Influence of Processing Conditions on Polymorphism at Electroactive Poly(vinylidene fluoride) Electrospun Mer

Soft Materials 8, 274-287 DOI: 10.1080/1539445x.2010.495630

Citation Report

#	Article	IF	CITATIONS
1	Electrospun in-situ hybrid polyurethane/nano-TiO2 as wound dressings. Fibers and Polymers, 2011, 12, 207-213.	1.1	51
2	Poly(vinylidene fluoride-trifluoroethylene) (72/28) interconnected porous membranes obtained by crystallization from solution. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	12
3	Role of Nanoparticle Surface Charge on the Nucleation of the Electroactive β-Poly(vinylidene) Tj ETQq0 0 0 rgBT	Overlock 1.5	10 Tf 50 667 199
4	Fiber average size and distribution dependence on the electrospinning parameters of poly(vinylidene) Tj ETQq1 1 Science and Processing, 2012, 109, 685-691.	0.784314 1.1	rgBT /Overlo 39
5	On the origin of the electroactive poly(vinylidene fluoride) β-phase nucleation by ferrite nanoparticles via surface electrostatic interactions. CrystEngComm, 2012, 14, 2807.	1.3	242
6	Piezoelectric nanofibers for energy scavenging applications. Nano Energy, 2012, 1, 356-371.	8.2	386
7	Local piezoelectric response of single poly(vinylidene fluoride) electrospun fibers. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2605-2609.	0.8	45
8	Correlation between Crystallization Kinetics and Electroactive Polymer Phase Nucleation in Ferrite/Poly(vinylidene fluoride) Magnetoelectric Nanocomposites. Journal of Physical Chemistry B, 2012, 116, 794-801.	1.2	88
9	Enhanced proliferation of pre-osteoblastic cells by dynamic piezoelectric stimulation. RSC Advances, 2012, 2, 11504.	1.7	106
10	Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydrate Polymers, 2012, 87, 1295-1301.	5.1	90
11	Influence of fiber diameter and crystallinity on the stability of electrospun poly(l-lactic acid) membranes to hydrolytic degradation. Polymer Testing, 2012, 31, 770-776.	2.3	25
12	Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering. RSC Advances, 2013, 3, 17938.	1.7	128
13	Electrochemical performance and thermal property of electrospun PPESK/PVDF/PPESK composite separator for lithium-ion battery. Journal of Applied Electrochemistry, 2013, 43, 711-720.	1.5	41
14	Electrospun chitosan/PEDOT nanofibers. Materials Science and Engineering C, 2013, 33, 3845-3850.	3.8	37
15	Crystallization kinetics of montmorillonite/poly(vinylidene fluoride) composites and its correlation with the crystalline polymer phase formation. Thermochimica Acta, 2013, 574, 19-25.	1.2	28
16	Interface characterization and thermal degradation of ferrite/poly(vinylidene fluoride) multiferroic nanocomposites. Journal of Materials Science, 2013, 48, 2681-2689.	1.7	51
17	The effect of clay and of electrospinning on the polymorphism, structure and morphology of poly(vinylidene fluoride). European Polymer Journal, 2013, 49, 90-99.	2.6	63
18	Electrospinning of supramolecular polymer complexes. Science China Chemistry, 2013, 56, 24-32.	4.2	9

ATION RED

		Report	
# 19	ARTICLE Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites. Sensors and Actuators A: Physical, 2013, 196, 55-62.	IF 2.0	Citations
20	Poly(vinylidene fluoride)/silica nanocomposite membranes by electrospinning. Journal of Applied Polymer Science, 2013, 129, 1089-1095.	1.3	13
21	Effect of fiber orientation in gelled poly(vinylidene fluoride) electrospun membranes for Li-ion battery applications. Journal of Materials Science, 2013, 48, 6833-6840.	1.7	20
22	Nucleation of the electroactive β-phase, dielectric and magnetic response of poly(vinylidene fluoride) composites with Fe2O3 nanoparticles. Journal of Non-Crystalline Solids, 2013, 361, 93-99.	1.5	58
23	Electrospinning: A versatile technique for energy storage and sensor applications. , 2014, , .		1
24	Electrical power generation from piezoelectric electrospun nanofibers membranes: electrospinning parameters optimization and effect of membranes thickness on output electrical voltage. Journal of Polymer Research, 2014, 21, 1.	1.2	63
25	The effect of processing conditions on the crystal structure and electroactive properties of poly(vinylidene fluoride)/ multi-walled carbon nanotubes nanocomposites. , 2014, , .		0
26	Influence of electrospinning parameters on poly(hydroxybutyrate) electrospun membranes fiber size and distribution. Polymer Engineering and Science, 2014, 54, 1608-1617.	1.5	35
27	Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 2014, 39, 683-706.	11.8	2,407
28	Effect of filler content on morphology and physical–chemical characteristics of poly(vinylidene) Tj ETQq1 1 0	.784314 rg 1.7	BT /Overlock
29	Processing and characterization of α-elastin electrospun membranes. Applied Physics A: Materials Science and Processing, 2014, 115, 1291-1298.	1.1	12
30	Flexible Fibrous Piezoelectric Sensors on Printed Silver Electrodes. IEEE Nanotechnology Magazine, 2014, 13, 709-713.	1.1	12
31	Electrosprayed poly(vinylidene fluoride) microparticles for tissue engineering applications. RSC Advances, 2014, 4, 33013-33021.	1.7	77
32	Electrospun styrene–butadiene–styrene elastomer copolymers for tissue engineering applications: Effect of butadiene/styrene ratio, block structure, hydrogenation and carbon nanotube loading on physical properties and cytotoxicity. Composites Part B: Engineering, 2014, 67, 30-38.	5.9	52
33	Piezoelectric electrospun nanofibrous materials for self-powering wearable electronic textiles applications. Journal of Polymer Research, 2014, 21, 1.	1.2	82
34	Electrical properties of intrinsically conductive core–shell polypyrrole/poly(vinylidene fluoride) electrospun fibers. Synthetic Metals, 2014, 197, 198-203.	2.1	14
35	Flexible Fibrous Piezo-Electric Sensor on Printed Silver Electrode. Materials Research Society Symposia Proceedings, 2014, 1685, 64.	0.1	0
36	Piezoelectric poly(vinylidene fluoride) microstructure and poling state in active tissue engineering. Engineering in Life Sciences, 2015, 15, 351-356.	2.0	91

#	Article	IF	CITATIONS
37	Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride). Journal of Biomedical Materials Research - Part A, 2015, 103, 919-928.	2.1	63
38	Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats. RSC Advances, 2015, 5, 14345-14350.	1.7	182
39	Variation of the physicochemical and morphological characteristics of solvent casted poly(vinylidene fluoride) along its binary phase diagram with dimethylformamide. Journal of Non-Crystalline Solids, 2015, 412, 16-23.	1.5	53
40	Ultra-sensitive and stretchable strain sensor based on piezoelectric polymeric nanofibers. , 2015, , .		5
41	Crystalline polymorphism in poly(vinylidenefluoride) membranes. Progress in Polymer Science, 2015, 51, 94-126.	11.8	305
42	Synthesis, physical and magnetic properties of BaFe12O19/P(VDF-TrFE) multifunctional composites. European Polymer Journal, 2015, 69, 224-231.	2.6	25
43	Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettability. Progress in Organic Coatings, 2015, 85, 151-158.	1.9	79
44	Influence of processing conditions on polymorphic behavior, crystallinity, and morphology of electrospun poly(VInylidene fluoride) nanofibers. Journal of Applied Polymer Science, 2015, 132, .	1.3	41
45	Magnetoelectric CoFe ₂ O ₄ /polyvinylidene fluoride electrospun nanofibres. Nanoscale, 2015, 7, 8058-8061.	2.8	78
46	Development of electrospun photocatalytic TiO2-polyamide-12 nanocomposites. Materials Chemistry and Physics, 2015, 164, 91-97.	2.0	38
47	Electrospinning/electrospray of polyvinylidene fluoride (PVDF): piezoelectric nanofibers. Journal of the Textile Institute, 0, , 1-19.	1.0	36
48	Correlation between nucleation, phase transition and dynamic melt-crystallization kinetics in PAni/PVDF blends. RSC Advances, 2015, 5, 74486-74498.	1.7	30
49	Influence of SiO2 nanoparticles on morphological, thermal, and dielectric properties of PVDF. Journal of Thermal Analysis and Calorimetry, 2015, 122, 1403-1416.	2.0	35
50	Engineering of a Stable Collagen Nanofibrous Scaffold with Tunable Fiber Diameter, Alignment, and Mechanical Properties. Macromolecular Materials and Engineering, 2016, 301, 1064-1075.	1.7	24
51	Piezoelectric PVDF Polymeric Films and Fibers: Polymorphisms, Measurements, and Applications. , 2016, , 313-336.		14
52	INFLUENCE OF THE SUBSTRATE ON THE CRYSTALLINE PHASE AND MORPHOLOGY OF POLY (VINYLIDENE) TJ ETQq	1,10.784	-314 rgBT /0
53	In situ monitored stretching induced \hat{l} [±] to \hat{l}^2 allotropic transformation of flexible poly(vinylidene) Tj ETQqO O O rgB 84, 602-611.	T /Overloc 2.6	k 10 Tf 50 1 24
54	Advances in electrospinning: The production and application of nanofibres and nanofibrous structures. Textile Progress, 2016, 48, 119-219.	1.3	30

#	Article	IF	CITATIONS
55	Investigation of β phase formation in piezoelectric response of electrospun polyvinylidene fluoride nanofibers: LiCl additive and increasing fibers tension. Polymer Engineering and Science, 2016, 56, 61-70.	1.5	64
56	Electromechanical actuators based on poly(vinylidene fluoride) with [N1Â1Â1Â2(OH)][NTf2] and [C2mim] [C2SO4]. Journal of Materials Science, 2016, 51, 9490-9503.	1.7	40
57	A novel strategy for enhancing the electrospun PVDF support layer of thin-film composite forward osmosis membranes. RSC Advances, 2016, 6, 102762-102772.	1.7	16
58	Poly-vinylidene-fluoride/p-benzoquinone gel polymer electrolyte with good performance by redox mediator effect for Li-air battery. Electrochimica Acta, 2016, 210, 821-828.	2.6	23
59	Effect of Sterilization Methods on Electrospun Poly(lactic acid) (PLA) Fiber Alignment for Biomedical Applications. ACS Applied Materials & amp; Interfaces, 2016, 8, 3241-3249.	4.0	171
60	Development of poly(vinylidene fluoride)/ionic liquid electrospun fibers for tissue engineering applications. Journal of Materials Science, 2016, 51, 4442-4450.	1.7	48
61	Electrospun polyvinylidene fluoride nanofibers by bubble electrospinning technique. Materials Letters, 2016, 167, 34-37.	1.3	17
62	Strategies for the development of three dimensional scaffolds from piezoelectric poly(vinylidene) Tj ETQq1 1 0.7	'84314 rgE	BT /Overlock
63	Amorphous SiO ₂ NP-Incorporated Poly(vinylidene fluoride) Electrospun Nanofiber Membrane for High Flux Forward Osmosis Desalination. ACS Applied Materials & Interfaces, 2016, 8, 4561-4574.	4.0	131
64	Preparation and optimization of chitosan/polyethylene oxide nanofiber diameter using artificial neural networks. Neural Computing and Applications, 2017, 28, 3131-3143.	3.2	31
65	Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications. Drying Technology, 2017, 35, 139-162.	1.7	147
66	Polymeric Nanofibers with Ultrahigh Piezoelectricity <i>via</i> Self-Orientation of Nanocrystals. ACS Nano, 2017, 11, 1901-1910.	7.3	124
67	Pure <i>β</i> -phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites. Journal Physics D: Applied Physics, 2017, 50, 163002.	1.3	145
68	Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene. RSC Advances, 2017, 7, 20494-20501.	1.7	242
69	Designing electrospun nanocomposite poly(vinylidene fluoride) mats with tunable wettability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 523, 81-90.	2.3	9
70	Membranes based on polymer miscibility for selective transport and separation of metallic ions. Journal of Hazardous Materials, 2017, 336, 188-194.	6.5	36
71	Mechanical performance of piezoelectric fiber composites and electroelastic field concentration near the electrode edges. Materials and Design, 2017, 128, 71-79.	3.3	4
72	Fabrication of electrospun PVDF nanofibers with higher content of polar Î ² phase and smaller diameter by adding a small amount of dioctadecyl dimethyl ammonium chloride. Chinese Journal of Polymer Science (English Edition), 2017, 35, 992-1000	2.0	23

#	Article	IF	CITATIONS
73	Facile preparation of highly oriented poly(vinylidene fluoride) uniform films and their ferro- and piezoelectric properties. RSC Advances, 2017, 7, 17038-17043.	1.7	29
74	Effect of Polyaniline (Emeraldine Base) Addition on α to β Phase Transformation in Electrospun PVDF Fibers. Journal of Macromolecular Science - Physics, 2017, 56, 75-82.	0.4	15
75	Polyvinyl alcohol composite nanofibres containing conjugated levofloxacin-chitosan for controlled drug release. Materials Science and Engineering C, 2017, 73, 440-446.	3.8	76
76	Morphological control of poly(vinylidene fluoride)@layered double hydroxide composite fibers using metal salt anions and their enhanced performance for dye removal. RSC Advances, 2017, 7, 46576-46588.	1.7	13
77	Fabrication of electroactive poly(vinylidene fluoride) through non-isothermal crystallization and supercritical CO ₂ processing. RSC Advances, 2017, 7, 48712-48722.	1.7	20
78	Mixed effect of main electrospinning parameters on the <i>β</i> -phase crystallinity of electrospun PVDF nanofibers. Smart Materials and Structures, 2017, 26, 085019.	1.8	42
80	The piezoelectric response of electrospun PVDF nanofibers with graphene oxide, graphene, and halloysite nanofillers: a comparative study. Journal of Materials Science: Materials in Electronics, 2017, 28, 15942-15952.	1.1	87
81	Piezoelectric sensor based on electrospun PVDF-MWCNT-Cloisite 30B hybrid nanocomposites. Organic Electronics, 2017, 50, 121-129.	1.4	70
82	On the Relevance of the Polar β-Phase of Poly(vinylidene fluoride) for High Performance Lithium-Ion Battery Separators. Journal of Physical Chemistry C, 2017, 121, 26216-26225.	1.5	53
83	A retrospect on the role of piezoelectric nanogenerators in the development of the green world. RSC Advances, 2017, 7, 33642-33670.	1.7	35
84	PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators. Composites Science and Technology, 2017, 138, 49-56.	3.8	256
85	Metamorphic biomaterials. , 2017, , 69-99.		6
86	Effect of ionic liquid on crystallization kinetics and crystal form transition of poly(vinylidene) Tj ETQq0 0 0 rgBT $/$	Overlock 1 2.0	.0]f 50 262
87	Piezo- and Magnetoelectric Polymers as Biomaterials for Novel Tissue Engineering Strategies. MRS Advances, 2018, 3, 1671-1676.	0.5	26
88	Stable N-doped & FeNi-decorated graphene non-precious electrocatalyst for Oxygen Reduction Reaction in Acid Medium. Scientific Reports, 2018, 8, 3757.	1.6	19
89	Linear dependence between content of effective piezo-phase and mechanical-to-electrical conversion in electrospun poly(vinylidene fluoride) fibrous membrane. Materials Letters, 2018, 218, 71-75.	1.3	10
90	Electrospun Antimicrobial PVDFâ€ÐTAB Nanofibrous Membrane for Air Filtration: Effect of DTAB on Structure, Morphology, Adhesion, and Antibacterial Properties. Macromolecular Materials and Engineering, 2018, 303, 1700415.	1.7	21
91	Antibacterial and Antifungal Activity of Poly(Lactic Acid)–Bovine Lactoferrin Nanofiber Membranes. Macromolecular Bioscience, 2018, 18, 1700324.	2.1	18

#	Article	IF	CITATIONS
92	Enhanced Piezoelectricity in a Robust and Harmonious Multilayer Assembly of Electrospun Nanofiber Mats and Microbead-Based Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 5723-5730.	4.0	24
93	Evaluation of the Physicochemical Properties and Active Response of Piezoelectric Poly(vinylidene) Tj ETQq1 1 (Chemistry C, 2018, 122, 11433-11441.	0.784314 r 1.5	gBT /Overloc 8
94	Investigation of the electromagnetic microwaves absorption and piezoelectric properties of electrospun Fe3O4-GO/PVDF hybrid nanocomposites. Organic Electronics, 2018, 59, 149-155.	1.4	68
95	Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nature Protocols, 2018, 13, 681-704.	5.5	466
96	Piezoelectric and optoelectronic properties of electrospinning hybrid PVDF and ZnO nanofibers. Materials Research Express, 2018, 5, 035057.	0.8	43
97	Effect of electrospinning parameters on piezoelectric properties of electrospun PVDF nanofibrous mats under cyclic compression. Journal of the Textile Institute, 2018, 109, 843-850.	1.0	19
98	Relation between fiber orientation and mechanical properties of nano-engineered poly(vinylidene) Tj ETQq0 0 C	rgBT /Ove	rlock 10 Tf 50
99	Smart Energetics: Sensitization of the Aluminumâ€Fluoropolymer Reactive System. Advanced Engineering Materials, 2018, 20, 1700409.	1.6	24
100	Design, synthesis and processing of PVDFâ€based dielectric polymers. IET Nanodielectrics, 2018, 1, 80-91.	2.0	43
101	Fabrication of a polyvinylidene fluoride cactus-like nanofiber through one-step electrospinning. RSC Advances, 2018, 8, 42353-42360.	1.7	49
102	A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews, 2018, 5, .	5.5	565
103	Multifunctional Platform Based on Electroactive Polymers and Silica Nanoparticles for Tissue Engineering Applications. Nanomaterials, 2018, 8, 933.	1.9	16
104	Electrospun poly(vinylidene fluoride-trifluoroethylene) based flexible magnetoelectric nanofibers. European Polymer Journal, 2018, 109, 336-340.	2.6	16
105	Double-layer structured PVDF nanocomposite film designed for flexible nanogenerator exhibiting enhanced piezoelectric output and mechanical property. Composites Science and Technology, 2018, 168, 327-335.	3.8	70
106	Novel electrospun polyvinylidene fluoride-graphene oxide-silver nanocomposite membranes with protein and bacterial antifouling characteristics. EXPRESS Polymer Letters, 2018, 12, 365-382.	1.1	42
107	Polarization-free high-crystallization \hat{l}^2 -PVDF piezoelectric nanogenerator toward self-powered 3D acceleration sensor. Nano Energy, 2018, 50, 632-638.	8.2	150
108	In situ synthesized electroactive and large dielectric BaF2/PVDF nanocomposite film for superior and highly durable self-charged hybrid photo-power cell. Energy Conversion and Management, 2018, 171, 1083-1092.	4.4	12
109	Electroactive biomaterial surface engineering effects on muscle cells differentiation. Materials Science and Engineering C, 2018, 92, 868-874.	3.8	47

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
110	Properties and Applications of the \hat{I}^2 Phase Poly(vinylidene fluoride). Polymers, 2018, 10, 228.	2.0	462
111	Tactile-Sensing Based on Flexible PVDF Nanofibers via Electrospinning: A Review. Sensors, 2018, 18, 330.	2.1	158
112	Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications. Polymers, 2018, 10, 161.	2.0	196
113	Largely Improved Stretch Ductility and Î ² -Form Room-temperature Durability of Poly(vinylidene) Tj ETQq1 1 0.7 2018, 36, 1277-1285.	'84314 rgB [*] 2.0	T /Overlock 1 8
114	Crystalline structure, dielectric, and mechanical properties of simultaneously biaxially stretched polyvinylidene fluoride film. Polymers for Advanced Technologies, 2018, 29, 3056-3064.	1.6	19
115	Multi-stage crystallization mechanism of electroactive phase polyvinylidene fluoride induced by thermal and supercritical carbon dioxide processing. CrystEngComm, 2018, 20, 4080-4089.	1.3	15
116	3.9 Piezoelectric Energy Production. , 2018, , 380-415.		9
117	Highly aligned magnetic composite nanofibers fabricated by magnetic-field-assisted electrospinning PAN/FeCo solution. High Performance Polymers, 2019, 31, 230-237.	0.8	10
118	Biomaterials and controlled release strategy for epithelial wound healing. Biomaterials Science, 2019, 7, 4444-4471.	2.6	47
119	Electrospun Polyvinylidene Fluoride-Based Fibrous Scaffolds with Piezoelectric Characteristics for Bone and Neural Tissue Engineering. Nanomaterials, 2019, 9, 952.	1.9	109
120	Self-charging photo-power cell based on a novel polymer nanocomposite film with high energy density and durability. Polymer Journal, 2019, 51, 1197-1209.	1.3	4
121	Prevention of IP spoofing attack in cyber using artificial Bee colony and artificial neural network. , 2019, , .		4
122	Coaxially aligned MWCNTs improve performance of electrospun P(VDF-TrFE)-based fibrous membrane applied in wearable piezoelectric nanogenerator. Composites Part B: Engineering, 2019, 178, 107447.	5.9	49
123	High Electromechanical Deformation Based on Structural Beta-Phase Content and Electrostrictive Properties of Electrospun Poly(vinylidene fluoride- hexafluoropropylene) Nanofibers. Polymers, 2019, 11, 1817.	2.0	31
124	Direct preparation of β-crystalline poly(vinylidene fluoride) nanofibers by electrospinning and the use of non-polar silver nanoparticles coated poly(vinylidene fluoride) nanofibers as electrodes for piezoelectric sensor. Polymer, 2019, 183, 121910.	1.8	15
125	PVDF Nanofiber Sensor for Vibration Measurement in a String. Sensors, 2019, 19, 3739.	2.1	27
126	Additive manufacturing of single- and double-layer piezoelectric PVDF-TrFE copolymer sensors. Procedia Manufacturing, 2019, 34, 666-671.	1.9	20
127	An electroactive β-phase polyvinylidene fluoride as gel polymer electrolyte for magnesium–ion battery application. Journal of Electroanalytical Chemistry, 2019, 851, 113417.	1.9	16

#	Article	IF	CITATIONS
128	Quaternized Amphiphilic Block Copolymers/Graphene Oxide and a Poly(vinyl alcohol) Coating Layer on Graphene Oxide/Poly(vinylidene fluoride) Electrospun Nanofibers for Superhydrophilic and Antibacterial Properties. Scientific Reports, 2019, 9, 383.	1.6	27
129	New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy and Environmental Science, 2019, 12, 1143-1176.	15.6	187
130	Flexible electronic skins based on piezoelectric nanogenerators and piezotronics. Nano Energy, 2019, 59, 84-90.	8.2	171
131	A molecular ferroelectrics induced electroactive β-phase in solution processed PVDF films for flexible piezoelectric sensors. Journal of Materials Chemistry C, 2019, 7, 1532-1543.	2.7	50
132	Unexpectedly high oil cleanup capacity of electrospun poly (vinylidene fluoride) fiber webs induced by spindle porous bowl like beads. Soft Materials, 2019, 17, 410-417.	0.8	25
133	Electrospun electroactive polyvinylidene fluoride-based fibrous polymer electrolyte for sodium ion batteries. Materials Research Express, 2019, 6, 086318.	0.8	25
134	Recent advances in hybrid sodium–air batteries. Materials Horizons, 2019, 6, 1306-1335.	6.4	55
135	Design and application of piezoelectric biomaterials. Journal Physics D: Applied Physics, 2019, 52, 194002.	1.3	44
136	Controlling the surface structure, mechanical properties, crystallinity, and piezoelectric properties of electrospun PVDF nanofibers by maneuvering molecular weight. Soft Materials, 2019, 17, 181-189.	0.8	71
137	Textileâ€Compatible, Electroactive Polyvinylidene Fluoride Electrospun Mats for Energy Harvesting. Macromolecular Chemistry and Physics, 2019, 220, 1900364.	1.1	11
138	Improved battery performance contributed by the optimized phase ratio of \hat{I}^2 and \hat{I}_\pm of PVDF. RSC Advances, 2019, 9, 29760-29764.	1.7	14
139	Improved response of ionic liquid-based bending actuators by tailored interaction with the polar fluorinated polymer matrix. Electrochimica Acta, 2019, 296, 598-607.	2.6	49
140	Poling and annealing of piezoelectric Poly(Vinylidene fluoride) micropillar arrays. Materials Chemistry and Physics, 2020, 239, 122035.	2.0	35
141	Electrospinning Piezoelectric Fibers for Biocompatible Devices. Advanced Healthcare Materials, 2020, 9, e1901287.	3.9	90
142	Inch-sized aligned polymer nanofiber films with embedded CH ₃ NH ₃ PbBr ₃ nanocrystals: electrospinning fabrication using a folded aluminum foil as the collector. Nanotechnology, 2020, 31, 075708.	1.3	11
143	Maneuvering the secondary surface morphology of electrospun poly (vinylidene fluoride) nanofibers by controlling the processing parameters. Materials Research Express, 2020, 7, 015008.	0.8	19
144	P(VDF-TrFE) nanofibers: structure of the ferroelectric and paraelectric phases through IR and Raman spectroscopies. RSC Advances, 2020, 10, 37779-37796.	1.7	65
145	PVDF-based shape memory materials. , 2020, , 247-274.		2

#	Article	IF	CITATIONS
146	Polymer Applications for Medical Care in the COVID-19 Pandemic Crisis: Will We Still Speak III of These Materials?. Frontiers in Materials, 2020, 7, .	1.2	25
147	Development of Novel Microenvironments for Promoting Enhanced Wound Healing. Current Tissue Microenvironment Reports, 2020, 1, 73-87.	1.3	5
148	Fabrication and Characterization of Electrospun Membranes Based on "Poly(ε-caprolactone)â€, "Poly(3-hydroxybutyrate)―and Their Blend for Tunable Drug Delivery of Curcumin. Polymers, 2020, 12, 2239.	2.0	24
149	Piezoelectric pressure sensors based on GO-modified P(VDF-TrFE) fibers for vacuum applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 18627-18639.	1.1	14
150	A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. Sensors, 2020, 20, 5214.	2.1	186
151	Treatment of Surface-Hydroxylated BaTiO3 Particles by Bis(2-ethylhexyl) sulfosuccinate Sodium Salt (AOT) to Improve the Dielectric and Electrical Properties of BaTiO3–Poly(vinylidene fluoride) Composites. Journal of Electronic Materials, 2020, 49, 4272-4281.	1.0	4
152	Branched nanofibers with tiny diameters for air filtration via one-step electrospinning. Journal of Industrial Textiles, 2022, 51, 1105S-1117S.	1.1	26
153	Enhanced magnetoelectric coupling and dielectric constant in flexible ternary composite electrospun fibers of PVDF-HFP loaded with nanoclay and NiFe ₂ O ₄ nanoparticles. New Journal of Chemistry, 2020, 44, 11356-11364.	1.4	26
154	Tuning energy harvesting devices with different layout angles to robust the mechanical-to-electrical energy conversion performance. Journal of Industrial Textiles, 2022, 51, 9000S-9016S.	1.1	14
155	Flexible piezoelectric cum―electromagnetic â€absorbing multifunctional nanocomposites based on electrospun poly (vinylidene fluoride) incorporated with synthesized porous coreâ€shell nanoparticles. International Journal of Energy Research, 2020, 44, 10087-10100.	2.2	13
156	Taming the Phase Transition Ability of Poly(vinylidene fluoride) from α to γ′ Phase. Macromolecules, 2020, 53, 5971-5979.	2.2	22
157	Using Annealing Treatment on Fabrication Ionic Liquid-Based PVDF Films. Coatings, 2020, 10, 44.	1.2	18
158	Inducing β phase crystallinity of PVDF homopolymer, blends and block copolymers by anti-solvent crystallization. Journal of Fluorine Chemistry, 2020, 234, 109522.	0.9	31
159	High performance thin-film nanocomposite forward osmosis membrane based on PVDF/bentonite nanofiber support. Journal of Industrial and Engineering Chemistry, 2020, 86, 90-99.	2.9	36
160	Flexible tactile sensors for dynamic triaxial force measurement based on piezoelectric elastomer. Smart Materials and Structures, 2020, 29, 075007.	1.8	31
161	Formation and phase transition of the disordered Form l' in electrospun PEO-thiourea complex nanofibers. Polymer, 2021, 213, 123303.	1.8	3
162	Polyvinylidene fluoride nanofibers obtained by electrospinning and blowspinning: Electrospinning enhances the piezoelectric βâ€phase – myth or reality?. Journal of Applied Polymer Science, 2021, 138, 49959.	1.3	7
163	Electrospun PVDF-based composite nanofabrics: an emerging trend toward energy harvesting. , 2021, , 215-236.		0

#	Article	IF	Citations
164	Electrospun materials for wearable sensor applications in healthcare. , 2021, , 405-432.		1
165	A review of recent progress in polymeric electrospun nanofiber membranes in addressing safe water global issues. RSC Advances, 2021, 11, 9638-9663.	1.7	84
166	Holistic investigation of the electrospinning parameters for high percentage of β-phase in PVDF nanofibers. Polymer, 2021, 214, 123366.	1.8	37
167	Piezoelectric Properties of Three Types of PVDF and ZnO Nanofibrous Composites. Advanced Fiber Materials, 2021, 3, 160-171.	7.9	32
168	All printed soft actuators based on ionic liquid/polymer hybrid materials. Applied Materials Today, 2021, 22, 100928.	2.3	16
169	Development of PVDF nanocomposite with single-walled carbon nanotubes (SWCNT) and boron nitride nanotubes (BNNT) for soft morphing actuator. Smart Materials and Structures, 2021, 30, 055014.	1.8	3
170	Influence of Spray Drying Parameters on the Formation of <i>β</i> â€Phase Poly(vinylidene fluoride). Chemie-Ingenieur-Technik, 2021, 93, 1300-1306.	0.4	3
171	Advances in Electrospun Fiberâ€Based Flexible Nanogenerators for Wearable Applications. Macromolecular Materials and Engineering, 2021, 306, 2100143.	1.7	34
172	Studies on the electrostatic effects of stretched PVDF films and nanofibers. Nanoscale Research Letters, 2021, 16, 79.	3.1	27
173	Coaxial electrospun membranes of poly(lµâ€caprolactone)/poly(lactic acid) with reverse <scp>coreâ€shell</scp> structures loaded with curcumin as tunable drug delivery systems. Polymers for Advanced Technologies, 2021, 32, 4005-4013.	1.6	17
174	Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials. Advanced Science, 2021, 8, e2100864.	5.6	259
175	<i>In vitro</i> and <i>in vivo</i> advancement of multifunctional electrospun nanofiber scaffolds in wound healing applications: Innovative nanofiber designs, stem cell approaches, and future perspectives. Journal of Biomedical Materials Research - Part A, 2022, 110, 443-461.	2.1	41
176	Poly(Vinylidene Fluoride) Nanofiber Array Films with High Strength for Effective Impact Energy Harvesting. Energy Technology, 2021, 9, 2100345.	1.8	3
177	Development of poly (vinylidene fluoride)/silver nanoparticle electrospun nanofibre mats for energy harvesting. Polymers and Polymer Composites, 2021, 29, S1084-S1091.	1.0	4
178	Recent advances of polymer-based piezoelectric composites for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 122, 104669.	1.5	78
179	Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the β Phase and Crystallinity Enhancement. Polymers, 2021, 13, 174.	2.0	149
180	Energy Harvesting Smart Textiles. Human-computer Interaction Series, 2017, , 199-231.	0.4	14
181	Electrospinning of a Copolymer PVDF-co-HFP Solved in DMF/Acetone: Explicit Relations among Viscosity, Polymer Concentration, DMF/Acetone Ratio and Mean Nanofiber Diameter. Polymers, 2021, 13, 3418	2.0	12

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
182	Piezoelectric Energy Harvesting Nanofibers. RSC Nanoscience and Nanotechnology, 2014, , 142-173.	0.2	1
183	CHAPTER 3. Micro/nano Fabrication Technologies for Vibration-Based Energy Harvester. RSC Nanoscience and Nanotechnology, 2014, , 62-100.	0.2	0
185	Fabricación de fibras poliméricas a base de PLA obtenidas mediante electrohilado. Cultura CientÃfica Y Tecnológica, 2020, 17, 1-6.	0.0	0
186	Development of a Vehicle Passage Sensor Based on a PVDF Nanogenerator. ACS Applied Electronic Materials, 2021, 3, 4689-4698.	2.0	9
187	Research progress of piezoelectrets based micro-energy harvesting. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 247701.	0.2	3
188	High-Dielectric Polymer Coating for Uniform Lithium Deposition in Anode-Free Lithium Batteries. ACS Energy Letters, 2021, 6, 4416-4425.	8.8	63
189	Large mechanical-to-electric output originated from optimized configuration in P(VDF-TrFE)-based nanocomposite fibrous membrane as wearable nanogenerator. Composites Science and Technology, 2022, 220, 109266.	3.8	5
190	Piezoelectric biodegradable poly(3â€hydroxybutyrateâ€coâ€3â€hydroxyvalerate) based electrospun fiber mats with tailored porosity. Polymers for Advanced Technologies, 0, , .	5 1.6	4
191	Influence of the solvent evaporation rate on the β-Phase content of electrosprayed PVDF particles and films studied by a fast Multi-Overtone QCM. Advanced Powder Technology, 2022, 33, 103452.	2.0	6
192	Effects of the addition of protic organic solvents and the sample formation processes on the crystal structure of poly(vinylidene fluoride): Detailed mechanism of promoting the formation of the β-phase. Polymer, 2022, 244, 124650.	1.8	7
193	Polydopamine Codoped BaTiO ₃ -Functionalized Polyvinylidene Fluoride Coating as a Piezo-Biomaterial Platform for an Enhanced Cellular Response and Bioactivity. ACS Biomaterials Science and Engineering, 2022, 8, 170-184.	2.6	9
194	Electrospun 1D and 2D Carbon and Polyvinylidene Fluoride (PVDF) Piezoelectric Nanocomposites. Journal of Nanomaterials, 2022, 2022, 1-17.	1.5	7
195	Electrospinning of Fluorinated Polymers: Current State of the Art on Processes and Applications. Polymer Reviews, 2023, 63, 127-199.	5.3	23
196	Constructing an electrical microenvironment based on electroactive polymers in the field of bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 937-967.	1.8	2
197	Structure dependent piezoelectricity in electrospun PVDF-SiC nanoenergy harvesters. Journal of Alloys and Compounds, 2022, 917, 165505.	2.8	10
198	Poly(vinylidene fluoride) Intestinal Sleeve Implants for the Treatment of Obesity and Type 2 Diabetes. Polymers, 2022, 14, 2178.	2.0	1
199	Light-Sensitive PVDF-TrFE:PDI Hybrid Nanofibers-Based Flexible Bimodal Piezoelectric Nanogenerator. , 2022, 1, 194-202.		3
200	PVDF-based and its Copolymer-Based Piezoelectric Composites: Preparation Methods and Applications. Journal of Electronic Materials, 2022, 51, 5528-5549.	1.0	12

#	ARTICLE	IF	CITATIONS
201	Towards an interpretable machine learning model for electrospun polyvinylidene fluoride (PVDF) fiber properties. Computational Materials Science, 2022, 213, 111661.	1.4	7
202	Polyoxometalate-doped electrospun nanofiber mats as active catalysts for the production of clean fuels under solvent-free systems. Sustainable Energy and Fuels, 2022, 6, 4681-4691.	2.5	4
203	Recent progress on polyvinylidene difluoride-based nanocomposites: applications in energy harvesting and sensing. New Journal of Chemistry, 2022, 46, 18613-18646.	1.4	11
204	A critical review: the impact of electrical poling on the longitudinal piezoelectric strain coefficient. Materials Advances, 2022, 3, 8886-8921.	2.6	9
205	Photo-piezocatalysis in electrospun PVDF + WS ₂ membrane. Environmental Science: Nano, 2022, 9, 3885-3899.	2.2	21
206	Effects of Co-Solvent on the Morphology, Physicochemical Properties, and Performance of PVDF Electrospun Membranes in Comparison to Flat-Sheet Membranes. Journal of Composites Science, 2022, 6, 253.	1.4	2
207	High-Aligned PVDF Nanofibers with a High Electroactive Phase Prepared by Systematically Optimizing the Solution Property and Process Parameters of Electrospinning. Coatings, 2022, 12, 1310.	1.2	9
208	Enhanced sensing performance of polyvinylidene fluoride nanofibers containing preferred oriented carbon nanotubes. Advanced Composites and Hybrid Materials, 2022, 5, 3081-3093.	9.9	21
209	High-Performance Flexible Piezoelectric Nanogenerator Based on Electrospun PVDF-BaTiO ₃ Nanofibers for Self-Powered Vibration Sensing Applications. ACS Applied Materials & Interfaces, 2022, 14, 44239-44250.	4.0	32
210	Highly oriented PVDF molecular chains for enhanced material performance. Polymer, 2022, 261, 125366.	1.8	7
211	Development and evaluation of different electroactive poly(vinylidene fluoride) architectures for endothelial cell culture. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
212	A Review on Wearable Electrospun Polymeric Piezoelectric Sensors and Energy Harvesters. Macromolecular Materials and Engineering, 2023, 308, .	1.7	27
213	Degradation and mineralization of electroactive poly(3-hydroxybutyrate-co-3-hydroxyvalerate) electrospun fibers for bone tissue engineering. Reactive and Functional Polymers, 2023, 182, 105475.	2.0	0
214	High performance waterproof-breathable fully flexible tactile sensor based on piezotronics coupled OFET. Nano Energy, 2023, 106, 108034.	8.2	15
215	Effect of testing modes and voltmeter resistance on mechanoelectrical conversion of electrospun polyvinylidene fluoride nanofiber membranes. Materials Today Sustainability, 2023, 21, 100275.	1.9	0
216	Piezoelectric Materials Based on Polymers and Their Composites. , 2022, , 1-37.		0
217	The Effect of Electrospinning Parameters on Piezoelectric PVDF-TrFE Nanofibers: Experimental and Simulation Study. Energies, 2023, 16, 37.	1.6	2
218	Ferroelectric and relaxor ferroelectric activities of the P(<scp>VDFâ€TrFE</scp>) and its blends synthesized by (<scp> SiMe ₃ </scp>) <scp> ₃ SiH </scp> hydrogenation process. Journal of Applied Polymer Science, 0, , .	1.3	0

#	Article	IF	CITATIONS
219	Dielectric, ferroelectric and magnetoelectric investigations of SrFe12O19-embedded PVDF-HFP nanocomposite fiber mats for flexible electronic applications. Journal of Materials Science, 2023, 58, 1158-1170.	1.7	5
220	Design and characterization of polyurethane based electrospun systems modified with transition metals oxides for protective clothing applications. Applied Surface Science, 2023, 617, 156563.	3.1	7
221	Development of Silk Fibroin Scaffolds for Vascular Repair. Biomacromolecules, 2023, 24, 1121-1130.	2.6	5
222	Fabrication of Hydroxy-Terminated Polybutadiene with Piezoelectric Property by Functionalized Branch Chain Modification. Molecules, 2023, 28, 1810.	1.7	1
223	Quercetin-Loaded Polycaprolactone-Polyvinylpyrrolidone Electrospun Membranes for Health Application: Design, Characterization, Modeling and Cytotoxicity Studies. Membranes, 2023, 13, 242.	1.4	6
224	Nanofibres in Drug Delivery Applications. Fibers, 2023, 11, 21.	1.8	21
225	Pressure and gas sensing composition based on PVDF nano particulates: a review. Polymer-Plastics Technology and Materials, 2021, 60, 1719-1758.	0.6	1
228	Fluoropolymer nanocomposites for volatile organic compounds and gas-sensing application. , 2023, , 445-483.		0
229	Fluoropolymer nanocomposites for piezoelectric energy harvesting applications. , 2023, , 317-358.		1
230	Electrospining and electrospraying technologies for nutraceutical delivery system development. , 2023, , 279-323.		0