â€Coordination Polymers for Cell Imaging and Heterogeneous Catalysis. Chemistry - A European Journal, 2016, 22, 18963-18974.	3.3	11
1381	High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide. Scientific Reports, 2016, 6, 21788.	3.3	31
1382	Methane storage in nanoporous material at supercritical temperature over a wide range of pressures. Scientific Reports, 2016, 6, 33461.	3.3	72
1383	A Rigid Nested Metal–Organic Framework Featuring a Thermoresponsive Gating Effect Dominated by Counterions. Angewandte Chemie - International Edition, 2016, 55, 15027-15030.	13.8	166
1384	From a Novel Energetic Coordination Polymer Precursor to Diverse Mn ₂ O ₃ Nanostructures: Control of Pyrolysis Products Morphology Achieved by Changing the Calcination Atmosphere. Crystal Growth and Design, 2016, 16, 6849-6857.	3.0	30
1385	Thermoelectric Properties of Highly Ordered Metal-Organic Framework Films. ECS Transactions, 2016, 75, 119-126.	0.5	8
1386	Porous Metal-Organic Frameworks: Promising Materials for Methane Storage. CheM, 2016, 1, 557-580.	11.7	297
1387	Self-assembly of metal–organic frameworks and graphene oxide as precursors for lithium-ion battery applications. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	7

#	Article	IF	CITATIONS
1388	Mapping of metal-organic frameworks publications: A bibliometric analysis. Inorganic Chemistry Communication, 2016, 73, 174-182.	3.9	57
1389	Stable Metal–Organic Framework-Supported Niobium Catalysts. Inorganic Chemistry, 2016, 55, 11954-11961.	4.0	85
1390	Tuning the Adsorption-Induced Phase Change in the Flexible Metal–Organic Framework Co(bdp). Journal of the American Chemical Society, 2016, 138, 15019-15026.	13.7	123
1391	Crystal structure of (4-(1H-imidazol-5-yl)benzoic acid-l̂°N) (4-(1H-imidazol-5-yl)benzoato-l̂°N)silver(I), C20H15N4O4Ag. Zeitschrift Fur Kristallographie - New Crystal Structures, 2016, 231, 423-425.	0.3	0
1392	Ammonia Activation of Carbonized Polysaccharides and their Application for the Carbon Capture. Bulletin of the Korean Chemical Society, 2016, 37, 689-694.	1.9	5
1393	Visible Light Triggered CO ₂ Liberation from Silver Nanocrystals Incorporated Metal–Organic Frameworks. Advanced Functional Materials, 2016, 26, 4815-4821.	14.9	53
1394	An Extremely Porous Hydrogenâ€Bonded Framework Composed of <scp>d</scp> â€Penicillaminato Co ^{lll} ₂ Au ^l ₃ Complex Anions and Aqua Cobalt(II) Cations: Formation and Stepwise Structural Transformation. Chemistry - an Asian Journal, 2016, 11, 486-490.	3.3	16
1395	Microcrystalline Zinc Coordination Polymers as Singleâ€site Heterogeneous Catalysts for the Selective Synthesis of Monoâ€oxazolines from Amino Alcohol and Dinitriles. Chemistry - an Asian Journal, 2016, 11, 1856-1862.	3.3	8
1396	Methyllithiumâ€Doped Naphthylâ€Containing Conjugated Microporous Polymer with Enhanced Hydrogen Storage Performance. Chemistry - A European Journal, 2016, 22, 7944-7949.	3.3	11
1397	Formation mechanism of ultra porous framework materials. Physical Chemistry Chemical Physics, 2016, 18, 16840-16847.	2.8	18
1398	Metal Nanoparticles Covered with a Metal–Organic Framework: From One-Pot Synthetic Methods to Synergistic Energy Storage and Conversion Functions. Inorganic Chemistry, 2016, 55, 7301-7310.	4.0	69
1399	Linker Installation: Engineering Pore Environment with Precisely Placed Functionalities in Zirconium MOFs. Journal of the American Chemical Society, 2016, 138, 8912-8919.	13.7	278
1400	Grape-Like Fe3O4 Agglomerates Grown on Graphene Nanosheets for Ultrafast and Stable Lithium Storage. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17245-17252.	8.0	42
1401	Enhanced CO ₂ adsorption on Al-MIL-53 by introducing hydroxyl groups into the framework. RSC Advances, 2016, 6, 55266-55271.	3.6	37
1402	Equation of state for methane in nanoporous material at supercritical temperature over a wide range of pressure. , 2016 , , .		3
1403	Fe/Ni Metal–Organic Frameworks and Their Binder-Free Thin Films for Efficient Oxygen Evolution with Low Overpotential. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16736-16743.	8.0	198
1404	ZnO as an efficient nucleating agent and morphology template for rapid, facile and scalable synthesis of MOF-46 and ZnO@MOF-46 with selective sensing properties and enhanced photocatalytic ability. RSC Advances, 2016, 6, 61784-61793.	3.6	35
1405	Highly Porous Zirconium Metal–Organic Frameworks with β-UH ₃ -like Topology Based on Elongated Tetrahedral Linkers. Journal of the American Chemical Society, 2016, 138, 8380-8383.	13.7	76

#	Article	IF	CITATIONS
1406	N-rich porous carbon with high CO ₂ capture capacity derived from polyamine-incorporated metal–organic framework materials. RSC Advances, 2016, 6, 53017-53024.	3.6	24
1407	Combining solvent-assisted linker exchange and transmetallation strategies to obtain a new non-catenated nickel (II) pillared-paddlewheel MOF. Inorganic Chemistry Communication, 2016, 67, 60-63.	3.9	13
1408	Hydrogen storage capacity enhancement of MIL-53(Cr) by Pd loaded activated carbon doping. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63, 463-472.	5.3	25
1409	CO ₂ Adsorption Sites in UTSA-16: Multitechnique Approach. Journal of Physical Chemistry C, 2016, 120, 12068-12074.	3.1	23
1410	Encapsulation of curcumin in cyclodextrin-metal organic frameworks: Dissociation of loaded CD-MOFs enhances stability of curcumin. Food Chemistry, 2016, 212, 485-494.	8.2	157
1411	Novel 2D micro-porous Metal-Organic Framework for hydrogen storage. International Journal of Hydrogen Energy, 2016, 41, 12167-12174.	7.1	21
1412	A generalized method for constructing hypothetical nanoporous materials of any net topology from graph theory. CrystEngComm, 2016, 18, 3777-3792.	2.6	104
1413	Anionic metal–organic framework for high-efficiency pollutant removal and selective sensing of Fe(<scp>iii</scp>) ions. RSC Advances, 2016, 6, 60940-60944.	3.6	35
1414	Synthesis of 1,2â€Dicarbonylâ€3â€enes by Hydroacylation of 1â€Alkynes with Glyoxal Derivatives Using Metal–Organic Framework Cu/MOFâ€74 as Heterogeneous Catalyst. ChemPlusChem, 2016, 81, 361-369.	2.8	12
1415	Amino-functionalized metal–organic framework for adsorption and separation of dichloromethane and trichloromethane. RSC Advances, 2016, 6, 63895-63904.	3.6	26
1416	Towards scalable and controlled synthesis of metal–organic framework materials using continuous flow reactors. Reaction Chemistry and Engineering, 2016, 1, 352-360.	3.7	68
1417	Metalâ€Organic Frameworkâ€Based Nanomaterials for Electrocatalysis. Advanced Energy Materials, 2016, 6, 1600423.	19.5	539
1418	A Solventâ€Free Hotâ€Pressing Method for Preparing Metal–Organicâ€Framework Coatings. Angewandte Chemie, 2016, 128, 3480-3484.	2.0	22
1419	Film Quality and Electronic Properties of a Surfaceâ€Anchored Metalâ€Organic Framework Revealed by using a Multiâ€technique Approach. ChemElectroChem, 2016, 3, 713-718.	3.4	22
1420	Intercalation of Coordinatively Unsaturated Fe ^{III} Ion within Interpenetrated Metal–Organic Framework MOFâ€5. Chemistry - A European Journal, 2016, 22, 7711-7715.	3.3	15
1421	One dimensional coordination polymers of Cd(II) and Zn(II): Synthesis, structure, polar packing through strong inter-chain hydrogen bonding and gas adsorption studies. Polyhedron, 2016, 106, 163-170.	2.2	16
1422	Evaluation of Brønsted acidity and proton topology in Zr- and Hf-based metal–organic frameworks using potentiometric acid–base titration. Journal of Materials Chemistry A, 2016, 4, 1479-1485.	10.3	259
1423	Synthesis of magnetic nanoporous carbon from metal-organic framework for the fast removal of organic dye from aqueous solution. Journal of Magnetism and Magnetic Materials, 2016, 407, 24-30.	2.3	61

#	Article	IF	CITATIONS
1424	Enhancement of CO $\langle sub \rangle 2\langle sub \rangle$ Adsorption and Catalytic Properties by Fe-Doping of [Ga $\langle sub \rangle 2\langle sub \rangle 2$	4.0	70
1425	Applicability of using CO2 adsorption isotherms to determine BET surface areas of microporous materials. Microporous and Mesoporous Materials, 2016, 224, 294-301.	4.4	112
1426	Unprecedented Topological Complexity in a Metal–Organic Framework Constructed from Simple Building Units. Journal of the American Chemical Society, 2016, 138, 1970-1976.	13.7	155
1427	Layered metal–organic framework [Zn2(bpda)(chdc)2]∕for aqueous encapsulation and sensitization of visible-emitting rare-earth cations. Materials Letters, 2016, 168, 203-206.	2.6	2
1428	Crystal Engineering with 2-Aminopurine and 2,6-Diaminopurine Derivatives: Dimers, Metallaquartets, and Halide-Bridged Clusters. Crystal Growth and Design, 2016, 16, 696-704.	3.0	13
1429	The first heteropoly blue-embedded metal–organic framework: crystal structure, magnetic property and proton conductivity. CrystEngComm, 2016, 18, 596-600.	2.6	13
1430	Solvent-induced construction of two zinc metal–organic frameworks for highly selective detection of nitroaromatic explosives. CrystEngComm, 2016, 18, 4102-4108.	2.6	30
1431	Dicarboxylate ligand-modulated assembly of new luminescent zinc(ii) coordination polymers with in situ formed tetrazole ligands: an experimental and theoretical study. RSC Advances, 2016, 6, 3341-3349.	3.6	15
1432	A multifunctional cadmium–organic framework comprising tricarboxytriphenyl amine: selective gas adsorption, liquid-phase separation and luminescence sensing. RSC Advances, 2016, 6, 1388-1394.	3.6	13
1433	Microporous Metal–Organic Framework Stabilized by Balanced Multiple Host–Couteranion Hydrogen-Bonding Interactions for High-Density CO ₂ Capture at Ambient Conditions. Inorganic Chemistry, 2016, 55, 292-299.	4.0	82
1434	Materials and processes for the effective capture and immobilization of radioiodine: A review. Journal of Nuclear Materials, 2016, 470, 307-326.	2.7	437
1435	Application of Consistency Criteria To Calculate BET Areas of Micro- And Mesoporous Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 215-224.	13.7	201
1436	Biomass-derived activated carbon with simultaneously enhanced CO ₂ uptake for both pre and post combustion capture applications. Journal of Materials Chemistry A, 2016, 4, 280-289.	10.3	251
1437	A novel zinc(<scp>ii</scp>) metal–organic framework with a diamond-like structure: synthesis, study of thermal robustness and gas adsorption properties. Dalton Transactions, 2016, 45, 1233-1242.	3.3	26
1438	1,5-Benzodiazepine synthesis via cyclocondensation of 1,2-diamines with ketones using iron-based metal–organic framework MOF-235 as an efficient heterogeneous catalyst. Journal of Catalysis, 2016, 333, 94-101.	6.2	38
1439	In situ solvothermal growth of metal-organic framework–ionic liquid functionalized graphene nanocomposite for highly efficient enrichment of chloramphenicol and thiamphenicol. Journal of Chromatography A, 2016, 1427, 1-7.	3.7	65
1440	CO ₂ capture in the presence of water vapour in MIL-53(Al). New Journal of Chemistry, 2016, 40, 68-72.	2.8	31
1441	High performance electrochemical capacitor materials focusing on nickel based materials. Inorganic Chemistry Frontiers, 2016, 3, 175-202.	6.0	283

#	Article	IF	CITATIONS
1442	De Novo Tailoring Pore Morphologies and Sizes for Different Substrates in a Urea-Containing MOFs Catalytic Platform. Chemistry of Materials, 2016, 28, 2000-2010.	6.7	63
1443	MOF-derived mesoporous anatase TiO2 as anode material for lithium–ion batteries with high rate capability and long cycle stability. Journal of Alloys and Compounds, 2016, 674, 174-178.	5.5	78
1444	Highly selective adsorption and separation of dichloromethane/trichloromethane on a copper-based metal–organic framework. RSC Advances, 2016, 6, 31214-31224.	3.6	24
1445	Anionic metal–organic framework hybrids: functionalization with lanthanide ions or cationic dyes and fluorescence sensing of small molecules. RSC Advances, 2016, 6, 28165-28170.	3.6	55
1446	Extended structures of two coordination polymers based on 1,10-phenanthroline derivatives: Preparation, structural characterization and properties. Journal of Chemical Sciences, 2016, 128, 459-465.	1.5	6
1447	Enhanced CO ₂ Adsorption Capacity and Hydrothermal Stability of HKUST-1 via Introduction of Siliceous Mesocellular Foams (MCFs). Industrial & Engineering Chemistry Research, 2016, 55, 7950-7957.	3.7	30
1448	Encapsulating Naphthalene in an Electron-Deficient MOF to Enhance Fluorescence for Organic Amines Sensing. Inorganic Chemistry, 2016, 55, 3680-3684.	4.0	103
1449	Metal–organic frameworks with a large breathing effect to host hydroxyl compounds for high anhydrous proton conductivity over a wide temperature range from subzero to 125 °C. Journal of Materials Chemistry A, 2016, 4, 4062-4070.	10.3	109
1450	Advancing Magnesium–Organic Porous Materials through New Magnesium Cluster Chemistry. Crystal Growth and Design, 2016, 16, 1261-1267.	3.0	33
1451	Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 2016, 45, 2327-2367.	38.1	1,905
1452	Prediction of hydrogen storage properties of Zr-based MOFs. Inorganica Chimica Acta, 2016, 444, 186-192.	2.4	23
1453	Inverted molecular cups: 1-D and 2-D Ag(<scp>i</scp>) coordination polymers from resorcinarene bis-thiacrowns. CrystEngComm, 2016, 18, 4944-4951.	2.6	3
1454	Two microporous metal–organic frameworks constructed from trinuclear cobalt(<scp>ii</scp>) and cadmium(<scp>ii</scp>) cluster subunits. CrystEngComm, 2016, 18, 2239-2243.	2.6	11
1455	Adsorption of CO ₂ by Petroleum Coke Nitrogen-Doped Porous Carbons Synthesized by Combining Ammoxidation with KOH Activation. Industrial & Engineering Chemistry Research, 2016, 55, 757-765.	3.7	7 5
1456	Unprecedented Solvent-Dependent Sensitivities in Highly Efficient Detection of Metal Ions and Nitroaromatic Compounds by a Fluorescent Barium Metal–Organic Framework. Inorganic Chemistry, 2016, 55, 1782-1787.	4.0	87
1457	Covalent Chemistry beyond Molecules. Journal of the American Chemical Society, 2016, 138, 3255-3265.	13.7	328
1458	Molecular Interactions of a Cu-Based Metal–Organic Framework with a Confined Imidazolium-Based Ionic Liquid: A Combined Density Functional Theory and Experimental Vibrational Spectroscopy Study. Journal of Physical Chemistry C, 2016, 120, 3295-3304.	3.1	155
1459	Ion exchange induced removal of Pb(<scp>ii</scp>) by MOF-derived magnetic inorganic sorbents. Nanoscale, 2016, 8, 7172-7179.	5.6	164

#	Article	IF	CITATIONS
1460	Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 2016, 1, .	48.7	1,490
1461	Synthesis of indolizines through aldehyde–amine–alkyne couplings using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst. Journal of Catalysis, 2016, 337, 167-176.	6.2	57
1462	Magnetic anisotropy of metal functionalized phthalocyanine 2D networks. Journal of Solid State Chemistry, 2016, 238, 41-45.	2.9	5
1463	Nanostructuring of nanoporous iron carbide spheres via thermal degradation of triple-shelled Prussian blue hollow spheres for oxygen reduction reaction. RSC Advances, 2016, 6, 10341-10351.	3.6	30
1464	Preparation of mannitol-based ketal-linked porous organic polymers and their application for selective capture of carbon dioxide. Polymer, 2016, 89, 112-118.	3.8	23
1465	Non-Interpenetrated Metal–Organic Frameworks Based on Copper(II) Paddlewheel and Oligoparaxylene-Isophthalate Linkers: Synthesis, Structure, and Gas Adsorption. Journal of the American Chemical Society, 2016, 138, 3371-3381.	13.7	104
1466	Syntheses, structures and properties of zinc(II) and cadmium(II) coordination polymers with mixed organic ligands. Microporous and Mesoporous Materials, 2016, 227, 39-47.	4.4	12
1468	A family of Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) halide systems incorporating 5,5′-di(pyridin-2-yl)-3,3′-bi(1,2,4-triazole). CrystEngComm, 2016, 18, 938-947.	2.6	12
1469	Molecular simulation of low temperature argon adsorption in several models of IRMOF-1 with defects and structural disorder. Dalton Transactions, 2016, 45, 4203-4212.	3.3	25
1470	Experimental and simulation study on structural characterization and hydrogen storage of metal organic structured compounds. International Journal of Hydrogen Energy, 2016, 41, 8256-8263.	7.1	13
1471	Nitrogen-doped porous carbon nanofiber webs for efficient CO2 capture and conversion. Carbon, 2016, 99, 79-89.	10.3	159
1472	Multicomponent Metal–Organic Frameworks as Defect-Tolerant Materials. Chemistry of Materials, 2016, 28, 368-375.	6.7	51
1473	Facile fabrication of concave cubic nitrogen-rich metal–organic framework nanocrystals for gas uptake. CrystEngComm, 2016, 18, 1277-1281.	2.6	8
1474	Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. Progress in Polymer Science, 2016, 57, 103-152.	24.7	262
1475	Controlling interpenetration for tuning porosity and luminescence properties of flexible MOFs based on biphenyl-4,4′-dicarboxylic acid. CrystEngComm, 2016, 18, 1282-1294.	2.6	30
1476	Synthesis of ZIF-8 and ZIF-67 nanocrystals with well-controllable size distribution through reverse microemulsions. Chemical Engineering Journal, 2016, 289, 59-64.	12.7	169
1477	Supramolecular Isomers of Metal–Organic Frameworks Derived from a Partially Flexible Ligand with Distinct Binding Motifs. Crystal Growth and Design, 2016, 16, 722-727.	3.0	29
1478	Perfluorocarbon liquid under pressure: a medium for gas delivery. CrystEngComm, 2016, 18, 1273-1276.	2.6	6

#	Article	IF	CITATIONS
1479	Temperature-induced 1D lanthanide polymeric frameworks based on $Ln < sub > n < /sub > (n = 2, 2, 4, 6)$ cores: synthesis, crystal structures and luminescence properties. Dalton Transactions, 2016, 45, 2924-2935.	3.3	52
1480	Amino-impregnated MOF materials for CO 2 capture at post-combustion conditions. Chemical Engineering Science, 2016, 142, 55-61.	3.8	103
1481	An indirect generation of 1D M ^{II} -2,5-dihydroxybenzoquinone coordination polymers, their structural rearrangements and generation of materials with a high affinity for H ₂ , CO ₂ and CH ₄ . Dalton Transactions, 2016, 45, 1339-1344.	3.3	26
1482	Adsorption of CO2 and CO on H-zeolites with different framework topologies and chemical compositions and a correlation to probing protonic sites using NH3 adsorption. Journal of Porous Materials, 2016, 23, 291-299.	2.6	10
1483	Metal–organic frameworks with high working capacities and cyclic hydrothermal stabilities for fresh water production. Chemical Engineering Journal, 2016, 286, 467-475.	12.7	63
1484	Metal organic frameworks for energy storage and conversion. Energy Storage Materials, 2016, 2, 35-62.	18.0	483
1485	Morphological synthesis of Prussian blue analogue Zn 3 [Fe(CN) 6] 2 â‹ x H 2 O micro-/nanocrystals and their excellent adsorption performance toward methylene blue. Journal of Colloid and Interface Science, 2016, 464, 191-197.	9.4	22
1486	Hydrothermal synthesis and structural characterization of metal–organic frameworks based on new tetradentate ligands. Dalton Transactions, 2016, 45, 1382-1390.	3.3	28
1487	Pd–Co ₃ [Co(CN) ₆] ₂ hybrid nanoparticles: preparation, characterization, and challenge for the Suzuki–Miyaura coupling of aryl chlorides under mild conditions. Dalton Transactions, 2016, 45, 539-544.	3.3	14
1488	Iron-catalyzed domino sequences: One-pot oxidative synthesis of quinazolinones using metal–organic framework Fe 3 O(BPDC) 3 as an efficient heterogeneous catalyst. Chemical Engineering Journal, 2016, 284, 778-785.	12.7	25
1489	Systematic evaluation of materials for post-combustion CO 2 capture in a Temperature Swing Adsorption process. Chemical Engineering Journal, 2016, 284, 438-447.	12.7	118
1490	Improving CO 2 adsorption capacities and CO 2 /N 2 separation efficiencies of MOF-74(Ni, Co) by doping palladium-containing activated carbon. Chemical Engineering Journal, 2016, 284, 1348-1360.	12.7	110
1491	Molecular simulation study of metal organic frameworks for methane capture from low-concentration coal mine methane gas. Journal of Porous Materials, 2016, 23, 107-122.	2.6	13
1492	A 2D nickel-based energetic MOFs incorporating 3,5-diamino-1,2,4-triazole and malonic acid: Synthesis, crystal structure and thermochemical study. Journal of Chemical Thermodynamics, 2016, 92, 132-138.	2.0	8
1493	Activated graphene-derived porous carbon with exceptional gas adsorption properties. Microporous and Mesoporous Materials, 2016, 220, 21-27.	4.4	75
1494	Recent advances in computational studies of organometallic sheets: Magnetism, adsorption and catalysis. Computational Materials Science, 2016, 112, 492-502.	3.0	29
1495	Synthesis of bare and functionalized porous adsorbent materials for CO ₂ capture., 2017, 7, 399-459.		30
1496	From 2-methylimidazole to 1,2,3-triazole: a topological transformation of ZIF-8 and ZIF-67 by post-synthetic modification. Chemical Communications, 2017, 53, 2028-2031.	4.1	61

#	Article	IF	CITATIONS
1497	Controlled Encapsulation of Functional Organic Molecules within Metal–Organic Frameworks: In Situ Crystalline Structure Transformation. Advanced Materials, 2017, 29, 1606290.	21.0	65
1498	Solvothermal preparation and gas permeability of an IRMOF-3 membrane. Microporous and Mesoporous Materials, 2017, 241, 218-225.	4.4	10
1499	Application of metal â^' organic frameworks. Polymer International, 2017, 66, 731-744.	3.1	163
1500	Nitrogen-rich activated carbon monoliths via ice-templating with high CO ₂ and H ₂ adsorption capacities. Journal of Materials Chemistry A, 2017, 5, 2811-2820.	10.3	34
1501	High-Quality Metal–Organic Framework ZIF-8 Membrane Supported on Electrodeposited ZnO/2-methylimidazole Nanocomposite: Efficient Adsorbent for the Enrichment of Acidic Drugs. Scientific Reports, 2017, 7, 39778.	3.3	37
1502	Highly conductive and robust composite anion exchange membranes by incorporating quaternized MIL-101(Cr). Science Bulletin, 2017, 62, 266-276.	9.0	32
1503	Synthesis and adsorption study of hyper-crosslinked styrene-based nanocomposites containing multi-walled carbon nanotubes. RSC Advances, 2017, 7, 6865-6874.	3.6	31
1504	Building Lightâ€Emitting Metalâ€Organic Frameworks by Postâ€Synthetic Modification. ChemistrySelect, 2017, 2, 136-139.	1.5	39
1505	Impact of Shape Persistence on the Porosity of Molecular Cages. Journal of the American Chemical Society, 2017, 139, 3259-3264.	13.7	40
1506	A series of coordination polymers based on terphenyl tetracarboxylates and bis-pyridyl ligands with water vapor sorption properties. RSC Advances, 2017, 7, 975-984.	3.6	6
1507	Metal-Organic Frameworks for Energy Applications. CheM, 2017, 2, 52-80.	11.7	941
1508	Nanoporous Materials for the Onboard Storage of Natural Gas. Chemical Reviews, 2017, 117, 1796-1825.	47.7	241
1509	Synthesis, structure and photoluminescent properties for sensing nitro explosives of two new Zn(II) coordination polymers based on mixed tetrazolate and carboxylate ligands. Inorganic Chemistry Communication, 2017, 77, 35-39.	3.9	11
1510	Combining Three Different Functional Groups in One Linker: A Variety of Features of Copper(II) Aminocarboxyphosphonate. Crystal Growth and Design, 2017, 17, 1373-1383.	3.0	8
1511	Synthesis and Electrospraying of Nanoscale MOF (Metal Organic Framework) for High-Performance CO2 Adsorption Membrane. Nanoscale Research Letters, 2017, 12, 6.	5.7	39
1512	Sizable dynamics in small pores: CO ₂ location and motion in the α-Mg formate metalâ€"organic framework. Physical Chemistry Chemical Physics, 2017, 19, 6130-6141.	2.8	35
1513	Positioning metal-organic framework nanoparticles within the context of drug delivery – A comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials, 2017, 123, 172-183.	11.4	221
1514	Ultrafine Sn nanoparticles embedded in shell of N-doped hollow carbon spheres as high rate anode for lithium-ion batteries. Applied Surface Science, 2017, 404, 342-349.	6.1	20

#	Article	IF	CITATIONS
1515	A mesoporous (3,36)-connected txt-type metal–organic framework constructed by using a naphthyl-embedded ligand exhibiting high CO ₂ storage and selectivity. Inorganic Chemistry Frontiers, 2017, 4, 736-740.	6.0	18
1516	Seebeck Coefficient Measurements of Polycrystalline and Highly Ordered Metal-Organic Framework Thin Films. ECS Journal of Solid State Science and Technology, 2017, 6, P150-P153.	1.8	26
1517	Selective gas adsorption and fluorescence sensing response of a Zn(⟨scp⟩ii⟨ scp⟩) metal–organic framework constructed by a mixed-ligand strategy. Dalton Transactions, 2017, 46, 4893-4897.	3.3	42
1518	Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storage. Chemistry of Materials, 2017, 29, 2844-2854.	6.7	169
1519	Synthesis of Small-Molecule/DNA Hybrids through On-Bead Amide-Coupling Approach. Journal of Organic Chemistry, 2017, 82, 10803-10811.	3.2	8
1520	Mesoporous Metal–Organic Framework with Well-Defined Cruciate Flower-Like Morphology for Enzyme Immobilization. ACS Applied Materials & Samp; Interfaces, 2017, 9, 10587-10594.	8.0	173
1521	A triptycene-based porous hydrogen-bonded organic framework for guest incorporation with tailored fitting. Chemical Communications, 2017, 53, 3677-3680.	4.1	69
1522	Two zigzag chain-like lanthanide(III) coordination polymers based on the rigid 1,3-adamantanedicarboxylic acid ligand: Crystal structure, luminescence and magnetic properties. Polyhedron, 2017, 126, 17-22.	2.2	11
1523	Theoretical simulation of CO ₂ capture in organic cage impregnated with polyoxometalates. Journal of Computational Chemistry, 2017, 38, 612-619.	3.3	7
1524	Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications. Accounts of Chemical Research, 2017, 50, 805-813.	15.6	644
1525	Oxy-fuel combustion technology: current status, applications, and trends. International Journal of Energy Research, 2017, 41, 1670-1708.	4.5	93
1526	Controllable assembly of three copper-organic frameworks: Structure transformation and gas adsorption properties. Polyhedron, 2017, 126, 83-91.	2.2	11
1527	Metalâ€Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives. Advanced Functional Materials, 2017, 27, 1606314.	14.9	483
1528	A highly porous metal–organic framework for large organic molecule capture and chromatographic separation. Chemical Communications, 2017, 53, 3434-3437.	4.1	31
1529	Collaborative interactions to enhance gas binding energy in porous metal–organic frameworks. IUCrJ, 2017, 4, 106-107.	2.2	1
1530	A new route to phosphonium polymer network solids via cyclotrimerization. Journal of Polymer Science Part A, 2017, 55, 1620-1625.	2.3	9
1531	A comparative investigation of CO2 adsorption on powder and pellet forms of MIL-101. Journal of the Taiwan Institute of Chemical Engineers, 2017, 72, 45-52.	5. 3	20
1532	Direct method for evaluation of BET adsorbed monolayer capacity. Microporous and Mesoporous Materials, 2017, 243, 147-153.	4.4	52

#	Article	IF	CITATIONS
1533	A family of silver(I) complexes built with 2-sulfoterephthalic acid monosodium salt and different aminopyridine ligands: Syntheses, structures and properties. Journal of Molecular Structure, 2017, 1136, 196-203.	3.6	3
1534	Recent advances in functionalized composite solid materials for carbon dioxide capture. Energy, 2017, 124, 461-480.	8.8	115
1535	Effect of organic substituents on the adsorption of carbon dioxide on a metal–organic framework. Russian Journal of Physical Chemistry A, 2017, 91, 162-166.	0.6	2
1536	A new mfj-type metal–organic framework constructed from a methoxyl derived V-shaped ligand and its H2, CO2 and CH4 adsorption properties. RSC Advances, 2017, 7, 21268-21272.	3.6	20
1537	Mechanism and Kinetics for Reaction of the Chemical Warfare Agent Simulant, DMMP(<i>g</i>), with Zirconium(IV) MOFs: An Ultrahigh-Vacuum and DFT Study. Journal of Physical Chemistry C, 2017, 121, 11261-11272.	3.1	120
1538	Development of a Porous Coordination Polymer with a High Gas Capacity Using a Thiophene-Based Bent Tetracarboxylate Ligand. ACS Applied Materials & Interfaces, 2017, 9, 33455-33460.	8.0	32
1539	Bottom-up construction of a superstructure in a porous uranium-organic crystal. Science, 2017, 356, 624-627.	12.6	286
1540	In situ formation of molecular-scale ordered polyaniline films by zinc coordination. Nanoscale, 2017, 9, 6545-6550.	5.6	19
1541	Selective CO ₂ Sequestration with Monolithic Bimodal Micro/Macroporous Carbon Aerogels Derived from Stepwise Pyrolytic Decomposition of Polyamide-Polyimide-Polyurea Random Copolymers. ACS Applied Materials & Decomposition of Polyamide-Polyimide-Polyurea Random Copolymers. ACS Applied Materials & Decomposition of Polyamide Polyimide Polyurea Random Copolymers. ACS Applied Materials & Decomposition of Polyamide Polyimide Pol	8.0	48
1542	Zeolitic-imidazole framework thin film-based flexible resistive switching memory. RSC Advances, 2017, 7, 21045-21049.	3.6	33
1543	Gas Storage Applications. Crystal Growth and Design, 2017, 17, 3221-3228.	3.0	24
1544	Topology Conversions of Non-Interpenetrated Metal–Organic Frameworks to Doubly Interpenetrated Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 3899-3907.	6.7	17
1545	<i>In Situ</i> Expanding Pores of Dodecahedron-like Carbon Frameworks Derived from MOFs for Enhanced Capacitive Deionization. ACS Applied Materials & Interfaces, 2017, 9, 15068-15078.	8.0	134
1546	Effect of chemical structure of S-nitrosothiols on nitric oxide release mediated by the copper sites of a metal organic framework based environment. Physical Chemistry Chemical Physics, 2017, 19, 11947-11959.	2.8	10
1547	Assembling hierarchical metal–oxygen building units with a semirigid tetracarboxylate ligand into a three-dimensional framework for nitrobenzene sensing. Dalton Transactions, 2017, 46, 6523-6527.	3.3	3
1548	Poly(Ionic Liquid)â€Derived Carbon with Siteâ€Specific Nâ€Doping and Biphasic Heterojunction for Enhanced CO ₂ Capture and Sensing. Angewandte Chemie - International Edition, 2017, 56, 7557-7563.	13.8	119
1549	Synthesis of Bergman cyclization-based porous organic polymers and their performances in gas storage. Polymer, 2017, 118, 249-255.	3.8	5
1550	Architectural Diversity in Multicomponent Metal–Organic Frameworks Constructed from Similar Building Blocks. Crystal Growth and Design, 2017, 17, 3185-3191.	3.0	19

#	Article	IF	CITATIONS
1551	Effect of Water on the CO ₂ Adsorption Capacity of Amine-Functionalized Carbon Sorbents. Industrial & Engineering Chemistry Research, 2017, 56, 6317-6325.	3.7	18
1552	Exciton Migration and Amplified Quenching on Two-Dimensional Metal–Organic Layers. Journal of the American Chemical Society, 2017, 139, 7020-7029.	13.7	134
1553	Sn Nanoparticles Encapsulated in 3D Nanoporous Carbon Derived from a Metal–Organic Framework for Anode Material in Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 17172-17177.	8.0	89
1554	Soluble Porous Coordination Frameworks Constructed from Inorganic Nanoparticles as Homogenized Heterogeneous Photocatalysts for Suzuki Coupling Reactions under Nearâ€Infrared Light. Chemistry - A European Journal, 2017, 23, 8879-8885.	3.3	12
1555	Assembly of Zr-MOF crystals onto magnetic beads as a highly adsorbent for recycling nitrophenol. Chemical Engineering Journal, 2017, 323, 74-83.	12.7	77
1556	A temperature-resolved assembly of a series of the largest scandium-containing polyoxotungstates. Dalton Transactions, 2017, 46, 6848-6852.	3.3	12
1557	Porous 3D polymers for high pressure methane storage and carbon dioxide capture. Journal of Materials Chemistry A, 2017, 5, 10328-10337.	10.3	60
1558	Relationship between pore-size distribution and flexibility of adsorbent materials: statistical mechanics and future material characterization techniques. Adsorption, 2017, 23, 593-602.	3.0	9
1559	Structural and dynamic studies of substrate binding in porous metal–organic frameworks. Chemical Society Reviews, 2017, 46, 239-274.	38.1	206
1560	Coordination polymers with 1,3-bis(1-imidazolyl)-5-(imidazol-1- ylmethyl)benzene and biphenyl-4,4â \in 2-dicarboxylate ligands: Selective adsorption of gas and dye molecules. Microporous and Mesoporous Materials, 2017, 241, 192-201.	4.4	32
1561	Metalâ€Organic Frameworks for Carbon Dioxide Capture and Methane Storage. Advanced Energy Materials, 2017, 7, 1601296.	19.5	334
1562	A computational study of LiBH4clusters and enhancement of their hydrogen storage by excess electrons. International Journal of Energy Research, 2017, 41, 747-754.	4.5	3
1563	Recent progress in two-dimensional COFs for energy-related applications. Journal of Materials Chemistry A, 2017, 5, 14463-14479.	10.3	243
1564	Gas adsorption in Mgâ€porphyrinâ€based porous organic frameworks: A computational simulation by firstâ€principles derived force field. Journal of Computational Chemistry, 2017, 38, 2100-2107.	3.3	5
1565	Robust phosphate capture over inorganic adsorbents derived from lanthanum metal organic frameworks. Chemical Engineering Journal, 2017, 326, 1086-1094.	12.7	154
1566	Poly(Ionic Liquid)â€Derived Carbon with Siteâ€Specific Nâ€Doping and Biphasic Heterojunction for Enhanced CO ₂ Capture and Sensing. Angewandte Chemie, 2017, 129, 7665-7671.	2.0	27
1567	Two Zeolitic Open-Framework Aluminoborates Directed by Similar Zn-Complexes. Inorganic Chemistry, 2017, 56, 6630-6637.	4.0	17
1568	A Flexible Doubly Interpenetrated Metal–Organic Framework with Breathing Behavior and Tunable Gate Opening Effect by Introducing Co ²⁺ into Zn ₄ O Clusters. Inorganic Chemistry, 2017, 56, 6645-6651.	4.0	39

#	Article	IF	CITATIONS
1569	Novel glucose-based adsorbents (Glc-Cs) with high CO 2 capacity and excellent CO 2 /CH 4 /N 2 adsorption selectivity. Chemical Engineering Journal, 2017, 327, 51-59.	12.7	54
1570	New synthetic routes towards MOF production at scale. Chemical Society Reviews, 2017, 46, 3453-3480.	38.1	649
1571	Reversible Redox Activity in Multicomponent Metal–Organic Frameworks Constructed from Trinuclear Copper Pyrazolate Building Blocks. Journal of the American Chemical Society, 2017, 139, 7998-8007.	13.7	158
1572	Cysteine-Functionalized Metal–Organic Framework: Facile Synthesis and High Efficient Enrichment of N-Linked Glycopeptides in Cell Lysate. ACS Applied Materials & Samp; Interfaces, 2017, 9, 19562-19568.	8.0	110
1573	Promotion effects of potassium on the activity and selectivity of Pt/zeolite catalysts for reverse water gas shift reaction. Applied Catalysis B: Environmental, 2017, 216, 95-105.	20.2	122
1574	Doping of metal–organic frameworks towards resistive sensing. Scientific Reports, 2017, 7, 2439.	3.3	45
1575	Combining Polycarboxylate and Bipyridyl-like Ligands in the Design of Luminescent Zinc and Cadmium Based Metal–Organic Frameworks. Crystal Growth and Design, 2017, 17, 3893-3906.	3.0	42
1576	Metal–organic framework MOF-199-catalyzed direct and one-pot synthesis of thiols, sulfides and disulfides from aryl halides in wet polyethylene glycols (PEG 400). Journal of Sulfur Chemistry, 2017, 38, 572-583.	2.0	4
1577	Alternative materials in technologies for Biogas upgrading via CO2 capture. Renewable and Sustainable Energy Reviews, 2017, 79, 1414-1441.	16.4	125
1578	Nanostructured Materials for Next-Generation Energy Storage and Conversion., 2017,,.		7
1579	Molecular Retrofitting Adapts a Metal–Organic Framework to Extreme Pressure. ACS Central Science, 2017, 3, 662-667.	11.3	79
1580	A Cd mixed-ligand MOF showing ligand-disorder induced breathing behaviour at high temperature and stepwise, selective carbon dioxide adsorption at low temperature. CrystEngComm, 2017, 19, 3607-3618.	2.6	13
1581	UiO-66-(SH) ₂ as stable, selective and regenerable adsorbent for the removal of mercury from water under environmentally-relevant conditions. Faraday Discussions, 2017, 201, 145-161.	3.2	67
1582	A potential Cu/V-organophosphonate platform for tailored void spaces <i>via</i> terpyridine mold casting. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 296-303.	1.1	15
1583	Composite Salt in Porous Metalâ€Organic Frameworks for Adsorption Heat Transformation. Advanced Functional Materials, 2017, 27, 1606424.	14.9	95
1584	Syntheses, Structures and Characterization of Four Metal-Organic Frameworks constructed by $2,2\hat{a}\in^2$, $6,6\hat{a}\in^2$ -Tetramethoxy-4, $4\hat{a}\in^2$ -biphenyldicarboxylic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 612-618.	1.2	2
1585	Clathrate Hydrates: A Powerful Tool to Mitigate Greenhouse Gas. Green Energy and Technology, 2017, , 157-168.	0.6	3
1586	Photocatalytic degradation of methyl violet and rhodamine B based on an extremely stable metal-organic framework decorated with carboxylate groups. Inorganic Chemistry Communication, 2017, 85, 2-4.	3.9	21

#	Article	IF	Citations
1587	Modeling hydrogen diffusion in hybrid activated carbon-MIL-101(Cr) considering temperature variations and surface loading changes. Microporous and Mesoporous Materials, 2017, 248, 72-83.	4.4	19
1588	A robust anionic pillared-layer framework with triphenylamine-based linkers: ion exchange and counterion-dependent sorption properties. CrystEngComm, 2017, 19, 2723-2732.	2.6	23
1589	Immobilization of AlEgens into metalâ€organic frameworks: Ligand design, emission behavior, and applications. Journal of Polymer Science Part A, 2017, 55, 1809-1817.	2.3	17
1590	Ionic Polyimides: Hybrid Polymer Architectures and Composites with Ionic Liquids for Advanced Gas Separation Membranes. Industrial & Engineering Chemistry Research, 2017, 56, 5055-5069.	3.7	81
1591	Systematic variation of the optical bandgap in titanium based isoreticular metal–organic frameworks for photocatalytic reduction of CO ₂ under blue light. Journal of Materials Chemistry A, 2017, 5, 11854-11863.	10.3	102
1592	Syntheses and structures of the first two tetra-scandium substituted polyoxometalates. Inorganic Chemistry Communication, 2017, 80, 1-5.	3.9	5
1593	Built-in TTF–TCNQ charge-transfer salts in π-stacked pillared layer frameworks. CrystEngComm, 2017, 19, 2300-2304.	2.6	17
1594	Carbon Utilization. Green Energy and Technology, 2017, , .	0.6	1
1595	Embedding Graphene Nanoplates into MIL-101(Cr) Pores: Synthesis, Characterization, and CO ₂ Adsorption Studies. Industrial & Engineering Chemistry Research, 2017, 56, 3895-3904.	3.7	46
1596	Ag/AgO Nanoparticles Grown via Time Dependent Double Mechanism in a 2D Layered Ni-PCP and Their Antibacterial Efficacy. Scientific Reports, 2017, 7, 44852.	3.3	11
1597	Hydrogen adsorption and kinetics in MIL-101(Cr) and hybrid activated carbon-MIL-101(Cr) materials. International Journal of Hydrogen Energy, 2017, 42, 8021-8031.	7.1	49
1598	Ultrafine TiO ₂ Confined in Porous-Nitrogen-Doped Carbon from Metal–Organic Frameworks for High-Performance Lithium Sulfur Batteries. ACS Applied Materials & Lithium Sulfur Batteries.	8.0	99
1599	Highly selective CO ₂ vs. N ₂ adsorption in the cavity of a molecular coordination cage. Chemical Communications, 2017, 53, 4398-4401.	4.1	25
1600	Bimetallic Metal–Organic Frameworks for Gas Storage and Separation. Crystal Growth and Design, 2017, 17, 1450-1455.	3.0	255
1601	Metal–Organic Framework Derivatives for Improving the Catalytic Activity of the CO Oxidation Reaction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15394-15398.	8.0	53
1602	Synthesis, structure, characterization, and multifunctional properties of a family of rare earth organic frameworks. CrystEngComm, 2017, 19, 2106-2112.	2.6	22
1603	Efficient CO ₂ Capture by Porous Carbons Derived from Coconut Shell. Energy & Energ	5.1	111
1604	Gas adsorption properties of graphene-based materials. Advances in Colloid and Interface Science, 2017, 243, 46-59.	14.7	106

#	Article	IF	CITATIONS
1605	Catalytic advantages of NH 2 -modified MIL-53(Al) materials for Knoevenagel condensation reaction. Microporous and Mesoporous Materials, 2017, 246, 43-50.	4.4	67
1606	Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Progress in Materials Science, 2017, 88, 1-48.	32.8	526
1607	Coordination Polymer Nanoglue: Robust Adhesion Based on Collective Lamellar Stacking of Nanoplates. ACS Nano, 2017, 11, 3662-3670.	14.6	27
1608	Assembly of dicobalt and cobalt–aluminum oxide clusters on metal–organic framework and nanocast silica supports. Faraday Discussions, 2017, 201, 287-302.	3.2	21
1609	Mixed-linker UiO-66: structure–property relationships revealed by a combination of high-resolution powder X-ray diffraction and density functional theory calculations. Physical Chemistry Chemical Physics, 2017, 19, 1551-1559.	2.8	47
1610	Syntheses, crystal structures, properties of metal coordination polymers based on a novel semi-rigid aromatic carboxylate ligand. Polyhedron, 2017, 124, 145-155.	2.2	12
1611	Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review. International Journal of Hydrogen Energy, 2017, 42, 289-311.	7.1	440
1612	Nanoarchitectured Design of Porous Materials and Nanocomposites from Metalâ€Organic Frameworks. Advanced Materials, 2017, 29, 1604898.	21.0	732
1613	Holey Graphitic Carbon Derived from Covalent Organic Polymers Impregnated with Nonprecious Metals for CO ₂ Capture from Natural Gas. Particle and Particle Systems Characterization, 2017, 34, 1600219.	2.3	6
1614	A novel methoxy-decorated metal–organic framework exhibiting high acetylene and carbon dioxide storage capacities. CrystEngComm, 2017, 19, 1464-1469.	2.6	36
1615	Synthesis, spectral characterization and thermal aspects of coordination polymers of some transition metal ions with adipoyl bis(isonicotinoylhydrazone). Journal of Molecular Structure, 2017, 1134, 278-291.	3.6	11
1616	Coordination Polymers with Intramolecular Fluorine-Involved Contacts in Two-Dimensional Sheet Windows. Crystal Growth and Design, 2017, 17, 834-845.	3.0	18
1617	Surface Decoration of Amino-Functionalized Metal–Organic Framework/Graphene Oxide Composite onto Polydopamine-Coated Membrane Substrate for Highly Efficient Heavy Metal Removal. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2594-2605.	8.0	176
1618	pHâ€"value-controlled assembly of photoluminescent zinc coordination polymers in the mixed-ligand system. Journal of Molecular Structure, 2017, 1134, 174-179.	3.6	6
1619	High-Pressure Methane Adsorption in Two Isoreticular Zr-Based Metal–Organic Frameworks Constructed from C3-Symmetrical Tricarboxylates. Crystal Growth and Design, 2017, 17, 248-254.	3.0	6
1620	Spray Drying for Making Covalent Chemistry: Postsynthetic Modification of Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 897-903.	13.7	104
1621	Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications. Progress in Materials Science, 2017, 86, 25-74.	32.8	324
1622	Computational design of two-dimensional nanomaterials for charge modulated CO2/H2 capture and/or storage. Energy Storage Materials, 2017, 8, 169-183.	18.0	25

#	Article	IF	CITATIONS
1623	Fullymeta-Substituted 4,4′-Biphenyldicarboxylate-Based Metal-Organic Frameworks: Synthesis, Structures, and Catalytic Activities. European Journal of Inorganic Chemistry, 2017, 2017, 1478-1487.	2.0	10
1624	Recent advances in the synthesis of covalent organic frameworks for CO 2 capture. Journal of CO2 Utilization, 2017, 17, 137-161.	6.8	94
1625	Methods for Introducing Inorganic Polymer Concepts throughout the Undergraduate Curriculum. Journal of Chemical Education, 2017, 94, 1674-1681.	2.3	1
1626	Selective Gas Adsorption in Highly Porous Chromium(II)-Based Metal–Organic Polyhedra. Chemistry of Materials, 2017, 29, 8583-8587.	6.7	68
1627	Carbon dioxide capture by planar (AlN)n clusters (n=3–5). Journal of Molecular Modeling, 2017, 23, 288.	1.8	1
1628	Synthesis-cum-assembly toward hierarchical nanoarchitectures. Coordination Chemistry Reviews, 2017, 352, 291-305.	18.8	6
1629	Chemically intuited, large-scale screening of MOFs by machine learning techniques. Npj Computational Materials, 2017, 3, .	8.7	107
1630	A cluster-based mesoporous Ti-MOF with sodalite supercages. Chemical Communications, 2017, 53, 11670-11673.	4.1	74
1631	Lewis basic site (LBS)-functionalized zeolite-like supramolecular assemblies (ZSAs) with high CO ₂ uptake performance and highly selective CO ₂ /CH ₄ separation. Journal of Materials Chemistry A, 2017, 5, 21429-21434.	10.3	21
1632	PdNPs@ZIF-8 Micro-Nanostructured Catalyst of Regioselective Mizoriki-Heck Olefination. ChemistrySelect, 2017, 2, 9052-9057.	1.5	9
1633	Fluorine-functionalized metal–organic frameworks and porous coordination polymers. NPG Asia Materials, 2017, 9, e433-e433.	7.9	92
1634	A novel 3D Zn(II) coordination polymer for highly luminescent sensing of nitro compounds. Inorganic Chemistry Communication, 2017, 86, 267-270.	3.9	1
1635	Four Cu ^I (ett) coordination polymorphs and changes in XRD upon hydrothermal condition optimization. CrystEngComm, 2017, 19, 6146-6153.	2.6	3
1636	Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene. Chemical Communications, 2017, 53, 11568-11571.	4.1	88
1637	A porous copper–organic framework with intersecting channels and gas adsorption properties. Dalton Transactions, 2017, 46, 13952-13956.	3.3	11
1638	Versatile Tailoring of NH ₂ ontaining Metal–Organic Frameworks with Paddleâ€Wheel Units. Chemistry - A European Journal, 2017, 23, 17727-17733.	3.3	10
1639	Water-Stable Metal–Organic Framework UiO-66 for Performance Enhancement of Forward Osmosis Membranes. Industrial & Description (2017, 56, 12773-12782).	3.7	65
1640	Computational Study of Water Adsorption in the Hydrophobic Metal–Organic Framework ZIF-8: Adsorption Mechanism and Acceleration of the Simulations. Journal of Physical Chemistry C, 2017, 121, 24000-24010.	3.1	62

#	Article	IF	CITATIONS
1641	Foam-like CoO@N,S-codoped carbon composites derived from a well-designedÂN,S-rich Co-MOF for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 22964-22969.	10.3	106
1642	Controllable Modular Growth of Hierarchical MOFâ€onâ€MOF Architectures. Angewandte Chemie, 2017, 129, 15864-15868.	2.0	64
1643	Controllable Modular Growth of Hierarchical MOFâ€onâ€MOF Architectures. Angewandte Chemie - International Edition, 2017, 56, 15658-15662.	13.8	246
1644	Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity. Energy and Environmental Science, 2017, 10, 2552-2562.	30.8	154
1645	Charge-modulated CO2 capture. Current Opinion in Electrochemistry, 2017, 4, 118-123.	4.8	8
1646	Spiers Memorial Lecture: : Progress and prospects of reticular chemistry. Faraday Discussions, 2017, 201, 9-45.	3.2	85
1647	A Dense I ¹ O ³ Hybrid Superhydrophobic Network, Pb(H-BTMB), Exhibits Selectivity toward CO ₂ Gas Sorption. Inorganic Chemistry, 2017, 56, 11184-11189.	4.0	16
1648	Modulating the Performance of an Asymmetric Organocatalyst by Tuning Its Spatial Environment in a Metal–Organic Framework. Journal of the American Chemical Society, 2017, 139, 13936-13943.	13.7	102
1649	Biologically derived metal organic frameworks. Coordination Chemistry Reviews, 2017, 349, 102-128.	18.8	116
1650	Structural defects in metal–organic frameworks (MOFs): Formation, detection and control towards practices of interests. Coordination Chemistry Reviews, 2017, 349, 169-197.	18.8	200
1651	CO ₂ Adsorption of Nitrogen-Doped Carbons Prepared from Nitric Acid Preoxidized Petroleum Coke. Energy & Doped Carbons Prepared from Nitric Acid Preoxidized Petroleum Coke. Energy & Doped Carbons Prepared from Nitric Acid Preoxidized Petroleum Coke.	5.1	40
1652	Cascade catalytic hydrogenation–cyclization of methyl levulinate to form γ-valerolactone over Ru nanoparticles supported on a sulfonic acid-functionalized UiO-66 catalyst. RSC Advances, 2017, 7, 44082-44088.	3.6	43
1653	Metal organic framework derived mesoporous carbon nitrides with a high specific surface area and chromium oxide nanoparticles for CO ₂ and hydrogen adsorption. Journal of Materials Chemistry A, 2017, 5, 21542-21549.	10.3	45
1654	A zirconium metal–organic framework with an exceptionally high volumetric surface area. Dalton Transactions, 2017, 46, 14270-14276.	3.3	19
1655	Study of Six Green Insensitive High Energetic Coordination Polymers Based on Alkali/Alkaliâ€Earth Metals and 4,5â€Bis(tetrazolâ€5â€yl)â€2 <i>H</i> à6€1,2,3â€triazole. Chemistry - an Asian Journal, 2017, 12,	3141-314	19. ³⁴
1656	Engineering of Pore Geometry for Ultrahigh Capacity Methane Storage in Mesoporous Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 13300-13303.	13.7	140
1657	A Poly(ethylenglycol) Functionalized ZIF-8 Membrane Prepared by Coordination-Based Post-Synthetic Strategy for the Enhanced Adsorption of Phenolic Endocrine Disruptors from Water. Scientific Reports, 2017, 7, 8912.	3.3	18
1658	Ni(ii) complex on a bispyridine-based porous organic polymer as a heterogeneous catalyst for ethylene oligomerization. Catalysis Science and Technology, 2017, 7, 4351-4354.	4.1	16

#	Article	IF	CITATIONS
1659	Metal-Organic-Framework-Based Materials as Platforms for Renewable Energy and Environmental Applications. Joule, 2017, 1, 77-107.	24.0	673
1660	Size Controllable and Surface Tunable Zeolitic Imidazolate Framework-8–Poly(acrylic acid sodium) Tj ETQq1 1 0 ACS Applied Materials & Divergence (1998) ACS Applied (1998) ACS ACS APPLIED (1998) ACS	0.784314 i 8.0	gBT /Overlo
1661	Pd nanoparticles encaged within amine-functionalized metal-organic frameworks: Catalytic activity and reaction mechanism in the hydrogenation of 2,3,5-trimethylbenzoquinone. Chemical Engineering Journal, 2017, 328, 977-987.	12.7	37
1662	Advances of Metalâ€Organic Frameworks in Energy and Environmental Applications. Chinese Journal of Chemistry, 2017, 35, 1501-1511.	4.9	37
1663	Molecular Dynamics Simulations for Loading-Dependent Diffusion of CO ₂ , SO ₂ , CH ₄ , and Their Binary Mixtures in ZIF-10: The Role of Hydrogen Bond. Langmuir, 2017, 33, 11543-11553.	3 . 5	13
1664	The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nature Reviews Materials, 2017, 2, .	48.7	1,075
1665	Comparative study of carbon fiber structure on the electrocatalytic performance of ZIF-67. Analytica Chimica Acta, 2017, 984, 96-106.	5.4	46
1666	Reusable nitrogen-doped mesoporous carbon adsorbent for carbon dioxide adsorption in fixed-bed. Energy, 2017, 138, 776-784.	8.8	48
1667	Density Gradation of Open Metal Sites in the Mesospace of Porous Coordination Polymers. Journal of the American Chemical Society, 2017, 139, 11576-11583.	13.7	118
1668	Porous Metal–Organic Polyhedral Frameworks with Optimal Molecular Dynamics and Pore Geometry for Methane Storage. Journal of the American Chemical Society, 2017, 139, 13349-13360.	13.7	99
1669	Ultrafast Molecular Rotors and Their CO ₂ Tuning in MOFs with Rod‣ike Ligands. Chemistry - A European Journal, 2017, 23, 11210-11215.	3.3	45
1670	Zn@ZIF-67 as Catalysts for the Knoevenagel Condensation of Aldehyde Derivatives with Malononitrile. Catalysis Letters, 2017, 147, 2410-2420.	2.6	27
1671	Adsorption Forms of CO ₂ on MIL-53(Al) and MIL-53(Al)–OH _{<i>x</i>} As Revealed by FTIR Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 18665-18673.	3.1	27
1672	Construction of flexible metal–organic framework (MOF) papers through MOF growth on filter paper and their selective dye capture. Nanoscale, 2017, 9, 12850-12854.	5.6	118
1673	Synthesis of Denser Energetic Metal–Organic Frameworks via a Tandem Anion–Ligand Exchange Strategy. Inorganic Chemistry, 2017, 56, 10281-10289.	4.0	24
1674	A computational approach towards understanding hydrogen gas adsorption in Co–MIL-88A. RSC Advances, 2017, 7, 39583-39593.	3.6	7
1675	Porous Carbon Materials Based on Graphdiyne Basis Units by the Incorporation of the Functional Groups and Li Atoms for Superior CO ₂ Capture and Sequestration. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30002-30013.	8.0	37
1676	Pyrolytic in situ magnetization of metal-organic framework MIL-100 for magnetic solid-phase extraction. Journal of Chromatography A, 2017, 1517, 18-25.	3.7	48

#	Article	IF	CITATIONS
1677	Topology-guided functional multiplicity of iron(<scp>iii</scp>)-based metal–organic frameworks. Materials Chemistry Frontiers, 2017, 1, 1965-1974.	5.9	16
1679	How Reproducible Are Isotherm Measurements in Metal–Organic Frameworks?. Chemistry of Materials, 2017, 29, 10487-10495.	6.7	136
1680	An easily modified method using FeCl3 to synthesize nanoporous gold with a high surface area. RSC Advances, 2017, 7, 18327-18332.	3.6	5
1681	Mn-MOF@Pi composite: synthesis, characterisation and an efficient catalyst for the Knoevenagel condensation reaction. Tetrahedron Letters, 2017, 58, 4691-4694.	1.4	23
1682	Oxygen-rich microporous carbons with exceptional hydrogen storage capacity. Nature Communications, 2017, 8, 1545.	12.8	192
1683	Photocatalytic copper-catalyzed azide–alkyne cycloaddition click reaction with Cu(<scp>ii</scp>) coordination polymer. RSC Advances, 2017, 7, 52907-52913.	3.6	16
1684	A Twoâ€Photon Luminescent Dye‣oaded Metal–Organic Framework for Physiological Temperature Sensing within Biological Windows. ChemPlusChem, 2017, 82, 1320-1325.	2.8	16
1685	Amine assisted top-down delamination of the two-dimensional metal–organic framework Cu ₂ (bdc) ₂ . Dalton Transactions, 2017, 46, 16480-16484.	3.3	29
1686	High Salt Removal Capacity of Metal–Organic Gel Derived Porous Carbon for Capacitive Deionization. ACS Sustainable Chemistry and Engineering, 2017, 5, 11637-11644.	6.7	67
1687	Predicting adsorption isotherms for methanol and water onto different surfaces using the SAFT-VR-2D approach and molecular simulation. Fluid Phase Equilibria, 2017, 449, 207-216.	2.5	13
1688	Fine-tuning optimal porous coordination polymers using functional alkyl groups for CH ₄ purification. Journal of Materials Chemistry A, 2017, 5, 17874-17880.	10.3	32
1689	Highly Efficient Oxygen Reduction Reaction Electrocatalysts Synthesized under Nanospace Confinement of Metal–Organic Framework. ACS Nano, 2017, 11, 8379-8386.	14.6	100
1690	Ultra-high surface area mesoporous carbons for colossal pre combustion CO ₂ capture and storage as materials for hydrogen purification. Sustainable Energy and Fuels, 2017, 1, 1414-1424.	4.9	39
1691	High-performance adsorption and separation of anionic dyes in water using a chemically stable graphene-like metal–organic framework. Dalton Transactions, 2017, 46, 10197-10201.	3.3	102
1692	Detoxification of a Sulfur Mustard Simulant Using a BODIPY-Functionalized Zirconium-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2017, 9, 24555-24560.	8.0	112
1693	Pitfalls in metal–organic framework crystallography: towards more accurate crystal structures. Chemical Society Reviews, 2017, 46, 4867-4876.	38.1	60
1694	Synthesis, structure and luminescence properties of two $Cd(\langle scp \rangle ii \langle scp \rangle)/M(\langle scp \rangle i \langle scp \rangle)$ (M = K, Rb) interpenetrated heterometallic frameworks based on giant double-walled cages. CrystEngComm, 2017, 19, 4269-4272.	2.6	6
1695	Coordination assemblies of rigid–flexible 1,3-bis(5-(pyridine-2-yl)-1,2,4-triazole-3-yl)propane ligands with MCl2 (MÂ=ÂFe, Co, Cu or Zn): structural diversity and mass spectra. Transition Metal Chemistry, 2017, 42, 533-542.	1.4	0

#	Article	IF	CITATIONS
1696	A Fine-Tuned Metal–Organic Framework for Autonomous Indoor Moisture Control. Journal of the American Chemical Society, 2017, 139, 10715-10722.	13.7	224
1697	Preparation and Characterization of Bi-metallic and Tri-metallic Metal Organic Frameworks Based on Trimesic Acid and Co(II), Ni(II), and Cu(II) lons. Journal of Electronic Materials, 2017, 46, 790-801.	2.2	19
1698	Highly efficient mechanochemical synthesis of an indium based metal-organic framework with excellent water stability. Chemical Engineering Science, 2017, 158, 539-544.	3.8	55
1699	Water-resistant porous coordination polymers for gas separation. Coordination Chemistry Reviews, 2017, 332, 48-74.	18.8	331
1700	Novel fluorescent porous hyperbranched aromatic polyamide containing 1,3,5â€triphenylbenzene moieties: Synthesis and characterization. Journal of Applied Polymer Science, 2017, 134, .	2.6	6
1701	Investigation on the selective adsorption and separation properties of coal mine methane in ZIF-68 by molecular simulations. Adsorption, 2017, 23, 163-174.	3.0	9
1702	Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks. Coordination Chemistry Reviews, 2017, 346, 101-111.	18.8	275
1703	Cu-based metal–organic framework/activated carbon composites for sulfur compounds removal. Applied Surface Science, 2017, 394, 394-402.	6.1	82
1704	Probing Structure and Reactivity of Metal Centers in Metal–Organic Frameworks by XAS Techniques. , 2017, , 397-430.		4
1705	CO2 sorption behavior of imidazole, benzimidazole and benzoic acid based coordination polymers. Coordination Chemistry Reviews, 2017, 332, 100-121.	18.8	55
1706	Two novel two-dimensional copper(II) coordination polymers with 1-(4-aminobenzyl)-1,2,4-triazole: Synthesis, crystal structure, magnetic characterization and absorption of anion pollutants. Journal of Molecular Structure, 2017, 1127, 183-190.	3.6	6
1707	Development and Evaluation of Zeolites and Metal–Organic Frameworks for Carbon Dioxide Separation and Capture. Energy Technology, 2017, 5, 356-372.	3.8	36
1708	Ultrafast room temperature synthesis of novel composites Imi@Cu-BTC with improved stability against moisture. Chemical Engineering Journal, 2017, 307, 537-543.	12.7	51
1709	Ultraâ€High Surface Area Activated Porous Asphalt for CO ₂ Capture through Competitive Adsorption at High Pressures. Advanced Energy Materials, 2017, 7, 1600693.	19.5	87
1710	Zeolite adsorbent-MOF layered nanovalves for CH4 storage. Adsorption, 2017, 23, 19-24.	3.0	22
1711	Adsorption of H2 on aluminum-based metal-organic frameworks: A computational study. Computational Materials Science, 2017, 126, 176-181.	3.0	25
1712	A new MOF-505@GO composite with high selectivity for CO 2 /CH 4 and CO 2 /N 2 separation. Chemical Engineering Journal, 2017, 308, 1065-1072.	12.7	230
1713	Guestâ€Dependent Spinâ€Transition Behavior of Porous Coordination Polymers. Chemistry - A European Journal, 2017, 23, 2236-2248.	3.3	96

#	Article	IF	CITATIONS
1714	Combination of an electrodeless quartz crystal microbalance and spectrometric methods and application in monitoring adsorption kinetics of iodine on metal-organic frameworks films. Sensors and Actuators B: Chemical, 2017, 238, 744-753.	7.8	5
1715	Unprecedented salt-promoted direct arylation of acidic sp2 CH bonds under heterogeneous Ni-MOF-74 catalysis: Synthesis of bioactive azole derivatives. Journal of Molecular Catalysis A, 2017, 426, 141-149.	4.8	40
1716	A metal–organic framework functionalized with piperazine exhibiting enhanced CH ₄ storage. Journal of Materials Chemistry A, 2017, 5, 349-354.	10.3	41
1717	Ultrafine molybdenum oxycarbide nanoparticles embedded in N-doped carbon as a superior anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 696, 143-149.	5. 5	20
1718	Efficient synthesis for large-scale production and characterization for hydrogen storage of ligand exchanged MOF-74/174/184-M (M = Mg2+, Ni2+). International Journal of Hydrogen Energy, 2017, 42, 1027-1035.	7.1	50
1719	Synthesis, structural diversity and luminescent properties of cadmium(II) coordination assemblies with 2-(2-aminophenyl)-1H-benzimidazole and pseudohalide ions. Journal of Luminescence, 2017, 181, 103-113.	3.1	11
1720	Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 26-39.	6.7	518
1721	HKUST-1@ACM hybrids for adsorption applications: A systematic study of the synthesis conditions. Microporous and Mesoporous Materials, 2017, 237, 74-81.	4.4	15
1722	Review on porous nanomaterials for adsorption and photocatalytic conversion of CO2. Chinese Journal of Catalysis, 2017, 38, 1956-1969.	14.0	136
1723	Optimizing Carbon Dioxide Uptake and Carbon Dioxideâ€Methane Selectivity of Oxygenâ€Doped Porous Carbon Prepared from Oxygen Containing Polymer Precursors. ChemistrySelect, 2017, 2, 11959-11968.	1.5	6
1724	Lithium carboxylate coordination polymers based on trimesic acid. Journal of Structural Chemistry, 2017, 58, 1048-1055.	1.0	4
1726	Metal-Organic Framework of Lanthanoid Dinuclear Clusters Undergoes Slow Magnetic Relaxation. Materials, 2017, 10, 81.	2.9	3
1727	Application of Metal-Organic Framework Nano-MIL-100(Fe) for Sustainable Release of Doxycycline and Tetracycline. Nanomaterials, 2017, 7, 215.	4.1	43
1728	The Tuning of Optical Properties of Nanoscale MOFs-Based Thin Film through Post-Modification. Nanomaterials, 2017, 7, 242.	4.1	24
1729	Energy Storage Devices Based on Polymers. , 2017, , 197-242.		11
1731	Frontier of Inorganic Synthesis and Preparative Chemistry (II)-Designed Synthesisâ€"Inorganic Crystalline Porous Materials., 2017,, 723-761.		1
1732	Network Solids: Mixed Ligand Molecular Building Blocks. , 2017, , 243-270.		0
1733	Impact of moderative ligand hydrolysis on morphology evolution and the morphology-dependent breathing effect performance of MIL-53(Al). CrystEngComm, 2018, 20, 2102-2111.	2.6	9

#	Article	IF	CITATIONS
1734	Electronic metal–organic framework sensors. Inorganic Chemistry Frontiers, 2018, 5, 979-998.	6.0	120
1735	A Metal–Organic Framework with Optimized Porosity and Functional Sites for High Gravimetric and Volumetric Methane Storage Working Capacities. Advanced Materials, 2018, 30, e1704792.	21.0	109
1736	Two-dimensional transition metal dichalcogenide hybrid materials for energy applications. Nano Today, 2018, 19, 16-40.	11.9	142
1737	Retrosynthesis of multi-component metalâ^'organic frameworks. Nature Communications, 2018, 9, 808.	12.8	159
1738	Hydrogen Storage in Sc and Li Decorated Metal–Inorganic Framework. ACS Applied Energy Materials, 2018, 1, 1328-1336.	5.1	27
1739	Photothermal Activation of Metal–Organic Frameworks Using a UV–Vis Light Source. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9555-9562.	8.0	82
1740	Postsynthetic Strategy To Prepare ACN@Cu-BTCs with Enhanced Water Vapor Stability and CO ₂ /CH ₄ Separation Selectivity. Industrial & Engineering Chemistry Research, 2018, 57, 3765-3772.	3.7	37
1741	Capture of pure toxic gases through porous materials from molecular simulations. Molecular Physics, 2018, 116, 2095-2107.	1.7	24
1742	CO ₂ capture by amine infused hydrogels (AIHs). Journal of Materials Chemistry A, 2018, 6, 4829-4838.	10.3	41
1743	Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chemical Society Reviews, 2018, 47, 2322-2356.	38.1	1,438
1744	Hierarchical FAU/ZIF-8 Hybrid Materials as Highly Efficient Acid–Base Catalysts for Aldol Condensation. ACS Applied Materials & Distribution (1988) 10, 16358-16366.	8.0	38
1745	Synthesis and characterization of a prominent NLO active MOF of lead with 1,5-naphthalenedisulfonic acid. Journal of Molecular Structure, 2018, 1167, 134-141.	3.6	12
1746	The Design of Water Oxidation Electrocatalysts from Nanoscale Metal–Organic Frameworks. Chemistry - A European Journal, 2018, 24, 15143-15155.	3.3	74
1748	Transition metal coordination polymers: Microwave-assisted synthesis, morphology, conductivity, and decomposition kinetics by TG/DTA techniques. Journal of the Chinese Advanced Materials Society, 2018, 6, 234-254.	0.7	1
1749	Small Titanium-Based MOFs Prepared with the Introduction of Tetraethyl Orthosilicate and Their Potential for Use in Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13325-13332.	8.0	68
1750	BTC-based metal-organic frameworks: Correlation between relevant structural features and CO2 adsorption performances. Fuel, 2018, 222, 319-326.	6.4	50
1751	Three MOF-Templated Carbon Nanocomposites for Potential Platforms of Enzyme Immobilization with Improved Electrochemical Performance. ACS Applied Materials & Samp; Interfaces, 2018, 10, 14665-14672.	8.0	101
1752	Biomineralization-mimetic preparation of robust metal-organic frameworks biocomposites film with high enzyme load for electrochemical biosensing. Journal of Electroanalytical Chemistry, 2018, 823, 40-46.	3.8	31

#	Article	IF	CITATIONS
1753	Theoretical Model and Numerical Simulation of Adsorption and Deformation in Flexible Metal–Organic Frameworks. Journal of Physical Chemistry C, 2018, 122, 9465-9473.	3.1	13
1754	Kitchen grinder: a tool for the synthesis of metal–organic frameworks towards size selective dye adsorption. CrystEngComm, 2018, 20, 2486-2490.	2.6	47
1755	Zeolite-templated carbons – three-dimensional microporous graphene frameworks. Chemical Communications, 2018, 54, 5648-5673.	4.1	172
1756	3D Long-Range Triplet Migration in a Water-Stable Metal–Organic Framework for Upconversion-Based Ultralow-Power ⟨i⟩in Vivo⟨/i⟩ Imaging. Journal of the American Chemical Society, 2018, 140, 5493-5499.	13.7	144
1757	Magnetic metal-organic frameworks for fast and efficient solid-phase extraction of six Sudan dyes in tomato sauce. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1086, 146-152.	2.3	46
1758	Different Breathing Mechanisms in Flexible Pillared-Layered Metal–Organic Frameworks: Impact of the Metal Center. Chemistry of Materials, 2018, 30, 1667-1676.	6.7	76
1759	Energetic Performances of ZIF-8 Derivatives: Impact of the Substitution (Me, Cl, or Br) on Imidazolate Linker. Journal of Physical Chemistry C, 2018, 122, 3846-3855.	3.1	24
1760	Highly Surface-Active Ca(OH) ₂ Monolayer as a CO ₂ Capture Material. Nano Letters, 2018, 18, 1786-1793.	9.1	24
1761	Cascade applications of robust MIL-96 metal organic frameworks in environmental remediation: Proof of concept. Chemical Engineering Journal, 2018, 341, 262-271.	12.7	26
1762	Fluorescent zinc(<scp>ii</scp>)-based metal–organic frameworks for nitroaromatics sensing. New Journal of Chemistry, 2018, 42, 5162-5167.	2.8	15
1763	Sulfur-containing bimetallic metal organic frameworks with multi-fold helix as anode of lithium ion batteries. Dalton Transactions, 2018, 47, 4827-4832.	3.3	30
1764	Metal Doped Core–Shell Metalâ€Organic Frameworks@Covalent Organic Frameworks (MOFs@COFs) Hybrids as a Novel Photocatalytic Platform. Advanced Functional Materials, 2018, 28, 1707110.	14.9	188
1765	Lithium doping on 2D squaraine-bridged covalent organic polymers for enhancing adsorption properties: a theoretical study. Physical Chemistry Chemical Physics, 2018, 20, 6487-6499.	2.8	15
1766	Shedding Light on the Protonation States and Location of Protonated N Atoms of Adenine in Metal†Organic Frameworks. Inorganic Chemistry, 2018, 57, 1888-1900.	4.0	21
1767	A gel-like/freeze-drying strategy to construct hierarchically porous polyoxometalate-based metal–organic framework catalysts. Journal of Materials Chemistry A, 2018, 6, 4678-4685.	10.3	30
1768	Design and synthesis of porous polymeric materials and their applications in gas capture and storage: a review. Journal of Polymer Research, 2018, 25, 1.	2.4	84
1769	Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2018, 30, e1704303.	21.0	1,740
1770	A highly porous acylamide decorated MOF-505 analogue exhibiting high and selective CO ₂ gas uptake capability. CrystEngComm, 2018, 20, 1874-1881.	2.6	40

#	Article	IF	CITATIONS
1771	Coordination Polymers Containing Metal Chelate Units. Springer Series in Materials Science, 2018, , 633-759.	0.6	2
1772	Few-layer graphitic shells networked by low temperature pyrolysis of zeolitic imidazolate frameworks. Materials Chemistry Frontiers, 2018, 2, 520-529.	5.9	9
1773	Chiral Functionalization of a Zirconium Metal–Organic Framework (DUT-67) as a Heterogeneous Catalyst in Asymmetric Michael Addition Reaction. Inorganic Chemistry, 2018, 57, 1483-1489.	4.0	76
1774	Charge-modulated CO2 capture of C3N nanosheet: Insights from DFT calculations. Chemical Engineering Journal, 2018, 338, 92-98.	12.7	111
1775	Metal–organic frameworks for heavy metal removal from water. Coordination Chemistry Reviews, 2018, 358, 92-107.	18.8	719
1776	A Crystal with Nearly 200% of Its Body Weight in Water. CheM, 2018, 4, 16-17.	11.7	8
1777	A Eu/Tb mixed lanthanide coordination polymer with rare 2D thick layers: Synthesis, characterization and ratiometric temperature sensing. Journal of Solid State Chemistry, 2018, 259, 98-103.	2.9	15
1778	H ₂ Adsorption on Cu(I)–SSZ-13. Journal of Physical Chemistry C, 2018, 122, 540-548.	3.1	16
1779	A promising metal–organic framework (MOF), MIL-96(Al), for CO ₂ separation under humid conditions. Journal of Materials Chemistry A, 2018, 6, 2081-2090.	10.3	78
1780	Metal–organic framework based inâ€syringe solidâ€phase extraction for the onâ€site sampling of polycyclic aromatic hydrocarbons from environmental water samples. Journal of Separation Science, 2018, 41, 1856-1863.	2.5	19
1781	From nZVI to SNCs: development of a better material for pollutant removal in water. Environmental Science and Pollution Research, 2018, 25, 6175-6195.	5.3	26
1782	O-containing hyper-cross-linked polymers and porous carbons for CO 2 capture. Microporous and Mesoporous Materials, 2018, 264, 104-111.	4.4	52
1783	An implanted paramagnetic metallofullerene probe within a metal–organic framework. Nanoscale, 2018, 10, 3291-3298.	5.6	22
1784	Efficient capture of CO2 over ordered micro-mesoporous hybrid carbon nanosphere. Applied Surface Science, 2018, 439, 113-121.	6.1	64
1785	Ideal Adsorption Isotherm Behavior for Cooling Applications. Langmuir, 2018, 34, 1908-1915.	3.5	23
1786	Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies. Advanced Materials, 2018, 30, 1704953.	21.0	85
1787	Fluorescent Metal–Organic Framework (MOF) as a Highly Sensitive and Quickly Responsive Chemical Sensor for the Detection of Antibiotics in Simulated Wastewater. Inorganic Chemistry, 2018, 57, 1060-1065.	4.0	270
1788	Effect of mineralizing agents on the adsorption performance of metal–organic framework MIL-100(Fe) towards chromium(VI). Chemical Engineering Journal, 2018, 337, 532-540.	12.7	122

#	Article	IF	CITATIONS
1789	Crystal Growth of ZIF-8, ZIF-67, and Their Mixed-Metal Derivatives. Journal of the American Chemical Society, 2018, 140, 1812-1823.	13.7	496
1790	Cyclohexene oxidation catalyzed by flower-like core-shell Fe 3 O 4 @Au/metal organic frameworks nanocomposite. Materials Chemistry and Physics, 2018, 213, 472-481.	4.0	19
1791	Induction of Catalytic Activity in ZnO Loaded Cobalt Based MOF for the Reduction of Nitroarenes. ChemistrySelect, 2018, 3, 3417-3425.	1.5	18
1792	Tuning the hydrogen adsorption properties of Zn–based metal–organic frameworks: Combined DFT and GCMC simulations. Journal of Solid State Chemistry, 2018, 266, 31-36.	2.9	11
1793	Siteâ€Selective Catalysis of a Multifunctional Linear Molecule: The Steric Hindrance of Metal–Organic Framework Channels. Advanced Materials, 2018, 30, e1800643.	21.0	62
1794	Bimetallic Cu–Pt/nanoporous carbon composite as an efficient catalyst for methanol oxidation. Journal of the Iranian Chemical Society, 2018, 15, 1851-1859.	2.2	O
1795	A mesoporous metal-organic framework: Potential advances in selective dye adsorption. Journal of Alloys and Compounds, 2018, 750, 360-367.	5.5	56
1796	Green synthesis and characterization of aluminium fumarate metal-organic framework for heat transformation applications. Materials Letters, 2018, 221, 165-167.	2.6	36
1797	Synthesis and structure analysis of three new lanthanide complexes, [Ce(NO3)6]·[(H-phen)6·(NO3)3], [Pr(NO3)6]·[(H-phen)6·(NO3)3] and [Sm(NO3)3·(phen)·(H2O)2]·[(H-phen)·(NO3)·H2O]. Inorganica Chi Acta, 2018, 477, 160-164.	mica	2
1798	Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Central Science, 2018, 4, 440-450.	11.3	382
1799	MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. Chemical Communications, 2018, 54, 5268-5288.	4.1	237
1800	Methane Storage in Metal-Organic Frameworks: Insights into the Storage Performance and the Intrinsic Property Relationships for Enhanced Adsorbed Natural Gas Storage. Series on Chemistry, Energy and the Environment, 2018, , 207-246.	0.3	1
1802	Synthesis of Fluorescent Nanoscale Salts/Metal–Organic Frameworks for Live-Cell Imaging. Crystal Growth and Design, 2018, 18, 2804-2813.	3.0	11
1803	Distinctive organized molecular assemble of MoS ₂ , MOF and Co ₃ O ₄ , for efficient dye-sensitized photocatalytic H ₂ evolution. Catalysis Science and Technology, 2018, 8, 2352-2363.	4.1	63
1804	General Theory of Absorption in Porous Materials: Restricted Multilayer Theory. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13244-13251.	8.0	5
1805	Methane Adsorption and Separation in Slipped and Functionalized Covalent Organic Frameworks. Industrial & Engineering Chemistry Research, 2018, 57, 4767-4778.	3.7	36
1806	Effects of -NO2 and -NH2 functional groups in mixed-linker Zr-based MOFs on gas adsorption of CO2 and CH4. Progress in Natural Science: Materials International, 2018, 28, 160-167.	4.4	72
1807	Metal-organic framework-derived hollow CoS nanobox for high performance electrochemical energy storage. Chemical Engineering Journal, 2018, 341, 618-627.	12.7	94

#	ARTICLE	IF	Citations
1808	Modified metal-organic frameworks as photocatalysts. Applied Catalysis B: Environmental, 2018, 231, 317-342.	20.2	376
1809	Semiclassical SAFT-VR-2D modeling of adsorption selectivities for binary mixtures of hydrogen and methane adsorbed onto MOFs. Fluid Phase Equilibria, 2018, 462, 153-171.	2.5	6
1810	Surface-Anchored Metal–Organic Frameworks as Versatile Resists for Gas-Assisted E-Beam Lithography: Fabrication of Sub-10 Nanometer Structures. ACS Nano, 2018, 12, 3825-3835.	14.6	36
1811	A comprehensive analysis of the BET area for nanoporous materials. AICHE Journal, 2018, 64, 286-293.	3.6	51
1812	Highly porous carbons obtained by activation of polypyrrole/reduced graphene oxide as effective adsorbents for CO2, H2 and C6H6. Journal of Porous Materials, 2018, 25, 621-627.	2.6	28
1813	Porous metal–organic frameworks for fuel storage. Coordination Chemistry Reviews, 2018, 373, 167-198.	18.8	211
1814	Conjugated Microporous Polymers for Heterogeneous Catalysis. Chemistry - an Asian Journal, 2018, 13, 9-19.	3.3	112
1815	P-type conductive polymer/zeolitic imidazolate framework-67 (ZIF-67) nanocomposite film: Synthesis, characterization, and electrochemical performance as efficient electrode materials in pseudocapacitors. Journal of Colloid and Interface Science, 2018, 509, 189-194.	9.4	68
1816	Polymeric Ni(II) and Cu(II) complexes based on squaric acid and 1-vinylimidazole: Structural studies and hydrogen adsorption properties. Inorganica Chimica Acta, 2018, 469, 154-163.	2.4	16
1817	A kinetic study of facile fabrication of MIL-101(Cr) metal-organic framework: Effect of synthetic method. Inorganica Chimica Acta, 2018, 471, 513-520.	2.4	13
1818	Gas adsorption properties of hybrid graphene-MOF materials. Journal of Colloid and Interface Science, 2018, 514, 801-813.	9.4	143
1819	A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: a review. Catalysis Science and Technology, 2018, 8, 679-696.	4.1	109
1820	A general and efficient approach for tuning the crystal morphology of classical MOFs. Chemical Communications, 2018, 54, 252-255.	4.1	85
1821	Preconcentration of Nitroalkanes with Archetype Metal–Organic Frameworks (MOFs) as Concept for a Sensitive Sensing of Explosives in the Gas Phase. Advanced Functional Materials, 2018, 28, 1704250.	14.9	22
1822	Stable Zn ^I â€Containing MOFs with Large [Zn ₇₀] Nanocages from Assembly of Zn ^{II} lons and Aromatic [Zn ^I ₈] Clusters. Chemistry - A European Journal, 2018, 24, 3683-3688.	3.3	19
1823	Text Mining Metal–Organic Framework Papers. Journal of Chemical Information and Modeling, 2018, 58, 244-251.	5.4	43
1824	Molecular Building Block-Based Electronic Charges for High-Throughput Screening of Metal–Organic Frameworks for Adsorption Applications. Journal of Chemical Theory and Computation, 2018, 14, 365-376.	5.3	18
1825	Distinctive Three-Step Hysteretic Sorption of Ethane with In Situ Crystallographic Visualization of the Pore Forms in a Soft Porous Crystal. Journal of the American Chemical Society, 2018, 140, 2145-2150.	13.7	43

#	Article	IF	CITATIONS
1826	Recent Progress on MOFâ€Derived Heteroatomâ€Doped Carbonâ€Based Electrocatalysts for Oxygen Reduction Reaction. Advanced Science, 2018, 5, 1700515.	11.2	306
1827	Design of ZIF-8/ion copolymer hierarchically porous material: Coordination effect on the adsorption and diffusion for carbon dioxide. Microporous and Mesoporous Materials, 2018, 261, 79-87.	4.4	63
1828	Extra Unsaturated Metal Centers of Zirconiumâ€Based MOFs: a Facile Approach towards Increasing CO ₂ Uptake Capacity at Low Pressure. European Journal of Inorganic Chemistry, 2018, 2018, 194-202.	2.0	5
1829	Stabilizing a Vanadium Oxide Catalyst by Supporting on a Metal–Organic Framework. ChemCatChem, 2018, 10, 1772-1777.	3.7	21
1830	Fabrication of hybrid coating material of polypropylene itaconate containing MOF-5 for CO2 capture. Progress in Organic Coatings, 2018, 115, 49-55.	3.9	23
1831	Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces. Journal of Materials Chemistry A, 2018, 6, 293-312.	10.3	377
1832	Removal of hazardous cationic organic dyes from water using nickel-based metal-organic frameworks. Inorganica Chimica Acta, 2018, 471, 203-210.	2.4	54
1833	Charge―and Electricâ€Fieldâ€Controlled Switchable Carbon Dioxide Capture and Gas Separation on a C ₂ N Monolayer. Energy Technology, 2018, 6, 205-212.	3.8	42
1834	Advances in Porous Adsorbents for CO2 Capture and Storage. , 2018, , .		7
1835	Layer-by-Layer Assembly of Metal-Organic Frameworks Based on Carboxylated Perylene on Template Monolayers of Graphene Oxide. Colloid Journal, 2018, 80, 684-690.	1.3	6
1836	Mesoporous Metal–Organic Frameworks: Synthetic Strategies and Emerging Applications. Small, 2018, 14, e1801454.	10.0	133
1838	Renaissance of the Methane Adsorbents. Israel Journal of Chemistry, 2018, 58, 985-994.	2.3	7
1839	Health, Environmental Effects, the Control of Emission from Power Plants and the Need for a New Emission Capture Technology Journal of Physics: Conference Series, 2018, 1072, 012019.	0.4	1
1840	Four new MOFs based on an imidazole-containing ligand and multicarboxylates: syntheses, structures and sorption properties. CrystEngComm, 2018, 20, 7719-7728.	2.6	5
1841	Porosity- and content-controlled metal/metal oxide/metal carbide@carbon (M/MO/MC@C) composites derived from MOFs: mechanism study and application for lithium-ion batteries. New Journal of Chemistry, 2018, 42, 18678-18689.	2.8	5
1842	Simultaneous adsorption of SO ₂ and CO ₂ in an Ni(bdc)(ted) _{0.5} metal–organic framework. RSC Advances, 2018, 8, 38648-38655.	3.6	10
1843	Hierarchically porous metal–organic frameworks: rapid synthesis and enhanced gas storage. Soft Matter, 2018, 14, 9589-9598.	2.7	48
1844	Continuous and scalable fabrication of stable and biocompatible MOF@SiO ₂ nanoparticles for drug loading. Journal of Materials Chemistry B, 2018, 6, 7936-7942.	5.8	26

#	Article	IF	CITATIONS
1845	Facile preparation of a tetraphenylethylene-doped metal–organic framework for white light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 11701-11706.	5.5	22
1846	Computational design of tetrazolate-based metal–organic frameworks for CH ₄ storage. Physical Chemistry Chemical Physics, 2018, 20, 30150-30158.	2.8	18
1847	Electric field induced rotation of halogenated organic linkers in isoreticular metal–organic frameworks for nanofluidic applications. Molecular Systems Design and Engineering, 2018, 3, 951-958.	3.4	16
1848	Thiophene insertion for continuous modulation of the photoelectronic properties of triphenylamine-based metal–organic frameworks for photocatalytic sulfonylation–cyclisation of activated alkenes. New Journal of Chemistry, 2018, 42, 18448-18457.	2.8	13
1849	Nanoporous Graphene Monolith for Hydrogen Storage. Materials Today: Proceedings, 2018, 5, 17478-17483.	1.8	25
1850	6. DFT studies on storage and adsorption capacities of gases on MOFs. , 2018, , 83-112.		0
1852	1. Introduction: hydrogen storage as solution for a changing energy landscape. , 2018, , 1-34.		0
1853	Reticular Chemistry of Multifunctional Metalâ€Organic Framework Materials. Israel Journal of Chemistry, 2018, 58, 949-961.	2.3	24
1854	Recent Hydrophobic Metal-Organic Frameworks and Their Applications. Materials, 2018, 11, 2250.	2.9	45
1855	Local Pressure of Supercritical Adsorbed Hydrogen in Nanopores. Materials, 2018, 11, 2235.	2.9	8
1856	A Dynamic, Breathing, Water-Stable, Partially Fluorinated, Two-Periodic, Mixed-Ligand Zn(II) Metal–Organic Framework Modulated by Solvent Exchange Showing a Large Change in Cavity Size: Gas and Vapor Sorption Studies. Crystal Growth and Design, 2018, 18, 7570-7578.	3.0	19
1857	Nanospace within metal–organic frameworks for gas storage and separation. Materials Today Nano, 2018, 2, 21-49.	4.6	77
1858	Design of a Semi-Continuous Selective Layer Based on Deposition of UiO-66 Nanoparticles for Nanofiltration. Membranes, 2018, 8, 129.	3.0	21
1859	Crystal structure of 2-(4-(4 <i>H</i> -1,2,4-triazol-4-yl)phenyl)acetic acid, C ₁₀ H ₉ N ₃ O ₄ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2018, 233, 1021-1022.	0.3	0
1860	Crystal structure of <i>ci>catena</i> -poly[diaqua-bis(μ ₂ -5-(3-(1 <i>H</i> -imidazol-5-yl)phenyl)tetrazol-2-ido-β ² <td>p>) Ţj ETQ</td> <td>q0₀00 rgBT /</td>	p>) Ţj ETQ	q0 ₀ 00 rgBT /
1861	Fabrication of Novel ZIF-8@BiVO4 Composite with Enhanced Photocatalytic Performance. Crystals, 2018, 8, 432.	2.2	27
1862	Desiccant materials for air conditioning applications - A review. IOP Conference Series: Materials Science and Engineering, 0, 404, 012005.	0.6	18
1863	Hydrogen storage in molecular clathrate cages under conditions of moderate pressure and ambient temperature. International Journal of Hydrogen Energy, 2018, 43, 19998-20003.	7.1	8

#	Article	IF	CITATIONS
1864	Preparation and Evaluation of a Coconut Shell-Based Activated Carbon for CO2/CH4 Separation. Energies, 2018, 11, 1748.	3.1	32
1865	Metal–Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives. Advanced Materials, 2018, 30, e1800702.	21.0	362
1866	Feasibility Study on the Design and Synthesis of Functional Porous Organic Polymers with Tunable Pore Structure as Metallocene Catalyst Supports. Polymers, 2018, 10, 944.	4.5	9
1867	Metal–organic frameworks as a new platform for molecular oxygen and aerobic oxidation of organic substrates: Recent advances. Polyhedron, 2018, 156, 174-187.	2.2	14
1868	Design of Metal-Organic Frameworks with High Lowpressure Adsorption Performance of CO2. IOP Conference Series: Earth and Environmental Science, 2018, 170, 032073.	0.3	1
1869	Temperature-Stable Compelled Composite Superhydrophobic Porous Coordination Polymers Achieved via an Unattainable <i>de Novo</i> Synthetic Method. Journal of the American Chemical Society, 2018, 140, 13786-13792.	13.7	32
1870	In-situ growth of zeolitic imidazole framework-67 on nanoporous anodized aluminum bar as stir-bar sorptive extraction sorbent for determining caffeine. Journal of Chromatography A, 2018, 1577, 15-23.	3.7	28
1871	Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Science Advances, 2018, 4, eaat9180.	10.3	533
1872	DMOF-1 as a Representative MOF for SO ₂ Adsorption in Both Humid and Dry Conditions. Journal of Physical Chemistry C, 2018, 122, 23493-23500.	3.1	51
1873	Modulation of Magnetic Behavior and Hg ²⁺ Removal by Solvent-Assisted Linker Exchange Based on a Water-Stable 3D MOF. Chemistry of Materials, 2018, 30, 7979-7987.	6.7	88
1874	Amphiphilic-DNA Platform for the Design of Crystalline Frameworks with Programmable Structure and Functionality. Journal of the American Chemical Society, 2018, 140, 15384-15392.	13.7	39
1875	A complex metal-organic framework catalyst for microwave-assisted radical polymerization. Communications Chemistry, 2018, 1, .	4.5	31
1876	Carbon dioxide adsorption of two-dimensional carbide MXenes. Journal of Advanced Ceramics, 2018, 7, 237-245.	17.4	119
1877	Facile and Controllable Preparation of Ultramicroporous Biomass-Derived Carbons and Application on Selective Adsorption of Gas-mixtures. Industrial & Engineering Chemistry Research, 2018, 57, 14191-14201.	3.7	25
1878	Enabling Homochirality and Hydrothermal Stability in Zn ₄ O-Based Porous Crystals. Journal of the American Chemical Society, 2018, 140, 13566-13569.	13.7	33
1879	Applicable Strategy for Removing Liquid Fuel Nitrogenated Contaminants Using MIL-53-NH ₂ @Natural Fabric Composites. Industrial & Discrete Engineering Chemistry Research, 2018, 57, 15054-15065.	3.7	76
1880	A Free Tetrazolyl Decorated Metal–Organic Framework Exhibiting High and Selective CO ₂ Adsorption. Inorganic Chemistry, 2018, 57, 14018-14022.	4.0	31
1881	Electronic Decoupling in C ₃ -Symmetrical Light-Responsive Tris(Azobenzene) Scaffolds: Self-Assembly and Multiphotochromism. Journal of the American Chemical Society, 2018, 140, 16062-16070.	13.7	37

#	Article	IF	CITATIONS
1882	Rapid Fabrication of Metal–Organic Framework Films from Metal Substrates Using Intense Pulsed Light. Crystal Growth and Design, 2018, 18, 6946-6955.	3.0	13
1883	Efficient Energy Transfer within Dyes Encapsulated Metal–Organic Frameworks to Achieve High Performance White Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800968.	7.3	62
1884	Control of CO ₂ Capture Process on Transition-Metal-Porphyrin-like Graphene with Mechanical Strain. ACS Omega, 2018, 3, 10554-10563.	3.5	7
1885	Cu@nano-bio-MOF-7 composite: having more potential for in vitro drug adsorption/release and photocatalytic water splitting as compared to its parent nano-bio-MOF-7. Applied Nanoscience (Switzerland), 2018, 8, 1831-1841.	3.1	7
1886	High Volumetric Hydrogen Adsorption in a Porous Anthracene-Decorated Metal–Organic Framework. Inorganic Chemistry, 2018, 57, 12050-12055.	4.0	23
1887	Reticular control of interpenetration in a complex metal–organic framework. Materials Chemistry Frontiers, 2018, 2, 2063-2069.	5.9	15
1888	Incorporating the Thiazolo [5,4-d] thiazole Unit into a Coordination Polymer with Interdigitated Structure. Crystals, 2018, 8, 30.	2.2	19
1889	Synthesis and solar cell application of a composite of Eu-BTB MOF with functionalized graphene. Materials Research Express, 2018, 5, 125501.	1.6	3
1892	Construction of Porous Aromatic Frameworks with Exceptional Porosity via Building Unit Engineering. Advanced Materials, 2018, 30, e1804169.	21.0	66
1893	Synthesis, structure, and fluorescence properties of a calcium-based metal–organic framework. RSC Advances, 2018, 8, 31588-31593.	3.6	22
1894	Ultrafast room-temperature synthesis of hierarchically porous metal–organic frameworks by a versatile cooperative template strategy. Journal of Materials Science, 2018, 53, 16276-16287.	3.7	74
1895	Pore-filling contamination in metal–organic frameworks. Physical Chemistry Chemical Physics, 2018, 20, 23616-23624.	2.8	4
1896	Balancing Mechanical Stability and Ultrahigh Porosity in Crystalline Framework Materials. Angewandte Chemie - International Edition, 2018, 57, 13780-13783.	13.8	283
1897	Hierarchically porous metal–organic frameworks with single-crystal structures and their enhanced catalytic properties. CrystEngComm, 2018, 20, 5754-5759.	2.6	27
1898	Mechanische StabilitĤversus ultrahohe PorositĤin kristallinen Netzwerkmaterialien: ein Balanceakt!. Angewandte Chemie, 2018, 130, 13976-13979.	2.0	25
1899	Molecular Modeling of Carbon Dioxide Adsorption in Metal-Organic Frameworks. , 2018, , 99-149.		6
1900	Triangular and linear Co3 cluster based metal-organic frameworks: Structures and magnetic properties. Journal of Solid State Chemistry, 2018, 265, 123-128.	2.9	7
1901	Topology-Guided Stepwise Insertion of Three Secondary Linkers in Zirconium Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 7710-7715.	13.7	81

#	Article	IF	CITATIONS
1902	Mass Measurements Reveal Preferential Sorption of Mixed Solvent Components in Porous Nanoparticles. Small, 2018, 14, e1800826.	10.0	15
1903	Preparation of zeolite imidazolate framework/graphene hybrid aerogels and their application as highly efficient adsorbent. Journal of Solid State Chemistry, 2018, 265, 184-192.	2.9	59
1904	A novel electrochemical sensor based on Fe3O4-doped nanoporous carbon for simultaneous determination of diethylstilbestrol and $17\hat{l}^2$ -estradiol in toner. Talanta, 2018, 188, 81-90.	5.5	36
1905	Metal-organic solids derived from arylphosphonic acids. Coordination Chemistry Reviews, 2018, 369, 105-122.	18.8	86
1906	Anisotropic Rolling and Controlled Chirality of Nanocrystalline Diamond Nanomembranes toward Biomimetic Helical Frameworks. Nano Letters, 2018, 18, 3688-3694.	9.1	30
1907	Selective pore opening and gating of the pillared layer metal-organic framework DUT-8(Ni) upon liquid phase multi-component adsorption. Microporous and Mesoporous Materials, 2018, 271, 169-174.	4.4	16
1908	Immobilization of thiol-functionalized ionic liquids onto the surface of MIL-101(Cr) frameworks by S Cr coordination bond for biodiesel production. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 593-600.	4.7	43
1909	A 3D Cu(I)-organic framework constructed from discrete Cu 2 I 2 moiety and infinite [CuI] n chain. Inorganic Chemistry Communication, 2018, 92, 106-109.	3.9	1
1910	DFT studies on storage and adsorption capacities of gases on MOFs. Physical Sciences Reviews, 2018, 3, .	0.8	2
1911	Incorporation of Functional Groups Expands the Applications of UiOâ€67 for Adsorption, Catalysis and Thiols Detection. ChemistrySelect, 2018, 3, 7066-7080.	1.5	12
1912	Nanoparticle-templated hierarchically porous polymer/zeolitic imidazolate framework as a solid-phase microextraction coatings. Journal of Chromatography A, 2018, 1567, 55-63.	3.7	28
1913	Strategic Design and Functionalization of an Amine-Decorated Luminescent Metal Organic Framework for Selective Gas/Vapor Sorption and Nanomolar Sensing of 2,4,6-Trinitrophenol in Water. ACS Applied Materials & Samp; Interfaces, 2018, 10, 25360-25371.	8.0	104
1915	Carbon dioxide capture in MOFs: The effect of ligand functionalization. Polyhedron, 2018, 154, 236-251.	2.2	65
1916	Harnessing Structural Dynamics in a 2D Manganese–Benzoquinoid Framework To Dramatically Accelerate Metal Transport in Diffusion-Limited Metal Exchange Reactions. Journal of the American Chemical Society, 2018, 140, 11444-11453.	13.7	31
1917	An unprecedented water stable acylamide-functionalized metal–organic framework for highly efficient CH ₄ /CO ₂ gas storage/separation and acid–base cooperative catalytic activity. Inorganic Chemistry Frontiers, 2018, 5, 2355-2363.	6.0	62
1918	The rules and roles of metal–organic framework in combination with molecular dyes. Polyhedron, 2018, 154, 275-294.	2.2	22
1919	Structure and LIBs Anode Material Application of Novel Wells–Dawson Polyoxometalate-Based Metal Organic Frameworks with Different Helical Channels. Crystal Growth and Design, 2018, 18, 5564-5572.	3.0	19
1920	Pressureâ€Induced Amorphization of MOFâ€5: A First Principles Study. ChemistrySelect, 2018, 3, 8056-8063.	1.5	18

#	Article	IF	CITATIONS
1921	Green applications of metal–organic frameworks. CrystEngComm, 2018, 20, 5899-5912.	2.6	54
1922	Firstâ€Principles Study of Electrocatalytically Reversible CO ₂ Capture on Grapheneâ€like C ₃ N. ChemPhysChem, 2018, 19, 2788-2795.	2.1	51
1923	Adsorption of CO2 and Methane on Covalent Organic Polymer. E3S Web of Conferences, 2018, 43, 01001.	0.5	3
1924	Structure and Fluorescence Properties of a Two-Dimensional Zinc(II) Coordination Polymer Containing Isophthalate. Journal of Structural Chemistry, 2018, 59, 720-724.	1.0	1
1925	Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chemical Society Reviews, 2018, 47, 5684-5739.	38.1	123
1926	Rational assembly of functional Co-MOFs <i>via</i> a mixed-ligand strategy: synthesis, structure, topological variation, photodegradation properties and dye adsorption. CrystEngComm, 2018, 20, 4973-4988.	2.6	35
1927	Mixed-Valence Cobalt(II/III) Metal–Organic Framework for Ammonia Sensing with Naked-Eye Color Switching. ACS Applied Materials & Samp; Interfaces, 2018, 10, 27465-27471.	8.0	75
1928	A dual-functionalized, luminescent and highly crystalline covalent organic framework: molecular decoding strategies for VOCs and ultrafast TNP sensing. Journal of Materials Chemistry A, 2018, 6, 16246-16256.	10.3	109
1929	Crystalline Cyclophane–Protein Cage Frameworks. ACS Nano, 2018, 12, 8029-8036.	14.6	39
1930	Bimetallic zeolitic imidazolate framework as an active excipient of curcumin under physiological condition. Biomedical Physics and Engineering Express, 2018, 4, 055004.	1.2	16
1931	Triazine-based hyper-cross-linked polymers with inorganic-organic hybrid framework derived porous carbons for CO2 capture. Chemical Engineering Journal, 2018, 353, 1-14.	12.7	75
1932	Recent progress in nanostructured magnetic framework composites (MFCs): Synthesis and applications. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 653-677.	5.3	47
1933	Ultrafast Facile One Pot Synthesis of Meso-Tetraphenyl-Porphinato–Cu(II) Metal–Organic Frameworks (MOFs) for CO2 Capture. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 2865-2870.	3.7	12
1934	Modification of a Copperâ€Based Metal–Organic Framework with Graphene Oxide for the Removal of Sulfur Compounds. European Journal of Inorganic Chemistry, 2018, 2018, 2768-2775.	2.0	9
1935	Hemocompatible 3D Silver(I) Coordination Polymers: Synthesis, Xâ€ray Structure, Photoâ€Catalytic and Antibacterial Activity. ChemistrySelect, 2018, 3, 5233-5242.	1.5	14
1936	Synthesis chemistry of metal-organic frameworks for CO 2 capture and conversion for sustainable energy future. Renewable and Sustainable Energy Reviews, 2018, 92, 570-607.	16.4	89
1937	A Ni-based redox-active metal-organic framework for sensitive and non-enzymatic detection of glucose. Journal of Electroanalytical Chemistry, 2018, 822, 43-49.	3.8	72
1939	Selective Adsorptive Separation of CO ₂ /CH ₄ and CO ₂ /N ₂ by a Water Resistant Zirconium–Porphyrin Metal–Organic Framework. Industrial & Description of CO _{, 12215-12224.}	3.7	48

#	Article	IF	CITATIONS
1940	Role of Pore Chemistry and Topology in the CO ₂ Capture Capabilities of MOFs: From Molecular Simulation to Machine Learning. Chemistry of Materials, 2018, 30, 6325-6337.	6.7	144
1941	Geometry variation in porous covalent triazine polymer (CTP) for CO ₂ adsorption. New Journal of Chemistry, 2018, 42, 15488-15496.	2.8	22
1942	The insights from X-ray absorption spectroscopy into the local atomic structure and chemical bonding of Metal–organic frameworks. Polyhedron, 2018, 155, 232-253.	2.2	34
1943	Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs. Small Methods, 2018, 2, 1800173.	8.6	288
1944	Assembly of Two Metal–Organic Frameworks Based on Distinct Cobalt Dimeric Building Blocks Induced by Ligand Modification: Gas Adsorption and Magnetic Properties. Inorganic Chemistry, 2018, 57, 10401-10409.	4.0	26
1945	A nano-silicate material with exceptional capacity for CO2 capture and storage at room temperature. Scientific Reports, 2018, 8, 11827.	3.3	24
1946	Metalâ€organic Frameworks Incorporating Multiple Metal Elements. Israel Journal of Chemistry, 2018, 58, 1036-1043.	2.3	24
1947	Exfoliated Nanosheets of a Cu ^{II} Coordination Polymer Modulate Enzyme Activity of αâ€Chymotrypsin. Chemistry - A European Journal, 2018, 24, 11297-11302.	3.3	6
1948	Facilely controlled synthesis of a core-shell structured MOF composite and its derived N-doped hierarchical porous carbon for CO2 adsorption. RSC Advances, 2018, 8, 21460-21471.	3.6	17
1949	A CO ₂ optical sensor based on self-assembled metal–organic framework nanoparticles. Journal of Materials Chemistry A, 2018, 6, 13171-13177.	10.3	62
1950	A hierarchical nickel–carbon structure templated by metal–organic frameworks for efficient overall water splitting. Energy and Environmental Science, 2018, 11, 2363-2371.	30.8	240
1951	Pushing the Limits on Metal–Organic Frameworks as a Catalyst Support: NU-1000 Supported Tungsten Catalysts for <i>>o</i> >-Xylene Isomerization and Disproportionation. Journal of the American Chemical Society, 2018, 140, 8535-8543.	13.7	73
1952	Enriching the Reticular Chemistry Repertoire: Merged Nets Approach for the Rational Design of Intricate Mixed-Linker Metal–Organic Framework Platforms. Journal of the American Chemical Society, 2018, 140, 8858-8867.	13.7	129
1953	A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance. Microporous and Mesoporous Materials, 2019, 274, 203-211.	4.4	138
1955	Theoretical insight into a feasible strategy of capturing, storing and releasing toxic HCN at the surface of doped BN-sheets by charge modulation. Applied Surface Science, 2019, 496, 143714.	6.1	15
1956	Three 3D Co(<scp>ii</scp>) cluster-based MOFs constructed from polycarboxylate acids and bis(imidazole) ligands and their derivatives: magnetic properties and catalytic performance for the ORR. Dalton Transactions, 2019, 48, 13369-13377.	3.3	20
1957	Fabrication of Magnetic Pd/MOF Hollow Nanospheres with Double-Shell Structure: Toward Highly Efficient and Recyclable Nanocatalysts for Hydrogenation Reaction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32251-32260.	8.0	74
1958	Ligand-Regulated Uptake of Dipolar-Aromatic Guests by Hydrophobically Assembled Suprasphere Hosts. Journal of the American Chemical Society, 2019, 141, 14078-14082.	13.7	7

#	Article	IF	CITATIONS
1959	Tailoring the pore size and shape of the one-dimensional channels in iron-based MOFs for enhancing the methane storage capacity. Inorganic Chemistry Frontiers, 2019, 6, 2441-2447.	6.0	18
1960	A role of the microtextural and surface chemical heterogeneities of porous carbons for the adsorption of CO2, CO and N2. Carbon Letters, 2019, 29, 553-566.	5.9	1
1961	Trends in Solid Adsorbent Materials Development for CO ₂ Capture. ACS Applied Materials & amp; Interfaces, 2019, 11, 34533-34559.	8.0	215
1962	Surface Area Determination of Porous Materials Using the Brunauer–Emmett–Teller (BET) Method: Limitations and Improvements. Journal of Physical Chemistry C, 2019, 123, 20195-20209.	3.1	130
1963	High-capacitance supercapacitor based on nitrogen-doped porous carbons-sandwiched graphene hybrid frameworks. Ionics, 2019, 25, 6017-6023.	2.4	7
1964	Potential of hydrophobic metal-organic framework-based materials for environmental applications. , 2019, , 319-354.		3
1965	Four novel Co(II) metal-organic frameworks based on semi-rigid ligand and their secondary building units transformation. Journal of Molecular Structure, 2019, 1197, 87-95.	3.6	7
1966	Manganese(II) and zinc(II) coordination polymers based on 2-(5-bromo-pyridin-3-yl)-1H-imidazole-4,5-dicarboxylic acid: synthesis, structure and properties. Journal of Coordination Chemistry, 2019, 72, 1820-1832.	2.2	O
1967	Controlling Metal Ion Counter Diffusion in Confined Spaces for In Situ Growth of Mixed Metal MOF Membranes for Gas Separation. ChemNanoMat, 2019, 5, 1244-1250.	2.8	11
1968	Magnetic order in a Cull–Dylll oxamato-based two-dimensional coordination polymer. Comptes Rendus Chimie, 2019, 22, 466-475.	0.5	4
1969	Pre-mixed precursors for modulating the porosity of carbons for enhanced hydrogen storage: towards predicting the activation behaviour of carbonaceous matter. Journal of Materials Chemistry A, 2019, 7, 17466-17479.	10.3	35
1970	Biâ€Microporous Metal–Organic Frameworks with Cubane [M ₄ (OH) ₄] (M=Ni,) Tj ETC	Qq1 1 0.7 13.8	84314 rgBT 350
1971	Decanuclear Cluster-Based Metal–Organic Framework with a (3,11)-Connected Topology and Highly Sensitive 2,4,6-Trinitrophenol Detection. Inorganic Chemistry, 2019, 58, 9749-9755.	4.0	37
1972	Flexible Metal–Organic Frameworks for Light-Switchable CO ₂ Sorption Using an Auxiliary Ligand Strategy. Inorganic Chemistry, 2019, 58, 9766-9772.	4.0	10
1973	Electrochemically Mediated Syntheses of Titanium(III)-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 11383-11387.	13.7	29
1974	Biâ€Microporous Metal–Organic Frameworks with Cubane [M ₄ (OH) ₄] (M=Ni,) Tj ETC	Qq1 1 0.7 2.0	84314 rgBT 47
1975	Effective Gas Separation Performance Enhancement Obtained by Constructing Polymorphous Core–Shell Metal–Organic Frameworks. ACS Applied Materials & Core— Interfaces, 2019, 11, 30234-30239.	8.0	19
1976	Thermodynamic evidence of a transition in ZIF-8 upon CH ₄ sorption. Physical Chemistry Chemical Physics, 2019, 21, 16252-16257.	2.8	2

#	Article	IF	CITATIONS
1977	Insights into the role of zirconium in proline functionalized metal-organic frameworks attaining high enantio- and diastereoselectivity. Journal of Catalysis, 2019, 377, 41-50.	6.2	33
1978	Defective hierarchical porous copper-based metal-organic frameworks synthesised via facile acid etching strategy. Scientific Reports, 2019, 9, 10887.	3.3	37
1979	Interface Energy of Crystal Faces of IID•Type Metals at Boundaries with Nonpolar Organic Liquids, Allowing for Dispersion and Polarization Corrections. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 760-763.	0.6	2
1980	Outstanding methane gravimetric working capacity of computationally designed rhr-MOFs. Microporous and Mesoporous Materials, 2019, 290, 109621.	4.4	1
1981	Cockle Shell-Derived Calcium Carbonate (Aragonite) Nanoparticles: A Dynamite to Nanomedicine. Applied Sciences (Switzerland), 2019, 9, 2897.	2.5	35
1982	Ionic Liquids-Functionalized Zeolitic Imidazolate Framework for Carbon Dioxide Adsorption. Materials, 2019, 12, 2361.	2.9	23
1983	Metal–Organic Frameworks for Food Safety. Chemical Reviews, 2019, 119, 10638-10690.	47.7	366
1984	The chemistry of multi-component and hierarchical framework compounds. Chemical Society Reviews, 2019, 48, 4823-4853.	38.1	196
1985	Synthesis of mixed-linker Zr-MOFs for emerging contaminant adsorption and photodegradation under visible light. Chemical Engineering Journal, 2019, 378, 122118.	12.7	86
1986	Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem, 2019, 1, 100006.	19.1	434
1987	Synthesis of porous coordination polymers using carbon dioxide as a direct source. Chemical Communications, 2019, 55, 9283-9286.	4.1	5
1988	Synthesis and Characterization of Zn-Carboxylate Metal–Organic Frameworks Containing Triazatruxene Ligands. Australian Journal of Chemistry, 2019, 72, 786.	0.9	5
1989	Prussian blue analogues derived binary nickel-cobalt selenide for enhanced pseudocapacitance and oxygen evolution reaction. Vacuum, 2019, 170, 108965.	3.5	24
1990	Inserting Amide into NOTT-101 to Sharply Enhance Volumetric and Gravimetric Methane Storage Working Capacity. Inorganic Chemistry, 2019, 58, 13782-13787.	4.0	10
1991	A Metal–Organic Framework of Organic Vertices and Polyoxometalate Linkers as a Solid-State Electrolyte. Journal of the American Chemical Society, 2019, 141, 17522-17526.	13.7	216
1992	Synthesis, phase transitions and vitrification of the zeolitic imidazolate framework: ZIF-4. Journal of Non-Crystalline Solids, 2019, 525, 119665.	3.1	11
1993	Solvent-Free Synthetic Route for Cerium(IV) Metal–Organic Frameworks with UiO-66 Architecture and Their Photocatalytic Applications. ACS Applied Materials & Samp; Interfaces, 2019, 11, 45031-45037.	8.0	58
1995	Metal-organic framework structures: adsorbents for natural gas storage. Russian Chemical Reviews, 2019, 88, 925-978.	6.5	57

#	Article	IF	CITATIONS
1996	Elucidating the Interaction of CO2 in the Giant Metal–Organic Framework MIL-100 through Large-Scale Periodic Ab Initio Modeling. Journal of Physical Chemistry C, 2019, 123, 28677-28687.	3.1	15
1998	Atomic―and Molecular‣evel Design of Functional Metal–Organic Frameworks (MOFs) and Derivatives for Energy and Environmental Applications. Advanced Science, 2019, 6, 1901129.	11.2	121
1999	Lithiumâ€Doped Silicaâ€Rich MILâ€101(Cr) for Enhanced Hydrogen Uptake. Chemistry - an Asian Journal, 2019, 14, 3728-3735.	3.3	5
2000	Lanthanide (III) Metalâ€Organic Frameworks: Syntheses, Structures and Supercapacitor Application. ChemistrySelect, 2019, 4, 10624-10631.	1.5	12
2001	<i>In situ</i> synthesis and encapsulation of copper phthalocyanine into MIL-101(Cr) and MIL-100(Fe) pores and investigation of their catalytic performance in the epoxidation of styrene. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1118-1131.	0.8	6
2002	The synthetic strategies of metal–organic framework membranes, films and 2D MOFs and their applications in devices. Journal of Materials Chemistry A, 2019, 7, 21004-21035.	10.3	94
2003	Azide-Based High-Energy Metal–Organic Frameworks with Enhanced Thermal Stability. ACS Omega, 2019, 4, 14398-14403.	3.5	10
2004	One-Step Synthesis of an Adaptive Nanographene MOF: Adsorbed Gas-Dependent Geometrical Diversity. Journal of the American Chemical Society, 2019, 141, 15649-15655.	13.7	27
2005	Assessing negative thermal expansion in mesoporous metal–organic frameworks by molecular simulation. Journal of Materials Chemistry A, 2019, 7, 24019-24026.	10.3	27
2006	Implementing Metal-Organic Frameworks for Natural Gas Storage. Crystals, 2019, 9, 406.	2.2	37
2007	Synthesis of Cull/ZIF-8 Metal-organic Framework Catalyst and Its Application in the Aerobic Oxidation of Alcohols. Chemical Research in Chinese Universities, 2019, 35, 860-865.	2.6	8
2008	Diffusion Kinetics of CO ₂ , CH ₄ , and their Binary Mixtures in Porous Organic Cage CC3 . Journal of Physical Chemistry C, 2019, 123, 24172-24180.	3.1	10
2009	Grafting Free Carboxylic Acid Groups onto the Pore Surface of 3D Porous Coordination Polymers for High Proton Conductivity. Chemistry of Materials, 2019, 31, 8494-8503.	6.7	40
2010	Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nature Reviews Materials, 2019, 4, 708-725.	48.7	214
2011	Development and Applications of MOFs Derivative One-Dimensional Nanofibers via Electrospinning 1/4 š A Mini-Review. Nanomaterials, 2019, 9, 1306.	4.1	38
2012	Recent progress in the synthesis, structural diversity and emerging applications of cyclodextrin-based metal–organic frameworks. Journal of Materials Chemistry B, 2019, 7, 5602-5619.	5.8	53
2013	Synthesis and Characterization of Core-Shell Metal-Organic Framework (ZIF-67@ZIF-8) Particles. Journal of the Society of Powder Technology, Japan, 2019, 56, 181-186.	0.1	1
2014	Geometry Mismatch and Reticular Chemistry: Strategies To Assemble Metal–Organic Frameworks with Non-default Topologies. Journal of the American Chemical Society, 2019, 141, 16517-16538.	13.7	90

#	Article	IF	CITATIONS
2015	Atomic-level dispersed catalysts for PEMFCs: Progress and future prospects. EnergyChem, 2019, 1, 100018.	19.1	50
2016	Bibliometrical analysis of hydrogen storage. International Journal of Hydrogen Energy, 2019, 44, 28206-28226.	7.1	45
2017	Tuning the Molecular and Cationic Affinity in a Series of Multifunctional Metal–Organic Frameworks Based on Dodecanuclear Zn(II) Carboxylate Wheels. Journal of the American Chemical Society, 2019, 141, 17260-17269.	13.7	83
2018	Desulfurization of Liquid Hydrocarbon Fuels with Microporous and Mesoporous Materials: Metal-Organic Frameworks, Zeolites, and Mesoporous Silicas. Industrial & Engineering Chemistry Research, 2019, 58, 19322-19352.	3.7	34
2019	Metal–Organic Framework (MOF)-based Nanomaterials for Biomedical Applications. Current Medicinal Chemistry, 2019, 26, 3341-3369.	2.4	117
2020	Increasing Exposed Metal Site Accessibility in a Co-MOF-74 Material With Induced Structure-Defects. Frontiers in Materials, 2019, 6, .	2.4	21
2021	Investigation of Methane Adsorption in Strained IRMOF-1. Journal of Physical Chemistry C, 2019, 123, 24592-24597.	3.1	8
2022	A pillared-layer strategy to construct water-stable Zn–organic frameworks for iodine capture and luminescence sensing of Fe ³⁺ . Dalton Transactions, 2019, 48, 602-608.	3.3	29
2023	Jolly green MOF: confinement and photoactivation of photosystem I in a metal–organic framework. Nanoscale Advances, 2019, 1, 94-104.	4.6	18
2024	Laser-induced synthesis of ZIF-67: a facile approach for the fabrication of crystalline MOFs with tailored size and geometry. Materials Chemistry Frontiers, 2019, 3, 1302-1309.	5.9	20
2025	Rational design W-doped Co-ZIF-9 based Co ₃ S ₄ composite photocatalyst for efficient visible-light-driven photocatalytic H ₂ evolution. Sustainable Energy and Fuels, 2019, 3, 173-183.	4.9	35
2026	A metal–organic framework film with a switchable anodic and cathodic behaviour in a photo-electrochemical cell. Journal of Materials Chemistry A, 2019, 7, 3046-3053.	10.3	32
2027	Removal of Congo red by two new zirconium metal–organic frameworks: kinetics and isotherm study. Monatshefte FÃ⅓r Chemie, 2019, 150, 193-205.	1.8	10
2028	Metal–Organic Frameworks Grafted by Univariate and Multivariate Heterocycles for Enhancing CO2 Capture: A Molecular Simulation Study. Industrial & Engineering Chemistry Research, 2019, 58, 2195-2205.	3.7	17
2029	Unbalanced MOF-on-MOF growth for the production of a lopsided core–shell of MIL-88B@MIL-88A with mismatched cell parameters. Chemical Communications, 2019, 55, 43-46.	4.1	57
2030	Conformational isomerism controls collective flexibility in metal–organic framework DUT-8(Ni). Physical Chemistry Chemical Physics, 2019, 21, 674-680.	2.8	39
2031	Copper hydride clusters in energy storage and conversion. Dalton Transactions, 2019, 48, 3531-3538.	3.3	82
2032	Lanthanide organic frameworks geometry prediction accuracies of quantum chemical calculations. Journal of Molecular Structure, 2019, 1184, 310-315.	3.6	4

#	Article	IF	CITATIONS
2033	Preparation of a ZIF-67 Derived Thin Film Electrode via Electrophoretic Deposition for Efficient Electrocatalytic Oxidation of Vanillin. Inorganic Chemistry, 2019, 58, 3196-3202.	4.0	26
2034	Our journey of developing multifunctional metal-organic frameworks. Coordination Chemistry Reviews, 2019, 384, 21-36.	18.8	126
2035	Phase Transformations of Metal–Organic Frameworks MAF-6 and ZIF-71 during Intrusion–Extrusion Experiments. Journal of Physical Chemistry C, 2019, 123, 4319-4328.	3.1	21
2036	Increasing topological diversity during computational "synthesis―of porous crystals: how and why. CrystEngComm, 2019, 21, 1653-1665.	2.6	69
2037	2D Black Phosphorus–Based Biomedical Applications. Advanced Functional Materials, 2019, 29, 1808306.	14.9	438
2038	CO2 capture from high concentration CO2 natural gas by pressure swing adsorption at the CO2CRC Otway site, Australia. International Journal of Greenhouse Gas Control, 2019, 83, 1-10.	4.6	31
2039	Recent advances of nanocarbon-inorganic hybrids in photocatalysis., 2019,, 521-588.		5
2041	Metal-organic frameworks cavity size effect on the extraction of organic pollutants. Materials Letters, 2019, 250, 92-95.	2.6	25
2042	High dispersion of polyethyleneimine within mesoporous UiO-66s through pore size engineering for selective CO2 capture. Chemical Engineering Journal, 2019, 375, 121962.	12.7	26
2043	An adjustable dual-emission fluorescent metal-organic framework: Effective detection of multiple metal ions, nitro-based molecules and DMA. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117283.	3.9	27
2044	Synthesis, and characterization of metal-organic frameworks -177 for static and dynamic adsorption behavior of CO2 and CH4. Microporous and Mesoporous Materials, 2019, 288, 109569.	4.4	50
2045	Crystal Structure And Luminescent Property of a New Two-Dimensional Polymer Based on 1,4-Bis(4-(Imidazole-1-yl)Benzyl)Piperazine. Journal of Structural Chemistry, 2019, 60, 803-809.	1.0	2
2046	Porous Coordination Polymers. Polymers and Polymeric Composites, 2019, , 181-223.	0.6	1
2047	SIFSIX-3-Zn/PIM-1 mixed matrix membranes with enhanced permeability for propylene/propane separation. Journal of Membrane Science, 2019, 588, 117201.	8.2	45
2048	Three-dimensional Cu/C porous composite: Facile fabrication and efficient catalytic reduction of 4-nitrophenol. Journal of Colloid and Interface Science, 2019, 553, 768-777.	9.4	41
2049	Highly sensitive and selective detect of <i>p</i> â€arsanilic acid with a new waterâ€stable europium metal–organic framework. Applied Organometallic Chemistry, 2019, 33, e5021.	3.5	19
2050	Molecular simulations on CO2 adsorption and adsorptive separation in fullerene impregnated MOF-177, MOF-180 and MOF-200. Computational Materials Science, 2019, 168, 58-64.	3.0	40
2051	Molecular Sieving and Direct Visualization of CO ₂ in Binding Pockets of an Ultramicroporous Lanthanide Metal–Organic Framework Platform. ACS Applied Materials & Lanthanide Metal—Organic Framework Platform. ACS Applied Materials & Lanthanide Metal–Organic Framework Platform. ACS Applied Materials & Lanthanide Metal—Organic Framework Platform. ACS Applied Materials & Lanthanide Metal—Organic Framework Platform. ACS Applied Materials & Lanthanide Metal–Organic Framework Platform. ACS Applied Materials & Lanthanide Metal—Organic Framework Platform. ACS Applied Materials & Lanthanide Metal—Organic Framework Platform. ACS Applied Materials & Lanthanide Metal†& Lanthanide & Lanthanide Metal†& Lanthanide & Lantha	8.0	26

#	Article	IF	Citations
2052	Inversion of Dispersion: Colloidal Stability of Calixarene-Modified Metal–Organic Framework Nanoparticles in Nonpolar Media. Journal of the American Chemical Society, 2019, 141, 12182-12186.	13.7	23
2053	Hierarchical Structure with Highly Ordered Macroporous-Mesoporous Metal-Organic Frameworks as Dual Function for CO2 Fixation. IScience, 2019, 15, 514-523.	4.1	56
2054	Synthesis, Properties, and Their Potential Application of Covalent Organic Frameworks (COFs)., 0,,.		4
2055	Metallo(salen) complexes as versatile building blocks for the fabrication of molecular materials and devices with tuned properties. Coordination Chemistry Reviews, 2019, 394, 104-134.	18.8	74
2056	The Roles of Intrinsic Barriers and Crystal Fluidity in Determining the Dynamics of Crystalline Molecular Rotors and Molecular Machines. Journal of Organic Chemistry, 2019, 84, 9835-9849.	3.2	38
2057	A novel Zr-MOF-based and polyaniline-coated UIO-67@Se@PANI composite cathode for lithium–selenium batteries. Dalton Transactions, 2019, 48, 10191-10198.	3.3	17
2058	Imparting gas selective and pressure dependent porosity into a non-porous solid <i>via</i> coordination flexibility. Materials Horizons, 2019, 6, 1883-1891.	12.2	17
2059	A three-dimensional Cd(<scp>ii</scp>) metal–organic framework: a bifunctional luminescence sensor for benzaldehyde and Fe ²⁺ ions. New Journal of Chemistry, 2019, 43, 10575-10582.	2.8	12
2060	Label-free electrochemiluminescence immunosensor based on Ce-MOF@g-C3N4/Au nanocomposite for detection of N-terminal pro-B-type natriuretic peptide. Journal of Electroanalytical Chemistry, 2019, 847, 113222.	3.8	18
2061	Tuning the CO2 adsorption by the selection of suitable ionic liquids at ZIF-8 confinement: A DFT study. Applied Surface Science, 2019, 491, 633-639.	6.1	29
2062	Ligand Charge Separation To Build Highly Stable Quasi-Isomer of MOF-74-Zn. Journal of the American Chemical Society, 2019, 141, 9808-9812.	13.7	49
2063	KoBra: A rate constant method for prediction of the diffusion of sorbates inside nanoporous materials at different loadings. Journal of Computational Chemistry, 2019, 40, 2053-2066.	3.3	3
2064	Laccase immobilization on amino-functionalized magnetic metal organic framework for phenolic compound removal. Chemosphere, 2019, 233, 327-335.	8.2	125
2065	Universal Scaling Law for Methane Capture Quantity in Metal–Organic Frameworks. Advanced Theory and Simulations, 2019, 2, 1800170.	2.8	2
2066	Solvent-assisted ligand exchange (SALE) for the enhancement of epoxide ring-opening reaction catalysis based on three amide-functionalized metal–organic frameworks. Dalton Transactions, 2019, 48, 8803-8814.	3.3	35
2067	Regeneration, degradation, and toxicity effect of MOFs: Opportunities and challenges. Environmental Research, 2019, 176, 108488.	7.5	167
2068	Ion/Molecule Transportation in Nanopores and Nanochannels: From Critical Principles to Diverse Functions. Journal of the American Chemical Society, 2019, 141, 8658-8669.	13.7	263
2069	Vanadium Catalyst on Isostructural Transition Metal, Lanthanide, and Actinide Based Metal–Organic Frameworks for Alcohol Oxidation. Journal of the American Chemical Society, 2019, 141, 8306-8314.	13.7	112

#	Article	IF	CITATIONS
2070	A zinc(ii) metal–organic framework with high affinity for CO2 based on triazole and tetrazolyl benzene carboxylic acid. CrystEngComm, 2019, 21, 3679-3685.	2.6	9
2071	Temperature-dependent interchromophoric interaction in a fluorescent pyrene-based metal–organic framework. Chemical Science, 2019, 10, 6140-6148.	7.4	45
2072	From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5. Journal of Chemical Theory and Computation, 2019, 15, 3793-3809.	5.3	72
2073	A New Class of Rigid Multi(azobenzene) Switches Featuring Electronic Decoupling: Unravelling the Isomerization in Individual Photochromes. Journal of the American Chemical Society, 2019, 141, 9273-9283.	13.7	43
2074	Formation of Giant and Small Cyclic Complexes from a Flexible Tripeptide Ligand Controlled by Metal Coordination and Hydrogen Bonds. Journal of the American Chemical Society, 2019, 141, 8675-8679.	13.7	24
2075	Electric field assisted activation of CO2 over P-doped graphene: A DFT study. Journal of Molecular Graphics and Modelling, 2019, 90, 192-198.	2.4	41
2076	Li-doped and functionalized metal-organic framework-519 for enhancing hydrogen storage: A computational study. Computational Materials Science, 2019, 166, 179-186.	3.0	22
2077	MOF-SMO hybrids as a H2S sensor with superior sensitivity and selectivity. Sensors and Actuators B: Chemical, 2019, 292, 32-39.	7.8	67
2078	Mesoporous Composite Nanomaterials for Dye Removal and Other Applications. , 2019, , 265-293.		17
2079	Analysis on solar energy powered cooling system based on desiccant coated heat exchanger using metal-organic framework. Energy, 2019, 177, 211-221.	8.8	47
2080	The impact of an isoreticular expansion strategy on the performance of iodine catalysts supported in multivariate zirconium and aluminum metal†organic frameworks. Dalton Transactions, 2019, 48, 6445-6454.	3.3	14
2081	A microporous metal–organic framework with soc topology for adsorption and separation selectivity of C2H2/CO2. Chemical Papers, 2019, 73, 2371-2375.	2.2	3
2082	Mg@C60 nano-lamellae and its 12.50Âwt% hydrogen storage capacity. International Journal of Hydrogen Energy, 2019, 44, 15239-15245.	7.1	24
2083	Estimation of system-level hydrogen storage for metal-organic frameworks with high volumetric storage density. International Journal of Hydrogen Energy, 2019, 44, 15135-15145.	7.1	53
2084	Linker-Doped Zeolitic Imidazolate Frameworks (ZIFs) and Their Ultrathin Membranes for Tunable Gas Separations. ACS Applied Materials & Separations. ACS Applied Materials & Separations. ACS Applied Materials & Separations.	8.0	44
2085	Metal-Organic Frameworks. Green Energy and Technology, 2019, , 137-172.	0.6	7
2086	Synthesis of Telmisartan Organotin(IV) Complexes and their use as Carbon Dioxide Capture Media. Molecules, 2019, 24, 1631.	3.8	26
2087	Multifunctional mesoporous curcumin encapsulated iron-phenanthroline nanocluster: A new Anti-HIV agent. Colloids and Surfaces B: Biointerfaces, 2019, 180, 289-297.	5.0	24

#	Article	IF	Citations
2088	CO2 Storage on Metal-Organic Frameworks. Green Energy and Technology, 2019, , 331-358.	0.6	1
2089	Mixed Ti-Zr metal-organic-frameworks for the photodegradation of acetaminophen under solar irradiation. Applied Catalysis B: Environmental, 2019, 253, 253-262.	20.2	137
2090	Electroforming of a metal–organic framework on porous copper hollow fibers. Journal of Materials Chemistry A, 2019, 7, 12616-12626.	10.3	17
2091	Theoretical study of heterofullerene-linked metal–organic framework with lithium doping for CO2 capture and separation from CO2/CH4 and CO2/H2 mixtures. Microporous and Mesoporous Materials, 2019, 284, 385-392.	4.4	16
2092	A highly conductive nanostructured PEDOT polymer confined into the mesoporous MIL-100(Fe). Dalton Transactions, 2019, 48, 9807-9817.	3.3	30
2093	Insights into the water adsorption mechanism in the chemically stable zirconium-based MOF DUT-67 – a prospective material for adsorption-driven heat transformations. Journal of Materials Chemistry A, 2019, 7, 12681-12690.	10.3	51
2094	Nanoporous Materials for Gas Storage. Green Energy and Technology, 2019, , .	0.6	14
2095	Co ₃ O ₄ @Cuâ€Based Conductive Metal–Organic Framework Core–Shell Nanowire Electrocatalysts Enable Efficient Lowâ€Overallâ€Potential Water Splitting. Chemistry - A European Journal, 2019, 25, 6575-6583.	3.3	64
2096	Rapid in situ microwave synthesis of Fe3O4@MIL-100(Fe) for aqueous diclofenac sodium removal through integrated adsorption and photodegradation. Journal of Hazardous Materials, 2019, 373, 408-416.	12.4	148
2098	Metal-Organic Framework Composites IPMC Sensors and Actuators. Engineering Materials, 2019, , 1-18.	0.6	0
2099	Efficient Conversion of CO ₂ via Grafting Urea Group into a [Cu ₂ (COO) ₄]-Based Metal–Organic Framework with Hierarchical Porosity. Inorganic Chemistry, 2019, 58, 4385-4393.	4.0	43
2100	lon-matching porous carbons with ultra-high surface area and superior energy storage performance for supercapacitors. Journal of Materials Chemistry A, 2019, 7, 9163-9172.	10.3	47
2101	Harnessing Bottomâ€Up Selfâ€Assembly To Position Five Distinct Components in an Ordered Porous Framework. Angewandte Chemie, 2019, 131, 5402-5407.	2.0	10
2102	Deep eutectic solvents appended to UiO-66 type metal organic frameworks: Preserved open metal sites and extra adsorption sites for CO2 capture. Applied Surface Science, 2019, 480, 770-778.	6.1	48
2103	Bio-related applications of porous organic frameworks (POFs). Journal of Materials Chemistry B, 2019, 7, 2398-2420.	5.8	34
2104	Metalâ^'Organic Frameworks for Highâ€Energy Lithium Batteries with Enhanced Safety: Recent Progress and Future Perspectives. Batteries and Supercaps, 2019, 2, 591-626.	4.7	45
2105	Postfunctionalized Metalloligand-Based Catenated Coordination Polymers: Syntheses, Structures, and Effect of Labile Sites on Catalysis. Crystal Growth and Design, 2019, 19, 2723-2735.	3.0	7
2106	Design Rules for Metalâ€Organic Framework Stability in Highâ€Pressure Hydrogen Environments. ChemPhysChem, 2019, 20, 1305-1310.	2.1	9

#	Article	IF	CITATIONS
2107	Metal–organic frameworks with multicomponents in order. Coordination Chemistry Reviews, 2019, 388, 107-125.	18.8	82
2108	MOF-templated self-polymerization of $\langle i \rangle p \langle i \rangle$ -phenylenediamine to a polymer with a hollow box-assembled spherical structure. Chemical Communications, 2019, 55, 4071-4074.	4.1	15
2109	On the water stability of ionic liquids/Cu-BTC composites: an experimental study. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	11
2110	Synthesis and Crystal Structure of 2D Coordination Polymer {[Cu(dps)2(DMSO)2](ClO4)2}n Based on 4,4′-Dipyridyl Sulfide. Russian Journal of General Chemistry, 2019, 89, 82-86.	0.8	1
2111	Synthesis of Cu Al hydrotalcite-SBA-15 composites and CO2 capture using the sorbent. Applied Surface Science, 2019, 481, 337-343.	6.1	20
2112	A pyrocarbonate intermediate for CO2 activation and selective conversion in bifunctional metal-organic frameworks. Journal of Catalysis, 2019, 373, 37-47.	6.2	12
2117	Utilization of zeolite as a potential multi-functional proppant for CO2 enhanced shale gas recovery and CO2 sequestration: A molecular simulation study on the competitive adsorption of CH4 and CO2 in zeolite and organic matter. Fuel, 2019, 249, 119-129.	6.4	17
2118	Superior Performance of Mesoporous MOF MIL-100 (Fe) Impregnated with Ionic Liquids for CO ₂ Adsorption. Journal of Chemical & Engineering Data, 2019, 64, 2221-2228.	1.9	17
2119	Modeling the Crystallization and Emplacement Conditions of a Basaltic Trachyandesitic Sill at Mt. Etna Volcano. Minerals (Basel, Switzerland), 2019, 9, 126.	2.0	9
2120	Improved CO2 adsorption capacity and CO2/CH4 and CO2/N2 selectivity in novel hollow silica particles by modification with multi-walled carbon nanotubes containing amine groups. Polyhedron, 2019, 166, 175-185.	2.2	34
2121	Recent developments in biomass-derived carbon as a potential sustainable material for super-capacitor-based energy storage and environmental applications. Journal of Analytical and Applied Pyrolysis, 2019, 140, 54-85.	5.5	118
2122	Changing the Hydrophobic MOF Pores through Encapsulating Fullerene C ₆₀ and Metallofullerene Sc ₃ C ₂ @C ₈₀ . Journal of Physical Chemistry C, 2019, 123, 6265-6269.	3.1	21
2123	Metalâ€Organic Frameworks for Hydrogen Energy Applications: Advances and Challenges. ChemPhysChem, 2019, 20, 1177-1215.	2.1	56
2124	Concepts for improving hydrogen storage in nanoporous materials. International Journal of Hydrogen Energy, 2019, 44, 7768-7779.	7.1	160
2125	Harnessing solvent effects to integrate alkylamine into metal–organic frameworks for exceptionally high CO ₂ uptake. Journal of Materials Chemistry A, 2019, 7, 7867-7874.	10.3	39
2126	Solid-State Electrochemistry of Copper(I) Coordination Polymers Containing Tetrafluoroborate Anions. Inorganic Chemistry, 2019, 58, 2379-2385.	4.0	5
2127	In Situ Synthesis of a Sandwich-like Graphene@ZIF-67 Heterostructure for Highly Sensitive Nonenzymatic Glucose Sensing in Human Serums. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9374-9384.	8.0	141
2128	Structural evolution in a melt-quenched zeolitic imidazolate framework glass during heat-treatment. Chemical Communications, 2019, 55, 2521-2524.	4.1	21

#	Article	IF	CITATIONS
2129	Violet Luminescence from Zinc-Based Metal-Organic Frameworks Prepared by Solvothermal Synthesis. Bulletin of the Chemical Society of Japan, 2019, 92, 427-434.	3.2	8
2130	Square Grid Metal–Chloranilate Networks as Robust Host Systems for Guest Sorption. Chemistry - A European Journal, 2019, 25, 5222-5234.	3.3	31
2131	MOFs derived Ag/ZnO nanocomposites anode for Zn/Ni batteries. Journal of Solid State Chemistry, 2019, 272, 27-31.	2.9	19
2132	Zeolitic imidazole framework templated synthesis of nanoporous carbon as a coating for stir bar sorptive extraction of fluorouracil and phenobarbital in human body fluids. Microchemical Journal, 2019, 146, 798-806.	4.5	26
2133	Two 3D Cobalt(II) Metal–Organic Frameworks with Micropores for Selective Dye Adsorption. Inorganic Chemistry, 2019, 58, 3130-3136.	4.0	69
2134	Harnessing Bottomâ€Up Selfâ€Assembly To Position Five Distinct Components in an Ordered Porous Framework. Angewandte Chemie - International Edition, 2019, 58, 5348-5353.	13.8	48
2135	Enhancing air-stability of CH3NH3PbBr3 perovskite quantum dots by in-situ growth in metal-organic frameworks and their applications in light emitting diodes. Journal of Solid State Chemistry, 2019, 272, 221-226.	2.9	31
2136	Tuning of Redox Conductivity and Electrocatalytic Activity in Metal–Organic Framework Films Via Control of Defect Site Density. Journal of Physical Chemistry C, 2019, 123, 5531-5539.	3.1	53
2137	Environmentally Friendly, Co-catalyst-Free Chemical Fixation of CO ₂ at Mild Conditions Using Dual-Walled Nitrogen-Rich Three-Dimensional Porous Metal–Organic Frameworks. Inorganic Chemistry, 2019, 58, 3925-3936.	4.0	111
2139	Geminal Coordinatively Unsaturated Sites on MOFâ€808 for the Selective Uptake of Phenolics from a Real Bioâ€Oil Mixture. ChemSusChem, 2019, 12, 1256-1266.	6.8	29
2140	Luminescent Metal–Organic Framework for Lithium Harvesting Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 6561-6568.	6.7	21
2141	Development of advanced materials via entropy engineering. Scripta Materialia, 2019, 165, 164-169.	5.2	74
2142	Metal-organic framework based membranes for gas separation. , 2019, , 203-226.		3
2143	Controllable preparation of porous hollow carbon sphere@ZIF-8: Novel core-shell nanomaterial for Pb2+ adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568, 461-469.	4.7	58
2144	Fine-Tuning Porosity and Time-Resolved Observation of the Nucleation and Growth of Single Platinum Nanoparticles. ACS Nano, 2019, 13, 4572-4581.	14.6	38
2145	ZIF-8-Based Quasi-Solid-State Electrolyte for Lithium Batteries. ACS Applied Materials & Diterfaces, 2019, 11, 46671-46677.	8.0	61
2146	Simultaneous laser-induced synthesis and micro-patterning of a metal organic framework. Chemical Communications, 2019, 55, 12773-12776.	4.1	16
2147	Thioether-based recyclable metal–organic frameworks for selective and efficient removal of Hg ²⁺ from water. Dalton Transactions, 2019, 48, 17800-17809.	3.3	19

#	Article	IF	CITATIONS
2148	Zn (BDC)-(MOF): Introduction of a New Catalyst for the Synthesis Pyrimido[4,5- <i>d</i>)Pyrimidine Derivatives under Ultrasound Irradiation in the Absence of Solvent. Polycyclic Aromatic Compounds, 2021, 41, 1580-1589.	2.6	12
2149	Synthesis of NH ₂ â€MILâ€125/NH ₂ â€MILâ€125â€P@TiO ₂ and Its Adsorpti Uranyl Ions. ChemistrySelect, 2019, 4, 12801-12806.	on to 1.5	6
2150	Enhanced interfacial strength of carbon fiber/PEEK composites using a facile approach via PEI&ZIF-67 synergistic modification. Journal of Materials Research and Technology, 2019, 8, 6289-6300.	5.8	39
2151	Density Functional Theory Studies on Zeolitic Imidazolate Framework-8 and Ionic Liquid-Based Composite Materials. ACS Omega, 2019, 4, 22655-22666.	3.5	21
2152	Insight into the structure and bonding of copper(i) iodide clusters and a cluster-based coordination polymer. New Journal of Chemistry, 2019, 43, 16176-16187.	2.8	4
2153	Rotational dynamics of the organic bridging linkers in metal–organic frameworks and their substituent effects on the rotational energy barrier. RSC Advances, 2019, 9, 38137-38147.	3.6	24
2154	A Zn(<scp>ii</scp>) metal–organic framework based on bimetallic paddle wheels as a luminescence indicator for carcinogenic organic pollutants: phthalate esters. RSC Advances, 2019, 9, 37101-37108.	3.6	5
2155	Advancement in porous adsorbents for post-combustion CO2 capture. Microporous and Mesoporous Materials, 2019, 276, 107-132.	4.4	129
2156	Elution-free ultra-sensitive enrichment for glycopeptides analyses: Using a degradable, post-modified Ce-metal–organic framework. Analytica Chimica Acta, 2019, 1045, 123-131.	5.4	28
2157	Computational Tuning of the Paddlewheel tcb-MOF Family for Advanced Methane Sorption. ACS Applied Energy Materials, 2019, 2, 222-231.	5.1	4
2158	ZIF-67@Se@MnO ₂ : A Novel Co-MOF-Based Composite Cathode for Lithium–Selenium Batteries. Journal of Physical Chemistry C, 2019, 123, 2048-2055.	3.1	35
2159	Progress in hydrometallurgical technologies to recover critical raw materials and precious metals from low-concentrated streams. Resources, Conservation and Recycling, 2019, 142, 177-188.	10.8	73
2160	Energy storage materials from clay minerals and zeolite-like structures. , 2019, , 275-288.		0
2161	H2 adsorption on Cu(I)-ZSM-5: Exploration of Cu(I)-exchange in solution. International Journal of Hydrogen Energy, 2019, 44, 18866-18874.	7.1	6
2162	Hollow Fiber Stir Bar Sorptive Extraction Combined with GC–MS for the Determination of Phthalate Esters from Children's Food. Chromatographia, 2019, 82, 683-693.	1.3	21
2163	Pt nanoparticles embedded metal-organic framework nanosheets: A synergistic strategy towards bifunctional oxygen electrocatalysis. Applied Catalysis B: Environmental, 2019, 245, 389-398.	20.2	66
2164	Water-Stable Metal–Organic Framework Material with Uncoordinated Terpyridine Site for Selective Th(IV)/Ln(III) Separation. ACS Sustainable Chemistry and Engineering, 2019, 7, 3120-3126.	6.7	37
2165	Enzymes@ZIF-8 Nanocomposites with Protection Nanocoating: Stability and Acid-Resistant Evaluation. Polymers, 2019, 11, 27.	4.5	52

#	ARTICLE	IF	CITATIONS
2166	Poly(ionic liquid)s: Platform for CO2 capture and catalysis. Current Opinion in Green and Sustainable Chemistry, 2019, 16, 39-46.	5.9	47
2167	Extremely Hydrophobic POPs to Access Highly Porous Storage Media and Capturing Agent for Organic Vapors. CheM, 2019, 5, 180-191.	11.7	42
2168	Wellâ€Arranged and Confined Incorporation of PdCo Nanoparticles within a Hollow and Porous Metal–Organic Framework for Superior Catalytic Activity. Angewandte Chemie - International Edition, 2019, 58, 866-871.	13.8	69
2169	How to quantify isotropic negative thermal expansion: magnitude, range, or both?. Materials Horizons, 2019, 6, 211-218.	12.2	68
2170	Metal–Organic Frameworks in Dye-Sensitized Solar Cells. Energy, Environment, and Sustainability, 2019, , 175-219.	1.0	8
2171	Hierarchical porous zeolitic imidazolate frameworks nanoparticles for efficient adsorption of rare-earth elements. Microporous and Mesoporous Materials, 2019, 278, 175-184.	4.4	149
2172	Metal–organic frameworks: Structures and functional applications. Materials Today, 2019, 27, 43-68.	14.2	627
2173	Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes. Nature Materials, 2019, 18, 163-168.	27.5	172
2174	Guestâ€Triggered Aggregationâ€Induced Emission in Silver Chalcogenolate Cluster Metal–Organic Frameworks. Advanced Science, 2019, 6, 1801304.	11.2	120
2175	Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coordination Chemistry Reviews, 2019, 380, 330-352.	18.8	447
2176	The quest for optimal water quantity in the synthesis of metal-organic framework MOF-5. Microporous and Mesoporous Materials, 2019, 278, 23-29.	4.4	40
2177	Solid and Solidâ€Like Composite Electrolyte for Lithium Ion Batteries: Engineering the Ion Conductivity at Interfaces. Advanced Materials Interfaces, 2019, 6, 1800899.	3.7	72
2178	Tunable multi-color luminescence and white emission in lanthanide ion functionalized polyoxometalate-based metal–organic frameworks hybrids and fabricated thin films. Journal of Alloys and Compounds, 2019, 777, 415-422.	5.5	17
2179	Hydrogen storage in MIL-88 series. Journal of Materials Science, 2019, 54, 3994-4010.	3.7	27
2180	Diverse structural assemblies and influence in morphology of different parameters in a series of OD and 1D mercury(II) metal–organic coordination complexes by sonochemical process. Polyhedron, 2019, 160, 20-34.	2.2	14
2181	Nontargeted Detection Methods for Food Safety and Integrity. Annual Review of Food Science and Technology, 2019, 10, 429-455.	9.9	59
2182	Recent Progress on Engineering Highly Efficient Porous Semiconductor Photocatalysts Derived from Metal–Organic Frameworks. Nano-Micro Letters, 2019, 11, 1.	27.0	364
2183	Resorcinol–Formaldehyde Resin-Coated Prussian Blue Core–Shell Spheres and Their Derived Unique Yolk–Shell FeS ₂ @C Spheres for Lithium-Ion Batteries. Inorganic Chemistry, 2019, 58, 1330-1338.	4.0	52

#	Article	IF	CITATIONS
2184	Preferential deposition of cyanometallate coordination polymer nanoplates through evaporation of droplets. Chinese Chemical Letters, 2019, 30, 630-633.	9.0	11
2185	A New Biscarbazoleâ€Based Metal–Organic Framework for Efficient Host–Guest Energy Transfer. Chemistry - A European Journal, 2019, 25, 1901-1905.	3.3	16
2186	Mechanically fabricated Metal–organic framework/resin composite nanoparticles for efficient basic catalysis. Applied Organometallic Chemistry, 2019, 33, e4788.	3.5	5
2187	High-efficiency separation performance of oil-water emulsions of polyacrylonitrile nanofibrous membrane decorated with metal-organic frameworks. Applied Surface Science, 2019, 476, 61-69.	6.1	103
2188	Cyclodextrin-metal–organic framework (CD-MOF): From synthesis to applications. Journal of Industrial and Engineering Chemistry, 2019, 72, 50-66.	5.8	153
2189	Enhanced hydrothermal stability of Cu MOF by post synthetic modification with amino acids. Vacuum, 2019, 164, 449-457.	3.5	75
2190	Molecular-Level Understanding of Translational and Rotational Motions of C ₂ H ₆ , C ₃ H ₈ , and <i>n</i> -C ₄ H ₁₀ and Their Binary Mixtures with CO ₂ in ZIF-10. Journal of Chemical & Data, 2019, 64, 484-496.	1.9	4
2191	Porous Coordination Polymers. Polymers and Polymeric Composites, 2019, , 1-44.	0.6	2
2192	Enhancing the supercapacitive performance of Nickel based metal organic framework-carbon nanofibers composite by changing the ligands. Electrochimica Acta, 2019, 294, 345-356.	5.2	53
2193	Highly luminescent tetranuclear Eu(III) complex with characteristic cavity space. Inorganica Chimica Acta, 2019, 486, 240-244.	2.4	4
2194	A novel α-Fe2O3@g-C3N4 catalyst: Synthesis derived from Fe-based MOF and its superior photo-Fenton performance. Applied Surface Science, 2019, 469, 331-339.	6.1	268
2195	Attainable Volumetric Targets for Adsorption-Based Hydrogen Storage in Porous Crystals: Molecular Simulation and Machine Learning. Journal of Physical Chemistry C, 2019, 123, 120-130.	3.1	57
2196	Exploring the Brønsted acidity of UiO-66 (Zr, Ce, Hf) metal–organic frameworks for efficient solketal synthesis from glycerol acetalization. Dalton Transactions, 2019, 48, 843-847.	3.3	97
2197	Self-assembled bright luminescent hierarchical materials from a tripodal benzoate antenna and heptadentate Eu(III) and Tb(III) cyclen complexes. Frontiers of Chemical Science and Engineering, 2019, 13, 171-184.	4.4	6
2198	Wellâ€Arranged and Confined Incorporation of PdCo Nanoparticles within a Hollow and Porous Metal–Organic Framework for Superior Catalytic Activity. Angewandte Chemie, 2019, 131, 876-881.	2.0	23
2199	Tritopic Triazatruxene Ligands for Multicomponent Metalâ€Organic Frameworks. Chemistry - an Asian Journal, 2019, 14, 1167-1174.	3.3	13
2200	Hydrogen adsorption property of Na-decorated boron monolayer: A first principles investigation. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 107, 170-176.	2.7	27
2201	Tuning secondary building unit of Cu-BTC to simultaneously enhance its CO2 selective adsorption and stability under moisture. Chemical Engineering Journal, 2019, 355, 815-821.	12.7	56

#	Article	IF	CITATIONS
2202	Four coordination polymers based on 4'-(4-carboxyphenyl)-2,2':6',2''-terpyridine: Syntheses, structures and properties. Journal of Solid State Chemistry, 2019, 269, 118-124.	2.9	11
2203	Ultrasmall Metal Nanoparticles Confined within Crystalline Nanoporous Materials: A Fascinating Class of Nanocatalysts. Advanced Materials, 2019, 31, e1803966.	21.0	260
2204	Introduction: hydrogen storage as solution for a changing energy landscape. Physical Sciences Reviews, 2019, 4, .	0.8	2
2205	Copper benzene-1,3,5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents. Journal of Colloid and Interface Science, 2019, 535, 122-132.	9.4	85
2206	Effects of pore size and surface area on CH4 and CO2 capture in mesostructured MIL-101. Journal of the Iranian Chemical Society, 2019, 16, 137-142.	2.2	4
2207	Amide-functionalized metal–organic frameworks: Syntheses, structures and improved gas storage and separation properties. Coordination Chemistry Reviews, 2019, 378, 2-16.	18.8	213
2208	Recent advances in post-synthetic modification of metal–organic frameworks: New types and tandem reactions. Coordination Chemistry Reviews, 2019, 378, 500-512.	18.8	428
2209	Carbon Management and Greenhouse Gas Mitigation. , 2020, , 312-335.		8
2210	Construction of mixed carboxylate and pyrogallate building units for luminescent metal–organic frameworks. Chinese Chemical Letters, 2020, 31, 813-817.	9.0	10
2211	State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 2020, 120, 1438-1511.	47.7	1,505
2212	An overview and outlook on gas adsorption: for the enrichment of low concentration coalbed methane. Separation Science and Technology, 2020, 55, 1102-1114.	2.5	17
2213	Electrochemiluminescence immunosensor of "signal-off―for β-amyloid detection based on dual metal-organic frameworks. Talanta, 2020, 208, 120376.	5. 5	27
2214	Cobalt-based metal-organic frameworks promoting magnesium sulfite oxidation with ultrahigh catalytic activity and stability. Journal of Colloid and Interface Science, 2020, 559, 88-95.	9.4	33
2215	Diffusion kinetics of CO 2 in amineâ€impregnated MILâ€101, alumina, and silica adsorbents. AICHE Journal, 2020, 66, e16785.	3.6	11
2216	Performance of ZIF-67 – Derived fold polyhedrons for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2020, 382, 123051.	12.7	165
2217	Unpaired 3d Electrons on Atomically Dispersed Cobalt Centres in Coordination Polymers Regulate both Oxygen Reduction Reaction (ORR) Activity and Selectivity for Use in Zinc–Air Batteries. Angewandte Chemie - International Edition, 2020, 59, 286-294.	13.8	200
2218	Porous Materials for Catalysis. , 2020, , 115-137.		11
2219	Green Synthesis and Engineering Applications of Metal–Organic Frameworks. , 2020, , 139-162.		3

#	Article	IF	CITATIONS
2220	Functional nanostructured materials: Aerosol, aerogel, and de novo synthesis to emerging energy and environmental applications. Advanced Powder Technology, 2020, 31, 104-120.	4.1	28
2221	Two luminescent dye@MOFs systems as dual-emitting platforms for efficient pesticides detection. Journal of Hazardous Materials, 2020, 381, 120966.	12.4	78
2222	Synthesis and effect of metal–organic frame works on CO ₂ adsorption capacity at various pressures: A contemplating review. Energy and Environment, 2020, 31, 367-388.	4.6	29
2223	Diffusion kinetics of ethane, ethylene, and their binary mixtures in ethane-selective adsorbents. Separation and Purification Technology, 2020, 230, 115872.	7.9	17
2224	Green Photocatalysts for Energy and Environmental Process. Environmental Chemistry for A Sustainable World, 2020, , .	0.5	8
2225	Porosity Effects on Mechanical Properties of 3D Random Fibrous Materials at Elevated Temperatures. Acta Mechanica Solida Sinica, 2020, 33, 14-30.	1.9	6
2226	Hierarchically porous metal–organic frameworks: synthetic strategies and applications. National Science Review, 2020, 7, 1743-1758.	9.5	161
2227	Doping-induced enhancement of CO2 adsorption on negatively charged C3N nanosheet: Insights from DFT calculations. Chemical Engineering Journal, 2020, 387, 123403.	12.7	21
2228	Methane sorption in a family of qzd-MOFs: A multiscale computational study. Chemical Engineering Journal, 2020, 384, 123296.	12.7	5
2229	Synthesis of sandwich-structured magnetic graphene-Zn-MOFs composites for quantitative determination of acarbose in rat plasma. Talanta, 2020, 209, 120514.	5.5	15
2230	MOFs and COFs for Batteries and Supercapacitors. Electrochemical Energy Reviews, 2020, 3, 81-126.	25.5	98
2231	Facile in-situ preparation of MAPbBr3@UiO-66 composites for information encryption and decryption. Journal of Solid State Chemistry, 2020, 282, 121062.	2.9	29
2232	Recent Advances of Supercritical CO2 in Green Synthesis and Activation of Metal–Organic Frameworks. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 581-595.	3.7	11
2233	Unpaired 3d Electrons on Atomically Dispersed Cobalt Centres in Coordination Polymers Regulate both Oxygen Reduction Reaction (ORR) Activity and Selectivity for Use in Zinc–Air Batteries. Angewandte Chemie, 2020, 132, 292-300.	2.0	21
2234	The effect of atomic point charges on adsorption isotherms of CO2 and water in metal organic frameworks. Adsorption, 2020, 26, 663-685.	3.0	36
2235	Recent Progress of Atmospheric Water Harvesting Using Metal-Organic Frameworks. Chemical Research in Chinese Universities, 2020, 36, 33-40.	2.6	36
2236	Synthesis, crystal structure and magnetic property of a 3D Cu-organic framework. Inorganic Chemistry Communication, 2020, 112, 107713.	3.9	4
2237	Metal–Organic Framework@Carbon Hybrid Magnetic Material as an Efficient Adsorbent for Pollutant Extraction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6419-6425.	8.0	44

#	ARTICLE	IF	CITATIONS
2238	Active-Site Modulation in an Fe-Porphyrin-Based Metal–Organic Framework through Ligand Axial Coordination: Accelerating Electrocatalysis and Charge-Transport Kinetics. Journal of the American Chemical Society, 2020, 142, 1933-1940.	13.7	138
2239	A stable dual-emitting dye@LMOF luminescence probe for the rapid and visible detection of organophosphorous pesticides in aqueous media. CrystEngComm, 2020, 22, 1050-1056.	2.6	19
2240	Predicting adsorption selectivities from pure gas isotherms for gas mixtures in metal–organic frameworks. Chemical Science, 2020, 11, 643-655.	7.4	19
2241	Spatially confined electrochemical conversion of metal–organic frameworks into metal-sulfides and their <i>in situ</i> electrocatalytic investigation <i>via</i> scanning electrochemical microscopy. Chemical Science, 2020, 11, 180-185.	7.4	32
2242	Two-dimensional materials and metal-organic frameworks for the CO2 reduction reaction. Materials Today Advances, 2020, 5, 100038.	5.2	48
2243	Application of computational chemistry for adsorption studies on metal–organic frameworks used for carbon capture. Physical Sciences Reviews, 2020, 5, .	0.8	0
2244	Triggering Lewis Acidic Nature through the Variation of Coordination Environment of Cd-Centers in 2D-Coordination Polymers. Inorganic Chemistry, 2020, 59, 1284-1294.	4.0	20
2245	Metal–Organic Framework Nanoparticles for Ameliorating Breast Cancer-Associated Osteolysis. Nano Letters, 2020, 20, 829-840.	9.1	68
2246	The synthesis and applications of chiral pyrrolidine functionalized metal–organic frameworks and covalent-organic frameworks. Inorganic Chemistry Frontiers, 2020, 7, 1319-1333.	6.0	14
2247	A cationic metal-organic framework for dye adsorption and separation based on column-chromatography. Journal of Molecular Liquids, 2020, 300, 112311.	4.9	47
2248	Trans Influence across a Metal–Metal Bond of a Paddle-Wheel Unit on Interaction with Gases in a Metal–Organic Framework. Inorganic Chemistry, 2020, 59, 1193-1203.	4.0	9
2249	Amino-Functionalized β-Cyclodextrin to Construct Green Metal–Organic Framework Materials for CO ₂ Capture. ACS Applied Materials & Interfaces, 2020, 12, 3032-3041.	8.0	72
2250	Nanofibrils of a Cu ^{II} -Thiophenyltriazine-Based Porous Polymer: A Diverse Heterogeneous Nanocatalyst. ACS Omega, 2020, 5, 394-405.	3.5	17
2251	Urea metal-organic frameworks as a highly selective fluorescent sensor for the explosive nitroaromatics and carbonyl compounds. Journal of Porous Materials, 2020, 27, 603-609.	2.6	11
2252	Emerged carbon nanomaterials from metal-organic precursors for electrochemical catalysis in energy conversion., 2020,, 393-423.		8
2253	Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials, 2020, 230, 119619.	11.4	378
2254	Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorganic Chemistry Frontiers, 2020, 7, 300-339.	6.0	429
2255	Metal–organic frameworks and their derivatives with graphene composites: preparation and applications in electrocatalysis and photocatalysis. Journal of Materials Chemistry A, 2020, 8, 2934-2961.	10.3	170

#	Article	IF	CITATIONS
2257	Homochiral Metal–Organic Frameworks of Lead(II) and Cadmium(II) Constructed by Amino Acid-Functionalized Isophthalic Acids: Synthesis, Structure Diversity, and Optical Properties. Crystal Growth and Design, 2020, 20, 486-497.	3.0	27
2258	Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications. Renewable and Sustainable Energy Reviews, 2020, 119, 109630.	16.4	68
2259	Confining Li2S6 catholyte in 3D graphene sponge with ultrahigh total pore volume and oxygen-containing groups for lithium-sulfur batteries. Carbon, 2020, 158, 244-255.	10.3	39
2260	Rigid Ladder-Type Porous Polymer Networks for Entropically Favorable Gas Adsorption. , 2020, 2, 49-54.		30
2261	Disappearing Polymorphs in Metal–Organic Framework Chemistry: Unexpected Stabilization of a Layered Polymorph over an Interpenetrated Threeâ€Dimensional Structure in Mercury Imidazolate. Chemistry - A European Journal, 2020, 26, 1811-1818.	3.3	25
2262	Insights into high pressure gas adsorption properties of ZIF-67: Experimental and theoretical studies. Microporous and Mesoporous Materials, 2020, 294, 109867.	4.4	40
2263	Preparation of cobalt-based metal organic framework and its application as synergistic flame retardant in thermoplastic polyurethane (TPU). Composites Part B: Engineering, 2020, 182, 107498.	12.0	115
2264	Unique adsorption and desorption behaviour of ammonia gas at heating temperature using the Prussian blue analogue Zn3[Co(CN)6]2. Inorganica Chimica Acta, 2020, 501, 119273.	2.4	5
2265	A review on production of metal organic frameworks (MOF) for CO2 adsorption. Science of the Total Environment, 2020, 707, 135090.	8.0	385
2266	The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: A state-of-the-art review. Chemical Engineering Journal, 2020, 391, 123601.	12.7	155
2267	A cobalt(II) metal-organic framework featuring supercapacitor application. Journal of Solid State Chemistry, 2020, 282, 121093.	2.9	20
2268	Durable ZIF-8/Ag/AgCl/TiO2 decorated PAN nanofibers with high visible light photocatalytic and antibacterial activities for degradation of dyes. Journal of Alloys and Compounds, 2020, 822, 153579.	5.5	52
2269	Metal–organic frameworks for carbon dioxide capture. MRS Energy & Sustainability, 2020, 7, 1.	3.0	31
2270	Computational design of mixed chirality peptide macrocycles with internal symmetry. Protein Science, 2020, 29, 2433-2445.	7.6	16
2271	MIL-101 (Cr) @ graphene oxide-reinforced hollow fiber solid-phase microextraction coupled with high-performance liquid chromatography to determine diazinon and chlorpyrifos in tomato, cucumber and agricultural water. Analytica Chimica Acta, 2020, 1140, 99-110.	5 . 4	47
2272	Design of three-dimensional nanotube-fullerene-interconnected framework for hydrogen storage. Applied Surface Science, 2020, 534, 147606.	6.1	20
2273	Understanding the hierarchical assemblies and oil/water separation applications of metal-organic frameworks. Journal of Molecular Liquids, 2020, 318, 114273.	4.9	26
2274	Facile synthesis of difunctional NiV LDH@ZIF-67 p-n junction: Serve as prominent photocatalyst for hydrogen evolution and supercapacitor electrode as well. Renewable Energy, 2020, 162, 535-549.	8.9	83

#	Article	IF	CITATIONS
2275	MOF Nanosheet-Based Mixed Matrix Membranes with Metal–Organic Coordination Interfacial Interaction for Gas Separation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 49101-49110.	8.0	78
2276	Guest Modulated Spin States of Metal Complex Assemblies. European Journal of Inorganic Chemistry, 2020, 2020, 3709-3719.	2.0	13
2277	A critical review on recent developments in MOF adsorbents for the elimination of toxic heavy metals from aqueous solutions. Environmental Science and Pollution Research, 2020, 27, 44771-44796.	5. 3	83
2278	Recent development of amorphous metal coordination polymers for cancer therapy. Acta Biomaterialia, 2020, 116, 16-31.	8.3	30
2279	Adsorptive Performance of MOFs and MOF Containing Composites for Clean Energy and Safe Environment. Journal of Environmental Chemical Engineering, 2020, 8, 104386.	6.7	85
2280	Metal organic frameworks decorated with free carboxylic acid groups: topology, metal capture and dye adsorption properties. Dalton Transactions, 2020, 49, 14690-14705.	3.3	74
2281	Metal-organic frameworks for virus detection. Biosensors and Bioelectronics, 2020, 169, 112604.	10.1	71
2282	A luminescent sensor based on a new Cd-MOF for nitro explosives and organophosphorus pesticides detection. Inorganic Chemistry Communication, 2020, 122, 108272.	3.9	38
2283	Porous Metal–Organic Frameworks for Carbon Dioxide Adsorption and Separation at Low Pressure. ACS Sustainable Chemistry and Engineering, 2020, 8, 15378-15404.	6.7	81
2284	Electropolymerization of robust conjugated microporous polymer membranes for rapid solvent transport and narrow molecular sieving. Nature Communications, 2020, 11, 5323.	12.8	80
2285	Structure, photoluminescence, and magnetic properties of a Mn(ii)-based metal–organic framework. New Journal of Chemistry, 2020, 44, 18694-18702.	2.8	1
2286	Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review. Renewable and Sustainable Energy Reviews, 2020, 133, 110246.	16.4	58
2287	H ₂ /CO ₂ separations in multicomponent metal-adeninate MOFs with multiple chemically distinct pore environments. Chemical Science, 2020, 11, 12807-12815.	7.4	18
2288	Hydrogen and CO2 storage in high surface area covalent triazine–based frameworks. Materials Today Energy, 2020, 18, 100506.	4.7	16
2289	Nitrogen-Containing Porous Carbon Fibers Prepared from Polyimide Fibers for CO ₂ Capture. Industrial & amp; Engineering Chemistry Research, 2020, 59, 18106-18114.	3.7	17
2290	Rare-earth metal–organic frameworks: from structure to applications. Chemical Society Reviews, 2020, 49, 7949-7977.	38.1	244
2291	Growth of ZIFâ€8 MOF Films with Tunable Porosity by using Poly (1â€vinylimidazole) Brushes as 3D Primers. Chemistry - A European Journal, 2020, 26, 12388-12396.	3.3	11
2292	Electronic Structure Modeling of Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8641-8715.	47.7	149

#	Article	IF	CITATIONS
2293	NH2-UiO-66 with heterogeneous pores assists zinc indium sulfide in accelerating the photocatalytic H2 evolution under visible-light irradiation. Solar Energy, 2020, 207, 599-608.	6.1	19
2294	Three-Dimensional Large-Pore Covalent Organic Framework with stp Topology. Journal of the American Chemical Society, 2020, 142, 13334-13338.	13.7	149
2295	Quest for an Optimal Methane Hydrate Formation in the Pores of Hydrolytically Stable Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 13391-13397.	13.7	65
2296	Modulated Hydrothermal Synthesis of Highly Stable MOF-808(Hf) for Methane Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 17042-17053.	6.7	65
2297	Prediction of water stability of metal–organic frameworks using machine learning. Nature Machine Intelligence, 2020, 2, 704-710.	16.0	89
2298	Coordination framework of cadmium(II), harvested from dithiolate-imidazole binary ligand systems: Crystal structure, Hirshfeld surface analysis, antibacterial, and DNA cleavage potential. Polyhedron, 2020, 192, 114838.	2.2	7
2299	Design of Hierarchical Architectures in Metal–Oganic Frameworks for Catalysis and Adsorption. Chemistry of Materials, 2020, 32, 10268-10295.	6.7	68
2300	Accelerating Discovery of Metal–Organic Frameworks for Methane Adsorption with Hierarchical Screening and Deep Learning. ACS Applied Materials & Screening and Deep Learning.	8.0	31
2301	Exploring the Fundamental Roles of Functionalized Ligands in Platinum@Metal–Organic Framework Catalysts. ACS Applied Materials & Diterfaces, 2020, 12, 52660-52667.	8.0	26
2302	Metal-Organic Frameworks as a Platform for CO2 Capture and Chemical Processes: Adsorption, Membrane Separation, Catalytic-Conversion, and Electrochemical Reduction of CO2. Catalysts, 2020, 10, 1293.	3.5	77
2303	Role of particle size and surface functionalisation on the flexibility behaviour of switchable metal–organic framework DUT-8(Ni). Journal of Materials Chemistry A, 2020, 8, 22703-22711.	10.3	14
2304	Design of Zeolite-Covalent Organic Frameworks for Methane Storage. Materials, 2020, 13, 3322.	2.9	6
2305	Precisely Embedding Active Sites into a Mesoporous Zr-Framework through Linker Installation for High-Efficiency Photocatalysis. Journal of the American Chemical Society, 2020, 142, 15020-15026.	13.7	71
2306	A Two-Dimensional Framework Based on 1,3-bis(2-Methyl-Imidazol-1-yl)-Benzene Exhibiting Luminescent and Photocatalytic Properties. Journal of Structural Chemistry, 2020, 61, 757-762.	1.0	1
2307	Hydrogen and methane storage in nanoporous materials. , 2020, , 327-350.		4
2308	Anion-exchanged and quaternary ammonium functionalized MIL-101-Cr metal-organic framework (MOF) for ReO4â^'/TcO4â^' sequestration from groundwater. Journal of Environmental Radioactivity, 2020, 222, 106372.	1.7	22
2309	Custom Formulation of Multicomponent Mixed-Matrix Membranes for Efficient Post-combustion Carbon Capture. Cell Reports Physical Science, 2020, 1, 100113.	5.6	10
2310	Effect of monoethanolamine concentration on CO2 capture by poly (chloromethyl styrene) grafted fibrous adsorbent. IOP Conference Series: Materials Science and Engineering, 2020, 808, 012029.	0.6	0

#	Article	IF	CITATIONS
2311	The rise of MOFs and their derivatives for flame retardant polymeric materials: A critical review. Composites Part B: Engineering, 2020, 199, 108265.	12.0	98
2312	Effect of Fe(<scp>iii</scp>)-based MOFs on the catalytic efficiency of the tandem cyclooxidative reaction between 2-aminobenzamide and alcohols. New Journal of Chemistry, 2020, 44, 14529-14535.	2.8	20
2313	Dry and Wet CO 2 Capture from Milkâ€Derived Microporous Carbons with Tuned Hydrophobicity. Advanced Sustainable Systems, 2020, 4, 2000001.	5.3	3
2314	Estimation of CO2 adsorption in high capacity metalâ°organic frameworks: Applications to greenhouse gas control. Journal of CO2 Utilization, 2020, 41, 101256.	6.8	26
2315	Development of biological metal–organic frameworks designed for biomedical applications: from bio-sensing/bio-imaging to disease treatment. Nanoscale Advances, 2020, 2, 3788-3797.	4.6	107
2316	Design and development of 3D hierarchical ultra-microporous CO2-sieving carbon architectures for potential flow-through CO2 capture at typical practical flue gas temperatures. Journal of Materials Chemistry A, 2020, 8, 17025-17035.	10.3	17
2317	Artificial Synthesis of Conjugated Microporous Polymers via Sonogashira–Hagihara Coupling. Journal of Physical Chemistry B, 2020, 124, 7318-7326.	2.6	9
2318	Anisotropic reticular chemistry. Nature Reviews Materials, 2020, 5, 764-779.	48.7	149
2319	Development of Highâ€Drug‣oading Nanoparticles. ChemPlusChem, 2020, 85, 2143-2157.	2.8	128
2320	Guest-Based Photoactive Porous Materials Based upon Zn-Carboxylate Metal Organic Frameworks. Structure and Bonding, 2020, , 155-184.	1.0	0
2321	Exceptionally High Gravimetric Methane Storage in Aerogel-Derived Carbons. Industrial & Engineering Chemistry Research, 2020, 59, 19383-19391.	3.7	2
2322	Preparation of egg white@zeolitic imidazolate framework-8@polyacrylic acid aerogel and its adsorption properties for organic dyes. Journal of Solid State Chemistry, 2020, 292, 121656.	2.9	12
2323	Dielectric and gas adsorption/desorption properties of <i>x</i> -Li(Pc) having one-dimensional channels surrounded by PcË™ ^{â^'} columns. CrystEngComm, 2020, 22, 7528-7531.	2.6	3
2324	A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chemical Society Reviews, 2020, 49, 8790-8839.	38.1	461
2325	Molecular Spheres Inspired Self-Assembly of Hydrolytically Stable Mesoporous Zirconium-Based Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 8015-8020.	3.0	4
2326	Modulating Charge Transfer Efficiency of Hematite Photoanode with Hybrid Dualâ€Metal–Organic Frameworks for Boosting Photoelectrochemical Water Oxidation. Advanced Science, 2020, 7, 2002563.	11.2	56
2327	Experimental and simulation study of the effect of surface functional groups decoration on CH4 and H2 storage capacity of microporous carbons. Applied Surface Science, 2020, 533, 147487.	6.1	18
2328	Curcumin@metal organic frameworks nano-composite for treatment of chronic toxoplasmosis. Journal of Materials Science: Materials in Medicine, 2020, 31, 90.	3.6	23

#	ARTICLE	IF	CITATIONS
2329	Carbon capture using nanoporous adsorbents. , 2020, , 265-303.		0
2330	Structural Deterioration of Wellâ€Faceted MOFs upon H ₂ S Exposure and Its Effect in the Adsorption Performance. Chemistry - A European Journal, 2020, 26, 17110-17119.	3.3	5
2331	Anthracene-Tagged UiO-67-MOF as Highly Selective Aqueous Sensor for Nanoscale Detection of Arginine Amino Acid. Inorganic Chemistry, 2020, 59, 13091-13097.	4.0	25
2332	In Situ Thermal Conductivity Measurement of Single-Crystal Zeolitic Imidazolate Framework-8 by Raman-Resistance Temperature Detectors Method. ACS Nano, 2020, 14, 14100-14107.	14.6	11
2333	Systems for accumulation, storage and release of hydrogen. Russian Chemical Reviews, 2020, 89, 897-916.	6. 5	30
2334	Downsizing metal–organic frameworks by bottom-up and top-down methods. NPG Asia Materials, 2020, 12, .	7.9	105
2335	A historical overview of the activation and porosity of metal–organic frameworks. Chemical Society Reviews, 2020, 49, 7406-7427.	38.1	367
2336	Synthesis and characterization of MOFs constructed from 5-(benzimidazole-1-yl)isophthalic acid and highly selective fluorescence detection of Fe(iii) and Cr(vi) in water. RSC Advances, 2020, 10, 34943-34952.	3.6	2
2337	Zn(II)-Coordination Polymers with a Right- and Left-Handed Twist: Multifunctional Metal–Organic Hybrid for Dye Adsorption and Drug Delivery. Crystal Growth and Design, 2020, 20, 7411-7420.	3.0	17
2338	The vital role of ditopic <i>N</i> – <i>N</i> bridging ligands with different lengths in the formation of new binuclear dioxomolybdenum(<scp>vi</scp>) complexes: synthesis, crystal structures, supramolecular framework and protein binding studies. New Journal of Chemistry, 2020, 44, 16645-16664.	2.8	2
2339	Evolution of the Design of CH4 Adsorbents. Surfaces, 2020, 3, 433-466.	2.3	10
2340	Highly porous terpolymer-ZIF8@BA MOF composite for identification of mono- and multi-glycosylated peptides/proteins using MS-based bottom-up approach. Mikrochimica Acta, 2020, 187, 555.	5.0	17
2341	Green synthesis of hierarchical carbon coupled with Fe3O4/Fe2C as an efficient catalyst for the oxygen reduction reaction. Materials Advances, 2020, 1, 2010-2018.	5.4	11
2342	Using Low-Pressure Methane Adsorption Isotherms for Higher-Throughput Screening of Methane Storage Materials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40318-40327.	8.0	19
2343	MOF-on-MOF Membrane with Cascading Functionality for Capturing Dichromate Ions and <i>p</i> -Arsanilic Acid Turn-On Sensing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 58239-58251.	8.0	35
2344	Deciphering the role of amine in amino silane-functionalized Pd/rGO catalyst for formic acid decomposition at room temperature. Bulletin of Materials Science, 2020, 43, 1.	1.7	2
2345	Mitigating Global Methane Emissions Using Metal-Organic Framework Adsorbents. Applied Sciences (Switzerland), 2020, 10, 7733.	2.5	4
2346	Pore engineering of metal–organic frameworks for ethylene purification. Dalton Transactions, 2020, 49, 17093-17105.	3.3	7

#	Article	IF	CITATIONS
2347	From zero- to three-dimensional heterobimetallic coordination polymers with the [Pt{SSC-N(CH ₂ COO) ₂ } ₂] ^{4â^3} metalloligand. CrystEngComm, 2020, 22, 7838-7846.	2.6	7
2348	MOF water harvesters. Nature Nanotechnology, 2020, 15, 348-355.	31.5	400
2349	High-performance non-enzymatic glucose detection: using a conductive Ni-MOF as an electrocatalyst. Journal of Materials Chemistry B, 2020, 8, 5411-5415.	5.8	170
2350	Methane Utilization to Methanol by a Hybrid Zeolite@Metal–Organic Framework. ACS Applied Materials & Long the M	8.0	32
2351	Charge Transport in Zirconium-Based Metal–Organic Frameworks. Accounts of Chemical Research, 2020, 53, 1187-1195.	15.6	100
2352	ZIF-67 as a Template Generating and Tuning "Raisin Pudding―Type Nanozymes with Multiple Enzyme-like Activities: Toward Online Electrochemical Detection of 3,4-Dihydroxyphenylacetic Acid in Living Brains. ACS Applied Materials & Detection of 3,4-Dihydroxyphenylacetic Acid in Living Brains. ACS Applied Materials & Detection of 3,4-Dihydroxyphenylacetic Acid in Living Brains. ACS Applied Materials & Detection of 3,4-Dihydroxyphenylacetic Acid in Living Brains. ACS Applied Materials & Detection of 3,4-Dihydroxyphenylacetic Acid in Living Brains.	8.0	13
2353	Azobenzene based 2D-MOF for high selective quinone fluorescence sensing performance. Inorganica Chimica Acta, 2020, 510, 119699.	2.4	6
2354	Major advances in the development of ordered mesoporous materials. Chemical Communications, 2020, 56, 7836-7848.	4.1	74
2355	The Art of Integrated Functionalization: Super Stable Black Phosphorus Achieved through Metalâ€Organic Framework Coating. Advanced Functional Materials, 2020, 30, 2002232.	14.9	51
2356	Pore Chemistry of Metal–Organic Frameworks. Advanced Functional Materials, 2020, 30, 2000238.	14.9	245
2357	<i>In Vivo</i> Enzyme Entrapment in a Protein Crystal. Journal of the American Chemical Society, 2020, 142, 9879-9883.	13.7	39
2358	Adsorption of carbon dioxide on CuxMgy(BTC)2 MOFs: influence of Cu/Mg ratio. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	13
2359	Generation of highly porous silver nanowire networks by plasma treatment and their direct application as supercapacitor electrodes. Nanoscale, 2020, 12, 11868-11877.	5.6	7
2360	Substituent-controlled Constructions of M ₂ L ₄ Cage and 1D Network Structures for Cu(II) Complexes with Bis-benzimidazole Ligands. Chemistry Letters, 2020, 49, 832-835.	1.3	2
2361	Hierarchical zeolitic imidazolate framework-67 derived from in-situ synthesized CO-Al layered double hydroxide embedded within porous-anodized aluminum foil for thin film microextraction of caffeine followed by its high performance liquid chromatography-ultraviolet detection. Journal of Chromatography A, 2020, 1626, 461358.	3.7	19
2362	Synthesis of composite material HKUST-1/LiCl with high water uptake for water extraction from atmospheric air. Inorganica Chimica Acta, 2020, 511, 119842.	2.4	19
2363	Recent progress of two-dimensional materials and metal–organic framework-based taste sensors. Journal of the Korean Ceramic Society, 2020, 57, 353-367.	2.3	25
2364	Transition Metal Ions Regulated Structural and Catalytic Behaviors of Coordination Polymers. Crystal Growth and Design, 2020, 20, 5277-5288.	3.0	19

#	Article	IF	CITATIONS
2365	Removal of antibiotic tetracycline by metal-organic framework MIL-101(Cr) loaded nano zero-valent iron. Journal of Molecular Liquids, 2020, 313, 113512.	4.9	51
2366	Structural and Morphological Transformation of Two-Dimensional Metal–Organic Frameworks Accompanied by Controlled Preparation Using the Spray Method. Langmuir, 2020, 36, 7392-7399.	3.5	7
2367	Ultrathin water-stable metal-organic framework membranes for ion separation. Science Advances, 2020, 6, eaay3998.	10.3	179
2368	Metal-organic frameworks as adsorbents for sequestering organic pollutants from wastewater. Materials Chemistry and Physics, 2020, 253, 123246.	4.0	56
2369	Biomimetic Nanomembranes: An Overview. Biomimetics, 2020, 5, 24.	3.3	29
2370	Functional metal–organic frameworks constructed from triphenylamine-based polycarboxylate ligands. Coordination Chemistry Reviews, 2020, 420, 213354.	18.8	57
2371	Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: A review. Journal of Environmental Chemical Engineering, 2020, 8, 104142.	6.7	142
2372	Phthalocyanineâ€Based 2D Conjugated Metalâ€Organic Framework Nanosheets for Highâ€Performance Microâ€Supercapacitors. Advanced Functional Materials, 2020, 30, 2002664.	14.9	104
2373	Modulating Hierarchical Micro/Mesoporosity by a Mixed Solvent Approach in Alâ€MOF: Stabilization of MAPbBr 3 Quantum Dots. Chemistry - A European Journal, 2020, 26, 14671-14678.	3.3	9
2374	Recent Bio-Advances in Metal-Organic Frameworks. Molecules, 2020, 25, 1291.	3.8	48
2375	Optimization of the Pore Structures of MOFs for Record High Hydrogen Volumetric Working Capacity. Advanced Materials, 2020, 32, e1907995.	21.0	118
2376	In situ synthesis and characterization of a series of new pyridyl containing complexes based on 3d metals: from oligomer to 3D framework. Journal of Solid State Chemistry, 2020, 287, 121326.	2.9	6
2377	Enhancing hydrogen storage by metal substitution in MIL-88A metal-organic framework. Adsorption, 2020, 26, 509-519.	3.0	15
2378	An Imide-Decorated Indium-Organic Framework for Efficient and Selective Capture of Carcinogenic Dyes with Diverse Adsorption Interactions. Crystal Growth and Design, 2020, 20, 3199-3207.	3.0	30
2379	Phase-Selective Microwave Assisted Synthesis of Iron(III) Aminoterephthalate MOFs. Materials, 2020, 13, 1469.	2.9	22
2380	Charting the Metal-Dependent High-Pressure Stability of Bimetallic UiO-66 Materials. , 2020, 2, 438-445.		21
2381	Hierarchically porous monolithic MOFs: An ongoing challenge for industrial-scale effluent treatment. Chemical Engineering Journal, 2020, 393, 124765.	12.7	75
2382	MIL-88A Metal-Organic Framework as a Stable Sulfur-Host Cathode for Long-Cycle Li-S Batteries. Nanomaterials, 2020, 10, 424.	4.1	44

#	Article	IF	CITATIONS
2383	Mechanochemical synthesis of highly porous materials. Materials Horizons, 2020, 7, 1457-1473.	12.2	165
2384	Room-temperature preparation of coordination polymers for biomedicine. Coordination Chemistry Reviews, 2020, 411, 213256.	18.8	25
2385	MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: A review. Chemosphere, 2020, 251, 126388.	8.2	116
2386	MOF-Based Membranes for Gas Separations. Chemical Reviews, 2020, 120, 8161-8266.	47.7	755
2387	Carbonization temperature effects on adsorption performance of metal-organic framework derived nanoporous carbon for removal of methylene blue from wastewater; experimental and spectrometry study. Diamond and Related Materials, 2020, 108, 107999.	3.9	33
2388	Nanoporeâ€Supported Metal Nanocatalysts for Efficient Hydrogen Generation from Liquidâ€Phase Chemical Hydrogen Storage Materials. Advanced Materials, 2020, 32, e2001818.	21.0	226
2389	Nonâ€Interpenetrated Singleâ€Crystal Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 17991-17995.	13.8	60
2390	Standard Practices of Reticular Chemistry. ACS Central Science, 2020, 6, 1255-1273.	11.3	142
2391	Nonâ€Interpenetrated Singleâ€Crystal Covalent Organic Frameworks. Angewandte Chemie, 2020, 132, 18147-18151.	2.0	5
2392	Highly selective detection of Cu2+ in aqueous media based on Tb3+-functionalized metal-organic framework. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 240, 118621.	3.9	31
2393	Evaluation of Metal–Organic Frameworks as Potential Adsorbents for Solar Cooling Applications. Applied System Innovation, 2020, 3, 26.	4.6	10
2394	Enhanced catalytic performance of UiO-66 via a sulfuric acid post-synthetic modification strategy with partial etching. Applied Catalysis A: General, 2020, 602, 117733.	4.3	5
2395	Sustainable drug delivery systems through green nanotechnology. , 2020, , 61-89.		11
2396	Polysaccharide templated biomimetic growth of hierarchically porous metal-organic frameworks. Microporous and Mesoporous Materials, 2020, 306, 110429.	4.4	37
2397	New Microporous Lanthanide Organic Frameworks. Synthesis, Structure, Luminescence, Sorption, and Catalytic Acylation of 2-Naphthol. Molecules, 2020, 25, 3055.	3.8	12
2398	Highly Efficient Conversion of Propargylic Amines and CO ₂ Catalyzed by Nobleâ€Metalâ€Free [Zn ₁₁₆] Nanocages. Angewandte Chemie - International Edition, 2020, 59, 8586-8593.	13.8	74
2399	Sequential Ag ⁺ /biothiol and synchronous Ag ⁺ /Hg ²⁺ biosensing with zwitterionic Cu ²⁺ -based metal–organic frameworks. Analyst, The, 2020, 145, 2779-2788.	3.5	22
2400	Porous Aromatic Frameworks (PAFs). Chemical Reviews, 2020, 120, 8934-8986.	47.7	389

#	Article	IF	CITATIONS
2401	Highly Efficient Conversion of Propargylic Amines and CO ₂ Catalyzed by Nobleâ€Metalâ€Free [Zn ₁₁₆] Nanocages. Angewandte Chemie, 2020, 132, 8664-8671.	2.0	10
2402	Unique 3D heterostructures assembled by quasi-2D Ni-MOF and CNTs for ultrasensitive electrochemical sensing of bisphenol A. Sensors and Actuators B: Chemical, 2020, 310, 127885.	7.8	55
2403	The Chemistry of Porous Organic Molecular Materials. Advanced Functional Materials, 2020, 30, 1909842.	14.9	224
2404	Dithiocarbamatocarboxylate (DTCC) Ligands—Building Blocks for Hard/Soft-Heterobimetallic Coordination Polymers. Inorganic Chemistry, 2020, 59, 2825-2832.	4.0	10
2405	In Situ Growth of CoP 3 /Carbon Polyhedron/CoO/NF Nanoarrays as Binderâ€Free Anode for Lithiumâ€lon Batteries with Enhanced Specific Capacity. Small, 2020, 16, 1907468.	10.0	23
2406	â^ž3[Cu2(mand)2(hmt)]–MOF: A Synergetic Effect between Cu(II) and Hexamethylenetetramine in the Henry Reaction. Chemistry, 2020, 2, 50-62.	2.2	4
2407	Catalytic Porphyrin Framework Compounds. Trends in Chemistry, 2020, 2, 555-568.	8.5	94
2408	GrenzflÃ e henpolymerisation: Von der Chemie zu funktionellen Materialien. Angewandte Chemie, 2020, 132, 22024-22041.	2.0	11
2409	Interfacial Polymerization: From Chemistry to Functional Materials. Angewandte Chemie - International Edition, 2020, 59, 21840-21856.	13.8	204
2410	A novel enhancement of shape/thermal stability and energy-storage capacity of phase change materials through the formation of composites with 3D porous (3,6)-connected metal–organic framework. Chemical Engineering Journal, 2020, 389, 124430.	12.7	99
2412	Phytic acid functionalized ZIF-67 decorated graphene nanosheets with remarkably boosted electrochemical sensing performance. Analytica Chimica Acta, 2020, 1107, 55-62.	5.4	38
2413	Poly(ionic liquid)-Modified Metal Organic Framework for Carbon Dioxide Adsorption. Polymers, 2020, 12, 370.	4.5	15
2414	Dimension Control in Mixed Linker Metal–Organic Frameworks via Adjusting the Linker Shapes. Inorganic Chemistry, 2020, 59, 2988-2996.	4.0	16
2415	Enhancements of hydrogen adsorption energy in M-MOF-525 (M= Ti, V, Zr and Hf): A DFT study. Chinese Journal of Physics, 2020, 64, 326-332.	3.9	13
2416	Multiple CO2 capture in pristine and Sr-decorated graphyne: A DFT-D3 and AIMD study. Computational Materials Science, 2020, 176, 109539.	3.0	21
2417	Covalent Organic Frameworks: Design, Synthesis, and Functions. Chemical Reviews, 2020, 120, 8814-8933.	47.7	1,968
2418	Modular Total Synthesis in Reticular Chemistry. Journal of the American Chemical Society, 2020, 142, 3069-3076.	13.7	42
2419	Metal–organic frameworks as a platform for clean energy applications. EnergyChem, 2020, 2, 100027.	19.1	530

#	Article	IF	CITATIONS
2420	Molecular Insight into Fluorocarbon Adsorption in Pore Expanded Metal–Organic Framework Analogs. Journal of the American Chemical Society, 2020, 142, 3002-3012.	13.7	44
2421	Preparation of Silicophosphate Alternating Hybrid Copolymers via Nonaqueous Acid-Base Reactions of Phosphoric Acid and Organo-Bridged Bis(chlorosilane). Molecules, 2020, 25, 127.	3.8	1
2422	Recent Progress on Exploring Stable Metal–Organic Frameworks for Photocatalytic Solar Fuel Production. Solar Rrl, 2020, 4, 1900547.	5.8	47
2423	Swell and Destroy: A Metal–Organic Framework-Containing Polymer Sponge That Immobilizes and Catalytically Degrades Nerve Agents. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8634-8641.	8.0	29
2424	Ultramicroporous Metal–Organic Framework Qc-5-Cu for Highly Selective Adsorption of CO ₂ from C ₂ H ₄ Stream. Industrial & Engineering Chemistry Research, 2020, 59, 3153-3161.	3.7	13
2425	Metal–Organic Frameworks of Cu(II) Constructed from Functionalized Ligands for High Capacity H ₂ and CO ₂ Gas Adsorption and Catalytic Studies. Inorganic Chemistry, 2020, 59, 1810-1822.	4.0	25
2426	Enhanced capacitive deionization of saline water using N-doped rod-like porous carbon derived from dual-ligand metal–organic frameworks. Environmental Science: Nano, 2020, 7, 926-937.	4.3	63
2427	Influence of electric field on CO2 removal by P-doped C60-fullerene: A DFT study. Chemical Physics Letters, 2020, 742, 137155.	2.6	28
2428	Metal–organic frameworks: opportunities and challenges for surface-enhanced Raman scattering – a review. Journal of Materials Chemistry C, 2020, 8, 2952-2963.	5.5	111
2429	Highly efficient adsorptive removal of sulfamethoxazole from aqueous solutions by porphyrinic MOF-525 and MOF-545. Chemosphere, 2020, 250, 126133.	8.2	68
2430	Proximity Effect in Crystalline Framework Materials: Stackingâ€Induced Functionality in MOFs and COFs. Advanced Functional Materials, 2020, 30, 1908004.	14.9	64
2431	Molecular Expansion for Constructing Porous Organic Polymers with High Surface Areas and Wellâ€Defined Nanopores. Angewandte Chemie, 2020, 132, 19655-19661.	2.0	1
2432	Molecular Expansion for Constructing Porous Organic Polymers with High Surface Areas and Wellâ€Defined Nanopores. Angewandte Chemie - International Edition, 2020, 59, 19487-19493.	13.8	38
2433	On the Universality of Capillary Condensation and Adsorption Hysteresis Phenomena in Ordered and Crystalline Mesoporous Materials. Advanced Materials Interfaces, 2020, 7, 2000184.	3.7	23
2434	MGOS: A library for molecular geometry and its operating system. Computer Physics Communications, 2020, 251, 107101.	7.5	2
2435	Graphitic carbon nitride functionalized with four boron atoms for adsorption and separation of CO2/CH4: DFT calculations. Adsorption, 2020, 26, 597-605.	3.0	6
2436	Unobstructed Ultrathin Gas Transport Channels in Composite Membranes by Interfacial Selfâ€Assembly. Advanced Materials, 2020, 32, e1907701.	21.0	68
2437	Encapsulation of metal oxide nanoparticles inside metal-organic frameworks via surfactant-assisted nanoconfined space. Nanotechnology, 2020, 31, 255604.	2.6	5

#	Article	IF	CITATIONS
2438	Isoreticular Three-Dimensional Kagome Metal–Organic Frameworks with Open-Nitrogen-Donor Pillars for Selective Gas Adsorption. Crystal Growth and Design, 2020, 20, 3523-3530.	3.0	15
2439	Microenvironment of MOF Channel Coordination with Pt NPs for Selective Hydrogenation of Unsaturated Aldehydes. ACS Catalysis, 2020, 10, 5805-5813.	11.2	88
2440	Recent advances in titanium metal–organic frameworks and their derived materials: Features, fabrication, and photocatalytic applications. Chemical Engineering Journal, 2020, 395, 125080.	12.7	93
2441	Metal–organic frameworks and their catalytic applications. Journal of Saudi Chemical Society, 2020, 24, 461-473.	5.2	75
2442	Fabrication of mesoporous MOF nanosheets via surfactant-template method for C–S coupling reactions. Microporous and Mesoporous Materials, 2020, 303, 110254.	4.4	19
2443	Photogenerated Charge Separation in a CdSe Nanocluster Encapsulated in a Metal–Organic Framework for Improved Photocatalysis. Journal of Physical Chemistry C, 2020, 124, 8504-8513.	3.1	14
2444	Iron and chromium MOFs as sustainable catalysts for transfer hydrogenation of carbonyl compounds and biomass conversions. New Journal of Chemistry, 2020, 44, 8223-8231.	2.8	20
2445	Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science, 2020, 368, 297-303.	12.6	429
2446	A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage. Nano Research, 2021, 14, 507-511.	10.4	57
2447	Development of nitrogen doped carbon dot (N-CDs) encapsulated zeolitic imidazolate Framework-8 (N-CDs@ZIF-8). Materials Today: Proceedings, 2021, 41, 564-569.	1.8	1
2448	Two-dimensional d-ï€ conjugated metal-organic framework based on hexahydroxytrinaphthylene. Nano Research, 2021, 14, 369-375.	10.4	49
2449	Metal Halide Perovskite Nanocrystals in Metal–Organic Framework Host: Not Merely Enhanced Stability. Angewandte Chemie, 2021, 133, 7564-7577.	2.0	16
2450	Metal Halide Perovskite Nanocrystals in Metal–Organic Framework Host: Not Merely Enhanced Stability. Angewandte Chemie - International Edition, 2021, 60, 7488-7501.	13.8	80
2451	Controlled growth and composition of multivariate metal-organic frameworks-199 via a reaction-diffusion process. Nano Research, 2021, 14, 423-431.	10.4	17
2452	Reticular exploration of uranium-based metalâ€"organic frameworks with hexacarboxylate building units. Nano Research, 2021, 14, 376-380.	10.4	25
2453	Metal–Organic Frameworkâ€Encapsulated CoCu Nanoparticles for the Selective Transfer Hydrogenation of Nitrobenzaldehydes: Engineering Active Armor by the Halfâ€Way Injection Method. Chemistry - A European Journal, 2021, 27, 1080-1087.	3.3	10
2454	Preparation of anion exchange membrane by incorporating IRMOF-3 in quaternized chitosan. Polymer Bulletin, 2021, 78, 3785-3801.	3.3	3
2455	Effect of Inclusion of MOF-Polymer Composite onto a Carbon Foam Material for Hydrogen Storage Application. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 80-88.	3.7	11

#	Article	IF	Citations
2456	Metal–organic frameworks based on multicarboxylate linkers. Coordination Chemistry Reviews, 2021, 426, 213542.	18.8	158
2457	Electrochemical sensing platform for naphthol isomers based on in situ growth of ZIF-8 on reduced graphene oxide by a reaction-diffusion technique. Journal of Colloid and Interface Science, 2021, 581, 576-585.	9.4	17
2458	High performance and ultrafast reduction of 4-nitrophenol using metal-organic frameworks. Journal of Environmental Chemical Engineering, 2021, 9, 104404.	6.7	97
2459	Nickel phosphonate MOF as efficient water splitting photocatalyst. Nano Research, 2021, 14, 450-457.	10.4	68
2460	Improved propylene/propane separation performance under high temperature and pressures on in-situ ligand-doped ZIF-8 membranes. Journal of Membrane Science, 2021, 617, 118655.	8.2	35
2461	The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discussions, 2021, 225, 9-69.	3.2	70
2462	Preparation of heterogeneous interfacial catalyst benzimidazole-based acid ILs@MIL-100(Fe) and its application in esterification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608, 125585.	4.7	9
2463	Advanced materials on sample preparation for safety analysis of aquatic products. Journal of Separation Science, 2021, 44, 1174-1194.	2.5	12
2464	Fabrication of highly porous N-doped mesoporous carbon using waste polyethylene terephthalate bottle-based MOF-5 for high performance supercapacitor. Journal of Energy Storage, 2021, 33, 102125.	8.1	64
2465	BNâ€Doped Metal–Organic Frameworks: Tailoring 2D and 3D Porous Architectures through Molecular Editing of Borazines. Chemistry - A European Journal, 2021, 27, 4124-4133.	3.3	8
2466	Recent advances in photocatalytic multivariate metal organic frameworks-based nanostructures toward renewable energy and the removal of environmental pollutants. Materials Today Energy, 2021, 19, 100589.	4.7	75
2467	Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review. Environment International, 2021, 146, 106273.	10.0	117
2468	Reticular chemistry at the atomic, molecular, and framework scales. Nano Research, 2021, 14, 335-337.	10.4	8
2469	Synthesis strategies and emerging mechanisms of metal-organic frameworks for sulfate radical-based advanced oxidation process: A review. Chemical Engineering Journal, 2021, 421, 127863.	12.7	129
2470	UiO-66(Ce) metal-organic framework as a highly active and selective catalyst for the aerobic oxidation of benzyl amines. Molecular Catalysis, 2021, 499, 111277.	2.0	22
2471	Transitionâ€Metal Carbides as Hydrogen Evolution Reduction Electrocatalysts: Synthetic Methods and Optimization Strategies. Chemistry - A European Journal, 2021, 27, 5074-5090.	3.3	41
2472	Recent advances in carbon capture storage and utilisation technologies: a review. Environmental Chemistry Letters, 2021, 19, 797-849.	16.2	363
2473	Metal-organic framework-based photocatalysts for carbon dioxide reduction to methanol: A review on progress and application. Journal of CO2 Utilization, 2021, 43, 101374.	6.8	47

#	Article	IF	CITATIONS
2474	Elucidating the Structural Evolution of a Highly Porous Responsive Metal–Organic Framework (DUT-49(M)) upon Guest Desorption by Time-Resolved in Situ Powder X-ray Diffraction. Crystal Growth and Design, 2021, 21, 270-276.	3.0	5
2475	Ternary MOF-Based Redox Active Sites Enabled 3D-on-2D Nanoarchitectured Battery-Type Electrodes for High-Energy-Density Supercapatteries. Nano-Micro Letters, 2021, 13, 17.	27.0	64
2476	Prospects for a green methanol thermo-catalytic process from CO2 by using MOFs based materials: A mini-review. Journal of CO2 Utilization, 2021, 43, 101361.	6.8	59
2477	The current status of high temperature electrochemistry-based CO2 transport membranes and reactors for direct CO2 capture and conversion. Progress in Energy and Combustion Science, 2021, 82, 100888.	31.2	49
2478	1Â+Â1Â>Â2: A critical review of MOF/bismuth-based semiconductor composites for boosted photocatalysis. Chemical Engineering Journal, 2021, 417, 128022.	12.7	73
2479	Recyclability and selective fluorescence/colorimetric sensing properties of fluorescent porous materials synthesized by the copolymerization of 4-vinylpyridine zinc and divinylbenzene. Sensors and Actuators B: Chemical, 2021, 329, 129102.	7.8	5
2480	Photoswitchable Metal–Organic Framework Thin Films: From Spectroscopy to Remote-Controllable Membrane Separation and Switchable Conduction. Langmuir, 2021, 37, 2-15.	3 . 5	29
2481	Design of hollow carbon-based materials derived from metal–organic frameworks for electrocatalysis and electrochemical energy storage. Journal of Materials Chemistry A, 2021, 9, 3880-3917.	10.3	117
2482	A family of coordination polymers derived from a flexible dicarboxylic acid and auxiliary N-donor ligands: solvothermal synthesis, crystal structure and dye adsorption properties. Transition Metal Chemistry, 2021, 46, 219-230.	1.4	6
2483	Inquiry for the multifunctional design of metal–organic frameworks: in situ equipping additional open metal sites (OMSs) inducing high CO2 capture/conversion abilities. Materials Chemistry Frontiers, 2021, 5, 1398-1404.	5.9	10
2484	Evaluating the purification and activation of metal-organic frameworks from a technical and circular economy perspective. Coordination Chemistry Reviews, 2021, 428, 213578.	18.8	28
2485	Post-combustion carbon capture. Renewable and Sustainable Energy Reviews, 2021, 138, 110490.	16.4	219
2486	Advances in Air Conditioning Technologies. Green Energy and Technology, 2021, , .	0.6	4
2487	Specific fluorescence sensing of hydrogen sulphide by an azide functionalized Zr(IV) MOF with DUT-52 topology. Microporous and Mesoporous Materials, 2021, 311, 110725.	4.4	22
2488	Permselective metal–organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nature Nanotechnology, 2021, 16, 77-84.	31.5	105
2489	Recent advances in the design of metal–organic frameworks for methane storage and delivery. Journal of Porous Materials, 2021, 28, 213-230.	2.6	13
2490	Electrochemical recovery of LiOH from used CO2 adsorbents. Catalysis Today, 2021, 359, 83-89.	4.4	9
2491	Rational manufacture of yolkâ€"shell and coreâ€"shell metal oxide double layers from silica-templated coordination polymer double layers. Materials Chemistry Frontiers, 2021, 5, 3404-3412.	5.9	1

#	Article	IF	CITATIONS
2492	Color tunable luminescent cellulose acetate nanofibers functionalized by Cul-based complexes. Cellulose, 2021, 28, 1421-1430.	4.9	2
2493	CO ₂ capture enhancement in MOFs <i>via</i> the confinement of molecules. Reaction Chemistry and Engineering, 2021, 6, 441-453.	3.7	13
2494	A rare 4-fold interpenetrated metal–organic framework constructed from an anionic indium-based node and a cationic dicopper linker. Dalton Transactions, 2021, 50, 6631-6636.	3.3	3
2495	Breaking the upper bound of siloxane uptake: metal–organic frameworks as an adsorbent platform. Journal of Materials Chemistry A, 2021, 9, 12711-12720.	10.3	10
2496	Visualizing the Conversion of Metal–Organic Framework Nanoparticles into Hollow Layered Double Hydroxide Nanocages. Journal of the American Chemical Society, 2021, 143, 1854-1862.	13.7	111
2497	A Mesoporous Zirconium-Isophthalate Multifunctional Platform. Matter, 2021, 4, 182-194.	10.0	20
2498	Crosslinked porous polyimides: structure, properties and applications. Polymer Chemistry, 2021, 12, 6494-6514.	3.9	23
2499	Enhanced Guest@MOF Interaction via Stepwise Thermal Annealing: TCNQ@Cu ₃ (BTC) ₂ . Crystal Growth and Design, 2021, 21, 817-828.	3.0	5
2500	3D printed MOF-based mixed matrix thin-film composite membranes. RSC Advances, 2021, 11, 25658-25663.	3.6	15
2501	Mesostructured materials., 2021, , .		1
2503	Metal-organic frameworks as chemical reaction flask. , 2021, , 365-387.		0
2504	Metal–organic framework based catalytic nanoreactors: synthetic challenges and applications. Materials Chemistry Frontiers, 2021, 5, 3986-4021.	5.9	14
2505	Recent progress in materials development for CO ₂ conversion: issues and challenges. Materials Advances, 2021, 2, 3161-3187.	5 . 4	25
2506	Large breathing effect induced by water sorption in a remarkably stable nonporous cyanide-bridged coordination polymer. Chemical Science, 2021, 12, 9176-9188.	7.4	20
2507	Metal–organic framework derived nanomaterials for electrocatalysis: recent developments for CO2 and N2 reduction. Nano Convergence, 2021, 8, 1.	12.1	84
2508	Permeable metal-organic frameworks for fuel (gas) storage applications. , 2021, , 111-126.		O
2509	Photocatalytic Degradation of Tetracycline by a Novel (CMC)/MIL-101(Fe)/ \hat{l}^2 -CDP Composite Hydrogel. Frontiers in Chemistry, 2020, 8, 593730.	3.6	15
2510	Porous Coordination Polymers/Metal-Organic Frameworks. , 2021, , 314-327.		0

#	Article	IF	CITATIONS
2511	Metal-Organic Frameworks Derived From Multitopic Ligands: Structural Aspects., 2021,, 1021-1054.		0
2512	Quenchable Porous High-Temperature Polymorph of Sodium Imidazolate, Nalm. Crystal Growth and Design, 2021, 21, 770-778.	3.0	2
2513	Ag/AgCl@MIL-88A(Fe) heterojunction ternary composites: towards the photocatalytic degradation of organic pollutants. Dalton Transactions, 2021, 50, 2891-2902.	3.3	27
2514	Versatile Nanoscale Metal–Organic Frameworks (nMOFs): An Emerging 3D Nanoplatform for Drug Delivery and Therapeutic Applications. Small, 2021, 17, e2005064.	10.0	65
2515	MOF-based electrocatalysts for high-efficiency CO ₂ conversion: structure, performance, and perspectives. Journal of Materials Chemistry A, 2021, 9, 22710-22728.	10.3	20
2516	Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage. Research, 2021, 2021, 3750689.	5.7	45
2517	Stimuli-responsive metal–organic framework nanoparticles for controlled drug delivery and medical applications. Chemical Society Reviews, 2021, 50, 4541-4563.	38.1	156
2518	Recent developments in chemical energy storage. , 2021, , 447-494.		2
2519	Elucidating pore chemistry within metal–organic frameworks <i>via</i> single crystal X-ray diffraction; from fundamental understanding to application. CrystEngComm, 2021, 23, 2185-2195.	2.6	5
2520	Metal Oxides for Removal of Arsenic Contaminants from Water. Environmental Chemistry for A Sustainable World, 2021, , 147-194.	0.5	1
2521	Tuning water adsorption, stability, and phase in Fe-MIL-101 and Fe-MIL-88 analogs with amide functionalization. Chemical Communications, 2021, 57, 8312-8315.	4.1	11
2522	porE: A code for deterministic and systematic analyses of porosities. Journal of Computational Chemistry, 2021, 42, 630-643.	3.3	4
2523	Template-free synthesis of hierarchical nanocrystal UiO-66 and its adsorption thermodynamics for <i>n</i> -heptane and methyl cyclohexane. CrystEngComm, 2021, 23, 4549-4559.	2.6	1
2524	Solvent-assisted delamination of layered copper dithienothiophene-dicarboxylate (DUT-134). Inorganic Chemistry Frontiers, 2021, 8, 3308-3316.	6.0	7
2525	Unravelling thermal stress due to thermal expansion mismatch in metal–organic frameworks for methane storage. Journal of Materials Chemistry A, 2021, 9, 4898-4906.	10.3	11
2526	Cobalt-Based Metal–Organic Frameworks for Adsorption of CO ₂ and C ₂ Hydrocarbons: Effect of Auxiliary Ligands with Different Functional Groups. Inorganic Chemistry, 2021, 60, 2563-2572.	4.0	5
2527	Solvent-free one pot synthesis of 1,2-dihydroquinolines from anilines and acetone catalysed by MOF-199. Results in Chemistry, 2021, 3, 100097.	2.0	6
2528	Rational strategies for proton-conductive metal–organic frameworks. Chemical Society Reviews, 2021, 50, 6349-6368.	38.1	174

#	Article	IF	CITATIONS
2529	Metal–organic framework. Interface Science and Technology, 2021, , 279-387.	3.3	13
2530	Control over interpenetration for boosting methane storage capacity in metal–organic frameworks. Journal of Materials Chemistry A, 2021, 9, 24857-24862.	10.3	14
2531	Pebaxâ€based mixed matrix membranes loaded with graphene oxide/core shell <scp>ZIF</scp> â€8@ <scp>ZIF</scp> â€67 nanocomposites improved <scp>CO₂</scp> permeability and selectivity. Journal of Applied Polymer Science, 2021, 138, 50553.	2.6	24
2532	Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties. Nature Reviews Materials, 2021, 6, 421-436.	48.7	148
2533	Supermolecule Cucurbituril Subnanoporous Carbon Supercapacitor (SCSCS). Nano Letters, 2021, 21, 2156-2164.	9.1	40
2534	Flow Microreactor Synthesis of Zeolitic Imidazolate Framework (ZIF)@ZIF Core–Shell Metal–Organic Framework Particles and Their Adsorption Properties. Langmuir, 2021, 37, 3858-3867.	3.5	15
2535	Metal–Organic-Framework-Based Materials for Antimicrobial Applications. ACS Nano, 2021, 15, 3808-3848.	14.6	241
2536	Multifunctional MOFâ€Based Separator Materials for Advanced Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2021, 8, 2001941.	3.7	27
2537	Conductive, Large-Area, and Continuous 7,7,8,8-Tetracyanoquinodimethane@HKUST-1 Thin Films Fabricated Using Solution Shearing. ACS Applied Materials & Samp; Interfaces, 2021, 13, 10202-10209.	8.0	14
2538	Advances in Postâ€Combustion CO ₂ Capture by Physical Adsorption: From Materials Innovation to Separation Practice. ChemSusChem, 2021, 14, 1428-1471.	6.8	75
2539	Entropy stabilized multicomponent oxides with diverse functionality $\hat{a} \in \hat{a}$ a review. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 142-193.	12.3	24
2540	Synopsis of Factors Affecting Hydrogen Storage in Biomass-Derived Activated Carbons. Sustainability, 2021, 13, 1947.	3.2	18
2541	An Unprecedented Pillarâ€Cage Fluorinated Hybrid Porous Framework with Highly Efficient Acetylene Storage and Separation. Angewandte Chemie, 2021, 133, 7625-7630.	2.0	26
2542	An Unprecedented Pillarâ€Cage Fluorinated Hybrid Porous Framework with Highly Efficient Acetylene Storage and Separation. Angewandte Chemie - International Edition, 2021, 60, 7547-7552.	13.8	120
2543	Metal–Organic Framework (MOF) Derived Recyclable, Superhydrophobic Composite of Cotton Fabrics for the Facile Removal of Oil Spills. ACS Applied Materials & The Facile Removal of Oil Spills. ACS Applied Materials & The Facile Removal of Oil Spills. ACS Applied Materials & The Facile Removal of Oil Spills. ACS Applied Materials & The Facile Removal of Oil Spills. ACS Applied Materials & The Facile Removal of Oil Spills.	8.0	78
2544	Selective Gas Uptake and Rotational Dynamics in a (3,24)-Connected Metal–Organic Framework Material. Journal of the American Chemical Society, 2021, 143, 3348-3358.	13.7	39
2545	Selective adsorption of SF6 in covalent- and metal–organic frameworks. Chinese Journal of Chemical Engineering, 2021, 39, 88-95.	3.5	5
2546	A Facile Reaction Strategy for the Synthesis of MOF-Based Pine-Needle-Like Nanocluster Hierarchical Structure for Efficient Overall Water Splitting. Inorganic Chemistry, 2021, 60, 4047-4057.	4.0	23

#	Article	IF	CITATIONS
2547	A stable metal–organic framework with wellâ€matched pore cavity for efficient acetylene separation. AICHE Journal, 2021, 67, e17152.	3.6	20
2548	A reticular chemistry guide for the design of periodic solids. Nature Reviews Materials, 2021, 6, 466-487.	48.7	166
2549	Recent advancement in consolidation of MOFs as absorbents for hydrogen storage. International Journal of Energy Research, 2021, 45, 12481-12499.	4.5	32
2550	Curcumin-Loaded Pickering Emulsion Formed by Ultrasound and Stabilized by Metal Organic Framework Optimization. Foods, 2021, 10, 523.	4.3	4
2551	A Novel Hydrogen-Bonded Organic Framework with Highly Permanent Porosity for Boosting Ethane/Ethylene Separation., 2021, 3, 497-503.		46
2552	Efficient CO2 to X Transformation with Metal Organic Framework Catalysts. Ceramist, 2021, 24, 67-95.	0.1	0
2553	Manipulating solvent and solubility in the synthesis, activation, and modification of permanently porous coordination cages. Coordination Chemistry Reviews, 2021, 430, 213679.	18.8	20
2554	Review on porous carbon materials engineered by ZnO templates: Design, synthesis and capacitance performance. Materials and Design, 2021, 201, 109518.	7.0	85
2556	High Pressure In Situ Singleâ€Crystal Xâ€Ray Diffraction Reveals Turnstile Linker Rotation Upon Roomâ€Temperature Stepped Uptake of Alkanes. Angewandte Chemie - International Edition, 2021, 60, 13430-13435.	13.8	18
2557	Frontiers in the treatment of glioblastoma: Past, present and emerging. Advanced Drug Delivery Reviews, 2021, 171, 108-138.	13.7	125
2558	Novel Tetradentate Phosphonate Ligand Based Bioinspired Co-Metal–Organic Frameworks: Robust Electrocatalyst for the Hydrogen Evolution Reaction in Different Mediums. Crystal Growth and Design, 2021, 21, 2614-2623.	3.0	17
2559	Hydrogen adsorption performance of Cu-BTC/graphene aerogel composite: A combined experimental and computational study. International Journal of Hydrogen Energy, 2021, 46, 13097-13105.	7.1	16
2562	Tunable Interaction between Metalâ€Organic Frameworks and Electroactive Components in Lithium–Sulfur Batteries: Status and Perspectives. Advanced Energy Materials, 2021, 11, 2100387.	19.5	84
2563	Porosity Engineering of MOFâ€Based Materials for Electrochemical Energy Storage. Advanced Energy Materials, 2021, 11, 2100154.	19.5	75
2564	High Pressure In Situ Singleâ€Crystal Xâ€Ray Diffraction Reveals Turnstile Linker Rotation Upon Roomâ€Temperature Stepped Uptake of Alkanes. Angewandte Chemie, 2021, 133, 13542-13547.	2.0	0
2565	Hierarchical porous carbon derived from green cyclodextrin <scp>metalâ€organic</scp> framework and its application in microwave absorption. Journal of Applied Polymer Science, 2021, 138, 50849.	2.6	12
2566	Synthesis optimization of metal-organic frameworks MIL-125 and its adsorption separation on C8 aromatics measured by pulse test and simulation calculation. Journal of Solid State Chemistry, 2021, 296, 121956.	2.9	7
2567	Machine learning and descriptor selection for the computational discovery of metal-organic frameworks. Molecular Simulation, 0, , 1-21.	2.0	29

#	Article	IF	CITATIONS
2569	DFT-D3 calculations of the charge-modulated CO2 capture of N/Sc-embedded graphyne: Compilation of some factors. Journal of CO2 Utilization, 2021, 46, 101469.	6.8	17
2570	Porous organic frameworks for carbon dioxide capture and storage. Journal of Environmental Chemical Engineering, 2021, 9, 105090.	6.7	23
2571	Metal–Organic Frameworks as Heterogeneous Electrocatalysts for Water Splitting and CO ₂ Fixation. Crystal Growth and Design, 2021, 21, 3123-3142.	3.0	24
2572	Electrochemical application of zirconium-based metal-organic framework. Inorganic and Nano-Metal Chemistry, 2022, 52, 582-588.	1.6	1
2573	Molecular dynamics simulation of small gas molecule permeation through CAU-1 membrane. Chinese Journal of Chemical Engineering, 2021, 33, 104-111.	3.5	9
2574	Control of interpenetration and structural transformations in the interpenetrated MOFs. Coordination Chemistry Reviews, 2021, 435, 213789.	18.8	79
2575	Molecular Surgery at Microporous MOF for Mesopore Generation and Renovation. Angewandte Chemie, 2021, 133, 14722-14729.	2.0	3
2576	Nanoparticleâ€Mediated siRNA Delivery and Multifunctional Modification Strategies for Effective Cancer Therapy. Advanced Materials Technologies, 2021, 6, 2001236.	5.8	13
2577	Assembly of a Metal–Organic Framework (MOF) Membrane on a Solid Electrocatalyst: Introducing Molecularâ€Level Control Over Heterogeneous CO ₂ Reduction. Angewandte Chemie, 2021, 133, 13535-13541.	2.0	8
2578	Controlled Synthesis of Large Single Crystals of Metalâ€Organic Framework CPOâ€27â€Ni Prepared by a Modulation Approach: <i>In situ</i> Singleâ€Crystal Xâ€ray Diffraction Studies. Chemistry - A European Journal, 2021, 27, 8537-8546.	3.3	8
2579	Largeâ€Area Crystalline Zeolitic Imidazolate Framework Thin Films. Angewandte Chemie, 2021, 133, 14243-14249.	2.0	4
2580	UiO-66-NH2 functionalized cellulose nanofibers embedded in sulfonated polysulfone as proton exchange membrane. International Journal of Hydrogen Energy, 2021, 46, 19106-19115.	7.1	26
2581	Recent developments of organic solvent resistant materials for membrane separations. Chemosphere, 2021, 271, 129425.	8.2	64
2582	Selfâ€Foaming Metalâ€Organic Gels Based on Phytic Acid and Their Mechanical, Moldable, and Loadâ€Bearing Properties Chemistry - A European Journal, 2021, 27, 8791-8798.	3.3	12
2583	Review on improvement of adsorption refrigeration systems performance using composite adsorbent: current state of art. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-25.	2.3	6
2584	Molecular Surgery at Microporous MOF for Mesopore Generation and Renovation. Angewandte Chemie - International Edition, 2021, 60, 14601-14608.	13.8	48
2585	Largeâ€Area Crystalline Zeolitic Imidazolate Framework Thin Films. Angewandte Chemie - International Edition, 2021, 60, 14124-14130.	13.8	30
2586	Assembly of a Metal–Organic Framework (MOF) Membrane on a Solid Electrocatalyst: Introducing Molecularâ€Level Control Over Heterogeneous CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 13423-13429.	13.8	48

#	ARTICLE	IF	CITATIONS
2587	Core–Shell MOFâ€inâ€MOF Nanopore Bifunctional Host of Electrolyte for Highâ€Performance Solidâ€State Lithium Batteries. Small Methods, 2021, 5, e2100508.	8.6	43
2588	Construction of dual ligand Ti-based MOFs with enhanced photocatalytic CO2 reduction performance. Journal of CO2 Utilization, 2021, 48, 101528.	6.8	39
2589	Ligandâ€Conformerâ€Induced Formation of Zirconium–Organic Framework for Methane Storage and MTO Product Separation. Angewandte Chemie, 2021, 133, 16657-16664.	2.0	5
2590	Potential applications based on the formation and dissociation of gas hydrates. Renewable and Sustainable Energy Reviews, 2021, 143, 110928.	16.4	53
2591	Controlling π–π Interactions through Coordination Bond Formation: Assembly of 1-D Chains of acac-Based Coordination Compounds. Crystal Growth and Design, 2021, 21, 3756-3769.	3.0	4
2592	Ligandâ€Conformerâ€Induced Formation of Zirconium–Organic Framework for Methane Storage and MTO Product Separation. Angewandte Chemie - International Edition, 2021, 60, 16521-16528.	13.8	29
2593	New strategy of synthesizing zeolitic imidazolate framework-67 with hierarchical pores for heat storage. Materials Letters, 2021, 293, 129722.	2.6	1
2594	Naphthalenedicarboxylate based metal organic frameworks: Multifaceted material. Coordination Chemistry Reviews, 2021, 437, 213862.	18.8	9
2595	Factors Affecting Hydrogen Adsorption in Metal–Organic Frameworks: A Short Review. Nanomaterials, 2021, 11, 1638.	4.1	31
2596	Crystal structure and physical properties of a new two-dimensional zinc coordination polymer based on 1,4-bis(4-(imidazole-1-yl)benzyl)piperazine and benzophenone-2,4′-dicarboxylate ligands. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, 76, 369-373.	0.7	0
2597	Precise Sub-Angstrom Ion Separation Using Conjugated Microporous Polymer Membranes. ACS Nano, 2021, 15, 11970-11980.	14.6	46
2598	Construction of Stable Helical Metalâ€Organic Frameworks with a Conformationally Rigid "Concave Ligand― Chemistry - A European Journal, 2021, 27, 10833-10838.	3.3	1
2599	Screening Metal–Organic Frameworks for Separation of Binary Solvent Mixtures by Compact NMR Relaxometry. Molecules, 2021, 26, 3481.	3.8	3
2600	Visible-Light-Activated Type II Heterojunction in Cu ₃ (hexahydroxytriphenylene) ₂ /Fe ₂ O ₃ Hybrids for Reversible NO ₂ Sensing: Critical Role of π–Ĩ€* Transition. ACS Central Science, 2021, 7, 1176-1182.	11.3	51
2601	Deep learning combined with IAST to screen thermodynamically feasible MOFs for adsorption-based separation of multiple binary mixtures. Journal of Chemical Physics, 2021, 154, 234102.	3.0	17
2602	Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction. Rare Metals, 2021, 40, 3375-3405.	7.1	112
2603	Porous metal–organic frameworks for methane storage and capture: status and challenges. New Carbon Materials, 2021, 36, 468-496.	6.1	37
2604	Thermolabile Cross-Linkers for Templating Precise Multicomponent Metal–Organic Framework Pores. Journal of the American Chemical Society, 2021, 143, 10317-10323.	13.7	9

#	Article	IF	CITATIONS
2605	Product Inhibition and the Catalytic Destruction of a Nerve Agent Simulant by Zirconium-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 30565-30575.	8.0	28
2606	Multi-applications of new trinuclear Zr-SMI complex. Journal of Molecular Structure, 2021, 1234, 129991.	3.6	0
2607	Novel γ-cyclodextrin-metal–organic frameworks for encapsulation of curcumin with improved loading capacity, physicochemical stability and controlled release properties. Food Chemistry, 2021, 347, 128978.	8.2	53
2608	Dynamics and Treatability of Heavy Metals in Pig Farm Effluent Wastewater by Using UiO-66 and UiO-66-NH2 Nanomaterials as Adsorbents. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	7
2609	Biomedical Applications of Metal–Organic Frameworks at the Subcellular Level. Advanced NanoBiomed Research, 2021, 1, 2100034.	3.6	8
2610	Der derzeitige Stand von MOF―und COFâ€Anwendungen. Angewandte Chemie, 2021, 133, 24174-24202.	2.0	18
2611	Physicochemical Understanding of the Impact of Pore Environment and Species of Adsorbates on Adsorption Behaviour. Angewandte Chemie, 2021, 133, 20667-20673.	2.0	1
2612	Structural modulation of UiO-66-NH2 metal-organic framework via interligands cross-linking: Cooperative effects of pore diameter and amide group on selective CO2 separation. Applied Surface Science, 2021, 553, 149547.	6.1	17
2613	New Reticular Chemistry of the Rod Secondary Building Unit: Synthesis, Structure, and Natural Gas Storage of a Series of Three-Way Rod Amide-Functionalized Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 12202-12211.	13.7	44
2614	Metal–Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chemical Reviews, 2021, 121, 12278-12326.	47.7	633
2615	Einlagerung und Abtrennung von SO 2 â€Spuren in Metallâ€organischen GerÃ⅓stverbindungen durch prÃsynthetische Anpassung der Porenumgebung mit Methylgruppen. Angewandte Chemie, 2021, 133, 18145-18153.	2.0	6
2616	Oxalamide-Functionalized Metal Organic Frameworks for CO ₂ Adsorption. ACS Applied Materials & Interfaces, 2021, 13, 33188-33198.	8.0	35
2617	ZIF-67-based Composite Membranes Generated from Carboxymethyl Chitosan and Nylon Mesh for Separation Applications. Fibers and Polymers, 2021, 22, 3261-3270.	2.1	1
2618	Predicting hydrogen storage in MOFs via machine learning. Patterns, 2021, 2, 100291.	5.9	51
2619	The synergistic effects of surface functional groups and pore sizes on CO2 adsorption by GCMC and DFT simulations. Chemical Engineering Journal, 2021, 415, 128824.	12.7	51
2620	Conductive Metalâ€Organic Frameworks: Electronic Structure and Electrochemical Applications. Chemistry - A European Journal, 2021, 27, 11482-11538.	3.3	25
2621	Physicochemical Understanding of the Impact of Pore Environment and Species of Adsorbates on Adsorption Behaviour. Angewandte Chemie - International Edition, 2021, 60, 20504-20510.	13.8	8
2622	Acid and alkalinity stable pillared-layer and fluorescent zinc(II) metal–organic framework for selective sensing of Fe3+ ions in aqueous solution. Inorganic Chemistry Communication, 2021, 129, 108664.	3.9	7

#	Article	IF	Citations
2623	Metal–Organic Framework UiO-68 and Its Derivatives with Sufficiently Good Properties and Performance Show Promising Prospects in Potential Industrial Applications. Crystal Growth and Design, 2021, 21, 4780-4804.	3.0	19
2624	Differentiation of Epoxide Enantiomers in the Confined Spaces of an Homochiral Cu(II) Metalâ€Organic Framework by Kinetic Resolution. Chemistry - A European Journal, 2021, 27, 16956-16965.	3.3	1
2625	Heterogenized Phosphinic Acid on UiO-66-NH2: A Bifunctional Catalyst for the Synthesis of Polyhydroquinolines. Catalysis Letters, 2022, 152, 1517-1529.	2.6	7
2626	Potential applications of porous organic polymers as adsorbent for the adsorption of volatile organic compounds. Journal of Environmental Sciences, 2021, 105, 184-203.	6.1	57
2627	Mechanistic studies on the conversion of NO gas on urea-iron and copper metal organic frameworks at low temperature conditions: in situ infrared spectroscopy and Monte Carlo investigations. Canadian Journal of Chemistry, 0, , .	1.1	0
2628	Capture and Separation of SO ₂ Traces in Metal–Organic Frameworks via Pre‧ynthetic Pore Environment Tailoring by Methyl Groups. Angewandte Chemie - International Edition, 2021, 60, 17998-18005.	13.8	92
2629	The Current Status of MOF and COF Applications. Angewandte Chemie - International Edition, 2021, 60, 23975-24001.	13.8	450
2630	Design of ZIF-67 MOF-derived Co ₃ O ₄ /NiCo ₂ O ₄ nanosheets for supercapacitor electrode materials. Journal of Chemical Research, 2021, 45, 983-991.	1.3	6
2631	A review on state of art and perspectives of Metal-Organic frameworks (MOFs) in the fight against coronavirus SARS-CoV-2. Journal of Coordination Chemistry, 2021, 74, 2111-2127.	2.2	15
2632	Experimental and Theoretical Study on the Interchange between Zr and Ti within the MILâ€125â€NH 2 Metal Cluster. Chemistry - an Asian Journal, 2021, 16, 2520-2528.	3.3	5
2633	Large-scale simulations of CO2 diffusion in metal–organic frameworks with open Cu sites. Chinese Journal of Chemical Engineering, 2022, 42, 1-9.	3.5	3
2634	High yield nitrogen-doped carbon monolith with rich ultramicropores prepared by in-situ activation for high performance of selective CO2 capture. Carbon, 2021, 181, 270-279.	10.3	42
2635	Improving textural properties of magnesium-based metal-organic framework for gas adsorption by carbon doping. Microporous and Mesoporous Materials, 2021, 323, 111246.	4.4	12
2636	The Review of Carbon Capture-Storage Technologies and Developing Fuel Cells for Enhancing Utilization. Energies, 2021, 14, 4978.	3.1	25
2637	In Situ Thermal Solvent-Free Synthesis of Zeolitic Imidazolate Frameworks with High Crystallinity and Porosity for Effective Adsorption and Catalytic Applications. Crystal Growth and Design, 2021, 21, 5349-5359.	3.0	12
2638	Nanoarchitecturing Carbon Nanodot Arrays on Zeolitic Imidazolate Framework <i>-</i>) Derived Cobalt <i<math>00 Cobalt <i<math>01 Cobalt <i<math>02 Nitrogen <i>-</i>) Doped Carbon Nanoflakes toward Oxygen Reduction Electrocatalysts. ACS Nano, 2021, 15, 13240-13248.</i<math></i<math></i<math>	14.6	38
2639	Heterometallic–Organic Framework from [Cu ₂ 1 ₂] and [PbO] _{<i>n</i>} Chains: Photoluminescence, Sensing, and Photocatalytic Performance. Crystal Growth and Design, 2021, 21, 5261-5267.	3.0	8
2640	Post-synthetic modification of tetrazine functionalized porous MOF for CO2 sorption performances modulation. Journal of Solid State Chemistry, 2021, 300, 122257.	2.9	8

#	Article	IF	CITATIONS
2641	Synthesis of CuCo2O4/BiVO4 composites as promise and efficient catalysts for 4-nitrophenol reduction in water: Experimental and theoretical study. Journal of Environmental Chemical Engineering, 2021, 9, 105408.	6.7	17
2642	Enhanced CO2 capture capacity of amine-functionalized MOF-177 metal organic framework. Journal of Environmental Chemical Engineering, 2021, 9, 105523.	6.7	60
2643	Removal of hydrogen sulfide from a binary mixture with methane gas, using IRMOF-1: a theoretical investigation. Journal of Molecular Modeling, 2021, 27, 240.	1.8	4
2644	In(III) Metal–Organic Framework Incorporated with Enzyme-Mimicking Nickel Bis(dithiolene) Ligand for Highly Selective CO ₂ Electroreduction. Journal of the American Chemical Society, 2021, 143, 14071-14076.	13.7	54
2645	Advances on CO2 storage. Synthetic porous solids, mineralization and alternative solutions. Chemical Engineering Journal, 2021, 419, 129569.	12.7	43
2646	Highâ€throughput computational screening of porous polymer networks for natural gas sweetening based on a neural network. AICHE Journal, 2022, 68, e17433.	3.6	11
2647	Site-Selective Deposition of Metal–Organic Frameworks on Gold Nanobipyramids for Surface-Enhanced Raman Scattering. Nano Letters, 2021, 21, 8205-8212.	9.1	46
2648	C2s/C1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 2021, 442, 213998.	18.8	64
2650	Fast and efficient removal of mercury ions using zirconium-based metal–organic framework filter membranes. Inorganic Chemistry Communication, 2021, 131, 108796.	3.9	5
2651	Carbon materials for extraction of uranium from seawater. Chemosphere, 2021, 278, 130411.	8.2	71
2652	A novel luminescent sensor based on Tb@UiO-66 for highly detecting Sm3+ and teflubenzuron. Journal of the Taiwan Institute of Chemical Engineers, 2021, 126, 173-181.	5.3	26
2653	Metal–Organic Frameworksâ€Derived Selfâ€Supported Carbonâ€Based Composites for Electrocatalytic Water Splitting. Chemistry - A European Journal, 2021, 27, 15866-15888.	3.3	35
2654	Tuning Open Metal Site-Free ncb Type of Metal–Organic Frameworks for Simultaneously High Gravimetric and Volumetric Methane Storage Working Capacities. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44956-44963.	8.0	13
2655	Novel Porous Rhodium Metal–Organic Aerogel for Efficient Removal of Organic Dyes and Catalysis of Si–H Insertion Reactions. ACS Omega, 2021, 6, 26766-26772.	3.5	5
2656	Anchoring Ag(I) into Nitro-Functionalized Metal–Organic Frameworks: Effectively Catalyzing Cycloaddition of CO ₂ with Propargylic Alcohols under Mild Conditions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 45558-45565.	8.0	29
2657	Electrochemical sensing for naphthol isomers based on the in situ growth of zeolitic imidazole framework-67 on ultrathin CoAl layered double hydroxide nanosheets by a reaction–diffusion technique. Journal of Colloid and Interface Science, 2021, 599, 762-772.	9.4	10
2658	Study of H-bonded cyclic dimer of organic linker 5-Bromoisophthalic acid by DFT and vibrational spectroscopy. Journal of Molecular Structure, 2021, 1241, 130613.	3.6	1
2659	Chiral metal–organic frameworks based on asymmetric synthetic strategies and applications. Coordination Chemistry Reviews, 2021, 445, 214083.	18.8	65

#	ARTICLE	IF	CITATIONS
2660	Two-dimensional imine covalent organic frameworks for methane and ethane separation: A GCMC simulation study. Microporous and Mesoporous Materials, 2021, 326, 111386.	4.4	5
2661	Improving porosity and water uptake of aluminum metal-organic frameworks (Al-MOFs) as graphite oxide (GO) composites. Microporous and Mesoporous Materials, 2021, 326, 111352.	4.4	4
2662	Recent advances of functionalized SBA-15 in the separation/preconcentration of various analytes: A review. Microchemical Journal, 2021, 169, 106601.	4.5	17
2663	Multicomponent isoreticular metal-organic frameworks: Principles, current status and challenges. Coordination Chemistry Reviews, 2021, 445, 214074.	18.8	179
2664	Metal-organic frameworks in cooling and water desalination: Synthesis and application. Renewable and Sustainable Energy Reviews, 2021, 149, 111362.	16.4	39
2666	Metal organic framework based fluorescence sensor for detection of antibiotics. Trends in Food Science and Technology, 2021, 116, 1002-1028.	15.1	74
2667	Metal-Organic Frameworks (MOFs) as methane adsorbents: From storage to diluted coal mining streams concentration. Science of the Total Environment, 2021, 790, 148211.	8.0	24
2668	Nano-bio-interface engineering of metal-organic frameworks. Nano Today, 2021, 40, 101256.	11.9	50
2669	Desiccant coated heat exchanger and its applications. International Journal of Refrigeration, 2021, 130, 217-232.	3.4	19
2670	Metal-organic frameworks as superior porous adsorbents for radionuclide sequestration: Current status and perspectives. Journal of Chromatography A, 2021, 1655, 462491.	3.7	23
2671	Insight into the syntheses, performances and mechanisms of organically modified adsorbents for mercury ion sensing and removal. Journal of Environmental Chemical Engineering, 2021, 9, 105833.	6.7	6
2672	Metal organic framework-templated fabrication of exposed surface defect-enriched Co3O4 catalysts for efficient toluene oxidation. Journal of Colloid and Interface Science, 2021, 603, 695-705.	9.4	42
2673	Recent advances in the application of water-stable metal-organic frameworks: Adsorption and photocatalytic reduction of heavy metal in water. Chemosphere, 2021, 285, 131432.	8.2	111
2674	Recent advances in the possible electrocatalysts for the electrochemical reduction of carbon dioxide into methanol. Journal of Alloys and Compounds, 2021, 887, 161449.	5.5	17
2675	An Eu-based MOF as fluorescent probe for the sensitive detection of L-tryptophan. Journal of Solid State Chemistry, 2021, 304, 122555.	2.9	16
2676	Veiled metal organic frameworks nanofillers for mixed matrix membranes with enhanced CO2/CH4 separation performance. Separation and Purification Technology, 2021, 279, 119707.	7.9	12
2677	MOF-based membranes for pervaporation. Separation and Purification Technology, 2021, 278, 119233.	7.9	40
2678	Machine learning for the design and discovery of zeolites and porous crystalline materials. Current Opinion in Chemical Engineering, 2022, 35, 100739.	7.8	14

#	Article	IF	CITATIONS
2679	Mechanism investigation for ultra-efficient photocatalytic water disinfection based on rational design of indirect Z-scheme heterojunction black phosphorus QDs/Cu2O nanoparticles. Journal of Hazardous Materials, 2022, 424, 127281.	12.4	24
2680	A Review on Metal-Organic Frameworks: Synthesis and Applications. Asian Journal of Chemistry, 2021, 33, 245-252.	0.3	1
2681	Micro- and mesoporous metal-organic frameworks for hydrocarbon separation. Russian Chemical Reviews, 2022, 91, RCR5026.	6.5	39
2682	Multifunctionality of weak ferromagnetic porphyrin-based MOFs: selective adsorption in the liquid and gas phase. CrystEngComm, 2021, 23, 4205-4213.	2.6	0
2683	Peculiarities of high-pressure hydrogen adsorption on Pt catalyzed Cu-BTC metal–organic framework. Physical Chemistry Chemical Physics, 2021, 23, 4277-4286.	2.8	5
2684	Recent advances in the capture and abatement of toxic gases and vapors by metal–organic frameworks. Materials Chemistry Frontiers, 2021, 5, 5970-6013.	5.9	44
2685	Carbon dioxide adsorption based on porous materials. RSC Advances, 2021, 11, 12658-12681.	3.6	109
2686	Electrochemical sensing of dopamine using a Ni-based metal-organic framework modified electrode. lonics, 2021, 27, 1339-1345.	2.4	50
2687	Metal-Organic Frameworks: Synthetic Methods and Potential Applications. Materials, 2021, 14, 310.	2.9	112
2688	CO2 Adsorption in Activated Carbon Materials. Engineering Materials, 2021, , 139-152.	0.6	1
2689	Research Progress on the Water Stability of a Metal-Organic Framework in Advanced Oxidation Processes. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	10
2690	An advanced necklace-like metal organic framework with an ultrahighly continuous structure in the membrane for superior butanol/water separation. Journal of Materials Chemistry A, 2021, 9, 11853-11862.	10.3	37
2691	The potential use of metal–organic framework/ammonia working pairs in adsorption chillers. Journal of Materials Chemistry A, 2021, 9, 6188-6195.	10.3	16
2692	Analysis and correlations of metal-organic frameworks: applications and toxicity., 2021,, 253-290.		1
2693	Construction of three new Co(<scp>ii</scp>)-organic frameworks based on diverse metal clusters: highly selective C ₂ H ₂ and CO ₂ capture and magnetic properties. CrystEngComm, 2021, 23, 2439-2446.	2.6	6
2694	Metal–organic frameworks forÂheterogeneous photocatalysisÂof organicÂdyes. , 2021, , 489-508.		2
2695	Surface Area and Porosity of Co ₃ (ndc) ₃ (dabco) Metal–Organic Framework and Its Methane Storage Capacity: A Combined Experimental and Simulation Study. Journal of Physical Chemistry C, 2021, 125, 2411-2423.	3.1	7
2696	Revisiting the MIL-101 metal–organic framework: design, synthesis, modifications, advances, and recent applications. Journal of Materials Chemistry A, 2021, 9, 22159-22217.	10.3	100

#	Article	IF	CITATIONS
2697	Inverted Design for Highâ€Performance Supercapacitor Via Co(OH) ₂ â€Derived Highly Oriented MOF Electrodes. Advanced Energy Materials, 2018, 8, 1702294.	19.5	205
2699	Designing Metal-Organic Frameworks Based Photocatalyst for Specific Photocatalytic Reactions: A Crystal Engineering Approach. Environmental Chemistry for A Sustainable World, 2020, , 141-186.	0.5	6
2700	The Amazing Chemistry of Metal-Organic Frameworks. , 2017, , 339-369.		3
2701	Efficient Removal of Aqueous Aromatic Pollutants by Various Techniques. , 2019, , 261-285.		2
2702	Metal-Organic Frameworks (MOFs) for CO2 Capture. Green Chemistry and Sustainable Technology, 2014, , 79-113.	0.7	2
2703	Strategies for Hydrogen Storage in Porous Organic Polymers. , 2017, , 203-223.		2
2704	Why Design Matters: From Decorated Metal Oxide Clusters to Functional Metal–Organic Frameworks. Topics in Current Chemistry, 2020, 378, 19.	5.8	11
2705	Remarkable isosteric heat of hydrogen adsorption on Cu(I)-exchanged SSZ-39. International Journal of Hydrogen Energy, 2020, 45, 34972-34982.	7.1	15
2706	Synthsis, structures and magnetic properties of three new coordination polymers constructed by mixed-linker strategy. Polyhedron, 2020, 180, 114417.	2.2	4
2707	Ab Initio Adsorption Isotherms for Molecules with Lateral Interactions: CO ₂ in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2017, 121, 12789-12799.	3.1	33
2708	Metal–Organic Framework (MOF)-based CO2 Adsorbents. Inorganic Materials Series, 2018, , 153-205.	0.7	1
2709	A built-in self-calibrating luminescence sensor based on RhB@Zr-MOF for detection of cations, nitro explosives and pesticides. RSC Advances, 2020, 10, 19149-19156.	3.6	51
2710	Recent advances in metal organic frameworks and their composites for batteries. Nano Futures, 2020, 4, 032007.	2.2	9
2711	catena-Poly[[[bis(4-pyridinealdoxime-κN1)zinc]-ν-benzene-1,4-dicarboxylato-κ2O1:O4] 4-pyridinealdoxime monosolvate]. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, m216-m216.	0.2	1
2712	Seven new metal–organic frameworks assembled from semi-rigid polycarboxylate and auxiliary N-donor ligands: syntheses, structures and properties. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 1001-1017.	1.1	12
2714	13 The Role of Molecular Thermodynamics in Developing Industrial Processes and Novel Products That Meet the Needs for a Sustainable Future. Green Chemistry and Chemical Engineering, 2017, , 633-660.	0.0	2
2716	METAL ORGANIC FRAMEWORKS–SYNTHESIS AND APPLICATIONS. , 2014, , 61-103.		6
2717	Molecular Modeling of Gas Separation in Metal–Organic Frameworks. , 2015, , 295-337.		1

#	Article	IF	Citations
2718	Coordination polymers based on <i>trans, trans</i> -muconic acid: synthesis, structure, adsorption and thermal properties. Pure and Applied Chemistry, 2020, 92, 859-870.	1.9	2
2719	Zr-Fumarate MOF a Novel CO2-Adsorbing Material: Synthesis and Characterization. Aerosol and Air Quality Research, 2014, 14, 1605-1612.	2.1	37
2720	Reaction in situ found in the synthesis of a series of lanthanide sulfate complexes and investigation on their structure, spectra and catalytic activity. Open Journal of Inorganic Chemistry, 2013, 03, 76-99.	0.7	13
2721	Stability and Hydration/Dehydration Mechanisms of a Carboxylate-Containing Metal-Organic Framework. World Journal of Mechanics, 2018, 08, 1-10.	0.4	1
2722	A review: methane capture by nanoporous carbon materials for automobiles. Carbon Letters, 2016, 17, 18-28.	5.9	50
2723	Highly efficient hydrogenation of phenol to cyclohexanol over Ni-based catalysts derived from Ni-MOF-74. Reaction Chemistry and Engineering, 2021, 7, 170-180.	3.7	14
2724	Variable Luminescence and Chromaticity of Homoleptic Frameworks of the Lanthanides together with Pyridylpyrazolates. Chemistry - A European Journal, 2021, 27, 16634-16641.	3.3	8
2725	A Triazole Functionalized <i>txt</i> -Type Metal–Organic Framework with High Performance for CH ₄ Uptake and Selective CO ₂ Adsorption. Inorganic Chemistry, 2021, 60, 15646-15652.	4.0	5
2726	Fullerene-impregnated IRMOFs for balanced gravimetric and volumetric H2 densities: A combined DFT and GCMC simulations study. International Journal of Hydrogen Energy, 2021, 46, 40294-40294.	7.1	3
2727	Micropore environment regulation of zirconium MOFs for instantaneous hydrolysis of an organophosphorus chemical. Cell Reports Physical Science, 2021, 2, 100612.	5.6	10
2728	The interaction of hydrogen with heteroatoms (B, N)-doped porous graphene: A computational study. Chemical Papers, 2022, 76, 1009-1017.	2.2	0
2729	A Novel Porous Tiâ€ S quarate as Efficient Photocatalyst in the Overall Water Splitting Reaction under Simulated Sunlight Irradiation. Advanced Materials, 2021, 33, e2106627.	21.0	35
2730	Conversion of CO ₂ into Formic Acid on Transition Metal-Porphyrin-like Graphene: First Principles Calculations. ACS Omega, 2021, 6, 27045-27051.	3.5	3
2731	Molecular insights into hybrid CH4 physisorption-hydrate growth in hydrophobic metal–organic framework ZIF-8: Implications for CH4 storage. Chemical Engineering Journal, 2022, 430, 132901.	12.7	8
2732	Flexible Ionic Conjugated Microporous Polymer Membranes for Fast and Selective Ion Transport. Advanced Functional Materials, 2022, 32, 2108672.	14.9	22
2733	Hydrocarbon adsorption in a series of mesoporous metal-organic frameworks. Microporous and Mesoporous Materials, 2021, 328, 111477.	4.4	10
2735	Local intermolecular interactions for selective CO2 capture by zeolitic imidazole frameworks: energy decomposition analysis., 2012,, 277-288.		0
2736	FUELS – HYDROGEN STORAGE Metal–Organic Frameworks. , 2013, , .		0

#	Article	IF	CITATIONS
2737	CO2Adsorption in Metal-organic Frameworks. Korean Chemical Engineering Research, 2013, 51, 171-180.	0.2	1
2739	Characterization of H2 Adsorption Sites: Where Are the Hydrogens Stored in the Materials?. , 2017, , 257-290.		O
2740	Research on Metal-organic Frameworks for CO2 Capture. , 0, , .		0
2743	Tổng hợp và nghiên cứu hoạt tÃnh xúc tác phân há»§y rhodamine B cá»§a váºt liệu ZIF-67 dưỷi peroxymonosulfate. Tap Chi Khoa Hoc = Journal of Science, 2019, Tập 55, SÃÌ•3, 1.	sá»± hiá»: 0.1	‡ŋ diện cá
2744	nh hưởng cá»§a má»™t số yếu tố nuÃî cấy lan hoÃng thảo kèn (Dendrobium lituiflorum Lindl.) troną Tap Chi Khoa Hoc = Journal of Science, 2020, 56(NaturalScience), 67.	g Äʻiá»u kiá	ện thoánį
2745	Crystal structure of a cadmium sulfate coordination polymer based on the 3,6-bis(pyrimidin-2-yl)-1,4-dihydro-1,2,4,5-tetrazine ligand. Acta Crystallographica Section E: Crystallographic Communications, 2020, 76, 958-961.	0.5	0
2747	From Sintering to Particle Discrimination: New Opportunities in Metal–Organic Frameworks Scintillators. Advanced Photonics Research, 2022, 3, .	3.6	7
2748	Carbon black supported on a Mn-MIL-100 framework as high-efficiency electrocatalysts for nitrophenol reduction. Journal of Electroanalytical Chemistry, 2021, 903, 115824.	3.8	8
2749	Metal Organic Frameworks: From Material Chemistry to Catalytic Applications. RSC Energy and Environment Series, 2020, , 235-303.	0.5	3
2750	Fabrication of Ultrathin Zeolitic Imidazolate Framework on Polymeric Hollow Fiber via Sequential Seed Layer Sputtering. Crystal Growth and Design, 2021, 21, 829-837.	3.0	4
2751	Femtosecond laser induced in-situ crystallization of Tb-based luminescent metal organic framework. Optics Express, 2021, 29, 39304.	3.4	1
2752	Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of application performances. Coordination Chemistry Reviews, 2022, 451, 214273.	18.8	70
2753	Engineering metal-organic frameworks for efficient photocatalytic conversion of CO2 into solar fuels. Coordination Chemistry Reviews, 2022, 450, 214245.	18.8	64
2754	Phân tÃch kênh phân phối và giÃ; trị gia tăng cá»§a cÃ; chét (Eleutheronema tetradactytum) khai thÃ ven bổở tỉnh Bạc Liêu. Tap Chi Khoa Hoc = Journal of Science, 2020, 56(Aquaculture), 161.	ichằng	lưá»>i rÃ
2755	Topotactic desolvation and condensation reactions of 3D Zn3TiF7(H2O)2(taz)3 \hat{A} ·S (S = 3H2O or C2H5OH). Dalton Transactions, 2020, 49, 17758-17771.	3.3	1
2757	Self-templated formation of twin-like metal-organic framework nanobricks as pre-catalysts for efficient water oxidation. Nano Research, 2022, 15, 2887-2894.	10.4	12
2758	Closing the Anthropogenic Chemical Carbon Cycle toward a Sustainable Future via CO ₂ Valorization. Advanced Energy Materials, 2021, 11, 2102767.	19.5	35
2759	Borophene: Two-dimensional Boron Monolayer: Synthesis, Properties, and Potential Applications. Chemical Reviews, 2022, 122, 1000-1051.	47.7	106

#	Article	IF	CITATIONS
2760	Synergetic effect of UiO-66 and plasmonic AgNPs on PET waste support towards degradation of nerve agent simulant. Chemical Engineering Journal, 2022, 431, 133450.	12.7	18
2761	Adsorbent-Coated Heat and Mass Exchanger. Green Energy and Technology, 2021, , 131-166.	0.6	0
2763	Design of ultra-stable Yttrium-organic framework adsorbents for efficient methane purification and storage. Separation and Purification Technology, 2022, 283, 120211.	7.9	9
2764	Advanced Strategies in Metalâ€Organic Frameworks for CO ₂ Capture and Separation. Chemical Record, 2022, 22, .	5.8	42
2765	CO2 to ethanol: A selective photoelectrochemical conversion using a ternary composite consisting of graphene oxide/copper oxide and a copper-based metal-organic framework. Electrochimica Acta, 2022, 404, 139612.	5.2	17
2766	N-doped porous carbon chain with 3D interconnected network structure to modify expanded graphite for efficient thermal energy storage materials. Journal of Energy Storage, 2022, 47, 103634.	8.1	8
2767	UiO-66 metal–organic frameworks in water treatment: A critical review. Progress in Materials Science, 2022, 125, 100904.	32.8	161
2768	Symmetry-Guided Synthesis of <i>N,N′</i> >-Bicarbazole and Porphyrin-Based Mixed-Ligand Metal–Organic Frameworks: Light Harvesting and Energy Transfer. Journal of the American Chemical Society, 2021, 143, 20411-20418.	13.7	37
2769	Enhanced Antimicrobial Activity and Low Phytotoxicity of Acoustically Synthesized Large Aspect Ratio Cu-BTC Metal–Organic Frameworks with Exposed Metal Sites. ACS Applied Materials & Diterfaces, 2021, 13, 58309-58318.	8.0	11
2770	Synthesis methods of microporous organic polymeric adsorbents: a review. Polymer Chemistry, 2021, 12, 6962-6997.	3.9	11
2771	Chapter 2. Inorganic Materials in Drug Delivery. Inorganic Materials Series, 2021, , 14-126.	0.7	0
2772	Recent progress on the design and development of diaminotriazine based molecular catalysts for light-driven hydrogen production. Coordination Chemistry Reviews, 2022, 456, 214375.	18.8	17
2773	Recovery of MOF-5 from Extreme High-Pressure Conditions Facilitated by a Modern Pressure Transmitting Medium. Chemistry of Materials, 0, , .	6.7	6
2774	A luminescence europium Metal-organic coordination polymer for Room-Temperature X-ray detection. Inorganic Chemistry Communication, 2022, 136, 109182.	3.9	4
2775	Dicyanamide-perovskites at the edge of dense hybrid organic–inorganic materials. Coordination Chemistry Reviews, 2022, 455, 214337.	18.8	10
2776	Synthesis, modifications and applications of MILs Metal-organic frameworks for environmental remediation: The cutting-edge review. Science of the Total Environment, 2022, 810, 152279.	8.0	28
2777	The extra-large calixarene-based MOFs-derived hierarchical composites for photocatalysis of dye: Facile syntheses and contribution of carbon species. Journal of Alloys and Compounds, 2022, 897, 163178.	5.5	95
2778	Synthesis and applications of metal-organic frameworks and graphene-based composites: A review. Polyhedron, 2022, 214, 115645.	2.2	22

#	Article	IF	CITATIONS
2779	Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies. Progress in Energy and Combustion Science, 2022, 89, 100965.	31.2	200
2780	MOF-derived N-doped ZnO carbon skeleton@hierarchical Bi2MoO6 S-scheme heterojunction for photodegradation of SMX: Mechanism, pathways and DFT calculation. Journal of Hazardous Materials, 2022, 426, 128106.	12.4	98
2781	Fabrication of NH2-MIL-125(Ti) nanodots on carbon fiber/MoS2-based weavable photocatalysts for boosting the adsorption and photocatalytic performance. Journal of Colloid and Interface Science, 2022, 611, 706-717.	9.4	43
2782	The electrochemical sensor based on Cu/Co binuclear MOFs and PVP cross-linked derivative materials for the sensitive detection of luteolin and rutin. Microchemical Journal, 2022, 175, 107131.	4.5	17
2783	Co-Growth of Iron Oxides with MIL-100(Fe) Enhances its Adsorption for Selenite with a Synergistic Effect. SSRN Electronic Journal, 0, , .	0.4	0
2784	Metal-organic frameworks-driven ZnO-functionalized carbon nanotube fiber for NO2 sensor. Journal of Sensor Science and Technology, 2021, 30, 369-375.	0.2	5
2785	Rapid Cs ⁺ Capture via Multiple Supramolecular Interactions in Anionic Metal–Organic Framework Isomers. Inorganic Chemistry, 2022, 61, 1918-1927.	4.0	8
2786	A facile method to enhance the output performance of triboelectric nanogenerators based on coordination polymers by modulating terminal coordination groups. CrystEngComm, 2021, 24, 192-198.	2.6	7
2787	Eu-Doped MOF-based high-efficiency fluorescent sensor for detecting 2,4-dinitrophenol and 2,4,6-trinitrophenol simultaneously. Analytical Methods, 2021, 14, 44-51.	2.7	13
2788	Experimental Volumetric Hydrogen Uptake Determination at 77 K of Commercially Available Metal-Organic Framework Materials. Journal of Carbon Research, 2022, 8, 5.	2.7	7
2789	Green route of flexible Al-MOF synthesis with superior properties at low energy consumption assisted by ultrasound waves. Solid State Sciences, 2022, 123, 106782.	3.2	11
2790	Synthesizing and characterization of Cu(II) polymer complex: application for removing heavy metals from aqueous solutions. Journal of the Iranian Chemical Society, 2022, 19, 1963-1977.	2.2	4
2791	Recent progress in metal–organic frameworks-based materials toward surface-enhanced Raman spectroscopy. Applied Spectroscopy Reviews, 2022, 57, 513-528.	6.7	19
2792	Metal–Organic Frameworks for NO <i>_×</i> Adsorption and Their Applications in Separation, Sensing, Catalysis, and Biology. Small, 2022, 18, e2105484.	10.0	29
2793	State of the art developments and prospects of metal–organic frameworks for energy applications. Dalton Transactions, 2022, 51, 1675-1723.	3.3	11
2794	Modified Metalâ^'Organic Frameworks for Electrochemical Applications. Small Structures, 2022, 3, .	12.0	20
2795	Advances in antitumor nanomedicine based on functional metal–organic frameworks beyond drug carriers. Journal of Materials Chemistry B, 2022, 10, 676-699.	5.8	12
2796	Combining crystal graphs and domain knowledge in machine learning to predict metal-organic frameworks performance in methane adsorption. Microporous and Mesoporous Materials, 2022, 331, 111666.	4.4	16

#	Article	IF	CITATIONS
2797	Recent trends on the implementation of reticular materials in columnâ€centered separations. Journal of Separation Science, 2022, 45, 1411-1424.	2.5	5
2798	Modeling High-Pressure Hydrogen Uptake by Nanoporous Metal–Organic Frameworks: Implications for Hydrogen Storage and Delivery. ACS Applied Nano Materials, 2022, 5, 759-773.	5.0	11
2799	Evidence of One-Dimensional Channels in Hydrogen-Bonded Organic Porous Thin Films Fabricated at the Air/Liquid Interface. Langmuir, 2022, 38, 1910-1914.	3.5	1
2800	Computational screening of metal-organic frameworks for ammonia capture from humid air. Microporous and Mesoporous Materials, 2022, 331, 111659.	4.4	7
2801	Tying Covalent Organic Frameworks through Alkene Metathesis and Supported Platinum as Efficient Catalysts for Hydrosilylation. Nanomaterials, 2022, 12, 499.	4.1	1
2802	Journey to the Market: The Evolution of Biodegradable Drug Delivery Systems. Applied Sciences (Switzerland), 2022, 12, 935.	2.5	16
2803	Encapsulating quercetin in cyclodextrin metal–organic frameworks improved its solubility and bioavailability. Journal of the Science of Food and Agriculture, 2022, 102, 3887-3896.	3.5	19
2804	Recent advances in carbon dioxide capture for process intensification. Carbon Capture Science & Technology, 2022, 2, 100031.	10.4	32
2805	Design of portable hydrogen tank using adsorption material as storage media: An alternative to Type IV compressed tank. Applied Energy, 2022, 310, 118552.	10.1	21
2806	A Co(II)-based non-interpenetration semiconductive metal-organic framework for photocatalytic degradation of organic dye contaminant. Inorganic Chemistry Communication, 2022, 138, 109224.	3.9	3
2807	Novel Cu-doped zeolitic imidazolate framework-8 membranes supported on copper foam for highly efficient catalytic wet peroxide oxidation of phenol. Materials Today Chemistry, 2022, 24, 100787.	3.5	4
2808	Research progress in metal–organic frameworks (MOFs) in CO ₂ capture from post-combustion coal-fired flue gas: characteristics, preparation, modification and applications. Journal of Materials Chemistry A, 2022, 10, 5174-5211.	10.3	54
2809	Fe-doped zeolitic imidazolate framework-8 as superior adsorbent for enhanced ciprofloxacin removal from aqueous solution. Applied Surface Science, 2022, 586, 152687.	6.1	13
2810	Porous materials for hydrogen storage. CheM, 2022, 8, 693-716.	11.7	143
2811	Microspherical Assembly of a Metal Organic Framework Wrapped in Graphene: an Efficient Approach to Prevent Collapse and Aggregation During Carbonization. SSRN Electronic Journal, 0, , .	0.4	0
2813	Functional crystalline porous materials. , 2023, , 336-354.		1
2814	An efficient factor for fast screening of high-performance two-dimensional metal–organic frameworks towards catalyzing the oxygen evolution reaction. Chemical Science, 2022, 13, 4397-4405.	7.4	11
2815	Metal-organic frameworks for fuel cell technologies. , 2022, , 173-199.		1

#	ARTICLE	IF	CITATIONS
2816	Two Zn(<scp>ii</scp>) coordination polymers with anticancer drug norcantharidin as ligands for cancer chemotherapy. Dalton Transactions, 2022, 51, 5624-5634.	3.3	8
2818	Pebax-Based Membrane Filled with Photo-Responsive Azo@Nh2-Mil-53 Nanoparticles for Efficient So2/N2 Separation. SSRN Electronic Journal, 0, , .	0.4	O
2819	Metal organic framework (MOFs) materials in hydrogen storage. , 2022, , .		0
2820	Electrochemical sensing of malathion using doped MOFs. IOP Conference Series: Materials Science and Engineering, 2022, 1225, 012055.	0.6	4
2821	2D Materials for Wearable Energy Harvesting. Advanced Materials Technologies, 2022, 7, .	5.8	16
2822	Increasing the Stability of Metal–Organic Frameworks by Coating with Poly(tetrafluoroethylene). Inorganic Chemistry, 2022, 61, 5092-5098.	4.0	8
2823	Ultrasound Irradiation Assisted Synthesis of Luminescent Nano Amide-Functionalized Metal-Organic Frameworks; Application Toward Phenol Derivatives Sensing. Frontiers in Chemistry, 2022, 10, 855886.	3.6	3
2824	Advances in microâ€supercapacitors (MSCs) with high energy density and fast chargeâ€discharge capabilities for flexible bioelectronic devices—A review. Electrochemical Science Advances, 2023, 3, .	2.8	15
2825	Metal-Organic Framework Based Drug Delivery for Alzheimer Therapy and Clinical Progress. Mini-Reviews in Organic Chemistry, 2022, 19, .	1.3	0
2826	Low-Temperature and Additive-Free Synthesis of Spherical MIL-101(Cr) with Enhanced Dye Adsorption Performance. Inorganics, 2022, 10, 33.	2.7	5
2827	Current Progress and Scalable Approach toward the Synthesis of 2D Metal–Organic Frameworks. Advanced Materials Interfaces, 2022, 9, .	3.7	9
2828	Aptamer-functionalized metal organic frameworks as an emerging nanoprobe in the food safety field: Promising development opportunities and translational challenges. TrAC - Trends in Analytical Chemistry, 2022, 152, 116622.	11.4	37
2829	Metal-organic framework-derived multifunctional photocatalysts. Chinese Journal of Catalysis, 2022, 43, 971-1000.	14.0	64
2830	Amine-Functionalized Metal-Organic Frameworks: from Synthetic Design to Scrutiny in Application. Coordination Chemistry Reviews, 2022, 459, 214445.	18.8	47
2831	Conjugated microporous polymer membranes for chemical separations. Chinese Journal of Chemical Engineering, 2022, 45, 1-14.	3.5	3
2832	Catalytic activity of Cul/Cull cyanide based phenanthroline-bicarbonate system for enhancing aerobic oxidation of 2,6-di-tert-butylphenol. Journal of Saudi Chemical Society, 2022, 26, 101466.	5.2	1
2833	Fluorescent oligonucleotide indicators for ratiometric microRNA sensing on metal-organic frameworks. Chemical Engineering Journal, 2022, 437, 135296.	12.7	19
2834	Nitrogen-doped porous carbon fiber with enriched Fe2N sites: Synthesis and application as efficient electrocatalyst for oxygen reduction reaction in microbial fuel cells. Journal of Colloid and Interface Science, 2022, 616, 539-547.	9.4	19

#	Article	IF	CITATIONS
2835	Simultaneous removal of tetracycline and norfloxacin from water by iron-trimesic metal-organic frameworks. Journal of Environmental Chemical Engineering, 2022, 10, 107403.	6.7	28
2836	Silver and copper modified zeolite imidazole frameworks as sustainable methane storage systems. Journal of Cleaner Production, 2022, 352, 131638.	9.3	1
2837	Promising activated carbons derived from common oak leaves and their application in CO2 storage. Journal of Environmental Chemical Engineering, 2022, 10, 107642.	6.7	31
2838	The role of MOF based nanocomposites in the detection of phenolic compounds for environmental remediation- A review. Chemosphere, 2022, 300, 134516.	8.2	30
2839	Cobalt metal-organic framework for low concentration detection of glucose. Inorganic and Nano-Metal Chemistry, 0, , 1 -6.	1.6	0
2840	Triggered and controlled release of active gaseous/volatile compounds for active packaging applications of agriâ€food products: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 541-579.	11.7	25
2841	Correlation between the Metal and Organic Components, Structure Property, and Gas-Adsorption Capacity of Metal–Organic Frameworks. Journal of Chemical Information and Modeling, 2021, 61, 5785-5792.	5.4	3
2842	Manipulating Pore Topology and Functionality to Promote Fluorocarbon-Based Adsorption Cooling. Accounts of Chemical Research, 2022, 55, 649-659.	15.6	9
2843	Modeling of CO2 adsorption capacity by porous metal organic frameworks using advanced decision tree-based models. Scientific Reports, 2021, 11, 24468.	3.3	34
2844	Adsorbed Natural Gas Storage for Vehicular Applications. , 0, , .		0
2845	Metal–organic frameworks and their composites for fuel and chemical production <i>via</i> CO ₂ conversion and water splitting. RSC Advances, 2022, 12, 11686-11707.	3.6	12
2846	A 2D/1D heterojunction nanocomposite built from polymeric carbon nitride and MIL-88A(Fe) derived \hat{l}_{\pm} -Fe ₂ O ₃ for enhanced photocatalytic degradation of rhodamine B. New Journal of Chemistry, 0, , .	2.8	2
2847	Metal organic framework based sensors for the detection of food contaminants. TrAC - Trends in Analytical Chemistry, 2022, 154, 116642.	11.4	40
2848	Metal–Organic Framework-Based Materials for Adsorption and Detection of Uranium(VI) from Aqueous Solution. ACS Omega, 2022, 7, 14430-14456.	3.5	29
2849	Nanomaterials and metal-organic frameworks for biosensing applications of mutations of the emerging viruses. Analytical Biochemistry, 2022, 648, 114680.	2.4	11
2850	Dyeâ€encapsulated nanocageâ€based metalâ€organic frameworks as luminescent dualâ€emitting sensors for selective detection of inorganic ions. Applied Organometallic Chemistry, 0, , .	3.5	3
2851	Review on applications of metal–organic frameworks for CO2 capture and the performance enhancement mechanisms. Renewable and Sustainable Energy Reviews, 2022, 162, 112441.	16.4	35
2852	Are metal dopant and ligands efficient to optimize the adsorption rate of CH4, H2 and H2S on IRMOFs? Insights from factorial design. Computational Materials Science, 2022, 210, 111438.	3.0	5

#	Article	IF	CITATIONS
2853	3D <i>vs.</i> turbostratic: controlling metal–organic framework dimensionality <i>via N</i> heterocyclic carbene chemistry. Chemical Science, 2022, 13, 6418-6428.	7.4	2
2854	MOFs for hydrogen storage. , 2022, , 589-607.		2
2855	Hydrogen Sorption Behaviors on Lithium Doped MIL@53-Al at Non-Cryogenic Temperatures. International Journal of Surface Engineering and Interdisciplinary Materials Science, 2022, 10, 1-10.	0.4	1
2856	Synthesis and Structural Characterization of Two-Dimensional Metal-Organic Framework by Using Bent Ditopic Carboxylate Ligands. SSRN Electronic Journal, 0, , .	0.4	0
2857	Structural and anionic effects of microcrystalline Zn-CPs on 4-nitrophenol sensing performances. RSC Advances, 2022, 12, 12957-12966.	3.6	1
2858	Recent advancement in bimetallic metal organic frameworks (M′MOFs): synthetic challenges and applications. Inorganic Chemistry Frontiers, 2022, 9, 3003-3033.	6.0	18
2859	Application of Metal-Organic Frameworks as Ph-Responsive Drug Delivery System. SSRN Electronic Journal, 0, , .	0.4	0
2860	<i>In situ</i> composite of Co-MOF on a Ti-based material for visible light multiphase catalysis: synthesis and the photocatalytic degradation mechanism. New Journal of Chemistry, 2022, 46, 11341-11349.	2.8	3
2861	The pioneering role of metal–organic framework-5 in ever-growing contemporary applications – a review. RSC Advances, 2022, 12, 14282-14298.	3.6	18
2862	MOFs for solar photochemistry applications. , 2022, , 665-698.		1
2863	Shaping MOF oxime oxidation catalysts as three-dimensional porous aerogels through structure-directing growth inside chitosan microspheres. Green Chemistry, 2022, 24, 4533-4543.	9.0	16
2864	Metal–organic framework structures of fused hexagonal motifs with cuprophilic interactions of a triangular Cu(<scp>i</scp>) ₃ (pyrazolate-benzoate) metallo-linker. CrystEngComm, 2022, 24, 3675-3691.	2.6	5
2865	Role of Lewis Acid Metal Centers in Metal–Organic Frameworks for Ultrafast Reduction of 4-Nitrophenol. Catalysts, 2022, 12, 494.	3.5	5
2866	Computational Identification and Experimental Demonstration of Highâ∈Performance Methane Sorbents. Angewandte Chemie - International Edition, 2022, 61, e202203575.	13.8	13
2867	Computational Identification and Experimental Demonstration of Highâ€Performance Methane Sorbents. Angewandte Chemie, 2022, 134, .	2.0	2
2868	Evaluating the High-Pressure Volumetric CH ₄ , H ₂ , and CO ₂ Storage Properties of Denser-Version Isostructural soc -Metalâ€"Organic Frameworks. Journal of Chemical & Data, 2022, 67, 1732-1742.	1.9	8
2869	Encapsulation-Led Adsorption of Neutral Dyes and Complete Photodegradation of Cationic Dyes and Antipsychotic Drugs by Lanthanide-Based Macrocycles. Inorganic Chemistry, 2022, 61, 7682-7699.	4.0	12
2870	Synergistic effects of nanosized supramolecular complex inlaid with silver nanoparticles: Catalysis, sensors, and biological activities. Applied Organometallic Chemistry, 2022, 36, .	3.5	O

#	Article	IF	CITATIONS
2871	Accessing 14-Connected Nets: Continuous Breathing, Hydrophobic Rare-Earth Metal Organic Frameworks Based on 14-c Hexanuclear Clusters with High Affinity for Non-Polar Vapors. ACS Applied Materials & Samp; Interfaces, 2022, 14, 22242-22251.	8.0	7
2872	Environmentally Benign Synthesis of Copper Benzenetricarboxylic Acid MOF as an Electrocatalyst for Overall Water Splitting and CO ₂ Reduction., 2022, 1, 020501.		6
2873	Unraveling the Role of Chemistry and Topology of MOFs in Psoralen Adsorption. Industrial & Engineering Chemistry Research, 2022, 61, 7172-7182.	3.7	2
2874	A core–shell Fe3O4@NH2-MIL-101(Cr) composite material for efficient removal of formaldehyde. Journal of Materials Research, 2022, 37, 1739-1749.	2.6	3
2875	Recent advances in the tuning of the organic framework materials – The selections of ligands, reaction conditions, and post-synthesis approaches. Journal of Colloid and Interface Science, 2022, 623, 378-404.	9.4	7
2876	Zr (IV) metal-organic framework based cadmium sulfide for enhanced photocatalytic water splitting. Journal of Environmental Chemical Engineering, 2022, 10, 107820.	6.7	3
2877	Review on design strategies and applications of metal-organic framework-cellulose composites. Carbohydrate Polymers, 2022, 291, 119539.	10.2	29
2878	Adenine-incorporated metal–organic frameworks. Coordination Chemistry Reviews, 2022, 464, 214558.	18.8	20
2879	Deep-Learning-Based End-to-End Predictions of CO ₂ Capture in Metal–Organic Frameworks. Journal of Chemical Information and Modeling, 2022, 62, 3281-3290.	5.4	9
2880	Three-dimensional electroconductive carbon nanotube-based hydrogel scaffolds enhance neural differentiation of stem cells from apical papilla. , 2022, 138, 212868.		7
2881	Imparting Multifunctionality in Zr-MOFs Using the One-Pot Mixed-Linker Strategy: The Effect of Linker Environment and Enhanced Pollutant Removal. ACS Applied Materials & Samp; Interfaces, 2022, 14, 24351-24362.	8.0	4
2882	Triggered and controlled release of bioactives in food applications. Advances in Food and Nutrition Research, 2022, , 49-107.	3.0	5
2883	Metal-organic framework-based materials for the abatement of air pollution and decontamination of wastewater. Chemosphere, 2022, 303, 135082.	8.2	37
2884	Nanofused Hierarchically Porous MIL-101(Cr) for Enhanced Methyl Orange Removal and Improved Catalytic Activity. Materials, 2022, 15, 3645.	2.9	8
2885	Diamine-Appended Metal Oxide Framework Materials for Thermal-Swing Ad- and Desorption of Carbon Dioxide at Ambient Conditions. Frontiers in Environmental Chemistry, 2022, 3, .	1.6	0
2886	recyclable luminescent sensing material for sensitive detection of nitrofurazone. Journal of Molecular Structure, 2022, 1264, 133332.	3.6	4
2887	Pore-Nanospace Engineering of Mixed-Ligand Metal–Organic Frameworks for High Adsorption of Hydrofluorocarbons and Hydrochlorofluorocarbons. Chemistry of Materials, 2022, 34, 5116-5124.	6.7	11
2888	Synthesis of MIL- $101(Cr)$ /Sulfasalazine (Cr-TA@SSZ) hybrid and its use as a novel adsorbent for adsorptive removal of organic pollutants from wastewaters. Journal of Porous Materials, 0 , , .	2.6	4

#	Article	IF	CITATIONS
2889	Polymorph Selection of Zeolitic Imidazolate Frameworks via Kinetic and Thermodynamic Control. Crystal Growth and Design, 2022, 22, 4268-4276.	3.0	5
2890	Encapsulation of AlEgens within Metal–Organic Framework toward Highâ€Performance White Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	7.3	9
2891	A neutral zinc(II) metal-organic framework with nanoporous channels for efficient and selective absorption of anionic dyes. Journal of Molecular Structure, 2022, 1265, 133413.	3.6	2
2892	Bimetallic Fe–Cu metal organic frameworks for room temperature catalysis. Applied Organometallic Chemistry, 2022, 36, .	3.5	15
2893	Stabilizing bienzymatic cascade catalysis via immobilization in ZIF-8/GO composites obtained by GO assisted co-growth. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112585.	5.0	6
2894	Pebax-based membrane filled with photo-responsive Azo@NH2-MIL-53 nanoparticles for efficient SO2/N2 separation. Separation and Purification Technology, 2022, 296, 121363.	7.9	6
2895	Metal-organic materials with circularly polarized luminescence. Coordination Chemistry Reviews, 2022, 468, 214640.	18.8	44
2896	Bismuth-Based Metal–Organic Frameworks Derived from Multi-Carboxylate Organic Linkers. ACS Symposium Series, 0, , 53-82.	0.5	0
2897	Metalâ^'Organic Frameworks as Sensors. ACS Symposium Series, 0, , 125-154.	0.5	1
2898	Metalâ^'Organic Frameworks as Sensors of Biomolecules. ACS Symposium Series, 0, , 1-31.	0.5	4
2899	Modification of Metalâ^'Organic Frameworks for CO ₂ Capture. ACS Symposium Series, 0, , 269-308.	0.5	2
2900	An Insight into Sensitive Detection of Metal ions Using a Novel Cobalt MOF: Single Crystal, Photoluminescence, and Theoretical Studies. CrystEngComm, 0, , .	2.6	0
2901	Nanotechnology Research for Alternative Renewable Energy. RSC Nanoscience and Nanotechnology, 2022, , 277-298.	0.2	0
2902	Graphene-based polymer composites in corrosion protection applications. , 2022, , 559-581.		O
2903	METAL-ORGANIC FRAMEWORKS IN RUSSIA: FROM THE SYNTHESIS AND STRUCTURE TO FUNCTIONAL PROPERTIES AND MATERIALS. Journal of Structural Chemistry, 2022, 63, 671-843.	1.0	35
2904	Facile Synthesis of 4,4′-biphenyl Dicarboxylic Acid-Based Nickel Metal Organic Frameworks with a Tunable Pore Size towards High-Performance Supercapacitors. Nanomaterials, 2022, 12, 2062.	4.1	10
2905	Zirconium Metal Organic Framework-Based Hybrid Sensors with Chiral and Luminescent Centers Fabricated by Postsynthetic Modification for the Detection and Recognition of Tryptophan Enantiomers. Inorganic Chemistry, 2022, 61, 9615-9622.	4.0	22
2906	Benchmarking Machine Learning Descriptors for Crystals. ACS Symposium Series, 0, , 111-126.	0.5	0

#	ARTICLE	IF	CITATIONS
2907	Hydrogen storage metal-organic framework classification models based on crystal graph convolutional neural networks. Chemical Engineering Science, 2022, 259, 117813.	3.8	16
2908	Visual monitoring of silver ions and cysteine using bi-ligand Eu-based metal organic framework as a reference signal: Color tonality. Microchemical Journal, 2022, 181, 107721.	4.5	21
2910	The uptake of metal–organic frameworks: a journey into the cell. Chemical Society Reviews, 2022, 51, 6065-6086.	38.1	55
2911	Highly Efficient Bifunctional Catalyst with 2d Mon Formed in Situ Synergy for Oer and Orr Based-On Coii Doped Moiv-Niii Supramolecular Coordination Polymer. SSRN Electronic Journal, 0, , .	0.4	0
2912	Influence of reaction temperature and stoichiometry on the coordination mode of a multidentate pyridylpyrazole ligand in Co(<scp>ii</scp>) complexes: from a OD mononuclear structure to 3D frameworks. CrystEngComm, 2022, 24, 5410-5420.	2.6	1
2913	Porous Adsorption Materials for Carbon Dioxide Capture in Industrial Flue Gas. Frontiers in Chemistry, 0, 10 , .	3.6	20
2914	Ligand Tailoring Strategy of a Metal–Organic Framework for Optimizing Methane Storage Working Capacities. Inorganic Chemistry, 2022, 61, 10417-10424.	4.0	5
2915	Tailored Inorganicâ€Organic Architectures via Metalloligands. Chemical Record, 0, , .	5.8	1
2916	A Review on Metal- Organic Frameworks (MOFS), Synthesis, Activation, Characterisation, and Application. Oriental Journal of Chemistry, 2022, 38, 490-516.	0.3	3
2917	Reticular Chemistry for the Construction of Highly Porous Aluminum-Based nia -Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 10661-10666.	4.0	8
2918	A Ceâ€UiOâ€66 Metal–Organic Frameworkâ€Based Grapheneâ€Embedded Photocatalyst with Controllable Activation for Solar Ammonia Fertilizer Production. Angewandte Chemie, 2022, 134, .	2.0	6
2919	Synthesis and Characterization Bimetallic Organic Framework CoxFex(BDC) and Adsorption Cationic and Anionic Dyes. Processes, 2022, 10, 1352.	2.8	11
2920	Terpolymeric platform with enhanced hydrophilicity via cysteic acid for serum intact glycopeptide analysis. Mikrochimica Acta, 2022, 189, .	5.0	5
2921	Reversible hydrogen adsorption in Tiâ€functionalized porous holey graphyne: Insights from firstâ€principles calculation. Energy Storage, 2023, 5, .	4.3	8
2922	A Ceâ€UiOâ€66 Metal–Organic Frameworkâ€Based Grapheneâ€Embedded Photocatalyst with Controllable Activation for Solar Ammonia Fertilizer Production. Angewandte Chemie - International Edition, 2022, 61, .	13.8	17
2923	CO2 Hydrogenation on Metal-Organic Frameworks-Based Catalysts: A Mini Review. Frontiers in Chemistry, $0,10,.$	3.6	4
2924	Pore space partition of metal-organic frameworks for gas storage and separation. EnergyChem, 2022, 4, 100080.	19.1	35
2925	Highly efficient bifunctional catalyst with 2D MoN formed in situ synergy for OER and ORR based-on Co(II) doped Mo(IV)-Ni(II) supramolecular coordination polymer. Molecular Catalysis, 2022, 528, 112513.	2.0	1

#	Article	IF	Citations
2926	A deep insight of the photoluminescence property changes of Cd(II)-based metal-organic framework induced by an aeolotropic structure transition under high pressure. Microporous and Mesoporous Materials, 2022, 341, 112095.	4.4	0
2927	Metal–Organic Framework: An Emergent Catalyst in C–N Cross-Coupling Reactions. Coordination Chemistry Reviews, 2022, 469, 214667.	18.8	23
2928	Hydrogen storage methods: Review and current status. Renewable and Sustainable Energy Reviews, 2022, 167, 112743.	16.4	223
2929	How to Design Porous Organic Polymers as Gas Capture?. , 0, , 1-4.		0
2931	Cuâ€Based Organicâ€Inorganic Composite Materials for Electrochemical CO ₂ Reduction. Chemistry - an Asian Journal, 2022, 17, .	3.3	12
2932	Fabrication of Zn-MOF derived graphitic carbon materials with mesoporous structure for adsorptive removal of ceftazidime from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 129758.	4.7	3
2933	Two-Dimensional Metal–Organic Framework-Based Cellular Scaffolds with High Protein Adsorption, Retention, and Replenishment Capabilities. ACS Applied Materials & Samp; Interfaces, 2022, 14, 34443-34454.	8.0	2
2934	Progress and potential of metal-organic frameworks (MOFs) for gas storage and separation: A review. Journal of Environmental Chemical Engineering, 2022, 10, 108300.	6.7	86
2935	Zirconium-Based MOFs and Their Biodegradable Polymer Composites for Controlled and Sustainable Delivery of Herbicides. ACS Applied Bio Materials, 2022, 5, 3972-3981.	4.6	16
2936	Hierarchically Porous MOFs Synthesized by Soft-Template Strategies. Accounts of Chemical Research, 2022, 55, 2235-2247.	15.6	57
2937	Temperature-Dependent Superhydrophobic Functionalized Coordination Polymers (SFCPs) for Selective Adsorption of C ₂ H ₄ over C ₂ H ₆ . Inorganic Chemistry, 2022, 61, 14344-14351.	4.0	0
2938	Robust Nickel Aspartate Framework for Shape Recognition of Hexane Isomers. ACS Sustainable Chemistry and Engineering, 2022, 10, 11330-11337.	6.7	5
2939	Microporous metala \in organic frameworks: Synthesis and applications. Journal of Industrial and Engineering Chemistry, 2022, 115, 1-11.	5.8	20
2940	Advances in Metal-Organic Frameworks MIL-101(Cr). International Journal of Molecular Sciences, 2022, 23, 9396.	4.1	36
2941	Ultralong mean free path phonons in HKUST-1 and their scattering by water adsorbates. Physical Review B, 2022, 106, .	3.2	11
2942	Metal–Organic Frameworks for CO ₂ Separation from Flue and Biogas Mixtures. Advanced Functional Materials, 2022, 32, .	14.9	46
2943	Sorbents for Atmospheric Water Harvesting: From Design Principles to Applications. Angewandte Chemie, 2022, 134, .	2.0	10
2944	Sorbents for Atmospheric Water Harvesting: From Design Principles to Applications. Angewandte Chemie - International Edition, 2022, 61, .	13.8	51

#	Article	IF	CITATIONS
2945	Cu ₃ (HHTP) ₂ câ€MOF/ZnO Ultrafast Ultraviolet Photodetector for Wearable Optoelectronics. Chemistry - A European Journal, 2022, 28, .	3.3	11
2946	Hydrogen adsorption on Co2+ - and Ni2+- exchanged -US-Y and -ZSM-5. A combined sorption, DR UV–Vis, synchrotron XRD and DFT study. International Journal of Hydrogen Energy, 2022, 47, 32181-32201.	7.1	1
2947	20 K H ₂ Physisorption on Metal–Organic Frameworks with Enhanced Dormancy Compared to Liquid Hydrogen Storage. ACS Applied Energy Materials, 2023, 6, 9057-9064.	5.1	7
2948	Recent advances in metal-based nanoporous materials for sensing environmentally-related biomolecules. Chemosphere, 2022, 307, 135999.	8.2	2
2949	pH dependence of drug release behavior from metal-organic framework particle with different acid-base resistances. Inorganica Chimica Acta, 2022, 542, 121143.	2.4	1
2950	Avoiding interpenetration by the contraction of acylamide-inserted linker for the construction of A pcu-type Metal-Organic Polyhedral. Journal of Solid State Chemistry, 2022, 315, 123519.	2.9	2
2951	In-situ growth of iron oxides with MIL-100(Fe) enhances its adsorption for selenite. Surfaces and Interfaces, 2022, 34, 102325.	3.0	2
2952	Metal–organic framework-derived heteroatom-doped nanoarchitectures for electrochemical energy storage: Recent advances and future perspectives. Energy Storage Materials, 2022, 52, 685-735.	18.0	38
2953	ZIF-filler incorporated mixed matrix membranes (MMMs) for efficient gas separation: A review. Journal of Environmental Chemical Engineering, 2022, 10, 108541.	6.7	32
2954	Computer Simulations of MOF Systems: Key Applications. Engineering Materials, 2022, , 231-253.	0.6	0
2955	A new 3D 8-connected Cd(<scp>ii</scp>) MOF as a potent photocatalyst for oxytetracycline antibiotic degradation. CrystEngComm, 2022, 24, 6933-6943.	2.6	87
2956	Phase transition of metal–organic frameworks for regulating the fluorescence properties of dyes. New Journal of Chemistry, 2022, 46, 20056-20060.	2.8	1
2957	Porous metal–organic frameworks for hydrogen storage. Chemical Communications, 2022, 58, 11059-11078.	4.1	42
2958	Generalised predictability in the synthesis of biocarbons as clean energy materials: targeted high performance CO ₂ and CH ₄ storage. Energy and Environmental Science, 2022, 15, 4710-4724.	30.8	7
2959	Application of MOFs and their derived materials in Zn-air batteries., 2022,, 75-93.		0
2960	Metal–organic framework: Application studies in hydrogen gas absorption/adsorption. , 2022, , 191-203.		0
2961	A new type of heterogeneous catalysis strategy for organic reactions: Ugi-3CR catalyzed by highly stable MOFs with exposed carboxyl groups. Organic Chemistry Frontiers, 2022, 9, 6179-6186.	4.5	3
2962	Upcycling hazardous metals and PET waste-derived metal–organic frameworks: a review on recent progresses and prospects. New Journal of Chemistry, 2022, 46, 15776-15794.	2.8	17

#	Article	IF	CITATIONS
2963	Redox-induced control of microporosity of zeolitic transition metal oxides based on $\hat{l}\mu$ -Keggin iron molybdate at an ultra-fine level. Inorganic Chemistry Frontiers, 2022, 9, 5305-5316.	6.0	1
2964	Post-synthetically modified metal–porphyrin framework GaTCPP for carbon dioxide adsorption and energy storage in Li–S batteries. RSC Advances, 2022, 12, 23989-24002.	3.6	5
2965	Architectural Chirality in a Metal–Organic Framework Superstructure. Crystal Growth and Design, 2022, 22, 6456-6460.	3.0	0
2966	Copper-based coordination polymer as a fast and efficient dye adsorbent from aqueous solutions. Journal of Coordination Chemistry, 2022, 75, 2214-2227.	2.2	1
2967	Impact of humidity on HKUST-1 performance for the removal of acetaldehyde in air: an experimental study. Adsorption, 0, , .	3.0	0
2968	A comprehensive overview of carbon dioxide capture: From materials, methods to industrial status. Materials Today, 2022, 60, 227-270.	14.2	13
2969	Recent Advances and Reliable Assessment of Solidâ€State Materials for Hydrogen Storage: A Step Forward toward a Sustainable H ₂ Economy. Advanced Sustainable Systems, 2022, 6, .	5.3	21
2970	GCMC and electronic evaluation of pesticide capture by IRMOF systems. Journal of Molecular Modeling, 2022, 28, .	1.8	1
2971	Potential of Dual Drug Delivery Systems: MOF as Hybrid Nanocarrier for Dual Drug Delivery in Cancer Treatment. ChemistrySelect, 2022, 7, .	1.5	10
2972	Multi-topic Carboxylates as Versatile Building Blocks for the Design and Synthesis of Multifunctional MOFs Based on Alkaline Earth, Main Group and Transition Metals. Comments on Inorganic Chemistry, 2023, 43, 257-304.	5.2	1
2973	A review on graphitic carbon nitride (g-C3N4) – metal organic framework (MOF) heterostructured photocatalyst materials for photo(electro)chemical hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 36784-36813.	7.1	23
2974	Reticular chemistry for improving the activity of biocatalysts: Synthesis strategies and advanced characterization techniques. Chem Catalysis, 2022, 2, 2515-2551.	6.1	7
2975	Locking the Ultrasound-Induced Active Conformation of Metalloenzymes in Metal–Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 17865-17875.	13.7	31
2976	Fast preparation of Eu(BTB) MOFs in dielectric barrier discharge liquid plasma for luminescent sensing of trace iron. Luminescence, 2022, 37, 2050-2058.	2.9	2
2977	A Critical Review on New and Efficient 2D Materials for Catalysis. Advanced Materials Interfaces, 2022, 9, .	3.7	7
2978	Assessment of highâ€pressure hydrogen storage performance of Basolite <scp>metalâ€organic</scp> frameworks. International Journal of Energy Research, 2022, 46, 21937-21947.	4.5	2
2979	Metal-organic framework (MOF)-incorporated polymeric electrolyte realizing fast lithium-ion transportation with high Li+ transference number for solid-state batteries. Frontiers in Chemistry, 0, 10, .	3.6	6
2980	Recent Advances on Confining Noble Metal Nanoparticles Inside Metal-Organic Frameworks for Hydrogenation Reactions. Chemical Research in Chinese Universities, 2022, 38, 1309-1323.	2.6	9

#	Article	IF	CITATIONS
2981	An indium-based microporous metal–organic framework with unique three-way rod-shaped secondary building units for efficient methane and hydrogen storage. Inorganic Chemistry Frontiers, 2022, 9, 6527-6533.	6.0	5
2982	Hierarchical porous metal–organic gels and derived materials: from fundamentals to potential applications. Chemical Society Reviews, 2022, 51, 9068-9126.	38.1	30
2983	Green synthesis of a redox-active riboflavin-integrated Ni-MOF and its versatile electrocatalytic applications towards oxygen evolution and reduction, and HMF oxidation reactions. Green Chemistry, 2022, 24, 9233-9244.	9.0	9
2984	MOF/COF hybrids as next generation materials for energy and biomedical applications. CrystEngComm, 2022, 24, 7360-7371.	2.6	18
2985	Eco-Friendly Synthesis of Organo-Functionalized Mesoporous Silica for the Condensation Reaction. Catalysts, 2022, 12, 1212.	3. 5	1
2986	Highly flexible and superhydrophobic MOF nanosheet membrane for ultrafast alcohol-water separation. Science, 2022, 378, 308-313.	12.6	97
2987	Historical Developments in Synthesis Approaches and Photocatalytic Perspectives of Metal-Organic Frameworks. , 0, , .		1
2988	Synthesis and Biomedical Applications of Highly Porous Metal–Organic Frameworks. Molecules, 2022, 27, 6585.	3.8	4
2989	A Multifunctional Cobalt(II) Metal-Organic Framework with Nanoporous Channels for Gas and Dye Absorption, and Magnetic Performance. Chemical Research in Chinese Universities, $0,$	2.6	1
2991	Computational Screening of Metal–Organic Frameworks for Ammonia Capture from H ₂ /N ₂ /NH ₃ Mixtures. ACS Omega, 2022, 7, 37640-37653.	3.5	4
2992	Artificial Cells: Past, Present and Future. ACS Nano, 2022, 16, 15705-15733.	14.6	41
2993	Rational Design of Carbon-Based Porous Aerogels with Nitrogen Defects and Dedicated Interfacial Structures toward Highly Efficient CO ₂ Greenhouse Gas Capture and Separation. ACS Omega, 2022, 7, 40184-40194.	3.5	2
2994	Evaluation of adsorbent materials for carbon dioxide capture. Materialwissenschaft Und Werkstofftechnik, 2022, 53, 1392-1409.	0.9	0
2995	Multifunctional nanocellulose-based composites for potential environmental applications. Cellulose, 2023, 30, 39-60.	4.9	11
2996	Novel pyrazole-based MOF synergistic polymer of intrinsic microporosity membranes for high-efficient CO2 capture. Journal of Membrane Science, 2022, 664, 121107.	8.2	12
2997	Metal-organic frameworks (MIL-101) decorated biochar as a highly efficient bio-based composite for immobilization of polycyclic aromatic hydrocarbons and copper in real contaminated soil. Journal of Environmental Chemical Engineering, 2022, 10, 108821.	6.7	3
2998	Metal-organic frameworks-based broad-spectrum sensor for total tetracycline antibiotics assay. Dyes and Pigments, 2023, 208, 110887.	3.7	5
2999	A review on metal-organic frameworks for the removal of hazardous environmental contaminants. Separation and Purification Technology, 2023, 305, 122416.	7.9	32

#	Article	IF	CITATIONS
3000	Cluster-based metal–organic frameworks. , 2023, , 129-156.		1
3001	Synthesis, structure and dielectric behavior study of Mn (II)-4,4′-sulfonyldibenzoate-auxiliary ligand system based coordination polymers (CPs). Journal of Molecular Structure, 2023, 1274, 134389.	3.6	3
3002	Use of the Advantages of Titanium in the Metal: Organic Framework. , 0, , .		0
3003	Mixed-Valent Stellated Cuboctahedral Cu(2,4-Imdb)-MOF for Trace Water Detection. Inorganic Chemistry, 2022, 61, 18340-18345.	4.0	6
3004	Preparation of Slow-Release Coated Urea Based on C8-Maleic Anhydride Copolymer-Cured Epoxidized Soybean Oil. Industrial & Engineering Chemistry Research, 2022, 61, 16593-16601.	3.7	5
3005	Formation of a Polar Flow Channel with Embedded Gas Recognition Pockets in a Yttrium-Based MOF for Enhanced C ₂ H ₂ H ₄ and CO ₂ Selective Adsorptions. Inorganic Chemistry, 2022, 61, 18653-18659.	4.0	1
3006	Recent progress in metal-organic frameworks (MOFs) for CO2 capture at different pressures. Journal of Environmental Chemical Engineering, 2022, 10, 108930.	6.7	28
3007	MOF-808: a novel solid-acid catalyst for methanol conversion to environmentally clean fuel dimethyl ether. Particulate Science and Technology, 2023, 41, 794-802.	2.1	0
3008	Incorporation of 1-ethyl-3-methyl-imidazolium acetate into UiO-66 as an efficient sorbent for carbon dioxide capture. New Journal of Chemistry, 2023, 47, 2257-2263.	2.8	2
3009	A review on progress made in direct air capture of CO <mml:math altimg="si1.svg" display="inline" id="d1e1035" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub><td>6.1</td><td>34</td></mml:math>	6.1	34
3010	Technology and Innovation, 2023, 29, 102991. Cadmium-Based coordination polymers (CPs) constructed from two different V-Shaped dicarboxylate Ligands: Synthesis, structure and dielectric properties. Inorganic Chemistry Communication, 2023, 148, 110280.	3.9	3
3011	Ultra-small highly fluorescent zinc-based metal organic framework nanodots for ratiometric visual sensing of tetracycline based on aggregation induced emission. Talanta, 2023, 254, 124178.	5.5	24
3012	Design of metal-organic frameworks for improving pseudo-solid-state magnesium-ion electrolytes: Open metal sites, isoreticular expansion, and framework topology. Journal of Materials Science and Technology, 2023, 144, 15-27.	10.7	9
3013	Applications of metal organic frameworks (MOFs) in wound healing and tuberculosis (TB) treatment. Results in Chemistry, 2022, 4, 100648.	2.0	2
3014	Recent Advances in Continuous MOF Membranes for Gas Separation and Pervaporation. Membranes, 2022, 12, 1205.	3.0	12
3015	Review of Carbon Capture and Methane Production from Carbon Dioxide. Atmosphere, 2022, 13, 1958.	2.3	9
3016	Progressive alignment of crystals: reproducible and efficient assessment of crystal structure similarity. Journal of Applied Crystallography, 2022, 55, 1528-1537.	4.5	2
3017	Metal–Organic Frameworks as Potential Agents for Extraction and Delivery of Pesticides and Agrochemicals. ACS Omega, 2022, 7, 45910-45934.	3.5	12

#	Article	IF	CITATIONS
3018	Composites Filled with Metal Organic Frameworks and Their Derivatives: Recent Developments in Flame Retardants. Polymers, 2022, 14, 5279.	4.5	7
3019	Atmospheric water generation from desiccants using solar passive thermal collectors: a review. International Journal of Ambient Energy, 0 , 1 -18.	2.5	0
3020	Defective Homojunction Porphyrinâ€Based Metalâ€Organic Frameworks for Highly Efficient Sonodynamic Therapy. Small Methods, 2023, 7, .	8.6	21
3021	Photocatalytic Aerobic Oxidation of Biomass-Derived 5-HMF to DFF over MIL-53(Fe)/g-C3N4 Composite. Molecules, 2022, 27, 8537.	3.8	7
3022	Democratizing the Assessment of Thermal Robustness of Metal–Organic Frameworks. ACS Omega, 2022, 7, 46515-46523.	3.5	2
3023	Synthesis of Yttria-Stabilized Zirconia Nanospheres from Zirconium-Based Metal–Organic Frameworks and the Dielectric Properties. Nanomaterials, 2023, 13, 28.	4.1	1
3024	Pristine Metal–Organic Frameworks and their Composites for Renewable Hydrogen Energy Applications. Advanced Functional Materials, 2023, 33, .	14.9	18
3025	Using genetic algorithms to systematically improve the synthesis conditions of Al-PMOF. Communications Chemistry, 2022, 5, .	4.5	6
3026	Concurrent Enhancement of Acetylene Uptake Capacity and Selectivity by Progressive Core Expansion and Extraâ∈Framework Anions in Poreâ∈Spaceâ∈Partitioned Metalâ∈"Organic Frameworks. Chemistry - A European Journal, 2023, 29, .	3.3	3
3027	Metal Organic Framework Glasses: A New Platform for Electrocatalysis?. Chemical Record, 2023, 23, .	5.8	5
3028	Micro/nano metal–organic frameworks meet energy chemistry: A review of materials synthesis and applications. EScience, 2023, 3, 100092.	41.6	47
3029	Bimetal–Organic Frameworks for High Efficiency Catalytic Reduction. , 2023, 5, 473-479.		2
3030	Morphology Tuning via Linker Modulation: Metalâ€Free Covalent Organic Nanostructures with Exceptional Chemical Stability for Electrocatalytic Water Splitting. Advanced Materials, 0, , .	21.0	11
3031	MOFX-DB: An Online Database of Computational Adsorption Data for Nanoporous Materials. Journal of Chemical & Data, 2023, 68, 483-498.	1.9	11
3032	Surfactant-Impregnated MOF-Coated Fabric for Antimicrobial Applications. ACS Applied Bio Materials, 2023, 6, 238-245.	4.6	0
3033	Catalytic methane removal to mitigate its environmental effect. Science China Chemistry, 2023, 66, 1032-1051.	8.2	8
3034	Nanoporous adsorbents for hydrogen storage. Applied Physics A: Materials Science and Processing, 2023, 129, .	2.3	12
3035	Copper selenide sensitized low-cost porous coordination polymers towards efficient capture trace gaseous elemental mercury. Chemical Engineering Journal, 2023, 457, 141288.	12.7	8

#	Article	IF	CITATIONS
3036	Assembly of graphene-wrapped ZIF-8 microspheres and confined carbonization for energy storage applications. Journal of Power Sources, 2023, 560, 232702.	7.8	8
3037	Metal-Organic Framework Materials for Oil/Water Separation. ACS Symposium Series, 0, , 245-282.	0.5	2
3038	Strategies, Synthesis, and Applications of Metal-Organic Framework Materials. , 2023, , 1-82.		0
3039	Biomedically-relevant metal organic framework-hydrogel composites. Biomaterials Science, 2023, 11, 2661-2677.	5.4	10
3041	Alâ€based Isoreticular Metalâ€Organic Frameworks with MILâ€53 Topology as Effective Adsorbents in Methane Purification. ChemistrySelect, 2023, 8, .	1.5	4
3042	Multi-functionalized MOFs with large-pore apertures as luminescent probes for efficient sensing of quinones. New Journal of Chemistry, 2023, 47, 4920-4930.	2.8	2
3043	Metal Organic Frameworks as an Efficient Method for Carbon dioxide capture. , 2023, , 211-230.		0
3044	High-throughput screening of hypothetical metal-organic frameworks for thermal conductivity. Npj Computational Materials, 2023, 9, .	8.7	18
3045	Solubilityâ€Boosted Molecular Sievingâ€Based Separation for Purification of Acetylene in Core–Shell IL@MOF Composites. Advanced Functional Materials, 2023, 33, .	14.9	11
3046	Designing a new method for growing metal–organic framework (MOF) on MOF: synthesis, characterization and catalytic applications. Nanoscale, 2023, 15, 4917-4931.	5.6	4
3048	Grand canonical Monte Carlo simulation of the adsorption and separation of carbon dioxide and methane using functionalized Mg-MOF-74. Energy Reports, 2023, 9, 2852-2860.	5.1	5
3049	Organic polymers for CO2 capture and conversion. , 2023, , 77-99.		0
3050	Industrialization of MOFs. Engineering Materials, 2023, , 307-325.	0.6	1
3051	An inclusive review and perspective on Cu-based materials for electrochemical water splitting. RSC Advances, 2023, 13, 4963-4993.	3.6	20
3052	Improved adsorption desalination performance of DUT-67 by incorporating Graphene Oxide (GO). Microporous and Mesoporous Materials, 2023, 354, 112554.	4.4	3
3053	Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coordination Chemistry Reviews, 2023, 483, 215097.	18.8	61
3054	In situ self-assembled macroporous interconnected nanosheet arrays of Ni-1,3,5-benzenetricarboxylate metal ${\rm \hat{A}\hat{a}^{-2}\hat{A}}$ organic framework on Ti mesh as high-performance oxygen evolution electrodes. Journal of Colloid and Interface Science, 2023, 639, 274-283.	9.4	3
3055	Role of metal-organic framework composites in removal of inorganic toxic contaminants. Journal of Cleaner Production, 2023, 404, 136709.	9.3	10

#	Article	IF	CITATIONS
3056	MoS2-based hetero-nanostructures for photocatalytic, photoelectrocatalytic and piezocatalytic remediation of hazardous pharmaceuticals. Journal of Environmental Chemical Engineering, 2023, 11 , 109604.	6.7	10
3057	Deep dive into anionic metal-organic frameworks based quasi-solid-state electrolytes. Journal of Energy Chemistry, 2023, 81, 313-320.	12.9	4
3058	Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coordination Chemistry Reviews, 2023, 484, 215112.	18.8	22
3059	Synthesis of novel coordination polymer Cd-MOF and fluorescence recognition of tryptophan. Journal of Molecular Structure, 2023, 1284, 135389.	3.6	7
3060	Multiple roles of 2D conductive metal-organic framework enable noble metal-free photocatalytic hydrogen evolution. Applied Surface Science, 2023, 622, 156853.	6.1	6
3061	Co-adsorption of hydrogen and methane can improve the energy storage capacity of Mn-modified graphene. Journal of Energy Storage, 2023, 63, 106973.	8.1	0
3062	Green synthesis of eco-friendly magnetic metal-organic framework nanocomposites (AlFum -graphene) Tj ETQq0 0 and Physics, 2023, 302, 127720.	0 0 rgBT /O 4.0	Overlock 10 1 6
3063	A three-dimensional terbium metalÂâ^'Âorganic framework fluorescent sensor for efficient detection of chloroquine phosphate in serum. Microchemical Journal, 2023, 190, 108743.	4.5	1
3064	Metal-organic framework-derived transition metal chalcogenides (S, Se, and Te): Challenges, recent progress, and future directions in electrochemical energy storage and conversion systems. Coordination Chemistry Reviews, 2023, 480, 215030.	18.8	47
3065	Prediction of methane adsorption isotherms in metal–organic frameworks by neural network synergistic with classical density functional theory. Chemical Engineering Journal, 2023, 459, 141612.	12.7	7
3066	Progress on fundamentals of adsorption transport of metal-organic frameworks materials and sustainable applications for water harvesting and carbon capture. Journal of Cleaner Production, 2023, 393, 136253.	9.3	6
3067	Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries., 2023, 2, e9120052.		30
3068	Maximization of CO2 Capture Capacity Using Recent RUNge Kutta Optimizer and Fuzzy Model. Atmosphere, 2023, 14, 295.	2.3	10
3069	Recent developments in state-of-the-art hydrogen energy technologies – Review of hydrogen storage materials. Solar Compass, 2023, 5, 100033.	1.6	21
3071	State and future implementation perspectives of porous carbon-based hybridized matrices for lithium sulfur battery. Coordination Chemistry Reviews, 2023, 481, 215055.	18.8	9
3072	Carbon Dioxide (CO2) Gas Storage and Utilization. Green Energy and Technology, 2023, , 209-248.	0.6	2
3073	Solventâ€free Synthesis of Multiâ€Module Poreâ€Spaceâ€Partitioned Metalâ€Organic Frameworks for Gas Separation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	16
3074	Solventâ€free Synthesis of Multiâ€Module Poreâ€Spaceâ€Partitioned Metalâ€Organic Frameworks for Gas Separation. Angewandte Chemie, 2023, 135, .	2.0	0

#	Article	IF	CITATIONS
3075	Highâ€Porosity Metalâ€Organic Framework Glasses. Angewandte Chemie - International Edition, 2023, 62, .	13.8	19
3076	A hydrangea-like nitrogen-doped ZnO/BiOI nanocomposite for photocatalytic degradation of tetracycline hydrochloride. Nanoscale Advances, 2023, 5, 1936-1942.	4.6	1
3077	Highâ€Porosity Metalâ€Organic Framework Glasses. Angewandte Chemie, 2023, 135, .	2.0	0
3078	Road Map for In Situ Grown Binderâ€Free MOFs and Their Derivatives as Freestanding Electrodes for Supercapacitors. Small, 2023, 19, .	10.0	19
3079	Morphology control through the synthesis of metal-organic frameworks. Advances in Colloid and Interface Science, 2023, 314, 102864.	14.7	14
3080	A review on adsorption isotherms and kinetics of CO2 and various adsorbent pairs suitable for carbon capture and green refrigeration applications. Sadhana - Academy Proceedings in Engineering Sciences, 2023, 48, .	1.3	4
3081	Research on Improved MOF Materials Modified by Functional Groups for Purification of Water. Molecules, 2023, 28, 2141.	3.8	3
3082	Functional metal–organic frameworks as adsorbents used for water decontamination: design strategies and applications. Journal of Materials Chemistry A, 2023, 11, 6747-6771.	10.3	21
3083	Optical Quantification of Metal Ions Using Plasmonic Nanostructured Microbeads Coated with Metal–Organic Frameworks and Ion-Selective Dyes. ACS Nanoscience Au, 2023, 3, 222-229.	4.8	3
3084	Direct synthesis of organic salt-derived porous carbons for enhanced CO ₂ and methane storage. Journal of Materials Chemistry A, 2023, 11, 6952-6965.	10.3	4
3085	Quantum Physisorption of Gas in Nanoporous Media: A New Perspective. Processes, 2023, 11, 758.	2.8	3
3086	Covalent organic frameworks (COFs): a promising CO ₂ capture candidate material. Polymer Chemistry, 2023, 14, 1293-1317.	3.9	6
3087	Impact of Ligands on the Properties of Lanthanide Metalâ€Organic Frameworks. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2023, 649, .	1.2	1
3088	Metal–Organic Frameworks-Derived Material for Electrochemical Biosensors: Recent Applications and Prospects. Industrial & Lamp; Engineering Chemistry Research, 2023, 62, 4738-4753.	3.7	5
3089	Solid-state NMR spectroscopy at ultrahigh resolution for structural and dynamical studies of MOFs. Magnetic Resonance Letters, 2023, 3, 175-186.	1.3	1
3090	Conformational changes and location of BSA upon immobilization on zeolitic imidazolate frameworks. Journal of Colloid and Interface Science, 2023, 641, 685-694.	9.4	7
3091	A Protophilic MOF Enables Niâ€Rich Lithiumâ€Battery Stable Cycling in a High Water/Acid Content. Advanced Materials, 2023, 35, .	21.0	8
3092	Nitrogen-doped metal-organic framework derived porous carbon/polymer membrane for the simultaneous extraction of four benzotriazole ultraviolet stabilizers in environmental water. Journal of Chromatography A, 2023, 1695, 463929.	3.7	5

#	Article	IF	CITATIONS
3093	Methods for Detecting Picric Acid—A Review of Recent Progress. Applied Sciences (Switzerland), 2023, 13, 3991.	2.5	6
3094	Role of molecular modelling in the development of metal-organic framework for gas adsorption applications. Journal of Chemical Sciences, 2023, 135, .	1.5	4
3095	2D titanium catecholate metal–organic frameworks with tunable gas adsorption and ionic conductivity. Journal of Materials Chemistry A, O, , .	10.3	0
3096	Composite Eu-MOF@CQDs "off & Damp; on―ratiometric luminescent probe for highly sensitive chiral detection of l-lysine and 2-methoxybenzaldehyde. Chinese Chemical Letters, 2023, 34, 108426.	9.0	1
3097	MOF based CO2 capture: Adsorption and membrane separation. Inorganic Chemistry Communication, 2023, 152, 110722.	3.9	8
3098	Detection of Radioactive Gas with Scintillating MOFs. Advanced Functional Materials, 2023, 33, .	14.9	4
3099	Emerging concepts in intermediate carbon dioxide emplacement to support carbon dioxide removal. Energy and Environmental Science, 2023, 16, 1821-1837.	30.8	4
3101	A tetrahedron from homooxacalix [3] arene, the fifth Platonic polyhedron from calixarenes and uranyl. Frontiers in Chemistry, 0, 11 , .	3.6	2
3102	Yolkâ€Shell Nanostars@Metal Organic Frameworks as Molecular Sieves for Optical Sensing and Catalysis. Angewandte Chemie, 2023, 135, .	2.0	1
3103	Yolkâ€Shell Nanostars@Metal Organic Frameworks as Molecular Sieves for Optical Sensing and Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
3104	Two-Dimensional Mixed-Ligand Metal–Organic Framework Constructed from Bridging Bidentate V-Shaped Ligands. Inorganics, 2023, 11, 184.	2.7	0
3105	Analyzing of metal organic frameworks performance in CH4 adsorption using machine learning techniques: A GBRT model based on small training dataset. Journal of Environmental Chemical Engineering, 2023, 11, 110086.	6.7	4
3106	Self-Assembly and Biomimetics. , 2014, , 296-326.		0
3107	Monitoring the Local Structure and Magnetic Properties of the Dinuclear Cu ₂ -Paddle Wheel Nodes in the Mesoporous Metal–Organic Framework, DUT-49(Cu), upon Adsorption-Induced Breathing Transitions. Journal of Physical Chemistry C, 2023, 127, 8217-8234.	3.1	3
3108	Isoreticular design of flexible Zn-based tetracarboxylate MOFs. Inorganic Chemistry Frontiers, 2023, 10, 3237-3247.	6.0	3
3109	Metal–organic framework detectives meet infectious pathogens: A powerful tool against pandemics. Coordination Chemistry Reviews, 2023, 488, 215160.	18.8	7
3110	Pore-structure control in ultramicroporous porous coordination polymers for efficient selective capture of acetylene. Separation and Purification Technology, 2023, 318, 123976.	7.9	6
3111	A hierarchical In2O3@ZIF-67 architecture with upgraded CO2 photoreduction performances. Chemical Engineering Journal, 2023, 467, 143329.	12.7	12

#	Article	IF	CITATIONS
3112	Mechanochemical synthesized amino-functionalized ultramicroporous ZIF based mixed-matrix membranes for CO2 separation. Journal of Membrane Science, 2023, 680, 121733.	8.2	1
3113	Hydrogen Storage in a Ti-Functionalized Metal Carbyne Framework: Insights from a First-Principles Study. ACS Applied Energy Materials, 2023, 6, 6251-6261.	5.1	2
3114	Metal–organic frameworks (an overview). , 2023, , 1-38.		0
3115	Assessment of adsorption materials for carbon capturing and storage in the context of carbon neutrality., 0, 50, 249-257.		0
3116	Correlated missing linker defects increase thermal conductivity in metal–organic framework UiO-66. Chemical Science, 2023, 14, 6592-6600.	7.4	5
3117	Fabrication of tricarboxylate-neodymium metal organic frameworks and its nanocomposite with graphene oxide by hydrothermal synthesis for a symmetric supercapacitor electrode material. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 295, 116530.	3.5	3
3118	Modeling of the Potential Dependence on the Permittivity at the Metal – Dielectric Medium Interface. Lecture Notes in Networks and Systems, 2023, , 3-14.	0.7	0
3119	Modeling of Temperature Contribution to the Interphase Energy of the Faces of Cadmium Crystals at the Boundary with Organic Liquids. Lecture Notes in Networks and Systems, 2023, , 179-186.	0.7	0
3120	New Function of Metal–Organic Framework: Structurally Ordered Metal Promoter. Advanced Materials, 2023, 35, .	21.0	3
3121	Photoconductive metal-organic frameworks based on 10,20-meso-substituted Zn-porphyrin and fullerene C60. Surfaces and Interfaces, 2023, 40, 103002.	3.0	0
3122	Environment-Dependent Structural Evolution and Electrocatalytic Performance in N ₂ Reduction of Mo-Based ZIF-8. ACS Applied Nano Materials, 2023, 6, 10713-10724.	5.0	3
3123	From metal-organic frameworks (MOFs) to metal-doped MOFs (MDMOFs): Current and future scenarios in environmental catalysis and remediation applications. Microchemical Journal, 2023, 192, 108954.	4.5	11
3124	Stepwise Assembly of Quinary Multivariate Metal–Organic Frameworks via Diversified Linker Exchange and Installation. Journal of the American Chemical Society, 2023, 145, 13929-13937.	13.7	3
3125	Green Approach for Synthesizing Copper-Containing ZIFs as Efficient Catalysts for Click Chemistry. Catalysts, 2023, 13, 1003.	3.5	2
3126	UiO-66 (Zr-MOF): Synthesis, Characterization, and Application for the Removal of Malathion and 2, 4-D from Aqueous Solution. Environmental Pollutants and Bioavailability, 2023, 35, .	3.0	2
3127	Controlling polyHIPE Surface Properties by Tuning the Hydrophobicity of MOF Particles Stabilizing a Pickering Emulsion. ACS Applied Materials & Interfaces, 2023, 15, 30707-30716.	8.0	2
3128	A self-supported aZIF-UC-4 glass membrane for gas separation. Journal of Membrane Science, 2023, 683, 121873.	8.2	2
3129	Study on the essential features for MOFs to reversible adsorption of H2S at room temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 674, 131914.	4.7	2

#	Article	IF	Citations
3130	Ultramicroporous Polyphenylenes via Diels–Alder Polycondensation Approach. Polymers, 2023, 15, 2060.	4.5	0
3131	Gas sorption properties of a new <scp>Znâ€BTB</scp> metal–organic framework with permanent porosity. Bulletin of the Korean Chemical Society, 2023, 44, 780-787.	1.9	2
3132	CO2 adsorption and CO2/CH4 separation using fibrous amine-containing adsorbents: isothermal, kinetic, and thermodynamic behaviours. Environmental Science and Pollution Research, 2023, 30, 116906-116920.	5.3	1
3133	Porosity as a Design Element for Developing Catalytic Molecular Materials for Electrochemical and Photochemical Carbon Dioxide Reduction. Advanced Materials, 2023, 35, .	21.0	4
3134	Research development of porphyrin-based metal–organic frameworks: targeting modalities and cancer therapeutic applications. Journal of Materials Chemistry B, 2023, 11, 6172-6200.	5.8	5
3135	High Proton Conductivity of a Bismuth Phosphonate Metal–Organic Framework with Unusual Topology. Chemistry of Materials, 2023, 35, 4329-4337.	6.7	7
3136	Structure–Activity Relationships in Ni- Carboxylate-Type Metal–Organic Frameworks' Metamorphosis for the Oxygen Evolution Reaction. ACS Catalysis, 2023, 13, 7587-7596.	11.2	8
3137	A New Biocompatible Metal-Organic Framework Prepared by Green Chemistry Methods. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2023, 49, 142-147.	1.0	0
3138	Theoretical investigation of CO ₂ capture in the MIL-88 series: effects of organic linker modification. RSC Advances, 2023, 13, 15606-15615.	3.6	0
3139	Study of the CO ₂ Adsorption Performance of a Metal–Organic Frameworks: Applications in Air Conditioning. ChemistrySelect, 2023, 8, .	1.5	0
3140	Rational design of recyclable metal-organic frameworks-based materials for water purification: An opportunity for practical application. Science of the Total Environment, 2023, 892, 164345.	8.0	2
3141	Ab Initio Calculation of Thermodynamic Functions for CO ₂ Adsorption in Metal–Organic Frameworks: Entropic Effects of Lateral Interactions. Journal of Physical Chemistry C, 2023, 127, 11712-11719.	3.1	0
3142	Polyethyleneimine (PEI) based thin film nanocomposite (TFN) total heat exchange membranes (THEMs) composed of shaped ZIF-8 crystalline Micro-leaves (ZIF-L). Separation and Purification Technology, 2023, 324, 124435.	7.9	5
3143	Study on water and gas permeation characteristics with ZIF-8 mixed matrix membranes. Aqua Water Infrastructure, Ecosystems and Society, 2023, 72, 1097-1114.	0.0	1
3144	A new 2d coordination polymer based on zinc(ii), 1,2,3-benzenetricarboxylic acid and 4,4 $^{\circ}$ 1-bis(imidazol-1-ylmethyl)biphenyl: synthesis and crystal structure. Chemistry Journal of Moldova, 2023, 18, 70-76.	0.6	0
3145	Room Temperature Synthesis and Characterization of HKUST-1, Metal–Organic Frameworks (MOFs). Springer Proceedings in Physics, 2023, , 203-209.	0.2	0
3146	Atomic layer deposition meets metal–organic frameworks. Progress in Materials Science, 2023, 138, 101159.	32.8	5
3147	Development of novel aspartic acid-based calcium bio-MOF designed for the management of severe bleeding. Materials Advances, 2023, 4, 3330-3343.	5.4	1

#	Article	IF	CITATIONS
3148	Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2023, , 108779.	9.0	0
3149	An introductory review on advanced multifunctional materials. Heliyon, 2023, 9, e18060.	3.2	5
3150	Indoor carbon dioxide capture technologies: a review. Environmental Chemistry Letters, 2023, 21, 2559-2581.	16.2	2
3151	Ionic Liquids Functionalized MOFs for Adsorption. Chemical Reviews, 2023, 123, 10432-10467.	47.7	31
3152	Advanced Metal–Organic Frameworks for Gas Separation. , 0, 58, 344-350.		0
3153	Cyclobenzil hydrazones with high iodine capture capacities in solutions and on interfaces. Cell Reports Physical Science, 2023, 4, 101509.	5.6	1
3154	CO2 adsorption by ethane periodic mesoporous organosilica at low temperatures and high pressure. Journal of Environmental Chemical Engineering, 2023, 11, 110582.	6.7	1
3155	The application of MOFs for hydrogen storage. Inorganica Chimica Acta, 2023, 557, 121683.	2.4	9
3156	Adsorption of CO2, CO, H2, and N2 on Zeolites, Activated Carbons, and Metal-Organic Frameworks with Different Surface Nonuniformities. Sustainability, 2023, 15, 11574.	3.2	2
3157	Porous 3D and 2D frameworks differentiation induced by metal doping: Structure flexibility, capture behaviors, post-synthetic metal exchange and amorphous electrocatalyst transformation. Journal of Molecular Structure, 2023, 1293, 136327.	3.6	0
3158	CO2 capture materials: a review of current trends and future challenges. Materials Today Sustainability, 2023, 24, 100483.	4.1	18
3159	A roadmap to enhance gas permselectivity in metal–organic framework-based mixed-matrix membranes. Dalton Transactions, 0, , .	3.3	0
3160	Active Learning for Adsorption Simulations: Evaluation, Criteria Analysis, and Recommendations for Metal–Organic Frameworks. Industrial & Engineering Chemistry Research, 2023, 62, 13009-13024.	3.7	3
3161	Application of Metalâ€Organic Frameworks in Imagingâ€Guided Therapy. Analysis & Sensing, 2024, 4, .	2.0	0
3162	In-situ electrostatic self-assembly superhydrophilic UiO-66-NH2@h-PPS membranes for highly efficient oil-water emulsion separation. Journal of Membrane Science, 2023, 687, 122029.	8.2	9
3163	siRNA therapeutics: insights, challenges, remedies and future prospects. Expert Opinion on Drug Delivery, 2023, 20, 1167-1187.	5.0	1
3164	Elucidating the superexchange mechanisms in magnetic coordination polymer [Co(HCOO) ₂ (H ₂ O) ₂ sub>a^z through chemical bonding analysis. Journal of Materials Chemistry C, O, , .	5.5	0
3165	Analysis and Refinement of Host–Guest Interactions in Metal–Organic Frameworks. Accounts of Chemical Research, 2023, 56, 2569-2581.	15.6	4

#	Article	IF	CITATIONS
3166	Ni, Co, Zn, and Cu metal-organic framework-based nanomaterials for electrochemical reduction of CO ₂ : A review. Beilstein Journal of Nanotechnology, 0, 14, 904-911.	2.8	4
3167	Development of a Mixed Multinuclear Cluster Strategy in Metal–Organic Frameworks for Methane Purification and Storage. Inorganic Chemistry, 2023, 62, 15195-15205.	4.0	1
3168	Research progress of metal-organic frameworks-based materials for CO2 capture and CO2-to-alcohols conversion. Coordination Chemistry Reviews, 2023, 495, 215393.	18.8	4
3169	Screening, preparation, and prototyping of metal–organic frameworks for adsorptive carbon capture under humid conditions. SusMat, 2023, 3, 609-638.	14.9	0
3170	Electrospun metal–organic frameworks-loaded nanofibrous carriers for drug delivery systems. Chemical Engineering Journal, 2023, 474, 145840.	12.7	4
3171	Thermochemistry of hybrid materials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2023, 381, .	3.4	2
3172	A database to select affordable MOFs for volumetric hydrogen cryoadsorption considering the cost of their linkers. Materials Advances, 2023, 4, 4226-4237.	5.4	0
3173	Synthesis, characterization & Catalysis of ITQ 2D metal–organic frameworks and spectroscopic & Catalysis of their composites with organic dyes. Journal of Materials Chemistry C, 0, , .	5.5	0
3174	Recent progress in high-performance environmental impacts of the removal of radionuclides from wastewater based on metal–organic frameworks: a review. RSC Advances, 2023, 13, 25182-25208.	3.6	1
3175	Yttrium decorated fullerene C30 as potential hydrogen storage material: Perspectives from DFT simulations. Theoretical Chemistry Accounts, 2023, 142, .	1.4	1
3176	On the shoulders of high-throughput computational screening and machine learning: Design and discovery of MOFs for H2 storage and purification. Materials Today Energy, 2023, 38, 101426.	4.7	1
3177	Kinetic study of methane storage in hydrophobic ZIF-8 by adsorption-hydration hybrid technology. Energy, 2023, 283, 129013.	8.8	1
3178	Review of CO2 Adsorption Materials and Utilization Technology. Catalysts, 2023, 13, 1176.	3.5	3
3179	Metal–Organic Frameworks: Challenges Addressed via Magnetic Resonance Spectroscopy. Applied Magnetic Resonance, 0, , .	1.2	0
3180	Metalâ^'Organic Frameworks Nucleated by Silk Fibroin and Modified with Tumorâ€Targeting Peptides for Targeted Multimodal Cancer Therapy. Advanced Science, 2023, 10, .	11.2	5
3181	State of the art in visible-light photocatalysis of aqueous pollutants using metal-organic frameworks. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2023, 57, 100635.	11.6	3
3182	Advancing healthcare applications: wearable sensors utilizing metal–organic frameworks. Sensors & Diagnostics, 0, , .	3.8	0
3183	Statistically and visually analyzing the latest advancements and future trends of uranium removal. Environmental Research, 2023, 239, 117280.	7.5	1

#	Article	IF	CITATIONS
3184	A novel approach to environmental pollution management/remediation techniques using derived advanced materials. Chemosphere, 2023, 344, 140311.	8.2	0
3185	Computational Insights of Dimensional Organic Materials. , 2023, , 382-473.		2
3186	Application of Metal–Organic Framework Sponges for Toxic or Greenhouse Gas Adsorption. , 2023, , 219-246.		1
3187	Metal–Organic Framework Sponges for Water Remediation. , 2023, , 247-261.		0
3188	Bionic Mineralization toward Scalable MOF Films for Ampere-Level Biomass Upgrading. Journal of the American Chemical Society, 2023, 145, 20624-20633.	13.7	1
3189	Atmospheric water extraction $\hat{a}\in$ a review from materials to devices. Journal of Materials Chemistry A, 2023, 11, 22041-22057.	10.3	1
3190	Developments, applications, and challenges of metal–organic frameworks@textile composites: A state-of-art review. European Polymer Journal, 2023, 199, 112480.	5.4	1
3191	Metal-Organic Frame Works (MOFs) for Smart Applications. , 2023, , 144-181.		0
3192	Next generation bio-derived 3D-hierarchical porous material for remarkable hydrogen storage – A brief critical review. Journal of Power Sources, 2023, 587, 233648.	7.8	2
3193	Exploring the Structural, Dynamic, and Functional Properties of Metalâ€Organic Frameworks through Molecular Modeling. Advanced Functional Materials, 0, , .	14.9	3
3194	Fast Gasâ€Adsorption Kinetics in Supraparticleâ€Based MOF Packings with Hierarchical Porosity. Advanced Materials, 2023, 35, .	21.0	3
3195	From non-carbon host toward carbon-free lithium-sulfur batteries. Nano Research, 2024, 17, 1337-1365.	10.4	0
3196	An Ongoing Futuristic Career of Metal–Organic Frameworks and Ionic Liquids, A Magical Gateway to Capture CO ₂ ; A Critical Review. Energy & Energy & Sub	5.1	1
3197	The stability of MOFs in aqueous solutionsâ€"research progress and prospects. Green Chemical Engineering, 2023, , .	6.3	6
3198	Selectivity of MOFs and Silica Nanoparticles in CO2 Capture from Flue Gases. Nanomaterials, 2023, 13, 2637.	4.1	0
3199	Fabrication of Pillarâ€Cage Fluorinated Anion Pillared Metal–Organic Frameworks via a Pillar Embedding Strategy and Efficient Separation of SO ₂ through Multiâ€Site Trapping. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
3200	Introduction to metal–organic frameworks. , 2024, , 1-24.		0
3201	Metal–organic frameworks for wastewater treatment. , 2024, , 257-302.		0

#	Article	IF	CITATIONS
3202	Metal–Organic Frameworks in Green Analytical Chemistry. , 2023, , 1-44.		0
3203	Tailoring the pore architecture and crystalline structure of UiO-66 for the selective adsorption of anionic species in aqueous media. Environmental Nanotechnology, Monitoring and Management, 2023, 20, 100869.	2.9	O
3204	Albumin protein encapsulation into a ZIF-8 framework with Co-LDH-based hierarchical architectures for robust catalytic reduction. Journal of Materials Chemistry A, 2023, 11, 23984-23998.	10.3	1
3205	Sm-MOF/rGO/PANI composite as an electrode material for supercapacitor applications. Electrochimica Acta, 2023, 467, 143031.	5.2	5
3206	A cage-on-MOF strategy to coordinatively functionalize mesoporous MOFs for manipulating selectivity in adsorption and catalysis. Nature Communications, 2023, 14, .	12.8	13
3207	A Quinary Metal–Organic Framework Composed of One Metal and One Linker with Ethane-Selective Property. Crystal Growth and Design, 2023, 23, 7026-7030.	3.0	O
3208	An innovative and environmentally friendly bioorganic synthesis of activated carbon based on olive stones and its potential application for CO2 capture. Sustainable Materials and Technologies, 2023, 38, e00717.	3.3	3
3209	Metal-organic framework-based nanomaterials for CO ₂ storage: A review. Beilstein Journal of Nanotechnology, 0, 14, 964-970.	2.8	3
3210	Fabrication of Pillarâ€Cage Fluorinated Anion Pillared Metal–Organic Frameworks via a Pillar Embedding Strategy and Efficient Separation of SO ₂ through Multiâ€Site Trapping. Angewandte Chemie, 2023, 135, .	2.0	0
3211	Highâ€pressure methane storage on metalâ€organic frameworks. Energy Storage, 2024, 6, .	4.3	0
3212	Investigation of Thin Film Nanocomposite (TFN) Membrane with NH2-CuBTC for CO2/N2 Separation. Chemistry Africa, 2024, 7, 865-876.	2.4	0
3213	Face-directed assembly of tailored isoreticular MOFs using centring structure-directing agents. , 0, , .		2
3214	Utilizing Nanostructured Materials for Hydrogen Generation, Storage, and Diverse Applications. Chemistry - an Asian Journal, 0, , .	3.3	3
3215	Influence of defect engineering on the hydrogen and methane adsorption capacity in HKUST-1 – like structure MOF. Adsorption, 0, , .	3.0	0
3216	Nickel supported zeolitic imidazolate framework-8 (Ni/ZIF-8) catalyst: Synthesis and characterization. AIP Conference Proceedings, 2023, , .	0.4	0
3217	Desorption properties of the R600, R134a and their mixtures in several MOF structures: A molecular dynamics study. Heliyon, 2023, 9, e20774.	3.2	0
3218	Controlling Multi-Drug-Resistant Traits of Salmonella Obtained from Retail Poultry Shops Using Metal–Organic Framework (MOF) as a Novel Technique. Microorganisms, 2023, 11, 2506.	3.6	1
3219	ZIF-67 基纳米åੴ°èj生碳的å^¶åቑåŠå…¶ç"µå®¹åŽ»ç¦»åæ€§èƒ½ç"ç©¶. Journal of Central South University,	2<u>0</u>20 3, 30,	2485-250 <u>0</u> .

#	Article	IF	CITATIONS
3220	Hybrid Two-Dimensional Porous Materials. Chemistry of Materials, 0, , .	6.7	0
3221	Metal-organic-framework-based materials as platforms for energy applications. CheM, 2024, 10, 86-133.	11.7	7
3222	Mesoscale artificial synthesis of conjugated microporous polymers. Molecular Systems Design and Engineering, 2023, 8, 1456-1461.	3.4	1
3223	Partialâ€Interpenetrationâ€Controlled UiOâ€Type Metalâ€Organic Framework and its Catalytic Activity. Small, 2024, 20, .	10.0	0
3224	Indentation Depthâ€Dependent Hardness of Metalâ€Organic Framework Crystals: The Effect of Local Amorphization Induced by Indentation. ChemPhysChem, 2024, 25, .	2.1	0
3225	Metal–organic frameworks (MOFs) for energy production and gaseous fuel and electrochemical energy storage applications. Physical Chemistry Chemical Physics, 2023, 25, 30116-30144.	2.8	2
3226	Storage and Diffusion of Carbon Dioxide in the Metal Organic Framework MOF-5─A Semi-empirical Molecular Dynamics Study. Journal of Physical Chemistry B, 2023, 127, 9378-9389.	2.6	1
3227	Crystal structure and photocatalytic activity of luminescent 3D-Supramolecular metal organic framework of dysprosium. Heliyon, 2023, 9, e21262.	3.2	0
3228	Polynuclear Rare-Earth Cluster-Directed Self-Assembly of Highly Porous Zeolite-like Metal–Organic Frameworks with Methane Storage Property. Inorganic Chemistry, 2023, 62, 18014-18019.	4.0	2
3229	Uncoordinated amino groups of MIL-101 anchoring cobalt porphyrins for highly selective CO2 electroreduction. Journal of Colloid and Interface Science, 2023, , .	9.4	0
3230	Electrochemical Sensing Based on Metal–Organic Frameworks-Derived Carbon/Molybdenum Disulfide Composites with Superstructure and Synergistic Catalysis. ACS Applied Materials & District Catalysis. ACS Applied Materials & District Catalysis.	8.0	0
3231	Concomitant role of metal clusters and ligands in the synthesis and control of porosity in Metal-Organic Frameworks: A literature review. Results in Chemistry, 2023, 6, 101206.	2.0	1
3232	Recent Advances in Reticular Chemistry for Clean Energy, Global Warming, and Water Shortage Solutions. Advanced Functional Materials, 0, , .	14.9	2
3233	Pore engineering of metal–organic frameworks for boosting low-pressure CO ₂ capture. Journal of Materials Chemistry A, 2023, 11, 25784-25802.	10.3	0
3234	Cobalt carbonate hydroxide-embedded in multi-layered holey nanoflower cross-linked with carbon nanotube for highly efficient supercapacitors with ultrahigh rate performance. Electrochimica Acta, 2024, 473, 143513.	5. 2	0
3235	Advancements in adsorption based carbon dioxide capture technologies- A comprehensive review. Heliyon, 2023, 9, e22341.	3.2	0
3236	Biomedical Metal–Organic Framework Materials: Perspectives and Challenges. Advanced Functional Materials, 0, , .	14.9	2
3237	Metal-organic framework-based composites for biogas and natural gas uptake: An overview of adsorption and storage mechanisms of gaseous fuels. Chemical Engineering Journal, 2023, 478, 147302.	12.7	0

#	Article	IF	CITATIONS
3238	Development of a Transferable Force Field between Metal–Organic Framework and Its Polymorph. ACS Omega, 2023, 8, 44328-44337.	3.5	0
3239	Radiationâ€Responsive Metal–Organic Frameworks: Fundamentals and Applications. Advanced Functional Materials, 2024, 34, .	14.9	0
3240	Amorphous porous Fe-BTC prepared $\langle i \rangle via \langle j \rangle$ the post-synthetic metal-ion metathesis of HKUST-1. Journal of Materials Chemistry A, 2023, 11, 24591-24597.	10.3	0
3241	Enhanced CO2 adsorption performance by crystal defect method of multi-level pore Mg-MOF-74 using organic acids., 2023, 120, 205162.		0
3242	Hydrogen-bonded organic frameworks (HOFs): Multifunctional material on analytical monitoring. TrAC - Trends in Analytical Chemistry, 2024, 170, 117436.	11.4	0
3243	Construction of a series of Co(II)-based coordination polymers with boosted photocatalytic activity for the removal of dye contaminants. Journal of Molecular Structure, 2024, 1297, 136958.	3.6	0
3244	Sulfonic acid functionalized Al-based MIL-101-NH2 modified separator for lithium-sulfur batteries. Microporous and Mesoporous Materials, 2024, 365, 112892.	4.4	0
3245	Fabrication of Oriented Polycrystalline MOF Superstructures. Advanced Materials, 2024, 36, .	21.0	3
3246	A comprehensive review of carbon capture science and technologies. Carbon Capture Science & Technology, 2023, , 100178.	10.4	2
3247	Highly Stable Amide-Functionalized Zirconium-Organic Frameworks: Synthesis, Structure, and Methane Storage Capacity. Inorganic Chemistry, 2023, 62, 20513-20519.	4.0	0
3248	Comparing the practical hydrogen storage capacity of porous adsorbents: Activated carbon and metal-organic framework. International Journal of Hydrogen Energy, 2023, , .	7.1	0
3249	Chiral polyoxometalate–cyclodextrin frameworks via Mn-mediated assembly: Enhanced stability and catalytic activity. , 2024, 3, 9140046.		1
3250	Continuous precision separation of gold using a metal–organic framework/polymer composite. Nanotechnology, 2024, 35, 195706.	2.6	0
3251	Boosting Adsorption Isosteric Heat for Improved Gravimetric and Volumetric Hydrogen Uptake in Porous Carbon by N-Doping. Journal of Physical Chemistry C, O, , .	3.1	0
3252	A novel epoxy adhesive with metal organic framework (<scp>MOF</scp>) and poly(butyl) Tj ETQq0 0 0 rgBT /Over thermal, and morphological properties. Polymers for Advanced Technologies, 2024, 35, .	erlock 10 Ti 3.2	f 50 187 Td O
3253	Emerging potentials of Feâ€based nanomaterials for chiral sensing and imaging. Medicinal Research Reviews, 0, , .	10.5	0
3254	Metal Organic Frameworks: Current State and Analysis of Their Use as Modifiers of the Vulcanization Process and Properties of Rubber. Materials, 2023, 16, 7631.	2.9	0
3255	Nanoscale engineering of solid-state materials for boosting hydrogen storage. Chemical Society Reviews, 2024, 53, 972-1003.	38.1	3

#	Article	IF	CITATIONS
3256	Unraveling the Hydrolysis Mechanism of LiPF ₆ in Electrolyte of Lithium Ion Batteries. Nano Letters, 0, , .	9.1	1
3257	MOF-GRU: A MOFid-Aided Deep Learning Model for Predicting the Gas Separation Performance of Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 0, , .	8.0	0
3258	Recent advances on capacitive deionization for defluorination: From electrode materials to engineering application. Chemical Engineering Journal, 2024, 480, 147986.	12.7	0
3259	A 3D Crossâ€Linked Metalâ€Organic Framework (MOF)â€Derived Polymer Electrolyte for Dendriteâ€Free Solidâ€State Lithiumâ€Ion Batteries. Small, 0, , .	10.0	1
3260	Physicochemical characterization of metal organic framework materials: A mini review. Heliyon, 2024, 10, e23840.	3.2	0
3261	Efficient capture and separation of CO ₂ â€Boosted carbon neutralization enabled by tailorable metalâ€organic frameworks: A review. , 2023, 1, 217-247.		0
3263	Advances and Applications of Metalâ€Organic Frameworks (MOFs) in Emerging Technologies: A Comprehensive Review. Global Challenges, 2024, 8, .	3.6	1
3264	DNA framework-controlled Poly(MOFs) as a visual platform for diagnosis of HER2-positive breast cancer. Nano Today, 2024, 54, 102143.	11.9	1
3265	Recent advances on application of Metal-Organic framework based catalysts in biodiesel production Process: A review of catalyst types and Activity, challenges and opportunities. Fuel, 2024, 363, 130905.	6.4	0
3266	Spatially Confined Nanoreactors Designed for Biological Applications. Small, 0, , .	10.0	0
3267	Growth of Transition-Metal Cobalt Nanoclusters on 2D Covalent Organic Frameworks. Journal of Physical Chemistry C, 2024, 128, 1477-1486.	3.1	0
3268	Conjugated microporous polymer frameworks for sustainable energy materials – elucidating the influence of solvents on the porosity properties for future design principles. Journal of Materials Chemistry A, 2024, 12, 4159-4168.	10.3	0
3269	Flexible–robust MOFs/HOFs for challenging gas separations. Coordination Chemistry Reviews, 2024, 505, 215660.	18.8	1
3270	Investigation of porous coordination polymers for gas storage and separation. , 2024, , 137-176.		0
3271	Electron-deficient Fe ₃ O ₄ @ACâ€"NH ₂ @Cuâ€"MOF nanoparticles for enhanced degradation of electron-rich benzene derivatives ⟨i>via synergistic adsorption and catalytic oxidation. Dalton Transactions, 2024, 53, 2265-2274.	3.3	0
3272	Hydrogen storage properties of Mg-based alloys modified with metal-organic frameworks and carbon-based porous materials: A review and summary. International Journal of Hydrogen Energy, 2024, 57, 1373-1388.	7.1	0
3273	First-Principles Study on the Selective Separation of Toxic Gases by Mg-MOF-74. ACS Omega, 2024, 9, 4849-4856.	3 . 5	0
3274	Perspective into ion storage of pristine metal-organic frameworks in capacitive deionization. Advances in Colloid and Interface Science, 2024, 324, 103092.	14.7	0

#	Article	IF	CITATIONS
3275	Metal-organic frameworks and their derivatives: emerging materials for energy conversion and storage., 2024,, 1-17.		0
3276	Mesopore and macropore engineering in metal–organic frameworks for energy environment-related applications. Journal of Materials Chemistry A, 2024, 12, 4931-4970.	10.3	0
3277	Deciphering Trends in Structural Parameters of RE-UiO-66 Metal–Organic Frameworks through Single Crystal Analysis. Crystal Growth and Design, 2024, 24, 1619-1625.	3.0	0
3278	Efficient CO ₂ Capture and Separation in MOFs: Effect from Isoreticular Double Interpenetration. ACS Applied Materials & Samp; Interfaces, 2024, 16, 7152-7160.	8.0	0
3279	A new advanced approach of ultrafast synthesis of ultrahigh Brunauer–Emmett–Teller surface area crystalline/noncrystalline porous coordinated polymers. , 2024, , 177-205.		0
3281	Future prospects and grand challenges for porous coordination polymers. , 2024, , 393-408.		0
3282	A Review on Metal–Organic Framework as a Promising Catalyst for Biodiesel Production. Energy & Camp; Fuels, 2024, 38, 2654-2689.	5.1	0
3283	Porous coordination polymers: a brief introduction. , 2024, , 1-9.		0
3284	Seededâ€Growth of PCNâ€224 onto Plasmonic Nanoparticles: Photoactive Microporous Nanocarriers. Small Structures, 0, , .	12.0	0
3285	Metal organic framework-based materials for metal-ion batteries. Energy Storage Materials, 2024, 66, 103249.	18.0	0
3286	Synergistic effect of homogeneously dispersed Pt nanoparticles on the surface of self-sensitized porphyrin metal–organic frameworks for effective photocatalytic H2 evolution. Applied Surface Science, 2024, 655, 159590.	6.1	0
3287	Light-induced MOF synthesis enabling composite photothermal materials. Nature Communications, 2024, 15, .	12.8	0
3288	Designing of a novel heterogeneous nanocatalyst ZIF-4@HAp for solvent free base catalyzed esterification reaction. Reaction Chemistry and Engineering, 2024, 9, 1225-1234.	3.7	0
3289	"Ship-in-a-bottle―entrapment of biomolecules in MOF-based xerogel monoliths for high-performance electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2024, 12, 7622-7630.	10.3	0
3290	Metal-organic frameworks as potential catalysts for biodiesel production and biomass conversion: Mechanism and characteristics. Industrial Crops and Products, 2024, 211, 118232.	5.2	0
3291	Metal–Organic Frameworks (MOFs) Morphology Control: Recent Progress and Challenges. Crystal Growth and Design, 2024, 24, 2288-2300.	3.0	0
3292	A general separator modification tactic enables long-term stable cycling of small organic molecule electrodes in aqueous alkaline batteries. Journal of Power Sources, 2024, 599, 234226.	7.8	0
3293	A theoretical study of hybrid hydrogen adsorption: Mg nanoparticle-inserted Mg-MOF-74. AIP Advances, 2024, 14, .	1.3	0

#	Article	IF	Citations
3294	Nanomaterials for carbon capture and their conversion to useful products for sustainable energy production., 2024,, 369-395.		0
3295	Fabrication of bismuth based MOF (SU-101) for adsorption and photocatalytic desorption toward Cr (â¥). Journal of Photochemistry and Photobiology A: Chemistry, 2024, 452, 115569.	3.9	0
3296	Predicting Spin-Dependent Phonon Band Structures of HKUST-1 Using Density Functional Theory and Machine-Learned Interatomic Potentials. International Journal of Molecular Sciences, 2024, 25, 3023.	4.1	0
3297	Theoretical investigation of the carbonyl-ene reaction between encapsulated formaldehyde and propylene over M-Cu-BTC paddlewheels (M= Be, Mg, and Ca): A DFT study. Journal of Molecular Graphics and Modelling, 2024, 129, 108756.	2.4	0
3298	The ammonia modified ZIF-8@SnO2 core-shell nanosheets for improved the sensitivity and selectivity of NO2. Sensors and Actuators B: Chemical, 2024, 409, 135613.	7.8	0
3299	Metal–Organic Frameworks and Their Composites for Sensing Applications. Advanced Structured Materials, 2024, , 225-241.	0.5	O
3300	Development of Heterometallic Annular Tetranuclear Clusters in Metal–Organic Frameworks for Methane Purification and Storage. , 0, , .		O
3301	Cobalt phosphate-benzene-1,3,5-tricarboxylic acid metal–organic framework @ reduced graphene oxide electrodes for hybrid supercapacitors. Journal of Materials Science, 2024, 59, 5498-5517.	3.7	O
3302	Ethylene Adsorption Study by Using Various MOFs in the CMC Film for Application in Postharvest of Fruit. Journal of the Institution of Engineers (India): Series E, 0, , .	0.9	0
3303	Recent advances and potential applications for metal-organic framework (MOFs) and MOFs-derived materials: Characterizations and antimicrobial activities. Biotechnology Reports (Amsterdam,) Tj ETQq1 1 0.7843	141.rgBT/C	Dv e rlock 10
3304	Adsorptive removal of heavy metals from aqueous solutions: Progress of adsorbents development and their effectiveness. Environmental Research, 2024, 251, 118562.	7.5	0
3305	Hydrogen Production and Storage. , 2024, , 37-115.		O
3306	Review on functionalized metal–organic framework as potential candidate for carbon control technologies for climate change: current status and future prospective. Clean Technologies and Environmental Policy, 0, , .	4.1	O