An international compendium of mutations in the SCNs in patients referred for Brugada syndrome genetic testi

Heart Rhythm 7, 33-46 DOI: 10.1016/j.hrthm.2009.09.069

Citation Report

#	Article	IF	CITATIONS
1	Molecular genetics of Brugada syndrome. Frontiers in Biology, 2010, 5, 339-347.	0.7	2
2	How the knowledge of genetic "makeup―and cellular data can affect the analysis of repolarization in surface electrocardiogram. Journal of Electrocardiology, 2010, 43, 583-587.	0.4	1
3	Prospective Evaluation of the Familial Prevalence of the Brugada Syndrome. American Journal of Cardiology, 2010, 106, 1758-1762.	0.7	10
4	The Outer Vestibule of the Na+ Channel–Toxin Receptor and Modulator of Permeation as Well as Gating. Marine Drugs, 2010, 8, 1373-1393.	2.2	13
5	Commentary on the Brugada ECG Pattern. Circulation: Arrhythmia and Electrophysiology, 2010, 3, 280-282.	2.1	15
6	General anaesthesia for insertion of an automated implantable cardioverter defibrillator in a child with Brugada and autism. Indian Journal of Anaesthesia, 2010, 54, 562.	0.3	11
7	Brugada syndrome: Lots of questions, some answers. Heart Rhythm, 2010, 7, 47-49.	0.3	8
8	The SCN5A gene in Brugada syndrome: mutations, variants, missense and nonsense. What's a clinician to do?. Heart Rhythm, 2010, 7, 50-51.	0.3	2
9	To the Editor—The compendium of SCN5A mutations. Heart Rhythm, 2010, 7, e1.	0.3	0
10	Brugada Syndrome 2010. Cardiac Electrophysiology Clinics, 2010, 2, 533-549.	0.7	2
11	Genetic testing for channelopathies, more than ten years progress and remaining challenges. Journal of Cardiovascular Disease Research (discontinued), 2010, 1, 47-49.	0.1	3
12	To the Editor—Sudden Death in Children. Heart Rhythm, 2010, 7, e1-e2.	0.3	0
13	Gain-of-function mutation S422L in the KCNJ8-encoded cardiac KATP channel Kir6.1 as a pathogenic substrate for J-wave syndromes. Heart Rhythm, 2010, 7, 1466-1471.	0.3	250
14	Mutations in the cardiac L-type calcium channel associated with inherited J-wave syndromes and sudden cardiac death. Heart Rhythm, 2010, 7, 1872-1882.	0.3	387
15	The Cardiac Sodium Channel Is Post-Translationally Modified by Arginine Methylation. Journal of Proteome Research, 2011, 10, 3712-3719.	1.8	59
16	Transient outward current (Ito) gain-of-function mutations in the KCND3-encoded Kv4.3 potassium channel and Brugada syndrome. Heart Rhythm, 2011, 8, 1024-1032.	0.3	226
17	A common SCN5A polymorphism modulates the biophysical defects of SCN5A mutations. Heart Rhythm, 2011, 8, 455-462.	0.3	62
18	New familial heterozygous c 4066_4068 delTT 2 bp deletion of the SCN5A gene causing Brugada syndrome. Heart Rhythm, 2011, 8, 1224-1227.	0.3	3

TATION REPO

#	Article	IF	CITATIONS
19	R231C mutation in KCNQ1 causes long QT syndrome type 1 and familial atrial fibrillation. Heart Rhythm, 2011, 8, 48-55.	0.3	63
20	HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies. Heart Rhythm, 2011, 8, 1308-1339.	0.3	995
21	Sudden death and ion channel disease: pathophysiology and implications for management. Heart, 2011, 97, 1365-1372.	1.2	43
22	Inherited Cardiac Arrhythmia Syndromes: Role of the Sodium Channel. Cardiac Electrophysiology Clinics, 2011, 3, 93-112.	0.7	Ο
24	Cardiac ion channel mutations in the sudden infant death syndrome. International Journal of Cardiology, 2011, 152, 162-170.	0.8	79
26	Brugada Syndrome. Neurology International, 2011, 1, e3.	0.2	Ο
27	Identification of Six Novel SCN5A Mutations in Japanese Patients With Brugada Syndrome. International Heart Journal, 2011, 52, 27-31.	0.5	25
28	Genetic predisposition to sudden cardiac death. Current Opinion in Cardiology, 2011, 26, 46-50.	0.8	8
29	Genetics of sudden cardiac death syndromes. Current Opinion in Cardiology, 2011, 26, 196-203.	0.8	46
31	Brugada Syndrome Caused by a Large Deletion in SCN5A Only Detected by Multiplex Ligation-Dependent Probe Amplification. Journal of Cardiovascular Electrophysiology, 2011, 22, 1073-1076.	0.8	34
32	J-wave syndromes. From cell to bedside. Journal of Electrocardiology, 2011, 44, 656-661.	0.4	44
33	Informatic and Functional Approaches to Identifying a Regulatory Region for the Cardiac Sodium Channel. Circulation Research, 2011, 109, 38-46.	2.0	18
34	Phenotypical Manifestations of Mutations in the Genes Encoding Subunits of the Cardiac Sodium Channel. Circulation Research, 2011, 108, 884-897.	2.0	185
35	Sudden Cardiac Arrest Without Overt Heart Disease. Circulation, 2011, 123, 2994-3008.	1.6	49
36	Striking In Vivo Phenotype of a Disease-Associated Human <i>SCN5A</i> Mutation Producing Minimal Changes in Vitro. Circulation, 2011, 124, 1001-1011.	1.6	137
37	Phenotypic Manifestations of Mutations in Genes Encoding Subunits of Cardiac Potassium Channels. Circulation Research, 2011, 109, 97-109.	2.0	75
38	Genetics Primer for the General Cardiologist. Circulation, 2011, 123, 467-467.	1.6	3
39	Genetic Testing for Potentially Lethal, Highly Treatable Inherited Cardiomyopathies/Channelopathies in Clinical Practice. Circulation, 2011, 123, 1021-1037.	1.6	176

#	Article	IF	CITATIONS
40	Fever-Induced Life-Threatening Arrhythmias in Children Harboring an SCN5A Mutation. Pediatrics, 2011, 127, e239-e244.	1.0	46
41	Concomitant Brugada-like and short QT electrocardiogram linked to SCN5A mutation. European Journal of Human Genetics, 2012, 20, 1189-1192.	1.4	33
42	Brugada-Like Syndrome in Infancy Presenting With Rapid Ventricular Tachycardia and Intraventricular Conduction Delay. Circulation, 2012, 125, 14-22.	1.6	61
43	A Novel Disease Gene for Brugada Syndrome. Circulation: Arrhythmia and Electrophysiology, 2012, 5, 1098-1107.	2.1	84
44	Letter by Casado-Arroyo et al Regarding Article, "Electrocardiographic Characteristics and SCN5A Mutations in Idiopathic Ventricular Fibrillation Associated With Early Repolarization― Circulation: Arrhythmia and Electrophysiology, 2012, 5, e59; author reply e60-1.	2.1	3
45	Neurological perspectives on voltage-gated sodium channels. Brain, 2012, 135, 2585-2612.	3.7	285
46	The multifaceted cardiac sodium channel and its clinical implications. Heart, 2012, 98, 1318-1324.	1.2	18
47	Cardiac Ion Channelopathies and the Sudden Infant Death Syndrome. ISRN Cardiology, 2012, 2012, 1-28.	1.6	39
48	Dominant-negative effect of SCN5A N-terminal mutations through the interaction of Nav1.5 α-subunits. Cardiovascular Research, 2012, 96, 53-63.	1.8	87
49	Brugada Syndrome 2012. Circulation Journal, 2012, 76, 1563-1571.	0.7	161
50	Genetic, Molecular and Cellular Mechanisms Underlying the J Wave Syndromes. Circulation Journal, 2012, 76, 1054-1065.	0.7	149
51	Brugada Syndrome. Circulation Journal, 2012, 76, 2713-2722.	0.7	73
53	SCN1Bb, atrial fibrillation, and Brugada syndrome: Just another brick in the wall …. Heart Rhythm, 2012, 9, 774-775.	0.3	0
54	The diagnostic and therapeutic aspects of loss-of-function cardiac sodium channelopathies in children. Heart Rhythm, 2012, 9, 1986-1992.	0.3	40
55	The Genetics of Cardiac Disease Associated with Sudden Cardiac Death. Journal of Molecular Diagnostics, 2012, 14, 424-436.	1.2	4
56	Clinical impact of the number of extrastimuli in programmed electrical stimulation in patients with Brugada type 1 electrocardiogram. Heart Rhythm, 2012, 9, 242-248.	0.3	59
57	Phenotype, genotype, and cellular physiology: Need for clarity in characterization. Heart Rhythm, 2012, 9, 1993-1994.	0.3	3
58	Brugada Syndrome. Circulation: Arrhythmia and Electrophysiology, 2012, 5, 606-616.	2.1	236

#	Article	IF	CITATIONS
59	A novel 5′ splice site mutation of SCN5A associated with Brugada syndrome resulting in multiple cryptic transcripts. International Journal of Cardiology, 2012, 158, 441-443.	0.8	2
60	Fibrillation potentials of denervated rat skeletal muscle are associated with expression of cardiac-type voltage-gated sodium channel isoform Nav1.5. Clinical Neurophysiology, 2012, 123, 1650-1655.	0.7	18
61	Founder mutations characterise the mutation panorama in 200 Swedish index cases referred for Long QT syndrome genetic testing. BMC Cardiovascular Disorders, 2012, 12, 95.	0.7	25
63	Syndrome du QT long congénital, tachycardie ventriculaire catécholergique, syndrome de Brugada et mort subite inexpliquée en pédiatrie. Archives of Cardiovascular Diseases Supplements, 2012, 4, 179-192.	0.0	1
64	Multifocal Ectopic Purkinje-Related Premature Contractions. Journal of the American College of Cardiology, 2012, 60, 144-156.	1.2	156
65	Spectrum and Prevalence of Mutations Involving BrS1- Through BrS12-Susceptibility Genes in a Cohort of Unrelated Patients Referred for Brugada Syndrome Genetic Testing. Journal of the American College of Cardiology, 2012, 60, 1410-1418.	1.2	193
66	Genetic variants in SCN5A promoter are associated with arrhythmia phenotype severity in patients with heterozygous loss-of-function mutation. Heart Rhythm, 2012, 9, 1090-1096.	0.3	33
67	Voltage-Gated Sodium Channels: Biophysics, Pharmacology, and Related Channelopathies. Frontiers in Pharmacology, 2012, 3, 124.	1.6	95
68	Compound Heterozygous SCN5A Gene Mutations in Aasymptomatic Brugada Syndrome Child. Neurology International, 2012, 2, e11.	0.2	5
69	Genetic and clinical aspects of Brugada syndrome. Advances in Clinical Chemistry, 2012, 56, 197-208.	1.8	21
70	Ionic and Cellular Mechanisms Underlying the Development of Acquired Brugada Syndrome in Patients Treated with Antidepressants. Journal of Cardiovascular Electrophysiology, 2012, 23, 423-432.	0.8	44
71	Repolarization Syndromes. Current Problems in Cardiology, 2012, 37, 317-362.	1.1	7
72	Crystal Structure of the Ternary Complex of a NaV C-Terminal Domain, a Fibroblast Growth Factor Homologous Factor, and Calmodulin. Structure, 2012, 20, 1167-1176.	1.6	138
73	The Chemical Compound PTC124 Does Not Affect Cellular Electrophysiology of Cardiac Ventricular Myocytes. Cardiovascular Drugs and Therapy, 2012, 26, 41-45.	1.3	8
74	Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nature Genetics, 2013, 45, 1044-1049.	9.4	467
75	Genetic biomarkers in Brugada syndrome. Biomarkers in Medicine, 2013, 7, 535-546.	0.6	7
76	Impact of Genetics on the ClinicalÂManagementÂof Channelopathies. Journal of the American College of Cardiology, 2013, 62, 169-180.	1.2	271
77	Novel SCN5A mutations in two families with "Brugada-like―ST elevation in the inferior leads and conduction disturbances. Journal of Interventional Cardiac Electrophysiology, 2013, 37, 131-140.	0.6	11

	CITATION	LPORT	
#	Article	IF	Citations
78	Genetic testing for inherited cardiac disease. Nature Reviews Cardiology, 2013, 10, 571-583.	6.1	161
79	ST-Segment Elevation and Sudden Death in the Athlete. Cardiac Electrophysiology Clinics, 2013, 5, 73-84.	0.7	9
80	Genetic basis of Brugada syndrome. Journal of Arrhythmia, 2013, 29, 71-76.	0.5	5
81	Prolongation of the QTc Interval Predicts Appropriate Implantable Cardioverter-Defibrillator Therapies in Hypertrophic Cardiomyopathy. JACC: Heart Failure, 2013, 1, 149-155.	1.9	37
82	Brugada syndrome 1992-2012: 20 years of scientific excitement, and more. European Heart Journal, 2013, 34, 3610-3615.	1.0	37
83	Variable phenotype expression with a frameshift mutation of the cardiac sodium channel gene <i>SCN5A</i> . Journal of Arrhythmia, 2013, 29, 291-295.	0.5	3
84	A study of the <scp><i>SCN5A</i></scp> gene in a cohort of 76 patients with Brugada syndrome. Clinical Genetics, 2013, 83, 530-538.	1.0	17
85	Cardiac sodium channelopathy associated with <i>SCN5A</i> mutations: electrophysiological, molecular and genetic aspects. Journal of Physiology, 2013, 591, 4099-4116.	1.3	144
86	High prevalence of genetic variants previously associated with Brugada syndrome in new exome data. Clinical Genetics, 2013, 84, 489-495.	1.0	102
87	Optical and electrical recordings from isolated coronary-perfused ventricular wedge preparations. Journal of Molecular and Cellular Cardiology, 2013, 54, 53-64.	0.9	44
88	Abnormal electrocardiographic findings in athletes: recognising changes suggestive of primary electrical disease. British Journal of Sports Medicine, 2013, 47, 153-167.	3.1	105
89	Drugâ€induced Brugada syndrome. Journal of Arrhythmia, 2013, 29, 88-95.	0.5	9
90	Polymorphic Ventricular Tachycardia–Part II: The Channelopathies. Current Problems in Cardiology, 2013, 38, 503-548.	1.1	5
91	Unique sleep disorders profile of a population-based sample of 747 Hmong immigrants in Wisconsin. Social Science and Medicine, 2013, 79, 57-65.	1.8	35
92	p.D1690N Nav1.5 rescues p.G1748D mutation gating defects in a compound heterozygous Brugada syndrome patient. Heart Rhythm, 2013, 10, 264-272.	0.3	42
93	Arrhythmogenesis in Brugada syndrome: Impact and constrains of current concepts. International Journal of Cardiology, 2013, 167, 1760-1771.	0.8	8
94	Short-coupling premature ventricular complexes from the left ventricle triggered isoproterenol-resistant electrical storm in a patient with Brugada syndrome. Heart Rhythm, 2013, 10, 916-920.	0.3	2
95	Reassessing the pathogenicity of rare variants in inherited heart disease. Heart Rhythm, 2013, 10, 560-561.	0.3	0

#	Article	IF	CITATIONS
96	Brugada syndrome: an update. Future Cardiology, 2013, 9, 253-271.	0.5	16
97	A Missense Mutation in the Sodium Channel β2 Subunit Reveals <i>SCN2B</i> as a New Candidate Gene for Brugada Syndrome. Human Mutation, 2013, 34, 961-966.	1.1	96
98	Cardiac channelopathies: Genetic and molecular mechanisms. Gene, 2013, 517, 1-11.	1.0	97
99	A case of long QT syndrome with triple gene abnormalities: Digenic mutations in KCNH2 and SCN5A and gene variant in KCNE1. Heart Rhythm, 2013, 10, 600-603.	0.3	11
100	Genetics of Cardiac Electrical Disease. Canadian Journal of Cardiology, 2013, 29, 89-99.	0.8	22
101	The role of ion channelopathies in sudden cardiac death: Implications for clinical practice. Annals of Medicine, 2013, 45, 364-374.	1.5	12
102	Application of statistics and machine learning for risk stratification of heritable cardiac arrhythmias. Expert Systems With Applications, 2013, 40, 2476-2486.	4.4	6
103	Characterization of 2 Genetic Variants of Na _v 1.5â€Arginine 689 Found in Patients with Cardiac Arrhythmias. Journal of Cardiovascular Electrophysiology, 2013, 24, 1037-1046.	0.8	11
105	Targeted sequence capture and CS-FLX Titanium sequencing of 23 hypertrophic and dilated cardiomyopathy genes: implementation into diagnostics. Journal of Medical Genetics, 2013, 50, 614-626.	1.5	37
106	The genetic component of Brugada syndrome. Frontiers in Physiology, 2013, 4, 179.	1.3	62
107	Characterization of N-terminally mutated cardiac Na+ channels associated with long QT syndrome 3 and Brugada syndrome. Frontiers in Physiology, 2013, 4, 153.	1.3	16
108	Pharmacological and non-pharmacological therapy for arrhythmias in the pediatric population: EHRA and AEPC-Arrhythmia Working Group joint consensus statement. Europace, 2013, 15, 1337-1382.	0.7	281
109	Genetic testing in heritable cardiac arrhythmia syndromes. Current Opinion in Cardiology, 2013, 28, 63-71.	0.8	42
110	Characterization and Mechanisms of Action of Novel Na _V 1.5 Channel Mutations Associated With Brugada Syndrome. Circulation: Arrhythmia and Electrophysiology, 2013, 6, 177-184.	2.1	39
111	Genetics and sudden death. Current Opinion in Cardiology, 2013, 28, 272-281.	0.8	13
112	Drugâ€Induced Brugada Syndrome by Noncardiac Agents. PACE - Pacing and Clinical Electrophysiology, 2013, 36, 1570-1577.	0.5	16
113	ls a Novel <i>SCN3B</i> Mutation Commonly Found in <i>SCN5A</i> -Negative Brugada Syndrome Patients?. Circulation Journal, 2013, 77, 900-901.	0.7	4
114	Novel <i>SCN3B</i> Mutation Associated With Brugada Syndrome Affects Intracellular Trafficking and Function of Nav1.5. Circulation Journal, 2013, 77, 959-967.	0.7	70

#	Article	IF	CITATIONS
115	Update of Diagnosis and Management of Inherited Cardiac Arrhythmias. Circulation Journal, 2013, 77, 2867-2872.	0.7	45
116	Gene mutations in cardiac arrhythmias: a review of recent evidence in ion channelopathies. The Application of Clinical Genetics, 2013, 6, 1.	1.4	26
117	A Novel Missense Mutation, 1890T, in the Pore Region of Cardiac Sodium Channel Causes Brugada Syndrome. PLoS ONE, 2013, 8, e53220.	1.1	22
118	Molecular Genetics and Functional Anomalies in a Series of 248 Brugada Cases with 11 Mutations in the TRPM4 Channel. PLoS ONE, 2013, 8, e54131.	1.1	131
119	A Heterozygous Deletion Mutation in the Cardiac Sodium Channel Gene SCN5A with Loss- and Gain-of-Function Characteristics Manifests as Isolated Conduction Disease, without Signs of Brugada or Long QT Syndrome. PLoS ONE, 2013, 8, e67963.	1.1	23
120	Electrophysiological Characteristics of a SCN5A Voltage Sensors Mutation R1629Q Associated With Brugada Syndrome. PLoS ONE, 2013, 8, e78382.	1.1	23
121	Functional Characterization of a Novel Frameshift Mutation in the C-terminus of the Nav1.5 Channel Underlying a Brugada Syndrome with Variable Expression in a Spanish Family. PLoS ONE, 2013, 8, e81493.	1.1	18
122	The Disease-Specific Phenotype in Cardiomyocytes Derived from Induced Pluripotent Stem Cells of Two Long QT Syndrome Type 3 Patients. PLoS ONE, 2013, 8, e83005.	1.1	77
123	Biomarker discovery by plasma proteomics in familial Brugada SyndromeÂ. Frontiers in Bioscience - Landmark, 2013, 18, 564.	3.0	18
124	Sodium Current Reduction Unmasks a Structure-Dependent Substrate for Arrhythmogenesis in the Normal Ventricles. PLoS ONE, 2014, 9, e86947.	1.1	22
125	The Brugada Syndrome – Diagnosis, Clinical Implications and Risk Stratification. European Cardiology Review, 2014, 9, 82.	0.7	7
126	Syncope in a febrile state: A case report of Brugada syndrome. Revista Portuguesa De Cardiologia (English Edition), 2014, 33, 801.e1-801.e6.	0.2	1
127	Genetic Diversity ofSCN5AGene and Its Possible Association with the Concealed Form of Brugada Syndrome Development in Polish Group of Patients. BioMed Research International, 2014, 2014, 1-13.	0.9	7
128	Correlation of intracardiac electrogram with surface electrocardiogram in Brugada syndrome patients. Europace, 2014, 16, 908-913.	0.7	2
129	Feasibility and outcomes of ajmaline provocation testing for Brugada syndrome in children in a specialist paediatric inherited cardiovascular diseases centre. Open Heart, 2014, 1, e000023.	0.9	16
130	Paralogue annotation identifies novel pathogenic variants in patients with Brugada syndrome and catecholaminergic polymorphic ventricular tachycardia. Journal of Medical Genetics, 2014, 51, 35-44.	1.5	44
131	Gainâ€ofâ€function mutation in <scp>TASK</scp> â€4 channels and severe cardiac conduction disorder. EMBO Molecular Medicine, 2014, 6, 937-951.	3.3	60
132	Brugada Syndrome: A Heterogeneous Disease with a Common ECG Phenotype?. Journal of Cardiovascular Electrophysiology, 2014, 25, 450-456.	0.8	18

#	Article	IF	CITATIONS
133	Unexpected α–α Interactions With Na _V 1.5 Genetic Variants in Brugada Syndrome. Circulation: Cardiovascular Genetics, 2014, 7, 97-99.	5.1	1
134	SÃncope em contexto febril – caso clÃnico de sÃndrome de Brugada. Revista Portuguesa De Cardiologia, 2014, 33, 801.e1-801.e6.	0.2	2
135	Nonsense-mediated mRNA decay due to a CACNA1C splicing mutation in a patient with Brugada syndrome. Heart Rhythm, 2014, 11, 629-634.	0.3	26
136	Defective interactions of protein partner with ion channels and transporters as alternative mechanisms of membrane channelopathies. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 723-730.	1.4	10
137	Loss-of-Function of the Voltage-Gated Sodium Channel NaV1.5 (Channelopathies) in Patients With Irritable Bowel Syndrome. Gastroenterology, 2014, 146, 1659-1668.	0.6	120
138	Negative autopsy and sudden cardiac death. International Journal of Legal Medicine, 2014, 128, 599-606.	1.2	71
139	Is sudden unexplained nocturnal death syndrome in Southern China a cardiac sodium channel dysfunction disorder?. Forensic Science International, 2014, 236, 38-45.	1.3	35
140	Brugada syndrome: a review of the literature. Clinical Medicine, 2014, 14, 482-489.	0.8	27
141	Cardiac Sodium Channel Overlap Syndrome. Cardiac Electrophysiology Clinics, 2014, 6, 761-776.	0.7	3
142	Role of Rare and Common Genetic Variation in SCN5A in Cardiac Electrical Function and Arrhythmia. Cardiac Electrophysiology Clinics, 2014, 6, 665-677.	0.7	1
143	Sodium Current Disorders. Cardiac Electrophysiology Clinics, 2014, 6, 819-824.	0.7	1
144	Brugada Syndrome and Nav1.5. Cardiac Electrophysiology Clinics, 2014, 6, 715-721.	0.7	0
145	Catecholaminergic polymorphic ventricular tachycardia in a child with Brugada pattern on ECG: One patient with two diseases?. Heart Rhythm, 2014, 11, 2101-2104.	0.3	1
146	The G1662S NaV1.8 mutation in small fibre neuropathy: impaired inactivation underlying DRG neuron hyperexcitability. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 499-505.	0.9	80
147	Mutations in SCN10A Are Responsible for a Large Fraction of Cases of Brugada Syndrome. Journal of the American College of Cardiology, 2014, 64, 66-79.	1.2	212
148	Importance of Clinical Analysis in the New Era of Molecular Genetic Screeningâ^—. Journal of the American College of Cardiology, 2014, 64, 80-82.	1.2	6
149	Cardiac sodium channels and inherited electrophysiological disorders: an update on the pharmacotherapy. Expert Opinion on Pharmacotherapy, 2014, 15, 1875-1887.	0.9	8
150	Sequencing of <i>SCN5A</i> Identifies Rare and Common Variants Associated With Cardiac Conduction: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. Circulation: Cardiovascular Genetics, 2014, 7, 365-373.	5.1	12

#	Article	IF	CITATIONS
151	Life threatening causes of syncope: Channelopathies and cardiomyopathies. Autonomic Neuroscience: Basic and Clinical, 2014, 184, 53-59.	1.4	3
153	Genetic Variants for Long QT Syndrome among Infants and Children from a Statewide Newborn Hearing Screening Program Cohort. Journal of Pediatrics, 2014, 164, 590-595.e3.	0.9	14
154	A truncating SCN5A mutation combined with genetic variability causes sick sinus syndrome and early atrial fibrillation. Heart Rhythm, 2014, 11, 1015-1023.	0.3	43
155	Cellular quality control: A two-edged sword in Brugada syndrome. Heart Rhythm, 2014, 11, 635-636.	0.3	1
156	Evolution of clinical diagnosis in patients presenting with unexplained cardiac arrest or syncope due to polymorphic ventricular tachycardia. Heart Rhythm, 2014, 11, 274-281.	0.3	32
157	The implications of familial incidental findings from exome sequencing: the NIH Undiagnosed Diseases Program experience. Genetics in Medicine, 2014, 16, 741-750.	1.1	56
158	Brugada syndrome with a novel missense mutation in SCN5A gene: A case report from Bangladesh. Indian Heart Journal, 2014, 66, 104-107.	0.2	2
159	CaMKII-dependent regulation of cardiac Na+ homeostasis. Frontiers in Pharmacology, 2014, 5, 41.	1.6	39
160	Brugada Syndrome. Methodist DeBakey Cardiovascular Journal, 2021, 10, 25.	0.5	110
161	Reduced Penetrance and Variable Expression of SCN5A Mutations and the Importance of Co-inherited Genetic Variants: Case Report and Review of the Literature. Indian Pacing and Electrophysiology Journal, 2014, 14, 133-149.	0.3	19
162	SCN5A mutations and polymorphisms in patients with ventricular fibrillation during acute myocardial infarction. Molecular Medicine Reports, 2014, 10, 2039-2044.	1.1	14
163	Complex genetic background in a large family with Brugada syndrome. Physiological Reports, 2015, 3, e12256.	0.7	9
164	Discomfort with uncertainty: Is testing for Brugada syndrome in the neonatal period warranted?. Journal of Pediatric Genetics, 2015, 02, 097-101.	0.3	1
165	Determining the Pathogenicity of Genetic Variants Associated with Cardiac Channelopathies. Scientific Reports, 2015, 5, 7953.	1.6	44
166	The role of the <i><scp>SCN</scp>5A</i> â€encoded channelopathy in irritable bowel syndrome and other gastrointestinal disorders. Neurogastroenterology and Motility, 2015, 27, 906-913.	1.6	18
167	Genetics of inherited arrhythmias in pediatrics. Current Opinion in Pediatrics, 2015, 27, 665-674.	1.0	10
168	Ventricular repolarization markers for predicting malignant arrhythmias in clinical practice. World Journal of Clinical Cases, 2015, 3, 705.	0.3	113
169	Genetics of inherited primary arrhythmia disorders. The Application of Clinical Genetics, 2015, 8, 215.	1.4	21

#	Article	IF	CITATIONS
170	Comprehensive Genetic Characterization of a Spanish Brugada Syndrome Cohort. PLoS ONE, 2015, 10, e0132888.	1.1	25
171	J Wave Syndromes. Chinese Medical Journal, 2015, 128, 969-975.	0.9	6
172	Prolonged right ventricular ejection delay identifies high risk patients and gender differences in Brugada syndrome. International Journal of Cardiology, 2015, 191, 90-96.	0.8	17
173	Brugada ECG patterns in athletes. Journal of Electrocardiology, 2015, 48, 539-543.	0.4	10
174	Inherited ion channel diseases: a brief review. Europace, 2015, 17, ii1-ii6.	0.7	50
175	Next-generation sequencing for the diagnosis of cardiac arrhythmia syndromes. Heart Rhythm, 2015, 12, 1062-1070.	0.3	29
176	Testing the burden of rare variation in arrhythmia-susceptibility genes provides new insights into molecular diagnosis for Brugada syndrome. Human Molecular Genetics, 2015, 24, 2757-2763.	1.4	130
177	Utilizing Multiple in Silico Analyses to Identify Putative Causal SCN5A Variants in Brugada Syndrome. Scientific Reports, 2014, 4, 3850.	1.6	21
178	High-throughput genetic characterization of a cohort of Brugada syndrome patients. Human Molecular Genetics, 2015, 24, 5828-5835.	1.4	35
179	Genetic purgatory and the cardiac channelopathies: Exposing the variants of uncertain/unknown significance issue. Heart Rhythm, 2015, 12, 2325-2331.	0.3	155
180	Novel therapeutic strategies for the management of ventricular arrhythmias associated with the Brugada syndrome. Expert Opinion on Orphan Drugs, 2015, 3, 633-651.	0.5	19
181	Use of genetic testing to identify sudden cardiac death syndromes. Trends in Cardiovascular Medicine, 2015, 25, 738-748.	2.3	11
182	Is this ST-elevation because of myocardial ischaemia or a Brugada pattern? An interesting case review. Internal and Emergency Medicine, 2015, 10, 249-250.	1.0	3
183	Enhanced Classification of Brugada Syndrome–Associated and Long-QT Syndrome–Associated Genetic Variants in the <i>SCN5A</i> -Encoded Na _v 1.5 Cardiac Sodium Channel. Circulation: Cardiovascular Genetics, 2015, 8, 582-595.	5.1	87
184	J-wave syndromes: Brugada and early repolarization syndromes. Heart Rhythm, 2015, 12, 1852-1866.	0.3	120
185	Assessment of the predictive accuracy of five in silico prediction tools, alone or in combination, and two metaservers to classify long QT syndrome gene mutations. BMC Medical Genetics, 2015, 16, 34.	2.1	73
187	De Novo Mutation in the SCN5A Gene Associated with Brugada Syndrome. Cellular Physiology and Biochemistry, 2015, 36, 2250-2262.	1.1	22
188	<i>p.Y1449C SCN5A</i> Mutation Associated with Overlap Disorder Comprising Conduction Disease, Brugada Syndrome, and Atrial Flutter. Journal of Cardiovascular Electrophysiology, 2015, 26, 93-97.	0.8	19

#	Article	IF	CITATIONS
189	Unique clinical characteristics and SCN5A mutations in patients with Brugada syndrome in Taiwan. Journal of the Formosan Medical Association, 2015, 114, 620-626.	0.8	27
190	Genetic analysis, in silico prediction, and family segregation in long QT syndrome. European Journal of Human Genetics, 2015, 23, 79-85.	1.4	16
191	Electrocardiographic methods for diagnosis and risk stratification in the Brugada syndrome. Journal of the Saudi Heart Association, 2015, 27, 96-108.	0.2	19
192	Genetic Susceptibility in Biochemical and Physiological Traits. , 2016, , 177-217.		0
193	An R1632C variant in the SCN5A gene causing Brugada syndrome. Molecular Medicine Reports, 2016, 13, 4677-4680.	1.1	3
194	p.D1690N sodium voltage-gated channel α subunit 5 mutation reduced sodium current density and is associated with Brugada syndrome. Molecular Medicine Reports, 2016, 13, 5216-5222.	1.1	8
195	Antipsychotic-Related Mortality. , 2016, , 311-332.		1
196	The Brugada Syndrome: A Rare Arrhythmia Disorder with Complex Inheritance. Frontiers in Cardiovascular Medicine, 2016, 3, 9.	1.1	48
197	Large Genomic Imbalances in Brugada Syndrome. PLoS ONE, 2016, 11, e0163514.	1.1	23
198	Physiological and Pathophysiological Insights of Nav1.4 and Nav1.5 Comparison. Frontiers in Pharmacology, 2015, 6, 314.	1.6	40
199	Electrophysiological Cardiac Modeling: A Review. Critical Reviews in Biomedical Engineering, 2016, 44, 99-122.	0.5	6
200	J Wave Syndrome-Susceptibility Mutations Versus Benign Rare Variants: How Do We Decide?. , 2016, , 91-120.		0
201	Exomeâ€based analysis of cardiac arrhythmia, respiratory control, and epilepsy genes in sudden unexpected death in epilepsy. Annals of Neurology, 2016, 79, 522-534.	2.8	216
202	Atrial arrhythmias in inherited arrhythmogenic disorders. Journal of Arrhythmia, 2016, 32, 366-372.	0.5	17
203	Genetic testing for inheritable cardiac channelopathies. British Journal of Hospital Medicine (London,) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
204	Brugada syndrome in the paediatric population: a comprehensive approach to clinical manifestations, diagnosis, and management. Cardiology in the Young, 2016, 26, 1044-1055.	0.4	28
205	IRX3 variant as a modifier of Brugada syndrome with frequent ventricular fibrillation. HeartRhythm Case Reports, 2016, 2, 465-468.	0.2	6
206	Catheter ablation for ventricular tachyarrhythmia in patients with channelopathies. Journal of Arrhythmia, 2016, 32, 404-410.	0.5	7

#	Article	IF	CITATIONS
207	Genetics of Brugada syndrome. Journal of Arrhythmia, 2016, 32, 418-425.	0.5	79
208	Does Sudden Unexplained Nocturnal Death Syndrome Remain the Autopsy-Negative Disorder: A Gross, Microscopic, and Molecular Autopsy Investigation in Southern China. Mayo Clinic Proceedings, 2016, 91, 1503-1514.	1.4	33
209	Harnessing the Flow of Excitation. Advances in Protein Chemistry and Structural Biology, 2016, 103, 25-95.	1.0	5
210	Pathogenesis and management of Brugada syndrome. Nature Reviews Cardiology, 2016, 13, 744-756.	6.1	89
211	J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. Europace, 2017, 19, euw235.	0.7	172
212	J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. Heart Rhythm, 2016, 13, e295-e324.	0.3	322
213	Management of Brugada Syndrome 2016: Should All High Risk Patients Receive an ICD?. Circulation: Arrhythmia and Electrophysiology, 2016, 9, .	2.1	10
214	Engineering prokaryotic channels for control of mammalian tissue excitability. Nature Communications, 2016, 7, 13132.	5.8	20
215	Jâ€Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. Journal of Arrhythmia, 2016, 32, 315-339.	0.5	125
216	Fhf2 gene deletion causes temperature-sensitive cardiac conduction failure. Nature Communications, 2016, 7, 12966.	5.8	29
217	Atrial fibrillation in inherited cardiac channelopathies: From mechanisms to management. Heart Rhythm, 2016, 13, 1878-1884.	0.3	37
218	Repeated molecular genetic analysis in Brugada syndrome revealed a novel disease-associated large deletion in the SCN5A gene. HeartRhythm Case Reports, 2016, 2, 261-264.	0.2	2
219	Founder Mutation Genotyping and Sudden Cardiac Arrest. Circulation: Cardiovascular Genetics, 2016, 9, 107-109.	5.1	1
220	Dysfunction of the Voltageâ€Gated K ⁺ Channel β2 Subunit in a Familial Case of Brugada Syndrome. Journal of the American Heart Association, 2016, 5, .	1.6	20
221	J Wave Syndromes. , 2016, , .		1
222	NovelSCN10Avariants associated with Brugada syndrome. Europace, 2016, 18, 905-911.	0.7	31
223	SCN4A variants and Brugada syndrome: phenotypic and genotypic overlap between cardiac and skeletal muscle sodium channelopathies. European Journal of Human Genetics, 2016, 24, 400-407.	1.4	33
224	SCN5A(K817E), a novel Brugada syndrome–associated mutation that alters the activation gating of NaV1.5 channel. Heart Rhythm, 2016, 13, 1113-1120.	0.3	10

#	Article	IF	CITATIONS
225	Brugada syndrome: More than 20 years of scientific excitement. Journal of Cardiology, 2016, 67, 215-220.	0.8	30
226	Complexities of Genetic Testing in Familial Dilated Cardiomyopathy. Circulation: Cardiovascular Genetics, 2016, 9, 95-99.	5.1	6
227	Impact of clinical and genetic findings on the management of young patients with Brugada syndrome. Heart Rhythm, 2016, 13, 1274-1282.	0.3	89
228	Mutational analysis of mitochondrial DNA in Brugada syndrome. Cardiovascular Pathology, 2016, 25, 47-54.	0.7	13
229	The electrical heart: 25 years of discovery in cardiac electrophysiology, arrhythmias and sudden death. Cardiovascular Pathology, 2016, 25, 149-157.	0.7	14
230	Clinical Applications for Next Generation Sequencing in Cardiology. , 2016, , 189-215.		0
231	Common Variant Near <i>HEY2</i> Has a Protective Effect on Ventricular Fibrillation Occurrence in Brugada Syndrome by Regulating the Repolarization Current. Circulation: Arrhythmia and Electrophysiology, 2016, 9, e003436.	2.1	8
232	Patient Outcomes From a Specialized Inherited Arrhythmia Clinic. Circulation: Arrhythmia and Electrophysiology, 2016, 9, e003440.	2.1	21
233	Genetic testing and genetic counseling in patients with sudden death risk due to heritable arrhythmias. Heart Rhythm, 2016, 13, 789-797.	0.3	30
234	Calmodulin and Ca ²⁺ control of voltage gated Na ⁺ channels. Channels, 2016, 10, 45-54.	1.5	29
235	Monomorphic ventricular tachycardia in patients with Brugada syndrome: A multicenter retrospective study. Heart Rhythm, 2016, 13, 669-682.	0.3	67
236	Brugada syndrome: clinical presentation and genotype—correlation with magnetic resonance imaging parameters. Europace, 2016, 18, 1411-1419.	0.7	40
237	Diagnostic yield of molecular autopsy in patients with sudden arrhythmic death syndrome using targeted exome sequencing. Europace, 2016, 18, 888-896.	0.7	69
238	Brugada Syndrome: Clinical, Genetic, Molecular, Cellular, and Ionic Aspects. Current Problems in Cardiology, 2016, 41, 7-57.	1.1	96
239	The role of genetic testing in unexplained sudden death. Translational Research, 2016, 168, 59-73.	2.2	33
240	Genetic screening in sudden cardiac death in the young can save future lives. International Journal of Legal Medicine, 2016, 130, 59-66.	1.2	54
241	A rendezvous with the queen of ion channels: Three decades of ion channel research by David T Yue and his Calcium Signals Laboratory. Channels, 2016, 10, 20-32.	1.5	5
242	A Brugada syndrome proband with compound heterozygote <i>SCN5A</i> mutations identified from a Chinese family in Singapore. Europace, 2016, 18, 897-904.	0.7	16

		CITATION R	EPORT	
#	Article		IF	Citations
243	Brugada syndrome: clinical and genetic findings. Genetics in Medicine, 2016, 18, 3-12.		1.1	102
244	Association of common and rare variants of SCN10A gene with sudden unexplained no syndrome in Chinese Han population. International Journal of Legal Medicine, 2017, 13	cturnal death 1, 53-60.	1.2	17
245	Epilepsyâ€related sudden unexpected death: targeted molecular analysis of inherited h using nextâ€generation DNA sequencing. Brain Pathology, 2017, 27, 292-304.	eart disease genes	2.1	42
246	Proarrhythmogenic effects of lamotrigine during ajmaline testing for Brugada syndrom HeartRhythm Case Reports, 2017, 3, 167-171.	e.	0.2	8
247	Multilevel analyses of SCN5A mutations in arrhythmogenic right ventricular dysplasia/cardiomyopathy suggest non-canonical mechanisms for disease pathogenesi Cardiovascular Research, 2017, 113, 102-111.	s.	1.8	148
248	Causes of sudden death in the young — Cardiac and non-cardiac. Progress in Pediatri 2017, 45, 2-13.	c Cardiology,	0.2	1
249	International criteria for electrocardiographic interpretation in athletes: Consensus sta British Journal of Sports Medicine, 2017, 51, 704-731.	tement.	3.1	291
250	Infant sudden death: Mutations responsible for impaired Nav1.5 channel trafficking an PACE - Pacing and Clinical Electrophysiology, 2017, 40, 703-712.	d function.	0.5	19
251	Editorial commentary: Genetic contributions to cardiovascular disease: The blurred line monogenic and polygenic traits. Trends in Cardiovascular Medicine, 2017, 27, 405-407	s between '.	2.3	0
252	Lidocaine attenuation testing: An inÂvivo investigation of putative LQT3-associated va SCN5A- encoded sodium channel. Heart Rhythm, 2017, 14, 1173-1179.	riants in the	0.3	12
253	Mutation Load of Multiple Ion Channel Gene Mutations in Brugada Syndrome. Cardiolo 256-260.	ogy, 2017, 137,	0.6	30
254	Using high-resolution variant frequencies to empower clinical genome interpretation. Medicine, 2017, 19, 1151-1158.	Genetics in	1.1	355
255	Brugada syndrome: A general cardiologist's perspective. European Journal of Internal N 44, 19-27.	ledicine, 2017,	1.0	32
256	Interpreting the functional role of a novel interaction motif in prokaryotic sodium chan of General Physiology, 2017, 149, 613-622.	nels. Journal	0.9	17
257	Drug-induced fatal arrhythmias: Acquired long QT and Brugada syndromes. , 2017, 176	s, 48-59.		29
258	<i>SCN5A</i> Genetic Polymorphisms Associated With Increased Defibrillator Shocks in Syndrome. Journal of the American Heart Association, 2017, 6, .	n Brugada	1.6	25
259	Ion channelopathies associated genetic variants as the culprit for sudden unexplained Science International, 2017, 275, 128-137.	death. Forensic	1.3	8
260	Genotype-Phenotype Correlation of <i>SCN5A</i> Mutation for the Clinical and Electro Characteristics of Probands With Brugada Syndrome. Circulation, 2017, 135, 2255-22	ocardiographic 70.	1.6	142

#	Article	IF	CITATIONS
261	Issues and Challenges in Diagnostic Sequencing for Inherited Cardiac Conditions. Clinical Chemistry, 2017, 63, 116-128.	1.5	7
262	Murine Electrophysiological Models of Cardiac Arrhythmogenesis. Physiological Reviews, 2017, 97, 283-409.	13.1	96
263	Cardiac Arrhythmias Related to Sodium Channel Dysfunction. Handbook of Experimental Pharmacology, 2017, 246, 331-354.	0.9	28
264	Repeat genetic testing with targeted capture sequencing in primary arrhythmia syndrome and cardiomyopathy. European Journal of Human Genetics, 2017, 25, 1313-1323.	1.4	9
265	Syncope in patients with inherited arrhythmias. Journal of Arrhythmia, 2017, 33, 572-578.	0.5	7
266	The definition of the Brugada syndrome. European Heart Journal, 2017, 38, 3029-3034.	1.0	74
267	Channelopathies: Clinical Presentation and Genetics. Cardiovascular Medicine, 2017, , 37-47.	0.0	0
268	Sudden arrhythmic death and cardiomyopathies in the young: a molecular and pathology overview. Diagnostic Histopathology, 2017, 23, 486-498.	0.2	0
269	Channelopathies as Causes of Sudden Cardiac Death. Cardiac Electrophysiology Clinics, 2017, 9, 537-549.	0.7	28
270	Unmasking the molecular link between arrhythmogenic cardiomyopathy and Brugada syndrome. Nature Reviews Cardiology, 2017, 14, 744-756.	6.1	51
271	Yield and Pitfalls of Ajmaline Testing in theÂEvaluation of Unexplained Cardiac Arrest and Sudden Unexplained Death. JACC: Clinical Electrophysiology, 2017, 3, 1400-1408.	1.3	34
272	Case report. Medicine (United States), 2017, 96, e8695.	0.4	3
275	Commentary: Next Generation Sequencing and Linkage Analysis for the Molecular Diagnosis of a Novel Overlapping Syndrome Characterized by Hypertrophic Cardiomyopathy and Typical Electrical Instability of Brugada Syndrome. Frontiers in Physiology, 2017, 8, 1056.	1.3	11
276	Whole-exome sequencing identifies a novel mutation (R367C) in SCN5A to be associated with familial cardiac conduction disease. Molecular Medicine Reports, 2017, 16, 410-414.	1.1	4
277	Cardiac Channelopathies and Sudden Death: Recent Clinical and Genetic Advances. Biology, 2017, 6, 7.	1.3	88
278	A Variant of Brugada Syndrome. Baylor University Medical Center Proceedings, 2017, 30, 62-63.	0.2	2
279	The efficacy of Ranolazine on E1784K is altered by temperature and calcium. Scientific Reports, 2018, 8, 3643.	1.6	14
280	Cardiovascular Genetics. , 2018, , 525-533.		0

#	Article	IF	CITATIONS
281	A Novel <i>SCN5A</i> Variant Associated with Abnormal Repolarization, Atrial Fibrillation, and Reversible Cardiomyopathy. Cardiology, 2018, 140, 8-13.	0.6	3
282	CardioClassifier: disease- and gene-specific computational decision support for clinical genome interpretation. Genetics in Medicine, 2018, 20, 1246-1254.	1.1	75
283	An automated microfluidic DNA microarray platform for genetic variant detection in inherited arrhythmic diseases. Analyst, The, 2018, 143, 1367-1377.	1.7	14
284	Targeted next generation sequencing in a young population with suspected inherited malignant cardiac arrhythmias. European Journal of Human Genetics, 2018, 26, 303-313.	1.4	7
285	Postmortem Genetic Testing for Cardiac Ion Channelopathies in Stillbirths. Circulation Genomic and Precision Medicine, 2018, 11, e001817.	1.6	18
286	A Mechanism of Calmodulin Modulation of the Human Cardiac Sodium Channel. Structure, 2018, 26, 683-694.e3.	1.6	43
287	Prevalence of Pathogenic Gene Mutations and Prognosis Do Not Differ in Isolated Left Ventricular Dysfunction Compared With Dilated Cardiomyopathy. Circulation: Heart Failure, 2018, 11, e004682.	1.6	22
288	A novel three base-pair deletion in domain two of the cardiac sodium channel causes Brugada syndrome. Journal of Electrocardiology, 2018, 51, 667-673.	0.4	1
289	Cardiac channelopathies: The role of sodium channel mutations. Revista Portuguesa De Cardiologia (English Edition), 2018, 37, 179-199.	0.2	6
290	Genetic analysis of sick sinus syndrome in a family harboring compound CACNA1C and TTN mutations. Molecular Medicine Reports, 2018, 17, 7073-7080.	1.1	13
291	Copy number variations of SCN5A in Brugada syndrome. Heart Rhythm, 2018, 15, 1179-1188.	0.3	28
292	The Diagnostic Yield of Brugada Syndrome After Sudden Death WithÂNormal Autopsy. Journal of the American College of Cardiology, 2018, 71, 1204-1214.	1.2	84
293	Canalopatias cardÃacas: o papel das mutações nos canais de sódio. Revista Portuguesa De Cardiologia, 2018, 37, 179-199.	0.2	10
294	Brugada syndrome and the story of Dave. Neuropsychological Rehabilitation, 2018, 28, 259-267.	1.0	2
295	2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Heart Rhythm, 2018, 15, e73-e189.	0.3	262
296	2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death. Circulation, 2018, 138, e272-e391.	1.6	468
297	Animal toxins for channelopathy treatment. Neuropharmacology, 2018, 132, 83-97.	2.0	12
298	Next generation sequencing applications for cardiovascular disease. Annals of Medicine, 2018, 50, 91-109.	1.5	29

#	Article	IF	CITATIONS
299	Genetic, Ionic, and Cellular Mechanisms Underlying the J Wave Syndromes. , 2018, , 483-493.		1
300	Brugada Syndrome. , 2018, , 883-892.		0
301	Irritable bowel syndrome patients have <i>SCN5A</i> channelopathies that lead to decreased Na _V 1.5 current and mechanosensitivity. American Journal of Physiology - Renal Physiology, 2018, 314, G494-G503.	1.6	40
302	Multifactorial Origin of Exertional Rhabdomyolysis, Recurrent Hematuria, and Episodic Pain in a Service Member with Sickle Cell Trait. Case Reports in Genetics, 2018, 2018, 1-6.	0.1	4
303	OBSOLETE: Brugada Syndrome. , 2018, , .		0
304	Mechanisms Underlying the Actions of Antidepressant and Antipsychotic Drugs That Cause Sudden Cardiac Arrest. Arrhythmia and Electrophysiology Review, 2018, 7, 199.	1.3	33
305	Brugada Syndrome Associated With Adolescent Loperamide Abuse. Pediatrics, 2018, 142, .	1.0	9
307	Breast Cancer in Men. New England Journal of Medicine, 2018, 379, 1385-1386.	13.9	22
308	A Shocking Turn of Events. New England Journal of Medicine, 2018, 379, 1386-1387.	13.9	0
309	Predicting changes to INa from missense mutations in human SCN5A. Scientific Reports, 2018, 8, 12797.	1.6	29
310	Cardiac Sodium Channel (Dys)Function and Inherited Arrhythmia Syndromes. Cardiac and Vascular Biology, 2018, , 9-45.	0.2	2
311	Lifestyle Impact and Genotype-Phenotype Correlations in Brugada Syndrome. , 2018, , 285-290.		0
312	SCN5A Variants: Association With Cardiac Disorders. Frontiers in Physiology, 2018, 9, 1372.	1.3	87
313	Calcium in Brugada Syndrome: Questions for Future Research. Frontiers in Physiology, 2018, 9, 1088.	1.3	26
314	Small GTPases SAR1A and SAR1B regulate the trafficking of the cardiac sodium channel Nav1.5. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3672-3684.	1.8	20
315	Complex interactions in a novel SCN5A compound mutation associated with long QT and Brugada syndrome: Implications for Na+ channel blocking pharmacotherapy for de novo conduction disease. PLoS ONE, 2018, 13, e0197273.	1.1	3
316	A homozygous SCN5A mutation associated with atrial standstill and sudden death. PACE - Pacing and Clinical Electrophysiology, 2018, 41, 1036-1042.	0.5	12
317	Ajmaline-induced Epsilon wave: Its role is not only for diagnosis but also for risk stratification. International Journal of Cardiology, 2018, 264, 99.	0.8	3

#	Article	IF	CITATIONS
318	Recent advances in the treatment of Brugada syndrome. Expert Review of Cardiovascular Therapy, 2018, 16, 387-404.	0.6	15
319	Concomitant Brugada syndrome substrate ablation and epicardial abdominal cardioverter-defibrillator implantation in a child. HeartRhythm Case Reports, 2018, 4, 214-218.	0.2	6
320	Reappraisal of Reported Genes for Sudden Arrhythmic Death. Circulation, 2018, 138, 1195-1205.	1.6	271
321	Genetic Testing in Athletes. , 2018, , 41-74.		0
322	Identification of an INa-dependent and Ito-mediated proarrhythmic mechanism in cardiomyocytes derived from pluripotent stem cells of a Brugada syndrome patient. Scientific Reports, 2018, 8, 11246.	1.6	31
323	Location: A surrogate for personalized treatment of sodium channelopathies. Annals of Neurology, 2018, 84, 1-9.	2.8	12
324	Ion Channel Disorders and Sudden Cardiac Death. International Journal of Molecular Sciences, 2018, 19, 692.	1.8	65
325	Role of genetic and electrolyte abnormalities in prolonged QTc interval and sudden cardiac death in end-stage renal disease patients. PLoS ONE, 2018, 13, e0200756.	1.1	11
326	Endocardial Approach for Substrate Ablation in Brugada Syndrome. , 2018, , .		1
327	2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death. Journal of the American College of Cardiology, 2018, 72, e91-e220.	1.2	991
328	Present Status of Brugada Syndrome. Journal of the American College of Cardiology, 2018, 72, 1046-1059.	1.2	291
329	J wave syndromes as a cause of malignant cardiac arrhythmias. PACE - Pacing and Clinical Electrophysiology, 2018, 41, 684-699.	0.5	18
330	Prolonged Right Ventricular Ejection Delay in Brugada Syndrome Depends on the Type of <i>SCN5A</i> Variant ― Electromechanical Coupling Through Tissue Velocity Imaging as a Bridge Between Genotyping and Phenotyping ―. Circulation Journal, 2018, 82, 53-61.	0.7	6
331	Comparing human iPSC-cardiomyocytes versus HEK293T cells unveils disease-causing effects of Brugada mutation A735V of NaV1.5 sodium channels. Scientific Reports, 2019, 9, 11173.	1.6	33
332	Brugada Syndrome: Progress in Genetics, Risk Stratification and Management. Arrhythmia and Electrophysiology Review, 2019, 8, 19-27.	1.3	9
333	Role of the voltage sensor module in Nav domain IV on fast inactivation in sodium channelopathies: The implication of closed-state inactivation. Channels, 2019, 13, 331-343.	1.5	16
334	Brugada syndrome: updated perspectives. Research Reports in Clinical Cardiology, 2019, Volume 10, 19-32.	0.2	3
335	Comparable clinical characteristics in Brugada syndrome patients harboring SCN5A or novel SCN10A variants. Europace, 2019, 21, 1550-1558.	0.7	15

#	Article	IF	CITATIONS
336	Autonomic modulation of the electrical substrate in mice haploinsufficient for cardiac sodium channels: a model of the Brugada syndrome. American Journal of Physiology - Cell Physiology, 2019, 317, C576-C583.	2.1	6
337	Drug-Induced Brugada Syndrome in a Psychiatric Patient: a Case Report. SN Comprehensive Clinical Medicine, 2019, 1, 637-641.	0.3	1
338	Atrial fibrillation and risk of major arrhythmic events in Brugada syndrome: A metaâ€analysis. Annals of Noninvasive Electrocardiology, 2019, 24, e12676.	0.5	14
339	Characterization of a novel SCN5A genetic variant A1294G associated with mixed clinical phenotype. Biochemical and Biophysical Research Communications, 2019, 516, 777-783.	1.0	8
340	<i>SCN5A</i> mutation G615E results in Na _V 1.5 voltage-gated sodium channels with normal voltage-dependent function yet loss of mechanosensitivity. Channels, 2019, 13, 287-298.	1.5	14
342	Role of SCN5A coding and non-coding sequences in Brugada syndrome onset: What's behind the scenes?. Biomedical Journal, 2019, 42, 252-260.	1.4	17
343	Novel SCN5A p.W697X Nonsense Mutation Segregation in a Family with Brugada Syndrome. International Journal of Molecular Sciences, 2019, 20, 4920.	1.8	7
344	Genotype–Phenotype Correlation in a Family with Brugada Syndrome Harboring the Novel p.Gln371* Nonsense Variant in the SCN5A Gene. International Journal of Molecular Sciences, 2019, 20, 5522.	1.8	8
345	3,4â€Dimethoxychalcone induces autophagy through activation of the transcription factors <scp>TFE</scp> 3 and <scp>TFEB</scp> . EMBO Molecular Medicine, 2019, 11, e10469.	3.3	45
346	Clinical characterisation of a novel <i>SCN5A</i> variant associated with progressive malignant arrhythmia and dilated cardiomyopathy. Cardiology in the Young, 2019, 29, 1257-1263.	0.4	7
347	Gender difference in clinical and genetic characteristics of Brugada syndrome: SADS-TW BrS registry. QJM - Monthly Journal of the Association of Physicians, 2019, 112, 343-350.	0.2	2
348	Impact of Ancestral Differences and Reassessment of the Classification of Previously Reported Pathogenic Variants in Patients With Brugada Syndrome in the Genomic Era: A SADS-TW BrS Registry. Frontiers in Genetics, 2018, 9, 680.	1.1	9
349	Genotype/Phenotype Relationship in a Consanguineal Family With Brugada Syndrome Harboring the R1632C Missense Variant in the SCN5A Gene. Frontiers in Physiology, 2019, 10, 666.	1.3	11
350	Novel SCN5A Frameshift Mutation in Brugada Syndrome Associated With Complex Arrhythmic Phenotype. Frontiers in Genetics, 2019, 10, 547.	1.1	10
351	<i>RRAD</i> mutation causes electrical and cytoskeletal defects in cardiomyocytes derived from a familial case of Brugada syndrome. European Heart Journal, 2019, 40, 3081-3094.	1.0	48
352	Minimal inflammatory foci of unknown etiology may be a tentative sign of early stage inherited cardiomyopathy. Modern Pathology, 2019, 32, 1281-1290.	2.9	16
353	Is variant pathogenicity in the eye of the beholder? A case of unexplained sudden cardiac arrest highlights the potentially dangerous role of historical rare variant compendia in SCN5A rare variant adjudication. HeartRhythm Case Reports, 2019, 5, 163-168.	0.2	1
354	Genetic interpretation and clinical translation of minor genes related to Brugada syndrome. Human Mutation, 2019, 40, 749-764.	1.1	32

#	Article	IF	CITATIONS
355	SCN5A Nonsense Mutation and NF1 Frameshift Mutation in a Family With Brugada Syndrome and Neurofibromatosis. Frontiers in Genetics, 2019, 10, 50.	1.1	12
356	Protein structure aids predicting functional perturbation of missense variants in SCN5A and KCNQ1. Computational and Structural Biotechnology Journal, 2019, 17, 206-214.	1.9	19
357	Clinicopathological and Genetic Profiles of Cases with Myocytes Disarray—Investigation for Establishing the Autopsy Diagnostic Criteria for Hypertrophic Cardiomyopathy. Journal of Clinical Medicine, 2019, 8, 463.	1.0	11
358	Epicardial ablation in genetic cardiomyopathies: a new frontier. European Heart Journal Supplements, 2019, 21, B61-B66.	0.0	12
359	UBC9 regulates cardiac sodium channel Nav1.5 ubiquitination, degradation and sodium current density. Journal of Molecular and Cellular Cardiology, 2019, 129, 79-91.	0.9	16
360	AMPKâ€mediated degradation of Nav1.5 through autophagy. FASEB Journal, 2019, 33, 5366-5376.	0.2	12
361	Structures of human Na _v 1.7 channel in complex with auxiliary subunits and animal toxins. Science, 2019, 363, 1303-1308.	6.0	318
362	Systematic reâ€evaluation of <i>SCN5A</i> variants associated with Brugada syndrome. Journal of Cardiovascular Electrophysiology, 2019, 30, 118-127.	0.8	36
363	Exome sequencing identifies molecular diagnosis in children with drugâ€resistant epilepsy. Epilepsia Open, 2019, 4, 63-72.	1.3	21
364	Channellopathies: New ECG Criteria for Risk Stratification. , 2019, , 119-135.		0
364 365	Channellopathies: New ECG Criteria for Risk Stratification. , 2019, , 119-135. Brugada pattern exposed with administration of amiodarone during emergent treatment of ventricular tachycardia. American Journal of Emergency Medicine, 2019, 37, 376.e3-376.e7.	0.7	0 3
364 365 366	Channellopathies: New ECG Criteria for Risk Stratification. , 2019, , 119-135. Brugada pattern exposed with administration of amiodarone during emergent treatment of ventricular tachycardia. American Journal of Emergency Medicine, 2019, 37, 376.e3-376.e7. <i>SCN5A</i> variants in Brugada syndrome: True, true false, or false true. Journal of Cardiovascular Electrophysiology, 2019, 30, 128-131.	0.7	0 3 5
364 365 366 367	Channellopathies: New ECG Criteria for Risk Stratification., 2019, , 119-135. Brugada pattern exposed with administration of amiodarone during emergent treatment of ventricular tachycardia. American Journal of Emergency Medicine, 2019, 37, 376.e3-376.e7. <i>>SCN5A</i> > variants in Brugada syndrome: True, true false, or false true. Journal of Cardiovascular Electrophysiology, 2019, 30, 128-131. Emerging Implications of Genetic Testing in Inherited Primary Arrhythmia Syndromes. Cardiology in Review, 2019, 27, 23-33.	0.7 0.8 0.6	0 3 5 13
364 365 366 367	Channellopathies: New ECG Criteria for Risk Stratification. , 2019, , 119-135.Brugada pattern exposed with administration of amiodarone during emergent treatment of ventricular tachycardia. American Journal of Emergency Medicine, 2019, 37, 376.e3-376.e7. <i>SCN5A<i>> SCN5A<i>> SCN5AEmerging Implications of Genetic Testing in Inherited Primary Arrhythmia Syndromes. Cardiology in Review, 2019, 27, 23-33.Calcium modulation of cardiac sodium channels. Journal of Physiology, 2020, 598, 2835-2846.</i></i></i>	0.7 0.8 0.6 1.3	0 3 5 13
 364 365 366 368 369 	Channellopathies: New ECG Criteria for Risk Stratification., 2019, , 119-135. Brugada pattern exposed with administration of amiodarone during emergent treatment of ventricular tachycardia. American Journal of Emergency Medicine, 2019, 37, 376.e3-376.e7. <i>SCN5A</i> variants in Brugada syndrome: True, true false, or false true. Journal of Cardiovascular Electrophysiology, 2019, 30, 128-131. Emerging Implications of Genetic Testing in Inherited Primary Arrhythmia Syndromes. Cardiology in Review, 2019, 27, 23-33. Calcium modulation of cardiac sodium channels. Journal of Physiology, 2020, 598, 2835-2846. Brugada syndrome with SCN5A mutations exhibits more pronounced electrophysiological defects and more severe prognosis: A metaã€analysis. Clinical Genetics, 2020, 97, 198-208.	0.7 0.8 0.6 1.3 1.0	0 3 5 13 10 21
 364 365 366 368 369 370 	Channellopathies: New ECG Criteria for Risk Stratification., 2019, , 119-135.Brugada pattern exposed with administration of amiodarone during emergent treatment of ventricular tachycardia. American Journal of Emergency Medicine, 2019, 37, 376.e3-376.e7. <td< td=""><td>0.7 0.8 0.6 1.3 1.0</br></td><td>0 3 5 13 10 21 12</td></td<>	0.7 0.8 0.6 	0 3 5 13 10 21 12
 364 365 366 367 368 369 370 371 	Channellopathies: New ECG Criteria for Risk Stratification. , 2019, , 119-135. Brugada pattern exposed with administration of amiodarone during emergent treatment of ventricular tachycardia. American Journal of Emergency Medicine, 2019, 37, 376.e3-376.e7. <\>SCN5A /i> variants in Brugada syndrome: True, true false, or false true. Journal of Cardiovascular Electrophysiology, 2019, 30, 128-131. Emerging Implications of Genetic Testing in Inherited Primary Arrhythmia Syndromes. Cardiology in Review, 2019, 27, 23-33. Calcium modulation of cardiac sodium channels. Journal of Physiology, 2020, 598, 2835-2846. Brugada syndrome with SCN5A mutations exhibits more pronounced electrophysiological defects and more severe prognosis: A metaã€analysis. Clinical Genetics, 2020, 97, 198-208. Direct and Indirect Suppression of Scn5a Gene Expression Mediates Cardiac Na+ Channel Inhibition by Wrt Signalling. Canadian Journal of Cardiology, 2020, 36, 564-576. Genetics of Electrophysiologic Disorders. , 2020, 141-173.	0.7 0.8 0.6 1.3 1.0 0.8	0 3 5 13 10 21 21 12

#	Article	IF	CITATIONS
373	Structure of the Cardiac Sodium Channel. Cell, 2020, 180, 122-134.e10.	13.5	217
374	Brugada Syndrome: Clinical Care Amidst Pathophysiological Uncertainty. Heart Lung and Circulation, 2020, 29, 538-546.	0.2	4
375	SCN5A mutation and a short coupled variant of Torsades de Pointes originating from the right ventricle: A case report. Journal of Cardiology Cases, 2020, 21, 104-105.	0.2	7
376	Electrocardiographic Effects of Propofol <i>versus</i> Etomidate in Patients with Brugada Syndrome. Anesthesiology, 2020, 132, 440-451.	1.3	17
377	Genetic Testing in Inherited Heart Diseases. Heart Lung and Circulation, 2020, 29, 505-511.	0.2	34
378	Identification of Novel SCN5A Single Nucleotide Variants in Brugada Syndrome: A Territory-Wide Study From Hong Kong. Frontiers in Physiology, 2020, 11, 574590.	1.3	9
379	Pathogenesis and management of Brugada syndrome in schizophrenia: A scoping review. General Hospital Psychiatry, 2020, 67, 83-91.	1.2	6
380	Inherited cardiac arrhythmias. Nature Reviews Disease Primers, 2020, 6, 58.	18.1	146
381	Pregnancy in Congenital Long QT and Brugada syndrome patients. , 2020, , 709-715.		0
382	Disease Phenotypes and Mechanisms of iPSC-Derived Cardiomyocytes From Brugada Syndrome Patients With a Loss-of-Function SCN5A Mutation. Frontiers in Cell and Developmental Biology, 2020, 8, 592893.	1.8	22
383	Role of Non-Coding Variants in Brugada Syndrome. International Journal of Molecular Sciences, 2020, 21, 8556.	1.8	6
384	Epigenomic and Transcriptomic Dynamics During Human Heart Organogenesis. Circulation Research, 2020, 127, e184-e209.	2.0	27
385	Compound Heterozygous SCN5A Mutations in Severe Sodium Channelopathy With Brugada Syndrome: A Case Report. Frontiers in Cardiovascular Medicine, 2020, 7, 117.	1.1	3
386	Novel CineECG Derived From Standard 12-Lead ECG Enables Right Ventricle Outflow Tract Localization of Electrical Substrate in Patients With Brugada Syndrome. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e008524.	2.1	14
387	A high number of â€~natural' mitochondrial DNA polymorphisms in a symptomatic Brugada syndrome type 1 patient. Journal of Genetics, 2020, 99, 1.	0.4	3
388	Molecular Modeling in Studies of Ion Channels and their Modulation by Ligands. Neuroscience and Behavioral Physiology, 2020, 50, 928-937.	0.2	1
389	Relationship between sodium channel function and clinical phenotype in SCN5A variants associated with Brugada syndrome. Human Mutation, 2020, 41, 2195-2204.	1.1	9
390	Calmodulin binds to the N-terminal domain of the cardiac sodium channel Na _v 1.5. Channels, 2020, 14, 268-286.	1.5	23

#	Article	IF	CITATIONS
391	A Novel Gain-of-Function <i>KCND3</i> Variant Associated with Brugada Syndrome. Cardiology, 2020, 145, 623-632.	0.6	4
392	Novel SCN5A p.V1429M Variant Segregation in a Family with Brugada Syndrome. International Journal of Molecular Sciences, 2020, 21, 5902.	1.8	5
393	<i>SCN5A</i> Mutation Type and a Genetic Risk Score Associate Variably With Brugada Syndrome Phenotype in <i>SCN5A</i> Families. Circulation Genomic and Precision Medicine, 2020, 13, e002911.	1.6	41
394	Late Sodium Current Inhibitors as Potential Antiarrhythmic Agents. Frontiers in Pharmacology, 2020, 11, 413.	1.6	38
395	High-Throughput Reclassification of SCN5A Variants. American Journal of Human Genetics, 2020, 107, 111-123.	2.6	88
396	European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. Europace,	0.7	62
397	European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. Journal of Arrhythmia, 2020, 36, 553-607	0.5	40
398	European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. Heart Rhythm, 2020, 17, e269-e316.	0.3	15
399	A Bayesian method to estimate variant-induced disease penetrance. PLoS Genetics, 2020, 16, e1008862.	1.5	11
400	Validation and Disease Risk Assessment of Previously Reported Genome-Wide Genetic Variants Associated With Brugada Syndrome. Circulation Genomic and Precision Medicine, 2020, 13, e002797.	1.6	12
401	Biophysical defects of an SCN5A V1667I mutation associated with epinephrineâ€induced marked QT prolongation. Journal of Cardiovascular Electrophysiology, 2020, 31, 2107-2115.	0.8	7
402	Roles for Countercharge in the Voltage Sensor Domain of Ion Channels. Frontiers in Pharmacology, 2020, 11, 160.	1.6	18
403	Handling of Ventricular Fibrillation in the Emergency Setting. Frontiers in Pharmacology, 2019, 10, 1640.	1.6	9
404	Explaining sudden infant death with cardiac arrhythmias: Complete exon sequencing of nine cardiac arrhythmia genes in Dutch SIDS cases highlights new and known DNA variants. Forensic Science International: Genetics, 2020, 46, 102266.	1.6	9
405	Variant Interpretation for Dilated Cardiomyopathy. Circulation Genomic and Precision Medicine, 2020, 13, e002480.	1.6	70
406	Brugada Syndrome: Oligogenic or Mendelian Disease?. International Journal of Molecular Sciences, 2020, 21, 1687.	1.8	45
407	Prevalence and electrophysiological phenotype of rare SCN5A genetic variants identified in unexplained sudden cardiac arrest survivors. Europace, 2020, 22, 622-631.	0.7	9
408	Wide QRS complex and the risk of major arrhythmic events in Brugada syndrome patients: A systematic review and metaâ€analysis. Journal of Arrhythmia, 2020, 36, 143-152.	0.5	10

#	Article	IF	CITATIONS
409	Analysis of De Novo Mutations in Sporadic Cardiomyopathies Emphasizes Their Clinical Relevance and Points to Novel Candidate Genes. Journal of Clinical Medicine, 2020, 9, 370.	1.0	12
410	Heritable arrhythmia syndromes associated with abnormal cardiac sodium channel function: ionic and non-ionic mechanisms. Cardiovascular Research, 2020, 116, 1557-1570.	1.8	53
411	Precision medicine in cardiac electrophysiology: where we are and where we need to go. Expert Review of Precision Medicine and Drug Development, 2020, 5, 165-180.	0.4	1
412	Recommendations for participation in leisure-time physical activity and competitive sports of patients with arrhythmias and potentially arrhythmogenic conditions. Part 2: ventricular arrhythmias, channelopathies, and implantable defibrillators. Europace, 2021, 23, 147-148.	0.7	47
413	Brugada syndrome genetics is associated with phenotype severity. European Heart Journal, 2021, 42, 1082-1090.	1.0	59
414	Brugada syndrome and arrhythmogenic cardiomyopathy: overlapping disorders of the connexome?. Europace, 2021, 23, 653-664.	0.7	16
415	Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiological Reviews, 2021, 101, 1083-1176.	13.1	87
416	Update on Brugada Syndrome 2019. Current Problems in Cardiology, 2021, 46, 100454.	1.1	27
417	Reduced current density, partially rescued by mexiletine, and depolarizing shift in activation of SCN5A W374G channels as a cause of severe form of Brugada syndrome. Annals of Noninvasive Electrocardiology, 2021, 26, e12828.	0.5	3
418	Brugada syndrome and reduced right ventricular outflow tract conduction reserve: a final common pathway?. European Heart Journal, 2021, 42, 1073-1081.	1.0	56
419	Pathogenesis and drug response of iPSC-derived cardiomyocytes from two Brugada syndrome patients with different Na _v 1.5-subunit mutations. Journal of Biomedical Research, 2021, 35, 395.	0.7	6
420	Inhibition of β-catenin Increases Voltage-gated Na ⁺ Current in Brugada Syndrome Cardiomyocytes. SSRN Electronic Journal, 0, , .	0.4	1
422	Novel SCN5A variants identified in a group of Iranian Brugada syndrome patients. Functional and Integrative Genomics, 2021, 21, 331-340.	1.4	1
423	iPSC-Cardiomyocyte Models of Brugada Syndrome—Achievements, Challenges and Future Perspectives. International Journal of Molecular Sciences, 2021, 22, 2825.	1.8	13
424	Multiple arrhythmic and cardiomyopathic phenotypes associated with an SCN5A A735E mutation. Journal of Electrocardiology, 2021, 65, 122-127.	0.4	7
425	Epigenetic Changes Governing Scn5a Expression in Denervated Skeletal Muscle. International Journal of Molecular Sciences, 2021, 22, 2755.	1.8	7
426	Regulation of Cardiac Conduction and Arrhythmias by Ankyrin/Spectrin-Based Macromolecular Complexes. Journal of Cardiovascular Development and Disease, 2021, 8, 48.	0.8	8
427	Novel SCN5A p.Val1667Asp Missense Variant Segregation and Characterization in a Family with Severe Brugada Syndrome and Multiple Sudden Deaths. International Journal of Molecular Sciences, 2021, 22, 4700.	1.8	5

#	Article	IF	CITATIONS
428	Evaluating the Use of Genetics in Brugada Syndrome Risk Stratification. Frontiers in Cardiovascular Medicine, 2021, 8, 652027.	1.1	11
429	Analysis of Brugada syndrome loci reveals that fine-mapping clustered GWAS hits enhances the annotation of disease-relevant variants. Cell Reports Medicine, 2021, 2, 100250.	3.3	4
430	Structural Basis for Pore Blockade of the Human Cardiac Sodium Channel Na _v 1.5 by the Antiarrhythmic Drug Quinidine**. Angewandte Chemie, 2021, 133, 11575-11581.	1.6	6
431	Brugada syndrome: current concepts and genetic background. Journal of Human Growth and Development, 2021, 31, 152-176.	0.2	4
432	Structural Basis for Pore Blockade of the Human Cardiac Sodium Channel Na _v 1.5 by the Antiarrhythmic Drug Quinidine**. Angewandte Chemie - International Edition, 2021, 60, 11474-11480.	7.2	63
433	Clinical significance of inferolateral early repolarisation and late potentials in children with Brugada Syndrome. Journal of Electrocardiology, 2021, 66, 79-83.	0.4	2
434	Single-cell transcriptomics trajectory and molecular convergence of clinically relevant mutations in Brugada syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1935-H1948.	1.5	6
435	Genetics and genomics of arrhythmic risk: current and future strategies to prevent sudden cardiac death. Nature Reviews Cardiology, 2021, 18, 774-784.	6.1	15
436	Elementary mechanisms of calmodulin regulation of NaV1.5 producing divergent arrhythmogenic phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2025085118.	3.3	13
437	Genetic investigations of 100 inherited cardiac disease-related genes in deceased individuals with schizophrenia. International Journal of Legal Medicine, 2021, 135, 1395-1405.	1.2	4
438	Functional Characterization of Two Novel Mutations in SCN5A Associated with Brugada Syndrome Identified in Italian Patients. International Journal of Molecular Sciences, 2021, 22, 6513.	1.8	4
439	A consistent arrhythmogenic trait in Brugada syndrome cellular phenotype. Clinical and Translational Medicine, 2021, 11, e413.	1.7	5
440	Personalized medicine in cardiovascular disease: review of literature. Journal of Diabetes and Metabolic Disorders, 2021, 20, 1793-1805.	0.8	8
441	A Novel SCN5A Variant Causes Temperature-Sensitive Loss Of Function in a Family with Symptomatic Brugada Syndrome, Cardiac Conduction Disease, and Sick Sinus Syndrome. Cardiology, 2021, 146, 754-762.	0.6	2
442	Tetrodotoxin: A New Strategy to Treat Visceral Pain?. Toxins, 2021, 13, 496.	1.5	4
443	The significance of genetic verification of the diagnosis for children with a dilated phenotype of cardiomyopathy with non-compact myocardium and increased trabecularity. Russian Pediatric Journal, 2021, 24, 173-180.	0.0	0
444	J wave syndromes: What's new?. Trends in Cardiovascular Medicine, 2022, 32, 350-363.	2.3	8
445	J Point and ST Elevation Resembling Brugada: A Marker of Mortality in Methanol Toxicity. Cardiology	0.5	1

#	Article	IF	Citations
446	Genetic Characteristics and Transcriptional Regulation of Sodium Channel Related Genes in Chinese Patients With Brugada Syndrome. Frontiers in Cardiovascular Medicine, 2021, 8, 714844.	1.1	0
447	Interpretation of Incidental Genetic Findings Localizing to Genes Associated With Cardiac Channelopathies and Cardiomyopathies. Circulation Genomic and Precision Medicine, 2021, 14, e003200.	1.6	8
448	SCN5A compound heterozygosity mutation in Brugada syndrome: Functional consequences and the implication for pharmacological treatment. Life Sciences, 2021, 278, 119646.	2.0	1
449	Case Report: A Novel Variant c.2262+3A>T of the SCN5A Gene Results in Intron Retention Associated With Incessant Ventricular Tachycardias. Frontiers in Medicine, 2021, 8, 659119.	1.2	2
450	The unique challenges of Brugada syndrome in spinal deformity surgery. Interdisciplinary Neurosurgery: Advanced Techniques and Case Management, 2021, 25, 101281.	0.2	0
452	Brugada syndrome masked by complete left bundle branch block: A clinical and functional study of its association with the p.1449Y>H SCN5A variant. Journal of Cardiovascular Electrophysiology, 2021, 32, 2785-2790.	0.8	2
453	Compendium of causative genes and their encoded proteins for common monogenic disorders. Protein Science, 2022, 31, 75-91.	3.1	10
454	Calmodulin Interactions with Voltage-Gated Sodium Channels. International Journal of Molecular Sciences, 2021, 22, 9798.	1.8	12
455	The Relieving Effects of a Polyherb-Based Dietary Supplement ColonVita on Gastrointestinal Quality of Life Index (GIQLI) in Older Adults with Chronic Gastrointestinal Symptoms Are Influenced by Age and Cardiovascular Disease: A 12-Week Randomized Placebo-Controlled Trial. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-13.	0.5	0
456	Modeling genetic cardiac channelopathies using induced pluripotent stem cells – Status quo from an electrophysiological perspective. Biochemical Pharmacology, 2021, 192, 114746.	2.0	3
457	Genetics of Cardiovascular Disease and Applications of Genetic Testing. , 2022, , 665-674.		0
458	Cardiac K+ Channels and Channelopathies. Handbook of Experimental Pharmacology, 2021, 267, 113-138.	0.9	6
460	The role of sodium channels in sudden unexpected death in pediatrics. Molecular Genetics & Genomic Medicine, 2020, 8, e1309.	0.6	14
461	Brugada Syndrome: Clinical and Genetic Aspects. , 2013, , 469-495.		1
462	Brugada Syndrome: Cellular Mechanisms and Approaches to Therapy. , 2013, , 497-536.		2
463	Cardiac Channelopathies and the Molecular Autopsy. , 2014, , 899-942.		1
468	Pathophysiology of Hyperkalemia Presenting as Brugada Pattern on Electrocardiogram (ECG). American Journal of Case Reports, 2020, 21, e923464.	0.3	4
469	Clinical and Genetic Diagnosis for Inherited Cardiac Arrhythmias. Journal of Nippon Medical School, 2014, 81, 203-210.	0.3	4

#	Article	IF	CITATIONS
470	Genetic testing for long QT syndrome and the category of cardiac ion channelopathies. PLOS Currents, 2012, 4, e4f9995f69e6c7.	1.4	11
471	Molecular investigation by whole exome sequencing revealed a high proportion of pathogenic variants among Thai victims of sudden unexpected death syndrome. PLoS ONE, 2017, 12, e0180056.	1.1	17
472	Risk Stratification and Therapeutic Approach in Brugada Syndrome. Arrhythmia and Electrophysiology Review, 2012, 1, 17.	1.3	4
473	Brugada Syndrome and Early Repolarisation: Distinct Clinical Entities or Different Phenotypes of the Same Genetic Disease?. Arrhythmia and Electrophysiology Review, 2016, 5, 84.	1.3	2
474	Insights for Stratification of Risk in Brugada Syndrome. European Cardiology Review, 2019, 14, 45-49.	0.7	12
475	Current Controversies and Challenges in Brugada Syndrome. European Cardiology Review, 2019, 14, 169-174.	0.7	12
476	A Pooled Analysis of the Prognostic Significance of Brugada Syndrome with Atrial Fibrillation. Current Pharmaceutical Design, 2020, 26, 129-137.	0.9	2
477	Towards a Unified Theory of Calmodulin Regulation (Calmodulation) of Voltage-Gated Calcium and Sodium Channels. Current Molecular Pharmacology, 2015, 8, 188-205.	0.7	48
478	The Diagnosis, Risk Stratification, and Treatment of Brugada Syndrome. Deutsches Ärzteblatt International, 2015, 112, 394-401.	0.6	24
479	Monogenec Arrhythmic Syndromes: From Molecular and Genetic Aspects to Bedside. Acta Naturae, 2016, 8, 62-74.	1.7	3
480	Practical Aspects in Genetic Testing for Cardiomyopathies and Channelopathies. , 2019, 40, 187-200.		6
481	The Crossroad of Ion Channels and Calmodulin in Disease. International Journal of Molecular Sciences, 2019, 20, 400.	1.8	32
482	Mechanisms of Arrhythmias in the Brugada Syndrome. International Journal of Molecular Sciences, 2020, 21, 7051.	1.8	22
484	Brugada syndrome in children - Stepping into unchartered territory. Annals of Pediatric Cardiology, 2017, 10, 248.	0.2	15
485	Cardiac Arrest and Sudden Cardiac Death in the Pediatric Population. Journal of Clinical & Experimental Cardiology, 2012, 03, .	0.0	2
486	Molecular autopsy in sudden cardiac death and its implication for families: discussion of the practical, legal and ethical aspects of the multidisciplinary collaboration. Swiss Medical Weekly, 0, , .	0.8	18
487	Genetic analysis of cardiac SCN5A Gene in Iranian patients with hereditary cardiac arrhythmias. Anatolian Journal of Cardiology, 2015, 16, 170-4.	0.5	3
488	Brugada syndrome and p.E61X_RANGRF. Cardiology Journal, 2014, 21, 121-127.	0.5	13

ARTICLE IF CITATIONS # The BrAID study protocol: integration of machine learning and transcriptomics for brugada syndrome 490 0.7 3 recognition. BMC Cardiovascular Disorders, 2021, 21, 494. Brugada syndrome: update and future perspectives. Heart, 2022, 108, 668-675. 1.2 Transcriptional profiles of genes related to electrophysiological function in 492 0.7 2 <i>Scn5a</i>^{+/â[^]} murine hearts. Physiological Reports, 2021, 9, e15043. Functional Analysis of SCN5A Genetic Variants Associated with Brugada Syndrome. Cardiology, 2022, 147, 35-46. Ca2+-dependent modulation of voltage-gated myocyte sodium channels. Biochemical Society 494 8 1.6 Transactions, 2021, 49, 1941-1961. Phenotypic Overlap of Lethal Arrhythmias Associated with Cardiac Sodium Mutations: Individual-Specific or Mutation-Specific?., 2011, , 185-196. 496 Genetics of Cardiac Arrhythmias. , 2012, , 81-90. 3 Abnormalities of Cardiac Rhythm., 2012, , 2383-2397. 499 Sodium Ion Channelopathies., 2013, , 193-207. 0 Genetic Basis of Brugada Syndrome. Journal of Genetic Syndromes & Gene Therapy, 2013, 4, . 0.2 Congenital long QT syndrome of particularly malignant course connected with so far unknown 501 0 0.5 mutation in the sodium channel SCN5A gene. Cardiology Journal, 2013, 20, 78-82. Ventricular Tachycardiac and Sudden Arrhythmic Death., 2014, , 2971-2998. 502 Brugada Syndrome 1992–2012. , 2014, , 925-933. 503 1 Impact of Genomics and Personalised Medicine on Current Practice of Clinical Cardiology. Journal of 504 0.1 Cardiology & Current Research, 2014, 1, . Similarities and Differences in the Electrocardiographic and Clinical Features Between Early 505 0 Repolarization Syndrome and Brugada Syndrome., 2016, , 233-244. Ionic and Cellular Mechanisms Underlying J Wave Syndromes., 2016,, 33-76. 506 507 Atrial Arrhythmias Associated with J Wave Syndromes., 2016, , 245-258. 0 Brugada Syndrome., 2016,, 175-191.

ARTICLE IF CITATIONS # Brugada Syndrome., 2018,, 356-372. 511 0 Brugada Syndrome: Current Perspectives. Cardiac and Vascular Biology, 2018, , 187-214. 0.2 514 Genetic Testing for Inheritable Cardiac Channelopathies. Cardiac and Vascular Biology, 2018, , 323-358. 0.2 0 Brugada Syndrome Diagnosed by Fever-induced Electrocardiographic Changes after Cardiopulmonary 516 Resuscitation. The Journal of the Japanese Society of Internal Medicine, 2018, 107, 2324-2330. Genotype-Phenotype Correlation of <i>SCN5A</i>Mutation for the Clinical and Electrocardiographic 517 Characteristics of Probands With Brugada Syndrome. Japanese Journal of Electrocardiology, 2018, 38, 0.0 0 269-276. 519 Brugada Syndrome: A Review. Yangtze Medicine, 2019, 03, 235-252. 0.1 The study on the modifying role of mitochondrial DNA polymorphism in the Brugada syndrome 520 0.2 0 manifestation. AlÊ¹manah KliniÄeskoj Mediciny, 2019, 47, 66-71. Genetic Architecture, Pathophysiology, and Clinical Management of Brugada Syndrome., 2020, , 285-299. Brugada syndrome diagnosed after ventricular fibrillation with anamnesis of fever. Cor Et Vasa, 2019, 523 0.1 0 61, 508-510. Study by next generation sequencing of sudden cardiac death (SCD). Forensic Science International: 524 0.1 Genetics Supplement Series, 2019, 7, 158-160. Acute Pericarditis-Induced Brugada Phenocopy: A Case Report and Review of the Literature. Cureus, 526 0.2 2 2020, 12, e9761. Brugada Syndrome., 2020,, 231-246. J Wave Syndromes: Brugada and Early Repolarization Syndromes. Contemporary Cardiology, 2020, 528 0.0 0 745-774. Syncope in a 3-year-old male: A case report. World Journal of Emergency Medicine, 2020, 11, 188. 529 The Channelopathies and Sudden Death., 2020, , 267-289. 530 0 Class I Antiarrhythmic Drugs: Na+ Channel Blockers., 2020, , 31-105. Mechanisms Underlying the Development of Cardiac Arrhythmias. Contemporary Cardiology, 2020, , 532 0.0 0 33-74. Specific Cardiovascular Diseases and Competitive Sports Participation: Channelopathies., 2020,, 361-402.

#	Article	IF	CITATIONS
534	Clinical approach to the patient with Brugada Syndrome: risk stratification and optimal management. Panminerva Medica, 2020, 61, 473-485.	0.2	0
535	Copy Number Variations of SCN5A in Brugada Syndrome. Japanese Journal of Electrocardiology, 2020, 40, 5-15.	0.0	0
536	Intersegment Contacts of Potentially Damaging Variants of Cardiac Sodium Channel. Frontiers in Pharmacology, 2021, 12, 756415.	1.6	1
537	Unraveling the Enigma of Bangungut: Is Sudden Unexplained Nocturnal Death Syndrome (SUNDS) in the Philippines a Disease Allelic to the Brugada Syndrome?. Philippine Journal of Internal Medicine, 2011, 49, 165-176.	0.0	14
539	Monogenec Arrhythmic Syndromes: From Molecular and Genetic Aspects to Bedside. Acta Naturae, 2016, 8, 62-74.	1.7	1
542	Cardiac conduction defects. Acta Biomedica, 2019, 90, 20-29.	0.2	23
543	Mechanistic insights into the interaction of cardiac sodium channel Nav1.5 with MOG1 and a new molecular mechanism for Brugada syndrome. Heart Rhythm, 2022, 19, 478-489.	0.3	6
544	Electrocardiographic interpretation in athletes. Minerva Cardiology and Angiology, 2021, 69, 533-556.	0.4	2
545	Modeling Human Cardiac Arrhythmias: Insights from Zebrafish. Journal of Cardiovascular Development and Disease, 2022, 9, 13.	0.8	9
546	Electrocardiographic interpretation in athletes. Minerva Cardiology and Angiology, 0, , .	0.4	1
547	Brugada syndrome: should we be screening patients before prescribing psychotropic medication?. Therapeutic Advances in Psychopharmacology, 2022, 12, 204512532110670.	1.2	0
548	Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. International Journal of Molecular Sciences, 2022, 23, 1381.	1.8	10
549	SCN5A mutation in Brugada syndrome is associated with substrate severity detected by electrocardiographic imaging and high-density electroanatomic mapping. Heart Rhythm, 2022, 19, 945-951.	0.3	10
550	Causative Variants for Inherited Cardiac Conditions in a Southeast Asian Population Cohort. Circulation Genomic and Precision Medicine, 2022, 15, CIRCGEN121003536.	1.6	1
551	Fenestropathy of Voltage-Gated Sodium Channels. Frontiers in Pharmacology, 2022, 13, 842645.	1.6	4
552	The Mechanism of Ajmaline and Thus Brugada Syndrome: Not Only the Sodium Channel!. Frontiers in Cardiovascular Medicine, 2021, 8, 782596.	1.1	6
553	Clinical Spectrum of SCN5A Channelopathy in Children with Primary Electrical Disease and Structurally Normal Hearts. Genes, 2022, 13, 16.	1.0	5
554	Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nature Genetics, 2022, 54, 232-239.	9.4	55

#	Article	IF	CITATIONS
555	Brugada Syndrome. JACC: Clinical Electrophysiology, 2022, 8, 386-405.	1.3	26
556	Dominant negative effects of SCN5A missense variants. Genetics in Medicine, 2022, 24, 1238-1248.	1.1	9
557	Xác định đột biáº;n trên má»™t số exon cá»§a gen SCN5A ở bệnh nhân máº⁻c há»™i chứng B 2022, 151, 1-8.	Brugada. Ta 0.0	ap Chi Nghie

558	Update on risk factors and biomarkers of sudden unexplained cardiac death. Journal of Clinical Forensic and Legal Medicine, 2022, 87, 102332.	0.5	4
559	Brugada Syndrome: Different Experimental Models and the Role of Human Cardiomyocytes From Induced Pluripotent Stem Cells. Journal of the American Heart Association, 2022, 11, e024410.	1.6	10
560	Characterization of the novel heterozygous SCN5A genetic variant Y739D associated with Brugada syndrome. Biochemistry and Biophysics Reports, 2022, 30, 101249.	0.7	2
561	MAIN ASPECTS OF BRUGADA SYNDROME. Eurasian Heart Journal, 2020, , 130-135.	0.2	0
562	Risk stratification of sudden cardiac death in Brugada syndrome: an updated review of literature. Egyptian Heart Journal, 2022, 74, 25.	0.4	3
563	Research progress of Nedd4L in cardiovascular diseases. Cell Death Discovery, 2022, 8, 206.	2.0	14
570	Analysis of a Family with Brugada Syndrome and Sudden Cardiac Death Caused by a Novel Mutation of SCN5A. Cardiology Research and Practice, 2022, 2022, 1-11.	0.5	2
571	Accelerating the genetic diagnosis of neurological disorders presenting with episodic apnoea in infancy. The Lancet Child and Adolescent Health, 2022, 6, 495-508.	2.7	1
572	Case Report: Family Curse: An SCN5A Mutation, c.611C>A, p.A204E Associated With a Family History of Dilated Cardiomyopathy and Arrhythmia. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	0
573	The Genetics of Brugada Syndrome. Annual Review of Genomics and Human Genetics, 2022, 23, 255-274.	2.5	13
574	Plasma MicroRNAs as noninvasive diagnostic biomarkers in patients with Brugada syndrome. PLoS ONE, 2022, 17, e0261390.	1.1	2
575	Diffuse fibrosis and repolarization disorders explain ventricular arrhythmias in Brugada syndrome: a computational study. Scientific Reports, 2022, 12, .	1.6	7
576	An Adolescent Patient with Sick Sinus Syndrome Complicated by Hypothyroidism Carrying an <i> SCN5A</i> Variant. International Heart Journal, 2022, 63, 627-632.	0.5	0
577	Proactive functional classification of all possible missense single-nucleotide variants in <i>KCNQ4</i> . Genome Research, 2022, 32, 1573-1584.	2.4	8
578	Progressive atrial myocardial fibrosis in a 4-year-old girl with atrial standstill associated with an SCN5A gene mutation. HeartRhythm Case Reports, 2022, 8, 636-638	0.2	2

#	ARTICLE Complex interactions between p.His558Arg and linked variants in the sodium voltage-gated channel	IF	CITATIONS
579 580	alpha subunit 5 (Na <i>_V</i> . Peerl, 0, 10, e13913.	0.9	0
581	Inflammation-associated Diseases. Current Drug Targets, 2022, 23, 1290-1303. Mechanism of action of antiarrhythmic drugs. , 2023, , 289-327.		0
582	Genetic Profile and Clinical Characteristics of Brugada Syndrome in the Chinese Population. SSRN Electronic Journal, 0, , .	0.4	0
583	Life Threatening Broad QRS Tachycardia in an Infant with Conduction Disorder and SCN5A Mutation. Congenital Heart Disease, 2022, 17, 551-556.	0.0	0
584	Precision Medicine in Cardiovascular Disease Practice. , 2022, , 53-66.		0
585	Brugada Syndrome Associated with Different Heterozygous SCN5A Variants in Two Unrelated Families. Journal of Clinical Medicine, 2022, 11, 5625.	1.0	1
587	Genome-wide analyses identify SCN5A as a susceptibility locus for premature atrial contraction frequency. IScience, 2022, 25, 105210.	1.9	0
588	Screening, diagnosis and follow-up of Brugada syndrome in children: aÂDutch expert consensus statement. Netherlands Heart Journal, 2023, 31, 133-137.	0.3	4
589	Whole exome sequencing in Brugada and long QT syndromes revealed novel rare and potential pathogenic mutations related to the dysfunction of the cardiac sodium channel. Orphanet Journal of Rare Diseases, 2022, 17, .	1.2	5
590	Alterations of the Sialylation Machinery in Brugada Syndrome. International Journal of Molecular Sciences, 2022, 23, 13154.	1.8	1
591	Genetic Profile and Clinical Characteristics of Brugada Syndrome in the Chinese Population. Journal of Cardiovascular Development and Disease, 2022, 9, 369.	0.8	0
592	When the Gates Swing Open Only: Arrhythmia Mutations That Target the Fast Inactivation Gate of Nav1.5. Cells, 2022, 11, 3714.	1.8	1
593	Genome Editing and Myocardial Development. Advances in Experimental Medicine and Biology, 2023, , 53-73.	0.8	0
594	Identification of a novel missense SCN5A mutation in a Chinese Han family with Brugada syndrome. Biochemical and Biophysical Research Communications, 2023, 649, 55-61.	1.0	0
595	Risk stratification of sudden cardiac death in asymptomatic female Brugada syndrome patients: A literature review. Annals of Noninvasive Electrocardiology, 2023, 28, .	0.5	2
596	A Novel DLG1 Variant in a Family with Brugada Syndrome: Clinical Characteristics and In Silico Analysis. Genes, 2023, 14, 427.	1.0	1
598	Frontier and hotspot evolution in Brugada syndrome: A bibliometric analysis from 2002 to 2022. Medicine (United States), 2023, 102, e33038.	0.4	0

#	Article	IF	CITATIONS
599	Unraveling the influence of genomic context on pleiotropy in SCN5A-mediated cardiac channelopathies: Insights from the Worm Study. Heart Rhythm, 2023, , .	0.3	0
600	Rare Compound Heterozygous Missense Mutation of the <i>SCN5A</i> Gene with Childhood-Onset Sick Sinus Syndrome in Two Chinese Sisters. International Heart Journal, 2023, 64, 299-305.	0.5	0
601	Genetic testing in children with Brugada syndrome: results from a large prospective registry. Europace, 2023, 25, .	0.7	6
602	Structural Abnormalities in Brugada Syndrome and Non-Invasive Cardiac Imaging: A Systematic Review. Biology, 2023, 12, 606.	1.3	1
603	Chinese herbal medicine for the treatment of cardiovascular diseases ─ targeting cardiac ion channels. Pharmacological Research, 2023, , 106765.	3.1	1
606	Genetic testing in athletes. , 2023, , 147-173.		0
615	Induced Pluripotent Stem Cells and Allogeneic Mesenchymal Stem Cell Therapy in Cardiovascular Diseases. , 2023, , 65-96.		0
623	Case report: State-of-the-art risk-modifying treatment of sudden cardiac death in an asymptomatic patient with a mutation in the SCN5A gene and a review of the literature. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	2
641	Case Report: SCN5A mutations in three young patients with sick sinus syndrome. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	0
648	Case Report: Comprehensive evaluation of ECG phenotypes and genotypes in a family with Brugada syndrome carrying SCN5A-R376H. Frontiers in Cardiovascular Medicine, 0, 11, .	1.1	0