Julius and Julia: Mastering the Art of the Schwarz Lemm

American Mathematical Monthly 117, 770

DOI: 10.4169/000298910x521643

Citation Report

#	Article	IF	CITATIONS
1	Multi-point variations of the Schwarz lemma with diameter and width conditions. Proceedings of the American Mathematical Society, 2011, 139, 4041-4052.	0.4	11
2	Geometric versions of Schwarz's lemma and symmetrization. Journal of Mathematical Sciences, 2011, 178, 150-157.	0.1	8
3	Boundary values of the Schwarzian derivative of a regular function. Sbornik Mathematics, 2011, 202, 649-663.	0.2	10
4	Methods of geometric function theory in classical and modern problems for polynomials. Russian Mathematical Surveys, 2012, 67, 599-684.	0.2	16
5	A note on Julia-Carath \tilde{A} odory Theorem for functions with fixed initial coefficients. Proceedings of the Japan Academy Series A: Mathematical Sciences, 2013, 89, .	0.3	2
6	On the images of horodisks under holomorphic self-maps of the unit disk. Archiv Der Mathematik, 2014, 102, 91-99.	0.3	2
7	On a new proof and an extension of Jack's lemma. Journal of Applied Analysis, 2017, 23, .	0.2	2
8	Inequalities of Schwarz–Pick type with branch points and the pseudo-hyperbolic distance. Complex Variables and Elliptic Equations, 2017, 62, 786-794.	0.4	3
9	Boundary Analysis for the Derivative of Driving Point Impedance Functions. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 1149-1153.	2.2	13
10	Applications of the Jack's lemma for the meromorphic functions at the boundary. Boletim Da Sociedade Paranaense De Matematica, 2018, 38, 219-226.	0.4	O
11	Distance Ratio Metric., 2019,, 85-110.		0
12	Some results for a certain class of holomorphic functions at the boundary of the unit disc. AIP Conference Proceedings, 2019, , .	0.3	1
13	Schwarz lemma for driving point impedance functions and its circuit applications. International Journal of Circuit Theory and Applications, 2019, 47, 813-824.	1.3	1
14	On boundary analysis for derivative of driving point impedance functions and its circuit applications. IET Circuits, Devices and Systems, 2019, 13, 145-152.	0.9	8
15	Schwarz-Type Lemmas Associated to a Helmholtz Equation. Advances in Applied Clifford Algebras, 2020, 30, 1.	0.5	3
16	Applications of the Jack's lemma for the meromorphic functions. Journal of Analysis, 2021, 29, 891-903.	0.3	0
17	Rogosinski Lemması ile ilgili Süren Nokta Empedans Fonksiyonları için Carathéodory Eşitsizliği. DÜl Mühendislik Dergisi, 2021, 12, 61-68.	MF 0.2	1
18	Circuit Applications of Schwarz-Pick Lemma. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 20-24.	2.2	1

#	Article	IF	CITATIONS
19	The Schwarz Lemma: Rigidity and Dynamics. , 2014, , 135-230.		21
20	INEQUALITIES FOR THE NON-TANGENTIAL DERIVATIVE AT THE BOUNDARY FOR HOLOMORPHIC FUNCTION. Communications of the Korean Mathematical Society, 2014, 29, 439-449.	0.2	1
23	THE SCHWARZ LEMMA AND BOUNDARY FIXED POINTS. The Pure and Applied Mathematics, 2011, 18, 275-284.	0.0	7
24	THE SCHWARZ LEMMA AND ITS APPLICATION AT A BOUNDARY POINT. The Pure and Applied Mathematics, 2014, 21, 219-227.	0.0	6
25	CARATHÉODORY'S INEQUALITY ON THE BOUNDARY. The Pure and Applied Mathematics, 2015, 22, 169-178.	0.0	2
26	A SHARP SCHWARZ LEMMA AT THE BOUNDARY. The Pure and Applied Mathematics, 2015, 22, 263-273.	0.0	0
27	AN IMPROVED LOWER BOUND FOR SCHWARZ LEMMA AT THE BOUNDARY. The Pure and Applied Mathematics, 2016, 23, 61-72.	0.0	0
28	A SHARP CARATHÉODORY'S INEQUALITY ON THE BOUNDARY. Communications of the Korean Mathematical Society, 2016, 31, 533-547.	0.2	0
29	$ \begin{array}{l} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$)'Đ ửĐ; Đ>Đ	Ð'ÐЕ ЦÐÐ:
30	Some lower bound for holomorphic functions at the boundary. Malaya Journal of Matematik, 2018, 06, 145-150.	0.1	0
31	Applications of the Jack's lemma for the holomorphic functions. Novi Sad Journal of Mathematics, 2018, 48, 125-139.	0.1	0
32	Some remarks for a certain class of holomorphic functions at the boundary of the unit disc. Sakarya University Journal of Science, 0 , 1 - 1 .	0.3	0
33	On Jack's lemma. Rocky Mountain Journal of Mathematics, 2019, 49, .	0.2	0
34	Estimates for analytic functions concerned with Hankel determinant., 2021, 73, 1205-1216.	0.1	0
35	Applications of the Carathéodory's Inequality for Driving Point Impedance Functions. European Journal of Science and Technology, 0, , .	0.5	0
36	Estimates for -spirallike function of complex order on the boundary. , 2022, 74, 3-13.	0.1	0
37	SHARPENED FORMS FOR DRIVING POINT IMPEDANCE FUNCTIONS AT BOUNDARY OF RIGHT HALF PLANE. Mühendislik Bilimleri Ve Tasarım Dergisi, 2021, 9, 1093-1105.	0.1	1
38	Some remarks on activation function design in complex extreme learning using Schwarz lemma. Neurocomputing, 2022, 492, 23-33.	3.5	4

#	Article	IF	CITATIONS
39	A novel version of slime mould algorithm for global optimization and real world engineering problems. Mathematics and Computers in Simulation, 2022, 198, 253-288.	2.4	33
40	Estimates for Analytic Functions Connected with Hankel Determinant. Ukrainian Mathematical Journal, 0, , $1.$	0.1	0
41	SOME RESULTS ON THE SUBORDINATION PRINCIPLE FOR ANALYTIC FUNCTIONS., 0, , .		0
42	Estimates for λ-Spirallike Functions of Complex Order on the Boundary. Ukrainian Mathematical Journal, 2022, 74, 1-14.	0.1	1
43	On an Application of Jackâ \in ^{TMs} Lemma, Starlikeness and k-Fold Symmetry in \$\${mathbb {C}}^{n}\$\$. Complex Analysis and Operator Theory, 2022, 16, .	0.3	0
44	An application of Schwarz Lemma for analytic functions in the unit disc. AIP Conference Proceedings, 2022, , .	0.3	0
45	SOME RESULTS ON JACK'S LEMMA FOR ANALYTIC FUNCTIONS. , 2022, 3, 31-40.		1
46	Geometric Julia–Wolff Theorems for Weak Contractions. Computational Methods and Function Theory, 0, , .	0.8	0
47	Estimates concerned with Hankel determinant for $M(\hat{l}\pm)$ class. Filomat, 2022, 36, 3679-3688.	0.2	1