The Honey Bee Epigenomes: Differential Methylation of

PLoS Biology 8, e1000506

DOI: 10.1371/journal.pbio.1000506

Citation Report

#	Article	IF	Citations
3	The era of epigenetics. Briefings in Functional Genomics, 2010, 9, 425-428.	1.3	15
4	Epigenetics of Royalty. PLoS Biology, 2010, 8, e1000532.	2.6	36
5	Histological studies on ovary differentiation in Yemini queen honeybees, Apis mellifera jemenitica (Hymenoptera: Apidae), during post-embryonic development. Pan-Pacific Entomologist, 2011, 87, 177-187.	0.1	1
6	Natural History of Eukaryotic DNA Methylation Systems. Progress in Molecular Biology and Translational Science, 2011, 101, 25-104.	0.9	187
7	Hormesis and epigenetics: Is there a link?. Ageing Research Reviews, 2011, 10, 413-21.	5.0	68
8	CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature, 2011, 479, 74-79.	13.7	853
9	DNA methylation in insects: on the brink of the epigenomic era. Insect Molecular Biology, 2011, 20, 553-565.	1.0	211
10	Adaptive evolution of a key gene affecting queen and worker traits in the honey bee, <i>Apis mellifera</i> . Molecular Ecology, 2011, 20, 5226-5235.	2.0	50
11	Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees. EMBO Reports, 2011, 12, 238-243.	2.0	173
12	Insects as innovative models for functional studies of DNA methylation. Trends in Genetics, 2011, 27, 127-131.	2.9	188
13	Locust phase polyphenism: Does epigenetic precede endocrine regulation?. General and Comparative Endocrinology, 2011, 173, 120-128.	0.8	43
14	Polyphenism in Insects. Current Biology, 2011, 21, R738-R749.	1.8	320
15	DNA methylation, the early-life social environment and behavioral disorders. Journal of Neurodevelopmental Disorders, 2011, 3, 238-249.	1.5	49
16	Atherosclerosis: An Epigenetic Balancing Act that Goes Wrong. Current Atherosclerosis Reports, 2011, 13, 208-214.	2.0	41
17	Deciphering a methylome: what can we read into patterns of DNA methylation?. Journal of Experimental Biology, 2011, 214, 3155-3163.	0.8	26
18	Functional aspects of cytidine-guanosine dinucleotides and their locations in genes. Biomolecular Concepts, 2011, 2, 391-405.	1.0	2
19	Molecular evolutionary analyses of insect societies. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10847-10854.	3.3	83
20	DNA methylation regulates phenotype-dependent transcriptional activity in <i>Candida albicans</i> Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11965-11970.	3.3	93

#	Article	IF	Citations
21	Evidence for Widespread Genomic Methylation in the Migratory Locust, Locusta migratoria (Orthoptera: Acrididae). PLoS ONE, 2011, 6, e28167.	1.1	34
22	Environment-Sensitive Epigenetics and the Heritability of Complex Diseases. Genetics, 2011, 189, 1377-1387.	1.2	89
23	Neuroblastoma epigenetics: From candidate gene approaches to genome-wide screenings. Epigenetics, 2011, 6, 962-970.	1.3	50
24	Comparative Analyses of DNA Methylation and Sequence Evolution Using Nasonia Genomes. Molecular Biology and Evolution, 2011, 28, 3345-3354.	3.5	95
25	Sexually Selected Traits: A Fundamental Framework for Studies on Behavioral Epigenetics. ILAR Journal, 2012, 53, 253-269.	1.8	27
26	Dnmt3a Protects Active Chromosome Domains against Cancer-Associated Hypomethylation. PLoS Genetics, 2012, 8, e1003146.	1.5	43
27	Recombination is associated with the evolution of genome structure and worker behavior in honey bees. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18012-18017.	3.3	82
28	Insect omics research coming of age1This review is part of a virtual symposium on recent advances in understanding a variety of complex regulatory processes in insect physiology and endocrinology, including development, metabolism, cold hardiness, food intake and digestion, and diuresis, through the use of omics technologies in the postgenomic era Canadian lournal of Zoology, 2012, 90, 440-455.	0.4	13
29	Polymorphism and Methylation of Four Genes Expressed in Salivary Glands of Russian Wheat Aphid (Homoptera: Aphididae). Journal of Economic Entomology, 2012, 105, 232-241.	0.8	11
30	A conserved role for intragenic DNA methylation in alternative pre-mRNA splicing. Transcription, 2012, 3, 106-109.	1.7	41
31	Traumatic Brain Injury Increased IGF-1B mRNA and Altered IGF-1 Exon 5 and Promoter Region Epigenetic Characteristics in the Rat Pup Hippocampus. Journal of Neurotrauma, 2012, 29, 2075-2085.	1.7	40
32	An equilibrium for phenotypic variance in fluctuating environments owing to epigenetics. Journal of the Royal Society Interface, 2012, 9, 613-623.	1.5	21
33	Aphids: A Model for Polyphenism and Epigenetics. Genetics Research International, 2012, 2012, 1-12.	2.0	53
34	Epigenetics in Social Insects: A New Direction for Understanding the Evolution of Castes. Genetics Research International, 2012, 2012, 1-11.	2.0	64
35	Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Research, 2012, 40, e136-e136.	6.5	347
36	DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4968-4973.	3.3	312
37	Human pheromones and food odors: epigenetic influences on the socioaffective nature of evolved behaviors. Socioaffective Neuroscience & Psychology, 2012, 2, 17338.	2.9	4
38	Understanding the Relationship Between Brain Gene Expression and Social Behavior: Lessons from the Honey Bee. Annual Review of Genetics, 2012, 46, 591-615.	3.2	166

#	ARTICLE	IF	Citations
39	Differential DNA methylation in discrete developmental stages of the parasitic nematode Trichinella spiralis. Genome Biology, 2012, 13, R100.	13.9	92
40	Characterization of genome methylation patterns in the desert locust <i>Schistocerca gregaria</i> Journal of Experimental Biology, 2013, 216, 1423-9.	0.8	71
41	Kin conflict in insect societies: a new epigenetic perspective. Trends in Ecology and Evolution, 2012, 27, 367-373.	4.2	43
42	Co-transcriptional regulation of alternative pre-mRNA splicing. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 673-683.	0.9	79
43	Genome-wide association between DNA methylation and alternative splicing in an invertebrate. BMC Genomics, 2012, 13, 480.	1.2	170
44	Reversible switching between epigenetic states in honeybee behavioral subcastes. Nature Neuroscience, 2012, 15, 1371-1373.	7.1	305
45	The honeybee as a model for understanding the basis of cognition. Nature Reviews Neuroscience, 2012, 13, 758-768.	4.9	353
46	The Role of DNA Methylation in Aging, Rejuvenation, and Age-Related Disease. Rejuvenation Research, 2012, 15, 483-494.	0.9	307
47	Mechanisms of DNA methylation and demethylation in mammals. Biochimie, 2012, 94, 2202-2211.	1.3	144
48	Genome-wide and Caste-Specific DNA Methylomes of the Ants Camponotus floridanus and Harpegnathos saltator. Current Biology, 2012, 22, 1755-1764.	1.8	361
49	Epigenetics: The Making of Ant Castes. Current Biology, 2012, 22, R835-R838.	1.8	27
50	Elucidating the Path from Genotype to Behavior in Honey Bees: Insights from Epigenomics. , 2012, , 373-386.		0
51	DNA methylation in amphioxus: from ancestral functions to new roles in vertebrates. Briefings in Functional Genomics, 2012, 11, 142-155.	1.3	43
52	DNA Methylation Mediates the Discriminatory Power of Associative Long-Term Memory in Honeybees. PLoS ONE, 2012, 7, e39349.	1.1	65
53	Patterns of DNA Methylation in Development, Division of Labor and Hybridization in an Ant with Genetic Caste Determination. PLoS ONE, 2012, 7, e42433.	1.1	52
54	Is There a Relationship between DNA Methylation and Phenotypic Plasticity in Invertebrates?. Frontiers in Physiology, 2012, 2, 116.	1.3	132
55	Job swapping makes its mark on honeybee DNA. Nature, 2012, , .	13.7	0
56	DNA Methylation in Mammalian and Non-Mammalian Organisms. , 0, , .		2

#	ARTICLE	IF	CITATIONS
57	Genome-wide peripheral blood leukocyte DNA methylation microarrays identified a single association with inflammatory bowel diseases. Inflammatory Bowel Diseases, 2012, 18, 2334-2341.	0.9	80
58	Fast and sensitive mapping of bisulfite-treated sequencing data. Bioinformatics, 2012, 28, 1698-1704.	1.8	51
59	DNA methylation in the termite Coptotermes lacteus. Insectes Sociaux, 2012, 59, 257-261.	0.7	20
60	Heritability of worker ovariole number in the Cape honey bee Apis mellifera capensis. Insectes Sociaux, 2012, 59, 351-359.	0.7	12
61	Racial mixing in South African honeybees: the effects of genotype mixing on reproductive traits of workers. Behavioral Ecology and Sociobiology, 2012, 66, 897-904.	0.6	11
62	DNA methylation plays a crucial role during early <i>Nasonia</i> development. Insect Molecular Biology, 2012, 21, 129-138.	1.0	75
63	Epigenetics and the environment: emerging patterns and implications. Nature Reviews Genetics, 2012, 13, 97-109.	7.7	1,524
64	Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nature Reviews Genetics, 2012, 13, 153-162.	7.7	604
65	Shifting behaviour: epigenetic reprogramming in eusocial insects. Current Opinion in Cell Biology, 2012, 24, 367-373.	2.6	54
66	Alternative splicing: decoding an expansive regulatory layer. Current Opinion in Cell Biology, 2012, 24, 323-332.	2.6	151
67	Common and novel transcriptional routes to behavioral maturation in worker and male honey bees. Genes, Brain and Behavior, 2012, 11, 253-261.	1.1	28
68	DNA methylation changes elicited by social stimuli in the brains of worker honey bees. Genes, Brain and Behavior, 2012, 11, 235-242.	1.1	7 5
69	The genomic impact of 100 million years of social evolution in seven ant species. Trends in Genetics, 2012, 28, 14-21.	2.9	101
70	Transcriptome analyses of primitively eusocial wasps reveal novel insights into the evolution of sociality and the origin of alternative phenotypes. Genome Biology, 2013, 14, R20.	13.9	139
71	5-methyl-cytosine and 5-hydroxy-methyl-cytosine in the genome of Biomphalaria glabrata, a snail intermediate host of Schistosoma mansoni. Parasites and Vectors, 2013, 6, 167.	1.0	45
72	Evidence of a conserved functional role for <scp>DNA</scp> methylation in termites. Insect Molecular Biology, 2013, 22, 143-154.	1.0	36
73	Nuclear Reprogramming and Its Role in Vascular Smooth Muscle Cells. Current Atherosclerosis Reports, 2013, 15, 352.	2.0	1
74	Chromatin's thread to alternative splicing regulation. Chromosoma, 2013, 122, 465-474.	1.0	40

#	ARTICLE	IF	Citations
75	The Fading Electricity Theory of Ageing: The missing biophysical principle?. Ageing Research Reviews, 2013, 12, 58-66.	5.0	24
76	Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum. Nature Communications, 2013, 4, 2091.	5.8	113
77	The Role of Methylation of DNA in Environmental Adaptation. Integrative and Comparative Biology, 2013, 53, 359-372.	0.9	89
78	Comparative methylomics between domesticated and wild silkworms implies possible epigenetic influences on silkworm domestication. BMC Genomics, 2013, 14, 646.	1.2	47
79	Intronic Non-CG DNA hydroxymethylation and alternative mRNA splicing in honey bees. BMC Genomics, 2013, 14, 666.	1.2	62
80	Biased gene expression in early honeybee larval development. BMC Genomics, 2013, 14, 903.	1.2	80
81	Identical sets of methylated and nonmethylated genes in Ciona intestinalis sperm and muscle cells. Epigenetics and Chromatin, 2013, 6, 38.	1.8	29
82	Aging is associated with highly defined epigenetic changes in the human epidermis. Epigenetics and Chromatin, 2013, 6, 36.	1.8	72
83	Honeybees and cell lines as models of DNA methylation and aging in response to diet. Experimental Gerontology, 2013, 48, 614-619.	1.2	20
84	Epigenetic Regulation of Gene Expression in the Nervous System. , 2013, , 151-171.		2
85	Genome expression control during the photoperiodic response of aphids. Physiological Entomology, 2013, 38, 117-125.	0.6	23
86	Extensive histone post-translational modification in honey bees. Insect Biochemistry and Molecular Biology, 2013, 43, 125-137.	1.2	63
87	Function of alternative splicing. Gene, 2013, 514, 1-30.	1.0	647
88	The interaction of genetic variants and DNA methylation of the interleukin-4 receptor gene increase the risk of asthma at age 18 years. Clinical Epigenetics, 2013 , 5 , 1 .	1.8	95
89	The pea aphid (Acyrthosiphon pisum) genome encodes two divergent early developmental programs. Developmental Biology, 2013, 377, 262-274.	0.9	27
90	Dynamic Integration of Splicing within Gene Regulatory Pathways. Cell, 2013, 152, 1252-1269.	13.5	371
91	Functions of DNA Methylation and Hydroxymethylation in Mammalian Development. Current Topics in Developmental Biology, 2013, 104, 47-83.	1.0	133
92	Genomewide analysis indicates that queen larvae have lower methylation levels in the honey bee (Apis) Tj ETQq1	1 8.78431	4 rgBT /Ove

#	Article	IF	Citations
93	Transcription, Translation, and Regulation of Eukaryotic DNA., 2013, , 37-70.		1
94	First evidence of DNA methylation in insect <i><i>Tribolium castaneum</i></i> . Epigenetics, 2013, 8, 534-541.	1.3	61
95	A survey of DNA methylation across social insect species, life stages, and castes reveals abundant and caste-associated methylation in a primitively social wasp. Die Naturwissenschaften, 2013, 100, 795-799.	0.6	42
96	Evolution of recombination and genome structure in eusocial insects. Communicative and Integrative Biology, 2013, 6, e22919.	0.6	24
98	Differential DNA methylation between two wing phenotypes adults of <i> Sogatella furcifera < $i>$. Genesis, 2013, 51, 819-826.</i>	0.8	18
99	Patterning and Regulatory Associations of DNA Methylation Are Mirrored by Histone Modifications in Insects. Genome Biology and Evolution, 2013, 5, 591-598.	1.1	91
100	The Function of Intragenic DNA Methylation: Insights from Insect Epigenomes. Integrative and Comparative Biology, 2013, 53, 319-328.	0.9	96
101	DNA Methylation as a Mechanism of Nutritional Plasticity: Limited Support From Horned Beetles. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2013, 320, 22-34.	0.6	35
102	Standard methods for molecular research in <i>Apis mellifera</i> . Journal of Apicultural Research, 2013, 52, 1-54.	0.7	150
103	Function and Evolution of DNA Methylation in Nasonia vitripennis. PLoS Genetics, 2013, 9, e1003872.	1.5	162
104	A chromatin link to caste identity in the carpenter ant <i>Camponotus floridanus</i> . Genome Research, 2013, 23, 486-496.	2.4	125
105	Ecological Epigenetics: An Introduction to the Symposium. Integrative and Comparative Biology, 2013, 53, 307-318.	0.9	19
106	The mysterious presence of a 5-methylcytosine oxidase in the <i>Drosophila </i> genome. Cell Cycle, 2013, 12, 3357-3365.	1.3	44
107	Dnmt2-dependent methylomes lack defined DNA methylation patterns. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8627-8631.	3.3	204
108	Invertebrate Models in Addiction Research. Brain, Behavior and Evolution, 2013, 82, 153-165.	0.9	37
109	Epigenetic studies in Alzheimer's disease: Current findings, caveats, and considerations for future studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 789-799.	1.1	68
110	RNA interference knockdown of <i>DNA methyl-transferase 3</i> affects gene alternative splicing in the honey bee. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12750-12755.	3.3	237
111	RNA-binding protein regulates plant DNA methylation by controlling mRNA processing at the intronic heterochromatin-containing gene <i>$IBM1 < I$:. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15467-15472.</i>	3.3	91

#	ARTICLE	IF	Citations
112	Cross-Species Analysis of Genic GC3 Content and DNA Methylation Patterns. Genome Biology and Evolution, 2013, 5, 1443-1456.	1.1	57
113	Expression of Sir2, Hdac1 and Ash2 in Honey Bee (Apis Mellifera L.) Queens and Workers. Journal of Apicultural Science, 2013, 57, 67-73.	0.1	5
114	The draft genome of a socially polymorphic halictid bee, Lasioglossum albipes. Genome Biology, 2013, 14, R142.	13.9	72
115	Modelling mutational and selection pressures on dinucleotides in eukaryotic phyla –selection against CpG and UpA in cytoplasmically expressed RNA and in RNA viruses. BMC Genomics, 2013, 14, 610.	1.2	71
116	Nutrient-dependent/pheromone-controlled adaptive evolution: a model. Socioaffective Neuroscience & Psychology, 2013, 3, 20553.	2.9	5
117	Changes in Alternative Splicing in Apis Mellifera Bees Fed Apis Cerana Royal Jelly. Journal of Apicultural Science, 2014, 58, 25-31.	0.1	2
118	Tetrahedral Gray Code for Visualization of Genome Information. PLoS ONE, 2014, 9, e86133.	1.1	1
119	The social brain meets the reactive genome: neuroscience, epigenetics and the new social biology. Frontiers in Human Neuroscience, 2014, 8, 309.	1.0	111
120	Monkey-based Research on Human Disease: The Implications of Genetic Differences. ATLA Alternatives To Laboratory Animals, 2014, 42, 287-317.	0.7	20
121	<i>Drosophila</i> genomic methylation: new evidence and new questions. Epigenomics, 2014, 6, 459-461.	1.0	35
122	Epigenetics as an answer to Darwinââ,¬â"¢s ââ,¬Å"special difficultyââ,¬Â• Frontiers in Genetics, 2014, 5, 321	. 1.1	10
123	Genome-wide profiling of DNA methylation and gene expression in Crassostrea gigas male gametes. Frontiers in Physiology, 2014, 5, 224.	1.3	92
124	A Bayesian Framework to Identify Methylcytosines from High-Throughput Bisulfite Sequencing Data. PLoS Computational Biology, 2014, 10, e1003853.	1.5	4
125	Epigenetic features in the oyster Crassostrea gigas suggestive of functionally relevant promoter DNA methylation in invertebrates. Frontiers in Physiology, 2014, 5, 129.	1.3	44
126	Contrasting Effects of Histone Deacetylase Inhibitors on Reward and Aversive Olfactory Memories in the Honey Bee. Insects, 2014, 5, 377-398.	1.0	17
127	Environmentally Selected Aphid Variants in Clonality Context Display Differential Patterns of Methylation in the Genome. PLoS ONE, 2014, 9, e115022.	1.1	15
128	Epigenomics and the concept of degeneracy in biological systems. Briefings in Functional Genomics, 2014, 13, 191-202.	1.3	52
129	Identification of reference genes for RT-qPCR in ovine mammary tissue during late pregnancy and lactation and in response to maternal nutritional programming. Physiological Genomics, 2014, 46, 560-570.	1.0	12

#	Article	IF	CITATIONS
130	The locust genome provides insight into swarm formation and long-distance flight. Nature Communications, 2014, 5, 2957.	5.8	437
131	Whole-Genome DNA Methylation Profile of the Jewel Wasp (Nasonia vitripennis). G3: Genes, Genomes, Genetics, 2014, 4, 383-388.	0.8	59
132	Bimodal signatures of germline methylation are linked with gene expression plasticity in the coral Acropora millepora. BMC Genomics, 2014, 15, 1109.	1.2	89
133	Genome-wide and single-base resolution DNA methylomes of the Pacific oyster Crassostrea gigas provide insight into the evolution of invertebrate CpG methylation. BMC Genomics, 2014, 15, 1119.	1.2	110
134	High-resolution genome-wide DNA methylation maps of mouse primary female dermal fibroblasts and keratinocytes. Epigenetics and Chromatin, 2014, 7, 35.	1.8	12
135	The effects of perinatal testosterone exposure on the DNA methylome of the mouse brain are late-emerging. Biology of Sex Differences, 2014, 5, 8.	1.8	106
136	A parent-of-origin effect on honeybee worker ovary size. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132388.	1.2	34
137	A context dependent role for DNA methylation in bivalves. Briefings in Functional Genomics, 2014, 13, 217-222.	1.3	61
138	Epigenetics of Human Obesity: A Link Between Genetics and Nutrition., 2014,, 101-127.		0
139	Impacts of Pretranscriptional DNA Methylation, Transcriptional Transcription Factor, and Posttranscriptional microRNA Regulations on Protein Evolutionary Rate. Genome Biology and Evolution, 2014, 6, 1530-1541.	1.1	34
140	DNA Methylation is Associated with an Increased Level of Conservation at Nondegenerate Nucleotides in Mammals. Molecular Biology and Evolution, 2014, 31, 387-396.	3.5	14
141	Molecular Mechanisms of Phase Change in Locusts. Annual Review of Entomology, 2014, 59, 225-244.	5.7	125
142	High-resolution linkage map for two honeybee chromosomes: the hotspot quest. Molecular Genetics and Genomics, 2014, 289, 11-24.	1.0	6
143	Odor memories regulate olfactory receptor expression in the sensory periphery. European Journal of Neuroscience, 2014, 39, 1642-1654.	1.2	68
144	Epigenetics, plasticity, and evolution: How do we link epigenetic change to phenotype?. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 208-220.	0.6	217
145	Patterns of DNA Methylation in Animals: An Ecotoxicological Perspective. Integrative and Comparative Biology, 2014, 54, 77-86.	0.9	97
146	Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Research, 2014, 42, 701-713.	6.5	201
147	The Dynamic Nature of DNA Methylation: A Role in Response to Social and Seasonal Variation. Integrative and Comparative Biology, 2014, 54, 68-76.	0.9	52

#	ARTICLE	IF	Citations
148	Honey bee sociogenomics: a genome-scale perspective on bee social behavior and health. Apidologie, 2014, 45, 375-395.	0.9	28
149	Epigenetic memory of environmental organisms: A reflection of lifetime stressor exposures. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2014, 764-765, 10-17.	0.9	104
150	Imprinting in rice: the role of <scp>DNA</scp> and histone methylation in modulating parentâ€ofâ€origin specific expression and determining transcript start sites. Plant Journal, 2014, 79, 232-242.	2.8	31
151	The role of chromatin and epigenetics in the polyphenisms of ant castes. Briefings in Functional Genomics, 2014, 13, 235-245.	1.3	31
152	Caste-specific RNA editomes in the leaf-cutting ant Acromyrmex echinatior. Nature Communications, 2014, 5, 4943.	5.8	60
153	Eusocial insects as emerging models for behavioural epigenetics. Nature Reviews Genetics, 2014, 15, 677-688.	7.7	186
154	Epigenetic inheritance and genome regulation: is DNA methylation linked to ploidy in haplodiploid insects?. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140411.	1.2	36
155	A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nature Genetics, 2014, 46, 1081-1088.	9.4	273
156	Bis-class: a new classification tool of methylation status using bayes classifier and local methylation information. BMC Genomics, 2014, 15, 608.	1.2	12
157	The social honey bee in biomedical research: realities and expectations. Drug Discovery Today: Disease Models, 2014, 12, 7-13.	1.2	22
158	Splicing factor 3B1 hypomethylation is associated with altered SF3B1 transcript expression in older humans. Mechanisms of Ageing and Development, 2014, 135, 50-56.	2.2	7
159	The environmental roots of non-communicable diseases (NCDs) and the epigenetic impacts of globalization. Environmental Research, 2014, 133, 424-430.	3.7	45
160	No more non-model species: The promise of next generation sequencing for comparative immunology. Developmental and Comparative Immunology, 2014, 45, 56-66.	1.0	56
161	The dynamic DNA methylation cycle from egg to sperm in the honey bee <i>Apis mellifera</i> . Development (Cambridge), 2014, 141, 2702-2711.	1.2	58
162	Epigenomics and the control of fate, form and function in social insects. Current Opinion in Insect Science, 2014, 1, 31-38.	2.2	23
163	Evolutionary insights into DNA methylation in insects. Current Opinion in Insect Science, 2014, 1, 25-30.	2.2	82
164	Environmental stressors and the epigenome. Drug Discovery Today: Technologies, 2014, 12, e3-e8.	4.0	20
166	Insights into DNA hydroxymethylation in the honeybee from in-depth analyses of TET dioxygenase. Open Biology, 2014, 4, 140110.	1.5	60

#	ARTICLE	IF	CITATIONS
168	Cell Biology Research on Stem Cells, Aging, Cancer Resistance, and Epigenetics in Marbled Crayfish and Relatives: Potential Benefi ts for Human Biology and Medicine., 2015, , 115-158.		4
169	DNA Methylation and Sex Allocation in the Parasitoid Wasp <i>Nasonia vitripennis</i> li>. American Naturalist, 2015, 186, 513-518.	1.0	14
170	EGFR gene methylation is not involved in Royalactin controlled phenotypic polymorphism in honey bees. Scientific Reports, 2015, 5, 14070.	1.6	31
171	Dnmts and Tet target memory-associated genes after appetitive olfactory training in honey bees. Scientific Reports, 2015, 5, 16223.	1.6	44
172	Alternative Splice in Alternative Lice. Molecular Biology and Evolution, 2015, 32, 2749-2759.	3.5	29
173	COBRA-Seq: Sensitive and Quantitative Methylome Profiling. Genes, 2015, 6, 1140-1163.	1.0	10
174	Social Crowding during Development Causes Changes in GnRH1 DNA Methylation. PLoS ONE, 2015, 10, e0142043.	1.1	12
175	What Do Studies of Insect Polyphenisms Tell Us about Nutritionally-Triggered Epigenomic Changes and Their Consequences?. Nutrients, 2015, 7, 1787-1797.	1.7	21
176	DNA methyltransferases have an essential role in female fecundity inÂbrown planthopper, Nilaparvata lugens. Biochemical and Biophysical Research Communications, 2015, 464, 83-88.	1.0	43
177	Estimation of the methylation pattern distribution from deep sequencing data. BMC Bioinformatics, 2015, 16, 145.	1.2	6
178	A Search for Parent-of-Origin Effects on Honey Bee Gene Expression. G3: Genes, Genomes, Genetics, 2015, 5, 1657-1662.	0.8	41
179	Widespread intron retention diversifies most cancer transcriptomes. Genome Medicine, 2015, 7, 45.	3.6	283
180	Epigenetic and endocrine determinants of lifespan differences between the castes of social insects. Moscow University Biological Sciences Bulletin, 2015, 70, 158-164.	0.1	1
181	Epigenetics in Social Insects. Advances in Insect Physiology, 2015, 48, 227-269.	1.1	15
182	Population Genomic and Phylogenomic Insights into the Evolution of Physiology and Behaviour in Social Insects. Advances in Insect Physiology, 2015, 48, 293-324.	1.1	8
183	Old Threads Make New Tapestry—Rewiring of Signalling Pathways Underlies Caste Phenotypic Plasticity in the Honey Bee, Apis mellifera L Advances in Insect Physiology, 2015, 48, 1-36.	1.1	28
185	Stochastic developmental variation, an epigenetic source of phenotypic diversity with far-reaching biological consequences. Journal of Biosciences, 2015, 40, 159-204.	0.5	118
186	Social parasitism and the molecular basis of phenotypic evolution. Frontiers in Genetics, 2015, 6, 32.	1.1	21

#	Article	IF	CITATIONS
187	The epigenetics of aging and neurodegeneration. Progress in Neurobiology, 2015, 131, 21-64.	2.8	334
188	Genetic and epigenetic architecture of sex-biased expression in the jewel wasps <i>Nasonia vitripennis</i> and <i>giraulti</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3545-54.	3.3	53
189	Parallel Epigenomic and Transcriptomic Responses to Viral Infection in Honey Bees (Apis mellifera). PLoS Pathogens, 2015, 11, e1004713.	2.1	145
190	Cytosine modifications in the honey bee (Apis mellifera) worker genome. Frontiers in Genetics, 2015, 6, 8.	1.1	17
191	DNA Methylation in Basal Metazoans: Insights from Ctenophores. Integrative and Comparative Biology, 2015, 55, 1096-1110.	0.9	38
192	Epigenetics as an answer to Darwinââ,¬â,,¢s ââ,¬Å"special difficulty,ââ,¬Â•Part 2: natural selection of metastable epialleles in honeybee castes. Frontiers in Genetics, 2015, 6, 60.	1.1	8
193	Extreme Recombination Frequencies Shape Genome Variation and Evolution in the Honeybee, Apis mellifera. PLoS Genetics, 2015, 11, e1005189.	1.5	98
194	Epigenetics and locust life phase transitions. Journal of Experimental Biology, 2015, 218, 88-99.	0.8	68
195	Regulation of <i>Hox</i> orthologues in the oyster <i>Crassostrea gigas</i> evidences a functional role for promoter DNA methylation in an invertebrate. FEBS Letters, 2015, 589, 1459-1466.	1.3	39
196	DNA Methylation and Chromatin Organization in Insects: Insights from the Ant Camponotus floridanus. Genome Biology and Evolution, 2015, 7, 931-942.	1.1	30
197	Genomic signatures of evolutionary transitions from solitary to group living. Science, 2015, 348, 1139-1143.	6.0	357
198	Epigenetic variation in the Egfr gene generates quantitative variation in a complex trait in ants. Nature Communications, 2015, 6, 6513.	5.8	99
199	Insects as models to study the epigenetic basis of disease. Progress in Biophysics and Molecular Biology, 2015, 118, 69-78.	1.4	113
200	The expanding epigenetic landscape of non-model organisms. Journal of Experimental Biology, 2015, 218, 114-122.	0.8	49
201	The alternative role of DNA methylation in splicing regulation. Trends in Genetics, 2015, 31, 274-280.	2.9	458
202	Neurogenomic mechanisms of social plasticity. Journal of Experimental Biology, 2015, 218, 140-149.	0.8	107
203	HP1 Is Involved in Regulating the Global Impact of DNA Methylation on Alternative Splicing. Cell Reports, 2015, 10, 1122-1134.	2.9	179
204	The Genome and Methylome of a Beetle with Complex Social Behavior, <i>Nicrophorus vespilloides </i> (Coleoptera: Silphidae). Genome Biology and Evolution, 2015, 7, 3383-3396.	1.1	87

#	Article	IF	CITATIONS
205	Physiological and Molecular Mechanisms of Nutrition in Honey Bees. Advances in Insect Physiology, 2015, 49, 25-58.	1.1	34
206	Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13970-13975.	3.3	192
207	Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics and Chromatin, 2015, 8, 24.	1.8	249
208	DNA Methylation within Transcribed Regions. Plant Physiology, 2015, 168, 1219-1225.	2.3	64
209	Epigenetic mechanisms of dietary restriction induced aging in Drosophila. Experimental Gerontology, 2015, 72, 38-44.	1.2	13
210	Genome-wide analysis of DNA methylation in the sexual stage of the insect pathogenic fungus Cordyceps militaris. Fungal Biology, 2015, 119, 1246-1254.	1.1	39
211	Integrative Genomic Approaches to Studying Epigenetic Mechanisms of Phenotypic Plasticity in the Aphid. True Bugs (Heteroptera) of the Neotropics, 2015, , 95-117.	1.2	2
212	Natural larval diet differently influences the pattern of developmental changes in DNA 5-methylcytosine levels in Apis mellifera queens as compared with workers and drones. Biochemistry (Moscow), 2015, 80, 1019-1025.	0.7	5
213	Presence of DNA methyltransferase activity and CpC methylation in Drosophila melanogaster. Molecular Biology Reports, 2015, 42, 1615-1621.	1.0	24
214	Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I. Challenges and research needs in ecotoxicology. Chemosphere, 2015, 120, 764-777.	4.2	167
215	New themes in the biological functions of 5â€methylcytosine and 5â€hydroxymethylcytosine. Immunological Reviews, 2015, 263, 36-49.	2.8	48
216	DNA Methylation in Social Insects: How Epigenetics Can Control Behavior and Longevity. Annual Review of Entomology, 2015, 60, 435-452.	5 . 7	156
217	Neural and behavioral epigenetics; what it is, and what is hype. Genes, Brain and Behavior, 2015, 14, 64-72.	1.1	31
218	OGS2: genome re-annotation of the jewel wasp Nasonia vitripennis. BMC Genomics, 2016, 17, 678.	1.2	35
219	Computational Analysis and Integration of MeDIP-seq Methylome Data. , 0, , .		2
220	The Function of DNA Methylation Marks in Social Insects. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	48
221	Transcriptome Analysis of an Insecticide Resistant Housefly Strain: Insights about SNPs and Regulatory Elements in Cytochrome P450 Genes. PLoS ONE, 2016, 11, e0151434.	1.1	11
222	Epigenetics in ecology and evolution: what we know andÂwhat we need to know. Molecular Ecology, 2016, 25, 1631-1638.	2.0	229

#	ARTICLE	IF	CITATIONS
223	A possible role of DNA methylation in functional divergence of a fast evolving duplicate gene encoding odorant binding protein 11 in the honeybee. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160558.	1.2	33
224	MicroRNA signatures characterizing casteâ€independent ovarian activity in queen and worker honeybees (<scp><i>A</i></scp> <i>pis mellifera</i> L.). Insect Molecular Biology, 2016, 25, 216-226.	1.0	39
225	The caste- and sex-specific DNA methylome of the termite Zootermopsis nevadensis. Scientific Reports, 2016, 6, 37110.	1.6	139
226	Evaluation of Possible Proximate Mechanisms Underlying the Kinship Theory of Intragenomic Conflict in Social Insects. Integrative and Comparative Biology, 2016, 56, 1206-1214.	0.9	7
227	Evolution of DNA Methylation across Insects. Molecular Biology and Evolution, 2017, 34, msw264.	3.5	246
228	Genome, transcriptome and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced <scp>DNA</scp> methylation system in a social insect. Molecular Ecology, 2016, 25, 1769-1784.	2.0	148
229	DNA base modifications in honey bee and fruit fly genomes suggest an active demethylation machinery with species- and tissue-specific turnover rates. Biochemistry and Biophysics Reports, 2016, 6, 9-15.	0.7	16
230	Evolutionary Transition of Promoter and Gene Body DNA Methylation across Invertebrate–Vertebrate Boundary. Molecular Biology and Evolution, 2016, 33, 1019-1028.	3.5	98
231	The Genome and Methylome of a Subsocial Small Carpenter Bee, <i>Ceratina calcarata</i> Biology and Evolution, 2016, 8, 1401-1410.	1.1	71
232	Towards understanding pre-mRNA splicing mechanisms and the role of SR proteins. Gene, 2016, 587, 107-119.	1.0	46
233	Gene Body Methylation Patterns in Daphnia Are Associated with Gene Family Size. Genome Biology and Evolution, 2016, 8, 1185-1196.	1.1	39
234	Molecular characterization and analysis of the porcine NURR1 gene. Biochimie Open, 2016, 3, 26-39.	3.2	2
235	Resource allocation and compensation during development in holometabolous insects. Journal of Insect Physiology, 2016, 95, 78-88.	0.9	60
236	Transcription factors as readers and effectors of DNA methylation. Nature Reviews Genetics, 2016, 17, 551-565.	7.7	482
237	<scp>TET</scp> â€eatalyzed oxidation of intragenic 5â€methylcytosine regulatesCTCFâ€dependent alternative splicing. EMBO Journal, 2016, 35, 335-355.	3.5	111
238	Potential mechanisms underlying estrogen-induced expression of the molluscan estrogen receptor (ER) gene. Aquatic Toxicology, 2016, 179, 82-94.	1.9	24
239	Genome methylation patterns across castes and generations in a parasitoid wasp. Ecology and Evolution, 2016, 6, 7943-7953.	0.8	20
241	Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. Advances in Experimental Medicine and Biology, 2016, 945, 343-430.	0.8	22

#	Article	IF	Citations
242	DNA Methylation and Gene Regulation in Honeybees: From Genome-Wide Analyses to Obligatory Epialleles. Advances in Experimental Medicine and Biology, 2016, 945, 193-211.	0.8	19
243	Developmental Plasticity and Phenotypic Evolution. , 2016, , 430-440.		3
244	Epigenetics and Genome Evolution. , 2016, , 6-12.		0
245	DISMISS: detection of stranded methylation in MeDIP-Seq data. BMC Bioinformatics, 2016, 17, 295.	1.2	16
246	Acute and chronic gregarisation are associated with distinct DNA methylation fingerprints in desert locusts. Scientific Reports, 2016, 6, 35608.	1.6	13
247	Small <scp>RNAs</scp> : essential regulators of gene expression and defenses against environmental stresses in plants. Wiley Interdisciplinary Reviews RNA, 2016, 7, 356-381.	3.2	52
248	The importance of trans-generational effects in Lepidoptera. Environmental Epigenetics, 2016, 62, 489-499.	0.9	33
249	Elucidating novel dysfunctional pathways in Alzheimer's disease by integrating loci identified in genetic and epigenetic studies. Neuroepigenetics, 2016, 6, 32-50.	2.8	17
250	Mapping Human Pluripotent-to-Cardiomyocyte Differentiation: Methylomes, Transcriptomes, and Exon DNA Methylation "Memories― EBioMedicine, 2016, 4, 74-85.	2.7	42
251	Queen pheromones modulate DNA methyltransferase activity in bee and ant workers. Biology Letters, 2016, 12, 20151038.	1.0	21
252	Genomics of Phenotypic Plasticity in Aphids. , 2016, , 65-96.		3
253	Robust DNA Methylation in the Clonal Raider Ant Brain. Current Biology, 2016, 26, 391-395.	1.8	133
254	Parent-of-origin effects on genome-wide DNA methylation in the Cape honey bee (Apis mellifera) Tj ETQq0 0 0 rgE	BT ₁ /Overlo	ock 10 Tf 50 2
255	Epigenomics in marine fishes. Marine Genomics, 2016, 30, 43-54.	0.4	61
256	Soybean Meal and Soy Protein Concentrate in Early Diet Elicit Different Nutritional Programming Effects on Juvenile Zebrafish. Zebrafish, 2016, 13, 61-69.	0.5	47
257	MethylAction: detecting differentially methylated regions that distinguish biological subtypes. Nucleic Acids Research, 2016, 44, 106-116.	6.5	18
258	DNA methylation changes induced by long and short photoperiods in <i>Nasonia</i> . Genome Research, 2016, 26, 203-210.	2.4	96
259	Molecular mechanisms of phenotypic plasticity in social insects. Current Opinion in Insect Science, 2016, 13, 55-60.	2.2	144

#	Article	IF	CITATIONS
260	The right tools for the job: regulating polyphenic morph development in insects. Current Opinion in Insect Science, 2016 , 13 , 1 - 6 .	2.2	11
261	Inheritance and Variation of Genomic DNA Methylation in Diploid and Triploid Pacific Oyster (Crassostrea gigas). Marine Biotechnology, 2016, 18, 124-132.	1.1	21
262	Genomic sources of phenotypic novelty in the evolution of eusociality in insects. Current Opinion in Insect Science, 2016, 13, 24-32.	2.2	30
263	Differentially methylated obligatory epialleles modulate context-dependent <i>LAM</i> gene expression in the honeybee <i>Apis mellifera</i> Epigenetics, 2016, 11, 1-10.	1.3	56
264	The complexity of epigenetic diseases. Journal of Pathology, 2016, 238, 333-344.	2.1	24
265	DNA methylation comparison between 4-day-old queen and worker larvae of honey bee. Journal of Asia-Pacific Entomology, 2017, 20, 299-303.	0.4	4
266	A saga of cancer epigenetics: linking epigenetics to alternative splicing. Biochemical Journal, 2017, 474, 885-896.	1.7	36
267	Cold tolerance of the Asian tiger mosquito Aedes albopictus and its response to epigenetic alterations. Journal of Insect Physiology, 2017, 99, 113-121.	0.9	19
268	Epigenetic Regulation of Longevity in Insects. Advances in Insect Physiology, 2017, , 87-114.	1.1	10
269	Alternative splicing as a regulator of development and tissue identity. Nature Reviews Molecular Cell Biology, 2017, 18, 437-451.	16.1	929
270	Effect of cadmium on cytosine hydroxymethylation in gastropod hepatopancreas. Environmental Science and Pollution Research, 2017, 24, 15187-15195.	2.7	14
272	Molecular Evolution of Insect Sociality: An Eco-Evo-Devo Perspective. Annual Review of Entomology, 2017, 62, 419-442.	5.7	92
273	Contrasting Sex-and Caste-Dependent piRNA Profiles in the Transposon Depleted Haplodiploid Honeybee Apis mellifera. Genome Biology and Evolution, 2017, 9, 1341-1356.	1.1	16
274	Cuticular hydrocarbon cues of immuneâ€challenged workers elicit immune activation in honeybee queens. Molecular Ecology, 2017, 26, 3062-3073.	2.0	20
276	Bisulfite Sequencing with <i>Daphnia</i> Highlights a Role for Epigenetics in Regulating Stress Response to <i>Microcystis</i> through Preferential Differential Methylation of Serine and Threonine Amino Acids. Environmental Science & Environmenta	4.6	57
277	Alternative splicing and the evolution of phenotypic novelty. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20150474.	1.8	179
278	Insights into Epigenome Evolution from Animal and Plant Methylomes. Genome Biology and Evolution, 2017, 9, 3189-3201.	1.1	35
279	Detecting rare asymmetrically methylated cytosines and decoding methylation patterns in the honeybee genome. Royal Society Open Science, 2017, 4, 170248.	1.1	11

#	Article	IF	CITATIONS
280	Genome-wide DNA methylomes from discrete developmental stages reveal the predominance of non-CpG methylation in Tribolium castaneum. DNA Research, 2017, 24, 445-457.	1.5	36
281	Genetics and Evolution of Social Behavior in Insects. Annual Review of Genetics, 2017, 51, 219-239.	3.2	43
282	Do social insects support Haig's kin theory for the evolution of genomic imprinting?. Epigenetics, 2017, 12, 725-742.	1.3	25
283	Extending epigenesis: from phenotypic plasticity to the bio-cultural feedback. Biology and Philosophy, 2017, 32, 705-728.	0.7	15
284	Maximizing ecological and evolutionary insight in bisulfite sequencing data sets. Nature Ecology and Evolution, 2017, 1, 1074-1083.	3.4	46
285	DNA methylation profiles in red blood cells of adult hens correlate to their rearing conditions. Journal of Experimental Biology, 2017, 220, 3579-3587.	0.8	46
286	Genome-wide DNA methylation changes associated with olfactory learning and memory in Apis mellifera. Scientific Reports, 2017, 7, 17017.	1.6	20
288	Effects of a parental exposure to diuron on Pacific oyster spat methylome. Environmental Epigenetics, 2017, 3, dvx004.	0.9	56
289	DNA methylation of Kr-h1 is involved in regulating ovary activation in worker honeybees (Apis) Tj ETQq0 0 0 rgBT	/Qverlock 0.7	19 Tf 50 422
290	No evidence that DNA methylation is associated with the regulation of fertility in the adult honey bee Apis mellifera (Hymenoptera: Apidae) worker ovary. Austral Entomology, 2017, 56, 115-121.	0.8	1
291	Variation in DNA Methylation Is Not Consistently Reflected by Sociality in Hymenoptera. Genome Biology and Evolution, 2017, 9, 1687-1698.	1.1	46
292	Into the Wild: Parallel Transcriptomics of the Tsetse-Wigglesworthia Mutualism within Kenyan Populations. Genome Biology and Evolution, 2017, 9, 2276-2291.	1.1	9
293	Cold acclimation alters DNA methylation patterns and confers tolerance to heat and increases growth rate in Brassica rapa. Journal of Experimental Botany, 2017, 68, 1213-1224.	2.4	81
294	Independence between pre-mRNA splicing and DNA methylation in an isogenic minigene resource. Nucleic Acids Research, 2017, 45, 12780-12797.	6.5	4
295	Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: insights from clonal, invasive, polyploid, and domesticated animals. Environmental Epigenetics, 2017, 3, dvx002.	0.9	74
296	From Molecules to Management: Mechanisms and Consequences of Locust Phase Polyphenism. Advances in Insect Physiology, 2017, 53, 167-285.	1.1	101
297	Epigenetic DNA Methylation Mediating Octopus vulgaris Early Development: Effect of Essential Fatty Acids Enriched Diet. Frontiers in Physiology, 2017, 8, 292.	1.3	24
298	Molecular Techniques for DNA Methylation Studies. , 2017, , 103-139.		5

#	Article	IF	CITATIONS
299	The Importance of ncRNAs as Epigenetic Mechanisms in Phenotypic Variation and Organic Evolution. Frontiers in Microbiology, 2017, 8, 2483.	1.5	72
300	Evolution of Epigenetic Mechanisms inÂAnimals and Their Role in Speciation. , 2017, , 409-426.		7
301	Epigenetics in Insects: Mechanisms, Phenotypes and Ecological and Evolutionary Implications. Advances in Insect Physiology, $2017, 53, 1-30$.	1.1	42
302	Epigenetics of Livestock Breeding. , 2017, , 441-463.		5
303	Nutrition and Epigenetic Change in Insects: Evidence and Implications. Advances in Insect Physiology, 2017, 53, 31-54.	1.1	4
304	Dynamics of DNA methylomes underlie oyster development. PLoS Genetics, 2017, 13, e1006807.	1.5	65
305	The Biomphalaria glabrata DNA methylation machinery displays spatial tissue expression, is differentially active in distinct snail populations and is modulated by interactions with Schistosoma mansoni. PLoS Neglected Tropical Diseases, 2017, 11, e0005246.	1.3	39
306	Endocrine Influences on Insect Societies. , 2017, , 421-451.		14
307	Analysis of the genome of the New Zealand giant collembolan (Holacanthella duospinosa) sheds light on hexapod evolution. BMC Genomics, 2017, 18, 795.	1.2	28
308	Epigenetic modifications and their relation to caste and sex determination and adult division of labor in the stingless bee Melipona scutellaris. Genetics and Molecular Biology, 2017, 40, 61-68.	0.6	38
309	Longevity extension of worker honey bees (<i>Apis mellifera</i>) by royal jelly: optimal dose and active ingredient. PeerJ, 2017, 5, e3118.	0.9	34
310	The epigenetic alterations of endogenous retroelements in aging. Mechanisms of Ageing and Development, 2018, 174, 30-46.	2.2	70
311	Investigating the genetic and epigenetic basis of big biological questions with the parthenogenetic marbled crayfish: A review and perspectives. Journal of Biosciences, 2018, 43, 189-223.	0.5	38
312	Evolutionary analysis indicates that DNA alkylation damage is a byproduct of cytosine DNA methyltransferase activity. Nature Genetics, 2018, 50, 452-459.	9.4	71
313	Identification and caste-dependent expression patterns of DNA methylation associated genes in Bombus terrestris. Scientific Reports, 2018, 8, 2332.	1.6	24
314	Building a new research framework for social evolution: intralocus caste antagonism. Biological Reviews, 2018, 93, 1251-1268.	4.7	18
315	CREB-binding protein plays key roles in juvenile hormone action in the red flour beetle, Tribolium Castaneum. Scientific Reports, 2018, 8, 1426.	1.6	20
316	Epigenetics of Longevity in Social Insects. , 2018, , 271-289.		2

#	ARTICLE	IF	CITATIONS
317	Everybody is different: A plea for individualizing treatment of aortopathy. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 481-482.	0.4	1
318	Genome-Wide Characterization of DNA Methylation in an Invasive Lepidopteran Pest, the Cotton Bollworm <i>Helicoverpa armigera</i> . G3: Genes, Genomes, Genetics, 2018, 8, 779-787.	0.8	36
319	Notos - a galaxy tool to analyze CpN observed expected ratios for inferring DNA methylation types. BMC Bioinformatics, 2018, 19, 105.	1.2	8
321	Use of 5-azacytidine in a proof-of-concept study to evaluate the impact of pre-natal and post-natal exposures, as well as within generation persistent DNA methylation changes in Daphnia. Ecotoxicology, 2018, 27, 556-568.	1.1	26
322	Signatures of DNA Methylation across Insects Suggest Reduced DNA Methylation Levels in Holometabola. Genome Biology and Evolution, 2018, 10, 1185-1197.	1.1	100
323	The transcriptomic changes associated with the development of social parasitism in the honeybee Apis mellifera capensis. Die Naturwissenschaften, 2018, 105, 22.	0.6	8
324	Whole-Genome Bisulfite Sequencing for theÂAnalysis of Genome-Wide DNA Methylation and Hydroxymethylation Patterns at Single-Nucleotide Resolution. Methods in Molecular Biology, 2018, 1767, 311-349.	0.4	29
325	Epigenetics, nutrition and mental health. Is there a relationship?. Nutritional Neuroscience, 2018, 21, 602-613.	1.5	25
326	The elegance of a macrophage. Cellular and Molecular Immunology, 2018, 15, 196-198.	4.8	13
327	The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nature Reviews Genetics, 2018, 19, 81-92.	7.7	919
328	DNA methylation affects the lifespan of honey bee (Apis mellifera L.) workers â€" Evidence for a regulatory module that involves vitellogenin expression but is independent of juvenile hormone function. Insect Biochemistry and Molecular Biology, 2018, 92, 21-29.	1.2	41
329	A molecular concept of caste in insect societies. Current Opinion in Insect Science, 2018, 25, 42-50.	2.2	19
330	Epigenetic profiles in polyglutamine disorders. Epigenomics, 2018, 10, 9-25.	1.0	10
331	Whole-Genome Bisulfite Sequencing Using the Ovation® Ultralow Methyl-Seq Protocol. Methods in Molecular Biology, 2018, 1708, 83-104.	0.4	15
332	Epigenetics and developmental plasticity in orthopteroid insects. Current Opinion in Insect Science, 2018, 25, 25-34.	2.2	26
333	Behavioral and genetic mechanisms of social evolution: insights from incipiently and facultatively social bees. Apidologie, 2018, 49, 13-30.	0.9	46
334	Maternal and paternal nutrition in a mosquito influences offspring life histories but not infection with an arbovirus. Ecosphere, 2018, 9, e02469.	1.0	19
335	Changes of gene expression but not cytosine methylation are associated with male parental care reflecting behavioural state, social context, and individual flexibility. Journal of Experimental Biology, 2019, 222, .	0.8	12

#	Article	IF	CITATIONS
336	Dnmt1 has an essential function despite the absence of CpG DNA methylation in the red flour beetle Tribolium castaneum. Scientific Reports, 2018, 8, 16462.	1.6	50
337	Regulation of histone deacetylase 3 by metal cations and 10-hydroxy-2E-decenoic acid: Possible epigenetic mechanisms of queen-worker bee differentiation. PLoS ONE, 2018, 13, e0204538.	1.1	4
338	Genetic accommodation and the role of ancestral plasticity in the evolution of insect eusociality. Journal of Experimental Biology, 2018, 221, .	0.8	20
339	Natural variability and modulation by environmental stressors of global genomic cytosine methylation levels in a freshwater crustacean, Gammarus fossarum. Aquatic Toxicology, 2018, 205, 11-18.	1.9	12
340	The methylome of the marbled crayfish links gene body methylation to stable expression of poorly accessible genes. Epigenetics and Chromatin, 2018, 11, 57.	1.8	56
341	Genomic Landscape of Methylation Islands in Hymenopteran Insects. Genome Biology and Evolution, 2018, 10, 2766-2776.	1.1	19
342	Sex-specific dmrt1 and cyp19a1 methylation and alternative splicing in gonads of the protandrous hermaphrodite barramundi. PLoS ONE, 2018, 13, e0204182.	1.1	48
343	Recent Advances in Behavioral (Epi)Genetics in Eusocial Insects. Annual Review of Genetics, 2018, 52, 489-510.	3.2	55
344	First demonstration of olfactory learning and long term memory in honey bee queens. Journal of Experimental Biology, 2018, 221, .	0.8	11
345	Honey Bees, Royal Jelly, Epigenetics. , 2018, , 722-727.		0
346	Epigenetic Mechanisms of Traumatic Brain Injuries. Progress in Molecular Biology and Translational Science, 2018, 157, 263-298.	0.9	27
347	Pattern of DNA Methylation in Daphnia: Evolutionary Perspective. Genome Biology and Evolution, 2018, 10, 1988-2007.	1.1	47
348	Social context influences the expression of DNA methyltransferase genes in the honeybee. Scientific Reports, 2018, 8, 11076.	1.6	12
349	DNA methylation mediates BmDeaf1-regulated tissue- and stage-specific expression of BmCHSA-2b in the silkworm, Bombyx mori. Epigenetics and Chromatin, 2018, 11, 32.	1.8	19
350	Defense against territorial intrusion is associated with DNA methylation changes in the honey bee brain. BMC Genomics, 2018, 19, 216.	1.2	33
351	Transgenerational Inheritance of DNA Hypomethylation in <i>Daphnia magna</i> in Response to Salinity Stress. Environmental Science & Environmental Sci	4.6	67
352	Phenotypically distinct female castes in honey bees are defined by alternative chromatin states during larval development. Genome Research, 2018, 28, 1532-1542.	2.4	72
353	Transgenerational epigenetic inheritance in birds. Environmental Epigenetics, 2018, 4, dvy008.	0.9	47

#	Article	IF	CITATIONS
354	Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Science Advances, 2018, 4, eaar8028.	4.7	135
355	Can epigenetics translate environmental cues into phenotypes?. Science of the Total Environment, 2019, 647, 1281-1293.	3.9	61
356	Genomics of Developmental Plasticity in Animals. Frontiers in Genetics, 2019, 10, 720.	1.1	96
357	Unique DNA Methylation Profiles Are Associated with cis-Variation in Honey Bees. Genome Biology and Evolution, 2019, 11, 2517-2530.	1.1	31
358	Substantial Heritable Variation in Recombination Rate on Multiple Scales in Honeybees and Bumblebees. Genetics, 2019, 212, 1101-1119.	1.2	17
359	The effects of the neonicotinoid imidacloprid on gene expression and DNA methylation in the buff-tailed bumblebee <i>Bombus terrestris</i> Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190718.	1.2	32
360	A Maternal Effect on Queen Production in Honeybees. Current Biology, 2019, 29, 2208-2213.e3.	1.8	22
361	The dimension of biological change caused by autotriploidy: AÂmeta-analysis with triploid crayfish Procambarus virginalis andÂitsÂdiploid parent Procambarus fallax. Zoologischer Anzeiger, 2019, 281, 53-67.	0.4	13
362	Methylation and gene expression differences between reproductive and sterile bumblebee workers. Evolution Letters, 2019, 3, 485-499.	1.6	48
363	Sexual Transcription Differences in Brachymeria lasus (Hymenoptera: Chalcididae), a Pupal Parasitoid Species of Lymantria dispar (Lepidoptera: Lymantriidae). Frontiers in Genetics, 2019, 10, 172.	1.1	8
365	Validating the Demethylating Effects of 5-aza-2′-deoxycytidine in Insects Requires a Whole-Genome Approach. American Naturalist, 2019, 194, 432-438.	1.0	12
366	Epigenetics and Minerals: An Overview. , 2019, , 1769-1787.		0
367	Universality of the DNA methylation codes in Eucaryotes. Scientific Reports, 2019, 9, 173.	1.6	37
368	Sequence and structural properties of circular RNAs in the brain of nurse and forager honeybees (Apis mellifera). BMC Genomics, 2019, 20, 88.	1.2	21
369	Dnmt1 is essential for egg production and embryo viability in the large milkweed bug, Oncopeltus fasciatus. Epigenetics and Chromatin, 2019, 12, 6.	1.8	62
370	Three-dimensional reconstruction of corpora allata nucleus reveals insights into epigenetic mechanisms of caste differentiation in Melipona scutellaris stingless bees. Apidologie, 2019, 50, 330-339.	0.9	1
371	What drives phenotypic divergence among coral clonemates of <i>Acropora palmata</i> Ecology, 2019, 28, 3208-3224.	2.0	37
372	Epigenetics and heritable phenotypic variations in livestock. , 2019, , 283-313.		О

#	Article	IF	CITATIONS
373	Transgenerational epigenetic inheritance in insects. , 2019, , 315-329.		3
374	Extreme Differences in Recombination Rate between the Genomes of a Solitary and a Social Bee. Molecular Biology and Evolution, 2019, 36, 2277-2291.	3.5	22
375	Histone modifying genes are involved in the molting period during soldier differentiation in Zootermopsis nevadensis. Journal of Insect Physiology, 2019, 117, 103892.	0.9	12
376	Rate variation in the evolution of non-coding DNA associated with social evolution in bees. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180247.	1.8	22
377	The Importance of Validating the Demethylating Effect of 5-aza-2′-deoxycytidine in Model Species. American Naturalist, 2019, 194, 422-431.	1.0	5
378	A Transmissible RNA Pathway in Honey Bees. Cell Reports, 2019, 27, 1949-1959.e6.	2.9	44
379	On the Reciprocally Causal and Constructive Nature of Developmental Plasticity and Robustness. Frontiers in Genetics, 2018, 9, 735.	1.1	15
380	Transcription, Translation, and Regulation of Eukaryotic DNA. , 2019, , 37-71.		0
381	The physiology of insect families: A door to the study of social evolution. Advances in Insect Physiology, 2019, 56, 203-250.	1.1	6
382	Structural analyses reveal that <scp>MBD</scp> 3 is a methylated <scp>CG</scp> binder. FEBS Journal, 2019, 286, 3240-3254.	2.2	15
383	Long-Distance Transportation Causes Temperature Stress in the Honey Bee, Apis mellifera (Hymenoptera: Apidae). Environmental Entomology, 2019, 48, 691-701.	0.7	17
384	Does co-transcriptional regulation of alternative splicing mediate plant stress responses?. Nucleic Acids Research, 2019, 47, 2716-2726.	6.5	86
385	Changes in gene DNA methylation and expression networks accompany caste specialization and ageâ€related physiological changes in a social insect. Molecular Ecology, 2019, 28, 1975-1993.	2.0	30
386	The genetics and epigenetics of animal migration and orientation: birds, butterflies and beyond. Journal of Experimental Biology, 2019, 222, .	0.8	93
387	Characterization of a Dopamine Transporter and Its Splice Variant Reveals Novel Features of Dopaminergic Regulation in the Honey Bee. Frontiers in Physiology, 2019, 10, 1375.	1.3	5
388	Revising the Superorganism: An Organizational Approach to Complex Eusociality. Frontiers in Psychology, 2019, 10, 2653.	1.1	16
389	Whole-Genome Bisulfite Sequencing for the Methylation Analysis of Insect Genomes. Methods in Molecular Biology, 2019, 1858, 141-156.	0.4	1
390	Epigenetics, Dietary Restriction, and Insects: Implications for Humankind. , 2019, , 549-563.		0

#	ARTICLE	IF	CITATIONS
391	The influence of CpG (5′-d(CpG)-3′ dinucleotides) methylation on ultrasonic DNA fragmentation. Journal of Biomolecular Structure and Dynamics, 2019, 37, 3877-3886.	2.0	4
392	Epigenetics in Insects: Genome Regulation and the Generation of Phenotypic Diversity. Annual Review of Entomology, 2019, 64, 185-203.	5.7	137
393	Detecting differential DNA methylation from sequencing of bisulfite converted DNA of diverse species. Briefings in Bioinformatics, 2019, 20, 33-46.	3.2	17
394	Culture: The Driving Force of Human Cognition. Topics in Cognitive Science, 2020, 12, 654-672.	1.1	35
395	Evolution of DNA Methylome Diversity in Eukaryotes. Journal of Molecular Biology, 2020, 432, 1687-1705.	2.0	82
396	DNA Methylation and Histone H1 Jointly Repress Transposable Elements and Aberrant Intragenic Transcripts. Molecular Cell, 2020, 77, 310-323.e7.	4.5	99
397	Prospects for sociogenomics in avian cooperative breeding and parental care. Environmental Epigenetics, 2020, 66, 293-306.	0.9	2
398	Environmental change and the evolution of genomes: Transposable elements as translators of phenotypic plasticity into genotypic variability. Functional Ecology, 2020, 34, 428-441.	1.7	30
399	Transcriptomic and Epigenomic Dynamics of Honey Bees in Response to Lethal Viral Infection. Frontiers in Genetics, 2020, 11, 566320.	1.1	16
400	Transgenerational accumulation of methylome changes discovered in commercially reared honey bee (Apis mellifera) queens. Insect Biochemistry and Molecular Biology, 2020, 127, 103476.	1.2	4
401	Disentangling the environmentally induced and stochastic developmental components of phenotypic variation., 2020,, 207-251.		10
402	Regulation of phenotypic plasticity from the perspective of evolutionary developmental biology. , 2020, , 403-442.		4
403	Genome-Wide Differential DNA Methylation in Reproductive, Morphological, and Visual System Differences Between Queen Bee and Worker Bee (Apis mellifera). Frontiers in Genetics, 2020, 11, 770.	1.1	14
404	DNA methylation in molluscs growth and development: An overview. Aquaculture Research, 2022, 53, 4893-4900.	0.9	2
405	Parent of origin gene expression in the bumblebee, <i>Bombus terrestris </i> , supports Haig's kinship theory for the evolution of genomic imprinting. Evolution Letters, 2020, 4, 479-490.	1.6	17
407	Effects of <i>in ovo </i> feeding of vitamin C on post-hatch performance, immune status and DNA methylation-related gene expression in broiler chickens. British Journal of Nutrition, 2020, 124, 903-911.	1.2	12
408	DNA Methylation and Demethylation Are Regulated by Functional DNA Methyltransferases and DnTET Enzymes in Diuraphis noxia. Frontiers in Genetics, 2020, 11, 452.	1.1	11
409	Insights into the DNA methylation of sea cucumber Apostichopus japonicus in response to skin ulceration syndrome infection. Fish and Shellfish Immunology, 2020, 104, 155-164.	1.6	9

#	Article	IF	CITATIONS
410	Distinct epigenomic and transcriptomic modifications associated with Wolbachia-mediated asexuality. PLoS Pathogens, 2020, 16, e1008397.	2.1	18
411	Genome-wide DNA Methylation Analysis of Mantle Edge and Mantle Central from Pearl Oyster Pinctada fucata martensii. Marine Biotechnology, 2020, 22, 380-390.	1.1	19
412	Lineage and Parent-of-Origin Effects in DNA Methylation of Honey Bees (Apis mellifera) Revealed by Reciprocal Crosses and Whole-Genome Bisulfite Sequencing. Genome Biology and Evolution, 2020, 12, 1482-1492.	1.1	16
413	Exploring DNA Methylation Diversity in the Honey Bee Brain by Ultra-Deep Amplicon Sequencing. Epigenomes, 2020, 4, 10.	0.8	12
414	Characterization of Global DNA Methylation in Different Gene Regions Reveals Candidate Biomarkers in Pigs with High and Low Levels of Boar Taint. Veterinary Sciences, 2020, 7, 77.	0.6	16
415	ÂÂÂÂÂWidespread conservation and lineage-specific diversification of genome-wide DNA methylation patterns across arthropods. PLoS Genetics, 2020, 16, e1008864.	1.5	56
416	Bumblebee Workers Show Differences in Allele-Specific DNA Methylation and Allele-Specific Expression. Genome Biology and Evolution, 2020, 12, 1471-1481.	1.1	15
417	Epigenetic Modifications May Regulate the Activation of the Hypopharyngeal Gland of Honeybees (Apis) Tj ETQq1	1.9.7843	14 rgBT /O√
418	The Roles of DNA Methyltransferases 1 (DNMT1) in Regulating Sexual Dimorphism in the Cotton Mealybug, Phenacoccus solenopsis. Insects, 2020, 11, 121.	1.0	10
419	Intergenerational epigenetic inheritance in reef-building corals. Nature Climate Change, 2020, 10, 254-259.	8.1	97
420	Where Are We With Human Lice? A Review of the Current State of Knowledge. Frontiers in Cellular and Infection Microbiology, 2019, 9, 474.	1.8	64
421	Epigenetic effects of (nano)materials in environmental species – Cu case study in Enchytraeus crypticus. Environment International, 2020, 136, 105447.	4.8	39
422	DNA Methylation Is Correlated with Gene Expression during Diapause Termination of Early Embryonic Development in the Silkworm (Bombyx mori). International Journal of Molecular Sciences, 2020, 21, 671.	1.8	14
423	Gene Duplication in the Honeybee: Patterns of DNA Methylation, Gene Expression, and Genomic Environment. Molecular Biology and Evolution, 2020, 37, 2322-2331.	3.5	16
424	DNA Methylation Inhibits the Expression of CFSH in Mud Crab. Frontiers in Endocrinology, 2020, 11, 163.	1.5	10
425	Effects of commercial queen rearing methods on queen fecundity and genome methylation. Apidologie, 2021, 52, 282-291.	0.9	3
426	Epigenetic regulation of post-embryonic development. Current Opinion in Insect Science, 2021, 43, 63-69.	2.2	21
427	DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis. Marine Environmental Research, 2021, 163, 105217.	1.1	11

#	ARTICLE	IF	CITATIONS
428	DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis. Marine Environmental Research, 2021, 163, 105214.	1.1	14
429	DNA methylation mediates differentiation in thermal responses of Pacific oyster (Crassostrea gigas) derived from different tidal levels. Heredity, 2021, 126, 10-22.	1.2	38
430	The effect of DNA methylation on bumblebee colony development. BMC Genomics, 2021, 22, 73.	1.2	8
431	The potential association between Wolbachia infection and DNA methylation in Hylyphantes graminicola (Araneae: Linyphiidae). Symbiosis, 2021, 83, 183-191.	1.2	O
432	RNA m6A Modification Functions in Larval Development and Caste Differentiation in Honeybee (Apis) Tj ETQq0 (O O <u>r</u> gBT /0	Overlock 10 T
433	Intragenic DNA methylation regulates insect gene expression and reproduction through the MBD/Tip60 complex. IScience, 2021, 24, 102040.	1.9	27
434	Splicing alterations in healthy aging and disease. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1643.	3.2	29
437	Epigenetic variation in animal populations: Sources, extent, phenotypic implications, and ecological and evolutionary relevance. Journal of Biosciences, 2021, 46, 1.	0.5	34
438	The role of epigenetics, particularly DNA methylation, in the evolution of caste in insect societies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200115.	1.8	40
439	10-hydroxy-2E-decenoic acid (10HDA) does not promote caste differentiation in Melipona scutellaris stingless bees. Scientific Reports, 2021, 11, 9882.	1.6	1
440	(Epi)Genetic Mechanisms Underlying the Evolutionary Success of Eusocial Insects. Insects, 2021, 12, 498.	1.0	20
441	CD44 alternative splicing senses intragenic DNA methylation in tumors via direct and indirect mechanisms. Nucleic Acids Research, 2021, 49, 6213-6237.	6.5	12
442	Gene body DNA methylation in seagrasses: inter- and intraspecific differences and interaction with transcriptome plasticity under heat stress. Scientific Reports, 2021, 11, 14343.	1.6	17
443	Contribution of Epigenetic Mechanisms in the Regulation of Environmentally-Induced Polyphenism in Insects. Insects, 2021, 12, 649.	1.0	12
444	Independent variations in genome-wide expression, alternative splicing, and DNA methylation in brain tissues among castes of the buff-tailed bumblebee, Bombus terrestris. Journal of Genetics and Genomics, 2021, 48, 681-694.	1.7	3
445	Regulation of DNA methylation on key parasitism genes of Cysticercus cellulosae revealed by integrative epigenomic-transcriptomic analyses. Hereditas, 2021, 158, 28.	0.5	2
448	DNA methylation atlas and machinery in the developing and regenerating annelid Platynereis dumerilii. BMC Biology, 2021, 19, 148.	1.7	18
449	DNA methylation is not a driver of gene expression reprogramming in young honey bee workers. Molecular Ecology, 2021, 30, 4804-4818.	2.0	21

#	Article	IF	CITATIONS
450	Screening bioactive food compounds in honey bees suggests curcumin blocks alcohol-induced damage to longevity and DNA methylation. Scientific Reports, 2021, 11, 19156.	1.6	5
451	Ecotoxicological epigenetics in invertebrates: Emerging tool for the evaluation of present and past pollution burden. Chemosphere, 2021, 282, 131026.	4.2	23
452	First feeding of grass carp (Ctenopharyngodon idellus) with a high-carbohydrate diet:the effect on glucose metabolism in juveniles. Aquaculture Reports, 2021, 21, 100830.	0.7	1
453	The honey bee genome- what has it been good for?. Apidologie, 2021, 52, 45-62.	0.9	7
454	Olfactory genomics of eusociality within the Hymenoptera. , 2021, , 507-546.		5
455	Preventive Measures Against Transcutaneous Device Infections. , 2013, , 229-248.		2
456	MeDIP-on-Chip for Methylation Profiling. Methods in Molecular Biology, 2015, 1249, 281-290.	0.4	7
457	Chromatin and Splicing. Methods in Molecular Biology, 2014, 1126, 97-113.	0.4	19
474	Gene expression is more strongly influenced by age than caste in the ant <i>Lasius niger</i> Molecular Ecology, 2017, 26, 5058-5073.	2.0	18
475	mRNA expression and DNA methylation in three key genes involved in caste differentiation in female honeybees (Apis mellifera). Zoological Research, 2014, 35, 92-8.	0.6	6
476	Microarray-Based Transcriptomic Analysis of Differences between Long-Term Gregarious and Solitarious Desert Locusts. PLoS ONE, 2011, 6, e28110.	1.1	36
477	Bisulfite Sequencing Reveals That Aspergillus flavus Holds a Hollow in DNA Methylation. PLoS ONE, 2012, 7, e30349.	1.1	74
478	A Comparison of Digital Gene Expression Profiling and Methyl DNA Immunoprecipitation as Methods for Gene Discovery in Honeybee (Apis mellifera) Behavioural Genomic Analyses. PLoS ONE, 2013, 8, e73628.	1.1	16
479	Recipe for a Busy Bee: MicroRNAs in Honey Bee Caste Determination. PLoS ONE, 2013, 8, e81661.	1.1	60
480	The Effects of Royal Jelly on Fitness Traits and Gene Expression in Drosophila melanogaster. PLoS ONE, 2015, 10, e0134612.	1.1	19
481	DNA Methylation and Potential for Epigenetic Regulation in Pygospio elegans. PLoS ONE, 2016, 11, e0151863.	1.1	9
482	The association between DNA methylation and exon expression in the Pacific oyster Crassostrea gigas. PLoS ONE, 2017, 12, e0185224.	1.1	48
483	DNA methylation of METTL7A gene body regulates its transcriptional level in thyroid cancer. Oncotarget, 2017, 8, 34652-34660.	0.8	36

#	Article	IF	Citations
484	Ocean Acidification Induces Subtle Shifts in Gene Expression and DNA Methylation in Mantle Tissue of the Eastern Oyster (Crassostrea virginica). Frontiers in Marine Science, 2020, 7, .	1.2	27
485	Cytosine methylation in insects: new routes for the comprehension of insect complexity. AIMS Biophysics, 2015, 2, 412-422.	0.3	6
486	Comparative epigenomics: an emerging field with breakthrough potential to understand evolution of epigenetic regulation. AIMS Genetics, 2014, 01, 034-054.	1.9	7
487	Probing the evolutionary history of epigenetic mechanisms: what can we learn from marine diatoms. AIMS Genetics, 2015, 02, 173-191.	1.9	18
488	Predominant intragenic methylation is associated with gene expression characteristics in a bivalve mollusc. PeerJ, 2013, 1, e215.	0.9	132
489	Levels of DNA cytosine methylation in the <i>Drosophila </i> genome. PeerJ, 2018, 6, e5119.	0.9	29
490	Symbiont shuffling induces differential DNA methylation responses to thermal stress in the coral <i>Montastraea cavernosa</i> . Molecular Ecology, 2022, 31, 588-602.	2.0	14
491	Genome-wide DNA methylation profile changes associated with shell colouration in the Yesso scallop (Patinopecten yessoensis) as measured by whole-genome bisulfite sequencing. BMC Genomics, 2021, 22, 740.	1.2	4
492	Differential DNA methylation between long-winged and short-winged adults of Nilaparvata lugens. 3 Biotech, 2021, 11, 476.	1.1	0
494	Nutrient-dependent/pheromone-controlled adaptive evolution: a model. Socioaffective Neuroscience & Psychology, 2013, 2, .	2.9	0
495	Malvern Hills. , 2014, , 77-89.		0
496	Gene. , 2014, , 5-61.		0
498	Die Metaanalyse der Psychoanalyse (Metaanalysis of Psychoanalysis). SSRN Electronic Journal, 0, , .	0.4	0
500	Epigenetics, Dietary Restriction, and Insects: Implications for Humankind., 2017, , 1-15.		0
501	Epigenetics and Minerals: An Overview. , 2017, , 1-19.		1
502	The Epigenetic Landscape., 2017,, 67-74.		0
505	Globalisation and the Epigenetic Landscape. , 2017, , .		0
510	Epigenetic Control of Sociality through DNA Methylation. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 2751-2762.	0.0	0

#	Article	IF	Citations
517	Model organisms and their application in environmental epigenetics., 2020,, 67-87.		1
518	Phenotypic plasticity and the emerging field of â€`invasion epigenetics'. , 2022, , 55-78.		0
520	Common mechanisms cannot explain time- and dose-dependent DNA methylation changes in earthworms exposed to cadmium. Science of the Total Environment, 2021, , 151468.	3.9	4
521	Strain-level analysis reveals the vertical microbial transmission during the life cycle of bumblebee. Microbiome, 2021, 9, 216.	4.9	26
522	Characterisation of the epigenetic architecture of the major malaria vector Anopheles arabiensis (Diptera: Culicidae) after treatment with epigenetic modulators and heavy metals. Acta Tropica, 2022, 226, 106259.	0.9	1
523	Reproductive Potential Impacts Body Maintenance Parameters and Global DNA Methylation in Honeybee Workers (Apis mellifera L.). Insects, 2021, 12, 1021.	1.0	0
524	Single nucleotide polymorphism (SNP) in the doublesex (dsx) gene splice sites and relevance for its alternative splicing in the malaria vector Anopheles gambiae. Wellcome Open Research, 0, 7, 31.	0.9	1
525	Phenotypic Plasticity: What Has DNA Methylation Got to Do with It?. Insects, 2022, 13, 110.	1.0	27
526	DNA methylation across the tree of life, from micro to macro-organism. Bioengineered, 2022, 13, 1666-1685.	1.4	15
527	DNA methylation differences between male and female gonads of the oyster reveal the role of epigenetics in sex determination. Gene, 2022, 820, 146260.	1.0	16
528	DNA hypermethylation level of ACTL6A may promote BmNPV infection in B. mori. Journal of Asia-Pacific Entomology, 2022, 25, 101879.	0.4	0
529	The role of alternative splicing in adaptation and evolution. Trends in Ecology and Evolution, 2022, 37, 299-308.	4.2	56
530	Tools and applications for integrative analysis of DNA methylation in social insects. Molecular Ecology Resources, 2022, 22, 1656-1674.	2.2	4
531	Investigating the genetic and epigenetic basis of big biological questions with the parthenogenetic marbled crayfish: A review and perspectives. Journal of Biosciences, 2018, 43, 189-223.	0.5	8
534	How Epigenetics Can Enhance Pig Welfare?. Animals, 2022, 12, 32.	1.0	6
573	Dnmt1a is essential for gene body methylation and the regulation of the zygotic genome in a wasp. PLoS Genetics, 2022, 18, e1010181.	1.5	13
574	Encyclopaedia of eukaryotic DNA methylation: from patterns to mechanisms and functions. Biochemical Society Transactions, 2022, , .	1.6	8
575	DNA methylation-mediated expression of zinc finger protein 615 affects embryonic development in <i>Bombyx mori</i> . Zoological Research, 2022, 43, 552-565.	0.9	6

#	ARTICLE	IF	Citations
576	Paradigm shifts in animal epigenetics: Research on nonâ€model species leads to new insights into dependencies, functions and inheritance of DNA methylation. BioEssays, 2022, 44, .	1.2	4
577	Role of N ⁶ -Adenine DNA Methylation in Alternative Splicing and Endosymbiosis in the Unicellular Eukaryote <i>Paramecium bursaria</i> . SSRN Electronic Journal, 0, , .	0.4	0
578	From Methylome to Integrative Analysis of Tissue Specificity. Methods in Molecular Biology, 2022, , 223-240.	0.4	4
579	Single-cell transcriptomic analysis of honeybee brains identifies vitellogenin as caste differentiation-related factor. IScience, 2022, 25, 104643.	1.9	15
580	DNA Methylation Difference between Female and Male Ussuri Catfish (Pseudobagrus ussuriensis) in Brain and Gonad Tissues. Life, 2022, 12, 874.	1.1	2
581	The Tsetse Metabolic Gambit: Living on Blood by Relying on Symbionts Demands Synchronization. Frontiers in Microbiology, $0,13,.$	1.5	0
582	Complex regulatory role of DNA methylation in caste- and age-specific expression of a termite. Open Biology, 2022, 12, .	1.5	6
583	Environmental Epigenetics in Soil Ecosystems: Earthworms as Model Organisms. Toxics, 2022, 10, 406.	1.6	3
584	Evolution, Functions and Dynamics of Epigenetic Mechanisms in Animals., 2023,, 521-549.		4
585	Epigenetic Processes as Anticipatory Mechanisms: Insect Polyphenism as an Exemplar. Cognitive Systems Monographs, 2022, , 117-145.	0.1	0
586	Genetics, genomics, and epigenetics., 2023,, 655-680.		0
587	Comparative Methylome Analysis Reveals Epigenetic Signatures Associated with Growth and Shell Color in the Pacific Oyster, Crassostrea gigas. Marine Biotechnology, 0, , .	1.1	0
588	Epigenetics and Phenotypic Plasticity in Animals. , 2022, , 35-108.		1
589	(Epi)genomic adaptation driven by fine geographical scale environmental heterogeneity after recent biological invasions. Ecological Applications, 2024, 34, .	1.8	5
590	Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. Advances in Experimental Medicine and Biology, 2022, , 395-469.	0.8	2
591	DNA Methylation in Honey Bees and the Unresolved Questions in Insect Methylomics. Advances in Experimental Medicine and Biology, 2022, , 159-176.	0.8	1
592	Chromatin accessibility-based characterisation of brain gene regulatory networks in three distinct honey bee polyphenisms. Nucleic Acids Research, 2022, 50, 11550-11562.	6.5	4
593	Longâ€ŧerm sperm storage in eusocial <scp>H</scp> ymenoptera. Biological Reviews, 2023, 98, 567-583.	4.7	4

#	Article	IF	CITATIONS
594	DNA methylation and expression of the egfr gene are associated with worker size in monomorphic ants. Scientific Reports, 2022, 12 , .	1.6	1
595	Single nucleotide polymorphism (SNP) in the doublesex (dsx) gene splice sites and relevance for its alternative splicing in the malaria vector Anopheles gambiae. Wellcome Open Research, 0, 7, 31.	0.9	1
596	The Role of Flavonoids and other Selected (Poly) Phenols in Cancer Prevention and Therapy: A Focus on Epigenetics., 2022,, 384-489.		0
597	Epigenetic biomarkers for animal welfare monitoring. Frontiers in Veterinary Science, 0, 9, .	0.9	5
598	Autophagy Is Required to Sustain Increased Intestinal Cell Proliferation during Phenotypic Plasticity Changes in Honey Bee (Apis mellifera). International Journal of Molecular Sciences, 2023, 24, 1926.	1.8	2
599	Quality Influencing Factors and Disease Resistance in Queen of Apis mellifera (Hymenoptera: Apidae). , 2023, , 83-110.		0
600	Requeen Process and Importance. , 2023, , 274-288.		0
601	Databases and prospects of dynamic gene regulation in eukaryotes: A mini review. Computational and Structural Biotechnology Journal, 2023, 21, 2147-2159.	1.9	1
602	Epigenetic and Genetic Population Structure is Coupled in a Marine Invertebrate. Genome Biology and Evolution, 2023, 15, .	1.1	4
603	Single nucleotide polymorphism (SNP) in the doublesex (dsx) gene splice sites and relevance for its alternative splicing in the malaria vector Anopheles gambiae. Wellcome Open Research, 0, 7, 31.	0.9	0
604	DNA methylation is associated with codon degeneracy in a species of bumblebee. Heredity, 2023, 130, 188-195.	1.2	9
605	ChIP-seq profiling of H3K4me3 and H3K27me3 in an invasive insect, Bactroceradorsalis. Frontiers in Genetics, $0,14,.$	1.1	1
606	Phenotypic dimorphism between honeybee queen and worker is regulated by complicated epigenetic modifications. IScience, 2023, 26, 106308.	1.9	0
607	Methylâ€CpG binding domain (MBD)2/3 specifically recognizes and binds to the genomic mCpG site with a <i>î²</i> àêsheet in the MBD to affect embryonic development in <i>Bombyx mori</i> i>. Insect Science, 2023, 30, 1607-1621.	1.5	0
608	Potential role of N6-adenine DNA methylation in alternative splicing and endosymbiosis in Paramecium bursaria. IScience, 2023, 26, 106676.	1.9	4
609	DNMT1 mutant ants develop normally but have disrupted oogenesis. Nature Communications, 2023, 14, .	5.8	13
610	Epigenetics: Mechanisms, theory, and social implications. , 2023, , 201-211.		0
611	The epigenetics of animal personality. Neuroscience and Biobehavioral Reviews, 2023, 150, 105194.	2.9	2

#	Article	IF	CITATIONS
614	Voeding in de eerste duizend dagen van het leven: het fundament vanÂtoekomstige gezondheid. , 2023, , 627-636.		0
621	Epigenetics and seasonal timing in animals: a concise review. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 0, , .	0.7	2
636	Honey Bees, Royal Jelly, Epigenetics. , 2024, , .		0