Design of Ice-free Nanostructured Surfaces Based on Re Droplets

ACS Nano 4, 7699-7707

DOI: 10.1021/nn102557p

Citation Report

#	Article	IF	CITATIONS
2	Frost formation and ice adhesion on superhydrophobic surfaces. Applied Physics Letters, 2010, 97, .	1.5	616
3	Exploiting Topographical Texture To Impart Icephobicity. ACS Nano, 2010, 4, 7048-7052.	7.3	355
4	Multi-level micro-/nanostructures of butterfly wings adapt at low temperature to water repellency. Soft Matter, 2011, 7, 10569.	1.2	47
5	Advanced Studies of Water Evaporation Kinetics over Teflon-Coated Tungsten Nanorod Surfaces with Variable Hydrophobicity and Morphology. Journal of Physical Chemistry C, 2011, 115, 13804-13812.	1.5	20
6	Design and Fabrication of Teflon-Coated Tungsten Nanorods for Tunable Hydrophobicity. Langmuir, 2011, 27, 4661-4668.	1.6	34
7	Predictive Model for Ice Formation on Superhydrophobic Surfaces. Langmuir, 2011, 27, 14143-14150.	1.6	175
8	Exceptional Superhydrophobicity and Low Velocity Impact Icephobicity of Acetone-Functionalized Carbon Nanotube Films. Langmuir, 2011, 27, 9936-9943.	1.6	96
9	Fabrication of Super-Oil-Repellent Dual Pillar Surfaces with Optimized Pillar Intervals. Langmuir, 2011, 27, 11752-11756.	1.6	76
10	Impact of Picoliter Droplets on Superhydrophobic Surfaces with Ultralow Spreading Ratios. Langmuir, 2011, 27, 13897-13903.	1.6	31
11	A Self-Templated Etching Route to Surface-Rough Silica Nanoparticles for Superhydrophobic Coatings. ACS Applied Materials & Samp; Interfaces, 2011, 3, 1269-1276.	4.0	80
12	Thermal stable superhydrophobic polyphenylsilsesquioxane/nanosilica composite coatings. Applied Surface Science, 2011, 258, 1572-1580.	3.1	24
13	Hydrogel-actuated integrated responsive systems (HAIRS): Moving towards adaptive materials. Current Opinion in Solid State and Materials Science, 2011, 15, 236-245.	5.6	66
14	Fabrication of a transparent superamphiphobic coating with improved stability. Soft Matter, 2011, 7, 6435.	1.2	137
15	One-step vapour-phase formation of patternable, electrically conductive, superamphiphobic coatings on fibrous materials. Soft Matter, 2011, 7, 8158.	1.2	84
16	In-Silico Environment for Designing Anti-icing Surfaces., 2011,,.		1
17	Biologically inspired hairy structures for superhydrophobicity. Materials Science and Engineering Reports, 2011, 72, 189-201.	14.8	65
18	Methodology for Imaging Nano-to-Microscale Water Condensation Dynamics on Complex Nanostructures. ACS Nano, 2011, 5, 5962-5968.	7.3	84
19	Lotus Effect and Self-Cleaning. Springer Series in Materials Science, 2011, , 319-341.	0.4	8

#	Article	IF	CITATIONS
20	Surface Nanoengineering Inspired by Evolution. BioNanoScience, 2011, 1, 63-77.	1.5	14
21	The superhydrophobicity of polymer surfaces: Recent developments. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1203-1217.	2.4	151
22	Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation. Advanced Functional Materials, 2011, 21, 4617-4623.	7.8	500
23	Deterministic Nanotexturing by Directional Photofluidization Lithography. Advanced Materials, 2011, 23, 3244-3250.	11.1	37
25	Durable, Selfâ€Healing Superhydrophobic and Superoleophobic Surfaces from Fluorinatedâ€Decyl Polyhedral Oligomeric Silsesquioxane and Hydrolyzed Fluorinated Alkyl Silane. Angewandte Chemie - International Edition, 2011, 50, 11433-11436.	7.2	451
26	Anti-icing performance of superhydrophobic surfaces. Applied Surface Science, 2011, 257, 6264-6269.	3.1	754
27	Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces. Applied Physics Letters, 2011, 99, .	1.5	47
28	Anti-Icing Nanoparticle/Polymer Composite Coatings. Key Engineering Materials, 2012, 501, 22-26.	0.4	1
29	A Comparison of VOF Simulations with Experimental Data for Droplet Impact on a Dry Surface. , 2012, , .		0
30	Transparent and superhydrophobic Ta_2O_5 nanostructured thin films. Optical Materials Express, 2012, 2, 214.	1.6	18
31	Temperature dependent droplet impact dynamics on flat and textured surfaces. Applied Physics Letters, 2012, 100, .	1.5	90
32	Superhydrophobic surfaces cannot reduce ice adhesion. Applied Physics Letters, 2012, 101, .	1.5	282
33	Biotemplated hierarchical surfaces and the role of dual length scales on the repellency of impacting droplets. Applied Physics Letters, 2012, 100, .	1.5	87
34	In Situ SAXS Analysis of Interfacial Wetting on Nanorough Surfaces. Australian Journal of Chemistry, 2012, 65, 254.	0.5	3
35	Water Droplet Impact Dynamics at Icing Conditions with and without Superhydrophobicity., 2012,,.		8
36	Temperature and humidity effects on superhydrophobicity of nanocomposite coatings. Applied Physics Letters, 2012, 100, 053112.	1.5	36
37	Hydrate-phobic surfaces: fundamental studies in clathrate hydrate adhesion reduction. Physical Chemistry Chemical Physics, 2012, 14, 6013.	1.3	72
38	Investigating the Effects of Solid Surfaces on Ice Nucleation. Langmuir, 2012, 28, 10749-10754.	1.6	139

#	ARTICLE	IF	CITATIONS
39	Nanomechanical and nanotribological properties of plasma nanotextured superhydrophilic and superhydrophobic polymeric surfaces. Nanotechnology, 2012, 23, 505711.	1.3	31
40	Freezing of a Liquid Marble. Langmuir, 2012, 28, 10324-10328.	1.6	32
41	Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature, 2012, 489, 274-277.	13.7	467
42	Frost halos from supercooled water droplets. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16073-16078.	3.3	143
43	Facile fabrication of superhydrophobic nanostructures on aluminum foils with controlled-condensation and delayed-icing effects. Applied Surface Science, 2012, 258, 8253-8257.	3.1	91
44	Superhydrophobic Hierarchical Honeycomb Surfaces. Langmuir, 2012, 28, 13712-13719.	1.6	74
45	Mechanism of supercooled droplet freezing on surfaces. Nature Communications, 2012, 3, 615.	5.8	527
46	Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter, 2012, 8, 11217.	1.2	342
47	Condensation mode determines the freezing of condensed water on solid surfaces. Soft Matter, 2012, 8, 8285.	1.2	64
48	Dynamics of Ice Nucleation on Water Repellent Surfaces. Langmuir, 2012, 28, 3180-3186.	1.6	345
49	Direct Imaging of Complex Nano- to Microscale Interfaces Involving Solid, Liquid, and Gas Phases. ACS Nano, 2012, 6, 9326-9334.	7.3	88
50	Preparation of metallic coatings with reversibly switchable wettability based on plasma spraying technology. Journal of Coatings Technology Research, 2012, 9, 579-587.	1.2	11
51	Structural Transformation by Electrodeposition on Patterned Substrates (STEPS): A New Versatile Nanofabrication Method. Nano Letters, 2012, 12, 527-533.	4.5	55
52	Superhydrophobic polymer surface via solvent-induced crystallization. , 2012, , .		3
53	Ice-Phobic Surfaces That Are Wet. ACS Nano, 2012, 6, 6536-6540.	7.3	163
54	Enriching libraries of high-aspect-ratio micro- or nanostructures by rapid, low-cost, benchtop nanofabrication. Nature Protocols, 2012, 7, 311-327.	5 . 5	39
55	Scale-Up of a Reaction Chamber for Superhydrophobic Coatings Based on Silicone Nanofilaments. Industrial & Damp; Engineering Chemistry Research, 2012, 51, 2631-2636.	1.8	33
56	Bio-Inspired Self-Cleaning Surfaces. Annual Review of Materials Research, 2012, 42, 231-263.	4.3	427

#	Article	IF	Citations
57	Hybrid Surface Design for Robust Superhydrophobicity. Langmuir, 2012, 28, 9606-9615.	1.6	91
58	Induced Detachment of Coalescing Droplets on Superhydrophobic Surfaces. Langmuir, 2012, 28, 1290-1303.	1.6	61
59	Fluoroalkyl Silane Modified Silicone Rubber/Nanoparticle Composite: A Super Durable, Robust Superhydrophobic Fabric Coating. Advanced Materials, 2012, 24, 2409-2412.	11,1	560
60	Liquid-Infused Nanostructured Surfaces with Extreme Anti-Ice and Anti-Frost Performance. ACS Nano, 2012, 6, 6569-6577.	7.3	1,118
61	Design of Anti-Icing Coatings Using Supercooled Droplets As Nano-to-Microscale Probes. Langmuir, 2012, 28, 4434-4446.	1.6	62
62	Fabrication of Ketjen black-high density polyethylene superhydrophobic conductive surfaces. Carbon, 2012, 50, 4284-4290.	5.4	37
63	Hierarchical polymeric textures via solvent-induced phase transformation: A single-step production of large-area superhydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 394, 8-13.	2.3	54
64	Facile control of surface wettability in TiO2/poly(methyl methacrylate) composite films. Journal of Colloid and Interface Science, 2012, 368, 603-607.	5.0	21
65	Steering nanofibers: An integrative approach to bio-inspired fiber fabrication and assembly. Nano Today, 2012, 7, 35-52.	6.2	51
66	Selfâ€Assembling, Bioinspired Wax Crystalline Surfaces with Timeâ€Dependent Wettability. Advanced Functional Materials, 2012, 22, 745-750.	7.8	40
67	Proteinâ€Protein Nanoimprinting of Silk Fibroin Films. Advanced Materials, 2013, 25, 2409-2414.	11.1	78
68	Preparation and evaluation of hydrophobic surfaces of polyacrylate-polydimethylsiloxane copolymers for anti-icing. Progress in Organic Coatings, 2013, 76, 1435-1444.	1.9	52
69	Water Drops Dancing on Ice: How Sublimation Leads to Drop Rebound. Physical Review Letters, 2013, 111, 014501.	2.9	97
70	Dynamic Defrosting on Nanostructured Superhydrophobic Surfaces. Langmuir, 2013, 29, 9516-9524.	1.6	158
71	Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Physical Chemistry Chemical Physics, 2013, 15, 581-585.	1.3	284
72	Hydrophobic Surfaces: Topography Effects on Wetting by Supercooled Water and Freezing Delay. Journal of Physical Chemistry C, 2013, 117, 21752-21762.	1.5	113
73	The challenge of removing snow downfall on photovoltaic solar cell roofs in order to maximize solar energy efficiencyâ€"Research opportunities for the future. Energy and Buildings, 2013, 67, 334-351.	3.1	83
74	Water droplet behavior on superhydrophobic SiO2 nanocomposite films during icing/deicing cycles. Materials Characterization, 2013, 82, 9-16.	1.9	65

#	Article	lF	Citations
75	Transparent Superhydrophobic/Translucent Superamphiphobic Coatings Based on Silica–Fluoropolymer Hybrid Nanoparticles. Langmuir, 2013, 29, 15051-15057.	1.6	139
76	Reducing the contact time of a bouncing drop. Nature, 2013, 503, 385-388.	13.7	824
77	Facile synthesis of transparent superhydrophobic titania coating by using soot as a nanoimprint template. RSC Advances, 2013, 3, 22825.	1.7	40
78	Antiicing performance of superhydrophobic coatings on aluminum and stainless steel. Russian Chemical Bulletin, 2013, 62, 380-387.	0.4	17
79	An experimental investigation into the icing and melting process of a water droplet impinging onto a superhydrophobic surface. Science China: Physics, Mechanics and Astronomy, 2013, 56, 2047-2053.	2.0	19
80	Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces. Applied Microbiology and Biotechnology, 2013, 97, 9257-9262.	1.7	270
81	Development of anti-icing materials by chemical tailoring of hydrophobic textured metallic surfaces. Journal of Colloid and Interface Science, 2013, 394, 539-544.	5.0	40
82	Evaluation of icephobic coatings—Screening of different coatings and influence of roughness. Applied Surface Science, 2013, 282, 870-879.	3.1	154
83	Tuning surface wettability using single layered and hierarchically ordered arrays of spherical colloidal particles. Soft Matter, 2013, 9, 3032.	1.2	36
84	Shape of Water–Air Interface beneath a Drop on a Superhydrophobic Surface Revealed: Constant Curvature That Approaches Zero. Journal of Physical Chemistry C, 2013, 117, 6658-6663.	1.5	18
85	Self-assembly of nanostructures towards transparent, superhydrophobic surfaces. Journal of Materials Chemistry A, 2013, 1, 2955-2969.	5.2	246
86	Long-lived superhydrophobic surfaces. Journal of Materials Chemistry A, 2013, 1, 4146.	5.2	288
87	Verification of Icephobic/Anti-icing Properties of a Superhydrophobic Surface. ACS Applied Materials & Samp; Interfaces, 2013, 5, 3370-3381.	4.0	447
88	Mechanism of Frost Formation on Lubricant-Impregnated Surfaces. Langmuir, 2013, 29, 5230-5238.	1.6	322
89	Temperature-dependent bouncing of super-cooled water on teflon-coated superhydrophobic tungsten nanorods. Applied Surface Science, 2013, 279, 76-84.	3.1	32
90	Ice-phobic Coatings Based on Silicon-Oil-Infused Polydimethylsiloxane. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4053-4062.	4.0	215
91	Robust Prototypical Anti-icing Coatings with a Self-lubricating Liquid Water Layer between Ice and Substrate. ACS Applied Materials & Interfaces, 2013, 5, 4026-4030.	4.0	269
92	Fabrication of high wettability gradient on copper substrate. Applied Surface Science, 2013, 280, 25-32.	3.1	62

#	Article	IF	CITATIONS
93	Interfacial materials with special wettability. MRS Bulletin, 2013, 38, 366-371.	1.7	137
94	Hydrophobic surfaces for control and enhancement of water phase transitions. MRS Bulletin, 2013, 38, 407-411.	1.7	40
95	Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces. ACS Nano, 2013, 7, 1618-1627.	7.3	485
96	Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Advances, 2013, 3, 12003.	1.7	521
97	Delayed freezing of water droplet on silver nanocolumnar thin film. Applied Physics Letters, 2013, 102,	1.5	38
98	Influence of Substrate Elasticity on Droplet Impact Dynamics. Langmuir, 2013, 29, 4520-4524.	1.6	52
99	Evaporation Kinetics of Sessile Water Droplets on Micropillared Superhydrophobic Surfaces. Langmuir, 2013, 29, 6032-6041.	1.6	127
100	Ice Adhesion on Lubricant-Impregnated Textured Surfaces. Langmuir, 2013, 29, 13414-13418.	1.6	298
101	Bioâ€Inspired Superoleophobic Fluorinated Wax Crystalline Surfaces. Advanced Functional Materials, 2013, 23, 4572-4576.	7.8	39
102	Superoleophobic Textured Copper Surfaces Fabricated by Chemical Etching/Oxidation and Surface Fluorination. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10035-10041.	4.0	84
103	Studies of the Dimensional Effects of SU-8 and PDMS Pillar Arrays on Hydrophobicity. , 2013, , .		0
104	Three-dimensional superhydrophobic structures printed using solid freeform fabrication tools. International Journal of Rapid Manufacturing, 2013, 3, 89.	0.5	3
105	Study on Anti-Freezing Performance of Organic Fluorine Siloxane Nano Coating. Applied Mechanics and Materials, 0, 475-476, 1325-1328.	0.2	0
106	Activating the Microscale Edge Effect in a Hierarchical Surface for Frosting Suppression and Defrosting Promotion. Scientific Reports, 2013, 3, 2515.	1.6	166
107	Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer. Scientific Reports, 2013, 3, 1988.	1.6	222
108	Bioinspired hierarchical superhydrophobic structures formed by n-paraffin waxes of varying chain lengths. Soft Matter, 2013, 9, 5710.	1.2	23
109	Percolation-induced frost formation. Europhysics Letters, 2013, 101, 16009.	0.7	63
110	Visualization of contact line motion on hydrophobic textures. Surface Innovations, 2013, 1, 84-91.	1.4	11

#	Article	IF	Citations
111	Computational Simulation of the Impact and Freezing of Micron-Size Water Droplets on Super-Hydrophobic Surfaces. , 2013, , .		O
112	Effect of Stagnation Flow on an Impacting Water Droplet on a Superhydrophobic Surface. , 2013, , .		0
113	Hierarchically structured re-entrant microstructures for superhydrophobic surfaces with extremely low hysteresis. Journal of Micromechanics and Microengineering, 2014, 24, 095023.	1.5	13
114	Surface engineering for phase change heat transfer: A review. MRS Energy & Sustainability, 2014, 1, 1.	1.3	288
115	Superhydrophobic Surface by Replication of Laser Micromachined Pattern in Epoxy/Alumina Nanoparticle Composite. Journal of Nanomaterials, 2014, 2014, 1-11.	1.5	31
116	Ice Adhesion Strength on Hydrophobic and Superhydrophobic Coatings. , 2014, , .		16
117	Effects of Surface Characteristics and Droplet Diameter on the Freezing of Supercooled Water Droplets Impacting a Cooled Substrate. , 2014, , .		1
118	Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics. Applied Physics Letters, 2014, 105, .	1.5	154
119	Viscosity of interfacial water regulates ice nucleation. Applied Physics Letters, 2014, 104, .	1.5	23
120	Fabrication of Superhydrophobic Copper Surface on Various Substrates for Roll-off, Self-Cleaning, and Water/Oil Separation. ACS Applied Materials & Samp; Interfaces, 2014, 6, 22034-22043.	4.0	119
121	Scalable Nanomanufacturing of Virusâ€ŧemplated Coatings for Enhanced Boiling. Advanced Materials Interfaces, 2014, 1, 1300107.	1.9	55
122	Superhydrophobic surfaces by laser ablation of rare-earth oxide ceramics. MRS Communications, 2014, 4, 95-99.	0.8	32
123	Mechanism of Delayed Frost Growth on Superhydrophobic Surfaces with Jumping Condensates: More Than Interdrop Freezing. Langmuir, 2014, 30, 15416-15422.	1.6	132
124	Strong anti-ice ability of nanohairs over micro-ratchet structures. Nanoscale, 2014, 6, 3917-3920.	2.8	46
125	Enhancement of dynamic wetting properties by direct fabrication on robust micro–micro hierarchical polymer surfaces. Applied Surface Science, 2014, 300, 117-123.	3.1	15
126	Stable superhydrophobic coatings using PVDF–MWCNT nanocomposite. Applied Surface Science, 2014, 301, 208-215.	3.1	55
127	Peanut Leaf Inspired Multifunctional Surfaces. Small, 2014, 10, 294-299.	5.2	107
128	Superamphiphobic aluminum alloy surfaces with micro and nanoscale hierarchical roughness produced by a simple and environmentally friendly technique. Journal of Materials Science, 2014, 49, 1839-1853.	1.7	57

#	Article	IF	CITATIONS
129	Impact dynamics of water droplets on Cu films with three-level hierarchical structures. Journal of Materials Science, 2014, 49, 3379-3390.	1.7	14
130	Flyâ€Eye Inspired Superhydrophobic Antiâ€Fogging Inorganic Nanostructures. Small, 2014, 10, 3001-3006.	5.2	290
131	Bio-Inspired Strategies for Anti-Icing. ACS Nano, 2014, 8, 3152-3169.	7.3	760
132	Condensation and freezing of droplets on superhydrophobic surfaces. Advances in Colloid and Interface Science, 2014, 210, 47-57.	7.0	223
133	One-step fabrication of robust and optically transparent slippery coatings. RSC Advances, 2014, 4, 55263-55270.	1.7	18
134	Butterfly-inspired photonics reverse diffraction color sequence. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15602-15603.	3.3	5
135	Numerical Simulation of Condensation on Structured Surfaces. Langmuir, 2014, 30, 14048-14055.	1.6	22
136	Ice-phobic gummed tape with nano-cones on microspheres. Journal of Materials Chemistry A, 2014, 2, 3312.	5.2	51
137	Electrochemical fabrication of transparent nickel hydroxide nanostructures with tunable superhydrophobicity/superhydrophilicity for 2D microchannels application. Journal of Materials Chemistry A, 2014, 2, 1985-1990.	5.2	19
138	Numerical and Analytical Study of The Impinging and Bouncing Phenomena of Droplets on Superhydrophobic Surfaces with Microtextured Structures. Langmuir, 2014, 30, 11640-11649.	1.6	47
139	Development of Sol–Gel Icephobic Coatings: Effect of Surface Roughness and Surface Energy. ACS Applied Materials & Development of Sol–Gel Icephobic Coatings: Effect of Surface Roughness and Surface Energy. ACS Applied Materials & Development of Sol–Gel Icephobic Coatings: Effect of Surface Roughness and Surface Energy. ACS Applied Materials & Development of Sol–Gel Icephobic Coatings: Effect of Surface Roughness and Surface Energy. ACS Applied Materials & Development of Sol–Gel Icephobic Coatings: Effect of Surface Roughness and Surface Energy. ACS Applied Materials & Development of Sol–Gel Icephobic Coatings: Effect of Surface Roughness and Surface Energy. ACS Applied Materials & Development of Sol—Gel Icephobic Coatings: Effect of Surface Roughness and Surface Energy. ACS Applied Materials & Development of Sol—Gel Icephobic Coatings: Effect of Surface Roughness and Surface Energy. ACS Applied Materials & Development of Sol⧠(1998) Applied Materials & Development of Sol⧠(1998) Account (1998) Account (1998	4.0	146
140	A novel superhydrophobic hybrid nanocomposite material prepared by surface-initiated AGET ATRP and its anti-icing properties. Journal of Materials Chemistry A, 2014, 2, 9390-9399.	5.2	173
141	Drop Impact Dynamics on Oil-Infused Nanostructured Surfaces. Langmuir, 2014, 30, 8400-8407.	1.6	81
142	On the Nanoengineering of Superhydrophobic and Impalement Resistant Surface Textures below the Freezing Temperature. Nano Letters, 2014, 14, 172-182.	4.5	276
143	Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property. Applied Surface Science, 2014, 317, 701-709.	3.1	201
144	Recent advances in the potential applications of bioinspired superhydrophobic materials. Journal of Materials Chemistry A, 2014, 2, 16319-16359.	5.2	490
145	Anti″ce Coating Inspired by Ice Skating. Small, 2014, 10, 4693-4699.	5.2	157
146	Freezing of sessile water droplets on surfaces with various roughness and wettability. Applied Physics Letters, 2014, 104, .	1.5	130

#	Article	IF	Citations
147	Supercooled Water Drops Impacting Superhydrophobic Textures. Langmuir, 2014, 30, 10855-10861.	1.6	157
148	Full-Field Dynamic Characterization of Superhydrophobic Condensation on Biotemplated Nanostructured Surfaces. Langmuir, 2014, 30, 7556-7566.	1.6	58
149	Facile fabrication of self-repairing superhydrophobic coatings. Chemical Communications, 2014, 50, 11891-11894.	2.2	110
150	Flexible Teflon Nanocone Array Surfaces with Tunable Superhydrophobicity for Self-Cleaning and Aqueous Droplet Patterning. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11110-11117.	4.0	94
151	Adhesion-Regulated Switchable Fluid Slippage on Superhydrophobic Surfaces. Journal of Physical Chemistry C, 2014, 118, 2564-2569.	1.5	50
152	Mechanically Robust, Thermally Stable, Broadband Antireflective, and Superhydrophobic Thin Films on Glass Substrates. ACS Applied Materials & Substrates. ACS ACS Applied Materials & Substrates. ACS	4.0	103
153	Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces. Applied Surface Science, 2014, 314, 241-250.	3.1	234
154	DEVELOPMENT OF FRACTAL ULTRA-HYDROPHOBIC COATING FILMS TO PREVENT WATER VAPOR DEWING AND TO DELAY FROSTING. Fractals, 2014, 22, 1440002.	1.8	13
155	Switching Fluid Slippage on pH-Responsive Superhydrophobic Surfaces. Langmuir, 2014, 30, 6463-6468.	1.6	22
156	Reducing ice adhesion by hierarchical micro-nano-pillars. Applied Surface Science, 2014, 305, 589-595.	3.1	79
157	Investigation of ice shedding properties of superhydrophobic coatings on helicopter blades. Cold Regions Science and Technology, 2014, 100, 50-58.	1.6	101
158	Three-Dimensional Triple Hierarchy Formed by Self-Assembly of Wax Crystals on CuO Nanowires for Nonwettable Surfaces. ACS Applied Materials & Samp; Interfaces, 2014, 6, 4927-4934.	4.0	20
159	Materials, Fabrication, and Manufacturing of Micro/Nanostructured Surfaces for Phase-Change Heat Transfer Enhancement. Nanoscale and Microscale Thermophysical Engineering, 2014, 18, 288-310.	1.4	55
160	Superhydrophobic Stability of Nanotube Array Surfaces under Impact and Static Forces. ACS Applied Materials & Samp; Interfaces, 2014, 6, 8073-8079.	4.0	45
161	Pancake bouncing on superhydrophobic surfaces. Nature Physics, 2014, 10, 515-519.	6.5	748
162	Understanding the anti-icing behavior of superhydrophobic surfaces. Surface Innovations, 2014, 2, 94-102.	1.4	41
163	Anti-frost coatings containing carbon nanotube composite with reliable thermal cyclic property. Journal of Materials Chemistry A, 2014, 2, 11465-11471.	5.2	31
164	Fabricating superhydrophobic aluminum: An optimized one-step wet synthesis using fluoroalkyl silane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 919-924.	2.3	42

#	Article	IF	Citations
165	Simulating the Freezing of Supercooled Water Droplets Impacting a Cooled Substrate. , 2014, , .		3
166	Morphological development and environmental degradation of superhydrophobic aspen and black locust leaf surfaces. Ecohydrology, 2014, 7, 1421-1436.	1.1	11
168	Electrospun Fibrous Membranes with Super-large-strain Electric Superhydrophobicity. Scientific Reports, 2015, 5, 15863.	1.6	15
169	Approaching the theoretical contact time of a bouncing droplet on the rational macrostructured superhydrophobic surfaces. Applied Physics Letters, 2015, 107, .	1.5	94
170	Saltwater icephobicity: Influence of surface chemistry on saltwater icing. Scientific Reports, 2015, 5, 17563.	1.6	24
171	Integration of Selfâ€Lubrication and Nearâ€Infrared Photothermogenesis for Excellent Antiâ€Icing/Deicing Performance. Advanced Functional Materials, 2015, 25, 4237-4245.	7.8	184
172	Can Metal Matrixâ€Hydrophobic Nanoparticle Composites Enhance Water Condensation by Promoting the Dropwise Mode?. Advanced Materials Interfaces, 2015, 2, 1500202.	1.9	14
173	Reversible Switching of Icing Properties on Pyroelectric Polyvenylidene Fluoride Thin Film Coatings. Coatings, 2015, 5, 724-736.	1.2	14
174	Ice Adhesion Performance of Superhydrophobic Coatings in Aerospace Icing Conditions. , 0, , .		13
175	Energy Efficient De-Icing by Superhydrophobic and Icephobic Polyurethane Films Created by Microstructuringand Plasma-Coating. , 2015, , .		1
176	Glaze Icing on Superhydrophobic Coating Prepared by Nanoparticles Filling Combined with Etching Method for Insulators. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	9
177	TiO2 -Based Surfaces with Special Wettability – From Nature to Biomimetic Application. , 2015, , .		4
178	Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact. Soft Matter, 2015, 11, 4592-4599.	1.2	88
179	Glutamine-reinforced silica gel microassembly as protective coating for aluminium surface. Materials Chemistry and Physics, 2015, 162, 124-130.	2.0	4
180	Stepwise anodic electrodeposition of nanoporous NiOOH/Ni(OH) ₂ with controllable wettability and its applications. HKIE Transactions, 2015, 22, 202-211.	1.9	4
181	Subcooled-Water Nonstickiness of Condensate Microdrop Self-Propelling Nanosurfaces. ACS Applied Materials & Samp; Interfaces, 2015, 7, 26391-26395.	4.0	42
182	Symmetry breaking in drop bouncing on curved surfaces. Nature Communications, 2015, 6, 10034.	5.8	340
183	Slippery liquid-infused porous surface based on perfluorinated lubricant/iron tetradecanoate: Preparation and corrosion protection application. Applied Surface Science, 2015, 328, 491-500.	3.1	64

#	Article	IF	CITATIONS
184	Superhydrophobic surfaces created by a one-step solution-immersion process and their drag-reduction effect on water. RSC Advances, 2015, 5, 18909-18914.	1.7	61
185	Electrofreezing of Water Droplets under Electrowetting Fields. Langmuir, 2015, 31, 2243-2248.	1.6	55
186	Dynamics of Droplet Impact on Hydrophobic/Icephobic Concrete with the Potential for Superhydrophobicity. Langmuir, 2015, 31, 1437-1444.	1.6	88
187	Fabrication and anti-icing property of coral-like superhydrophobic aluminum surface. Applied Surface Science, 2015, 331, 132-139.	3.1	92
188	Icephobic/anti-icing potential of superhydrophobic Ti6Al4V surfaces with hierarchical textures. RSC Advances, 2015, 5, 1666-1672.	1.7	84
189	Synthesis, spectral characterization and crystal structure of a new precursor [(CH3COCHCOCH3)2Zr{C6H4(N=CHC6H4O)2}] for nano-zirconia: an investigation on the wettability of polyvinylidene fluoride–nano-zirconia composite material. Journal of Sol-Gel Science and Technology, 2015, 76, 195-203.	1.1	10
190	Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications. Chemical Reviews, 2015, 115, 8230-8293.	23.0	1,292
191	Ice nucleation behaviour on sol–gel coatings with different surface energy and roughness. Physical Chemistry Chemical Physics, 2015, 17, 21492-21500.	1.3	55
192	Electrospinning superhydrophobic–superoleophilic fibrous PVDF membranes for high-efficiency water–oil separation. Materials Letters, 2015, 160, 423-427.	1.3	154
193	Creating Anti-icing Surfaces via the Direct Immobilization of Antifreeze Proteins on Aluminum. Scientific Reports, 2015, 5, 12019.	1.6	61
194	Influence of solidification on the impact of supercooled water drops onto cold surfaces. Experiments in Fluids, 2015, 56, 1.	1.1	37
195	Self-cleaning, superhydrophobic cotton fabrics with excellent washing durability, solvent resistance and chemical stability prepared from an SU-8 derived surface coating. RSC Advances, 2015, 5, 61044-61050.	1.7	80
196	Design and fabrication of a large-area superhydrophobic metal surface with anti-icing properties engineered using a top-down approach. Applied Surface Science, 2015, 351, 920-926.	3.1	39
197	Bioinspired engineering of honeycomb structure $\hat{a}\in$ Using nature to inspire human innovation. Progress in Materials Science, 2015, 74, 332-400.	16.0	501
198	Fabrication of a wettability-gradient surface on copper by screen-printing techniques. Journal of Micromechanics and Microengineering, 2015, 25, 085007.	1.5	22
199	The impact, freezing, and melting processes of a water droplet on an inclined cold surface. International Journal of Heat and Mass Transfer, 2015, 90, 439-453.	2.5	66
200	Three-tier rough superhydrophobic surfaces. Nanotechnology, 2015, 26, 315705.	1.3	3
201	Durability of a lubricant-infused Electrospray Silicon Rubber surface as an anti-icing coating. Applied Surface Science, 2015, 346, 68-76.	3.1	191

#	Article	IF	CITATIONS
202	Numerical Study on Droplet Sliding across Micropillars. Langmuir, 2015, 31, 4673-4677.	1.6	37
203	General Aspects of Biomimetic Materials. , 2015, , 57-79.		7
204	Ice repellency behaviour of superhydrophobic surfaces: Effects of atmospheric icing conditions and surface roughness. Applied Surface Science, 2015, 349, 211-218.	3.1	108
205	Bioinspired Stimuliâ€Responsive and Antifreezeâ€Secreting Antiâ€Icing Coatings. Advanced Materials Interfaces, 2015, 2, 1400479.	1.9	119
206	Simple Approach to Superhydrophobic Nanostructured Al for Practical Antifrosting Application Based on Enhanced Self-propelled Jumping Droplets. ACS Applied Materials & Samp; Interfaces, 2015, 7, 7206-7213.	4.0	104
207	Anti-icing performance of transparent and superhydrophobic surface under wind action. Journal of Sol-Gel Science and Technology, 2015, 75, 625-634.	1.1	16
208	Controllable growth of durable superhydrophobic coatings on a copper substrate via electrodeposition. Physical Chemistry Chemical Physics, 2015, 17, 10871-10880.	1.3	52
209	Influence of different chemical modifications on the icephobic properties of superhydrophobic surfaces in a condensate environment. Journal of Materials Chemistry A, 2015, 3, 4967-4975.	5.2	46
210	Superstrong, Chemically Stable, Superamphiphobic Fabrics from Particleâ€Free Polymer Coatings. Advanced Materials Interfaces, 2015, 2, 1400559.	1.9	87
211	Intumescent Flame-Retardant and Self-Healing Superhydrophobic Coatings on Cotton Fabric. ACS Nano, 2015, 9, 4070-4076.	7.3	465
212	A study on the fabrication of superhydrophobic iron surfaces by chemical etching and galvanic replacement methods and their anti-icing properties. Applied Surface Science, 2015, 346, 458-463.	3.1	64
213	Simulating the Freezing of Supercooled Water Droplets Impacting a Cooled Substrate. AIAA Journal, 2015, 53, 1725-1739.	1.5	74
214	Multifunctional Engineering Aluminum Surfaces for Selfâ€Propelled Antiâ€Condensation. Advanced Engineering Materials, 2015, 17, 961-968.	1.6	21
215	Enhancement of icephobic properties based on UV-curable fluorosilicone copolymer films. RSC Advances, 2015, 5, 90578-90587.	1.7	20
216	One-step preparation of transparent superhydrophobic coatings using atmospheric arc discharge. Applied Physics Letters, 2015, 107, .	1.5	18
217	Water impacting on superhydrophobic macrotextures. Nature Communications, 2015, 6, 8001.	5.8	331
218	Magnetic particle-based super-hydrophobic coatings with excellent anti-icing and thermoresponsive deicing performance. Journal of Materials Chemistry A, 2015, 3, 21637-21646.	5.2	150
219	Formation of icephobic film from POSS-containing fluorosilicone multi-block methacrylate copolymers. Progress in Organic Coatings, 2015, 89, 150-159.	1.9	28

#	Article	IF	CITATIONS
220	Atmospheric Ice Adhesion on Water-Repellent Coatings: Wetting and Surface Topology Effects. Langmuir, 2015, 31, 13107-13116.	1.6	56
221	Preparation of anti-corrosion superhydrophobic coatings by an Fe-based micro/nano composite electro-brush plating and blackening process. RSC Advances, 2015, 5, 103000-103012.	1.7	42
222	Thermodynamics and Characteristics of Heterogeneous Nucleation on Fractal Surfaces. Journal of Physical Chemistry C, 2015, 119, 27426-27433.	1.5	64
223	Tailored Porphyrin Assembly at the Oil–Aqueous Interface Based on the Receding of Threeâ€Phase Contact Line of Droplet Template. Advanced Materials Interfaces, 2015, 2, 1400365.	1.9	17
224	Droplets impact on textured surfaces: Mesoscopic simulation of spreading dynamics. Applied Surface Science, 2015, 327, 159-167.	3.1	65
225	Fabrication of Allâ€Waterâ€Based Selfâ€Repairing Superhydrophobic Coatings Based on UVâ€Responsive Microcapsules. Advanced Functional Materials, 2015, 25, 1035-1041.	7.8	360
226	Physics of Icing and Rational Design of Surfaces with Extraordinary Icephobicity. Langmuir, 2015, 31, 4807-4821.	1.6	292
227	Runback ice formation mechanism on hydrophilic and superhydrophobic surfaces. Cold Regions Science and Technology, 2015, 109, 53-60.	1.6	42
228	Biotechnologies and Biomimetics for Civil Engineering. , 2015, , .		21
229	Biomimetic transparent and superhydrophobic coatings: from nature and beyond nature. Chemical Communications, 2015, 51, 1775-1794.	2.2	209
230	Dynamic Behaviors of Contact Lines on Micropillared Hydrophobic Surfaces. Advances in Materials Science and Engineering, 2016, 2016, 1-8.	1.0	2
231	On Modulating Interfacial Structure towards Improved Anti-Icing Performance. Coatings, 2016, 6, 3.	1.2	22
232	Anti-Icing Superhydrophobic Surfaces: Controlling Entropic Molecular Interactions to Design Novel Icephobic Concrete. Entropy, 2016, 18, 132.	1.1	79
233	Dragonfly wing inspired multifunctional antireflective superhydrophobic surfaces. , 2016, , .		0
234	Recent Development of Durable and Self-Healing Surfaces with Special Wettability. Macromolecular Rapid Communications, 2016, 37, 463-485.	2.0	102
235	Bioinspired Interfacial Materials with Enhanced Drop Mobility: From Fundamentals to Multifunctional Applications. Small, 2016, 12, 1825-1839.	5.2	193
236	Permanently grafted icephobic nanocomposites with high abrasion resistance. Journal of Materials Chemistry A, 2016, 4, 11719-11728.	5.2	25
237	The Effects of Ambient Pressure on the Initiation of the Freezing Process for a Water Droplet on a Cold Surface. Journal of Heat Transfer, 2016, 138, .	1.2	5

#	Article	IF	CITATIONS
238	Microcontact Printing., 2016, , 2157-2167.		0
239	Mechanical Properties of Nanostructures. , 2016, , 1937-1946.		0
240	MEMS on Flexible Substrates. , 2016, , 2010-2019.		0
241	Magnetron Sputtering. , 2016, , 1903-1903.		0
242	Micro-/Nanostructured Icephobic Materials. , 2016, , 2125-2128.		0
243	On the spreading of impacting drops. Journal of Fluid Mechanics, 2016, 805, 636-655.	1.4	220
244	Microbial Fuel Cell. , 2016, , 2137-2137.		0
245	Multilamellar Vesicle (MLV)., 2016,, 2285-2285.		0
246	MEMS Resonant Infrared Detectors. , 2016, , 2028-2028.		0
247	Models for Tumor Growth. , 2016, , 2244-2254.		0
248	Modification of Carbon Nanotubes. , 2016, , 2254-2254.		0
249	Retarded condensate freezing propagation on superhydrophobic surfaces patterned with micropillars. Applied Physics Letters, 2016, 108, .	1.5	59
250	Superhydrophobic Coatings on Asphalt Concrete Surfaces: Toward Smart Solutions for Winter Pavement Maintenance. Transportation Research Record, 2016, 2551, 10-17.	1.0	70
251	Asymmetries in the spread of drops impacting on hydrophobic micropillar arrays. Soft Matter, 2016, 12, 4853-4865.	1.2	22
252	Stability of a water droplet on micropillared hydrophobic surfaces. Colloid and Polymer Science, 2016, 294, 851-858.	1.0	17
253	The impact and freezing processes of a water droplet on different inclined cold surfaces. International Journal of Heat and Mass Transfer, 2016, 97, 211-223.	2.5	58
254	Effect of Aluminum Substrate Surface Modification on Wettability and Freezing Delay of Water Droplet at Subzero Temperatures. ACS Applied Materials & Samp; Interfaces, 2016, 8, 11147-11153.	4.0	37
255	Temperature-Dependent Deicing Properties of Electrostatically Anchored Branched Brush Layers of Poly(ethylene oxide). Langmuir, 2016, 32, 4194-4202.	1.6	15

#	Article	IF	CITATIONS
256	Low Ice Adhesion on Nano-Textured Superhydrophobic Surfaces under Supersaturated Conditions. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12583-12587.	4.0	179
257	Droplet bouncing on hierarchical branched nanotube arrays above and below the freezing temperature. Applied Surface Science, 2016, 375, 127-135.	3.1	9
258	Dynamic Study of Liquid Drop Impact on Supercooled Cerium Dioxide: Anti-Icing Behavior. Langmuir, 2016, 32, 6148-6162.	1.6	38
259	Rapid Bouncing of High-Speed Drops on Hydrophobic Surfaces with Microcavities. Langmuir, 2016, 32, 9967-9974.	1.6	22
260	The impact and freezing processes of a water droplet on a cold surface with different inclined angles. International Journal of Heat and Mass Transfer, 2016, 103, 886-893.	2.5	55
261	Fabrication of superhydrophobic coating via spraying method and its applications in anti-icing and anti-corrosion. Applied Surface Science, 2016, 389, 547-553.	3.1	98
262	A versatile and efficient method to fabricate durable superhydrophobic surfaces on wood, lignocellulosic fiber, glass, and metal substrates. Journal of Materials Chemistry A, 2016, 4, 14111-14121.	5.2	132
263	The Influence of Surface Topography and Surface Chemistry on the Anti-Adhesive Performance of Nanoporous Monoliths. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22593-22604.	4.0	9
264	Fabrication of robust superhydrophobic fabrics based on coating with PVDF/PDMS. RSC Advances, 2016, 6, 84887-84892.	1.7	26
265	Thermomechanical Mechanisms of Reducing Ice Adhesion on Superhydrophobic Surfaces. Langmuir, 2016, 32, 9664-9675.	1.6	23
266	Rational strategy for the atmospheric icing prevention based on chemically functionalized carbon soot coatings. Applied Surface Science, 2016, 390, 452-460.	3.1	48
267	Integrated Anti-Icing Property of Super-Repellency and Electrothermogenesis Exhibited by PEDOT:PSS/Cyanoacrylate Composite Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24212-24220.	4.0	42
268	Single etch fabrication and characterization of robust nanoparticle tipped bi-level superhydrophobic surfaces. RSC Advances, 2016, 6, 81852-81861.	1.7	8
269	Fabrication of Robust Hydrophobic and Superâ€Hydrophobic Polymer Films with Onefold or Dual Inverse Opal Structures. Macromolecular Materials and Engineering, 2016, 301, 1430-1436.	1.7	6
270	Robust Antiâ€Icing Performance of a Flexible Superhydrophobic Surface. Advanced Materials, 2016, 28, 7729-7735.	11.1	453
271	Strategies for anti-icing: low surface energy or liquid-infused?. RSC Advances, 2016, 6, 70251-70260.	1.7	118
272	Applied Voltage and Nearâ€Infrared Light Enable Healing of Superhydrophobicity Loss Caused by Severe Scratches in Conductive Superhydrophobic Films. Advanced Functional Materials, 2016, 26, 6777-6784.	7.8	114
273	Magnetic slippery extreme icephobic surfaces. Nature Communications, 2016, 7, 13395.	5.8	223

#	Article	IF	CITATIONS
275	Superhydrophobic porous networks for enhanced droplet shedding. Scientific Reports, 2016, 6, 33817.	1.6	27
276	Controlling condensation and frost growth with chemical micropatterns. Scientific Reports, 2016, 6, 19131.	1.6	111
277	Water droplet impact on elastic superhydrophobic surfaces. Scientific Reports, 2016, 6, 30328.	1.6	128
278	Design of anti-icing surfaces: smooth, textured or slippery?. Nature Reviews Materials, 2016, 1, .	23.3	1,048
279	Designs and processes toward high-aspect-ratio nanostructures at the deep nanoscale: unconventional nanolithography and its applications. Nanotechnology, 2016, 27, 474001.	1.3	18
280	Oil-Infused Superhydrophobic Silicone Material for Low Ice Adhesion with Long-Term Infusion Stability. ACS Applied Materials & Stability. ACS Applied Materi	4.0	134
281	Influence of hydrophibization of impellers of centrifugal pumps on their operating characteristics. Thermal Engineering (English Translation of Teploenergetika), 2016, 63, 841-847.	0.4	1
282	Dynamics of high Weber number drops impacting on hydrophobic surfaces with closed micro-cells. Soft Matter, 2016, 12, 5808-5817.	1.2	23
283	Surface Chemical Functionality Effect Upon Ice Adhesion Shear Strength., 2016,,.		0
284	Avoiding Snow and Ice Formation on Exterior Solar Cell Surfaces – A Review of Research Pathways and Opportunities. Procedia Engineering, 2016, 145, 699-706.	1.2	26
285	The icephobicity comparison of polysiloxane modified hydrophobic and superhydrophobic surfaces under condensing environments. Applied Surface Science, 2016, 385, 472-480.	3.1	41
286	Robust and Superhydrophobic Surface Modification by a "Paint + Adhesive―Method: Applications in Self-Cleaning after Oil Contamination and Oil–Water Separation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17659-17667.	4.0	145
287	Recent Advances in TiO ₂ â∈Based Nanostructured Surfaces with Controllable Wettability and Adhesion. Small, 2016, 12, 2203-2224.	5.2	278
288	An OH-PDMS-modified nano-silica/carbon hybrid coating for anti-icing of insulators part I: Fabrication and small-scale testing. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23, 935-942.	1.8	8
289	An Adaptive Coupled Level Set and Moment-of-Fluid Method for Simulating Droplet Impact and Solidification on Solid Surfaces with Application to Aircraft Icing. , 2016 , , .		6
290	Stalagmite-like self-cleaning surfaces prepared by silanization of plasma-assisted metal-oxide nanostructures. Journal of Materials Chemistry A, 2016, 4, 3406-3414.	5.2	21
291	Reducing Ice Adhesion on Nonsmooth Metallic Surfaces: Wettability and Topography Effects. ACS Applied Materials & Samp; Interfaces, 2016, 8, 8789-8800.	4.0	111
292	Precise cutting microstructured superhydrophobic surface. Surface Engineering, 2016, 32, 119-124.	1.1	3

#	Article	IF	CITATIONS
293	Anti-fogging and anti-frosting behaviors of layer-by-layer assembled cellulose derivative thin film. Applied Surface Science, 2016, 370, 1-5.	3.1	68
294	UV-curable POSS-fluorinated methacrylate diblock copolymers for icephobic coatings. Progress in Organic Coatings, 2016, 93, 87-96.	1.9	46
295	Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces. Journal of Colloid and Interface Science, 2016, 468, 21-33.	5.0	40
296	Dimensional effects of polymer pillar arrays on hydrophobicity. Surface Engineering, 2016, 32, 125-131.	1.1	16
297	Transparent superhydrophobic surface by silicone oil combustion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 492, 110-118.	2.3	44
298	Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces. Soft Matter, 2016, 12, 1938-1963.	1.2	272
299	Submicron/nano-structured icephobic surfaces made from fluorinated polymethylsiloxane and octavinyl-POSS. Applied Surface Science, 2016, 360, 113-120.	3.1	33
300	Droplet freezing and ice adhesion strength measurement on super-cooled hydrophobic surfaces. Journal of Adhesion, 2017, 93, 375-388.	1.8	10
301	Nanostructure-induced icephobic sol–gel coating for glass application. Journal of Sol-Gel Science and Technology, 2017, 81, 127-137.	1.1	4
302	The Design and Analysis for the Icing Wind Tunnel Experiment of a New Deicing Coating. Journal of the American Statistical Association, 2017, 112, 1417-1429.	1.8	0
303	Interdroplet freezing wave propagation of condensation frosting on micropillar patterned superhydrophobic surfaces of varying pitches. International Journal of Heat and Mass Transfer, 2017, 108, 1048-1056.	2.5	51
304	Delaying Frost Formation by Controlling Surface Chemistry of Carbon Nanotube-Coated Steel Surfaces. ACS Applied Materials & Surfaces, 2017, 9, 6512-6519.	4.0	40
305	Effects of microstructure design on aluminum surface hydrophobic and iceâ€retarding properties. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 307-312.	0.8	14
306	Predictive Model of Supercooled Water Droplet Pinning/Repulsion Impacting a Superhydrophobic Surface: The Role of the Gas–Liquid Interface Temperature. Langmuir, 2017, 33, 1816-1825.	1.6	20
307	Role and significance of wetting pressures during droplet impact on structured superhydrophobic surfaces. European Physical Journal E, 2017, 40, 1.	0.7	26
308	Experimental investigation of the impact and freezing processes of a water droplet on an ice surface. International Journal of Heat and Mass Transfer, 2017, 109, 716-724.	2.5	73
309	Control of Ice Formation. ACS Nano, 2017, 11, 2665-2674.	7.3	49
310	Transient effects in ice nucleation of a water drop impacting onto a cold substrate. Physical Review E, 2017, 95, 022805.	0.8	52

#	Article	IF	CITATIONS
311	Bulk water freezing dynamics on superhydrophobic surfaces. Applied Physics Letters, 2017, 110, .	1.5	24
312	Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications. Nanoscale, 2017, 9, 3338-3366.	2.8	232
313	Facile Fabrication of Superomniphobic Polymer Hierarchical Structures for Directional Droplet Movement. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9213-9220.	4.0	24
314	Filling schemes of silver dots inkjet-printed on pixelated nanostructured surfaces. Nanotechnology, 2017, 28, 135302.	1.3	9
315	The rose petal effect and the role of advancing water contact angles for drop confinement. Surface Topography: Metrology and Properties, 2017, 5, 024001.	0.9	14
316	Simple spray deposition of a water-based superhydrophobic coating with high stability for flexible applications. Journal of Materials Chemistry A, 2017, 5, 9882-9890.	5.2	112
317	Ice Layer Spreading along a Solid Substrate during Solidification of Supercooled Water: Experiments and Modeling. Langmuir, 2017, 33, 4870-4877.	1.6	34
318	Modelling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces. Applied Surface Science, 2017, 419, 52-62.	3.1	65
319	Transparent and durable superhydrophobic coatings for anti-bioadhesion. Journal of Colloid and Interface Science, 2017, 501, 222-230.	5.0	51
320	Bioinspired Solid Organogel Materials with a Regenerable Sacrificial Alkane Surface Layer. Advanced Materials, 2017, 29, 1700865.	11.1	109
321	Biomimetic Superhydrophobic Biobased Polyurethane-Coated Fertilizer with Atmosphere "Outerwear― ACS Applied Materials & Interfaces, 2017, 9, 15868-15879.	4.0	88
322	Molecular dynamics simulation of nanobubble nucleation on rough surfaces. Journal of Chemical Physics, 2017, 146, 164704.	1.2	29
323	Imparting Icephobicity with Substrate Flexibility. Langmuir, 2017, 33, 6708-6718.	1.6	62
324	Electrohydrodynamic patterning in a curable resin over a wide range of fabrication parameters. European Polymer Journal, 2017, 91, 315-325.	2.6	3
325	Self-assembled monolayer of functionalized silica microparticles for self-cleaning applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 231-238.	2.3	25
326	Asymmetric Spreading of a Drop upon Impact onto a Surface. Langmuir, 2017, 33, 5957-5964.	1.6	35
327	Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride. Applied Surface Science, 2017, 410, 299-307.	3.1	28
328	Drop Impact on Oblique Superhydrophobic Surfaces with Two-Tier Roughness. Langmuir, 2017, 33, 3556-3567.	1.6	52

#	Article	IF	CITATIONS
329	Robust anti-icing coatings via enhanced superhydrophobicity on fiberglass cloth. Cold Regions Science and Technology, 2017, 138, 18-23.	1.6	26
330	Macrotextured spoked surfaces reduce the residence time of a bouncing Leidenfrost drop. Journal of Physics Condensed Matter, 2017, 29, 064007.	0.7	22
331	Lattice Boltzmann Simulation of Droplets Impacting on Superhydrophobic Surfaces with Randomly Distributed Rough Structures. Langmuir, 2017, 33, 820-829.	1.6	38
332	Fabrication of recyclable superhydrophobic cotton fabrics. Applied Surface Science, 2017, 400, 405-412.	3.1	49
333	Stability Analysis of Printed Liquid Elbows. Langmuir, 2017, 33, 645-651.	1.6	1
334	Impact of Viscous Droplets on Superamphiphobic Surfaces. Langmuir, 2017, 33, 144-151.	1.6	67
335	Optimization of the Water Spray Nozzle, Refrigerant Charge Amount and Expansion Valve Opening for a Unitary Ice Maker Using R-404A. International Journal of Air-Conditioning and Refrigeration, 2017, 25, 1750025.	0.8	5
336	Polymer and ceramic nanocomposites for aerospace applications. Applied Nanoscience (Switzerland), 2017, 7, 519-548.	1.6	160
337	Bioinspired Surfaces with Superwettability for Antiâ€lcing and Iceâ€Phobic Application: Concept, Mechanism, and Design. Small, 2017, 13, 1701867.	5.2	223
338	Organic Solvent-Free Fabrication of Durable and Multifunctional Superhydrophobic Paper from Waterborne Fluorinated Cellulose Nanofiber Building Blocks. ACS Nano, 2017, 11, 11091-11099.	7.3	154
339	Large-Area Fabrication of Droplet Pancake Bouncing Surface and Control of Bouncing State. ACS Nano, 2017, 11, 9259-9267.	7.3	118
340	Superhydrophobic controlled-release fertilizers coated with bio-based polymers with organosilicon and nano-silica modifications. Journal of Materials Chemistry A, 2017, 5, 19943-19953.	5.2	86
341	Control of Drop Impact and Proposal of Pseudo-superhydrophobicity Using Electrostatics. Industrial & Engineering Chemistry Research, 2017, 56, 11312-11319.	1.8	11
342	Robust superhydrophobic coatings with micro- and nano-composite morphology. RSC Advances, 2017, 7, 44234-44238.	1.7	12
343	Fabrication of robust gold superhydrophobic surface on iron substrate with properties of corrosion resistance, self-cleaning and mechanical durability. Journal of Alloys and Compounds, 2017, 728, 271-281.	2.8	19
344	Fabrication of anisotropic PTFE superhydrophobic surfaces using laser microprocessing and their self-cleaning and anti-icing behavior. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 535, 8-15.	2.3	68
345	An outlook on tunable superhydrophobic nanostructural surfaces and their possible impact on ice mitigation. Progress in Organic Coatings, 2017, 112, 304-318.	1.9	34
346	Self-crosslinking coatings of fluorinated polysiloxanes with enhanced icephobicity. Thin Solid Films, 2017, 639, 113-122.	0.8	17

#	Article	IF	Citations
347	Transparent, conductive, and superhydrophobic nanocomposite coatings on polymer substrate. Journal of Colloid and Interface Science, 2017, 506, 429-436.	5.0	42
348	Fabrication of superhydrophobic Pt 3 Fe/Fe surface for its application. Journal of Solid State Chemistry, 2017, 254, 14-24.	1.4	4
349	Droplet Impact in Icing Conditions – Experimental Study for WE 540. Archive of Mechanical Engineering, 2017, 64, 165-175.	0.7	3
350	Questions and Answers on the Wettability of Nanoâ€Engineered Surfaces. Advanced Materials Interfaces, 2017, 4, 1700381.	1.9	69
351	Inhibition of Heterogeneous Ice Nucleation by Bioinspired Coatings of Polyampholytes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30092-30099.	4.0	34
352	Rapid Fabrication of a Crystalline Myristic Acid-Based Superhydrophobic Film with Corrosion Resistance on Magnesium Alloys by the Facile One-Step Immersion Process. ACS Omega, 2017, 2, 7904-7915.	1.6	45
353	Robust Hydrophobic Rare Earth Oxide Composite Electrodeposits. Advanced Materials Interfaces, 2017, 4, 1700850.	1.9	34
354	Salvinia-Effect-Inspired "Sticky―Superhydrophobic Surfaces by Meniscus-Confined Electrodeposition. Langmuir, 2017, 33, 13640-13648.	1.6	30
355	Heat exchange between a bouncing drop and a superhydrophobic substrate. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6930-6935.	3.3	52
356	Condensation on hybrid-patterned copper tubes (II): Visualization study of droplet dynamics. International Journal of Heat and Mass Transfer, 2017, 112, 950-958.	2.5	31
357	Variation of the Contact Time of Droplets Bouncing on Cylindrical Ridges with Ridge Size. Langmuir, 2017, 33, 7583-7587.	1.6	52
358	The impact of high humidity on the ice-phobicity of copper-based superhydrophobic surfaces. Nanomaterials and Nanotechnology, 2017, 7, 184798041770717.	1.2	12
359	Durable, self-healing, superhydrophobic fabrics from fluorine-free, waterborne, polydopamine/alkyl silane coatings. RSC Advances, 2017, 7, 33986-33993.	1.7	58
360	Role of Water Solidification Concepts in Designing Nano-Textured Anti-Icing Surfaces. Journal of Physical Chemistry B, 2017, 121, 7527-7535.	1.2	17
361	Examination of the Effect of Superhydrophobic Coated Pavement under Wet Conditions. Procedia Engineering, 2017, 187, 532-537.	1.2	8
362	Reinforced Superhydrophobic Coating on Silicone Rubber for Longstanding Anti-Icing Performance in Severe Conditions. ACS Applied Materials & Severe Conditions. ACS Applied Materials & Severe Conditions. ACS Applied Materials & Severe Conditions.	4.0	142
363	Nature-inspired superwettability systems. Nature Reviews Materials, 2017, 2, .	23.3	1,212
364	A facile approach to fabricate superhydrophobic coatings on porous surfaces using cross-linkable fluorinated emulsions. Chemical Engineering Journal, 2017, 330, 202-212.	6.6	23

#	Article	IF	CITATIONS
365	Dynamic Defrosting on Scalable Superhydrophobic Surfaces. ACS Applied Materials & Dynamic Defrosting on Scalable Superhydrophobic Surfaces. ACS Applied Materials & Dynamic Defrosting on Scalable Superhydrophobic Surfaces. ACS Applied Materials & Dynamic Defrosting on Scalable Superhydrophobic Surfaces. ACS Applied Materials & Dynamic Defrosting on Scalable Superhydrophobic Surfaces. ACS Applied Materials & Dynamic Defrosting on Scalable Superhydrophobic Surfaces. ACS Applied Materials & Dynamic Defrosting on Scalable Superhydrophobic Surfaces. ACS Applied Materials & Dynamic Defrosting On Scalable Superhydrophobic Surfaces. ACS Applied Materials & Dynamic Defrosting On Scalable Superhydrophobic Surfaces.	4.0	42
366	Internal rupture and rapid bouncing of impacting drops induced by submillimeter-scale textures. Physical Review E, 2017, 95, 063104.	0.8	14
367	Experimental investigation of the successive freezing processes of water droplets on an ice surface. International Journal of Heat and Mass Transfer, 2017, 107, 906-915.	2.5	38
368	Dynamic behavior of a vibrated droplet on a low-temperature micropillared surface. Applied Surface Science, 2017, 394, 358-363.	3.1	3
369	A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry A, 2017, 5, 31-55.	5.2	515
370	A Review of Condensation Frosting. Nanoscale and Microscale Thermophysical Engineering, 2017, 21, 81-101.	1.4	137
371	Facile approach to the green synthesis of novel ternary composites with excellent superhydrophobic and thermal stability property: An expanding horizon. Chemical Engineering Journal, 2017, 309, 240-248.	6.6	35
372	Use of Liquid Ad(ab)sorbing Surfaces for Anti-icing Applications. Advances in Polymer Science, 2017, , 53-98.	0.4	5
373	Research progress of biomimetic superhydrophobic surface characteristics, fabrication, and application. Advances in Mechanical Engineering, 2017, 9, 168781401774685.	0.8	25
374	Bouncing of an ellipsoidal drop on a superhydrophobic surface. Scientific Reports, 2017, 7, 17699.	1.6	34
375	Fabrication and Study of Micro- and Nanostructured Superhydrophobic and Anti-Icing Surfaces. Nanotechnologies in Russia, 2017, 12, 485-494.	0.7	6
376	Recent Progress in Bionic Condensate Microdrop Selfâ€Propelling Surfaces. Advanced Materials, 2017, 29, 1703002.	11.1	98
378	Supercooled Water Droplet Impacting Superhydrophobic Surfaces in the Presence of Cold Air Flow. Applied Sciences (Switzerland), 2017, 7, 130.	1.3	22
379	Properties and applications of superhydrophobic coatings in high voltage outdoor insulation: A review. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 3630-3646.	1.8	55
380	Rationally Designed, Multifunctional Self-Assembled Nanoparticles for Covalently Networked, Flexible and Self-Healable Superhydrophobic Composite Films. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9823-9831.	4.0	28
381	Pneumatic smart surfaces with rapidly switchable dominant and latent superhydrophobicity. NPG Asia Materials, 2018, 10, e470-e470.	3.8	37
383	Ice Adhesion on Superhydrophobic Coatings in an Icing Wind Tunnel. Advances in Polymer Science, 2018, , 99-121.	0.4	4
384	Fabrication of a Waterborne Durable Superhydrophobic Material Functioning in Air and under Oil. Advanced Materials Interfaces, 2018, 5, 1701523.	1.9	20

#	Article	IF	CITATIONS
385	An experimental study on soft PDMS materials for aircraft icing mitigation. Applied Surface Science, 2018, 447, 599-609.	3.1	69
386	The impact and freezing processes of a water droplet on different cold spherical surfaces. Experimental Thermal and Fluid Science, 2018, 96, 430-440.	1.5	33
387	Anti-icing agent releasing diatomaceous earth/SBS composites. New Journal of Chemistry, 2018, 42, 8544-8552.	1.4	5
388	Nusselt Numbers for Poiseuille Flow Over Isoflux Parallel Ridges for Arbitrary Meniscus Curvature. Journal of Heat Transfer, 2018, 140, .	1.2	13
389	Suppressing Ice Nucleation of Supercooled Condensate with Biphilic Topography. Physical Review Letters, 2018, 120, 075902.	2.9	84
390	Fabrication of micro-patterned aluminum surfaces for low ice adhesion strength. Applied Surface Science, 2018, 440, 643-650.	3.1	24
391	Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature. International Journal of Heat and Mass Transfer, 2018, 122, 395-402.	2.5	92
392	Droplet Impact on Anisotropic Superhydrophobic Surfaces. Langmuir, 2018, 34, 3533-3540.	1.6	98
393	A Review on Superhydrophobic Polymer Nanocoatings: Recent Development and Applications. Industrial & Development and Applications.	1.8	262
394	lonic-Liquid-Infused Nanostructures as Repellent Surfaces. Langmuir, 2018, 34, 6894-6902.	1.6	26
395	Ratio dependence of contact angle for droplet wetting on chemically heterogeneous substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539, 237-242.	2.3	14
396	Water ring-bouncing on repellent singularities. Soft Matter, 2018, 14, 2227-2233.	1.2	79
398	Combined surface hardening and laser patterning approach for functionalising stainless steel surfaces. Applied Surface Science, 2018, 439, 516-524.	3.1	49
399	Effect of geometrical parameters on rebound of impacting droplets on leaky superhydrophobic meshes. Soft Matter, 2018, 14, 1571-1580.	1.2	40
400	Impact of viscous droplets on different wettable surfaces: Impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation. Journal of Colloid and Interface Science, 2018, 516, 86-97.	5.0	190
401	Reducing the contact time of droplet impact by active control of substrate motion. , 2018, , .		4
402	Nanodroplets Impact on Rough Surfaces: A Simulation and Theoretical Study. Langmuir, 2018, 34, 5910-5917.	1.6	34
403	How supercooled superhydrophobic surfaces affect dynamic behaviors of impacting water droplets?. International Journal of Heat and Mass Transfer, 2018, 124, 1025-1032.	2.5	55

#	Article	IF	CITATIONS
404	Bioinspired Fabrication of Hierarchical-Structured Superhydrophobic Surfaces To Understand Droplet Bouncing Dynamics for Enhancing Water Repellency. Journal of Physical Chemistry C, 2018, 122, 7312-7320.	1.5	29
405	Core–Satellite Supraparticles To Ballistically Stamp Nanostructures on Surfaces. ACS Applied Materials & Discrete Supraparticles To Ballistically Stamp Nanostructures on Surfaces. ACS Applied Materials & Discrete Supraparticles To Ballistically Stamp Nanostructures on Surfaces. ACS Applied Materials & Discrete Supraparticles To Ballistically Stamp Nanostructures on Surfaces. ACS Applied Materials & Discrete Supraparticles To Ballistically Stamp Nanostructures on Surfaces. ACS Applied Materials & Discrete Supraparticles To Ballistically Stamp Nanostructures on Surfaces. ACS Applied Materials & Discrete Supraparticles To Ballistically Stamp Nanostructures on Surfaces. ACS Applied Materials & Discrete Supraparticles To Ballistically Stamp Nanostructures on Surfaces. ACS Applied Materials & Discrete Supraparticles To Ballistically Stamp Nanostructures on Surfaces. ACS Applied Materials & Discrete Supraparticles Supraparticl	4.0	7
406	Experimental and numerical study on the impact and freezing process of a water droplet on a cold surface. Applied Thermal Engineering, 2018, 137, 83-92.	3.0	79
407	Scalable and durable polymeric icephobic and hydrate-phobic coatings. Soft Matter, 2018, 14, 3443-3454.	1.2	47
408	lcing temperature measurements of water on pyroelectric single crystals: Impact of experimental methods on the degree of supercooling. Cold Regions Science and Technology, 2018, 151, 53-63.	1.6	9
409	Towards the shortest possible contact time: Droplet impact on cylindrical superhydrophobic surfaces structured with macro-scale features. Journal of Colloid and Interface Science, 2018, 521, 17-23.	5.0	74
410	Several surfaces with special wettability: Influence on spreading and motion of W/O emulsion droplets. Journal of Dispersion Science and Technology, 2018, 39, 241-249.	1.3	5
411	Investigation of droplet behaviors for spray cooling using level set method. Annals of Nuclear Energy, 2018, 113, 162-170.	0.9	15
412	Formation of zwitterionic coatings with an aqueous lubricating layer for antifogging/anti-icing applications. Progress in Organic Coatings, 2018, 115, 56-64.	1.9	62
413	Remarkably facile fabrication of extremely superhydrophobic high-energy binary composite with ultralong lifespan. Chemical Engineering Journal, 2018, 335, 843-854.	6.6	29
414	Impacts on the solidification of water on plate surface for cold energy storage using ice slurry. Applied Energy, 2018, 227, 284-293.	5.1	37
415	Aerodynamic effect of icing/rain impacts on super-hydrophobic surfaces. AIP Conference Proceedings, 2018, , .	0.3	3
416	Study of the Dynamics of Water Droplet Freezing on the Surface of Nanocomposites in the Long-Wavelength Infrared Range. Technical Physics, 2018, 63, 1808-1813.	0.2	1
417	A sudden-melting event during water freezing inside a copper well. RSC Advances, 2018, 8, 35257-35262.	1.7	2
418	Drop mobility on superhydrophobic microstructured surfaces with wettability contrasts. Soft Matter, 2018, 14, 9418-9424.	1.2	29
419	Mapping the transition to superwetting state for nanotextured surfaces templated from block-copolymer self-assembly. Nanoscale, 2018, 10, 20652-20663.	2.8	14
420	Large-scale fabrication of waterborne superamphiphobic coatings for flexible applications. RSC Advances, 2018, 8, 36375-36382.	1.7	14
421	Drop trampoline. Europhysics Letters, 2018, 124, 24003.	0.7	22

#	Article	IF	CITATIONS
422	Self-Retraction of Surfactant Droplets on a Superhydrophilic Surface. Langmuir, 2018, 34, 15388-15395.	1.6	2
423	Water-repellent Hybrid Nanowire and Micro-scale Denticle Structures on Flexible Substrates of Effective Air Retention. Scientific Reports, 2018, 8, 16631.	1.6	5
424	Investigation of effects of receding contact angle and energy conversion on numerical prediction of receding of the droplet impact onto hydrophilic and superhydrophilic surfaces. International Journal of Heat and Fluid Flow, 2018, 74, 89-109.	1.1	16
425	Droplet impact dynamics on textiles. Soft Matter, 2018, 14, 8182-8190.	1.2	60
426	The anti-icing and mechanical properties of a superhydrophobic coating on asphalt pavement. Construction and Building Materials, 2018, 190, 83-94.	3.2	43
427	Tunable Multimodal Drop Bouncing Dynamics and Anti-Icing Performance of a Magnetically Responsive Hair Array. ACS Nano, 2018, 12, 10693-10702.	7.3	86
428	Effect of superamphiphobic macrotextures on dynamics of viscous liquid droplets. Scientific Reports, 2018, 8, 15344.	1.6	36
429	Passive Antifrosting Surfaces Using Microscopic Ice Patterns. ACS Applied Materials & Dictional Passive Antifrosting Surfaces Using Microscopic Ice Patterns. ACS Applied Materials & Dictional Passive Antifrosting Surfaces, 2018, 10, 32874-32884.	4.0	61
430	Facile Preparation of Robust Superamphiphobic Surface by Electrochemical Etching Process Based on the SiC/Al Composites. Journal of the Electrochemical Society, 2018, 165, E563-E571.	1.3	7
431	On the maximal spreading of impacting compound drops. Journal of Fluid Mechanics, 2018, 854, .	1.4	42
432	Tuning Ice Nucleation and Propagation with Counterions on Multilayer Hydrogels. Langmuir, 2018, 34, 11986-11991.	1.6	17
433	Controllable Surface and Optical Properties of Methacrylic Copolymer Films Using Various Monomer Combinations. Langmuir, 2018, 34, 11850-11856.	1.6	4
434	One-Step Fabrication of Bioinspired Lubricant-Regenerable Icephobic Slippery Liquid-Infused Porous Surfaces. ACS Omega, 2018, 3, 10139-10144.	1.6	68
435	One-step approach to prepare superhydrophobic wood with enhanced mechanical and chemical durability: Driving of alkali. Applied Surface Science, 2018, 455, 115-122.	3.1	51
436	Effect of curved surfaces on the impacting nano-droplets and their shape control: A molecular dynamics simulation study. Applied Surface Science, 2018, 454, 192-200.	3.1	33
437	Bouncing dynamics of liquid drops impact on ridge structure: an effective approach to reduce the contact time. Physical Chemistry Chemical Physics, 2018, 20, 16493-16500.	1.3	19
438	Soft elastic superhydrophobic cotton: A new material for contact time reduction in droplet bouncing. Surface and Coatings Technology, 2018, 347, 420-426.	2.2	20
439	A coupled lattice Boltzmann and fractal geometry method for laminar liquid flows. Fluid Dynamics Research, 2018, 50, 045506.	0.6	0

#	ARTICLE	IF	CITATIONS
440	Improving the anti-icing/frosting property of a nanostructured superhydrophobic surface by the optimum selection of a surface modifier. RSC Advances, 2018, 8, 19906-19916.	1.7	21
441	How to Engineer Surfaces to Control and Optimize Boiling, Condensation and Frost Formation?. , 2018, , 63-158.		1
442	Droplet impact on cross-scale cylindrical superhydrophobic surfaces. Applied Physics Letters, 2018, 112, .	1.5	48
443	Monolithic Polymer Nanoridges with Programmable Wetting Transitions. Advanced Materials, 2018, 30, e1706657.	11.1	45
444	Initial Development of a Model to Predict Impact Ice Adhesion Stress., 2018,,.		2
445	On the Oblique Impact Dynamics of Drops on Superhydrophobic Surfaces. Part II: Restitution Coefficient and Contact Time. Langmuir, 2018, 34, 9889-9896.	1.6	43
446	Oligosilazane cured by moisture as fluorine-free hydrophobic coating for waterproof polymer-matrix composite materials. Journal of Coatings Technology Research, 2018, 15, 1251-1258.	1.2	7
447	A study on the wetting properties of broccoli leaf surfaces and their time dependent self-healing after mechanical damage. Soft Matter, 2018, 14, 7782-7792.	1.2	17
448	On the Oblique Impact Dynamics of Drops on Superhydrophobic Surfaces. Part I: Sliding Length and Maximum Spreading Diameter. Langmuir, 2018, 34, 9879-9888.	1.6	22
449	Anti- and De-Icing Behaviors of Superhydrophobic Fabrics. Coatings, 2018, 8, 198.	1.2	17
450	Spontaneous wetting transition of droplet coalescence on immersed micropillared surfaces. Applied Mathematical Modelling, 2018, 63, 390-404.	2.2	27
451	Designing Assembly of Meshes Having Diverse Wettability for Reducing Liquid Ejection at Terminal Velocity Droplet Impact. Journal of Microelectromechanical Systems, 2018, 27, 866-873.	1.7	11
452	Axisymmetric lattice Boltzmann simulation of droplet impact on solid surfaces. Physical Review E, 2018, 98, 013102.	0.8	16
453	Development of a novel nanoscratch technique for quantitative measurement of ice adhesion strength. IOP Conference Series: Materials Science and Engineering, 2018, 348, 012003.	0.3	3
454	Influence of Salinity on the Mechanism of Surface Icing: Implication to the Disappearing Freezing Singularity. Langmuir, 2018, 34, 9064-9071.	1.6	14
455	Polymer Surface Textured with Nanowire Bundles to Repel High-Speed Water Drops. Langmuir, 2018, 34, 5871-5879.	1.6	9
456	Splashing of a Newtonian drop impacted onto a solid substrate coated by a thin soft layer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 89-96.	2.3	10
457	Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation. Langmuir, 2018, 34, 6636-6644.	1.6	48

#	Article	IF	Citations
458	Green and timesaving fabrication of a superhydrophobic surface and its application to anti-icing, self-cleaning and oil-water separation. Surface and Coatings Technology, 2018, 352, 609-618.	2.2	71
459	Elongated Bouncing and Reduced Contact Time of a Drop in the Janus State. Langmuir, 2018, 34, 10874-10879.	1.6	8
460	Spreading of impinging droplets on nanostructured superhydrophobic surfaces. Applied Physics Letters, 2018, 113, .	1.5	26
461	Experimental investigation of the impact and freezing processes of a water droplet on different cold concave surfaces. International Journal of Thermal Sciences, 2018, 132, 498-508.	2.6	30
462	Multi-functional application of oil-infused slippery Al surface: from anti-icing to corrosion resistance. Journal of Materials Science, 2018, 53, 16099-16109.	1.7	42
463	Biodiversifying bioinspiration. Bioinspiration and Biomimetics, 2018, 13, 053001.	1.5	27
464	Robust Superhydrophobic Surface with Controlled Adhesion: In Situ Growth Depending on Its Bulk Phase Composition and Environment. Advanced Materials Interfaces, 2018, 5, 1800444.	1.9	2
465	Fundamentals of icing and common strategies for designing biomimetic anti-icing surfaces. Journal of Materials Chemistry A, 2018, 6, 13549-13581.	5.2	194
466	Many-body dissipative particle dynamics simulation of the anisotropic effect of droplet wetting on stripe-patterned heterogeneous surfaces. Applied Surface Science, 2019, 494, 675-683.	3.1	19
467	Droplet Asymmetric Bouncing on Inclined Superhydrophobic Surfaces. ACS Omega, 2019, 4, 12238-12243.	1.6	34
468	Droplet Sliding: The Numerical Observation of Multiple Contact Angle Hysteresis. Langmuir, 2019, 35, 9970-9978.	1.6	20
469	Numerical investigation of vibration-induced droplet shedding on microstructured superhydrophobic surfaces. Physical Review E, 2019, 99, 063111.	0.8	6
470	Viscous Droplet Impact on Nonwettable Textured Surfaces. Langmuir, 2019, 35, 10752-10761.	1.6	42
471	Numerical investigation on impingement dynamics and freezing performance of micrometer-sized water droplet on dry flat surface in supercooled environment. International Journal of Multiphase Flow, 2019, 118, 150-164.	1.6	51
472	Highly transparent and robust slippery lubricant-infused porous surfaces with anti-icing and anti-fouling performances. Journal of Alloys and Compounds, 2019, 803, 51-60.	2.8	57
473	Slippery liquid-infused porous electric heating coating for anti-icing and de-icing applications. Surface and Coatings Technology, 2019, 374, 889-896.	2.2	53
474	The interfacial energy in the Cassie-Baxter regime on the pyramid decorated solid surface. European Physical Journal E, 2019, 42, 84.	0.7	1
475	Drop Impact on Two-Tier Monostable Superrepellent Surfaces. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43698-43707.	4.0	22

#	Article	IF	CITATIONS
476	Bioinspired functions., 2019, , 147-246.		1
477	Biomimetic multifunctional materials: a review. Emergent Materials, 2019, 2, 391-415.	3.2	27
478	Superhydrophobic antiicing and ice-release polymer coatings. , 2019, , 205-222.		0
479	Recent developments in air-trapped superhydrophobic and liquid-infused slippery surfaces for anti-icing application. Progress in Organic Coatings, 2019, 137, 105373.	1.9	129
480	Case and analysis of flip classroom based on micro-course video. IOP Conference Series: Earth and Environmental Science, 2019, 310, 022061.	0.2	1
481	Numerical Interpretation to the Roles of Liquid Viscosity in Droplet Spreading at Small Weber Numbers. Langmuir, 2019, 35, 16164-16171.	1.6	14
482	Application of anti-icing coating based on adsorption of functional substances by microporous sphere. Progress in Organic Coatings, 2019, 137, 105320.	1.9	15
483	Energy saving strategy for the development of icephobic coatings and surfaces. Thin Solid Films, 2019, 687, 137458.	0.8	5
484	Design of robust superhydrophobic coatings using a novel fluorinated polysiloxane with UV/moisture dual cure system. Reactive and Functional Polymers, 2019, 143, 104329.	2.0	17
485	Rapid fabrication of a dual-scale micro-nanostructured superhydrophobic aluminum surface with delayed condensation and ice formation properties. Soft Matter, 2019, 15, 7945-7955.	1.2	50
486	Post-Impact Behavior of a Droplet Impacting on a Permeable Metal Mesh with a Sharp Wettability Step. Langmuir, 2019, 35, 12711-12721.	1.6	24
487	Superhydrophobic polymer composite coating on glass via spin coating technique. Colloid and Polymer Science, 2019, 297, 1499-1505.	1.0	41
488	Central-pointy to central-concave icing transition of an impact droplet by increasing surface subcooling. International Communications in Heat and Mass Transfer, 2019, 108, 104326.	2.9	26
489	Fabrication of superhydrophobic and ice-repellent surfaces on pure aluminium using single and multiscaled periodic textures. Scientific Reports, 2019, 9, 13944.	1.6	83
490	Antifreeze Liquid-Infused Surface with High Transparency, Low Ice Adhesion Strength, and Antifrosting Properties Fabricated through a Spray Layer-by-Layer Method. Industrial & Description Engineering Chemistry Research, 2019, 58, 2225-2234.	1.8	41
491	Achieving an acid resistant surface on magnesium alloy via bio-inspired design. Applied Surface Science, 2019, 478, 150-161.	3.1	60
492	Fabrication of superhydrophobic bionic surface integrating with VOF simulation studies of liquid drop impacting. Microscopy Research and Technique, 2019, 82, 615-623.	1.2	14
493	Bioinspired Superhydrophobic Ni–Ti Archwires with Resistance to Bacterial Adhesion and Nickel Ion Release. Advanced Materials Interfaces, 2019, 6, 1801569.	1.9	13

#	Article	IF	CITATIONS
494	Impact dynamics of supercooled microdroplets on water-repellent coatings. Thin Solid Films, 2019, 688, 137309.	0.8	8
495	A porous superhydrophobic surface with active air plastron control for drag reduction and fluid impalement resistance. Journal of Materials Chemistry A, 2019, 7, 16387-16396.	5.2	64
496	Droplet impingement on nano-textured superhydrophobic surface: Experimental and numerical study. Applied Surface Science, 2019, 491, 160-170.	3.1	46
497	Advances in the application of biomimetic surface engineering in the oil and gas industry. Friction, 2019, 7, 289-306.	3.4	23
498	Durability of superhydrophobic laser-treated metal surfaces under icing conditions. Materials Letters: X, 2019, 3, 100021.	0.3	12
499	Superamphiphobic Surfaces with Controllable Adhesion Fabricated by Femtosecond Laser Bessel Beam on PTFE. Advanced Materials Interfaces, 2019, 6, 1900550.	1.9	38
500	Icephobic behaviors of superhydrophobic amorphous carbon nano-films synthesized from a flame process. Journal of Colloid and Interface Science, 2019, 552, 613-621.	5.0	19
501	Fabrication of a mechanically-stable anti-icing graphene oxide-diatomaceous earth/epoxy coating. Materials Research Express, 2019, 6, 085090.	0.8	15
502	In-situ icing and water condensation study on different topographical surfaces. Cold Regions Science and Technology, 2019, 165, 102814.	1.6	13
503	Synthesis and characterization of superhydrophobic surfaces prepared from silica and alumina nanoparticles on a polyurethane polymer matrix. Progress in Organic Coatings, 2019, 135, 205-212.	1.9	17
504	Facile one-step fabrication of PHC/PDMS anti-icing coatings with mechanical properties and good durability. Progress in Organic Coatings, 2019, 135, 263-269.	1.9	28
505	Nature-Inspired Liquid Infused Systems for Superwettable Surface Energies. ACS Applied Materials & Amp; Interfaces, 2019, 11, 21275-21293.	4.0	55
506	Triple condensate halo from a single water droplet impacting upon a cold surface. Applied Physics Letters, 2019, 114, 183703.	1.5	11
507	Splashing of droplets impacting superhydrophobic substrates. Journal of Fluid Mechanics, 2019, 870, 175-188.	1.4	41
508	Preparation of mechanically durable superhydrophobic aluminum surface by sandblasting and chemical modification. Progress in Organic Coatings, 2019, 133, 77-84.	1.9	53
509	A simple two-step approach for the fabrication of bio-inspired superhydrophobic and anisotropic wetting surfaces having corrosion resistance. Journal of Alloys and Compounds, 2019, 793, 326-335.	2.8	62
510	SiO2 nanoparticle-based superhydrophobic spray and multi-functional surfaces by a facile and scalable method. Ceramics International, 2019, 45, 15741-15744.	2.3	44
511	Water droplet impact on superhydrophobic surfaces with various inclinations and supercooling degrees. International Journal of Heat and Mass Transfer, 2019, 138, 844-851.	2.5	54

#	Article	IF	CITATIONS
512	Effects of a chemically heterogeneous island on the dynamic contact angles of droplets. Applied Surface Science, 2019, 486, 337-343.	3.1	17
513	lcephobic surfaces: Definition and figures of merit. Advances in Colloid and Interface Science, 2019, 269, 203-218.	7.0	115
514	Interfacial tension gradient driven self-assembly of binary colloidal particles for fabrication of superhydrophobic porous films. Journal of Colloid and Interface Science, 2019, 548, 312-321.	5.0	19
515	Dynamic behavior of water drops impacting on cylindrical superhydrophobic surfaces. Physics of Fluids, 2019, 31, .	1.6	86
516	Spontaneous droplets gyrating via asymmetric self-splitting on heterogeneous surfaces. Nature Communications, 2019, 10, 950.	5.8	135
517	lcephobic materials: Fundamentals, performance evaluation, and applications. Progress in Materials Science, 2019, 103, 509-557.	16.0	258
518	Scraping force characteristics of frost formed on vertical cooling surfaces having different structures and wettability. International Journal of Refrigeration, 2019, 101, 148-154.	1.8	6
519	Lateral motion of a droplet after impacting on groove-patterned superhydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 48-54.	2.3	21
520	Stable magnetic fluid anti-icing surfaces supported by a magnetic field and porous substrate. Materials Research Express, 2019, 6, 055035.	0.8	5
521	Facile modification of sepiolite and its application in superhydrophobic coatings. Applied Clay Science, 2019, 174, 1-9.	2.6	43
522	Durability and Wear Resistance of Laser-Textured Hardened Stainless Steel Surfaces with Hydrophobic Properties. Langmuir, 2019, 35, 5353-5363.	1.6	30
523	Synthesis of mesoporous silica-shell/oil-core microspheres for common waterborne polymer coatings with robust superhydrophobicity. Progress in Organic Coatings, 2019, 132, 275-282.	1.9	27
524	<i>Modus Operandi</i> of Protective and Anti-icing Mechanisms Underlying the Design of Longstanding Outdoor Icephobic Coatings. ACS Nano, 2019, 13, 4335-4346.	7.3	146
525	An electric-field-dependent drop selector. Lab on A Chip, 2019, 19, 1296-1304.	3.1	6
526	Icephobic nanocoatings for infrastructure protection. , 2019, , 281-302.		1
527	Experimental and Numerical Characterization of Drop Impact on a Hydrophobic Cylinder. Journal of Fluids Engineering, Transactions of the ASME, 2019, 141, .	0.8	8
528	DNAâ€Based Nanofabrication: Pathway to Applications in Surface Engineering. Small, 2019, 15, e1805428.	5.2	24
529	Fabrication of fluorine-free superhydrophobic coatings from montmorillonite with mechanical durability and chemical stability. Journal of Coatings Technology Research, 2019, 16, 1043-1053.	1.2	8

#	Article	IF	Citations
530	Depinning force of a receding droplet on pillared superhydrophobic surfaces: Analytical models. Journal of Colloid and Interface Science, 2019, 543, 122-129.	5.0	25
531	lcing behavior of water droplets impinging on cold superhydrophobic surface. Surface and Coatings Technology, 2019, 363, 362-368.	2.2	56
532	Preparations of superhydrophobic surfaces using the one-step spin coating method and characterizations of their anti-icing behavior. International Journal of Materials Research, 2019, 110, 1135-1141.	0.1	5
533	Estimation of anti-icing properties of coatings. E3S Web of Conferences, 2019, 135, 01009.	0.2	1
534	Hydrophobic and Icephobic Behaviour of Polyurethane-Based Nanocomposite Coatings. Coatings, 2019, 9, 811.	1.2	14
535	3D Organic Nanofabrics: Plasma-Assisted Synthesis and Antifreezing Behavior of Superhydrophobic and Lubricant-Infused Slippery Surfaces. Langmuir, 2019, 35, 16876-16885.	1.6	13
536	pH-sensitive organic diimide materials-based superhydrophobic surface for oil-water separation applications. Materials Research Express, 2019, 6, 125112.	0.8	10
537	Multifunctional composite films with vertically aligned ZnO nanowires by leaching-enabled capillary rise infiltration. Nanoscale, 2019, 11, 22099-22107.	2.8	12
538	On the Icephobic Behavior of Organosilicon-Based Surface Structures Developed Through Atmospheric Pressure Plasma Deposition in Nitrogen Plasma. Coatings, 2019, 9, 679.	1.2	18
539	Liquid infused surfaces with anti-icing properties. Nanoscale, 2019, 11, 22615-22635.	2.8	61
540	Ice adhesion mechanism on lubricant-impregnated surfaces using molecular dynamics simulations. Molecular Simulation, 2019, 45, 394-402.	0.9	14
541	Fluorinated graphene provides long lasting ice inhibition in high humidity. Carbon, 2019, 141, 451-456.	5.4	42
542	Feasible fabrication of a wear-resistant hydrophobic surface. Applied Surface Science, 2019, 463, 923-930.	3.1	33
543	Control of wettability transition and coalescence dynamics of droplets on the surface via mechanical vibration: A molecular simulation exploration. Applied Surface Science, 2019, 473, 393-400.	3.1	32
544	Supercooled Water Drops Do Not Freeze During Impact on Hybrid Janus Particle-Based Surfaces. Chemistry of Materials, 2019, 31, 112-123.	3.2	14
545	High-performance icephobic droplet rebound surface with nanoscale doubly reentrant structure. International Journal of Heat and Mass Transfer, 2019, 133, 341-351.	2.5	26
546	Icephobic Durability of Branched PDMS Slippage Coatings Co-Cross-Linked by Functionalized POSS. ACS Applied Materials & Diterfaces, 2019, 11, 4654-4666.	4.0	58
547	Experimental investigation of water droplet impact and freezing on micropatterned stainless steel surfaces with varying wettabilities. International Journal of Heat and Mass Transfer, 2019, 129, 953-964.	2.5	45

#	Article	IF	CITATIONS
548	When superhydrophobic coatings are icephobic: Role of surface topology. Surface and Coatings Technology, 2019, 358, 207-214.	2.2	76
549	Hierarchical Structures for Superhydrophobic and Superoleophobic Surfaces. Langmuir, 2019, 35, 10689-10703.	1.6	105
550	Evaluation of surface roughness and frost retardancy of a glass fiber/unsaturated polyester composite. International Journal of Heat and Mass Transfer, 2019, 130, 282-289.	2.5	3
551	Phase transition enabled durable anti-icing surfaces and its DIY design. Chemical Engineering Journal, 2019, 360, 243-249.	6.6	68
552	The verification of icephobic performance on biomimetic superhydrophobic surfaces and the effect of wettability and surface energy. Applied Surface Science, 2019, 466, 503-514.	3.1	52
553	Longâ€termâ€durable antiâ€icing superhydrophobic composite coatings. Journal of Applied Polymer Science, 2019, 136, 47059.	1.3	22
554	An investigation into the anti-icing properties of fabrics used for the outer layer of firefighter clothing. Textile Reseach Journal, 2019, 89, 1500-1511.	1.1	5
555	Investigation of the freezing process of water droplets based on average and local initial ice fraction. Experimental Heat Transfer, 2020, 33, 197-209.	2.3	13
556	Tuning the wettability, mechanical and tribological properties of NbN films by doping rare earth cerium. Journal of Alloys and Compounds, 2020, 814, 152339.	2.8	16
557	Flexible and thermally stable superhydrophobic surface with excellent anti-corrosion behavior. Journal of Materials Science, 2020, 55, 2215-2225.	1.7	30
558	Nanotextured Aluminum-Based Surfaces with Icephobic Properties. Heat Transfer Engineering, 2020, 41, 1663-1672.	1.2	10
559	Fabrication of transparent icephobic surfaces with self-reparability: Effect of structuring and thickness of the lubricant-elastomer layer. Applied Surface Science, 2020, 504, 144061.	3.1	27
560	Microâ€/Nanostructured Interface for Liquid Manipulation and Its Applications. Small, 2020, 16, e1903849.	5.2	70
561	Experimental investigation of processing disturbances in laser surface patterning. Optics and Lasers in Engineering, 2020, 126, 105900.	2.0	6
562	Ultrafast self-healing and highly transparent coating with mechanically durable icephobicity. Applied Materials Today, 2020, 19, 100542.	2.3	40
563	Transparent Electrothermal Film Defoggers and Antiicing Coatings based on Wrinkled Graphene. Small, 2020, 16, e1905945.	5.2	33
564	A novel TiO2@stearic acid/chitosan coating with reversible wettability for controllable oil/water and emulsions separation. Carbohydrate Polymers, 2020, 232, 115807.	5.1	69
565	FDTSâ€Modified SiO ₂ /rGO Wrinkled Films with a Microâ€Nanoscale Hierarchical Structure and Antiâ€Icing/Deicing Properties under Condensation Condition. Advanced Materials Interfaces, 2020, 7, 1901446.	1.9	39

#	ARTICLE	IF	CITATIONS
566	Cross-Linked Organic–Inorganic Hybrid Composite Films for One-Step Fabrication of Robust Superhydrophobic Surfaces. Journal of Nanoscience and Nanotechnology, 2020, 20, 1028-1032.	0.9	2
567	Passive anti-frosting cables. International Journal of Heat and Mass Transfer, 2020, 146, 118808.	2.5	23
568	Fabrication of functional superhydrophobic surfaces on carbon fibre reinforced plastics by IR and UV direct laser interference patterning. Applied Surface Science, 2020, 508, 144817.	3.1	20
569	Leidenfrost suppression and contact time reduction of a drop impacting on silicon nanowire array-coated surfaces. International Journal of Heat and Mass Transfer, 2020, 148, 118980.	2.5	18
570	Evaluation of the Engineering Applications of Superhydrophobic Metal Surfaces Achieved by a Spraying–Adhering Process Using Different Combinations of Hydrophobic Particles and Adhesives. Industrial & Different Combinations of Hydrophobic Particles and Adhesives.	1.8	5
571	Superhydrophobic surfaces for extreme environmental conditions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27188-27194.	3.3	58
572	Superhydrophobic surfaces with flake-like structures and lubricant-infused composite surfaces to enhance anti-icing ability. Chemical Physics Letters, 2020, 758, 137903.	1.2	10
573	Bioinspired and Biomimetic Design of Multilayered and Multiscale Structures. , 2020, , 3-19.		1
574	Bioinspired Design for Energy Storage Devices. , 2020, , 193-211.		0
575	Fast increase of nanofluidic slip in supercooled water: the key role of dynamics. Nanoscale, 2020, 12, 20396-20403.	2.8	20
576	Reduced contact time of a droplet impacting on a moving superhydrophobic surface. Applied Physics Letters, 2020, 117, .	1.5	43
577	Bioinspired Underwater Propulsors. , 2020, , 113-139.		6
578	Selfâ€Limited Ice Formation and Efficient Deâ€Icing on Superhydrophobic Microâ€Structured Airfoils through Direct Laser Interference Patterning. Advanced Materials Interfaces, 2020, 7, 2001231.	1.9	38
579	Robust and durable surperhydrophobic F-DLC coating for anti-icing in aircrafts engineering. Surface and Coatings Technology, 2020, 404, 126468.	2.2	23
580	Aquatic Animals Operating at High Reynolds Numbers. , 2020, , 235-270.		1
581	An Introduction of Droplet Impact Dynamics to Engineering Students. Fluids, 2020, 5, 107.	0.8	44
582	A review of recent literature on icing phenomena: Transport mechanisms, their modulations and controls. International Journal of Heat and Mass Transfer, 2020, 159, 120074.	2.5	56
583	Formation of sub-wavelength laser induced periodic surface structure and wettability transformation of CFRP laminates using ultra-fast laser. Materials Letters, 2020, 276, 128282.	1.3	9

#	Article	IF	CITATIONS
584	An exploratory study on using Slippery-Liquid-Infused-Porous-Surface (SLIPS) for wind turbine icing mitigation. Renewable Energy, 2020, 162, 2344-2360.	4.3	27
585	Experimental Investigation of Water Droplet Impact on the Electrospun Superhydrophobic Cylindrical Glass: Contact Time, Maximum Spreading Factor, and Splash Threshold. Langmuir, 2020, 36, 13498-13508.	1.6	27
588	Dynamic Behavior of Droplet Impact on Inclined Surfaces with Acoustic Waves. Langmuir, 2020, 36, 10175-10186.	1.6	29
589	Impact-Induced Removal of a Deposited Droplet: Implications for Self-Cleaning Properties. Journal of Physical Chemistry Letters, 2020, 11, 6396-6403.	2.1	21
590	Universal Model for the Maximum Spreading Factor of Impacting Nanodroplets: From Hydrophilic to Hydrophobic Surfaces. Langmuir, 2020, 36, 9306-9316.	1.6	56
591	Evaluation of Functionalized Coatings for the Prevention of Ice Accretion by Using Icing Wind Tunnel Tests. Coatings, 2020, 10, 636.	1.2	15
592	Durability of superhydrophobic duplex coating systems for aerospace applications. Surface and Coatings Technology, 2020, 401, 126249.	2.2	38
593	Dynamic Defrosting on Superhydrophobic and Biphilic Surfaces. Matter, 2020, 3, 1178-1195.	5.0	41
594	Acoustic Waves for Active Reduction of Contact Time in Droplet Impact. Physical Review Applied, 2020, 14, .	1.5	16
595	Transparent Photothermal Metasurfaces Amplifying Superhydrophobicity by Absorbing Sunlight. ACS Nano, 2020, 14, 11712-11721.	7.3	31
596	Effects of Surface Wettability on the Dewetting Performance of Hydrophobic Surfaces. ACS Omega, 2020, 5, 28776-28783.	1.6	4
598	Bioinspired Design of Dental Functionally Graded Multilayer Structures. , 2020, , 140-166.		0
599	Bionic Organs. , 2020, , 167-192.		1
600	Bioinspired Design of Nanostructures. , 2020, , 212-232.		0
601	Flying of Insects. , 2020, , 271-299.		5
602	Bioinspired Building Envelopes. , 2020, , 343-354.		0
604	Human Cortical Bone as a Structural Material. , 2020, , 20-44.		0
605	Bamboo-Inspired Materials and Structures. , 2020, , 89-110.		5

#	Article	IF	CITATIONS
606	Designing Nature-Inspired Liquid-Repellent Surfaces. , 2020, , 300-319.		1
607	Delay of ice formation on penguin feathers. European Physical Journal: Special Topics, 2020, 229, 1881-1896.	1.2	10
608	Bio-inspired Superhydrophobic Coating with Low Hydrate Adhesion for Hydrate Mitigation. Journal of Bionic Engineering, 2020, 17, 1019-1028.	2.7	18
609	Biomimetic and Soft Robotics. , 2020, , 320-342.		0
610	Superwettable Surface Engineering in Controlling Cell Adhesion for Emerging Bioapplications. Small Methods, 2020, 4, 2000573.	4.6	40
611	Omniphobic Etched Aluminum Surfaces with Anti-Icing Ability. Langmuir, 2020, 36, 10916-10922.	1.6	21
612	Bioinspired Design of Multilayered Composites. , 2020, , 45-88.		0
613	Reinforced Superhydrophobic Anti-Corrosion Epoxy Resin Coating by Fluorine–Silicon–Carbide Composites. Coatings, 2020, 10, 1244.	1.2	25
614	Hybrid Modification of Unsaturated Polyester Resins to Obtain Hydro- and Icephobic Properties. Processes, 2020, 8, 1635.	1.3	8
615	Laser Fabrication of Anti-Icing Surfaces: A Review. Materials, 2020, 13, 5692.	1.3	44
616	Bouncing of cloud-sized microdroplets on superhydrophobic surfaces. Physics of Fluids, 2020, 32, 122118.	1.6	11
617	Numerical investigation of surface curvature effect on the self-propelled capability of coalesced drops. Physics of Fluids, 2020, 32, 122117.	1.6	8
618	Hydrophobic and Anti-Icing Behavior of UV-Laser-Treated Polyester Resin-Based Gelcoats. Processes, 2020, 8, 1642.	1.3	13
622	Microscopic scan-free surface profiling over extended axial ranges by point-spread-function engineering. Science Advances, 2020, 6, .	4.7	9
623	Directional Transportation of Impacting Droplets on Wettability-Controlled Surfaces. Langmuir, 2020, 36, 5855-5862.	1.6	46
624	Temperature-regulated adhesion of impacting drops on nano/microtextured monostable superrepellent surfaces. Soft Matter, 2020, 16, 5388-5397.	1.2	11
625	Numerical study of droplet impact on a flexible substrate. Physical Review E, 2020, 101, 053107.	0.8	13
626	Droplet impact on groove-patterned surfaces: The role of the groove patterns and impact velocities. Colloids and Interface Science Communications, 2020, 37, 100287.	2.0	10

#	Article	IF	CITATIONS
627	Heat transfer suppression by suspended droplets on microstructured surfaces. Applied Physics Letters, $2020,116,$	1.5	15
628	Synthesis, self-assembly of perfluoropolyether based ABA-triblock copolymers for superhydrophobic surface applications. Polymer, 2020, 205, 122732.	1.8	16
629	Droplet impact on cylindrical surfaces: Effects of surface wettability, initial impact velocity, and cylinder size. Journal of Colloid and Interface Science, 2020, 578, 207-217.	5.0	54
630	Multifunctional polylactide nonwovens with 3D network of multiwall carbon nanotubes. Applied Surface Science, 2020, 527, 146898.	3.1	13
631	Smart Superhydrophobic Films with Selfâ€Sensing and Antiâ€Icing Properties Based on Silica Nanoparticles and Graphene. Advanced Materials Interfaces, 2020, 7, 2000492.	1.9	20
632	Stable slippery coating with structure of tubes and pyramids for inhibition of corrosion induced by microbes and seawater. Surface and Coatings Technology, 2020, 388, 125596.	2.2	14
633	Adhesion of freshwater columnar ice to material surfaces by crystallization from the melt. Journal of Crystal Growth, 2020, 535, 125563.	0.7	3
634	Diatom Frustule Silica Exhibits Superhydrophilicity and Superhemophilicity. ACS Nano, 2020, 14, 4755-4766.	7.3	52
635	Study of the effect of thermal conductivity on the anti-icing performance of coated fabrics. Textile Reseach Journal, 2020, 90, 2035-2045.	1.1	4
636	Facile approach to design a stable, damage resistant, slippery, and omniphobic surface. RSC Advances, 2020, 10, 19157-19168.	1.7	33
637	Impacting-freezing dynamics of a supercooled water droplet on a cold surface: Rebound and adhesion. International Journal of Heat and Mass Transfer, 2020, 158, 119997.	2.5	100
638	Dynamic changes of hydrophobic behavior during icing. Surface and Coatings Technology, 2020, 397, 126043.	2.2	10
639	Direct Femtosecond Laser Fabrication of Superhydrophobic Aluminum Alloy Surfaces with Anti-icing Properties. Coatings, 2020, 10, 587.	1.2	43
640	Rebound dynamics of two droplets simultaneously impacting a flat superhydrophobic surface. AICHE Journal, 2020, 66, e16647.	1.8	17
641	Viscous bouncing. Soft Matter, 2020, 16, 7270-7273.	1.2	21
642	Actuation of a Nonconductive Droplet in an Aqueous Fluid by Reversed Electrowetting Effect. Langmuir, 2020, 36, 8152-8164.	1.6	21
643	Directional rebound control of droplets on low-temperature regular and irregular wrinkled superhydrophobic surfaces. Applied Surface Science, 2020, 530, 147099.	3.1	14
644	One-step fabrication of flexible superhydrophobic surfaces to enhance water repellency. Surface and Coatings Technology, 2020, 400, 126155.	2.2	10

#	Article	IF	CITATIONS
645	In situ ice growth kinetics on water-repellent coatings under atmospheric icing conditions. Surface and Coatings Technology, 2020, 399, 126136.	2.2	6
646	Design Rules for Laserâ€Treated Icephobic Metallic Surfaces for Aeronautic Applications. Advanced Functional Materials, 2020, 30, 1910268.	7.8	109
647	From Extremely Water-Repellent Coatings to Passive Icing Protection—Principles, Limitations and Innovative Application Aspects. Coatings, 2020, 10, 66.	1.2	34
648	What are the design principles, from the choice of lubricants and structures to the preparation method, for a stable slippery lubricant-infused porous surface? Materials Horizons, 2020, 7, 1697-1726.	6.4	96
649	Superhydrophobic Copper Surface Textured by Laser for Delayed Icing Phenomenon. Langmuir, 2020, 36, 1075-1082.	1.6	62
650	Fast-freezing kinetics inside a droplet impacting on a cold surface. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2788-2794.	3.3	43
651	Control the droplet motion by using chemically stripe-patterned surfaces. Chemical Physics, 2020, 532, 110678.	0.9	6
652	Bioinspired Multifunctional Anti-icing Hydrogel. Matter, 2020, 2, 723-734.	5.0	150
653	Intrinsic dependence of ice adhesion strength on surface roughness. Surface and Coatings Technology, 2020, 385, 125382.	2.2	37
655	When and how self-cleaning of superhydrophobic surfaces works. Science Advances, 2020, 6, eaaw9727.	4.7	242
656	Biomimetic Superlyophobic Metallic Surfaces: Focusing on Their Fabrication and Applications. Journal of Bionic Engineering, 2020, 17, 1-33.	2.7	32
657	A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings. Progress in Organic Coatings, 2020, 142, 105557.	1.9	187
658	Self-ejections of multiple isolated slushes on disorderly grooved superhydrophobic surfaces. Applied Physics Letters, 2020, 116, 053702.	1.5	2
659	Anti-Icing Properties of Vertically Aligned TiO ₂ Nanopillars. Langmuir, 2020, 36, 6041-6050.	1.6	14
660	Superior anti-icing strategy by combined sustainable liquid repellence and electro/photo-responsive thermogenesis of oil/MWNT composite. Journal of Materials Science and Technology, 2020, 49, 106-116.	5.6	23
661	A New Measuring System for the Determination of the Ice Adhesion Strength on Smooth Surfaces. Langmuir, 2020, 36, 4465-4476.	1.6	14
662	Current Status and Future Prospects of Applying Bioinspired Superhydrophobic Materials for Conservation of Stone Artworks. Coatings, 2020, 10, 353.	1.2	14
663	Influence of new superhydrophobic micro-structures on delaying ice formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 595, 124675.	2.3	4

#	Article	IF	Citations
664	Robust, transparent, superhydrophobic coatings using novel hydrophobic/hydrophilic dual-sized silica particles. Journal of Colloid and Interface Science, 2020, 574, 347-354.	5.0	57
665	Research on defrost free air-source heat pump with surface stripe concavo-convex fins. Energy and Buildings, 2021, 231, 110568.	3.1	10
666	Water droplet freezing on cold surfaces with distinct wetabilities. Heat and Mass Transfer, 2021, 57, 1-10.	1.2	6
667	Droplet Retention on Superhydrophobic Surfaces: A Critical Review. Advanced Materials Interfaces, 2021, 8, 2001205.	1.9	56
668	Off-centered droplet impact on single-ridge superhydrophobic surfaces. Experimental Thermal and Fluid Science, 2021, 120, 110245.	1.5	42
669	Polysiloxane as icephobic materials – The past, present and the future. Chemical Engineering Journal, 2021, 405, 127088.	6.6	83
670	Amphiphilically modified self-stratified siloxane-glycidyl carbamate coatings for anti-icing applications. Journal of Coatings Technology Research, 2021, 18, 83-97.	1.2	10
671	Simulation-guided construction of solar thermal coating with enhanced light absorption capacity for effective icephobicity. Chemical Engineering Journal, 2021, 408, 127316.	6.6	20
672	Boosting silicon photovoltaic efficiency from regasification of liquefied natural gas. Energy, 2021, 214, 118907.	4.5	5
673	Integration of experimental analysis and machine learning to predict drop behavior on superhydrophobic surfaces. Chemical Engineering Journal, 2021, 417, 127898.	6.6	16
674	Lateral motion of a droplet impacting on a wettability-patterned surface: numerical and theoretical studies. Soft Matter, 2021, 17, 724-737.	1.2	7
675	Magnetically responsive lubricant-infused porous surfaces with controllable lubricity and durable anti-icing performance. Surface and Coatings Technology, 2021, 406, 126742.	2.2	17
676	An experimental study of rain erosion effects on a hydro-/ice-phobic coating pertinent to Unmanned-Arial-System (UAS) inflight icing mitigation. Cold Regions Science and Technology, 2021, 181, 103196.	1.6	15
677	Ultrasonic assisted fabrication of dual function surface on PET and preparation of single component ink to attain efficient self-cleaning function via digital printing. Journal of Molecular Liquids, 2021, 324, 114668.	2.3	7
678	Bioinspired superwetting surfaces for biosensing. View, 2021, 2, 20200053.	2.7	33
679	Droplet impact on pillar-arrayed non-wetting surfaces. Soft Matter, 2021, 17, 5932-5940.	1.2	21
680	Different Approaches to Low-Wettable Materials for Freezing Environments: Design, Performance and Durability. Coatings, 2021, 11, 77.	1.2	7
681	Recent Progresses of Superhydrophobic Coatings in Different Application Fields: An Overview. Coatings, 2021, 11, 116.	1.2	67

#	Article	IF	Citations
682	Tailoring of optical, hydrophobic, and anti-icing properties of Ca–Mg co-doped ZnO thin films via sol–gel method. Journal of Sol-Gel Science and Technology, 2021, 97, 706-720.	1.1	6
683	Waterborne, non-fluorinated and durable anti-icing superhydrophobic coatings based on diatomaceous earth. New Journal of Chemistry, 2021, 45, 10409-10417.	1.4	14
684	The effects of bio-inspired micro/nano scale structures on anti-icing properties. Soft Matter, 2021, 17, 447-466.	1.2	24
685	Study on droplet nucleation position and jumping on structured hydrophobic surface using the lattice Boltzmann method. Thermal Science, 2022, 26, 1477-1486.	0.5	2
686	A highly controlled fabrication of porous anodic aluminium oxide surface with versatile features by spatial thermo-anodization. Surface and Coatings Technology, 2021, 408, 126809.	2.2	6
687	Synthesis and Frost Suppression Performance of PDMS-SiO2/PFA Hybrid Coating. Coatings, 2021, 11, 256.	1.2	3
688	Silicone nanofilaments grown on aircraft alloys for low ice adhesion. Surface and Coatings Technology, 2021, 410, 126971.	2.2	13
689	Applications of superhydrophobic coatings in anti-icing: Theory, mechanisms, impact factors, challenges and perspectives. Progress in Organic Coatings, 2021, 152, 106117.	1.9	97
690	Controlled Integration of Interconnected Pores under Polymeric Surfaces for Low Adhesion and Antiscaling Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 13684-13692.	4.0	10
691	Influence of Microstructure Topography on the Oblique Impact Dynamics of Drops on Superhydrophobic Surfaces. Langmuir, 2021, 37, 4678-4689.	1.6	22
692	Super-Hydrophobic Coating Based on Acrylic Resin A01. Solid State Phenomena, 0, 316, 720-725.	0.3	0
693	Solution-Based One-Step Preparation of Three-Dimensional Self-Assembled Octadecyl Silica Nanosquare Plate and Microlamella Structures for Superhydrophobic and Icephobic Surfaces. Langmuir, 2021, 37, 5886-5894.	1.6	9
694	A Hierarchical Conical Array with Controlled Adhesion and Drop Bounce Ability for Reducing Residual Non-Newtonian Liquids. Journal of Bionic Engineering, 2021, 18, 637-648.	2.7	6
695	Ultra dynamic water repellency and anti-icing performance of superhydrophobic ZnO surface on the printed circuit board (PCB). Chemical Physics Letters, 2021, 771, 138558.	1.2	31
696	Fabrication and characterization of multiscale spherical artificial compound eye with self-cleaning and anti-icing properties. Results in Physics, 2021, 24, 104153.	2.0	3
697	Parametric influencing mechanism and control of contact time for droplets impacting on the solid surfaces. International Journal of Mechanical Sciences, 2021, 197, 106333.	3.6	26
698	A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances. Journal of Colloid and Interface Science, 2021, 590, 301-310.	5.0	128
699	Droplet impact dynamics and heat transfer on nanostructured doubly reentrant cavity under freezing temperature. Physics of Fluids, 2021, 33, .	1.6	7

#	Article	IF	Citations
700	Controlling detachment residue via magnetic repulsion force. Applied Physics Letters, 2021, 118, 191601.	1.5	7
701	Numerical and theoretical modeling of droplet impact on spherical surfaces. Physics of Fluids, 2021, 33, .	1.6	32
702	Droplet Dynamics and Freezing Delay on Nanoporous Microstructured Surfaces at Condensing Environment. Coatings, 2021, 11, 617.	1.2	7
703	Horizontal Motion of a Superhydrophobic Substrate Affects the Drop Bouncing Dynamics. Physical Review Letters, 2021, 126, 234503.	2.9	44
704	Ice Coverage Induced by Depositing a Water Drop onto the Supercooled Substrate at Extreme Low Vapor Pressure. Crystals, 2021, 11, 691.	1.0	4
705	Bouncing and coalescence dynamics during the impact of a falling drop with a sessile drop on different solid surfaces. Physics of Fluids, 2021, 33, .	1.6	28
707	Measurement of thermal boundary resistance between water and superhydrophobic surfaces by the bi-directional differential 31% method. International Communications in Heat and Mass Transfer, 2021, 126, 105404.	2.9	2
708	Functional surface microstructures inspired by nature – From adhesion and wetting principles to sustainable new devices. Progress in Materials Science, 2021, 120, 100823.	16.0	117
709	Design and applications of surfaces that control the accretion of matter. Science, 2021, 373, .	6.0	114
710	Icing delay of sessile water droplets on superhydrophobic titanium alloy surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621, 126587.	2.3	28
711	Toward Exceptional Icephobicity with Chionophile-Inspired Durable Biomimetic Coatings. ACS Applied Polymer Materials, 2021, 3, 4184-4194.	2.0	5
712	Dynamic behaviors of two droplets impacting an inclined superhydrophobic substrate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126725.	2.3	12
713	Maximal spreading of droplet during collision on particle: Effects of liquid viscosity and surface curvature. Physics of Fluids, 2021, 33, .	1.6	21
714	Supercooled water droplet impacting-freezing behaviors on cold superhydrophobic spheres. International Journal of Multiphase Flow, 2021, 141, 103675.	1.6	26
715	Bouncing behavior of a water droplet on a super-hydrophobic surface near freezing temperatures. International Journal of Heat and Mass Transfer, 2021, 174, 121304.	2.5	22
717	Integration of superhydrophobicity and high durability in super-rough hard thin films. Ceramics International, 2021, 47, 23653-23658.	2.3	7
718	Contact angle measurements: From existing methods to an open-source tool. Advances in Colloid and Interface Science, 2021, 294, 102470.	7.0	42
719	Dynamics of droplets under electrowetting effect with voltages exceeding the contact angle saturation threshold. Journal of Fluid Mechanics, 2021, 925, .	1.4	10

#	Article	IF	CITATIONS
720	Patterned superhydrophobic surface fabrication by coupled atmospheric pressure RF and pulsed volume dielectric barrier discharges. Plasma Processes and Polymers, 0, , e2100045.	1.6	5
721	Impact Dynamics and Freezing Behavior of Surfactant-Laden Droplets on Non-Wettable Coatings at Subzero Temperatures. Langmuir, 2021, 37, 11049-11060.	1.6	10
722	Rebound Behaviors of Multiple Droplets Simultaneously Impacting a Superhydrophobic Surface. Langmuir, 2021, 37, 11233-11241.	1.6	11
723	Bioinspiration and Microtopography As Nontoxic Strategies for Marine Bioadhesion Control. Advanced Materials Interfaces, 2021, 8, 2100994.	1.9	11
724	Icephobic properties of anti-wetting coatings for aeronautical applications. Surface and Coatings Technology, 2021, 421, 127363.	2.2	6
725	Dynamic Antiâ€icing Surfaces (DAIS). Advanced Science, 2021, 8, e2101163.	5.6	49
726	Supersonically sprayed transparent flexible multifunctional composites for self-cleaning, anti-icing, anti-fogging, and anti-bacterial applications. Composites Part B: Engineering, 2021, 222, 109070.	5.9	49
727	The maximum spreading lengths in circumferential and axial directions when droplets impact on cylindrical surfaces. International Journal of Multiphase Flow, 2021, 143, 103774.	1.6	10
728	SPH simulation of supercooled large droplets impacting hydrophobic and superhydrophobic surfaces. Computers and Fluids, 2021, 229, 105055.	1.3	9
729	Superhydrophobic surface based on the self-growing structure of BaAl2Si2O8 glass-ceramics. Ceramics International, 2022, 48, 1990-1998.	2.3	6
730	SiO2 nanoparticle-containing superhydrophobic materials with enhanced durability via facile and scalable spray method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127014.	2.3	28
731	Anti freeze proteins (Afp): Properties, sources and applications – A review. International Journal of Biological Macromolecules, 2021, 189, 292-305.	3.6	39
732	Numerical analysis on dynamics and thermodynamics of a supercooled water droplet considering the dynamic contact angle. Physics of Fluids, 2021, 33, .	1.6	11
733	On the dynamics of contact line freezing of water droplets on superhydrophobic carbon soot coatings. Current Applied Physics, 2021, 31, 74-86.	1.1	12
734	Anti-freezing characteristics of water droplet impinging the superhydrophobic surface: An experimental and predictive study. Applied Surface Science, 2021, 566, 150717.	3.1	18
735	Droplet spreading dynamics on hydrophobic textured surfaces: A lattice Boltzmann study. Computers and Fluids, 2021, 231, 105063.	1.3	7
736	An experimental study on the detrimental effects of deicing fluids on the performance of icephobic coatings for aircraft icing mitigation. Aerospace Science and Technology, 2021, 119, 107090.	2.5	18
737	Hydrodynamics and heat transfer of multiple droplets successively impacting on cylindrical surface. International Journal of Heat and Mass Transfer, 2021, 180, 121749.	2.5	15

#	Article	lF	Citations
738	Freezing morphologies of impact water droplets on an inclined subcooled surface. International Journal of Heat and Mass Transfer, 2021, 181, 121843.	2.5	24
739	Gels as emerging anti-icing materials: a mini review. Materials Horizons, 2021, 8, 3266-3280.	6.4	49
740	Recent Progress and Future Directions of Multifunctional (Super)Wetting Smooth/Structured Surfaces and Coatings. Advanced Functional Materials, 2020, 30, 1907772.	7.8	53
741	Direct Imaging of Superwetting Behavior on Solid–Liquid–Vapor Triphase Interfaces. Advanced Materials, 2017, 29, 1703009.	11.1	10
742	A lattice Boltzmann simulation of coalescence-induced droplet jumping on superhydrophobic surfaces with randomly distributed structures. Applied Surface Science, 2018, 436, 172-182.	3.1	24
743	Direct observation of water clusters for surface design. Chemical Engineering Science, 2020, 217, 115475.	1.9	3
744	Mechanism analysis and durability evaluation of anti-icing property of superhydrophobic surface. International Journal of Heat and Mass Transfer, 2020, 156, 119768.	2.5	22
746	Suppressing Condensation Frosting Using an Out-of-Plane Dry Zone. Langmuir, 2020, 36, 15603-15609.	1.6	7
747	Reversible Wettability between Underwater Superoleophobicity and Superhydrophobicity of Stainless Steel Mesh for Efficient Oil–Water Separation. ACS Omega, 2021, 6, 77-84.	1.6	25
748	Contact line arrest in solidifying spreading drops. Physical Review Fluids, 2017, 2, .	1.0	37
749	Droplet impact on vibrating superhydrophobic surfaces. Physical Review Fluids, 2017, 2, .	1.0	41
750	Drop impact on hairy surfaces. Physical Review Fluids, 2019, 4, .	1.0	9
751	Bubble formation in freezing droplets. Physical Review Fluids, 2019, 4, .	1.0	43
752	Nanodroplets impact on surfaces decorated with ridges. Physical Review Fluids, 2020, 5, .	1.0	24
753	Fabrication of three-dimensional high-aspect-ratio structures by oblique-incidence Talbot lithography. Optics Express, 2020, 28, 36924.	1.7	9
7 54	Innovative Nano-engineered Asphalt Concrete for Ice and Snow Controls in Pavement Systems. , 0, , .		6
755	Machine Learning Based Prediction of Nanoscale Ice Adhesion on Rough Surfaces. Coatings, 2021, 11, 33.	1.2	9
756	Design and Development of Anti-Icing Aluminum Surface. Materials Sciences and Applications, 2013, 04, 347-356.	0.3	4

#	Article	IF	CITATIONS
757	Theoretical progress in designs of stable superhydrophobic surfaces. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 146801.	0.2	6
758	Molecular dynamics simulation of freezing process of water droplets impinging on cold surface. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 054702.	0.2	3
759	Bio-Inspired Icephobic Coatings for Aircraft Icing Mitigation: A Critical Review. Reviews of Adhesion and Adhesives, 2020, 8, 168-199.	3.3	14
760	Impact Dynamics of Nanodroplets on V-Shaped Substrates: Asymmetrical Behavior and Fast-Rebound Dynamics. Langmuir, 2021, 37, 13170-13178.	1.6	6
761	Head-on Collision of Two Nanodroplets on a Solid Surface: A Molecular Dynamics Simulation Study. Langmuir, 2021, 37, 12346-12355.	1.6	6
762	Enhanced air stability of ridged superhydrophobic surface with nanostructure. AIP Advances, 2021, 11, .	0.6	4
763	Coral-like silicone nanofilament coatings with extremely low ice adhesion. Scientific Reports, 2021, 11, 20427.	1.6	4
764	Physical De-Icing Techniques for Wind Turbine Blades. Energies, 2021, 14, 6750.	1.6	12
765	Droplet impact dynamics on single-pillar superhydrophobic surfaces. Physics of Fluids, 2021, 33, .	1.6	32
766	Super-robust self-healing superhydrophobic coating with triboelectrification induced liquid self-repellency. Materials and Design, 2021, 211, 110145.	3.3	19
768	DESIGN AND MANIPULATION OF MICROSTRUCTURES ON MICROINJECTION-COMPRESSION MOLDED SUPERHYDROPHOBIC SURFACES. Acta Polymerica Sinica, 2013, 013, 1285-1290.	0.0	0
769	Superhydrophobicity or Icephobicity for an Effective Icing Mitigation Strategy?., 2014,,.		3
770	Micro/Nanostructured Icephobic Materials. , 2015, , 1-4.		0
771	Drops on microstructured surfaces: A numerical study using many-body dissipative particle dynamics. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 054701.	0.2	5
772	Switchable Wettability on Textile Surfaces Using Nanotechnology Applications. Kahramanmaraş Sütçü Űmam Üniversitesi Mühendislik Bilimleri Dergisi, 2015, 18, 31.	0.0	0
773	Effects of Static Contact Angle and Roughness on Rolling Resistance of Droplet. Journal of the Microelectronics and Packaging Society, 2016, 23, 23-28.	0.1	2
774	Interfacial properties and morphological evolution of liquid Ag film on the modified graphene. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 069601.	0.2	1
775	Water Dispersion by Hitting the Ribbed and Rounded Surfaces at the Low-Head Outflow Through a Small Hole. Naukovì Vìstì Nacìonalʹnogo TehnìÄnogo Unìversitetu Ukraìni Kiìvsʹkij Polìtehnà 2017, .	¬Ä ⊛i ⊉Instit	tu t)

#	ARTICLE	IF	CITATIONS
776	A COATING BASED ON CROSS-LINKED POLYDIMETHYLSILOXANE AND NANOPARTICLES WITH DIFFERENT MORFOLOGIES FOR SUPERHYDROPHBIC TEXTILE FABRICATION. Fine Chemical Technologies, 2017, 12, 65-72.	0.1	1
777	Droplet Impact, Spreading and Freezing on Metallic Surfaces of varying Wettability. , 2018, , .		0
778	Droplet Dynamics on Nanostructured Doubly Reentrant Surfaces. , 0, , .		0
779	Heat Transfer Analysis of Icing Process on Metallic Surfaces of Different Wettabilities. Mechanisms and Machine Science, 2020, , 201-206.	0.3	1
780	Effect of Morphology of Nano-Structured Surfaces on Anti-Icing Performance. Journal of Thermal Science and Engineering Applications, 2020, 12, .	0.8	1
781	Shortening Droplet Contact Time over a Wider Impact Velocity Range by Molding Flexible Nanohairs and Substrates. ACS Applied Polymer Materials, 2021, 3, 5749-5757.	2.0	2
782	Characterization and Mechanism of a New Superhydrophobic Deicing Coating Used for Road Pavement. Crystals, 2021, 11, 1304.	1.0	8
783	Anti-Icing Technology based on Drop Bouncing Dynamics for the Prevention of Freezing of Electric Power Equipment. Journal of the Korean Society for Precision Engineering, 2020, 37, 917-928.	0.1	0
784	Magneto-responsive photothermal composite cilia for active anti-icing and de-icing. Composites Science and Technology, 2022, 217, 109086.	3.8	31
785	Antifreeze Protein-Covered Surfaces. , 2020, , 307-326.		1
786	Icephobic Performance of Combined Fluorine-Containing Composite Layers on Al-Mg-Mn–Si Alloy Surface. Polymers, 2021, 13, 3827.	2.0	19
787	A review of many-body dissipative particle dynamics (MDPD): Theoretical models and its applications. Physics of Fluids, 2021, 33, .	1.6	30
788	Droplet Impingement on a Surface at Low Reynolds Numbers. Journal of Fluids Engineering, Transactions of the ASME, 2021, 143, .	0.8	3
789	Effect of copper surface modification applied by combined modification of metal vapor vacuum arc ion implantation and laser texturing on anti-frosting property. Energy and Buildings, 2020, 223, 110132.	3.1	6
790	3D simulation of micro droplet impact on the structured superhydrophobic surface. International Journal of Multiphase Flow, 2022, 147, 103887.	1.6	15
791	Fabrication of hierarchical Ti6Al4V structures by hydrothermal treatment and laser interference lithography with enhanced ice resistance. , 2021, , .		0
792	Ultralow Adhesion and Phase Change Behaviors of Sulfur Droplets on the Superhydrophobic Surface and Its Application in the Granulation Process. Langmuir, 2021, 37, 13985-13997.	1.6	4
793	Wetting between Cassie–Baxter and Wenzel regimes: a cellular model approach. European Physical Journal E, 2021, 44, 138.	0.7	9

#	Article	IF	Citations
794	Development of novel icephobic surfaces using siloxane-modified epoxy nanocomposites. Chemical Engineering Journal, 2022, 433, 133637.	6.6	17
795	Dynamics of droplet impacting on a cone. Physics of Fluids, 2021, 33, .	1.6	29
796	Theoretical Modelling of Droplet Extension on Hydrophobic Surfaces. International Journal of Computational Fluid Dynamics, 2021, 35, 534-548.	0.5	1
797	An experimental study on mitigating dynamic ice accretion process on bridge cables with a superhydrophobic coating. Experimental Thermal and Fluid Science, 2022, 132, 110573.	1.5	7
798	The study on the impinging freezing of the supercooled droplet containing the atmosphere aerosol. Journal of Crystal Growth, 2022, 581, 126475.	0.7	2
799	Lattice Boltzmann simulation of droplet impacting on the superhydrophobic surface with a suspended octagonal prism. Physics of Fluids, 2022, 34, .	1.6	7
800	Charging of drops impacting onto superhydrophobic surfaces. Soft Matter, 2022, 18, 1628-1635.	1.2	12
801	A comprehensive review: Super hydrophobic graphene nanocomposite coatings for underwater and wet applications to enhance corrosion resistance. FlatChem, 2022, 31, 100326.	2.8	33
802	Contact Time of Droplet Impact on Inclined Ridged Superhydrophobic Surfaces. Langmuir, 2022, 38, 1540-1549.	1.6	27
803	Electric Field Mediated Contact Time Reduction of Impacting Drops on Cu(OH) ₂ Nanoneedle Clusters: Limitations and Implications for Anti-Icing and Pathogen-Containment Applications. ACS Applied Nano Materials, 2022, 5, 3303-3311.	2.4	1
804	Anti-gas hydrate surfaces: perspectives, progress and prospects. Journal of Materials Chemistry A, 2022, 10, 379-406.	5.2	14
805	Elasticity and damping ratio measurement of droplets on super-hydrophobic surfaces. Royal Society Open Science, 2022, 9, 211632.	1.1	1
806	Hydrophobic coatings prepared using various dipodal silane-functionalized polymer precursors. Applied Surface Science Advances, 2022, 7, 100207.	2.9	6
807	Water droplet bouncing on pre-frosted superhydrophobic carbon soot $\hat{a} \in \text{``A}$ Step forward in designing passive icephobic surfaces. Diamond and Related Materials, 2022, 123, 108850.	1.8	8
808	Efficient oil–water separation coating with robust superhydrophobicity and high transparency. Scientific Reports, 2022, 12, 2187.	1.6	14
809	Superhydrophobic micro-nano structured PTFE/WO3 coating on low-temperature steel with outstanding anti-pollution, anti-icing, and anti-fouling performance. Surface and Coatings Technology, 2022, 434, 128214.	2.2	28
810	Transparent hydrophobic, self-cleaning, anti-icing and anti-dust nano-structured silica based thin film on cover glass solar cell. Journal of Non-Crystalline Solids, 2022, 583, 121479.	1.5	18
811	Dispersion-based, scalable fabrication of repellent superhydrophobic and liquid-infused coatings under ambient conditions. Green Chemistry, 2022, 24, 3009-3016.	4.6	9

#	Article	IF	Citations
812	Regulation of Droplet Rebound Behavior with Contact Time Control on a Flexible and Superhydrophobic Film. Langmuir, 2022, 38, 2942-2953.	1.6	7
813	Strong robust superhydrophobic C/silicone monolith for photothermal ice removal. Journal of Materials Science, 2022, 57, 6963-6970.	1.7	8
814	Self-peeling of frozen water droplets upon impacting a cold surface. Communications Physics, 2022, 5,	2.0	13
815	Droplet Bouncing: Fundamentals, Regulations, and Applications. Small, 2022, 18, e2200277.	5.2	34
816	Droplet rebound and dripping during impact on small superhydrophobic spheres. Physics of Fluids, 2022, 34, .	1.6	13
817	Investigation on the photocatalytic activity of La2O3/LaFeO3 composite prepared by spray pyrolysis technique. Journal of Materials Science: Materials in Electronics, 2022, 33, 8209-8217.	1.1	1
818	Successive Rebounds of Impinging Water Droplets on Superhydrophobic Surfaces. Langmuir, 2022, 38, 3860-3867.	1.6	17
819	Onion inspired hydrate-phobic surfaces. Chemical Engineering Journal, 2022, 437, 135274.	6.6	5
820	Material Strategies for Ice Accretion Prevention and Easy Removal. , 2022, 4, 246-262.		38
821	Enhanced Surface Icephobicity on an Elastic Substrate. Langmuir, 2022, 38, 18-35.	1.6	25
822	Multiphysics-Multiphase Modeling of Supercooled Droplets Impinging Superhydrophobic and Icephobic Surfaces. International Journal of Multiphase Flow, 2022, , 104101.	1.6	3
823	Air Cushion Storing Energy Promoting Droplets Retraction and Flow on Engineering Porous Bionic Lotus Surfaces. Advanced Materials Interfaces, 2022, 9, .	1.9	4
824	Dynamic characteristics of droplet impact on vibrating superhydrophobic substrate. Physics of Fluids, 2022, 34, .	1.6	7
825	Ultra-low ice-substrate adhesion and self-deicing during droplet impact freezing. Cell Reports Physical Science, 2022, 3, 100894.	2.8	7
826	Simple preparation and study of superhydrophobic surface of tripleâ€scale raspberryâ€ike composite particles. Polymers for Advanced Technologies, 0, , .	1.6	1
827	Surface design strategies for mitigating ice and snow accretion. Matter, 2022, 5, 1423-1454.	5.0	31
828	Bioinspired robust top-perforated micro-conical array of TC4 surface fabricated by pulsed laser ablation for enhanced anti-icing property. Journal of Materials Science, 2022, 57, 8890-8903.	1.7	9
829	Contact time of a droplet impacting hydrophobic surfaces. Physics of Fluids, 2022, 34, .	1.6	15

#	Article	IF	CITATIONS
830	On the Droplet Impact Dynamics of Nonionic Surfactant Solutions on Non-Wettable Coatings. Journal of Colloid and Interface Science, 2022, , .	5.0	4
831	Advances in the development of superhydrophobic and icephobic surfaces. International Journal of Mechanics and Materials in Design, 2022, 18, 509-547.	1.7	9
832	Molecular Dynamics Simulation of Nanodroplets Impacting Stripe-Textured Surfaces. Langmuir, 0, , .	1.6	3
833	Experimental and numerical investigations on the spreading dynamics of impinging liquid droplets on diverse wettable surfaces. International Journal of Multiphase Flow, 2022, 153, 104135.	1.6	18
834	Influence of chemical coatings on solar panel performance and snow accumulation. Cold Regions Science and Technology, 2022, 201, 103598.	1.6	5
835	Research progress and outlook of the effect of wettingtransition on the freezing of impinging droplets onsuperhydrophobic surfaces. Chinese Science Bulletin, 2023, 68, 142-153.	0.4	2
836	Mechanical Durability of Low Ice Adhesion Polydimethylsiloxane Surfaces. ACS Omega, 2022, 7, 20741-20749.	1.6	6
837	Reducing the contact time of impacting water drops on superhydrophobic surfaces by liquid-like coatings. Chemical Engineering Journal, 2022, 448, 137638.	6.6	11
838	Design principle of ridge-textured superhydrophobic surfaces for inducing pancake bouncing. International Communications in Heat and Mass Transfer, 2022, 136, 106167.	2.9	17
839	Effect of functional group and structure on hydrophobic properties of environment-friendly lignin-based composite coatings. International Journal of Biological Macromolecules, 2022, 215, 132-140.	3.6	9
840	Experimental study on freezing characteristics of water droplets on cold surfaces. International Journal of Heat and Mass Transfer, 2022, 194, 123108.	2.5	11
841	A Review of Physics of Droplet Impact on Various Solid Surfaces Ranging from Hydrophilic to Superhydrophobic and from Rigid to Flexible and its Current Advancements in Interfacial Science. SSRN Electronic Journal, 0, , .	0.4	0
842	Numerical Analysis of the Effect of Ellipsoidal Shape on the Freezing Behavior of Impacting Water Droplets on Cold Surfaces. SSRN Electronic Journal, 0, , .	0.4	0
843	How micropatterns affect the anti-icing performance of superhydrophobic surfaces. International Journal of Heat and Mass Transfer, 2022, 195, 123196.	2.5	13
844	Temperature-dependent droplet impact dynamics of a water droplet on hydrophobic and superhydrophobic surfaces: An experimental and predictive machine learning–based study. International Journal of Heat and Mass Transfer, 2022, 195, 123190.	2.5	8
845	Floating Hydrogel Beads Made by Droplet Impact. Small, 2022, 18, .	5.2	1
846	Arrested Dynamics of Droplet Spreading on Ice. Physical Review Letters, 2022, 129, .	2.9	8
847	Ultralow-adhesion icephobic surfaces: Combining superhydrophobic and liquid-like properties in the same surface. Nano Research, 2023, 16, 589-598.	5.8	12

#	Article	IF	CITATIONS
848	Scalable Robust Superamphiphobic Coatings Enabled by Selfâ€Similar Structure, Protective Microâ€Skeleton, and Adhesive for Practical Antiâ€Icing of Highâ€Voltage Transmission Tower. Advanced Functional Materials, 2022, 32, .	7.8	48
849	 Retardation of freezing of precooled, impinged water droplets on glass surfaces with microgrooves and silane coating < lb>. Journal of Chemical Physics, 0, , .	1.2	1
850	Design and applications of superhydrophobic surfaces. , 2022, , .		0
851	Research and development of anti-icing/deicing techniques for vessels: Review. Ocean Engineering, 2022, 260, 112008.	1.9	24
852	On exploiting machine learning for failure pattern driven strength enhancement of honeycomb lattices. Acta Materialia, 2022, 239, 118226.	3.8	15
853	A brief review: The mechanism; simulation and retardation of frost on the cold plane and evaporator surface. Energy and Buildings, 2022, 272, 112366.	3.1	5
854	Freezing delay of water droplets on metallic hydrophobic surfaces in a cold environment. Applied Thermal Engineering, 2022, 216, 119131.	3.0	13
855	Condensation droplet sieve. Nature Communications, 2022, 13, .	5.8	34
856	An environment-friendly polyurethane composite membrane decorated by superhydrophobic modification of TiC as high efficient separator of oil-water emulsion. Journal of Membrane Science, 2022, 662, 121000.	4.1	9
857	Three-dimensional study of double droplets impact on a wettability-patterned surface. Computers and Fluids, 2022, 248, 105669.	1.3	9
858	Lattice Boltzmann simulation of droplet impact dynamics on superhydrophobic surface decorated with triangular ridges. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 130204.	2.3	6
859	TiO2-based slippery liquid-infused porous surfaces with excellent ice-phobic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 129994.	2.3	11
860	Hydro-/ice-phobic coatings and materials for wind turbine icing mitigation., 2022, , 135-168.		0
861	Robust and durable liquid-repellent surfaces. Chemical Society Reviews, 2022, 51, 8476-8583.	18.7	105
862	Efficient Fabrication of Tilt Micro/Nanopillars on Polypropylene Surface with Robust Superhydrophobicity for Directional Water Droplet Rebound. SSRN Electronic Journal, 0, , .	0.4	0
863	Impact Dynamics of a Single Droplet on Hydrophobic Cylinders: A Lattice Boltzmann Study. Langmuir, 2022, 38, 11860-11872.	1.6	7
864	Dynamic characteristics of ellipsoidal Janus drop impact on a solid surface. Physics of Fluids, 2022, 34, 102104.	1.6	3
865	Robust Anti-Icing Surfaces Based on Dual Functionality─Microstructurally-Induced Ice Shedding with Superimposed Nanostructurally-Enhanced Water Shedding. ACS Applied Materials & Samp; Interfaces, 2022, 14, 47310-47321.	4.0	8

#	Article	IF	CITATIONS
866	Efficient fabrication of tilt micro/nanopillars on polypropylene surface with robust superhydrophobicity for directional water droplet rebound. IScience, 2022, 25, 105107.	1.9	5
867	Superhydrophobic microstructures for better anti-icing performances: open-cell or closed-cell?. Materials Horizons, 2023, 10, 209-220.	6.4	20
868	Microporous Structure Formation of Poly(methyl methacrylate) via Polymerization-Induced Phase Separation in the Presence of Poly(ethylene glycol). ACS Omega, 2022, 7, 38933-38941.	1.6	2
869	Facile Preparation of Robust Superamphiphobic Coatings on Complex Substrates via Nonsolvent-Induced Phase Separation. ACS Applied Materials & Eamp; Interfaces, 2022, 14, 49047-49058.	4.0	18
870	Experimental and numerical study on freezing process of water droplets under surfaces with different wettability. Applied Thermal Engineering, 2023, 219, 119516.	3.0	13
871	Numerical analysis of the effect of ellipsoidal shape on the freezing behavior of impacting water droplets on cold surfaces. International Journal of Heat and Mass Transfer, 2023, 200, 123436.	2.5	3
872	Fabrication of Flower-like Superhydrophobic Surface by Hydrothermal Treatment for Anti-icing. , 2022, , .		0
873	Bouncing dynamics of nanodroplets impacting superhydrophobic surfaces: The coupling influence of wetting transitions and scale effects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130579.	2.3	5
874	Fluid transportation by droplets impacting wettability-controlled surfaces at the nanoscale: a molecular dynamics simulation study. Microfluidics and Nanofluidics, 2022, 26, .	1.0	0
875	Sebaceous gland-inspired self-lubricated de-icing coating by continuously secreting lubricants. Progress in Organic Coatings, 2023, 174, 107311.	1.9	2
876	Thermal characteristics of stabilization effects induced by nanostructures in plasma heat source interacting with ice blocks. International Journal of Heat and Mass Transfer, 2023, 202, 123695.	2.5	0
877	Physics of droplet impact on flexible materials: A review. Advances in Mechanical Engineering, 2022, 14, 168781322211372.	0.8	5
878	Drop impact dynamics on solid surfaces. Applied Physics Letters, 2022, 121, .	1.5	27
879	Fluorineâ€free, highly transparent, chemically durable and low ice adhesion icephobic coatings from biobased epoxy and polydimethylsiloxane. Journal of Applied Polymer Science, 2023, 140, .	1.3	2
880	Heterogeneous Ice Nucleation Studied with Single-Layer Graphene. Langmuir, 2022, 38, 15121-15131.	1.6	0
881	Multifunctional dropletâ€surface interaction effected by bulk properties. , 2023, 2, .		10
882	Rich CuO Nanowires Fabrication via Laser Post-Treatment of Laser-Textured Copper Substrate. Inorganics, 2022, 10, 236.	1.2	0
883	Bouncing dynamics of droplets on nanopillar-arrayed surfaces: the effect of impact position. Physical Chemistry Chemical Physics, 2023, 25, 4969-4979.	1.3	1

#	Article	lF	Citations
884	Flexible Electrothermal Hydrophobic Self-Lubricating Tape for Controllable Anti-icing and De-icing. , 2023, 1, 669-678.		6
885	Physics of droplet impact on various substrates and its current advancements in interfacial science: A review. Journal of Applied Physics, 2023, 133, .	1.1	10
886	Simulation Study on the Factors Affecting the Solidification of Liquid Droplets with Different Salinity on Cold Surfaces. Applied Sciences (Switzerland), 2023, 13, 994.	1.3	0
887	Hydro- and Icephobic Properties and Durability of Epoxy Gelcoat Modified with Double-Functionalized Polysiloxanes. Materials, 2023, 16, 875.	1.3	5
888	Robust PFMA/CNTs composite PDMS superhydrophobic film via SI-CuCRP method for efficient anti-icing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 660, 130913.	2.3	6
889	Unique ice dendrite morphology on state-of-the-art oil-impregnated surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	5
890	Biomimetics in smart coatings. , 2023, , 263-285.		1
891	The coupled impact-freezing mechanism of supercooled droplet on superhydrophobic surface. Aerospace Systems, 0, , .	0.7	1
892	Reâ€Entrant Microstructures for Robust Liquid Repellent Surfaces. Advanced Materials Technologies, 2023, 8, .	3.0	6
893	Quantum-fluctuation-driven dynamics of droplet splashing, recoiling, and deposition in ultracold binary Bose gases. Physical Review Research, 2023, 5, .	1.3	0
894	Ring-bouncing induced by the head-on impact of two nanodroplets on superhydrophobic surfaces. Physics of Fluids, 2023, 35, 042013.	1.6	1
895	Review of jet impingement cooling of electronic devices: Emerging role of surface engineering. International Journal of Heat and Mass Transfer, 2023, 206, 123888.	2.5	21
896	The microscopic contact morphology of ice crystal on substrate and its effect on heterogeneous nucleation/icing. International Journal of Heat and Mass Transfer, 2023, 209, 124125.	2.5	2
897	Pseudo-Leidenfrost phenomenon of low surface tension droplet induced by external aerodynamic field. AIP Advances, 2023, 13, 045114.	0.6	0
898	Regulation of droplet impacting on superhydrophobic surfaces: Coupled effects of macrostructures, wettability patterns, and surface motion. Applied Physics Letters, 2023, 122, .	1.5	19
899	Bounce behaviors of double droplets simultaneously impact cold superhydrophobic surface. International Journal of Heat and Mass Transfer, 2023, 208, 124075.	2.5	3
900	Environmentally adapted slippery-superhydrophobic switchable interfaces for anti-icing. Applied Surface Science, 2023, 626, 157201.	3.1	3
901	The Perspectives of Hydrophobic Coatings for Mitigating Icing on Atmospheric Structures. Coatings, 2023, 13, 326.	1.2	0

#	Article	IF	Citations
902	Natural and synthetic superhydrophobic surfaces: A review of the fundamentals, structures, and applications. AEJ - Alexandria Engineering Journal, 2023, 68, 587-609.	3.4	21
903	Mechanism and contact time of off-center impacts at relatively high Weber numbers. Physics of Fluids, 2023, 35, 027119.	1.6	2
904	Enhanced anti-icing performance via bio-inspired papaver radicatum structuring. Journal of Materials Research and Technology, 2023, 23, 3811-3820.	2.6	4
905	Freezing-induced wetting transitions on superhydrophobic surfaces. Nature Physics, 2023, 19, 649-655.	6.5	23
906	Energy Loss for Droplets Bouncing Off Superhydrophobic Surfaces. Langmuir, 2023, 39, 3162-3167.	1.6	3
907	Numerical study of drop impact on slippery lubricated surfaces. Physics of Fluids, 2023, 35, .	1.6	4
908	The contact time of rebounding-coalescing droplets on rectangular-ridged superhydrophobic surfaces. Physics of Fluids, 2023, 35, .	1.6	4
909	Modeling the impingement deformation and solidification of a hollow zirconia droplet onto a dry substrate and solidified layer. AIP Advances, 2023, 13, .	0.6	1
910	Robust Polyurethane Coatings with Lightly Cross-Linked Surfaces for Ice Shedding. ACS Applied Polymer Materials, 2023, 5, 3119-3128.	2.0	2
911	Reducing the contact time of off-center impacts. Physics of Fluids, 2023, 35, .	1.6	2
912	Numerical Simulation of In-Flight Icing Supercooled Large Droplets Freezing via Smoothed Particle Hydrodynamics., 2023,, 1-48.		0
913	Droplet interface in additive manufacturing: From process to application. , 2023, 2, .		4
914	The Criterion of Supercooled Bionic Lotus Surfaces Repelling Impacting Droplets for Antiâ€lcing Engineering. Advanced Materials Interfaces, 2023, 10, .	1.9	1
983	Numerical Simulation of In-Flight Icing Supercooled Large Droplets Freezing via Smoothed Particle Hydrodynamics. , 2024, , 127-174.		0
986	Preparation and Anti-icing Properties of Chemically Etched Superhydrophobic Aluminum Surface. Lecture Notes in Electrical Engineering, 2024, , 15-27.	0.3	0