Infrared Perfect Absorber and Its Application As Plasmo

Nano Letters 10, 2342-2348 DOI: 10.1021/nl9041033

Citation Report

#	Article	IF	CITATIONS
7	L'action de l'armée de l'air enÂ1939-1940Â: facteurs structurels et conjoncturels d'une défaite. Guerres Mondiales Et Conflicts Contemporains, 2001, nº 202-203, 7-31.	0.0	3
8	Plasmonics: An Emerging Field Fostered by <i>Nano Letters</i> . Nano Letters, 2010, 10, 3816-3822.	4.5	272
9	Selective thermal emission from patterned steel. Optics Express, 2010, 18, 25192.	1.7	29
10	Hydrogen sensor based on metallic photonic crystal slabs. Optics Letters, 2010, 35, 3150.	1.7	49
11	Cavity-enhanced localized plasmon resonance sensing. Applied Physics Letters, 2010, 97, .	1.5	242
12	Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials. Journal of Optics (United Kingdom), 2011, 13, 075005.	1.0	90
13	Excitation of dark plasmonic cavity modes via nonlinearly induced dipoles: applications to near-infrared plasmonic sensing. Nanotechnology, 2011, 22, 235502.	1.3	17
14	λ ³ /1000 Plasmonic Nanocavities for Biosensing Fabricated by Soft UV Nanoimprint Lithography. Nano Letters, 2011, 11, 3557-3563.	4.5	210
15	High Sensitivity Localized Surface Plasmon Resonance Sensing Using a Double Split NanoRing Cavity. Journal of Physical Chemistry C, 2011, 115, 24469-24477.	1.5	80
16	Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared. Journal of Applied Physics, 2011, 109, .	1.1	71
17	Linear and nonlinear Fano resonance on two-dimensional magnetic metamaterials. Physical Review B, 2011, 84, .	1.1	38
18	Total routing and absorption of photons in dual color plasmonic antennas. Applied Physics Letters, 2011, 99, .	1.5	85
19	Large-area wide-angle spectrally selective plasmonic absorber. Physical Review B, 2011, 84, .	1.1	283
20	A thin film broadband absorber based on multi-sized nanoantennas. Applied Physics Letters, 2011, 99, .	1.5	250
21	Nearly total absorption of light and heat generation by plasmonic metamaterials. Physical Review B, 2011, 83, .	1.1	440
22	Experimental demonstration of a conformal optical metamaterial absorber. , 2011, , .		2
23	Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating. ACS Nano, 2011, 5, 4641-4647.	7.3	306
24	Plasmonic Oligomers: The Role of Individual Particles in Collective Behavior. ACS Nano, 2011, 5, 2042-2050.	7.3	255

ATION REDO

#	Article	IF	CITATIONS
25	Palladium-Based Plasmonic Perfect Absorber in the Visible Wavelength Range and Its Application to Hydrogen Sensing. Nano Letters, 2011, 11, 4366-4369.	4.5	385
26	Dynamic switching of the chiral beam on the spiral plasmonic bull's eye structure [Invited]. Applied Optics, 2011, 50, G104.	2.1	11
27	Polarization-independent wide-angle triple-band metamaterial absorber. Optics Express, 2011, 19, 9401.	1.7	643
28	Multiple responses of TPP-assisted near-perfect absorption in metal/Fibonacci quasiperiodic photonic crystal. Optics Express, 2011, 19, 9759.	1.7	51
29	Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect. Optics Express, 2011, 19, 10193.	1.7	79
30	Mode-specific directional emission from hybridized particle-on-a-film plasmons. Optics Express, 2011, 19, 12856.	1.7	14
31	Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration. Optics Express, 2011, 19, 14260.	1.7	117
32	Photothermal reshaping of gold nanoparticles in a plasmonic absorber. Optics Express, 2011, 19, 14726.	1.7	108
33	Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Optics Express, 2011, 19, 15221.	1.7	268
34	Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Optics Express, 2011, 19, 17413.	1.7	216
35	Perfect absorber supported by optical Tamm states in plasmonic waveguide. Optics Express, 2011, 19, 18393.	1.7	90
36	Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks. Optics Express, 2011, 19, 21098.	1.7	59
37	An extremely broad band metamaterial absorber based on destructive interference. Optics Express, 2011, 19, 21155.	1.7	310
38	Coupling strength of complex plasmonic structures in the multiple dipole approximation. Optics Express, 2011, 19, 22156.	1.7	16
39	Continuous metal plasmonic frequency selective surfaces. Optics Express, 2011, 19, 23279.	1.7	54
40	Polarization-induced tunability of localized surface plasmon resonances in arrays of sub-wavelength cruciform apertures. Optics Express, 2011, 19, 25035.	1.7	13
41	Dielectric supported ring-shaped metal disks on a metal film for ultrasensitive refractive index sensing. Optics Letters, 2011, 36, 3326.	1.7	13
42	Strong absorption and selective thermal emission from a midinfrared metamaterial. Applied Physics Letters, 2011, 98, .	1.5	225

#	Article	IF	CITATIONS
43	Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 2011, 5, 523-530.	15.6	1,464
44	Passive infrared sensing using plasmonic resonant dust particles. Proceedings of SPIE, 2011, , .	0.8	0
45	Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communications, 2011, 2, 517.	5.8	1,464
46	Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing. Nano Letters, 2011, 11, 3232-3238.	4.5	215
47	Low density carbon nanotube forest as an index-matched and near perfect absorption coating. Applied Physics Letters, 2011, 99, .	1.5	92
48	Laser Fabrication of Large-Scale Nanoparticle Arrays for Sensing Applications. ACS Nano, 2011, 5, 4843-4849.	7.3	224
49	Improvement of Figure of Merit for Gold Nanobar Array Plasmonic Sensors. Plasmonics, 2011, 6, 665-671.	1.8	58
50	Optical Transmission Through Multilayered Ultra-Thin Metal Gratings. Plasmonics, 2011, 6, 745-751.	1.8	6
51	An Omnidirectional Transparent Conductingâ€Metalâ€Based Plasmonic Nanocomposite. Advanced Materials, 2011, 23, 1993-1997.	11.1	44
52	Photoresponsive Transparent Conductive Metal with a Photobleaching Nose. Advanced Materials, 2011, 23, 4243-4247.	11.1	17
53	Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials. Advanced Materials, 2011, 23, 5410-5414.	11.1	425
54	Frequency Controllable Metamaterial Absorber by an Added Dielectric Layer. , 2011, , .		0
55	Tuning resonant modes in a plasmonic array of nanocylinders by a mirror. , 2011, , .		0
56	Optical properties of two-dimensional quasicrystalline plasmonic arrays. Physical Review B, 2011, 84, .	1.1	17
57	Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2. Applied Physics Letters, 2011, 98, .	1.5	41
58	An ultra-thin isotropic metamaterial thermal radiator. Europhysics Letters, 2011, 96, 24005.	0.7	6
59	Nanoscale super-resolution imaging via a metal–dielectric metamaterial lens system. Journal Physics D: Applied Physics, 2011, 44, 415101.	1.3	15
60	Design of metamaterial surfaces with broadband absorbance. Optics Letters, 2012, 37, 308.	1.7	126

		ATION REPORT	
#	Article	IF	CITATIONS
61	Efficient absorption of visible radiation by gap plasmon resonators. Optics Express, 2012, 20, 13311.	1.7	208
62	Huge local field enhancement in perfect plasmonic absorbers. Optics Express, 2012, 20, 21888.	1.7	36
63	Spectral shifts in optical nanoantenna-enhanced hydrogen sensors. Optical Materials Express, 2012, 2, 111.	' 1.6	61
64	Wideband perfect light absorber at midwave infrared using multiplexed metal structures. Optics Letters, 2012, 37, 371.	1.7	219
65	Double-negative atomic vapor assisted by two-photon quantum coherence. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 3192.	0.9	2
66	Highly flexible near-infrared metamaterials. Optics Express, 2012, 20, 397.	1.7	22
67	Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor. Optics Express, 2012, 20, 16880.	1.7	81
68	Metallic rugate structures for near-perfect absorbers in visible and near-infrared regions. Optics Letters, 2012, 37, 3495.	1.7	6
69	Temperature Controlled Perfect Absorber Based on Metal-Superconductor-Metal Square Array. IEEE Transactions on Magnetics, 2012, 48, 4243-4246.	1.2	10
70	Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers. Applied Physics Letters, 2012, 101, .	1.5	170
71	Three-dimensionally isotropic negative refractive index assisted by two-photon resonance via quantum coherence. Applied Physics Letters, 2012, 101, 181102.	1.5	3
72	Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation. Applied Physics Letters, 2012, 101, .	1.5	404
73	Taming the thermal emissivity of metals: A metamaterial approach. Applied Physics Letters, 2012, 100,	,. 1.5	28
74	Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber. Physical Review B, 2012, 86, .	1.1	145
75	Tuning infrared emission from microstrip arrays. Physical Review B, 2012, 86, .	1.1	2
76	Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Optics Letters, 2012, 37, 3780.	1.7	357
77	Perfect absorbers on curved surfaces and their potential applications. Optics Express, 2012, 20, 18370). 1.7	51
78	Porous metal-based multilayers for selective thermal emitters. Optics Letters, 2012, 37, 4883.	1.7	6

		CITATION R	EPORT	
#	Article		IF	CITATIONS
79	The guidance for bowtie antennas design in near-field enhancement applications. , 2012,	· , .		2
80	Design of highly absorbing metamaterials for Infrared frequencies. Optics Express, 2012,	20, 17503.	1.7	127
81	High performance broadband absorber in the visible band by engineered dispersion and g metal-dielectric-metal stack. Applied Physics Letters, 2012, 101, .	geometry of a	1.5	86
82	Spectral selectivity in infrared thermal detection. Light: Science and Applications, 2012, 2	1, e24-e24.	7.7	167
83	Plasmonics: Heat transfer between metal nanoparticles and supporting nanolayers. Phys Low-Dimensional Systems and Nanostructures, 2012, 46, 113-118.	ica E:	1.3	12
84	A novel plasmonic resonance sensor based on an infrared perfect absorber. Journal Physic Physics, 2012, 45, 205102.	cs D: Applied	1.3	82
85	Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature, 2012,	492, 86-89.	13.7	639
86	Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetri array. Applied Physics Letters, 2012, 100, 053119.	c nanodisk	1.5	69
87	Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab. Nano Le 1443-1447.	tters, 2012, 12,	4.5	864
88	Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identificati ofÂmolecular monolayers. Nature Materials, 2012, 11, 69-75.	on	13.3	930
89	Tunable broadband plasmonic perfect absorber at visible frequency. Applied Physics A: M Science and Processing, 2012, 109, 769-773.	aterials	1.1	80
90	Wide-angle polarization independent infrared broadband absorbers based on metallic mu arrays. Optics Express, 2012, 20, 10376.	ulti-sized disk	1.7	216
91	Wide-angle reflective-type color filter in the visible range. , 2012, , .			0
92	Plasmonic Enhancement of Gold Nanoparticles in Poly(3-hexylthiophene) Organic Photot Applied Physics Express, 2012, 5, 082002.	transistor.	1.1	20
93	All Optical Nanostructed Sensor Based on Metal-Dielectric-Metal Plasmonic Waveguide.	, 2012, , .		0
94	Cavity modes and their excitations in elliptical plasmonic patch nanoantennas. Optics Ex 20, 11615.	press, 2012,	1.7	30
95	Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optic Optics Express, 2012, 20, 14871.	cal frequency.	1.7	141
96	Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fal cavity resonance. Optics Express, 2012, 20, 24002.	ory-Perot	1.7	71

		REPORT	
#	Article	IF	Citations
97	Multiband plasmonic absorber based on transverse phase resonances. Optics Express, 2012, 20, 17552.	1.7	22
98	Interference theory of metamaterial perfect absorbers. Optics Express, 2012, 20, 7165.	1.7	789
99	2D quasiperiodic plasmonic crystals. Scientific Reports, 2012, 2, 681.	1.6	36
100	Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas. Optics Letters, 2012, 37, 1038.	1.7	239
101	Towards Experimental Perfectly-Matched Layers With Ultra-Thin Metamaterial Surfaces. IEEE Transactions on Antennas and Propagation, 2012, 60, 5164-5172.	3.1	66
102	Infrared properties of randomly oriented silver nanowires. Journal of Applied Physics, 2012, 112, .	1.1	37
103	Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. Optics Letters, 2012, 37, 154.	1.7	351
104	Nonlinear modes of plasmonic microcavities: theoretical analysis and device applications. , 2012, , .		0
105	Surface plasmon resonance for sensing. , 2012, , .		0
106	Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters. Nano Letters, 2012, 12, 1058-1062.	4.5	205
107	Ultra-thin perfect absorber employing a tunable phase change material. Applied Physics Letters, 2012, 101, .	1.5	519
108	Ultra-broadband microwave metamaterial absorber. Applied Physics Letters, 2012, 100, .	1.5	837
109	Coherent perfect absorption in epsilon-near-zero metamaterials. Physical Review B, 2012, 86, .	1.1	197
110	Perfect Absorption of Light by Coherently Induced Plasmon Hybridization in Ultrathin Metamaterial Film. Plasmonics, 2012, 7, 733-738.	1.8	51
111	Metamaterial metal-based bolometers. Applied Physics Letters, 2012, 100, .	1.5	116
112	Vandium dioxide active plasmonics. , 2012, , .		1
113	Absorption Enhancement in Lossy Transition Metal Elements of Plasmonic Nanosandwiches. Journal of Physical Chemistry C, 2012, 116, 20522-20529.	1.5	25
114	A perfect absorber made of a graphene micro-ribbon metamaterial. Optics Express, 2012, 20, 28017.	1.7	507

#	Article		CITATIONS
115	Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. Journal of Optics (United Kingdom), 2012, 14, 024005.	1.0	320
116	Optical response of plasmonic relief meta-surfaces. Journal of Optics (United Kingdom), 2012, 14, 114002.	1.0	27
117	Plasmonic Antennas Hybridized with Dielectric Waveguides. ACS Nano, 2012, 6, 10156-10167.	7.3	130
118	Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber. Journal of Optics (United Kingdom), 2012, 14, 114012.	1.0	58
119	Strong Coupling of Molecular and Mid-Infrared Perfect Absorber Resonances. IEEE Photonics Technology Letters, 2012, 24, 31-33.	1.3	64
120	The improvement of figure of merit with infrared perfect absorber for plasmonic resonance sensing. , 2012, , .		1
121	Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy. ACS Nano, 2012, 6, 7998-8006.	7.3	459
122	A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array. Journal Physics D: Applied Physics, 2012, 45, 205101.	1.3	45
123	A novel helical metamaterial absorber: Simulation study with the FDTD method. , 2012, , .		2
124	A dual-band polarization insensitive metamaterial absorber with split ring resonator. , 2012, , .		1
125	Bandwidth enhanced metamaterial absorber at terahertz frequency. , 2012, , .		2
126	Infrared (IR) Absorber Based on Multiresonant Structure. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 1222-1225.	2.4	16
127	Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters. Applied Physics Letters, 2012, 101, .	1.5	93
129	Passive Infrared Sensing Using Plasmonic Resonant Dust Particles. International Journal of Optics, 2012, 2012, 1-8.	0.6	1
130	FREQUENCY-SELECTIVE NANOSTRUCTURED PLASMONIC ABSORBER BY HIGHLY LOSSY INTERFACE MODE. Progress in Electromagnetics Research, 2012, 124, 511-525.	1.6	4
131	A POLARIZATION-INDEPENDENT WIDE-ANGLE DUAL DIRECTIONAL ABSORPTION METAMATERIAL ABSORBER. Progress in Electromagnetics Research M, 2012, 27, 91-201.	0.5	13
132	Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature Communications, 2012, 3, 756.	5.8	835
133	Perfect coupling of light to surface plasmons by coherent absorption. Physical Review Letters, 2012, 108, 186805.	2.9	152

#	Article	IF	CITATIONS
134	A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime. Journal of Optics (United Kingdom), 2012, 14, 085102.	1.0	70
135	Complete Optical Absorption in Periodically Patterned Graphene. Physical Review Letters, 2012, 108, 047401.	2.9	1,087
136	Controlling light-with-light without nonlinearity. Light: Science and Applications, 2012, 1, e18-e18.	7.7	275
137	Compact Magnetic Antennas for Directional Excitation of Surface Plasmons. Nano Letters, 2012, 12, 4853-4858.	4.5	165
138	Plasmonic Near-Field Absorbers for Ultrathin Solar Cells. Journal of Physical Chemistry Letters, 2012, 3, 1275-1285.	2.1	113
139	Nanoantennas for visible and infrared radiation. Reports on Progress in Physics, 2012, 75, 024402.	8.1	736
140	Smart Metal–Polymer Bionanocomposites as Omnidirectional Plasmonic Black Absorber Formed by Nanofluid Filtration. Advanced Functional Materials, 2012, 22, 4771-4777.	7.8	33
141	Engineering Plasmonic Gold Nanostructures and Metamaterials for Biosensing and Nanomedicine. Advanced Materials, 2012, 24, 5153-5165.	11.1	128
142	Metamaterial Electromagnetic Wave Absorbers. Advanced Materials, 2012, 24, OP98-120, OP181.	11.1	1,340
143	Tunable wide-angle plasmonic perfect absorber at visible frequencies. Physical Review B, 2012, 85, .	1.1	125
144	Polarization conversion with elliptical patch nanoantennas. Applied Physics Letters, 2012, 101, .	1.5	56
145	Optical gecko toe: Optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces. Physical Review B, 2012, 85, .	1.1	49
146	Polarization-independent Metamaterial Absorber for Terahertz Frequency. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33, 649-656.	1.2	23
147	The localized near-field enhancement of metallic periodic bowtie structure: An oscillating dipoles picture. Physica B: Condensed Matter, 2012, 407, 2223-2228.	1.3	12
148	Microcavity plasmonics: strong coupling of photonic cavities and plasmons. Laser and Photonics Reviews, 2013, 7, 141-169.	4.4	145
149	Subwavelength metal optics and antireflection. Electronic Materials Letters, 2013, 9, 125-132.	1.0	16
150	Surface plasmonic resonance sensor by metal strip pair arrays. Optical and Quantum Electronics, 2013, 45, 707-712.	1.5	6
151	A dual-band polarization insensitive metamaterial absorber with split ring resonator. Optical and Quantum Electronics, 2013, 45, 747-753.	1.5	32

#	Article		CITATIONS
152	Hybrid plasmonic biosensor for simultaneous measurement of both thickness and refractive index. Infrared Physics and Technology, 2013, 60, 134-136.	1.3	8
153	Near-perfect absorber with ultrawide bandwidth in infrared region using a periodically chirped structure. Optics Communications, 2013, 305, 212-216.	1.0	15
154	Metamaterials for visible and near infrared antireflective properties and large surface elaboration. Proceedings of SPIE, 2013, , .	0.8	1
155	Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light. Nanoscale, 2013, 5, 3373.	2.8	36
156	Deep-Subwavelength Plasmonic Nanoresonators Exploiting Extreme Coupling. Nano Letters, 2013, 13, 3482-3486.	4.5	61
157	Self-Assembly Based Plasmonic Arrays Tuned by Atomic Layer Deposition for Extreme Visible Light Absorption. Nano Letters, 2013, 13, 3352-3357.	4.5	118
158	Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures. International Journal of Hydrogen Energy, 2013, 38, 4201-4212.	3.8	80
159	Helical Metamaterial Absorbers: Broadband and Polarization-Independent in Optical Region. Journal of Lightwave Technology, 2013, 31, 2762-2768.	2.7	38
160	Designing photonic structures of nanosphere arrays on reflectors for total absorption. Journal of Applied Physics, 2013, 114, .	1.1	25
161	Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nature Communications, 2013, 4, 2381.	5.8	612
162	Numerical Methods for Metamaterial Design. Topics in Applied Physics, 2013, , .	0.4	44
163	Tailoring Absorption in Metal Gratings with Resonant Ultrathin Bridges. Plasmonics, 2013, 8, 1445-1456.	1.8	6
164	Manipulation of light in MIM plasmonic waveguide systems. Science Bulletin, 2013, 58, 3607-3616.	1.7	48
165	Thin-film, wide-angle, design-tunable, selective absorber from near UV to far infrared. , 2013, , .		8
166	Negative refractive index materials for improved solar cells. Physical Review B, 2013, 88, .	1.1	3
167	Nanoparticle-based plasmonic organic photovoltaic devices. Materials Today, 2013, 16, 133-146.	8.3	369
168	Broadband THz Absorbers With Graphene-Based Anisotropic Metamaterial Films. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 757-763.	2.0	116
169	Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared. Scientific Reports, 2013, 3, 2865.	1.6	75

#	Article	IF	CITATIONS
170	THz-metamaterial absorbers. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4, 015001.	0.7	26
171	Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks. Journal of Optics (United Kingdom), 2013, 15, 055106.	1.0	162
172	Fano-resonant metamaterials and their applications. Nanophotonics, 2013, 2, 247-264.	2.9	139
173	Ultrawideband Dispersion Control of a Metamaterial Surface for Perfectly-Matched-Layer-Like Absorption. Physical Review Letters, 2013, 111, 187402.	2.9	166
174	Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure. International Journal of Heat and Mass Transfer, 2013, 67, 637-645.	2.5	179
175	Plasmonic interferometric sensor arrays for high-performance label-free biomolecular detection. Lab on A Chip, 2013, 13, 4755.	3.1	89
176	Design of a wide-band metamaterial absorber based on fractal frequency selective surface and resistive films. Physica Scripta, 2013, 88, 045703.	1.2	20
177	Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials. Scientific Reports, 2013, 3, 2083.	1.6	106
178	Nonlinear Surface-Plasmon Whispering-Gallery Modes in Metallic Nanowire Cavities. Physical Review Letters, 2013, 111, 203903.	2.9	15
179	Broadband Focusing Flat Mirrors Based on Plasmonic Gradient Metasurfaces. Nano Letters, 2013, 13, 829-834.	4.5	611
180	Wafer-scale metasurface for total power absorption, local field enhancement and single molecule Raman spectroscopy. Scientific Reports, 2013, 3, 2867.	1.6	69
181	Actively transporting virus like analytes with optofluidics for rapid and ultrasensitive biodetection. Lab on A Chip, 2013, 13, 4841.	3.1	39
182	Strong absorption and selective emission from engineered metals with dielectric coatings. Optics Express, 2013, 21, 9113.	1.7	91
183	Synthesis of uniform silver nanoparticles by a microwave method in polyethylene glycol with the assistant of polyvinylpyrrolidone. Wuhan University Journal of Natural Sciences, 2013, 18, 530-534.	0.2	6
184	Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial. Physical Review B, 2013, 88, .	1.1	60
185	Physics of unbounded, broadband absorption/gain efficiency in plasmonic nanoparticles. Physical Review B, 2013, 87, .	1.1	12
186	Metal–insulator–metal light absorber: a continuous structure. Journal of Optics (United Kingdom), 2013, 15, 025006.	1.0	92
187	Realization of near-field linear nano-polarizer by asymmetric nanoaperture and bowtie nanoantenna. Optics Express, 2013, 21, 10342.	1.7	6

		CITATION REPORT	
#	Article	IF	CITATIONS
188	Light absorber based on nano-spheres on a substrate reflector. Optics Express, 2013, 21, 669	7. 1.7	38
189	Impact of resonator rotational symmetry on infrared metamaterial absorber. , 2013, , .		1
190	Three-Dimensional Plasmonic Metamaterials and Their Fabrication Techniques. IEEE Journal of Topics in Quantum Electronics, 2013, 19, 4700110-4700110.	Selected 1.9	7
191	Double-sided polarization-independent plasmonic absorber at near-infrared region. Optics Exp 2013, 21, 13125.	press, 1.7	31
192	A total absorber for THz-spectroscopy. , 2013, , .		0
193	Optical critical coupling into highly confining metal-insulator-metal resonators. Applied Physic Letters, 2013, 103, .	CS 1.5	38
194	Thin-film IR absorbers with high absorbance and easy preparation and integration. , 2013, , .		3
195	Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of films. Nanoscale, 2013, 5, 9957.	thin 2.8	36
196	Perfect plasmonic absorber for visible frequency. , 2013, , .		0
197	Exploiting extreme coupling to realize a metamaterial perfect absorber. Microelectronic Engir 2013, 111, 110-113.	eering, 1.1	15
198	Polarization-insensitive surface plasmon resonance sensor by cross-slit metallic periodic array Optik, 2013, 124, 6743-6745.	s. 1.4	1
199	Polarization-controlling dual-band absorption metamaterial. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4, 035009.	0.7	3
200	Wide-Angle and Polarization-Insensitive Perfect Absorber for Organic Photovoltaic Layers. IEE Photonics Technology Letters, 2013, 25, 1266-1269.	E 1.3	18
201	Tunable absorption in a dielectric–graphene–metal groove-grating absorber. Optics Com 2013, 308, 204-210.	munications, 1.0	14
202	Inductive Tuning of Fano-Resonant Metasurfaces Using Plasmonic Response of Graphene in t Mid-Infrared. Nano Letters, 2013, 13, 1111-1117.	he 4.5	238
203	Photoelectric Energy Conversion of Plasmon-Generated Hot Carriers in Metal–Insulator–Semiconductor Structures. ACS Nano, 2013, 7, 3581-3588. 	7.3	116
204	Ultrasmall Plasmonic Cavity for Chemical Sensing. Plasmonics, 2013, 8, 963-967.	1.8	8
205	Plasmonicâ€Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier. Advanced 2013, 25, 2385-2396.	Materials, 11.1	420

#	Article	IF	CITATIONS
206	Fano Resonance Resulting from a Tunable Interaction between Molecular Vibrational Modes and a Double Continuum of a Plasmonic Metamolecule. Physical Review Letters, 2013, 110, 087402.	2.9	50
207	Coherent emission of light using stacked gratings. Physical Review B, 2013, 87, .	1.1	39
208	A broadband omnidirectional absorber based on a hetero-structure composed of a collision plasma and a ternary plasma Bragg mirror. Journal of Electromagnetic Waves and Applications, 2013, 27, 945-952.	1.0	7
209	Broadband Light Absorption with Multiple Surface Plasmon Polariton Waves Excited at the Interface of a Metallic Grating and Photonic Crystal. ACS Nano, 2013, 7, 4995-5007.	7.3	49
210	Increasing the electromagnetic attenuation below a quasi-matched surface with use of passive hyperbolic metamaterials. Photonics and Nanostructures - Fundamentals and Applications, 2013, 11, 182-190.	1.0	8
211	Graphene metamaterial for optical reflection modulation. Applied Physics Letters, 2013, 102, .	1.5	90
212	Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. Nanoscale, 2013, 5, 6243.	2.8	168
213	Complete Light Annihilation in an Ultrathin Layer of Gold Nanoparticles. Nano Letters, 2013, 13, 3053-3058.	4.5	24
214	3D Hollow Nanostructures as Building Blocks for Multifunctional Plasmonics. Nano Letters, 2013, 13, 3553-3558.	4.5	149
215	Structured Metal Film as a Perfect Absorber. Advanced Materials, 2013, 25, 3994-4000.	11.1	140
216	Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces. Physical Review B, 2013, 87, .	1.1	183
217	Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials. Applied Physics Letters, 2013, 102, .	1.5	92
218	Polymeric photovoltaics with various metallic plasmonic nanostructures. Journal of Applied Physics, 2013, 113, 063109.	1.1	52
219	Plasmonic Waveguide Modes of Film-Coupled Metallic Nanocubes. Nano Letters, 2013, 13, 5866-5872.	4.5	238
220	Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators. Optics Express, 2013, 21, 30724.	1.7	145
221	Resonant circuit model for efficient metamaterial absorber. Optics Express, 2013, 21, A997.	1.7	67
222	Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1580.	0.9	114
223	Dielectric and Ohmic losses in perfectly absorbingmetamaterials. Optics Communications, 2013, 295, 17-20.	1.0	33

#	Article	IF	CITATIONS
224	Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies. Applied Physics Letters, 2013, 103, .	1.5	72
225	Gate-tunable nearly total absorption in graphene with resonant metal back reflector. Europhysics Letters, 2013, 104, 57002.	0.7	16
226	Infrared biosensors based on graphene plasmonics: modeling. Physical Chemistry Chemical Physics, 2013, 15, 17118.	1.3	40
227	Large‣cale Fabrication of Threeâ€Ðimensional Surface Patterns Using Templateâ€Ðefined Electrochemical Deposition. Advanced Functional Materials, 2013, 23, 720-730.	7.8	67
228	High-Throughput Nanofabrication of Infra-red and Chiral Metamaterials using Nanospherical-Lens Lithography. Scientific Reports, 2013, 3, 3339.	1.6	43
229	Plasmonic metasurfaces for efficient phase control in reflection. Optics Express, 2013, 21, 27438.	1.7	274
230	Total absorption of light by a nanoparticle: an electromagnetic sink in the optical regime. Optics Letters, 2013, 38, 818.	1.7	19
231	Near-infrared broadband absorber with film-coupled multilayer nanorods. Optics Letters, 2013, 38, 2247.	1.7	68
232	Subwavelength plasmonics for graded-index optics on a chip. Optics Letters, 2013, 38, 3492.	1.7	18
233	Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure. Optics Express, 2013, 21, 3021.	1.7	38
234	High-performance broadband plasmonic absorber in visible fabricated by nanoimprint lithography. Proceedings of SPIE, 2013, , .	0.8	1
235	Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers. Optics Letters, 2013, 38, 1125.	1.7	104
236	Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 656.	0.9	124
237	Investigation of Fano resonance in planar metamaterial with perturbed periodicity. Optics Express, 2013, 21, 992.	1.7	56
238	Efficient and broadband quarter-wave plates by gap-plasmon resonators. Optics Express, 2013, 21, 2942.	1.7	123
239	The role of magnetic dipoles and non-zero-order Bragg waves in metamaterial perfect absorbers. Optics Express, 2013, 21, 3540.	1.7	14
240	Funneling light into subwavelength grooves in metal/dielectric multilayer films. Optics Express, 2013, 21, 3595.	1.7	9
241	Metamaterial filters at optical-infrared frequencies. Optics Express, 2013, 21, 16992.	1.7	23

#	Article	IF	CITATIONS
242	Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances. Optics Express, 2013, 21, 32484.	1.7	84
243	Fast convergent Fourier modal method for the analysis of periodic arrays of graphene ribbons. Optics Letters, 2013, 38, 3009.	1.7	28
244	Broadband polarization-insensitive absorbers in 03–25Âμ4m using helical metamaterials. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1368.	0.9	9
245	A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance. Optics Express, 2013, 21, 382.	1.7	124
246	Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime. Optics Express, 2013, 21, 25307.	1.7	89
247	Infrared perfect absorber based on nanowire metamaterial cavities. Optics Letters, 2013, 38, 1179.	1.7	50
248	Rapid phase transition of a phase-change metamaterial perfect absorber. Optical Materials Express, 2013, 3, 1101.	1.6	86
249	Omnidirectional high absorption based on an asymmetric photonic crystal composed of negative-index material and positive-index material. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1161.	0.9	4
250	Measurement of Coherent Thermal Emission Due to Magnetic Polaritons in Subwavelength Microstructures. Journal of Heat Transfer, 2013, 135, .	1.2	40
251	Wideband Tunable Omnidirectional Infrared Absorbers Based on Doped-Silicon Nanowire Arrays. Journal of Heat Transfer, 2013, 135, .	1.2	46
252	Metamaterial optical refractive index sensor detected by the naked eye. Applied Physics Letters, 2013, 102, .	1.5	21
253	Polarization-sensitive perfect absorbers at near-infrared wavelengths. Optics Express, 2013, 21, A111.	1.7	81
254	Enhanced absorption and optical force in a sandwiched grating at the terahertz band. Europhysics Letters, 2013, 102, 34001.	0.7	4
255	Controlling Thermal Radiation with Surface Waves. Challenges and Advances in Computational Chemistry and Physics, 2013, , 283-327.	0.6	1
256	Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Optics Express, 2013, 21, 9691.	1.7	301
257	Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber. Nanoscale, 2013, 5, 9615.	2.8	146
258	Liquid-bridging in particle self-assemblies toward constructing periodic nano-mesh structures and nano-dot arrays. Journal of Applied Physics, 2013, 114, 154302.	1.1	1
259	Electrical modulation of emissivity. Applied Physics Letters, 2013, 102, .	1.5	51

#	ARTICLE	IF	Citations
260	interference and high-performance sensor. Optics Express, 2013, 21, 10251.	1.7	35
261	Near-perfect infrared absorption from dielectric multilayer of plasmonic aluminum-doped zinc oxide. Applied Physics Letters, 2013, 102, .	1.5	19
262	Circular plasmonic interferometers for ultrasensitive low-background optical sensing. , 2013, , .		0
263	A metal-insulator-metal plasmonic Mach-Zehnder interferometer array for multiplexed sensing. Journal of Applied Physics, 2013, 113, 133102.	1.1	25
264	Broadband plasmonic half-wave plates in reflection. Optics Letters, 2013, 38, 513.	1.7	156
265	Polarization-independent coherent perfect absorption by a dipole-like metasurface. Optics Letters, 2013, 38, 3086.	1.7	70
266	Extraordinary optical absorption based on guided-mode resonance. Optics Letters, 2013, 38, 5393.	1.7	28
267	Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics. Nanophotonics, 2013, 2, 103-130.	2.9	173
268	Metamaterialâ€Based Two Dimensional Plasmonic Subwavelength Structures Offer the Broadest Waveband Light Harvesting. Advanced Optical Materials, 2013, 1, 43-49.	3.6	150
269	TURN A HIGHLY-REFLECTIVE METAL INTO AN OMNIDIRECTIONAL BROADBAND ABSORBER BY COATING A PURELY-DIELECTRIC THIN LAYER OF GRATING. Progress in Electromagnetics Research, 2013, 134, 95-109.	1.6	12
270	All-Semiconductor Plasmonic Perfect Absorber. , 2013, , .		0
271	A METAMATERIAL BASED MICROWAVE ABSORBER COMPOSED OF COPLANAR ELECTRIC-FIELD-COUPLED RESONATOR AND WIRE ARRAY. Progress in Electromagnetics Research C, 2013, 34, 111-121.	0.6	19
272	Thermal Radiative Properties of a 2-D Silicon Carbide Grating Mediated With a Photonic Crystal. , 2013,		1
273	Enhancing Refractive Index Sensing Capability with Infrared Plasmonic Perfect Absorbers. , 2014, , .		1
274	LIGHT ABSORBER WITH AN ULTRA-BROAD FLAT BAND BASED ON MULTI-SIZED SLOW-WAVE HYPERBOLIC METAMATERIAL THIN-FILMS (Invited Paper). Progress in Electromagnetics Research, 2014, 147, 69-79.	1.6	54
275	DESIGN AND CHARACTERIZATION OF A DUAL-BAND METAMATERIAL ABSORBER BASED ON DESTRUCTIVE INTERFERENCES. Progress in Electromagnetics Research C, 2014, 47, 95-101.	0.6	16
276	Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals. Optics Express, 2014, 22, 21711.	1.7	36
277	Plasmonic metamaterials. Nanotechnology Reviews, 2014, 3, .	2.6	77

#	Article	IF	CITATIONS
278	Nano-multiwall cylinders array for ultra-broadband perfect absorption in visible regime: novel properties revealing. Modern Physics Letters B, 2014, 28, 1450086.	1.0	0
279	Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers. Optics Letters, 2014, 39, 3185.	1.7	122
280	Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Optics Express, 2014, 22, 22743.	1.7	336
281	Modeling of metamaterial absorber by equivalent resonant circuit. , 2014, , .		0
282	WAVELENGTH DEMULTIPLEXING IN METAL–INSULATOR–METAL PLASMONIC WAVEGUIDES. Modern Physics Letters B, 2014, 28, 1450025.	1.0	9
283	Plasmonic nanograting structures for sensor applications. , 2014, , .		1
284	Nearly perfect absorption in a single-layer metallic grating with rectangular grooves on its front surface. Applied Physics B: Lasers and Optics, 2014, 117, 875-883.	1.1	8
285	A sensitive sensor with a double U-shaped ring-based metamaterial. Applied Physics A: Materials Science and Processing, 2014, 117, 537-540.	1.1	2
286	A wide-angle dual-band polarization-sensitive absorber with a multilayer grating. Modern Physics Letters B, 2014, 28, 1450109.	1.0	4
287	Multiple Fano Resonances Based on Different Waveguide Modes in a Symmetry Breaking Plasmonic System. IEEE Photonics Journal, 2014, 6, 1-8.	1.0	51
288	Recent advances on optical metasurfaces. Journal of Optics (United Kingdom), 2014, 16, 123001.	1.0	90
289	High Absorption and Second-Harmonic Generation in Split Ring Resonator Multilayer Nanostructure. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	0
290	Review of Plasmonic Nanocomposite Metamaterial Absorber. Materials, 2014, 7, 1221-1248.	1.3	149
291	Fourier modal method formulation for fast analysis of two-dimensional periodic arrays of graphene. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 987.	0.9	15
292	Gap Surface Plasmon Polariton Assisted Magnetic Toroidal Modes in Core-shell Nanodisk Antenna. , 2014, , .		0
293	Plasmonic gas and glucose sensing using resonant nanoantennas. , 2014, , .		0
294	All Semiconductor Negative-Index Plasmonic Absorbers. , 2014, , .		0
295	Robotic dual probe setup for reliable pick and place processing on the nanoscale using haptic devices. , 2014, , .		11

#	Article	IF	CITATIONS
296	Multiband optical perfect absorber based on plasmonic double gratings. , 2014, , .		1
297	Resonant metamaterial absorbers for infrared spectral filtering: quasimodal analysis, design, fabrication, and characterization. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1339.	0.9	20
298	Broadband infrared metamaterial absorber with visible transparency using ITO as ground plane. Optics Express, 2014, 22, 15104.	1.7	62
299	Tunable THz absorption in graphene-based heterostructures. Optics Express, 2014, 22, 30177.	1.7	70
300	Demonstration of a large-scale optical exceptional point structure. Optics Express, 2014, 22, 1760.	1.7	134
301	Impact of interface roughness on the performance of broadband blackbody absorber based on dielectric-metal film multilayers. Optics Express, 2014, 22, 1952.	1.7	7
302	Dual-band unidirectional circular polarizer with opposite handedness filtration using hybridized metamaterial. Optics Express, 2014, 22, 9301.	1.7	13
303	Extraordinary optical properties in the subwavelength metallodielectric free-standing grating. Optics Express, 2014, 22, 19484.	1.7	22
304	Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions. Optics Express, 2014, 22, 31665.	1.7	25
305	A novel ultrathin and broadband microwave metamaterial absorber. Journal of Applied Physics, 2014, 116, .	1.1	94
306	Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators. Optics Express, 2014, 22, 30889.	1.7	79
307	Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina. Applied Physics Letters, 2014, 104, .	1.5	100
308	Optical Salisbury screen with design-tunable resonant absorption bands. Journal of Applied Physics, 2014, 115, .	1.1	18
309	Resonant cavity modes of circular plasmonic patch nanoantennas. Applied Physics Letters, 2014, 104, .	1.5	45
310	A novel plasmonic nanosensor based on electro-magnetically induced transparency of waveguide resonator systems. , 2014, , .		0
311	Micro-electro-mechanically tunable metamaterial with enhanced electro-optic performance. Applied Physics Letters, 2014, 104, .	1.5	38
312	Engineering absorption and blackbody radiation in the far-infrared with surface phonon polaritons on gallium phosphide. Applied Physics Letters, 2014, 104, .	1.5	41
313	Distinguishing plasmonic absorption modes by virtue of inversed architectures with tunable atomic-layer-deposited spacer layer. Nanotechnology, 2014, 25, 504004.	1.3	5

#	Article	IF	CITATIONS
314	Nanostructure arrays in free-space: optical properties and applications. Reports on Progress in Physics, 2014, 77, 126402.	8.1	126
315	Enhancement of Fano resonance in metal/dielectric/metal metamaterials at optical regime. , 2014, , .		0
316	Perfect absorption in ultrathin anisotropic Îμ-near-zero metamaterials. Applied Physics Letters, 2014, 105,	1.5	47
317	A polarization-independent broadband terahertz absorber. Applied Physics Letters, 2014, 105, .	1.5	80
318	Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime. Journal of Optics (United Kingdom), 2014, 16, 125107.	1.0	63
319	Selective absorption of visible light in film-coupled nanoparticles by exciting magnetic resonance. Optics Letters, 2014, 39, 1457.	1.7	33
320	Dual band complementary metamaterial absorber in near infrared region. Journal of Applied Physics, 2014, 115, .	1.1	65
321	Selective coherent perfect absorption in metamaterials. Applied Physics Letters, 2014, 105, .	1.5	50
322	Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure. Applied Physics Letters, 2014, 105, .	1.5	31
323	Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber. Advanced Materials, 2014, 26, 7959-7965.	11.1	603
324	Infrared thermal emission from a two-dimensional array of plasmonic spheres. Journal of Applied Physics, 2014, 116, 054910.	1.1	0
325	Directional perfect absorption using deep subwavelength low-permittivity films. Physical Review B, 2014, 90, .	1.1	111
326	Switchable Electromagnetic Reflector/Absorber with Electric-Field-Coupled LC Resonator. Electromagnetics, 2014, 34, 421-429.	0.3	4
327	Micro-electro-mechanically switchable near infrared complementary metamaterial absorber. Applied Physics Letters, 2014, 104, .	1.5	76
328	Unidirectional phase singularity in ultrathin metamaterials at exceptional points. Physical Review A, 2014, 89, .	1.0	28
329	Coherent perfect absorber based on metamaterials. Proceedings of SPIE, 2014, , .	0.8	0
330	Excitation of topological insulator plasmons by two-dimensional periodic structure. , 2014, , .		0
331	Omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals. Proceedings of SPIE, 2014, , .	0.8	2

#	Article	IF	Citations
332	Transparent electrodes based on two-dimensional Ag nanogrids and double one-dimensional Ag nanogratings for organic photovoltaics. Journal of Photonics for Energy, 2014, 5, 057005.	0.8	8
333	Background-suppressed surface-enhanced molecular detection by metamaterial infrared absorber. , 2014, , .		0
334	Giant and tunable electric field enhancement in the terahertz regime. Optics Express, 2014, 22, 27001.	1.7	11
335	Fast tuning of Fano resonance in metal/phase-change materials/metal metamaterials. Optical Materials Express, 2014, 4, 1775.	1.6	17
336	High absorption thin-film absorber with gold nanorod arrays. , 2014, , .		0
337	Plasmonic nanoring fabrication tuned to pitch: Efficient, deterministic, and large scale realization of ultra-small gaps for next generation plasmonic devices. Applied Physics Letters, 2014, 105, .	1.5	18
338	Film-coupled log-periodic optical antennas for near-infrared light absorption. , 2014, , .		0
339	An infrared biosensor based on graphene plasmonic for integrated nanofluidic analysis. , 2014, , .		4
340	Multiband Metamaterial Absorber at Terahertz Frequencies. Chinese Physics Letters, 2014, 31, 054205.	1.3	21
341	Optimization of a radiative membrane for gas sensing applications. Proceedings of SPIE, 2014, , .	0.8	1
342	Optimized aperiodic multilayer structures for use as narrow-angular absorbers. Journal of Applied Physics, 2014, 116, .	1.1	25
343	A wide-angle polarization-sensitive dual-band absorber with a grating structure. Canadian Journal of Physics, 2014, 92, 191-193.	0.4	2
344	Absorption-type terahertz wave switch based on Kerr media. Optics Communications, 2014, 313, 388-391.	1.0	14
345	Infrared Absorption Properties of Carbon Nanotube/Nanodiamond Based Thin Film Coatings. Journal of Microelectromechanical Systems, 2014, 23, 191-197.	1.7	47
346	Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth. ACS Nano, 2014, 8, 1517-1524.	7.3	187
347	Frequency Continuous Tunable Terahertz Metamaterial Absorber. Journal of Lightwave Technology, 2014, 32, 1183-1189.	2.7	102
348	Critical coupling and coherent perfect absorption for ranges of energies due to a complex gain and loss symmetric system. Annals of Physics, 2014, 344, 17-28.	1.0	9
349	A large-scale lithography-free metasurface with spectrally tunable super absorption. Nanoscale, 2014, 6, 5599.	2.8	60

#	Article	IF	CITATIONS
350	Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model. Journal of Applied Physics, 2014, 115, .	1.1	153
351	Coherent perfect absorption and transparency in a nanostructured graphene film. Optics Express, 2014, 22, 12524.	1.7	154
352	Antenna-coupled microcavities for enhanced infrared photo-detection. Applied Physics Letters, 2014, 104, .	1.5	68
353	Hollow Plasmonic U avities with Highâ€Aspectâ€Ratio Nanofins Sustaining Strong Optical Vortices for Light Trapping and Sensing. Advanced Optical Materials, 2014, 2, 522-528.	3.6	22
354	Plasmon-induced transparency in metal–insulator–metal waveguide side-coupled with multiple cavities. Applied Optics, 2014, 53, 1604.	0.9	17
355	Metamaterial Perfect Absorber Based Hot Electron Photodetection. Nano Letters, 2014, 14, 3510-3514.	4.5	591
356	Design and fabrication of a metamaterial absorber in the microwave range. Microwave and Optical Technology Letters, 2014, 56, 1748-1752.	0.9	12
357	Azopolymerâ€based micro―and nanopatterning for photonic applications. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 163-182.	2.4	256
358	Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles. Journal of Optics (United Kingdom), 2014, 16, 025002.	1.0	72
359	Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics. Journal of Optics (United Kingdom), 2014, 16, 035102.	1.0	32
360	All-Semiconductor Negative-Index Plasmonic Absorbers. Physical Review Letters, 2014, 112, 017401.	2.9	52
361	Subwavelength Plasmonic Color Printing Protected for Ambient Use. Nano Letters, 2014, 14, 783-787.	4.5	297
362	Super absorption of ultra-thin organic photovoltaic films. Optics Communications, 2014, 314, 48-56.	1.0	24
363	Highly Sensitive Plasmonic Sensor Based on Fano Resonance from Silver Nanoparticle Heterodimer Array on a Thin Silver Film. Plasmonics, 2014, 9, 499-505.	1.8	18
364	Broadband, polarization-insensitive and wide-angle terahertz metamaterial absorber. Physica Scripta, 2014, 89, 115501.	1.2	18
365	Ultrabroadband strong light absorption based on thin multilayered metamaterials. Laser and Photonics Reviews, 2014, 8, 946-953.	4.4	125
366	Review Article: The weak interactive characteristic of resonance cells and broadband effect of metamaterials. AIP Advances, 2014, 4, .	0.6	12
367	Ultra-broadband terahertz metamaterial absorber. Applied Physics Letters, 2014, 105, .	1.5	368

#	Article	IF	CITATIONS
368	Topological Darkness in Selfâ€Assembled Plasmonic Metamaterials. Advanced Materials, 2014, 26, 324-330.	11.1	67
369	Polarization insensitive perfect absorber with nanorod arrays. , 2014, , .		1
370	Ordered Au nanocrystals on a substrate formed by light-induced rapid annealing. Nanoscale, 2014, 6, 1756-1762.	2.8	35
371	Graphene based salisbury screen for terahertz absorber. Applied Physics Letters, 2014, 104, 081106.	1.5	78
372	Proximal gap-plasmon nanoresonators in the limit of vanishing inter-cavity separation. Nanoscale, 2014, 6, 10274-10280.	2.8	9
373	Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 149, 33-40.	1.1	82
374	Symmetric Absorbers Realized as Gratings of PEC Cylinders Covered by Ordinary Dielectrics. IEEE Transactions on Antennas and Propagation, 2014, 62, 5089-5098.	3.1	30
375	Light trapping systems for biosensor application Forest of silica nanowires decorated with plasmonic nanoparticles. , 2014, , .		0
376	Multipolar localized resonances for multi-band metamaterial perfect absorbers. Journal of Optics (United Kingdom), 2014, 16, 094016.	1.0	50
377	Ultranarrow Band Absorbers Based on Surface Lattice Resonances in Nanostructured Metal Surfaces. ACS Nano, 2014, 8, 8242-8248.	7.3	265
378	A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber. Applied Physics Express, 2014, 7, 082601.	1.1	40
379	Achieving multi-order nearly perfect absorption based on phase resonance in a compound metallic grating. Optics Communications, 2014, 331, 154-159.	1.0	2
380	Admittance matching analysis of perfect absorption in unpatterned thin films. Optics Communications, 2014, 332, 206-213.	1.0	48
381	Silicon-on-Glass Graphene-Functionalized Leaky Cavity Mode Nanophotonic Biosensor. ACS Photonics, 2014, 1, 221-227.	3.2	33
382	Electrifying photonic metamaterials for tunable nonlinear optics. Nature Communications, 2014, 5, 4680.	5.8	90
383	Broadband Plasmonic Absorber for Photonic Integrated Circuits. IEEE Photonics Technology Letters, 2014, 26, 1726-1729.	1.3	11
384	Plasmonic Bar-Coupled Dots-on-Pillar Cavity Antenna with Dual Resonances for Infrared Absorption and Sensing: Performance and Nanoimprint Fabrication. ACS Nano, 2014, 8, 2618-2624.	7.3	29
385	Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions. Optics Communications, 2014, 332, 321-326.	1.0	26

#	Δρτιςι ε	IF	CITATIONS
π	Stable high temperature metamaterial emitters for thermophotovoltaic applications. Applied Physics		CHAHONS
386	Letters, 2014, 104, .	1.5	56
387	Metamaterial-based perfect absorbers. Journal of Electromagnetic Waves and Applications, 2014, 28, 1541-1580.	1.0	116
388	Sharp plasmonic resonances based on coupling of high order localized resonance and lattice surface mode in meta-molecules. Journal Physics D: Applied Physics, 2014, 47, 045303.	1.3	13
389	Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers. Optics Express, 2014, 22, 19457.	1.7	64
390	Micro and Nanophotonics for Semiconductor Infrared Detectors. , 2014, , .		9
391	Dual-absorption metamaterial controlled by electromagnetic polarization. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2744.	0.9	19
392	Gyromagnetically Induced Transparency of Metasurfaces. Physical Review Letters, 2014, 112, 117402.	2.9	66
393	Plasmonic and metamaterial structures as electromagnetic absorbers. Laser and Photonics Reviews, 2014, 8, 495-520.	4.4	489
394	The wide-angle perfect absorption based on the optical Tamm states. Optoelectronics Letters, 2014, 10, 317-320.	0.4	6
395	Fabrication and characterization of well-aligned plasmonic nanopillars with ultrasmall separations. Nanoscale Research Letters, 2014, 9, 299.	3.1	23
396	Babinet-Inverted Optical Yagi–Uda Antenna for Unidirectional Radiation to Free Space. Nano Letters, 2014, 14, 3072-3078.	4.5	31
397	Coherent control of light interaction with graphene. Optics Letters, 2014, 39, 5345.	1.7	86
398	Quantitative Angle-Resolved Small-Spot Reflectance Measurements on Plasmonic Perfect Absorbers: Impedance Matching and Disorder Effects. ACS Nano, 2014, 8, 10885-10892.	7.3	103
399	Tailoring the Plasmonic Modes of a Gratingâ€Nanocube Assembly to Achieve Broadband Absorption in the Visible Spectrum. Advanced Functional Materials, 2014, 24, 6797-6805.	7.8	30
400	Tunable large resonant absorption in a midinfrared graphene Salisbury screen. Physical Review B, 2014, 90, .	1.1	155
401	Metamaterial-based frustum of cones array nanostructure for efficient absorber in the solar spectral band. Applied Physics A: Materials Science and Processing, 2014, 117, 1375-1380.	1.1	15
402	Efficiency and Scalability of Dielectric Resonator Antennas at Optical Frequencies. IEEE Photonics Journal, 2014, 6, 1-10.	1.0	14
403	Broadband reflection of polarization conversion by 90° in metamaterial. Journal of the Korean Physical Society, 2014, 64, 1116-1119.	0.3	8

#	Article	IF	CITATIONS
404	A generalized non-local optical response theory for plasmonic nanostructures. Nature Communications, 2014, 5, 3809.	5.8	421
405	Polarization-Independent Absorber Based on a Cascaded Metal–Dielectric Grating Structure. IEEE Photonics Technology Letters, 2014, 26, 949-952.	1.3	36
406	Solution-Processed Phase-Change VO ₂ Metamaterials from Colloidal Vanadium Oxide (VO _{<i>x</i>}) Nanocrystals. ACS Nano, 2014, 8, 797-806.	7.3	112
407	The hybrid concept for realization of an ultra-thin plasmonic metamaterial antireflection coating and plasmonic rainbow. Nanoscale, 2014, 6, 6037-6045.	2.8	52
408	Nearly Perfect Absorption by Bimetallic Surface Plasmonic Crystal and Its Application as Sensor. IEEE Photonics Technology Letters, 2014, 26, 1259-1262.	1.3	4
409	Plasmonic Perfect Absorbers for Biosensing Applications. Plasmonics, 2014, 9, 1265-1270.	1.8	63
410	Omnidirectional Near-Unity Absorption in an Ultrathin Planar Semiconductor Layer on a Metal Substrate. ACS Photonics, 2014, 1, 812-821.	3.2	88
411	Optimization of the Rayleigh anomaly of metallic gratings for terahertz sensor applications. Journal of Optics (United Kingdom), 2014, 16, 094015.	1.0	5
412	Metamaterial-based perfect absorber: polarization insensitivity and broadband. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2014, 5, 025013.	0.7	24
413	Metal Nanogrid for Broadband Multiresonant Light-Harvesting in Ultrathin GaAs Layers. ACS Photonics, 2014, 1, 878-884.	3.2	90
414	Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell. Applied Physics Letters, 2014, 105, .	1.5	119
415	Generation of steep phase anisotropy with zero-backscattering by arrays of coupled dielectric nano-resonators. Applied Physics Letters, 2014, 105, .	1.5	18
416	Fano resonance induced by mode coupling in all-dielectric nanorod array. Applied Physics Express, 2014, 7, 032002.	1.1	18
417	Nearly perfect resonant absorption of TE-polarized light at metal surfaces coated with arrayed dielectric stripes. Optics Letters, 2014, 39, 2637.	1.7	5
418	Optoelectromechanical Multimodal Biosensor with Graphene Active Region. Nano Letters, 2014, 14, 5641-5649.	4.5	60
419	Enhanced phase sensitivity of metamaterial absorbers near the point of darkness. Journal of Applied Physics, 2014, 116, 023102.	1.1	12
420	Perfect absorber metamaterials: Peak, multi-peak and broadband absorption. Optics Communications, 2014, 322, 209-213.	1.0	110
421	TE polarization selective absorber based on metal-dielectric grating structure for infrared frequencies. Optics Communications, 2014, 329, 38-43.	1.0	37

# 422	ARTICLE Improving the mid-infrared energy absorption efficiency by using a dual-band metamaterial absorber. Progress in Natural Science: Materials International, 2014, 24, 128-133.	IF 1.8	Citations 9
423	Broadband light absorption using a multilayered gap surface plasmon resonator. Applied Physics A: Materials Science and Processing, 2014, 116, 857-861.	1.1	22
424	Plasmonic Resonance toward Terahertz Perfect Absorbers. ACS Photonics, 2014, 1, 625-630.	3.2	75
425	Optimized grating as an ultra-narrow band absorber or plasmonic sensor. Optics Letters, 2014, 39, 1137.	1.7	162
426	Metamaterial-Based Low-Conductivity Alloy Perfect Absorber. Journal of Lightwave Technology, 2014, 32, 2293-2298.	2.7	49
427	Plasmonic gas and chemical sensing. Nanophotonics, 2014, 3, 157-180.	2.9	98
428	Optical Sensors. , 2014, , 631-684.		1
429	Design and performance of a wide-angle infrared plasmonic absorber. , 2014, , .		1
430	Simulation of a Symmetry Metamaterial Waveguide Absorber(TE&TM). Energy Procedia, 2015, 74, 597-607.	1.8	5
431	A wide-angle polarization-sensitive dual-band absorber in the infrared regime. Optik, 2015, 126, 4469-4471.	1.4	3
432	Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography [Invited]. Optical Materials Express, 2015, 5, 2625.	1.6	60
433	Metal-dielectric-metal based narrow band absorber for sensing applications. Optics Express, 2015, 23, 29842.	1.7	138
434	On the reflection efficiency of metasurface. , 2015, , .		0
435	Infrared tunable dual-band polarization filter based on compound asymmetrical cross-shaped resonator. , 2015, , .		0
436	Novel plasmon-assisted absorption engineering based on layered metallic nanostructures. Materials Research Innovations, 2015, 19, S1-S3.	1.0	4
437	Metamaterial based dual-band and polarization independent RF absorber. , 2015, , .		1
438	Waveguideâ€Plasmon Polariton Enhanced Photochemistry. Advanced Optical Materials, 2015, 3, 1582-1590.	3.6	21
439	Photonic materials, structures and devices for Reststrahlen optics. Optics Express, 2015, 23, A1418.	1.7	57

#	Article	IF	CITATIONS
440	Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets. Scientific Reports, 2015, 5, 14018.	1.6	167
441	Strong and highly asymmetrical optical absorption in conformal metal-semiconductor-metal grating system for plasmonic hot-electron photodetection application. Scientific Reports, 2015, 5, 14304.	1.6	36
442	Electrically Tunable Epsilon-Near-Zero (ENZ) Metafilm Absorbers. Scientific Reports, 2015, 5, 15754.	1.6	230
443	Progress toward high- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi>perfect absorption: A Fano antilaser. Physical Review A, 2015, 92, .</mml:math 	1.0	29
444	Graphene-Covered Photonic Structures for Optical Chemical Sensing. Physical Review Applied, 2015, 4,	1.5	21
445	Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram. Physical Review Letters, 2015, 115, 235503.	2.9	230
446	Third-harmonic generation in the presence of classical nonlocal effects in gap-plasmon nanostructures. Physical Review B, 2015, 91, .	1.1	38
447	Perfect interferenceless absorption at infrared frequencies by a van der Waals crystal. Physical Review B, 2015, 92, .	1.1	51
448	Self-complementary metasurfaces for linear-to-circular polarization conversion. Physical Review B, 2015, 92, .	1.1	84
449	Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process. Scientific Reports, 2015, 5, 18605.	1.6	17
450	Metamaterial Absorbers for Infrared Detection of Molecular Self-Assembled Monolayers. Scientific Reports, 2015, 5, 12570.	1.6	75
451	Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films. Scientific Reports, 2015, 5, 13384.	1.6	89
452	Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared. Scientific Reports, 2015, 5, 12788.	1.6	125
453	Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Scientific Reports, 2015, 5, 15137.	1.6	125
454	Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption. Scientific Reports, 2015, 5, 16698.	1.6	30
455	Omnidirectional polarization-insensitive tunable absorption in graphene metamaterial of nanodisk structure. Journal of Applied Physics, 2015, 118, .	1.1	20
456	Microwave metamaterial absorber based on multiple square ring structures. AIP Advances, 2015, 5, .	0.6	18
457	The dynamic process and microscopic mechanism of extraordinary terahertz transmission through perforated superconducting films. Scientific Reports, 2015, 5, 15588.	1.6	8

#	Article	IF	CITATIONS
458	A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices. Scientific Reports, 2015, 5, 17451.	1.6	43
459	Coupled resonator induced transparency leading to plasmonic nanosensing with high detection efficiency. , 2015, , .		1
460	Largeâ€Area Metasurface Perfect Absorbers from Visible to Nearâ€Infrared. Advanced Materials, 2015, 27, 8028-8034.	11.1	272
461	A Largeâ€Area, Mushroomâ€Capped Plasmonic Perfect Absorber: Refractive Index Sensing and Fabry–Perot Cavity Mechanism. Advanced Optical Materials, 2015, 3, 1779-1786.	3.6	79
462	Infrared Aluminum Metamaterial Perfect Absorbers for Plasmonâ€Enhanced Infrared Spectroscopy. Advanced Functional Materials, 2015, 25, 6637-6643.	7.8	129
463	A Flat Lens with Tunable Phase Gradient by Using Random Access Reconfigurable Metamaterial. Advanced Materials, 2015, 27, 4739-4743.	11.1	121
464	Near-infrared light absorption and scattering based on a mono-layer of gold nanoparticles. Journal of the European Optical Society-Rapid Publications, 2015, 10, 15031.	0.9	2
465	Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaln) Liquid Metal Alloy. Sensors, 2015, 15, 28154-28165.	2.1	47
466	Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits. Optics Express, 2015, 23, 32318.	1.7	53
467	Plasmon-Enhanced Sensing: Current Status and Prospects. Journal of Nanomaterials, 2015, 2015, 1-10.	1.5	15
468	Taming the Electromagnetic Boundaries via Metasurfaces: From Theory and Fabrication to Functional Devices. International Journal of Antennas and Propagation, 2015, 2015, 1-80.	0.7	29
469	Sharp Asymmetric Line Shapes in a Plasmonic Waveguide System and its Application in Nanosensor. Journal of Lightwave Technology, 2015, 33, 3250-3253.	2.7	65
470	Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities. Scientific Reports, 2015, 5, 8157.	1.6	69
471	Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers. Journal of Materials Chemistry C, 2015, 3, 4222-4226.	2.7	80
472	Tuning Optical Absorption in an Ultrathin Lossy Film by Use of a Metallic Metamaterial Mirror. IEEE Photonics Technology Letters, 2015, 27, 1617-1620.	1.3	6
473	Constructing Dual Band Metamaterial Absorbers at Mid-Infrared by Employing Multi-Resonant Structures. Key Engineering Materials, 0, 645-646, 1059-1063.	0.4	0
474	Ultrabroadband Plasmonic Absorber for Terahertz Waves. Advanced Optical Materials, 2015, 3, 376-380.	3.6	98
475	Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al ₂ 0 ₃ –Al Trilayers. ACS Photonics, 2015, 2, 964-970.	3.2	172

#	Article	IF	CITATIONS
476	Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption. Optics Express, 2015, 23, 6083.	1.7	99
477	Triple-layer Fabry–Perot/SPP aluminum absorber in the visible and near-infrared region. Optics Letters, 2015, 40, 934.	1.7	8
478	High Order Gap Modes of Film-Coupled Nanospheres. Journal of Physical Chemistry C, 2015, 119, 13799-13806.	1.5	11
479	Low-cost and high-throughput realization of metasurface-based absorber/emitter for thermal-photovoltaic cells. , 2015, , .		1
480	Plasmonic local heating beyond diffraction limit by the excitation of magnetic polariton. Proceedings of SPIE, 2015, , .	0.8	1
481	Broadband Extraordinary Optical Transmission Through a Multilayer Structure With a Periodic Nanoslit Array. IEEE Photonics Journal, 2015, 7, 1-8.	1.0	8
482	Wavelength-Selective Infrared Metasurface Absorber for Multispectral Thermal Detection. IEEE Photonics Journal, 2015, 7, 1-10.	1.0	48
483	Design of dual-band perfect absorber. , 2015, , .		0
484	Sensing characteristics based on Fano resonance in rectangular ring waveguide. Optics Communications, 2015, 356, 373-377.	1.0	19
485	Ultra-compact metamaterial absorber for multiband light absorption at mid-infrared frequencies. Applied Physics Express, 2015, 8, 102001.	1.1	23
486	Surface-plasmon-based wavefront sensing. Optica, 2015, 2, 1024.	4.8	17
487	Localized surface plasmon resonnance induced terahertz broad absorption band. Optics Communications, 2015, 356, 607-611.	1.0	12
488	Prediction of multiple resonance characteristics by an extended resistor–inductor–capacitor circuit model for plasmonic metamaterials absorbers in infrared. Optics Letters, 2015, 40, 4432.	1.7	14
489	Quantum-Spillover-Enhanced Surface-Plasmonic Absorption at the Interface of Silver and High-Index Dielectrics. Physical Review Letters, 2015, 115, 193901.	2.9	49
490	Broadband Reflectionless Metasheets: Frequency-Selective Transmission and Perfect Absorption. Physical Review X, 2015, 5, .	2.8	126
491	Polarization-adjustable dual-band absorption in GHz-band metamaterial, based-on no-smoking symbol. Journal of the Korean Physical Society, 2015, 67, 1651-1656.	0.3	2
492	Tunable Electromagnetically Induced Transparency in Plasmonic System and Its Application in Nanosensor and Spectral Splitting. IEEE Photonics Journal, 2015, 7, 1-8.	1.0	19
493	Accurate near-field calculation in the rigorous coupled-wave analysis method. Journal of Optics (United Kingdom), 2015, 17, 125612.	1.0	33

#	Article	IF	CITATIONS
494	Thermal Radiative Properties of a Two-Dimensional Silicon Carbide Grating Mediated With a Photonic Crystal. Journal of Heat Transfer, 2015, 137, .	1.2	5
495	Metamaterial-based perfect absorbers for efficiently enhancing near field radiative heat transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 167, 156-163.	1.1	8
496	Broadband Metallic Absorber on a Nonâ€Planar Substrate. Small, 2015, 11, 1526-1530.	5.2	21
497	Rapid-Response Low Infrared Emission Broadband Ultrathin Plasmonic Light Absorber. Scientific Reports, 2015, 4, 7181.	1.6	33
498	Flexible metamaterial absorbers with multi-band infrared response. Journal Physics D: Applied Physics, 2015, 48, 035105.	1.3	29
499	Optofluidic spectroscopy integrated on optical fiber platform. Sensing and Bio-Sensing Research, 2015, 3, 1-6.	2.2	5
500	Inverted nanotaper-based Ag film for optical absorption and SERS applications. Journal of Alloys and Compounds, 2015, 632, 634-638.	2.8	13
501	Automatically Acquired Broadband Plasmonic-Metamaterial Black Absorber during the Metallic Film-Formation. ACS Applied Materials & Interfaces, 2015, 7, 4962-4968.	4.0	229
502	Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces. Applied Physics Letters, 2015, 106, .	1.5	427
503	Control of thermal radiative properties using two-dimensional complex gratings. International Journal of Heat and Mass Transfer, 2015, 84, 713-721.	2.5	13
504	Tailoring thermal radiative properties with film-coupled concave grating metamaterials. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 158, 127-135.	1.1	39
505	Large-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films. ACS Photonics, 2015, 2, 183-188.	3.2	414
506	Multimodal Broadband Plasmonic Absorber With Densely Packed Metallic Nanostars. IEEE Photonics Technology Letters, 2015, 27, 786-789.	1.3	9
507	Magnetic Plasmonic Fano Resonance at Optical Frequency. Small, 2015, 11, 2177-2181.	5.2	66
508	Largeâ€Area Lowâ€Cost Tunable Plasmonic Perfect Absorber in the Near Infrared by Colloidal Etching Lithography. Advanced Optical Materials, 2015, 3, 398-403.	3.6	77
509	Ultra-broadband absorption in mid-infrared spectrum with graded permittivity metamaterial waveguide structure. Applied Physics B: Lasers and Optics, 2015, 118, 409-415.	1.1	14
510	A novel dual-band terahertz metamaterial absorber for a sensor application. Journal of Applied Physics, 2015, 117, .	1.1	252
511	Dielectric-based subwavelength metallic meanders for wide-angle band absorbers. Optics Express, 2015, 23, 963.	1.7	17

#	Article	IF	CITATIONS
512	Tailoring the negative-refractive-index metamaterials composed of semiconductor–metal–semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2015, 32, 204.	0.8	17
513	Near-perfect absorption with a metallic grating and dielectric substrate. Journal of Nanophotonics, 2015, 9, 093087.	0.4	5
514	Triple-band perfect metamaterial absorption, based on single cut-wire bar. Applied Physics Letters, 2015, 106, .	1.5	54
515	A wide-angle TE-polarization absorber based on a bilayer grating. Optical and Quantum Electronics, 2015, 47, 2533-2539.	1.5	5
516	Broadband and Wide Field-of-view Plasmonic Metasurface-enabled Waveplates. Scientific Reports, 2014, 4, 7511.	1.6	100
517	Enhanced absorption efficiency of ultrathin metamaterial solar absorbers by plasmonic Fano resonance. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 595.	0.9	29
518	Plasmonic ultra-broadband polarizers based on Ag nano wire-slit arrays. Applied Physics Letters, 2015, 106, 081102.	1.5	19
519	Polarization-sensitive plasmonic hot spot tuning with nanoslit arrays. Proceedings of SPIE, 2015, , .	0.8	0
520	Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission. Physical Review Applied, 2015, 4, .	1.5	161
521	Graphene-based hybrid films for plasmonic sensing. Nanoscale, 2015, 7, 14561-14576.	2.8	46
522	Refractive index sensing characteristics of dual resonances in rectangular fractal nano-apertures. Optical Materials, 2015, 46, 423-428.	1.7	8
523	Ultra-broadband and strongly enhanced diffraction with metasurfaces. Scientific Reports, 2015, 5, 10119.	1.6	26
524	Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles. Scientific Reports, 2014, 4, 4850.	1.6	40
525	Eliminating material constraints for nonlinearity with plasmonic metamaterials. Nature Communications, 2015, 6, 7757.	5.8	123
526	Wavelength and Thermal Distribution Selectable Microbolometers Based on Metamaterial Absorbers. IEEE Photonics Journal, 2015, 7, 1-8.	1.0	41
527	Silver Nanoparticle-Based Inkjet-Printed Metamaterial Absorber on Flexible Paper. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 1718-1721.	2.4	39
528	Plasmonic Toroidal Dipolar Response under Radially Polarized Excitation. Scientific Reports, 2015, 5, 11793.	1.6	65
529	MEMS switchable infrared metamaterial absorber. , 2015, , .		1

#	Article	IF	CITATIONS
530	Plasmonic nano-antennas for spectral emissivity engineering. Proceedings of SPIE, 2015, , .	0.8	0
531	Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties. Nanoscale, 2015, 7, 12266-12283.	2.8	73
532	Scattering Dark States in Multiresonant Concentric Plasmonic Nanorings. ACS Photonics, 2015, 2, 1085-1090.	3.2	16
533	A Refractive Index Nanosensor Based on Fano Resonance in the Plasmonic Waveguide System. IEEE Photonics Technology Letters, 2015, 27, 1695-1698.	1.3	76
534	Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nature Communications, 2015, 6, 7797.	5.8	311
535	Structural color printing based on plasmonic metasurfaces of perfect light absorption. Scientific Reports, 2015, 5, 11045.	1.6	254
536	Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures. Applied Physics Letters, 2015, 106, .	1.5	150
537	Enhanced performance of VO _x -based bolometer using patterned gold black absorber. Proceedings of SPIE, 2015, , .	0.8	3
538	A fully biocompatible poly(ethylene glycol)–gold plasmonic crystal for optical sensing. Optical Materials, 2015, 47, 333-337.	1.7	4
539	A Naked Eye Refractive Index Sensor with a Visible Multiple Peak Metamaterial Absorber. Sensors, 2015, 15, 7454-7461.	2.1	13
540	Germanium nanopyramid arrays showing near-100% absorption in the visible regime. Nano Research, 2015, 8, 2216-2222.	5.8	24
541	Analysis of ultra-broadband metamaterial absorber based on simplified multi-reflection interference theory. Journal of Optics (United Kingdom), 2015, 17, 055101.	1.0	17
542	Ultrathin polarization independent absorber with enhanced bandwidth by incorporating giusepe peano fractal in square ring. Microwave and Optical Technology Letters, 2015, 57, 1072-1078.	0.9	16
543	Influence of emissivity tailoring on radiative membranes thermal behavior for gas sensing applications. Sensors and Actuators B: Chemical, 2015, 213, 53-58.	4.0	4
544	Condition for unity absorption in an ultrathin and highly lossy film in a Gires–Tournois interferometer configuration. Optics Letters, 2015, 40, 1960.	1.7	36
545	Effect of polarization on dual-band infrared metamaterial emitters or absorbers. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 158, 111-118.	1.1	22
546	Reciprocity in Parity Violating Non-Hermitian Systems. International Journal of Theoretical Physics, 2015, 54, 3945-3953.	0.5	2
547	Full Resonant Absorption of Light in Metallic Subwavelength Gratings with Asymmetric Binary Nanogrooves. Plasmonics, 2015, 10, 305-309.	1.8	4

#	Article	IF	CITATIONS
548	A Bianisotropic Metasurface With Resonant Asymmetric Absorption. IEEE Transactions on Antennas and Propagation, 2015, 63, 3004-3015.	3.1	58
549	Spatial mapping of refractive index based on a plasmonic tapered channel waveguide. Optics Express, 2015, 23, 5907.	1.7	4
550	Polarization-independent and omnidirectional nearly perfect absorber with ultra-thin 2D subwavelength metal grating in the visible region. Optics Express, 2015, 23, A413.	1.7	74
551	Dislocated Double-Layered Metal Gratings: Refractive Index Sensors with High Figure of Merit. Plasmonics, 2015, 10, 1489-1497.	1.8	12
552	Design, simulation, and fabrication of single-/dual-/triple band metamaterial absorber. Physica Scripta, 2015, 90, 065501.	1.2	13
553	Absorption Manipulation in a Narrowband Infrared Absorber Based on the Hybridization of Gap Plasmon and Fabry-Perot Resonance. Plasmonics, 2015, 10, 1219-1223.	1.8	19
554	Control the polarization state of light with symmetry-broken metallic metastructures. Annals of Physics, 2015, 358, 129-158.	1.0	10
555	Mechanically stretchable and tunable metamaterial absorber. Applied Physics Letters, 2015, 106, .	1.5	101
556	Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations. Physical Review Applied, 2015, 3, .	1.5	433
557	Color generation <i>via</i> subwavelength plasmonic nanostructures. Nanoscale, 2015, 7, 6409-6419.	2.8	262
558	Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber. Applied Physics Letters, 2015, 106, .	1.5	77
559	Broadband High-Efficiency Half-Wave Plate: A Supercell-Based Plasmonic Metasurface Approach. ACS Nano, 2015, 9, 4111-4119.	7.3	387
560	Metallic metasurface as a directional and monochromatic thermal emitter. , 2015, , .		4
561	Nanostructured thin film–based near-infrared tunable perfect absorber using phase-change material. Journal of Nanophotonics, 2015, 9, 093597.	0.4	9
562	Perfectly matched layer based multilayer absorbers. Proceedings of SPIE, 2015, , .	0.8	0
563	Extreme Subwavelength Metal Oxide Direct and Complementary Metamaterials. ACS Photonics, 2015, 2, 606-614.	3.2	33
564	A Highly Tunable and Fully Biocompatible Silk Nanoplasmonic Optical Sensor. Nano Letters, 2015, 15, 3358-3363.	4.5	88
565	Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial. Optics Express, 2015, 23, 8670.	1.7	105

#	Article	IF	CITATIONS
566	Enabling access to the confined optical field to achieve high-quality plasmon sensing. IEEE Photonics Technology Letters, 2015, , 1-1.	1.3	9
567	A black potential for spin less particles. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1326-1336.	0.9	9
568	Dispersion engineering of plasmonic nanocomposite for ultrathin broadband optical absorber. Optics Express, 2015, 23, 2328.	1.7	24
569	Tunable dark modes in one-dimensional "diatomic―dielectric gratings. Optics Express, 2015, 23, 12478.	1.7	16
570	Wide-angle and polarization independent perfect absorber based on one-dimensional fabrication-tolerant stacked array. Optics Express, 2015, 23, 21023.	1.7	48
571	Diffractive optical elements made from photonic metamaterials. , 2015, , .		0
572	Localized and nonlocalized plasmon resonance enhanced light absorption in metal-insulator-metal nanostructures. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1686.	0.9	21
573	Terahertz dual-band metamaterial absorber based on graphene/MgF_2 multilayer structures. Optics Express, 2015, 23, 1679.	1.7	170
574	Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure. Optics Express, 2015, 23, 2032.	1.7	100
575	Engineering plasmon dispersion relations: hybrid nanoparticle chain -substrate plasmon polaritons. Optics Express, 2015, 23, 2280.	1.7	16
576	Dual broadband metamaterial absorber. Optics Express, 2015, 23, 3861.	1.7	125
577	Flexible inkjet-printed metamaterial absorber for coating a cylindrical object. Optics Express, 2015, 23, 5898.	1.7	44
578	Double-layered metal grating for high-performance refractive index sensing. Optics Express, 2015, 23, 8995.	1.7	55
579	Rounding corners of nano-square patches for multispectral plasmonic metamaterial absorbers. Optics Express, 2015, 23, 11763.	1.7	11
580	Nanoslit-microcavity-based narrow band absorber for sensing applications. Optics Express, 2015, 23, 20715.	1.7	117
581	Tunable near-infrared plasmonic perfect absorber based on phase-change materials. Photonics Research, 2015, 3, 54.	3.4	111
582	Multi-band near-perfect absorption via the resonance excitation of dark meta-molecules. Optics Communications, 2015, 356, 362-367.	1.0	13
583	Omnidirectional absorption and off-resonance field enhancement in dielectric cylinders coated with graphene layers. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2015, 32, 943.	0.8	12

#	Article	IF	Citations
584	Design of a broadband electromagnetic wave absorber using a metamaterial technology. Journal of Electromagnetic Waves and Applications, 2015, 29, 2080-2091.	1.0	25
585	Low-cost replication of plasmonic gold nanomushroom arrays for transmission-mode and multichannel biosensing. RSC Advances, 2015, 5, 61270-61276.	1.7	11
586	Design, synthesis, characterization and performance evaluation of multi-band perfect metamaterial absorber. Journal of Electromagnetic Waves and Applications, 2015, 29, 2479-2491.	1.0	11
587	Polarization independent broadband metamaterial absorber based on tapered helical structure. Optics Communications, 2015, 356, 565-570.	1.0	21
588	Optimization of a horizontal slot waveguide biosensor to detect DNA hybridization. Applied Optics, 2015, 54, 4881.	2.1	45
589	Aluminum plasmonic metamaterials for structural color printing. Optics Express, 2015, 23, 14552.	1.7	110
590	Plasmonic induced triple-band absorber for sensor application. Optics Express, 2015, 23, 17607.	1.7	79
591	Near-infrared coherent perfect absorption in plasmonic metal-insulator-metal waveguide. Optics Express, 2015, 23, 24464.	1.7	34
592	Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer. Optics Express, 2015, 23, 25329.	1.7	44
593	Design of multiband metamaterial absorber based on artificial magnetic conductor. , 2015, , .		1
594	Tunable metamaterial dual-band terahertz absorber. Solid State Communications, 2015, 222, 32-36.	0.9	21
595	Ultra Sensing by Combining Extraordinary Optical Transmission with Perfect Absorption. ACS Photonics, 2015, 2, 1567-1575.	3.2	32
596	Thermally induced nonlinear optical absorption in metamaterial perfect absorbers. Applied Physics Letters, 2015, 106, .	1.5	34
597	Tunneling-enabled spectrally selective thermal emitter based on flat metallic films. Applied Physics Letters, 2015, 106, .	1.5	43
598	Perfect magnetic mirror and simple perfect absorber in the visible spectrum. Physical Review B, 2015, 91, .	1.1	52
599	Ultrabroadband Terahertz Absorption by Uniaxial Anisotropic Nanowire Metamaterials. IEEE Photonics Technology Letters, 2015, 27, 2284-2287.	1.3	19
600	Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization. Journal of Applied Physics, 2015, 117, .	1.1	41
601	Rotated First Iteration Square Fractal Shaped Perfect Absorbers. , 2015, , .		2

#	Article	IF	CITATIONS
602	Comprehensive study of terahertz metamaterial absorber by applying a hybrid approach on its circuit analogue. Optical Materials Express, 2015, 5, 1772.	1.6	12
603	Design of a tunable multiband terahertz waves absorber. Journal of Alloys and Compounds, 2015, 652, 18-24.	2.8	42
604	Optically switchable photonic metasurfaces. Applied Physics Letters, 2015, 107, .	1.5	36
605	Design and analysis of nanostructured subwavelength metamaterial absorber operating in the UV and visible spectral range. Journal of Electromagnetic Waves and Applications, 2015, 29, 2408-2419.	1.0	43
606	Bi-layer metamaterials as fully functional near-perfect infrared absorbers. Applied Physics Letters, 2015, 107, .	1.5	35
607	Sensing analysis based on plasmon induced transparency in nanocavity-coupled waveguide. Optics Express, 2015, 23, 20313.	1.7	82
608	Broadband High-Performance Infrared Antireflection Nanowires Facilely Grown on Ultrafast Laser Structured Cu Surface. Nano Letters, 2015, 15, 5988-5994.	4.5	68
609	Enhancing resonances of optical nanoantennas by circular gratings. Optics Express, 2015, 23, 14583.	1.7	9
610	Selective absorbers and thermal emitters for far-infrared wavelengths. Applied Physics Letters, 2015, 107, .	1.5	31
611	Nanomaterials and Nanoarchitectures. NATO Science for Peace and Security Series C: Environmental Security, 2015, , .	0.1	8
612	Graphene plasmonics: multiple sharp Fano resonances in silver split concentric nanoring/disk resonator dimers on a metasurface. Proceedings of SPIE, 2015, , .	0.8	1
613	Polarization state-based refractive index sensing with plasmonic nanostructures. Nanoscale, 2015, 7, 20171-20179.	2.8	21
614	Perfect absorbers for electromagnetic wave, based on metamaterials. Journal of the Korean Physical Society, 2015, 67, 1095-1109.	0.3	13
615	Five-Band Terahertz Metamaterial Absorber Based on a Four-Gap Comb Resonator. Journal of Lightwave Technology, 2015, 33, 5151-5156.	2.7	58
616	Multi-plasmon-induced perfect absorption at the third resonance in metamaterials. Journal of Optics (United Kingdom), 2015, 17, 125101.	1.0	12
617	Electrical Switching of Infrared Light Using Graphene Integration with Plasmonic Fano Resonant Metasurfaces. ACS Photonics, 2015, 2, 216-227.	3.2	210
618	Two-dimensional Hyper-branched Gold Nanoparticles Synthesized on a Two-dimensional Oil/Water Interface. Scientific Reports, 2014, 4, 6119.	1.6	25
619	Design of Infrared SPR Sensor Based on Bimetallic Nanowire Gratings on Plastic Optical Fiber Surface. IEEE Sensors Journal, 2015, 15, 255-259.	2.4	4

#	Article	IF	CITATIONS
620	TE polarization broadband absorber based on stacked metal-dielectric grating structure. Optics Communications, 2015, 341, 85-90.	1.0	8
621	Ultrabroadband absorber using a deep metallic grating with narrow slits. Optics Communications, 2015, 334, 328-331.	1.0	25
622	A multiband polarization-insensitive metamaterial absorber in the infrared regime. Indian Journal of Physics, 2015, 89, 195-198.	0.9	3
623	High sensitivity plasmonic sensing based on Fano interference in a rectangular ring waveguide. Optics Communications, 2015, 340, 1-4.	1.0	48
624	Core–Shell-Structured Dielectric–Metal Circular Nanodisk Antenna: Gap Plasmon Assisted Magnetic Toroid-like Cavity Modes. ACS Photonics, 2015, 2, 60-65.	3.2	34
625	Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies. Scientific Reports, 2014, 4, 3955.	1.6	264
626	Surface plasmon resonances and plasmon hybridization in compositional Al/Al2O3/SiO2 nanorings at the UV spectrum to the near infrared region (NIR). Optics and Laser Technology, 2015, 66, 9-14.	2.2	13
627	Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers. Optics Communications, 2015, 338, 388-392.	1.0	54
628	Omnidirectional and broadband optical absorption enhancement in small molecule organic solar cells by a patterned MoO3/Ag/MoO3 transparent anode. Optics Communications, 2015, 338, 226-232.	1.0	13
629	Optical refractive nanosensor with planar resonators metamaterial. Optics Communications, 2015, 338, 399-405.	1.0	21
630	Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of waveguide resonator systems. Optical and Quantum Electronics, 2015, 47, 1339-1346.	1.5	39
631	Fast Tuning of Double Fano Resonance Using A Phase-Change Metamaterial Under Low Power Intensity. Scientific Reports, 2014, 4, 4463.	1.6	63
632	Effective method to study the thickness-dependent dielectric functions of nanometal thin film. Optics Letters, 2016, 41, 4907.	1.7	26
633	Quasi-analytical solutions of hybrid platform and the optimization of highly sensitive thin-film sensors for terahertz radiation. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 2535.	0.9	3
634	Stretchable Metamaterial Absorber Using Liquid Metal-Filled Polydimethylsiloxane (PDMS). Sensors, 2016, 16, 521.	2.1	33
635	Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor. , 2016, , .		2
636	Absorption Properties of Simply Fabricated All-Metal Mushroom Plasmonic Metamaterials Incorporating Tube-Shaped Posts for Multi-Color Uncooled Infrared Image Sensor Applications. Photonics, 2016, 3, 9.	0.9	23
637	Metamaterial Absorber Comprised of Butt-Facing U-Shaped Nanoengineered Gold Metasurface. Energies, 2016, 9, 451.	1.6	13
#	Article	IF	CITATIONS
-----	--	-----	-----------
638	Grating-type mid-infrared light absorber based on silicon carbide material. Optics Express, 2016, 24, 22596.	1.7	15
639	Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies. Optics Express, 2016, 24, 25742.	1.7	76
640	Plasmon hybridization in split ring nanosandwich for refractive index sensing– Numerical Investigation. Optics Express, 2016, 24, 30201.	1.7	6
641	CMOS compatible metal-insulator-metal plasmonic perfect absorbers. Optical Materials Express, 2016, 6, 2389.	1.6	34
642	Ultranarrowband perfect terahertz absorber based on a metal- and insulator-stacked structure. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 2602.	0.9	8
643	Broadband terahertz absorption enabled by coating an ultrathin antireflection film on doped semiconductor. Optics Express, 2016, 24, 20663.	1.7	5
644	Hybrid cavity-coupled plasmonic biosensors for low concentration, label-free and selective biomolecular detection. Optics Express, 2016, 24, 25785.	1.7	13
645	Quantification of Multiple Molecular Fingerprints by Dualâ€Resonant Perfect Absorber. Advanced Optical Materials, 2016, 4, 1274-1280.	3.6	56
646	Laserâ€Induced Dewetting for Precise Local Generation ofÂAu Nanostructures for Tunable Solar Absorption. Advanced Optical Materials, 2016, 4, 1247-1254.	3.6	26
647	Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films. Advanced Optical Materials, 2016, 4, 480-486.	3.6	94
648	Highly sensitive mushroom-shaped gold-silica nano antenna array for refractive index sensing. , 2016, ,		1
649	Broadband Solar Thermal Absorber Based on Optical Metamaterials for Highâ€Temperature Applications. Advanced Optical Materials, 2016, 4, 1265-1273.	3.6	69
650	Multidiffractive Broadband Plasmonic Absorber. Advanced Optical Materials, 2016, 4, 435-443.	3.6	30
651	ANALYSIS OF THREE-DIMENSIONAL GRAPHENE-BASED METAMATERIAL ABSORBERS USING BOUNDARY-INTEGRAL SPECTRAL ELEMENT METHOD. , 2016, , .		0
652	Pronounced Fano Resonance in Single Gold Split Nanodisks with 15 nm Split Gaps for Intensive Second Harmonic Generation. ACS Nano, 2016, 10, 11105-11114.	7.3	126
653	A narrow-band coherent perfect absorption in bright–bright mode coupling metamaterials. Journal of Optics (United Kingdom), 2016, 18, 125101.	1.0	4
654	Effects of dielectric spacer on absorption characteristics of double-headed arrow shaped perfect absorber. , 2016, , .		0
655	Frequency adjustable cross-shaped absorber based on graphene. , 2016, , .		0

ARTICLE IF CITATIONS # Highly efficient metallic optical incouplers for quantum well infrared photodetectors. Scientific 656 1.6 21 Reports, 2016, 6, 30414. Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide. 1.6 Scientific Reports, 2016, 6, 22428. 658 Infrared metamaterials for high-sensitive surface-enhanced molecular detection., 2016,,. 1 A Planarized Thermophotovoltaic Emitter With Idealized Selective Emission. IEEE Photonics Journal, 2016, 8, 1-9. Three-Dimensional Single-Port Labyrinthine Acoustic Metamaterial: Perfect Absorption with Large 660 1.5 234 Bandwidth and Tunability. Physical Review Applied, 2016, 6, . Multiple and broadband near-perfect absorption in heterostructures containing transparent 1.1 conducting oxides. Journal of Applied Physics, 2016, 119, . Plasmonic localized heating beyond the diffraction limit via magnetic polariton excitation. Journal of 662 1.1 1 Applied Physics, 2016, 120, . Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy 1.6 Bragg stacks. Scientific Reports, 2016, 6, 27061. 664 Magnetically tunable metamaterial perfect absorber. Journal of Applied Physics, 2016, 119, . 1.1 57 Polarization controllable multispectral symmetry-breaking absorberin mid-infrared. Journal of 1.1 24 Applied Physics, 2016, 120, 063105. MoS\$_2\$ Broadband Coherent Perfect Absorber for Terahertz Waves. IEEE Photonics Journal, 2016, 8, 666 31 1.0 1-7. Metal-insulator-metal metamaterial absorbers consisting of proximity-coupled resonators with the control of the fundamental and the second-order frequencies. Journal of Applied Physics, 2016, 119, 1.1 063101. Reflection type metasurface designed for high efficiency vectorial field generation. Scientific Reports, 668 1.6 28 2016, 6, 29626. Broadband absorption through extended resonance modes in random metamaterials. Journal of 1.1 Applied Physics, 2016, 119, . Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit 670 7 1.6 metasurface. Scientific Reports, 2016, 6, 37476. Wide-angle, polarization-independent ultrathin broadband visible absorbers. Applied Physics Letters, 671 68 2016, 108, . Reversibly tunable coupled and decoupled super absorbing structures. Applied Physics Letters, 2016, 672 1.515 108,. Coherent perfect absorption in an all-dielectric metasurface. Applied Physics Letters, 2016, 108, . 1.5

#	Article	IF	CITATIONS
674	Zeroth Order Fabry–Perot Resonance Enabled Strong Light Absorption in Ultrathin Silicon Films on Different Metals and Its Application for Color Filters. IEEE Photonics Journal, 2016, 8, 1-12.	1.0	19
675	Wide-angle Spectrally Selective Perfect Absorber by Utilizing Dispersionless Tamm Plasmon Polaritons. Scientific Reports, 2016, 6, 39418.	1.6	27
676	Metasurface Broadband Solar Absorber. Scientific Reports, 2016, 6, 20347.	1.6	220
677	Tunable plasmonic-lattice mode sensors with ultrahigh sensitivities and figure-of-merits. Journal of Applied Physics, 2016, 119, .	1.1	35
678	Broadband near-infrared metamaterial absorbers utilizing highly lossy metals. Scientific Reports, 2016, 6, 39445.	1.6	247
679	Low-frequency metamaterial absorber with small-size unit cell based on corrugated surface. AIP Advances, 2016, 6, .	0.6	14
680	Plasmonic perfect absorber for solar cell applications. , 2016, , .		5
681	Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor. Optics Communications, 2016, 370, 203-208.	1.0	32
682	Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect. Optics Communications, 2016, 371, 173-177.	1.0	26
683	Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chemical Society Reviews, 2016, 45, 3145-3187.	18.7	341
684	Simple design of novel triple-band terahertz metamaterial absorber for sensing application. Journal Physics D: Applied Physics, 2016, 49, 165307.	1.3	117
685	Measurement of the Phase and Intensity Profile of Surface Plasmon Laser Emission. ACS Photonics, 2016, 3, 942-946.	3.2	19
686	Design of an ultra-broadband and polarization-insensitive solar absorber using a circular-shaped ring resonator. Journal of Nanophotonics, 2016, 10, 026021.	0.4	15
687	A novel design of plasmon-induced absorption sensor. Applied Physics Express, 2016, 9, 062002.	1.1	26
688	A Multimetal Broadband Metamaterial Perfect Absorber With Compact Dimension. IEEE Photonics Journal, 2016, 8, 1-10.	1.0	13
689	Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters. International Journal of Heat and Mass Transfer, 2016, 98, 788-798.	2.5	69
690	Perfectly absorbing ultra thin interference coatings for hydrogen sensing. Optics Letters, 2016, 41, 1724.	1.7	22
691	Ultra-narrow-band perfect absorber based on high-order plasmonic resonance in metamaterial. Journal of Nonlinear Optical Physics and Materials, 2016, 25, 1650011.	1.1	15

		CITATION REPORT		
#	Article		IF	CITATIONS
692	Role of surface electromagnetic waves in metamaterial absorbers. Optics Express, 2016	, 24, 6783.	1.7	47
693	Metamaterial perfect absorber using the magnetic resonance of dielectric inclusions. Jo Korean Physical Society, 2016, 68, 1008-1013.	urnal of the	0.3	11
694	Metasurfaces: From microwaves to visible. Physics Reports, 2016, 634, 1-72.		10.3	998
695	Wafer-Scale Aluminum Nanoplasmonic Resonators with Optimized Metal Deposition. A 2016, 3, 796-805.	CS Photonics,	3.2	10
696	Metamaterial Absorber Based Multifunctional Sensors. Journal of the Electrochemical So 163, B319-B324.	ociety, 2016,	1.3	8
697	3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. I Photonics, 2016, 10, 393-398.	Nature	15.6	1,669
698	Perfect narrow band absorber for sensing applications. Optics Express, 2016, 24, 9288.		1.7	153
699	Wavelength-tunable perfect absorber based on guided-mode resonances. Applied Optic	s, 2016, 55, 3176.	0.9	21
700	Broadband nearly perfect visible plasmonic absorber. , 2016, , .			1
701	Frequency-tunable metamaterial absorber using a varactor-loaded fishnet-like resonator Optics, 2016, 55, 4113.	. Applied	2.1	61
702	Challenges in fabrication towards realization of practical metamaterials. Microelectronic Engineering, 2016, 163, 7-20.	2	1.1	66
703	The Plasmonic Pixel: Large Area, Wide Gamut Color Reproduction Using Aluminum Nan Nano Letters, 2016, 16, 3817-3823.	ostructures.	4.5	154
704	Frequency tunable perfect absorber in visible and near-infrared regimes based on VO_2 transition using planar layered thin films. Journal of the Optical Society of America B: Op 2016, 33, 1075.	phase otical Physics,	0.9	25
705	Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absor field-penetration and reflected-wave-cancellation. Optics Express, 2016, 24, A832.	ber using	1.7	39
706	Thickness-dependent free-electron relaxation time of Au thin films in near-infrared regio Nanophotonics, 2016, 10, 033009.	n. Journal of	0.4	8
707	Calculations of a wideband metamaterial absorber using equivalent medium theory. Jou Applied Physics, 2016, 49, 325101.	rnal Physics D:	1.3	24
708	Optical absorbers based on strong interference in ultraâ€ŧhin films. Laser and Photonics 10, 735-749.	s Reviews, 2016,	4.4	194
709	Polarization-independent broadband absorber based on pyramidal metal-dielectric grati Optical Materials, 2016, 62, 47-51.	ng structure.	1.7	20

#	Article	IF	CITATIONS
710	Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals. Nanoscale, 2016, 8, 17645-17657.	2.8	45
711	High-efficiency refractive index sensor based on the metallic nanoslit arrays with gain-assisted materials. Nanophotonics, 2016, 5, 548-555.	2.9	16
712	Near-Unity Unselective Absorption in Sparse InP Nanowire Arrays. ACS Photonics, 2016, 3, 1826-1832.	3.2	81
713	Circular Dichroism Metamirrors with Near-Perfect Extinction. ACS Photonics, 2016, 3, 2096-2101.	3.2	240
714	A high-performance light absorber based on a metamaterial nanopyramid array. Chinese Journal of Physics, 2016, 54, 940-946.	2.0	6
715	A multiband absorber with dielectric–dielectric–metal structure in the infrared regime. Modern Physics Letters B, 2016, 30, 1650352.	1.0	6
716	Anomalous diffraction in super-wavelength plasmonic metasurfaces. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 3949-3955.	0.9	4
717	Ultrathin microwave absorber based on metamaterial. Journal Physics D: Applied Physics, 2016, 49, 435102.	1.3	9
718	Metamaterial absorber integrated microfluidic terahertz sensors. Laser and Photonics Reviews, 2016, 10, 962-969.	4.4	212
719	Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances. Nature Photonics, 2016, 10, 709-714.	15.6	134
720	Aluminum infrared plasmonic perfect absorbers for wavelength selective devices. Proceedings of SPIE, 2016, , .	0.8	1
721	Polarisation insensitive tunable metamaterial perfect absorber for solar cells applications. IET Optoelectronics, 2016, 10, 211-216.	1.8	23
722	Avoided resonance crossing and non-reciprocal nearly perfect absorption in plasmonic nanodisks with near-field and far-field couplings. Optics Express, 2016, 24, 16822.	1.7	14
723	Thickness Control Produces Gold Nanoplates with Their Plasmon in the Visible and Nearâ€Infrared Regions. Advanced Optical Materials, 2016, 4, 76-85.	3.6	91
724	Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors. Journal Physics D: Applied Physics, 2016, 49, 32LT01.	1.3	32
725	Ultrathin plasmonic frequency selective surface with subwavelength hole arrays. Microwave and Optical Technology Letters, 2016, 58, 2171-2176.	0.9	1
726	Line shapes in a plasmonic waveguide system based on plasmon-induced transparency and its application in nanosensor. Optics Communications, 2016, 381, 163-168.	1.0	19
727	Strong coupling between mid-infrared localized plasmons and phonons. Optics Express, 2016, 24, 12367.	1.7	38

#	Article	IF	CITATIONS
728	Design of practicable phase-change metadevices for near-infrared absorber and modulator applications. Optics Express, 2016, 24, 13563.	1.7	81
729	Design of four-band terahertz perfect absorber based on a simple #-shaped metamaterial resonator. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	30
730	Large-Area Low-Cost Plasmonic Perfect Absorber Chemical Sensor Fabricated by Laser Interference Lithography. ACS Sensors, 2016, 1, 1148-1154.	4.0	64
731	Tunable light trapping and absorption enhancement with graphene ring arrays. Physical Chemistry Chemical Physics, 2016, 18, 26661-26669.	1.3	164
732	Metamaterial perfect absorber based on artificial dielectric "atoms― Optics Express, 2016, 24, 20454.	1.7	56
733	Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies. Scientific Reports, 2016, 5, 18463.	1.6	145
734	Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode. Scientific Reports, 2016, 6, 21431.	1.6	120
735	A universal design to realize a tunable perfect absorber from infrared to microwaves. Scientific Reports, 2016, 6, 32589.	1.6	21
736	Optical Biosensors Based on Plasmonic Nanostructures: A Review. Proceedings of the IEEE, 2016, 104, 2380-2408.	16.4	297
737	A THz plasmonics perfect absorber and Fabry-Perot cavity mechanism (Conference Presentation). , 2016, , .		2
738	01–20 THz ultra-broadband perfect absorber via a flat multi-layer structure. Optics Express, 2016, 24, 23177.	1.7	18
739	Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber. Scientific Reports, 2016, 6, 36651.	1.6	87
740	Filter-free, junctionless structures for color sensing. Nanoscale, 2016, 8, 16936-16946.	2.8	9
741	Nearly Perfect Absorbers Operating Associated with Fano Resonance in the Infrared Range. Chinese Physics Letters, 2016, 33, 088103.	1.3	2
742	An Analytical Formulation Enabling Analysis of Resonance Eigenmodes and Their Interferences in Scattering From Plasmonic Nanostructures, Applications in Engineering the Radiation Loss. IEEE Journal of Quantum Electronics, 2016, 52, 1-9.	1.0	1
743	Humidity sensor based on perfect metamaterial absorber. , 2016, , .		4
744	Spectrally Selective Midâ€Infrared Thermal Emission from Molybdenum Plasmonic Metamaterial Operated up to 1000 °C. Advanced Optical Materials, 2016, 4, 1987-1992.	3.6	79
745	Absorption property and nanosensing via double metal films with rectangle holes array. Optics Communications, 2016, 379, 13-18.	1.0	6

ARTICLE IF CITATIONS # Plasmon-enhanced photocatalytic hydrogen production on Au/TiO2 hybrid nanocrystal arrays. Nano 746 8.2 64 Energy, 2016, 27, 412-419. Coherent perfect absorption in chiral metamaterials. Optics Letters, 2016, 41, 3359. 747 1.7 24 748 Theory of patch-antenna metamaterial perfect absorbers. Physical Review A, 2016, 93, . 1.0 51 Resonant modes in metal/insulator/metal metamaterials: An analytical study on near-field couplings. 749 1.1 Physical Review B, 2016, 93, . Tunable perfect absorption at infrared frequencies by a graphene-hBN hyper crystal. Optics Express, 750 1.7 74 2016, 24, 17103. Investigation of a broadband refractory metal metamaterial absorber at terahertz frequencies. 2.1 Applied Optics, 2016, 55, 5257. 752 Nanoscale TiO_2 dielectric resonator absorbers. Optics Letters, 2016, 41, 3391. 1.7 36 Polycrystalline metasurface perfect absorbers fabricated using microsphere photolithography. Optics 1.7 26 Letters, 2016, 41, 3399. 754 A tunable broadband terahertz absorber based on graphene frequency selective surfaces., 2016, , . 0 Design of a thin and ultra-wideband metamaterial absorber with optimal thickness., 2016, , . Frequency-selective flexible metamaterial absorber with wideband absorption., 2016,,. 756 0 Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation. Scientific Reports, 2016, 6, 30650. A THz plasmonic perfect absorber and Fabry-Perot cavity mechanism., 2016,,. 758 0 A multilayer effective medium model for plasmonic perfect absorber., 2016, , . Dual-narrow-band and record-broad-band plasmonic absorbers., 2016,,. 760 0 Theoretical and thermal characterization of a wideband perfect absorber for application in solar 762 1.1 10 cells. Applied Physics A: Materials Science and Processing, 2016, 122, 1. Reflection efficiency of terahertz metasurface., 2016, , .

#	Article	IF	CITATIONS
764	Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor. Nanoscale Research Letters, 2016, 11, 483.	3.1	61
765	Narrow-dual-band perfect absorption plasmonic sensor in metamaterials based on the coupling of two resonators. Journal of Nonlinear Optical Physics and Materials, 2016, 25, 1650027.	1.1	9
766	Investigation of a broadband and polarization-insensitive optical absorber based on closed-ring resonator. Journal of Nonlinear Optical Physics and Materials, 2016, 25, 1650032.	1.1	9
767	Ultrathin absorber with tunable perfect absorption angle based on anisotropic ε-near-zero metamaterials. , 2016, , .		0
768	SiO ₂ /bi-layer GZO/Ag structures for near-infrared broadband wide-angle perfect absorption. Journal Physics D: Applied Physics, 2016, 49, 425106.	1.3	5
769	Hybrid metamaterial absorber with broadband visiable light harvesting. , 2016, , .		0
770	Polarization controllable multispectral symmetry-breaking absorber in mid-infrared. , 2016, , .		0
771	A fully functionalized metamaterial perfect absorber with simple design and implementation. Scientific Reports, 2016, 6, 36244.	1.6	12
772	Engineering a Large Scale Indium Nanodot Array for Refractive Index Sensing. ACS Applied Materials & Interfaces, 2016, 8, 31871-31877.	4.0	13
773	Mechanism of resonant perfect optical absorption in dielectric film supporting metallic grating structures. Optics Express, 2016, 24, 19435.	1.7	11
774	Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies. Scientific Reports, 2016, 6, 27596.	1.6	40
775	All-metal meta-surfaces for narrowband light absorption and high performance sensing. Journal Physics D: Applied Physics, 2016, 49, 445104.	1.3	32
776	A multiband perfect absorber based on hyperbolic metamaterials. Scientific Reports, 2016, 6, 26272.	1.6	77
777	Cavity-Enhanced and Ultrafast Superconducting Single-Photon Detectors. Nano Letters, 2016, 16, 7085-7092.	4.5	77
778	Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications. Scientific Reports, 2016, 6, 24063.	1.6	174
779	Self-Affine Graphene Metasurfaces for Tunable Broadband Absorption. Physical Review Applied, 2016, 6,	1.5	71
780	Mechanism of resonant perfect optical absorber, design rules, and applications. , 2016, , .		0
781	CMOS-compatible fabrication of metamaterial-based absorbers for the mid-IR spectral range. Journal of Physics: Conference Series, 2016, 757, 012033.	0.3	3

#	Article	IF	CITATIONS
782	Super-Resonant Intracavity Coherent Absorption. Scientific Reports, 2016, 6, 28947.	1.6	10
783	Advances in Full Control of Electromagnetic Waves with Metasurfaces. Advanced Optical Materials, 2016, 4, 818-833.	3.6	306
784	Ultrathin metamaterial-based perfect absorbers for VHF and THz bands. Current Applied Physics, 2016, 16, 1009-1014.	1.1	18
785	Metal-less silicon plasmonic mid-infrared gas sensor. Journal of Nanophotonics, 2016, 10, 026025.	0.4	29
786	Tunable dark plasmons in a metallic nanocube dimer: toward ultimate sensitivity nanoplasmonic sensors. Nanoscale, 2016, 8, 13722-13729.	2.8	54
787	Fabrication of Nonperiodic Metasurfaces by Microlens Projection Lithography. Nano Letters, 2016, 16, 4125-4132.	4.5	30
788	Scalable fabrication of high performance absorber based on colloid sphere lithography technology. Microelectronic Engineering, 2016, 153, 121-125.	1.1	2
789	Controllable plasmonic sensing based on Fano resonance in a cavity coupled defective MDM waveguide. Journal Physics D: Applied Physics, 2016, 49, 265109.	1.3	8
790	Responsivity improvements for a vanadium oxide microbolometer using subwavelength resonant absorbers. Proceedings of SPIE, 2016, , .	0.8	4
791	High Performance Infrared Plasmonic Metamaterial Absorbers and Their Applications to Thin-film Sensing. Plasmonics, 2016, 11, 1557-1563.	1.8	16
792	Zeroâ€Reflectance Metafilms for Optimal Plasmonic Sensing. Advanced Optical Materials, 2016, 4, 328-335.	3.6	20
793	High-Sensitivity Plasmonic Sensor Based on Metal–Insulator–Metal Waveguide and Hexagonal-Ring Cavity. IEEE Sensors Journal, 2016, 16, 3041-3046.	2.4	105
794	Tri-layered composite plasmonic structure with a nanohole array for multiband enhanced absorption at visible to NIR frequencies: plasmonic and metamaterial resonances. Journal Physics D: Applied Physics, 2016, 49, 075103.	1.3	14
795	Multiband Metamaterial Absorber Design Based on Plasmonic Resonances for Solar Energy Harvesting. Plasmonics, 2016, 11, 1313-1321.	1.8	77
796	On the miniaturization of polarization insensitive wide angle metamaterial absorber. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	11
797	Broadband light absorption by tapered metal-dielectric multilayered grating structures. Optics Communications, 2016, 365, 93-98.	1.0	36
798	Fully Planarized Perfect Metamaterial Absorbers With No Photonic Nanostructures. IEEE Photonics Journal, 2016, 8, 1-9.	1.0	16
799	A wide-angle broadband polarization-dependent absorber with stacked metal-dielectric grating. Optics Communications, 2016, 370, 245-249.	1.0	27

#	Article	IF	CITATIONS
800	Cavity induced perfect absorption in metamaterials. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 015015.	0.7	4
801	Dielectric-Grating-Coupled Surface Plasmon Resonance From the Back Side of the Metal Film for Ultrasensitive Sensing. IEEE Photonics Journal, 2016, 8, 1-7.	1.0	22
802	Fabrication of metasurface-based infrared absorber structures using direct laser write lithography. Proceedings of SPIE, 2016, , .	0.8	1
803	Directional switching of surface plasmon polaritons by VO ₂ -gold hybrid antennas. Proceedings of SPIE, 2016, , .	0.8	Ο
804	All-aluminum hierarchical plasmonic surfaces in the infrared. Optical Materials Express, 2016, 6, 823.	1.6	1
805	Tunable dual-band polarization filter in infrared range realized by nested asymmetrical cross-shaped resonator arrays. Optical and Quantum Electronics, 2016, 48, 1.	1.5	1
806	New type high-index dielectric nanosensors based on the scattering intensity shift. Nanoscale, 2016, 8, 5996-6007.	2.8	50
807	Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications. Journal of Alloys and Compounds, 2016, 671, 43-50.	2.8	74
808	Dual-band tunable perfect metamaterial absorber in the THz range. Optics Express, 2016, 24, 1518.	1.7	311
809	Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing. Optical Materials, 2016, 53, 195-200.	1.7	118
810	Light extinction and scattering from individual and arrayed high-aspect-ratio trenches in metals. Physical Review B, 2016, 93, .	1.1	12
811	Bilayer metamaterial design for switchable electromagnetically-induced transparency-like response. Current Applied Physics, 2016, 16, 469-474.	1.1	6
812	Dynamically Electrically Tunable Broadband Absorber Based on Graphene Analog of Electromagnetically Induced Transparency. IEEE Photonics Journal, 2016, 8, 1-8.	1.0	42
813	Dielectric nanopatterned surfaces for subwavelength light localization and sensing applications. Microelectronic Engineering, 2016, 159, 60-63.	1.1	13
814	Polarization and sizes variation immune optical absorbers. Modern Physics Letters B, 2016, 30, 1650010.	1.0	1
815	Multi-band light perfect absorption by a metal layer-coupled dielectric metamaterial. Optics Express, 2016, 24, 5020.	1.7	84
816	Dual band sensitivity enhancements of a VO_x microbolometer array using a patterned gold black absorber. Applied Optics, 2016, 55, 2071.	2.1	32
817	Compact Broadband Terahertz Perfect Absorber Based on Multi-Interference and Diffraction Effects. IEEE Transactions on Terahertz Science and Technology, 2016, 6, 40-44.	2.0	55

#	Article	IF	CITATIONS
818	Coupling of Graphene Plasmonics Modes Induced by Near-Field Perturbation at Terahertz Frequencies. Plasmonics, 2016, 11, 1109-1118.	1.8	9
819	Theoretical model of homogeneous metal–insulator–metal perfect multi-band absorbers for the visible spectrum. Journal Physics D: Applied Physics, 2016, 49, 055104.	1.3	77
820	Evanescent wave absorbance based U-bent fiber probe for immunobiosensor with gold nanoparticle labels. Sensors and Actuators B: Chemical, 2016, 226, 184-190.	4.0	37
821	Comparison of Ag and Si nanoparticle arrays: mimicking subwavelength plasmonic field concentrations with dielectric components. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 99.	0.9	12
822	Electromagnetic resonance modes on a two-dimensional tandem grating and its application for broadband absorption in the visible spectrum. Optics Express, 2016, 24, A202.	1.7	23
823	Polarization-Independent and Wide-Incident-Angle Metamaterial Perfect Absorber. Springer Series in Materials Science, 2016, , 143-167.	0.4	0
824	Plasmonic Perfect Absorber for Refractive Index Sensing and SERS. Plasmonics, 2016, 11, 223-229.	1.8	48
825	Tunable Plasmonic Resonances in the Hexagonal Nanoarrays of Annular Aperture for Biosensing. Plasmonics, 2016, 11, 205-212.	1.8	20
826	Side-Coupled Cavity-Induced Fano Resonance and Its Application in Nanosensor. Plasmonics, 2016, 11, 307-313.	1.8	27
827	Harnessing structural darkness in the visible and infrared wavelengths for a new source of light. Nature Nanotechnology, 2016, 11, 60-66.	15.6	125
828	High-sensitivity plasmonic sensor based on perfect absorber with metallic nanoring structures. Journal of Modern Optics, 2016, 63, 177-183.	0.6	33
829	Improving Plasmon Sensing Performance by Exploiting the Spatially Confined Field. Plasmonics, 2016, 11, 29-36.	1.8	10
830	Polarization-Induced Tunability of Plasmonic Light Absorption in Arrays of Sub-Wavelength Elliptical Disks. Plasmonics, 2016, 11, 79-86.	1.8	1
831	Wide-Angle Near-Perfect Absorber Based on Sub-Wavelength Dielectric Grating Covered by Continuous Thin Aluminum Film. Plasmonics, 2017, 12, 339-343.	1.8	8
832	Design Method of a Broadband Wide-Angle Plasmonic Absorber in the Visible Range. Plasmonics, 2017, 12, 117-124.	1.8	26
833	Asymmetric Binary Plasmon Resonator Arrays for Perfect Trapping of Light. Plasmonics, 2017, 12, 315-320.	1.8	2
834	High-Quality Plasmon Sensing with Excellent Intensity Contrast by Dual Narrow-Band Light Perfect absorbers. Plasmonics, 2017, 12, 65-68.	1.8	9
	Quad-Band Terahertz Metamaterial Absorber Based on the Combining of the Dipole and Quadrupole	19	99

#	Article	IF	CITATIONS
836	An Ultrasensitive and Multispectral Refractive Index Sensor Design Based on Quad-Supercell Metamaterials. Plasmonics, 2017, 12, 185-191.	1.8	30
837	Investigation of tunable terahertz metamaterial perfect absorber with anisotropic dielectric liquid crystal. AIP Advances, 2017, 7, .	0.6	17
838	A simple topology metamaterial blackbody for visible light. Journal of Alloys and Compounds, 2017, 699, 998-1002.	2.8	20
839	Evolutionary Optimization of Graphene-Metal Metasurfaces for Tunable Broadband Terahertz Absorption. IEEE Transactions on Antennas and Propagation, 2017, 65, 1464-1467.	3.1	53
840	Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating. Nanoscale Research Letters, 2017, 12, 1.	3.1	626
841	Perfect Terahertz Absorption with Graphene Surface Plasmons in the Modified Otto Configuration. Plasmonics, 2017, 12, 1825-1831.	1.8	20
842	Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure. Scientific Reports, 2017, 7, 41373.	1.6	105
843	Nanoparticle Over Mirror plasmonic structures prepared with use of Au colloid produced by laser ablation in water. Proceedings of SPIE, 2017, , .	0.8	0
844	Controlling thermal emission of phonon by magnetic metasurfaces. Scientific Reports, 2017, 7, 41858.	1.6	23
845	Broadband working-waveband-tunable polarization converter based on anisotropic metasurface. Applied Physics Express, 2017, 10, 032001.	1.1	10
846	Field enhancement of a metal grating with nanocavities and its sensing applications. Journal of Optics (United Kingdom), 2017, 19, 055004.	1.0	9
847	Large area and broadband ultra-black absorber using microstructured aluminum doped silicon films. Scientific Reports, 2017, 7, 42750.	1.6	24
848	A broadband ultrathin metamaterial absorber using tilted parallel strips. , 2017, , .		2
849	Dual-band perfect absorbers based on the magnetic resonance and the cavity resonance. , 2017, , .		1
850	Resonant Optical Absorption and Photothermal Process in High Refractive Index Germanium Nanoparticles. Advanced Optical Materials, 2017, 5, 1600902.	3.6	34
851	Lasing Enhanced Surface Plasmon Resonance Sensing. Nanophotonics, 2017, 6, 472-478.	2.9	55
852	Angular-dependent photodetection enhancement by a metallic circular disk optical antenna. AIP Advances, 2017, 7, .	0.6	5
853	Realisation of 3D metamaterial perfect absorber structures by direct laser writing. , 2017, , .		2

#	Article	IF	CITATIONS
854	Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high- <i>lµ</i> ″ metals. Applied Physics Letters, 2017, 110, .	1.5	128
855	A plasmonic perfect absorber enhanced longwave infrared quantum dot infrared photodetector with high quantum efficiency. Journal Physics D: Applied Physics, 2017, 50, 135101.	1.3	10
856	Plasmonically enhanced metal–insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications. Scientific Reports, 2017, 7, 42349.	1.6	18
857	Tamm-plasmon resonance based temperature sensor in a Ta2O5/SiO2 based distributed Bragg reflector. Sensors and Actuators A: Physical, 2017, 260, 10-15.	2.0	45
858	Cermet based metamaterials for multi band absorbers over NIR to LWIR frequencies. Journal Physics D: Applied Physics, 2017, 50, 245104.	1.3	7
859	Modes Coupling Analysis of Surface Plasmon Polaritons Based Resonance Manipulation in Infrared Metamaterial Absorber. Scientific Reports, 2017, 7, 46093.	1.6	10
860	Tunable graphene based plasmonic absorber with grooved metal film in near infrared region. Optics Communications, 2017, 398, 56-61.	1.0	25
861	Engineering the Complex-Valued Constitutive Parameters of Metamaterials for Perfect Absorption. Nanoscale Research Letters, 2017, 12, 276.	3.1	7
862	On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing. ACS Photonics, 2017, 4, 1371-1380.	3.2	190
863	Ultrahigh refractive index sensitivity and tunable polarization switching via infrared plasmonic lattice modes. Applied Physics Letters, 2017, 110, .	1.5	27
864	Microwave metamaterial Absorber based on Jerusalem Cross with meandered load for bandwidth enhancement. Optik, 2017, 140, 515-522.	1.4	26
865	Bidirectional Perfect Absorber Using Free Substrate Plasmonic Metasurfaces. Advanced Optical Materials, 2017, 5, 1700152.	3.6	52
866	Effect of insulator layer in graphene plasmonic metamaterials for infrared detection. , 2017, , .		0
867	Loading effect–induced broadband perfect absorber based on single-layer structured metal film. Nano Energy, 2017, 37, 61-73.	8.2	30
868	Infrared broadband metasurface absorber for reducing the thermal mass of a microbolometer. Scientific Reports, 2017, 7, 430.	1.6	34
869	Flexible perfect metamaterial absorbers for electromagnetic wave. Journal of Electromagnetic Waves and Applications, 2017, 31, 663-715.	1.0	15
870	Mid-infrared Fano resonance in heavily doped silicon and metallic nanostructures due to coupling of Wood–Rayleigh anomaly and surface plasmons. Journal Physics D: Applied Physics, 2017, 50, 205105.	1.3	14
871	Multiple-band perfect absorbers based on the combination of Fabry-Perot resonance and the gap plasmon resonance. Optics Communications, 2017, 399, 28-33.	1.0	23

#	Article	IF	CITATIONS
872	Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces. Applied Physics Letters, 2017, 110, .	1.5	49
873	A reflective-backing-free metamaterial absorber with broadband response. Journal of Advanced Dielectrics, 2017, 07, 1750016.	1.5	5
874	Resonant thermoelectric nanophotonics. Nature Nanotechnology, 2017, 12, 770-775.	15.6	81
875	Fractal brokenâ€cross with Jerusalem load absorber for multiband application with polarization independence. Microwave and Optical Technology Letters, 2017, 59, 1942-1947.	0.9	9
876	Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle. APL Materials, 2017, 5, 066103.	2.2	33
877	All-Dielectric Metasurfaces Based on Cross-Shaped Resonators for Color Pixels with Extended Gamut. ACS Photonics, 2017, 4, 1076-1082.	3.2	127
878	Thermally tunable water-substrate broadband metamaterial absorbers. Applied Physics Letters, 2017, 110, .	1.5	127
879	Semiconductor meta-surface based perfect light absorber. Nanotechnology, 2017, 28, 165202.	1.3	26
880	Experimental demonstration of an ultra-flexible metamaterial absorber and its application in sensing. Journal Physics D: Applied Physics, 2017, 50, 135108.	1.3	23
881	3D multilayered plasmonic nanostructures with high areal density for SERS. RSC Advances, 2017, 7, 17898-17905.	1.7	22
882	Dispersion Control of Excitonic Thin Films for Tailored Superabsorption in the Visible Region. ACS Photonics, 2017, 4, 1138-1145.	3.2	19
883	Wideâ€angle and polarizationâ€independent broadband microwave metamaterial absorber. Microwave and Optical Technology Letters, 2017, 59, 1157-1161.	0.9	31
884	Multi-band metamirrors for linear to circular polarization conversion with wideband and wide-angle performances. Applied Physics B: Lasers and Optics, 2017, 123, 1.	1.1	14
885	Merging plasmonics and metamaterials by two-dimensional subwavelength structures. Journal of Materials Chemistry C, 2017, 5, 4361-4378.	2.7	75
886	A visible-near infrared wavelength-tunable metamaterial absorber based on the structure of Au triangle arrays embedded in VO2 thin film. Journal of Alloys and Compounds, 2017, 708, 999-1007.	2.8	43
887	Au nanorods-sensitized 1DPC for visible detection of NIR light. Journal of Materials Chemistry C, 2017, 5, 2942-2950.	2.7	3
888	Photonic and Plasmonic Nanotweezing of Nano- and Microscale Particles. Applied Spectroscopy, 2017, 71, 367-390.	1.2	23
889	Mid-infrared broadband absorber of full semiconductor epi-layers. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1439-1444.	0.9	14

#	Article	IF	CITATIONS
890	Waterâ€Resonatorâ€Based Metasurface: An Ultrabroadband and Nearâ€Unity Absorption. Advanced Optical Materials, 2017, 5, 1601103.	3.6	112
891	Reusable reduced graphene oxide based double-layer system modified by polyethylenimine for solar steam generation. Carbon, 2017, 114, 117-124.	5.4	204
892	Polarization-Independent Near-Perfect Absorber in the Visible Regime Based on One-Dimensional Meta-Surface. Plasmonics, 2017, 12, 1889-1895.	1.8	6
893	Achieving near-unity absorption in planar semiconductor film on metal substrate. Optical and Quantum Electronics, 2017, 49, 1.	1.5	2
894	Realisation of a humidity sensor based on perfect metamaterial absorber. Optical and Quantum Electronics, 2017, 49, 1.	1.5	13
895	High-conductivity silicon based spectrally selective plasmonic surfaces for sensing in the infrared region. Journal of Optics (United Kingdom), 2017, 19, 025002.	1.0	3
896	Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy, 2017, 32, 195-200.	8.2	252
897	Toward Multispectral Imaging with Colloidal Metasurface Pixels. Advanced Materials, 2017, 29, 1602971.	11.1	77
898	Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array. Sensors and Actuators B: Chemical, 2017, 243, 617-625.	4.0	37
899	Deformable broadband metamaterial absorbers engineered with an analytical spatial Kramersâ€Kronig permittivity profile. Laser and Photonics Reviews, 2017, 11, 1600253.	4.4	45
900	Ultra-broadband microwave metamaterial absorber based on resistive sheets. Journal of Optics (United Kingdom), 2017, 19, 015103.	1.0	35
901	Terahertz particle-in-liquid sensing with spoof surface plasmon polariton waveguides. APL Photonics, 2017, 2, .	3.0	33
902	Unidirectional reflectionlessness and perfect nonreciprocal absorption in stacked asymmetric metamaterial based on near-field coupling. Applied Physics Express, 2017, 10, 112001.	1.1	22
903	Thermochromic VO2 thin films on ITO-coated glass substrates for broadband high absorption at infra-red frequencies. Journal of Applied Physics, 2017, 122, .	1.1	34
904	Coherent perfect absorbers: linear control of light with light. Nature Reviews Materials, 2017, 2, .	23.3	280
905	Strong Plasmon–Exciton–Plasmon Multimode Couplings in Three-Layered Ag–J-Aggregates–Ag Nanostructures. Journal of Physical Chemistry C, 2017, 121, 25455-25462.	1.5	28
906	Refractive Index Estimation from Spectral Measurements of a Plasmonic Glucose Sensor and Wavelength Selection * *The project was funded by Baden-Württemberg Stiftung gGmbH. The authors would also like to thank MWK BW, ERC COMPLEX-PLAS and AvH Stiftung IFAC-PapersOnLine, 2017, 50, 4406-4411.	0.5	1
907	Toroidal-dipole induced plasmonic perfect absorber. Journal Physics D: Applied Physics, 2017, 50, 485301.	1.3	16

#	Article	IF	CITATIONS
908	An ultra-narrowband TE-polarization absorber with a dielectric grating and metal substrate. Modern Physics Letters B, 2017, 31, 1750306.	1.0	9
909	Wavelength-selective spin-current generator using infrared plasmonic metamaterials. APL Photonics, 2017, 2, .	3.0	12
910	Aperiodic-metamaterial-based absorber. APL Materials, 2017, 5, .	2.2	23
911	Simultaneous measurement of refractive index and conductivity based on metamaterial absorber. Journal of Optics (United Kingdom), 2017, 19, 115105.	1.0	2
912	Multiple-band light absorber via combining the fundamental mode and multiple splitting modes of the 3-order response of metamaterial resonator. Journal Physics D: Applied Physics, 2017, 50, 485108.	1.3	9
913	Nonlinear Snell law for grazing incidence along interfaces with discontinuous second-order susceptibilities. Physical Review A, 2017, 95, .	1.0	3
914	Engineering Light at the Nanoscale: Structural Color Filters and Broadband Perfect Absorbers. Advanced Optical Materials, 2017, 5, 1700368.	3.6	141
915	97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold. Nanoscale, 2017, 9, 16652-16660.	2.8	38
916	Ultra-narrow band perfect absorbers based on Fano resonance in MIM metamaterials. Optics Communications, 2017, 405, 216-221.	1.0	64
917	Surface plasmon resonance in electrodynamically coupled Au NPs monolayer/dielectric spacer/Al film nanostructure: tuning by variation of spacer thickness. Materials Research Express, 2017, 4, 106401.	0.8	7
918	Broad-Range Electrically Tunable Plasmonic Resonances of a Multilayer Coaxial Nanohole Array with an Electroactive Polymer Wrapper. ACS Applied Materials & Interfaces, 2017, 9, 35244-35252.	4.0	21
919	Experimental and simulated study of a composite structure metamaterial absorber. Optical Materials, 2017, 73, 111-118.	1.7	6
920	Ultra-narrow terahertz perfect light absorber based on surface lattice resonance of a sandwich resonator for sensing applications. RSC Advances, 2017, 7, 42956-42963.	1.7	67
921	Realization of Red Plasmon Shifts up to â^1⁄4900 nm by AgPd-Tipping Elongated Au Nanocrystals. Journal of the American Chemical Society, 2017, 139, 13837-13846.	6.6	96
922	Broadband metamaterial perfect absorber obtained by coupling effect. Journal of Nonlinear Optical Physics and Materials, 2017, 26, 1750036.	1.1	8
923	Metal-insulator-metal antennas in the far-infrared range based on highly doped InAsSb. Applied Physics Letters, 2017, 111, .	1.5	13
924	Multi-band metamaterial absorber with arbitrary polarization and wide-incident angle. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	20
925	Effect of Compound Dielectric and Metal Thinning on Metal-Insulator-Metal Resonant Absorbers for Multispectral Infrared Air-Bridge Bolometers. MRS Advances, 2017, 2, 2281-2286.	0.5	1

#	Article	IF	CITATIONS
926	Anomalous reflection focusing metasurface based on a dendritic structure. Physica B: Condensed Matter, 2017, 525, 127-132.	1.3	5
927	Octave-Spanning Broadband Absorption of Terahertz Light Using Metasurface Fractal-Cross Absorbers. ACS Photonics, 2017, 4, 2604-2612.	3.2	144
928	Metamaterial Perfect Absorber Analyzed by a Meta-cavity Model Consisting of Multilayer Metasurfaces. Scientific Reports, 2017, 7, 10569.	1.6	59
929	Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance. Scientific Reports, 2017, 7, 5652.	1.6	46
930	Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement. ACS Nano, 2017, 11, 7915-7924.	7.3	32
931	Epsilon-near-Zero Modes and Surface Plasmon Resonance in Fluorine-Doped Cadmium Oxide Thin Films. ACS Photonics, 2017, 4, 1885-1892.	3.2	69
932	Potential application of a homogeneous and anisotropic slab as an angle insensitive absorbing material. AIP Advances, 2017, 7, 065018.	0.6	0
933	Achieving Strong Field Enhancement and Light Absorption Simultaneously with Plasmonic Nanoantennas Exploiting Film-Coupled Triangular Nanodisks. Journal of Physical Chemistry C, 2017, 121, 16481-16490.	1.5	28
934	Analytical normalization of resonant states in photonic crystal slabs and periodic arrays of nanoantennas at oblique incidence. Physical Review B, 2017, 96, .	1.1	40
935	Covalent bonding-assisted nanotransfer lithography for the fabrication of plasmonic nano-optical elements. Nanoscale, 2017, 9, 14335-14346.	2.8	28
936	Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers. Physical Review Applied, 2017, 8, .	1.5	88
937	Efficient Midâ€Infrared Light Confinement within Subâ€5â€nm Gaps for Extreme Field Enhancement. Advanced Optical Materials, 2017, 5, 1700223.	3.6	39
938	Tunable perfect absorber for bio-sensin. , 2017, , .		2
939	High-efficiency wideband reflection polarization conversion metasurface for circularly polarized waves. Journal of Applied Physics, 2017, 122, .	1.1	48
940	Fabrication of three-dimensional suspended, interlayered and hierarchical nanostructures by accuracy-improved electron beam lithography overlay. Scientific Reports, 2017, 7, 6668.	1.6	61
941	Spatially and spectrally resolved ultra-narrowband TE-polarization absorber based on the guide-mode resonance. Modern Physics Letters B, 2017, 31, 1750223.	1.0	0
942	Ultrathin microwave metamaterial absorber utilizing embedded resistors. Journal Physics D: Applied Physics, 2017, 50, 405110.	1.3	58
943	Selective dual-band metamaterial perfect absorber for infrared stealth technology. Scientific Reports, 2017, 7, 6740.	1.6	182

#	Article	IF	CITATIONS
944	A three-dimensional all-metal terahertz metamaterial perfect absorber. Applied Physics Letters, 2017, 111, .	1.5	75
945	A high-Q three-dimensional terahertz metamaterial perfect absorber. , 2017, , .		Ο
946	Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures. Modern Physics Letters B, 2017, 31, 1750231.	1.0	27
947	Deep Fano resonance with strong polarization dependence in gold nanoplate–nanosphere heterodimers. Nanoscale, 2017, 9, 13222-13234.	2.8	17
948	Surfaces enhanced with film-coupled silver nanopolyhedrons for optical transmittance. RSC Advances, 2017, 7, 39299-39305.	1.7	2
949	Graphene-based wideband metamaterial absorber for solar cells application. Journal of Nanophotonics, 2017, 11, 036008.	0.4	40
950	Wide-Angle Polarization-Independent Broadband Absorbers Based on Concentric Multisplit Ring Arrays. IEEE Photonics Journal, 2017, 9, 1-7.	1.0	21
951	Thermally tunable broadband omnidirectional and polarization-independent super absorber using phase change material VO2. Results in Physics, 2017, 7, 4222-4225.	2.0	14
952	Exposing optical near fields of plasmonic patch nanoantennas. Applied Physics Letters, 2017, 111, .	1.5	4
953	Ultra-broadband large-scale infrared perfect absorber with optical transparency. Applied Physics Express, 2017, 10, 112601.	1.1	39
954	Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array. Nanoscale Research Letters, 2017, 12, 465.	3.1	50
955	Solution-Processed Plasmonic–Dielectric Sunlight-Collecting Nanofilms for Solar Thermoelectric Application. ACS Applied Materials & Interfaces, 2017, 9, 43583-43595.	4.0	6
956	Plasmonic metamaterial based unified broadband absorber/near infrared emitter for thermophotovoltaic system based on hexagonally packed tungsten doughnuts. Journal of Applied Physics, 2017, 122, .	1.1	16
957	Anti-reflective coating for visible light using a silver nanodisc metasurface with a refractive index of less than 1.0. Applied Physics Letters, 2017, 111, .	1.5	6
958	Theory of metasurface based perfect absorbers. Journal Physics D: Applied Physics, 2017, 50, 503002.	1.3	138
959	Subradiant Dipolar Interactions in Plasmonic Nanoring Resonator Array for Integrated Label-Free Biosensing. ACS Sensors, 2017, 2, 1796-1804.	4.0	45
960	An electrically tunable metasurface integrated with graphene for mid-infrared light modulation. Chinese Physics B, 2017, 26, 114101.	0.7	4
961	Disordered Nanohole Patterns in Metal-Insulator Multilayer for Ultra-broadband Light Absorption: Atomic Layer Deposition for Lithography Free Highly repeatable Large Scale Multilayer Growth. Scientific Reports, 2017, 7, 15079.	1.6	31

	CITA	tion Report	
#	Article	IF	Citations
962	Dual-surface flexible THz Fano metasensor. Applied Physics Letters, 2017, 111, .	1.5	99
963	Surface plasmon polaritons on the thin metallic film coated with symmetrical and asymmetrical dielectric gratings. Journal Physics D: Applied Physics, 2017, 50, 485101.	1.3	6
964	Study of the electric field enhancement in resonant metasurfaces. Journal of Optics (United) Tj ETQq0 0	0 rgBT /Overlock 1 1.0	0
965	Triple-band metamaterial absorber based on single resonator. Current Applied Physics, 2017, 17, 1260-1263.	1.1	18
966	Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator. Optical and Quantum Electronics, 2017, 49, 1.	1.5	24
967	Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture. Scientific Reports, 2017, 7, 4755.	1.6	50
968	Design of a polarization-insensitive wideband tunable metamaterial absorber based on split semi-circle ring resonators. Journal of Applied Physics, 2017, 122, .	1.1	18
969	Period- and cavity-depth-dependent plasmonic metamaterial perfect absorber at visible frequency: design rule. Journal of Nanophotonics, 2017, 11, 036003.	0.4	9
970	Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths. Scientific Reports, 2017, 7, 2611.	1.6	75
971	Hybrid metal-semiconductor cavities for multi-band perfect light absorbers and excellent electric conducting interfaces. Journal Physics D: Applied Physics, 2017, 50, 335106.	1.3	4
972	Ultra-narrow Band Perfect Absorber and Its Application as Plasmonic Sensor in the Visible Region. Nanoscale Research Letters, 2017, 12, 427.	3.1	84
973	Multiband coherent perfect absorption in a water-based metasurface. Optics Express, 2017, 25, 15737.	1.7	56
974	Bioinspired Geometryâ€ S witchable Janus Nanofibers for Eyeâ€Readable H ₂ Sensors. Advan Functional Materials, 2017, 27, 1701618.	ced 7.8	43
975	Isotropic Absorption and Sensor of Vertical Splitâ€Ring Resonator. Advanced Optical Materials, 2017, 5, 1600581.	3.6	72
976	Extraordinary Optical Transmission Performances of Nanosandwiched Grating for Wideband Multi-Function Integration. Plasmonics, 2017, 12, 1281-1288.	1.8	1
977	Metallic Metasurfaces for Light Absorbers. IEEE Photonics Technology Letters, 2017, 29, 47-50.	1.3	14
978	An ultra-narrowband absorber with a compound dielectric grating and metal substrate. Optics Communications, 2017, 385, 172-176.	1.0	32
979	Micropillar Templates for Dielectric Filled Metal Arrays and Flexible Metamaterials. Advanced Optical Materials, 2017, 5, 1600670.	3.6	10

#	Article	IF	CITATIONS
980	Nanostructured Metal–Insulator–Metal Metamaterials for Refractive Index Biosensing Applications: Design, Fabrication, and Characterization. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 388-393.	1.9	65
981	Monochromatic Tuning of Absorption Strength Based on Angle-Dependent Closed-Ring Resonator-Type Metamaterial Absorber. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 1060-1063.	2.4	27
982	Absorption enhancement of a dual-band metamaterial absorber. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 86, 158-163.	1.3	8
983	Conductive Polymer Composites Based on Carbon Nanomaterials. Springer Series on Polymer and Composite Materials, 2017, , 117-142.	0.5	6
984	Graphene induced tunable and polarization-insensitive broadband metamaterial absorber. Optics Communications, 2017, 382, 281-287.	1.0	60
985	Cavity-enhanced continuous graphene plasmonic resonator for infrared sensing. Optics Communications, 2017, 395, 147-153.	1.0	24
986	Triple-band metamaterial absorption utilizing single rectangular hole. Optics Communications, 2017, 382, 151-156.	1.0	11
987	An ultra-narrowband absorber with a dielectric-dielectric-metal structure based on guide-mode resonance. Optics Communications, 2017, 382, 307-310.	1.0	32
988	Ultra-high Sensitivity Plasmonic Nanosensor Based on Multiple Fano Resonance in the MDM Side-Coupled Cavities. Plasmonics, 2017, 12, 1099-1105.	1.8	18
989	Ultra-broadband Polarization-Independent Wide-Angle THz Absorber Based on Plasmonic Resonances in Semiconductor Square Nut-Shaped Metamaterials. Plasmonics, 2017, 12, 1137-1144.	1.8	35
990	A wide-angle and polarization insensitive infrared broad band metamaterial absorber. Optics Communications, 2017, 383, 81-86.	1.0	8
991	Guided mode resonance with extremely high Q-factors in terahertz metamaterials. Optics Communications, 2017, 383, 508-512.	1.0	18
992	Plasmonic Black Absorbers for Enhanced Photocurrent of Visibleâ€Light Photocatalysis. Advanced Optical Materials, 2017, 5, 1600399.	3.6	26
993	Tunable Complete Optical Absorption in Multilayer Structures Including Ge ₂ Sb ₂ Te ₅ without Lithographic Patterns. Advanced Optical Materials, 2017, 5, 1600452.	3.6	47
994	Fabrication and Numerical Characterization of Infrared Metamaterial Absorbers for Refractometric Biosensors. Journal of Electronic Materials, 2017, 46, 668-676.	1.0	20
995	Terahertz Metasurfaces for Absorber or Reflectarray Applications. IEEE Transactions on Antennas and Propagation, 2017, 65, 234-241.	3.1	27
996	Black Gold: Broadband, High Absorption of Visible Light for Photochemical Systems. Advanced Functional Materials, 2017, 27, 1604080.	7.8	67
997	Wide bandwidth absorption in the MWIR region using a thin and simple metamaterial absorber. , 2017, ,		1

#	Article	IF	CITATIONS
998	Ultrasensitive dual-band terahertz sensing with metamaterial perfect absorber. , 2017, , .		18
999	NEMS-Based Infrared Metamaterial via Tuning Nanocantilevers Within Complementary Split Ring Resonators. Journal of Microelectromechanical Systems, 2017, 26, 1371-1380.	1.7	12
1000	Enhancing radiative cooling performance using metal-dielectric-metal metamaterials. Journal of Mechanical Science and Technology, 2017, 31, 5107-5112.	0.7	4
1001	Universal metamaterial absorber. , 2017, , .		0
1002	Dielectric Resonator Nanoantennas: A Review of the Theoretical Background, Design Examples, Prospects, and Challenges. IEEE Antennas and Propagation Magazine, 2017, 59, 30-42.	1.2	21
1003	Electrically tunable metasurface perfect absorber for infrared frequencies. Nano Convergence, 2017, 4, 36.	6.3	47
1004	Modeling of pressure-composition isotherms and diffusion dynamics of a plasmonic palladium sensor for hydrogen detection. , 2017, , .		1
1005	Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime. Journal Physics D: Applied Physics, 2017, 50, 385304.	1.3	58
1006	Tuning Simple Light Absorber of Fabry-Perot-Like Resonator. , 2017, , .		0
1007	Mid-infrared bandwidth reduction of LSPR by Rayleigh Anomalies. , 2017, , .		0
1008	Vertical split-ring resonator metamaterial for isotropic absorption and sensor. , 2017, , .		0
1009	INVESTIGATION OF A METAMATERIAL ABSORBER BY USING REFLECTION THEORY MODEL. Progress in Electromagnetics Research M, 2017, 59, 65-73.	0.5	2
1010	Encoding and display with stereo split-ring resonator arrays. Optics Letters, 2017, 42, 1153.	1.7	15
1011	Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region. Optics Letters, 2017, 42, 450.	1.7	120
1012	Scheme for achieving coherent perfect absorption by anisotropic metamaterials. Optics Express, 2017, 25, 4860.	1.7	7
1013	Near- and far-field investigation of dark and bright higher order resonances in square loop elements at mid-infrared wavelengths. Optics Express, 2017, 25, 5594.	1.7	2
1014	Metamaterial perfect absorbers with solid and inverse periodic cross structures for optoelectronic applications. Optics Express, 2017, 25, 8288.	1.7	26
1015	Polarization-selective ultra-broadband super absorber. Optics Express, 2017, 25, A124.	1.7	37

#	Article	IF	CITATIONS
1016	Multiband selective absorbers made of 1D periodic Ag/SiO_2/Ag core/shell coaxial cylinders horizontally lying on a planar substrate. Optics Express, 2017, 25, A208.	1.7	8
1017	Ultrabroadband absorber based on single-sized embedded metal-dielectric-metal structures and application of radiative cooling. Optics Express, 2017, 25, A612.	1.7	48
1018	Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials. Optics Express, 2017, 25, 14089.	1.7	73
1019	Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime. Optics Express, 2017, 25, 16715.	1.7	134
1020	Near-field study on the transition from localized to propagating plasmons on 2D nano-triangles. Optics Express, 2017, 25, 16947.	1.7	7
1021	Tunable Fano resonance based on grating-coupled and graphene-based Otto configuration. Optics Express, 2017, 25, 23880.	1.7	63
1022	Cavity-based aluminum nanohole arrays with tunable infrared resonances. Optics Express, 2017, 25, 24501.	1.7	14
1023	Degenerate critical coupling in all-dielectric metasurface absorbers. Optics Express, 2017, 25, 24658.	1.7	72
1024	Tunable artificial microwave blackbodies based on metasurfaces. Optics Express, 2017, 25, 25879.	1.7	15
1025	Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity. Optics Express, 2017, 25, 27624.	1.7	76
1026	Angle-dependent optical perfect absorption and enhanced photoluminescence in excitonic thin films. Optics Express, 2017, 25, 28619.	1.7	13
1027	Graphene-based tunable ultra-narrowband mid-infrared TE-polarization absorber. Optics Express, 2017, 25, 32080.	1.7	41
1028	Tungsten-based highly selective solar absorber using simple nanodisk array. Optics Express, 2017, 25, A1072.	1.7	40
1029	Realization of a helix-based perfect absorber for IR spectral range using the direct laser write technique. Optical Materials Express, 2017, 7, 1453.	1.6	13
1030	Concept of non-periodic metasurfaces based on positional gradients applied to IR-flat lenses. Optical Materials Express, 2017, 7, 2346.	1.6	3
1031	Lithography-free thin-titanium-nanocone metamaterial perfect absorbers using ZnO nanostructures. Optical Materials Express, 2017, 7, 3608.	1.6	3
1032	Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 2017, 4, 139.	4.8	837
1033	Broadband LWIR and MWIR metamaterial absorbers with a simple design topology: almost perfect absorption and super-octave band operation in MWIR band. Journal of the Optical Society of America B: Optical Physics, 2017, 34, D86.	0.9	20

#	Article	IF	CITATIONS
1034	Wavelength- or Polarization-Selective Thermal Infrared Detectors for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials. Materials, 2017, 10, 493.	1.3	59
1035	Perfect infrared absorber and emitter based on a large-area metasurface. Optical Materials Express, 2017, 7, 618.	1.6	52
1036	High-sensitivity integrated devices based on surface plasmon resonance for sensing applications. Photonics Research, 2017, 5, 654.	3.4	50
1037	Narrowband transparent absorbers based on ellipsoidal nanoparticles. Applied Optics, 2017, 56, 7533.	0.9	18
1038	Metamaterials and Metasurfaces for Sensor Applications. Sensors, 2017, 17, 1726.	2.1	174
1039	Plasmonic Waveguide Coupled Ring Cavity for a Non-Resonant Type Refractive Index Sensor. Sensors, 2017, 17, 2526.	2.1	5
1040	Mach-Zehnder Interferometer Refractive Index Sensor Based on a Plasmonic Channel Waveguide. Sensors, 2017, 17, 2584.	2.1	13
1041	Metasurfaces-Based Absorption and Reflection Control: Perfect Absorbers and Reflectors. Journal of Nanomaterials, 2017, 2017, 1-18.	1.5	65
1042	Tailoring total absorption in a graphene monolayer covered subwavelength multilayer dielectric grating structure at near-infrared frequencies. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 861.	0.9	26
1043	UV-visible broadband wide-angle polarization-insensitive absorber based on metal groove structures with multiple depths. Applied Optics, 2017, 56, 5844.	0.9	10
1044	Plasmonic Sensor Based on Dielectric Nanoprisms. Nanoscale Research Letters, 2017, 12, 580.	3.1	13
1045	Distribution of zeros of the <i>S</i> -matrix of chaotic cavities with localized losses and coherent perfect absorption: non-perturbative results. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 30LT01.	0.7	28
1046	Optical response of heterogeneous polymer layers containing silver nanostructures. Beilstein Journal of Nanotechnology, 2017, 8, 1065-1072.	1.5	3
1047	Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application. Materials Letters, 2018, 219, 123-126.	1.3	84
1048	Strong circular dichroism in a non-chiral metasurface based on an array of metallic V-shaped nanostructures. European Physical Journal Plus, 2018, 133, 1.	1.2	7
1049	Plasmon-Induced Magnetic Resonance Enhanced Raman Spectroscopy. Nano Letters, 2018, 18, 2209-2216.	4.5	96
1050	Mathematical Modeling of a Plasmonic Palladium-Based Hydrogen Sensor. IEEE Sensors Journal, 2018, 18, 1946-1959.	2.4	10
1051	Graphene Tunable Plasmon–Phonon Coupling in Midâ€IR Complementary Metamaterial. Advanced Materials Technologies, 2018, 3, 1800014.	3.0	25

#	Article	IF	CITATIONS
1052	A Broadband Compatible Multispectral Metamaterial Absorber for Visible, Nearâ€Infrared, and Microwave Bands. Advanced Optical Materials, 2018, 6, 1701238.	3.6	46
1053	High-sensitive transmission type of gas sensor based on guided-mode resonance in coupled gratings. Journal of Modern Optics, 2018, 65, 1601-1608.	0.6	21
1054	Huygens' metasurfaces from microwaves to optics: a review. Nanophotonics, 2018, 7, 1207-1231.	2.9	143
1055	Design of a plasmonic absorber based on the nonlinear arrangement of nanodisk for surface cloak. Optics Communications, 2018, 420, 194-199.	1.0	14
1056	Ge ₂ Sb ₂ Te ₅ â€Based Tunable Perfect Absorber Cavity with Phase Singularity at Visible Frequencies. Advanced Materials, 2018, 30, e1706696.	11.1	84
1057	Sub-Wavelength Grating Enhanced Ultra-Narrow Graphene Perfect Absorber. Plasmonics, 2018, 13, 2267-2272.	1.8	17
1058	Electrically tunable perfect light absorbers as color filters and modulators. Scientific Reports, 2018, 8, 2635.	1.6	46
1059	Independently Tunable Ultrasharp Double Fano Resonances in Coupled Plasmonic Resonator System. IEEE Photonics Journal, 2018, 10, 1-9.	1.0	28
1060	Localized surface plasmon resonance based biosensing. Expert Review of Molecular Diagnostics, 2018, 18, 279-296.	1.5	67
1061	Tunable Plasmonic Absorber Based on TiN-Nanosphere Liquid Crystal Hybrid in Visible and Near-Infrared Regions. Plasmonics, 2018, 13, 1853-1859.	1.8	11
1062	Characterizations of an infrared polarization-insensitive metamaterial perfect absorber and its potential in sensing applications. Photonics and Nanostructures - Fundamentals and Applications, 2018, 28, 100-105.	1.0	30
1063	Subwavelength Optical Engineering with MetasurfaceÂWaves. Advanced Optical Materials, 2018, 6, 1701201.	3.6	148
1064	Ultrabroadband Plasmonic Absorber Based on Biomimetic Compound Eye Structures. IEEE Photonics Journal, 2018, 10, 1-7.	1.0	7
1065	Hybrid Genetic Programming for the Development of Metamaterials Designs With Improved Characteristics. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 513-516.	2.4	19
1066	Graphene–Silver Hybrid Metamaterial for Tunable and High Absorption at Mid-Infrared Waveband. IEEE Photonics Technology Letters, 2018, 30, 475-478.	1.3	17
1067	Gold nanoparticle plasmon resonance in near-field coupled Au NPs layer/Al film nanostructure: Dependence on metal film thickness. Photonics and Nanostructures - Fundamentals and Applications, 2018, 29, 1-7.	1.0	17
1068	Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly. Science, 2018, 359, 669-672.	6.0	195
1069	Colloidal Plasmonic Nanocomposites: From Fabrication to Optical Function. Chemical Reviews, 2018, 118, 3100-3120.	23.0	110

#	Article	IF	CITATIONS
1070	An ultra-compact blackbody using electrophoretic deposited carbon nanotube films. RSC Advances, 2018, 8, 3453-3461.	1.7	7
1071	Investigation the hexagonal cylindrical absorber for bio-sensing in optical regime. Optical and Quantum Electronics, 2018, 50, 1.	1.5	3
1072	Nonradiating Silicon Nanoantenna Metasurfaces as Narrowband Absorbers. ACS Photonics, 2018, 5, 2596-2601.	3.2	86
1073	Multi-band absorption induced by near-field coupling and defects in metamaterial. Optik, 2018, 156, 811-816.	1.4	5
1074	Design of tunable ultraviolet (UV) absorbance by controlling the Ag Al co-sputtering deposition. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 197, 37-42.	2.0	11
1075	Fano resonance induced by stub and applied in nanosensor. Optik, 2018, 157, 1381-1390.	1.4	5
1076	Design of triple-band polarization controlled terahertz metamaterial absorber. Superlattices and Microstructures, 2018, 114, 225-232.	1.4	13
1077	Multiplexed infrared plasmonic surface lattice resonances. Journal Physics D: Applied Physics, 2018, 51, 045305.	1.3	9
1078	[INVITED] Coherent perfect absorption of electromagnetic wave in subwavelength structures. Optics and Laser Technology, 2018, 101, 499-506.	2.2	32
1079	Wideband metamaterial absorber based on CRRs with lumped elements for microwave energy harvesting. Journal of Microwave Power and Electromagnetic Energy, 2018, 52, 45-59.	0.4	34
1080	Chiral Plasmonic Hydrogen Sensors. Small, 2018, 14, 1702990.	5.2	76
1081	Near-infrared tunable multiple broadband perfect absorber base on VO ₂ semi-shell arrays photonic microstructure and gold reflector. Materials Research Express, 2018, 5, 015802.	0.8	8
1082	Controlling enhanced absorption in graphene metamaterial. Optics Communications, 2018, 413, 310-316.	1.0	33
1083	Approaching total absorption of graphene strips using a c-Si subwavelength periodic membrane. Optics Communications, 2018, 413, 255-260.	1.0	31
1084	Hybridization of Lattice Resonances. ACS Nano, 2018, 12, 1618-1629.	7.3	95
1085	Comprehensive Study of Plasmonic Materials in the Visible and Near-Infrared: Linear, Refractory, and Nonlinear Optical Properties. ACS Photonics, 2018, 5, 1058-1067.	3.2	56
1086	Tunable Midâ€Infrared Phaseâ€Change Metasurface. Advanced Optical Materials, 2018, 6, 1701346.	3.6	112
1087	Metamaterial-inspired rotation sensor based on complementary single split-ring resonator (CSSRR). Journal of Electromagnetic Waves and Applications, 2018, 32, 1664-1674.	1.0	9

ARTICLE IF CITATIONS Effects of Dielectric Spacer on Absorbance Characteristics of a Dual-Band Nanoaperture Based 1088 0.3 0 Perfect Absorber. Materials Science Forum, 2018, 915, 28-33. A refractory metamaterial absorber for ultra-broadband, omnidirectional and 2.8 polarization-independent absorption in the UV-NIR spectrum. Nanoscale, 2018, 10, 8298-8303. Soft and transient magnesium plasmonics for environmental and biomedical sensing. Nano Research, 1090 5.8 21 2018, 11, 4390-4400. Enhancement transmittance of a metamaterial filter based on local surface plasma resonance. MRS 1091 0.8 Communications, 2018, 8, 194-198. Design of multi-narrowband metamaterial perfect absorbers in near-infrared band based on resonators asymmetric method and modified resonators stacked method. Optics Communications, 1092 1.0 32 2018, 420, 95-103. Broadband and wide angle near-unity absorption in graphene-insulator-metal thin film stacks. Superlattices and Microstructures, 2018, 117, 137-143. 1.4 Design of a metasurface-based dual-band Terahertz perfect absorber with very high <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml72" display="inline" overflow="scroll" 1094 1.0 89 altimg="sil1.gif"><mml:mi>Q</mml:mi></mml:math>-factors for sensing applications. Optics Communications, 2018, 416, 152-159. New Type Design of the Triple-Band and Five-Band Metamaterial Absorbers at Terahertz Frequency. 1.8 Plasmonics, 2018, 13, 123-130. A Simple Design of a Multi-Band Terahertz Metamaterial Absorber Based on Periodic Square Metallic 1096 1.8 38 Layer with T-Shaped Gap. Plasmonics, 2018, 13, 269-274. Highly-Tunable Magnetic and Electric Responses in the Perforated Au-SiO2-Si Multilayer Nanoshells. 1097 1.8 Plasmonics, 2018, 13, 259-264. A Simplified and Cost-Effective Optical Absorber and Corresponding Photo-Thermal Effect. 1098 1.8 1 Plasmonics, 2018, 13, 265-268. Tunable Plasmon-Induced Transparency Effect in MIM Side-Coupled Isosceles Trapezoid Cavities System. 1099 1.8 Plasmonics, 2018, 13, 609-616. Dual-Band Infrared Near-Perfect Absorption by Fabry-Perot Resonances and Surface Phonons. 1100 1.8 12 Plasmonics, 2018, 13, 803-809. A Facile Strategy for All-Optical Controlling Platform by Using Plasmonic Perfect Absorbers. Plasmonics, 2018, 13, 797-801. 1.8 Coupling Between Metamolecular Modes and Lattice Diffraction Modes of Metamaterials in Terahertz 1102 1.8 9 Region. Plasmonics, 2018, 13, 961-969. Tunable Nearly Perfect Absorber Based on Graphene Metamaterials at the Mid-Infrared Region. 1.8 Plasmonics, 2018, 13, 1043-1048. Ultra-High Sensitivity Nanosensor Based on Multiple Fano Resonance in the MIM Coupled Plasmonic 1104 1.8 34 Resonator. Plasmonics, 2018, 13, 1115-1120. A Research of Nonreciprocal Transmission of Graphene Defect. Plasmonics, 2018, 13, 1201-1207. 1.8

#	Article	IF	CITATIONS
1106	Computed a multiple band metamaterial absorber and its application based on the figure of merit value. Optics Communications, 2018, 406, 145-150.	1.0	13
1107	Design of a polarization-independent, wide-angle, broadband visible absorber. Journal of Modern Optics, 2018, 65, 129-135.	0.6	1
1108	Broadband metamaterial as an "invisible―radiative cooling coat. Optics Communications, 2018, 407, 204-207.	1.0	61
1109	Color display and encryption with a plasmonic polarizing metamirror. Nanophotonics, 2018, 7, 323-331.	2.9	63
1110	Enhanced upconversion based on the ultrahigh local field enhancement in a multilayered UCNPs-metamaterial compositeÂsystem. Journal of Alloys and Compounds, 2018, 735, 372-376.	2.8	23
1111	Discrete Optical Field Manipulation by Ag-Al Bilayer Gratings for Broadband Absorption Enhancement in Thin-Film Solar Cells. Plasmonics, 2018, 13, 1603-1613.	1.8	5
1112	Plasmon induced transparency and refractive index sensing in a new type of graphene-based plasmonic waveguide. Optics Communications, 2018, 412, 41-48.	1.0	21
1113	Lithographyâ€Free, Omnidirectional, CMOS ompatible AlCu Alloys for Thinâ€Film Superabsorbers. Advanced Optical Materials, 2018, 6, 1700830.	3.6	34
1114	Design and applications of lattice plasmon resonances. Nano Research, 2018, 11, 4423-4440.	5.8	56
1115	Numerical simulation of reflective infrared absorber based on metal and dielectric nanorings. Journal of Modern Optics, 2018, 65, 869-878.	0.6	0
1116	Metamaterials based on the phase transition of VO ₂ . Nanotechnology, 2018, 29, 024002.	1.3	90
1117	Metasurface Optical Solar Reflectors Using AZO Transparent Conducting Oxides for Radiative Cooling of Spacecraft. ACS Photonics, 2018, 5, 495-501.	3.2	114
1118	Plasmonic Metaparticles on a Blackbody Create Vivid Reflective Colors for Nakedâ€Eye Environmental and Clinical Biodetection. Advanced Materials, 2018, 30, 1704442.	11.1	38
1119	A dual-band THz absorber based on graphene sheet and ribbons. Optics and Laser Technology, 2018, 100, 129-132.	2.2	53
1120	An Optically-Triggered Switchable Mid-Infrared Perfect Absorber Based on Phase-Change Material of Vanadium Dioxide. Plasmonics, 2018, 13, 1393-1402.	1.8	37
1121	Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure. Optics Express, 2018, 26, 31693.	1.7	99
1122	Tunable Plasmonic Absorber Using a Nanoslit Array Patterned on a Ge ₂ Sb ₂ Te ₅ -Inserted Fabry–Pérot Resonator. Journal of Lightwave Technology, 2018, 36, 5857-5862.	2.7	17
1123	Ultra-wideband terahertz graphene absorber using circuit model. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	35

#	Article	IF	CITATIONS
1124	A Tunable Ultra-Narrowband Absorber/Sensor Based on Plasmonic Resonances in Nanostructured Metal Surfaces. , 2018, , .		3
1125	Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light: Science and Applications, 2018, 7, 90.	7.7	202
1126	Ultranarrow-band metagrating absorbers for sensing and modulation. Optics Express, 2018, 26, 28197.	1.7	45
1127	Implementation of plasmonic band structure to understand polariton hybridization within metamaterials. Optics Express, 2018, 26, 29363.	1.7	4
1128	All-Metal Broadband Optical Absorbers Based on Block Copolymer Nanolithography. ACS Applied Materials & Interfaces, 2018, 10, 42941-42947.	4.0	22
1129	Wideband optical absorber based on plasmonic metamaterial cross structure. Optical and Quantum Electronics, 2018, 50, 1.	1.5	12
1130	High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting. Nano Letters, 2018, 18, 7665-7673.	4.5	140
1131	Magnetoelectric uniaxial metamaterials as wide-angle polarization-insensitive matching layers. Physical Review B, 2018, 98, .	1.1	17
1132	Quad-Band Plasmonic Perfect Absorber for Visible Light with a Patchwork of Silicon Nanorod Resonators. Materials, 2018, 11, 1954.	1.3	16
1133	Graphene-Based Perfect Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications. Nanomaterials, 2018, 8, 1033.	1.9	57
1134	Aperiodic multilayer graphene based tunable and switchable thermal emitter at mid-infrared frequencies. Journal of Applied Physics, 2018, 124, 233101.	1.1	11
1135	Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared. Nanomaterials, 2018, 8, 1038.	1.9	82
1136	Dynamic thermal emission control with InAs-based plasmonic metasurfaces. Science Advances, 2018, 4, eaat3163.	4.7	74
1137	Integrating absorber with non-planar plasmonic structure for <i>k</i> -vector matching absorption enhancement. Journal of Applied Physics, 2018, 124, .	1.1	16
1138	Chapter 13 Waveguide Integrated Superconducting Single Photon Detectors. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, , 255-265.	0.2	0
1139	Contribution of terahertz waves to near-field radiative heat transfer between graphene-based hyperbolic metamaterials. Chinese Physics B, 2018, 27, 094401.	0.7	4
1140	Polarization independent metallic-dielectric trapezoidal grating for multiband absorption in the visible. Optical and Quantum Electronics, 2018, 50, 1.	1.5	0
1141	Highly Sensitive Color Tunablility by Scalable Nanomorphology of a Dielectric Layer in Liquid-Permeable Metal–Insulator–Metal Structure. ACS Applied Materials & Interfaces, 2018, 10, 38581-38587.	4.0	17

#	Article	IF	CITATIONS
1142	Realization of wide-angle and wideband absorber using metallic and graphene-based metasurface for mid-infrared and low THz frequency. Optical and Quantum Electronics, 2018, 50, 1.	1.5	27
1143	High-Q Fano Resonance in Terahertz Frequency Based on an Asymmetric Metamaterial Resonator. Nanoscale Research Letters, 2018, 13, 294.	3.1	59
1144	Inverse design in nanophotonics. Nature Photonics, 2018, 12, 659-670.	15.6	1,014
1145	Numerical Study on the Absorption Characteristics of Subwavelength Metallic Gratings Covered with a Lossy Dielectric Layer. Applied Sciences (Switzerland), 2018, 8, 1445.	1.3	0
1146	Thermally robust ring-shaped chromium perfect absorber of visible light. Nanophotonics, 2018, 7, 1827-1833.	2.9	88
1147	Flexible ultrathin metamaterial absorber for wide frequency band, based on conductive fibers. Science and Technology of Advanced Materials, 2018, 19, 711-717.	2.8	22
1148	Glucose Sensing Using Surface-Enhanced Raman-Mode Constraining. Analytical Chemistry, 2018, 90, 14269-14278.	3.2	52
1149	Strong Light–Matter Interaction in Lithography-Free Planar Metamaterial Perfect Absorbers. ACS Photonics, 2018, 5, 4203-4221.	3.2	96
1150	Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications. Chinese Physics B, 2018, 27, 107403.	0.7	34
1151	Plasmonic Properties of Periodic Arrays of Ag Nanocylinders and Dimers, and the Effects of an Underlying Ag Layer. Journal of Physical Chemistry C, 2018, 122, 22083-22093.	1.5	4
1152	Ultra-broadband, polarization-independent, wide-angle absorption in impedance-matched metamaterials with anti-reflective moth-eye surfaces. Optics Express, 2018, 26, 24031.	1.7	23
1153	Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers. Carbon, 2018, 140, 362-367.	5.4	84
1154	Active-Tuning and Polarization-Independent Absorber and Sensor in the Infrared Region Based on the Phase Change Material of Ge2Sb2Te5 (GST). Scientific Reports, 2018, 8, 12433.	1.6	62
1155	Dynamically switchable polarization-independent and broadband metasurface perfect absorber in the visible and near-infrared spectra regime. Results in Physics, 2018, 11, 278-282.	2.0	7
1156	Quantum Nano-Photonics. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, ,	0.2	1
1157	Polarization-Sensitive Absorber Based on Metamaterials. , 2018, , .		0
1158	High-performance sensor achieved by hybrid guide-mode resonance/surface plasmon resonance platform. Applied Optics, 2018, 57, 7338.	0.9	15
1159	Multi-band terahertz absorber exploiting graphene metamaterial. Optical Materials Express, 2018, 8, 2928.	1.6	19

#	Article	IF	CITATIONS
1160	Nearâ€field enhancements and surface plasmon polaritons with multifunctional oxide thin films. Journal of Raman Spectroscopy, 2018, 49, 1911-1919.	1.2	2
1161	Polarization-selective dual-wavelength gap-surface plasmon metasurfaces. Optics Express, 2018, 26, 23760.	1.7	10
1162	Sharp and Tunable Crystal/Fanoâ€Type Resonances Enabled by Outâ€ofâ€Plane Dipolar Coupling in Plasmonic Nanopatch Arrays. Annalen Der Physik, 2018, 530, 1700395.	0.9	9
1163	Wide-angle broadband absorber based on uniform-sized hyperbolic metamaterial. Optical Materials Express, 2018, 8, 2484.	1.6	22
1164	An Ultrathin Wide Angle Polarization Insensitive Mid-Infrared Metamaterial Absorber for THz Detection. , 2018, , .		3
1165	Multispectral perfect absorbers using plasmonically induced interference. Journal of Applied Physics, 2018, 123, .	1.1	12
1166	Interferometric Control of Dual-Band Terahertz Perfect Absorption Using a Designed Metasurface. Physical Review Applied, 2018, 9, .	1.5	14
1167	Nanosensing and slow light application based on Fano resonance in waveguide coupled equilateral triangle resonator system. Optik, 2018, 171, 58-64.	1.4	16
1168	Efficient, Scalable, and Highâ€Temperature Selective Solar Absorbers Based on Hybridâ€Strategy Plasmonic Metamaterials. Solar Rrl, 2018, 2, 1800057.	3.1	48
1169	A review of gap-surface plasmon metasurfaces: fundamentals and applications. Nanophotonics, 2018, 7, 1129-1156.	2.9	250
1170	A light weight and broadband metamaterial absorber with 3D cube unit cells. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	7
1171	Angular Dispersions in Terahertz Metasurfaces: Physics and Applications. Physical Review Applied, 2018, 9, .	1.5	43
1172	Controlling optical polarization conversion with Ge ₂ Sb ₂ Te ₅ -based phase-change dielectric metamaterials. Nanoscale, 2018, 10, 12054-12061.	2.8	70
1173	Broad-band and polarization-independent perfect absorption in graphene-gold cylinder arrays at visible and near-infrared wavelengths. Optical Materials, 2018, 81, 59-63.	1.7	11
1174	A broadband and switchable VO2-based perfect absorber at the THz frequency. Optics Communications, 2018, 426, 443-449.	1.0	120
1175	Merging absorption bands of plasmonic structures via dispersion engineering. Applied Physics Letters, 2018, 112, .	1.5	38
1176	Tailoring Metal and Insulator Contributions in Plasmonic Perfect Absorber Metasurfaces. ACS Applied Nano Materials, 2018, 1, 3557-3564.	2.4	36
1177	Engineering two-dimensional gold nanostructures using graphene oxide nanosheets as a template. Nanoscale, 2018, 10, 13315-13319.	2.8	15

#	Article	IF	CITATIONS
1178	The design of wideband metamaterial absorber at E band based on defect. IOP Conference Series: Materials Science and Engineering, 2018, 292, 012061.	0.3	4
1179	Large-Area, Cost-Effective, Ultra-Broadband Perfect Absorber Utilizing Manganese in Metal-Insulator-Metal Structure. Scientific Reports, 2018, 8, 9162.	1.6	65
1180	Flexible and Electrically Tunable Plasmons in Graphene–Mica Heterostructures. Advanced Science, 2018, 5, 1800175.	5.6	38
1181	Multi-band coherent perfect absorption excited by a multi-sized and multilayer metasurface. Japanese Journal of Applied Physics, 2018, 57, 090304.	0.8	6
1182	Broadband tunable terahertz absorber based on vanadium dioxide metamaterials. Optics Express, 2018, 26, 7148.	1.7	248
1183	Dual narrow-band absorber based on metal–insulator–metal configuration for refractive index sensing. Optics Letters, 2018, 43, 3630.	1.7	62
1184	Tailoring the quality factors and nonlinear response in hybrid plasmonic-dielectric metasurfaces. Optics Express, 2018, 26, 120.	1.7	15
1185	Wide-angle broadband absorption in tapered patch antennas. Optics Express, 2018, 26, 1064.	1.7	16
1186	Clarification of surface modes of a periodic nanopatch metasurface. Optics Express, 2018, 26, 3004.	1.7	10
1187	Graphene on metal-insulator-metal-based plasmonic metamaterials at infrared wavelengths. Optics Express, 2018, 26, 5665.	1.7	38
1188	Metasurface with multi-sized structure for multi-band coherent perfect absorption. Optics Express, 2018, 26, 7066.	1.7	56
1189	Broadband microwave absorption utilizing water-based metamaterial structures. Optics Express, 2018, 26, 8522.	1.7	84
1190	High precision position sensor based on CPA in a composite multi-layered system. Optics Express, 2018, 26, 10079.	1.7	4
1191	Numerical investigation of narrowband infrared absorber and sensor based on dielectric-metal metasurface. Optics Express, 2018, 26, 10179.	1.7	79
1192	Dirac semimetals based tunable narrowband absorber at terahertz frequencies. Optics Express, 2018, 26, 11471.	1.7	108
1193	Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces. Optics Express, 2018, 26, 11728.	1.7	188
1194	Theoretical design of twelve-band infrared metamaterial perfect absorber by combining the dipole, quadrupole, and octopole plasmon resonance modes of four different ring-strip resonators. Optics Express, 2018, 26, 12838.	1.7	57
1195	Polarization-controlled multifrequency coherent perfect absorption in stereometamaterials. Optics Express, 2018, 26, 17236.	1.7	19

#	Article	IF	CITATIONS
1196	Role of loss in all-dielectric metasurfaces. Optics Express, 2018, 26, 17669.	1.7	28
1197	Metamaterial perfect absorber with unabated size-independent absorption. Optics Express, 2018, 26, 20471.	1.7	63
1198	Dielectric waveguide-enhanced localized surface plasmon resonance refractive index sensing. Optical Materials Express, 2018, 8, 342.	1.6	61
1199	Dual-band nearly perfect absorber at visible frequencies. Optical Materials Express, 2018, 8, 463.	1.6	46
1200	Controlling terahertz surface plasmon polaritons in Dirac semimetal sheets. Optical Materials Express, 2018, 8, 884.	1.6	29
1201	Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves. Optical Materials Express, 2018, 8, 1399.	1.6	60
1202	CMOS-compatible mid-IR metamaterial absorbers for out-of-band suppression in optical MEMS. Optical Materials Express, 2018, 8, 1696.	1.6	15
1203	Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth. Photonics Research, 2018, 6, 168.	3.4	78
1204	All-metal frequency-selective absorber/emitter for laser stealth and infrared stealth. Applied Optics, 2018, 57, 1757.	0.9	71
1205	Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1192.	0.9	53
1206	Line-current model for deriving the wavelength scaling of linear and nonlinear optical properties of thin elongated metallic rod antennas. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1482.	0.9	4
1207	Ultrathin omnidirectional, broadband visible absorbers. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1825.	0.9	16
1208	Surface-plasmon-induced ultra-broadband light absorber operating in the visible to infrared range. Optics Express, 2018, 26, 1342.	1.7	21
1209	Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies. Optics Express, 2018, 26, 2242.	1.7	48
1210	Tunable light absorbance by exciting the plasmonic gap mode for refractive index sensing. Optics Letters, 2018, 43, 1427.	1.7	22
1211	Plasmonic Black Metasurface by Transfer Printing. Advanced Materials Technologies, 2018, 3, 1800124.	3.0	8
1212	Light–Matter Interaction within Extreme Dimensions: From Nanomanufacturing to Applications. Advanced Optical Materials, 2018, 6, 1800444.	3.6	22
1213	Highâ€Efficiency Metasurfaces: Principles, Realizations, and Applications. Advanced Optical Materials, 2018, 6, 1800415.	3.6	250

#	Article	IF	CITATIONS
1214	Spatial and Frequency Selective Plasmonic Metasurface for Long Wavelength Infrared Spectral Region. Advanced Optical Materials, 2018, 6, 1800337.	3.6	23
1215	Nearâ€Infrared Superâ€Absorbing Allâ€Dielectric Metasurface Based on Singleâ€Layer Germanium Nanostructures. Laser and Photonics Reviews, 2018, 12, 1800076.	4.4	70
1216	Selective metamaterial perfect absorber for infrared and 1.54 μm laser compatible stealth technology. Optik, 2018, 172, 840-846.	1.4	33
1217	Polarization-insensitive, ultra-broadband, and compact metamaterial-inspired optical absorber via wide-angle and highly efficient performances. Applied Optics, 2018, 57, 3693.	0.9	31
1218	Adopting image theorem for rigorous analysis of a perfect electric conductor–backed array of graphene ribbons. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1836.	0.9	29
1219	A wide-angle shift-free metamaterial filter design for anti-laser striking application. Optics Communications, 2018, 429, 53-59.	1.0	8
1220	An air-spaced terahertz metamaterial perfect absorber. Sensors and Actuators A: Physical, 2018, 280, 303-308.	2.0	21
1221	Tunable Anderson localization of propagating graphene surface plasmon modes in a random modulated graphene monolayer. Europhysics Letters, 2018, 122, 67004.	0.7	3
1222	Taming parasitic thermal emission by Tamm plasmon polaritons for the mid-infrared. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1490.	0.9	10
1223	Design of Optical and Radiative Properties of Surfaces. , 2018, , 1023-1068.		3
1224	Chiral metamaterials <i>via</i> Moiré stacking. Nanoscale, 2018, 10, 18096-18112.	2.8	39
1225	Metal-Insulator-Metal-Based Plasmonic Metamaterial Absorbers at Visible and Infrared Wavelengths: A Review. Materials, 2018, 11, 458.	1.3	145
1226	Wide Angle of Incidence-Insensitive Polarization-Independent THz Metamaterial Absorber for Both TE and TM Mode Based on Plasmon Hybridizations. Materials, 2018, 11, 671.	1.3	16
1227	A Review of Tunable Wavelength Selectivity of Metamaterials in Near-Field and Far-Field Radiative Thermal Transport. Materials, 2018, 11, 862.	1.3	26
1228	Hybrid Metasurface Based Tunable Near-Perfect Absorber and Plasmonic Sensor. Materials, 2018, 11, 1091.	1.3	56
1229	Self-Reference Refractive Index Sensor Based on Independently Controlled Double Resonances in Side-Coupled U-Shaped Resonators. Sensors, 2018, 18, 1376.	2.1	28
1230	Plasmonic effects in composite metal nanostructures for sensing applications. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	51
1231	Transmitting-absorbing material based on resistive metasurface. AIP Advances, 2018, 8, .	0.6	10

ARTICLE IF CITATIONS # Depolying Tunable Metal-Shell/Dielectric Core Nanorod Arrays as the Virtually Perfect Absorber in 1232 60 1.6 the Near-Infrared Regime. ACS Omega, 2018, 3, 7508-7516. Microwave Metamaterial Absorber for Non-Destructive Sensing Applications of Grain. Sensors, 2018, 2.1 18, 1912. Highly-Sensitive Refractive Index Sensing by Near-infrared Metatronic Nanocircuits. Scientific Reports, 1234 19 1.6 2018, 8, 11457. Dual-band tunable perfect metamaterial absorber based on graphene. Applied Optics, 2018, 57, 6916. 0.9 Generating Spin Current from Mid Infrared Plasmonic Metamaterial Absorbers., 2018,,. 1236 1 Triple-broadband infrared metamaterial absorber with polarization-independent and wide-angle 1.6 absorption. Optical Materials Express, 2018, 8, 2439. Wide-angle perfect metamaterial absorbers based on cave-rings and the complementary patterns. 1238 1.6 15 Optical Materials Express, 2018, 8, 2520. Flexible Localized Surface Plasmon Resonance Sensor with Metal–Insulator–Metal Nanodisks on 1239 1.6 PDMS Substrate. Scientific Reports, 2018, 8, 11812. Optical absorption properties and nanosensing application based on metallic rectangle nanoparticles 1240 0.6 0 array. Micro and Nano Letters, 2018, 13, 758-762. Terahertz metamaterial perfect absorber with continuously tunable air spacer layer. Applied Physics 1241 1.5 Letters, 2018, 113, . Terahertz wave manipulation through coupling of spoof plasmonics and Fabry–Perot resonance. 1242 1.3 3 Journal Physics D: Applied Physics, 2018, 51, 405101. How to calculate the pole expansion of the optical scattering matrix from the resonant states. 1243 1.1 30 Physical Review B, 2018, 98, . Refractory Metamaterial Microwave Absorber with Strong Absorption Insensitive to Temperature. 1244 3.6 32 Advanced Optical Materials, 2018, 6, 1800691. The absorption properties in heterostructures with the hexagonal boron nitride crystals in the 1245 0.8 mid-infrared frequency range. Journal of Optics (India), 2018, 47, 456-459. A multiple-band perfect absorber for SEIRA applications. Sensors and Actuators B: Chemical, 2018, 275, 1246 33 4.0 174-179. Polarization-sensitive perfect plasmonic absorber for thin-film solar cell application. Applied Physics 1247 1.1 A: Materials Science and Processing, 2018, 124, 1. 3D Metaphotonic Nanostructures with Intrinsic Chirality. Advanced Functional Materials, 2018, 28, 1248 7.8 102 1803147. A high-sensitivity sensor based on three-dimensional metal–insulator–metal racetrack resonator and 1249 application for hemoglobin detection. Photonics and Nanostructures - Fundamentals and Applications, 2018, 32, 28-34.

#	Article	IF	CITATIONS
1250	Multilayer graphene-based metasurfaces: robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers. Applied Optics, 2018, 57, 959.	0.9	112
1251	Indium Tin Oxide Broadband Metasurface Absorber. ACS Photonics, 2018, 5, 3526-3533.	3.2	78
1252	Broadband light absorption of an Al semishell-MIM nanostrucure in the UV to near-infrared regions. Optics Letters, 2018, 43, 2981.	1.7	12
1253	Plasmon-Enhanced Infrared Spectroscopy Based on Metamaterial Absorbers with Dielectric Nanopedestals. ACS Photonics, 2018, 5, 3492-3498.	3.2	43
1254	New scattering features in non-Hermitian space fractional quantum mechanics. Annals of Physics, 2018, 396, 371-385.	1.0	11
1255	Nanostructured Dielectric Fractals on Resonant Plasmonic Metasurfaces for Selective and Sensitive Optical Sensing of Volatile Compounds. Advanced Materials, 2018, 30, e1800931.	11.1	47
1256	Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chemical Reviews, 2018, 118, 5912-5951.	23.0	931
1257	An ultra-broadband and lightweight fishnet-like absorber in microwave region. Journal Physics D: Applied Physics, 2018, 51, 285002.	1.3	33
1258	A Broadband Plasmonic Metasurface Superabsorber at Optical Frequencies: Analytical Design Framework and Demonstration. Advanced Optical Materials, 2018, 6, 1800253.	3.6	29
1259	Visible frequency plasmonic perfect absorber made of a thin metal layer containing cylindrical grooves. Photonics and Nanostructures - Fundamentals and Applications, 2018, 31, 66-70.	1.0	15
1260	A High-Performance Plasmonic Nanosensor Based on an Elliptical Nanorod in an MIM Configuration. IEEE Sensors Journal, 2018, 18, 6145-6153.	2.4	16
1261	Multispectral plasmonic supercells. Journal of Optics (United Kingdom), 2018, 20, 075003.	1.0	5
1262	Metasurfaces and their applications. Nanophotonics, 2018, 7, 989-1011.	2.9	342
1263	Design of a broadband infrared metamaterial absorber. Optik, 2018, 170, 535-539.	1.4	11
1264	Design of Tunable Multi-Band Metamaterial Perfect Absorbers Based on Magnetic Polaritons. Plasmonics, 2019, 14, 389-396.	1.8	13
1265	Exceptional electromagnetic interference shielding and microwave absorption properties of room temperature synthesized polythiophene thin films with double negative characteristics (DNG) in the Ku-band region. Chemical Engineering Journal, 2019, 355, 196-207.	6.6	73
1266	High-quality Temperature Sensor Based on the Plasmonic Resonant Absorber. Plasmonics, 2019, 14, 279-283.	1.8	11
1267	Chalcogenide–gold dual-layers coupled to gold nanoparticles for reconfigurable perfect absorption. Nanoscale, 2019, 11, 20546-20553.	2.8	15

#	Article	IF	CITATIONS
1268	Plasmonic optical tweezers based on nanostructures: fundamentals, advances and prospects. Nanophotonics, 2019, 8, 1227-1245.	2.9	101
1269	Multiple-resonant pad-rod nanoantennas for surface-enhanced infrared absorption spectroscopy. Nanotechnology, 2019, 30, 465206.	1.3	10
1270	Symmetric Metaâ€Absorberâ€Induced Superchirality. Advanced Optical Materials, 2019, 7, 1901038.	3.6	12
1271	High-performance double-sided absorber, based on metamaterial. Current Applied Physics, 2019, 19, 1217-1221.	1.1	7
1272	Dual-band terahertz perfect metasurface absorber based on bi-layered all-dielectric resonator structure. Optical Materials, 2019, 96, 109279.	1.7	38
1273	Active Plasmonic Metamaterial Absorbers Using Graphene. , 2019, , .		0
1274	Dynamically Temperature-Voltage Controlled Multifunctional Device Based on VO2 and Graphene Hybrid Metamaterials: Perfect Absorber and Highly Efficient Polarization Converter. Nanomaterials, 2019, 9, 1101.	1.9	44
1275	Design of symmetrical wide-angle graphene-based mid-infrared broadband perfect absorber based on circuit model. Photonics and Nanostructures - Fundamentals and Applications, 2019, 36, 100729.	1.0	14
1276	Realization of Bidirectional, Bandwidth-Enhanced Metamaterial Absorber for Microwave Applications. Scientific Reports, 2019, 9, 10058.	1.6	24
1277	Adaptive Method for Quantitative Estimation of Glucose and Fructose Concentrations in Aqueous Solutions Based on Infrared Nanoantenna Optics. Sensors, 2019, 19, 3053.	2.1	8
1278	A triple-band terahertz metamaterial absorber based on buck Dirac semimetals. Results in Physics, 2019, 14, 102461.	2.0	20
1279	Coherent optical coupling of plasmonic dipoles in metallic nanoislands with random sizes and shapes. Journal of Materials Chemistry C, 2019, 7, 9678-9685.	2.7	6
1280	Bio-compatible and highly sensitive two-dimensional plasmonic sensor. Optical and Quantum Electronics, 2019, 51, 1.	1.5	0
1281	Electrochemistry on Inverse Copper Nanoantennas: Active Plasmonic Devices with Extraordinarily Large Resonance Shift. ACS Photonics, 2019, 6, 1863-1868.	3.2	26
1282	Colorimetric and Near-Absolute Polarization-Insensitive Refractive-Index Sensing in All-Dielectric Guided-Mode Resonance Based Metasurface. Journal of Physical Chemistry C, 2019, 123, 19125-19134.	1.5	39
1283	Periodic Metallo-Dielectric Structures: Electromagnetic Absorption and its Related Developed Temperatures. Materials, 2019, 12, 2108.	1.3	3
1284	Plasmonic Colour Printing by Light Trapping in Two-Metal Nanostructures. Nanomaterials, 2019, 9, 963.	1.9	3
1285	Graphene on epsilon-near-zero metamaterials as perfect electromagnetic absorber. , 2019, , 169-189.		1
#	Article	IF	CITATIONS
------	--	------	-----------
1286	Numerical design of a metasurface-based ultra-narrow band terahertz perfect absorber with high Q-factors. Optik, 2019, 194, 163071.	1.4	27
1287	Multiple fano resonances in an end-coupled MIM waveguide system. Optics Communications, 2019, 452, 12-17.	1.0	29
1288	MIR plasmonic liquid sensing in nano-metric space driven by capillary force. Journal Physics D: Applied Physics, 2019, 52, 394001.	1.3	20
1289	Optical Properties of Au-Doped Titanium Nitride Nanostructures: a Connection Between Density Functional Theory and Finite-Difference Time-Domain Method. Plasmonics, 2019, 14, 1871-1879.	1.8	4
1290	Polarization-Independent Perfect Optical Metamaterial Absorber as a Glucose Sensor in Food Industry Applications. IEEE Transactions on Nanobioscience, 2019, 18, 622-627.	2.2	107
1291	Deconfinement to confinement as PT phase transition. Nuclear Physics B, 2019, 946, 114699.	0.9	13
1292	Plasmonic Refractive Index Sensing Based on Interference in Disordered Composite Films. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900284.	1.2	2
1293	Guided Modes of Hyperbolic Metamaterial and Their Applications. Progress in Optical Science and Photonics, 2019, , 129-158.	0.3	0
1294	Achieving Infrared Detection by All-Si Plasmonic Hot-Electron Detectors with High Detectivity. ACS Nano, 2019, 13, 8433-8441.	7.3	47
1295	Polarization-Controlled Nanogap Cavity with Dual-Band and Spatially Overlapped Resonances. ACS Photonics, 2019, 6, 1916-1921.	3.2	17
1296	Vibrational Sensing Using Infrared Nanoantennas: Toward the Noninvasive Quantitation of Physiological Levels of Glucose and Fructose. ACS Sensors, 2019, 4, 1973-1979.	4.0	45
1297	Infrared plasmonic meta-modes via near-field coupling of metallic nanorods with split-ring resonators. Nanotechnology, 2019, 30, 395203.	1.3	2
1298	Facile Nanocasting of Dielectric Metasurfaces with Sub-100 nm Resolution. ACS Applied Materials & Interfaces, 2019, 11, 26109-26115.	4.0	57
1299	Infrared Nanoantenna-Coupled Rectenna for Energy Harvesting. , 2019, , .		1
1300	Flexible Ultra-Wideband Terahertz Absorber Based on Vertically Aligned Carbon Nanotubes. ACS Applied Materials & Interfaces, 2019, 11, 43671-43680.	4.0	39
1301	Wavelength-decoupled geometric metasurfaces by arbitrary dispersion control. Communications Physics, 2019, 2, .	2.0	44
1302	Perfect Absorption and Phase Singularities in Plasmon Antenna Array Etalons. ACS Photonics, 2019, 6, 2917-2925.	3.2	53
1303	Photonic Metamaterial Absorbers: Morphology Engineering and Interdisciplinary Applications. Advanced Materials, 2020, 32, e1903787.	11.1	116

#	Article	IF	CITATIONS
1304	Tunable plasmonic properties of graphene ribbon for hypersensitive nanosensing. Optik, 2019, 196, 163139.	1.4	8
1305	Ultraviolet to near infrared titanium nitride broadband plasmonic absorber. Optical Materials, 2019, 97, 109377.	1.7	29
1306	Slowing down plexcimons in exciton–plasmon multimode coupling nanostructrures. Journal of Applied Physics, 2019, 126, 153101.	1.1	1
1307	Wide-Angle Spectrally Selective Absorbers and Thermal Emitters Based on Inverse Opals. ACS Photonics, 2019, 6, 2607-2611.	3.2	20
1308	Enhancing Absorption Bandwidth through Vertically Oriented Metamaterials. Applied Sciences (Switzerland), 2019, 9, 2223.	1.3	6
1309	Frequency-region quantitatively adjustable Si perfect absorbers. Applied Physics Express, 2019, 12, 102001.	1.1	1
1310	Ultra-black carbon@silica core-shell aerogels with controllable electrical conductivities. Advanced Composites and Hybrid Materials, 2019, 2, 743-752.	9.9	40
1311	All-Dielectric Terahertz Plasmonic Metamaterial Absorbers and High-Sensitivity Sensing. ACS Omega, 2019, 4, 18645-18652.	1.6	40
1312	Double-band perfect absorber based on the dielectric grating and Fabry–Perot cavity. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	19
1313	Fiber optic sensor based on ZnO nanowires decorated by Au nanoparticles for improved plasmonic biosensor. Scientific Reports, 2019, 9, 15605.	1.6	53
1314	Strongly Localized ohmic Absorption of Terahertz Radiation in Nanoslot Antennas. Nano Letters, 2019, 19, 9062-9068.	4.5	14
1315	Broadband Near-Infrared Absorber Based on All Metallic Metasurface. Materials, 2019, 12, 3568.	1.3	7
1316	Ultracompact Camera Pixel with Integrated Plasmonic Color Filters. Advanced Optical Materials, 2019, 7, 1900893.	3.6	9
1317	Hybridization of Gap Modes and Lattice Modes in a Plasmonic Resonator Array with a Metal–Insulator–Metal Structure. ACS Photonics, 2019, 6, 2618-2625.	3.2	6
1318	Enhanced Optical Bistability by Coupling Effects in Magnetic Metamaterials. Journal of Lightwave Technology, 2019, 37, 5814-5820.	2.7	14
1319	Optimization of Broadband Perfect Absorber by Weierstrass Factorization. IEEE Photonics Journal, 2019, 11, 1-10.	1.0	6
1320	An Ultrabroadband Infrared Optical Modulator of 3D Nanoantenna Fabricated by Focused Ion Beam - Stress Induced Deformation. , 2019, , .		1
1321	A Simple Ultrathin Quad Band Polarization Insensitive Metamaterial Absorber for Infrared Applications. , 2019, , .		5

#	Article	IF	CITATIONS
1322	Integrated Plasmonic Infrared Photodetector Based on Colloidal HgTe Quantum Dots. Advanced Materials Technologies, 2019, 4, 1900354.	3.0	36
1323	Zirconium nitride: A viable candidate for photonics and plasmonics?. Thin Solid Films, 2019, 688, 137438.	0.8	46
1324	Gradient refractive structured NiCr thin film absorber for pyroelectric infrared detectors*. Chinese Physics B, 2019, 28, 067801.	0.7	0
1325	Graphene-based Spatial Modulator Working in the Near-infrared Range. , 2019, , .		0
1326	Multipole Resonance in Arrays of Diamond Dielectric: A Metamaterial Perfect Absorber in the Visible Regime. Nanomaterials, 2019, 9, 1222.	1.9	22
1327	Plasmonic perfect absorber based on metal nanorod arrays connected with veins. Results in Physics, 2019, 15, 102567.	2.0	53
1328	Omnidirectional and Broadband Metamaterial Absorber Using Multilayer Graphene Ribbons. , 2019, , .		0
1329	Controlling the degrees of freedom in metasurface designs for multi-functional optical devices. Nanoscale Advances, 2019, 1, 3786-3806.	2.2	30
1330	Controlling Thermal Emission by Parity-Symmetric Fano Resonance of Optical Absorbers in Metasurfaces. ACS Photonics, 2019, 6, 2671-2676.	3.2	36
1331	Core–shell structures with noble-metal nanoparticles for surface-enhanced Raman spectroscopy. Journal of Optics (India), 2019, 48, 549-556.	0.8	2
1332	Synthesis of Finger-like Hyper-branched Gold Nanostructures and its Linear Optical Properties. Materials Today: Proceedings, 2019, 11, 789-793.	0.9	0
1333	Broadband Optical Absorber Based on Nanopatterned Metallic Glass Thin Films. Journal of Physical Chemistry Letters, 2019, 10, 6055-6060.	2.1	3
1334	Modeling and observation of mid-infrared nonlocality in effective epsilon-near-zero ultranarrow coaxial apertures. Nature Communications, 2019, 10, 4476.	5.8	26
1335	High-Temperature Polaritons in Ceramic Nanotube Antennas. Nano Letters, 2019, 19, 8565-8571.	4.5	7
1336	New design strategy for broadband perfect absorber by coupling effects between metamaterial and epsilon-near-zero mode. Optical Materials, 2019, 96, 109347.	1.7	11
1337	An ultra-flexible plasmonic metamaterial film for efficient omnidirectional and broadband optical absorption. Nanoscale, 2019, 11, 437-443.	2.8	29
1338	Ultrabroadband Near-perfect Anisotropic Metamaterial Absorber Based on a Curved Periodic W/TPX Stack. Nanoscale and Microscale Thermophysical Engineering, 2019, 23, 67-78.	1.4	3
1339	Approaching the Yablonovitch limit with free-floating arrays of subwavelength trumpet non-imaging light concentrators driven by extraordinary low transmission. Nanoscale, 2019, 11, 3681-3688.	2.8	12

#	Article	IF	CITATIONS
1340	Implementing infrared metamaterial perfect absorbers using dispersive dielectric spacers. Optics Express, 2019, 27, 1727.	1.7	17
1341	Plasmene Metasurface Absorbers: Electromagnetic Hot Spots and Hot Carriers. ACS Photonics, 2019, 6, 314-321.	3.2	23
1342	Coupled Resonance Enhanced Modulation for a Graphene-Loaded Metamaterial Absorber. Nanoscale Research Letters, 2019, 14, 32.	3.1	12
1343	Ultranarrow-Band Wavelength-Selective Thermal Emission with Aperiodic Multilayered Metamaterials Designed by Bayesian Optimization. ACS Central Science, 2019, 5, 319-326.	5.3	121
1344	Control of Resonance Absorption Modes for Broadband Infrared Metamaterial Absorber. IEEE Photonics Journal, 2019, 11, 1-10.	1.0	5
1345	Deep-elliptical-silver-nanowell arrays (d-EAgNWAs) fabricated by stretchable imprinting combining colloidal lithography: A highly sensitive plasmonic sensing platform. Nano Research, 2019, 12, 845-853.	5.8	5
1346	The wideband optical absorber based on plasmonic metamaterials for optical sensing. Optik, 2019, 182, 702-711.	1.4	11
1347	Truly All-Dielectric Ultrabroadband Metamaterial Absorber: Water-Based and Ground-Free. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 536-540.	2.4	73
1348	Au Nanobottles with Synthetically Tunable Overall and Opening Sizes for Chemo-Photothermal Combined Therapy. ACS Applied Materials & Interfaces, 2019, 11, 5353-5363.	4.0	19
1349	Tuneable infrared perfect absorber based on spatially separated double-layer graphene. Journal of Optics (United Kingdom), 2019, 21, 085002.	1.0	4
1350	All Ceramic-Based Metal-Free Ultra-broadband Perfect Absorber. Plasmonics, 2019, 14, 1801-1815.	1.8	47
1351	Numerical study of a wide incident angle- and polarisation-insensitive microwave metamaterial absorber based on a symmetric flower structure. AIP Advances, 2019, 9, .	0.6	12
1352	New Directions in Thin Film Nanophotonics. Progress in Optical Science and Photonics, 2019, , .	0.3	6
1353	Kirchhoff's metasurfaces towards efficient photo-thermal energy conversion. Scientific Reports, 2019, 9, 8284.	1.6	32
1354	Electrically switchable highly efficient epsilon-near-zero metasurfaces absorber with broadband response. Results in Physics, 2019, 14, 102376.	2.0	16
1355	Near-infrared TM-polarization ultra-narrowband absorber with dielectric metamaterials. Modern Physics Letters B, 2019, 33, 1950201.	1.0	2
1356	Polarization-selective absorbers made of MDM metamaterials for infrared source emission. Japanese Journal of Applied Physics, 2019, 58, 065005.	0.8	4
1357	Optical cages. Optical Materials: X, 2019, 1, 100008.	0.3	1

#	Article	IF	CITATIONS
1358	Multiple Fano Resonances Based on End-Coupled Semi-Ring Rectangular Resonator. IEEE Photonics Journal, 2019, 11, 1-8.	1.0	29
1359	Robust Assembly of Colloidal Nanoparticles for Controlled-Reflectance Surface Construction. ACS Applied Materials & amp; Interfaces, 2019, 11, 23773-23779.	4.0	10
1360	Ultra-Broadband Absorption from 750.0 nm to 5351.6 nm in a Novel Grating Based on SiO2-Fe-Sandwich Substrate. Materials, 2019, 12, 1892.	1.3	1
1361	Efficient Fabrication Process of Ordered Metal Nanodot Arrays for Infrared Plasmonic Sensor. Micromachines, 2019, 10, 385.	1.4	4
1362	Enhanced Ultra-Sensitive Metamaterial Resonance Sensor based on Double Corrugated Metal stripe for Terahertz Sensing. Scientific Reports, 2019, 9, 7516.	1.6	31
1363	Plasmon-enhanced solar vapor generation. Nanophotonics, 2019, 8, 771-786.	2.9	91
1364	Polarization-controlled triple-band absorption in all-metal nanostructures with magnetic dipoles and anapole responses. Applied Physics Express, 2019, 12, 062014.	1.1	9
1365	Broadband Perfect Optical Absorption by Coupled Semiconductor Resonator-Based All-Dielectric Metasurface. Materials, 2019, 12, 1221.	1.3	15
1366	Enhanced light absorption in the organic thin films by coating cross-shaped metamaterial resonators onto the active layers. Results in Physics, 2019, 13, 102338.	2.0	13
1367	Tunable narrow band perfect metamaterial absorber based on guided-mode resonance. Modern Physics Letters B, 2019, 33, 1950171.	1.0	13
1368	Design of planar and wideangle resonant color absorbers for applications in the visible spectrum. Scientific Reports, 2019, 9, 7045.	1.6	7
1369	Surface-Enhanced Thermal Emission Spectroscopy with Perfect Absorber Metasurfaces. ACS Photonics, 2019, 6, 1506-1514.	3.2	28
1370	Towards Integrated Mid-Infrared Gas Sensors. Sensors, 2019, 19, 2076.	2.1	173
1371	Tunable multi-band terahertz absorber based on graphene nano-ribbon metamaterial. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 2589-2593.	0.9	43
1372	Metamaterial-Selective Emitter for Maximizing Infrared Camouflage Performance with Energy Dissipation. ACS Applied Materials & amp; Interfaces, 2019, 11, 21250-21257.	4.0	88
1373	Perfect blackbody sheets from nano-precision microtextured elastomers for light and thermal radiation management. Journal of Materials Chemistry C, 2019, 7, 5418-5425.	2.7	36
1374	Omnidirectional Surface Plasmon Polaritons Concentration in 3D Metallic Structures. Plasmonics, 2019, 14, 1547-1554.	1.8	6
1375	Tunable perfect absorber based on gold grating including phase-changing material in visible range. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	21

#	Article	IF	CITATIONS
1376	Broadband and Polarization-Insensitive Absorption Based on a Set of Multisized Fabry–Perot-like Resonators. Journal of Physical Chemistry C, 2019, 123, 13856-13862.	1.5	24
1377	Coexistence of two graphene-induced modulation effects on surface plasmons in hybrid graphene plasmonic nanostructures. Optics Express, 2019, 27, 13503.	1.7	2
1378	Plasmonic Near omplete Optical Absorption and Its Applications. Advanced Optical Materials, 2019, 7, 1801660.	3.6	42
1379	Epsilon-Near-Zero Absorber by Tamm Plasmon Polariton. Photonics, 2019, 6, 28.	0.9	30
1380	Transmit-Array, Metasurface-Based Tunable Polarizer and High-Performance Biosensor in the Visible Regime. Nanomaterials, 2019, 9, 603.	1.9	17
1381	Planar Aperiodic Arrays as Metasurfaces for Optical Near-Field Patterning. ACS Nano, 2019, 13, 5646-5654.	7.3	8
1382	Greatly enhanced electric field by the improved metal–insulator–metal structure in the visible region. Nanotechnology, 2019, 30, 32LT01.	1.3	0
1383	Spectrally Selective Ultrathin Photodetectors Using Strong Interference in Nanocavity Design. IEEE Electron Device Letters, 2019, 40, 925-928.	2.2	6
1384	Laser-written colours on silver: optical effect of alumina coating. Nanophotonics, 2019, 8, 807-822.	2.9	9
1385	A transparent and flexible microwave absorber covering the whole WiFi waveband. AIP Advances, 2019, 9, .	0.6	38
1386	Graphene-based single-layer elliptical pattern metamaterial absorber for adjustable broadband absorption in terahertz range. Physica Scripta, 2019, 94, 105507.	1.2	21
1387	Nanostructured, ultrathin silver-based transparent electrode with broadband near-infrared plasmonic resonance. Nanotechnology, 2019, 30, 265201.	1.3	11
1388	Tunable terahertz perfect absorbers with Dirac semimetal. Journal of Optics (United Kingdom), 2019, 21, 045104.	1.0	11
1389	Designing Dual-Band Absorbers by Graphene/Metallic Metasurfaces. IEEE Journal of Quantum Electronics, 2019, 55, 1-8.	1.0	44
1390	Performance Improvement of Refractometric Sensors Through Hybrid Plasmonic–Fano Resonances. Journal of Lightwave Technology, 2019, 37, 2905-2913.	2.7	34
1391	Hybrid Nanodisk Film for Ultra-Narrowband Filtering, Near-Perfect Absorption and Wide Range Sensing. Nanomaterials, 2019, 9, 334.	1.9	11
1392	Bismuth-based metamaterials: from narrowband reflective color filter to extremely broadband near perfect absorber. Nanophotonics, 2019, 8, 823-832.	2.9	60
1393	Solvent-Assisted Self-Assembly of Gold Nanorods into Hierarchically Organized Plasmonic Mesostructures. ACS Applied Materials & Interfaces, 2019, 11, 11763-11771.	4.0	90

#	Article	IF	CITATIONS
1394	The Design of Optical Circuit-Analog Absorbers through Electrically Small Nanoparticles. Photonics, 2019, 6, 26.	0.9	9
1395	Gain-Assisted Plasmon Resonance Narrowing and Its Application in Sensing. Physical Review Applied, 2019, 11, .	1.5	21
1396	Highly Selective CMOS-Compatible Mid-Infrared Thermal Emitter/Detector Slab Design Using Optical Tamm-States. Materials, 2019, 12, 929.	1.3	6
1397	Silicon nano-cavity coupled metallo-dielectric colloidal crystals for narrow-band absorbers. Optical Materials, 2019, 91, 58-61.	1.7	5
1398	Insulating plasmonic photothermal heat of Ag nanoparticles by a thin carbon shell. Journal of Alloys and Compounds, 2019, 791, 380-384.	2.8	13
1399	Sensitivity-Enhanced Fiber Plasmonic Sensor Utilizing Molybdenum Disulfide Nanosheets. Journal of Physical Chemistry C, 2019, 123, 10536-10543.	1.5	18
1400	Tuning Multiple Fano Resonances for On-Chip Sensors in a Plasmonic System. Sensors, 2019, 19, 1559.	2.1	40
1401	Characterization of dielectric function for metallic thin films based on ellipsometric parameters and reflectivity. Physica Scripta, 2019, 94, 085802.	1.2	10
1402	A Simple and High-performance Platform for Refractive Index Sensing based on Plasmonic Metal Disks on a Metal Mirror. IOP Conference Series: Materials Science and Engineering, 2019, 484, 012030.	0.3	0
1403	From Singleâ€Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces. Advanced Materials, 2019, 31, e1802458.	11.1	127
1404	Recent progress in angle-insensitive narrowband and broadband metamaterial absorbers. EPJ Applied Metamaterials, 2019, 6, 12.	0.8	15
1405	Ultrabroadband metamaterial absorbers based on ionic liquids. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	20
1406	High-efficiency of infrared absorption by using composited metamaterial nanotubes. Applied Physics Letters, 2019, 114, .	1.5	40
1407	A Route to Unusually Broadband Plasmonic Absorption Spanning from Visible to Mid-infrared. Plasmonics, 2019, 14, 1269-1281.	1.8	8
1408	Ultra-narrow band perfect metamaterial absorber based on dielectric-metal periodic configuration. Optical Materials, 2019, 89, 308-315.	1.7	29
1409	Largeâ€Scale Plasmonic Nanodisk Structures for a High Sensitivity Biosensing Platform Fabricated by Transfer Nanoprinting. Advanced Optical Materials, 2019, 7, 1801269.	3.6	32
1410	Diatom Frustuleâ€Inspired Metamaterial Absorbers: The Effect of Hierarchical Pattern Arrays. Advanced Functional Materials, 2019, 29, 1809029.	7.8	14
1411	Perfect Absorption of Light. , 2019, , 587-643.		2

#	Article	IF	CITATIONS
1412	Active Plasmonic Colloid-to-Film-Coupled Cavities for Tailored Light–Matter Interactions. Journal of Physical Chemistry C, 2019, 123, 6745-6752.	1.5	8
1413	Tunable selective plasmonic angle-large metamaterial absorber. , 2019, , .		0
1414	An Ultra-Thin Polarization Insensitive Microwave Absorber with a Transmission Window. , 2019, , .		1
1415	Terahertz Microfluidic Biosensing Platform Based on Intense Wave-matter-interaction Channels. , 2019, , .		0
1416	A Low Permittivity Metamaterial on a Glass Substrate for Fabricating an Atomic Vapor Cell. , 2019, , .		1
1417	Nanoplasmonic Quasi Crystal Metascreen Optimized for Efficient Light Absorption. , 2019, , .		0
1418	Small-period Ultra-broadband Long-wavelength Infrared Metamaterial Absorber. , 2019, , .		0
1419	Ultra-narrow-band Polarization-sensitive Perfect Absorber on Metamaterial. , 2019, , .		0
1420	Tuning optical properties of metasurface via piezoelectric effect. IET Optoelectronics, 2019, 13, 134-138.	1.8	5
1421	Wavelength-selective, tunable and switchable plasmonic perfect absorbers based on phase change materials Ge ₂ Sb ₂ Te ₅ . Europhysics Letters, 2019, 128, 67001.	0.7	16
1422	Ultra Broadband Curved Pyramidal Absorber Metamaterial in the UHF/SHF Region. , 2019, , .		1
1423	Independent tunable multi-band absorbers based on molybdenum disulfide metasurfaces. Physical Chemistry Chemical Physics, 2019, 21, 24132-24138.	1.3	12
1424	High-efficiency and ultrabroadband flexible absorbers based on transversely symmetrical multi-layer structures. AIP Advances, 2019, 9, .	0.6	16
1425	Symmetry-broken square silicon patches for ultra-narrowband light absorption. Scientific Reports, 2019, 9, 17477.	1.6	14
1426	A Mid-Infrared Narrowband Absorber Based on a Subwavelength Fine-Structured Silicon–Gold Metagrating. Applied Sciences (Switzerland), 2019, 9, 5022.	1.3	5
1427	Fabrication and Characterization of a Metallic–Dielectric Nanorod Array by Nanosphere Lithography for Plasmonic Sensing Application. Nanomaterials, 2019, 9, 1691.	1.9	80
1428	Damage analysis of a perfect broadband absorber by a femtosecond laser. Scientific Reports, 2019, 9, 15880.	1.6	5
1429	Dynamically Tunable Dual-Frequency Terahertz Absorber Based on Graphene Rings. IEEE Photonics Journal, 2019, 11, 1-8.	1.0	10

#	Article	IF	CITATIONS
1430	X-Shaped Metamaterial Biosensor Combined with Microfluidic System for Different IPA Concentration Measurement. , 2019, , .		0
1431	A hollow rectangular plasmonic absorber for nano biosensing applications. Optik, 2019, 176, 14-23.	1.4	28
1432	Analysis of Dual-Core Photonic Crystal Fiber Based on Surface Plasmon Resonance Sensor with Segmented Silver Film. Plasmonics, 2019, 14, 685-693.	1.8	28
1433	Hierarchical Metamaterials for Multispectral Camouflage of Infrared and Microwaves. Advanced Functional Materials, 2019, 29, 1807319.	7.8	154
1434	An Ultra-Broadband Terahertz Absorber Based on Coplanar Graphene and Gold Hybridized Metasurface. Plasmonics, 2019, 14, 1057-1061.	1.8	11
1435	Surface current confinement in circular ring optical antennas and its enhancement effect to the photoresponse of longwave infrared photodetectors. Journal Physics D: Applied Physics, 2019, 52, 095103.	1.3	0
1436	Fano-like resonance in large-area magnetic metamaterials fabricated by the nanoimprint technique. Applied Physics Express, 2019, 12, 025008.	1.1	2
1437	Hybrid Metal-Semiconductor Meta-Surface Based Photo-Electronic Perfect Absorber. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-7.	1.9	25
1438	Triple band ultrathin polarization insensitive metamaterial absorber for defense, explosive detection and airborne radar applications. Microwave and Optical Technology Letters, 2019, 61, 89-95.	0.9	26
1439	Ultraâ€Narrowband Metamaterial Absorbers for High Spectral Resolution Infrared Spectroscopy. Advanced Optical Materials, 2019, 7, 1801236.	3.6	91
1440	High chemical resistance and Raman enhancement in Ag/Al2O3 core-shell plasmonic nanostructures tailored by atomic layer deposition. Materials Chemistry and Physics, 2019, 223, 441-446.	2.0	9
1441	Subwavelength Artificial Structures: Opening a New Era for Engineering Optics. Advanced Materials, 2019, 31, e1804680.	11.1	156
1442	Plasmonic multi channel filter based on split ring resonators: Application to photothermal therapy. Photonics and Nanostructures - Fundamentals and Applications, 2019, 33, 21-28.	1.0	40
1443	Fabrication of multi-walled carbon-nanotube-grafted polyvinyl-chloride composites with high solar-thermal-conversion performance. Composites Science and Technology, 2019, 170, 77-84.	3.8	11
1444	Narrowband and Full-Angle Refractive Index Sensor Based on a Planar Multilayer Structure. IEEE Sensors Journal, 2019, 19, 2924-2930.	2.4	23
1445	Material scaling and frequency-selective enhancement of near-field radiative heat transfer for lossy metals in two dimensions via inverse design. Physical Review B, 2019, 99, .	1.1	23
1446	Plasmonic absorber and nanosensor assisted by metal films coupled with hexagonal holes array. Optik, 2019, 181, 115-122.	1.4	3
1447	A survey of theoretical models for terahertz electromagnetic metamaterial absorbers. Sensors and Actuators A: Physical, 2019, 287, 21-28.	2.0	52

#	Article	IF	CITATIONS
1448	Enhanced quantum dots spontaneous emission with metamaterial perfect absorbers. Applied Physics Letters, 2019, 114, 021103.	1.5	8
1449	Directing Energy into a Subwavelength Nonresonant Metasurface across the Visible Spectrum. ACS Applied Energy Materials, 2019, 2, 1155-1161.	2.5	2
1450	Large-Area Broadband Near-Perfect Absorption from a Thin Chalcogenide Film Coupled to Gold Nanoparticles. ACS Applied Materials & amp; Interfaces, 2019, 11, 5176-5182.	4.0	24
1451	Plasmonic absorption enhancement in graphene circular and elliptical disk arrays. Materials Research Express, 2019, 6, 045807.	0.8	22
1452	Synthetical dispersion engineering in plasmonic metamaterial absorber for broadband absorption enhancement. Journal Physics D: Applied Physics, 2019, 52, 085103.	1.3	15
1453	The quest for perfect electromagnetic absorber: a review. International Journal of Microwave and Wireless Technologies, 2019, 11, 151-167.	1.5	30
1454	Photonic Microcavity-Enhanced Magnetic Plasmon Resonance of Metamaterials for Sensing Applications. IEEE Photonics Technology Letters, 2019, 31, 113-116.	1.3	42
1455	Tunable dual-band perfect metamaterial absorber based on a graphene-SiC hybrid system by multiple resonance modes. Journal Physics D: Applied Physics, 2019, 52, 015104.	1.3	46
1456	Dual-band perfect light absorber in visible region based on cylinder silicon resonator. Optik, 2019, 179, 1084-1090.	1.4	9
1457	Design of a polarization-insensitive triple-band metamaterial absorber. Optics Communications, 2019, 432, 65-70.	1.0	48
1458	Broadband Metamaterial Absorbers. Advanced Optical Materials, 2019, 7, 1800995.	3.6	404
1459	Theoretical Design of Plasmonic Refractive Index Sensor Based on the Fixed Band Detection. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-6.	1.9	10
1460	Near-infrared multi-narrowband absorber based on plasmonic nanopillar metamaterial. Optics Communications, 2020, 458, 124637.	1.0	27
1461	High-Order Resonance in a Multiband Metamaterial Absorber. Journal of Electronic Materials, 2020, 49, 1677-1688.	1.0	5
1462	Ultra-narrowband mid-infrared absorber based on Mie resonance in dielectric metamaterials. Canadian Journal of Physics, 2020, 98, 484-487.	0.4	4
1463	Recent progress in perfect absorbers by utilizing metamaterials. Journal of Electromagnetic Waves and Applications, 2020, 34, 1338-1371.	1.0	14
1464	Tunable multichannel optical absorber based on coupling effects of optical Tamm states in metal-photonic crystal heterostructure-metal structure. Optics Communications, 2020, 457, 124688.	1.0	19
1465	Ultra-sharp Plasmonic Super-cavity Resonance and Light Absorption. Plasmonics, 2020, 15, 11-19.	1.8	3

ARTICLE IF CITATIONS Comparative Study of Regulations of Devices for Aesthetic Purposes: US, European Union, China, and 1466 1.0 0 Taiwan. Journal of Medical and Biological Engineering, 2020, 40, 101-111. Broadband mid-infrared perfect absorber using fractal Gosper curve. Journal Physics D: Applied 1467 1.3 Physics, 2020, 53, 105106. Enhanced absorptivity based on nonreciprocal effect of CdTe and excitation of surface polaritons. 1468 2.2 1 Optics and Laser Technology, 2020, 124, 105962. Development of a tunable terahertz absorber based on temperature control. Microwave and Optical 1469 0.9 Technology Letters, 2020, 62, 1<u>681-1685.</u> Ultra-Broadband and Omnidirectional Perfect Absorber Based on Copper Nanowire/Carbon Nanotube 1470 3.2 12 Hierarchical Structure. ACS Photonics, 2020, 7, 366-374. Heavily Doped Semiconductor Metamaterials for Midâ€Infrared Multispectral Perfect Absorption and 1471 3.6 Thermal Emission. Advanced Optical Materials, 2020, 8, 1901502. Nanoplasmonic Light Trapping Metascreen Encompassing Spectrally Dense Region of Solar Spectrum. 1472 1.8 2 Plasmonics, 2020, 15, 861-867. Direct Coupling Strategy in Plasmonic Nanocircuits for Low Loss and Easy Fabrication. Plasmonics, 1.8 2020, 15, 761-767. Electrically Tunable Metasurface with Independent Frequency and Amplitude Modulations. ACS 1474 3.2 202 Photonics, 2020, 7, 265-271. Double-wavelength nanolaser based on strong coupling of localized and propagating surface 1.3 plasmon. Journal Physics D: Applied Physics, 2020, 53, 135108. Broadband absorption of nanostructured stainless steel surface fabricated by nanosecond laser 1476 1.3 15 irradiation. Nanotechnology, 2020, 31, 175301. Enhancing the absorption of a thin germanium slab with periodical patterning. Journal of Materials 1.1 Science: Materials in Electronics, 2020, 31, 5872-5878. Highly Efficient Semiconductor-Based Metasurface for Photoelectrochemical Water Splitting: Broadband Light Perfect Absorption with Dimensions Smaller than the Diffusion Length. Plasmonics, 1478 1.8 3 2020, 15, 829-839. Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber. Journal of Materials Science, 2020, 55, 3462-3469. 1.7 Lithographyâ€Free Random Bismuth Nanostructures for Full Solar Spectrum Harvesting and 1480 3.6 26 Midâ€Infrared Sensing. Advanced Optical Materials, 2020, 8, 1901203. An ultra-broadband, polarization and angle-insensitive metamaterial light absorber. Journal Physics D: 1481 23 Applied Physics, 2020, 53, 095106. Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings. Materials Today, 1482 8.3 271 2020, 32, 108-130. Functional Midâ€Infrared Polaritonics in van der Waals Crystals. Advanced Optical Materials, 2020, 8, 1483 1901194.

#	Article	IF	CITATIONS
1484	Narrowband absorber based on magnetic dipole resonances in two-dimensional metal–dielectric grating for sensing. Optics Communications, 2020, 459, 124946.	1.0	27
1485	Plasmonic Broadband Perfect Absorber for Visible Light Solar Cells Application. Plasmonics, 2020, 15, 573-580.	1.8	22
1486	Plasmonic sensors with an ultra-high figure of merit. Nanotechnology, 2020, 31, 115208.	1.3	30
1487	A Tunable Polymer–Metal Based Antiâ€Reflective Metasurface. Macromolecular Rapid Communications, 2020, 41, e1900415.	2.0	9
1488	Dynamically switchable dual-band mid-infrared absorber with phase-change material Ge2Sb2Te5. Optical Materials, 2020, 99, 109581.	1.7	12
1489	Mid-infrared narrow band plasmonic perfect absorber for vibrational spectroscopy. Sensors and Actuators A: Physical, 2020, 301, 111757.	2.0	30
1490	Metastructure-inspired ultraviolet and blue light filter. AIP Advances, 2020, 10, 105015.	0.6	1
1491	On the energy modulation of daytime radiative coolers: A review on infrared emissivity dynamic switch against overcooling. Solar Energy, 2020, 209, 278-301.	2.9	66
1492	Hybridization of plasmonic and dielectric metasurfaces with asymmetric absorption enhancement. Journal of Applied Physics, 2020, 128, 133101.	1.1	11
1493	Broadband Adjustable Terahertz Absorption in Series Asymmetric Oval-Shaped Graphene Pattern. Frontiers in Physics, 2020, 8, .	1.0	5
1494	High sensitivity refractive index and temperature sensor based on semiconductor metamaterial perfect absorber in the terahertz band. Optics Communications, 2020, 463, 125411.	1.0	49
1495	Introduction to quantum plasmonic sensing. , 2020, , 67-112.		0
1496	Plasmonâ€Induced Optical Magnetism in an Ultrathin Metal Nanosphereâ€Based Dimerâ€onâ€Film Nanocavity. Laser and Photonics Reviews, 2020, 14, 2000068.	4.4	15
1497	Hybridization-induced resonances with high-quality factor in a plasmonic chipscale ring-disk nanocavity. Waves in Random and Complex Media, 2021, 31, 2327-2336.	1.6	5
1498	A Wide Incident Angle, Ultrathin, Polarization-Insensitive Metamaterial Absorber for Optical Wavelength Applications. IEEE Access, 2020, 8, 129525-129541.	2.6	35
1499	A Narrow-Band Multi-Resonant Metamaterial in Near-IR. Materials, 2020, 13, 5140.	1.3	9
1500	Magnetic plasmon resonances in nanostructured topological insulators for strongly enhanced light–MoS2 interactions. Light: Science and Applications, 2020, 9, 191.	7.7	52
1501	Demonstration of > 2ï€ reflection phase range in optical metasurfaces based on detuned gap-surface plasmon resonators. Scientific Reports, 2020, 10, 19031.	1.6	11

#	Article	IF	CITATIONS
1502	Hybrid perfect metamaterial absorber for microwave spin rectification applications. Scientific Reports, 2020, 10, 19240.	1.6	8
1503	Metamaterial's Acceptable Level of Wrecked Meta-pattern. Journal of the Korean Physical Society, 2020, 77, 1016-1020.	0.3	1
1504	Infrared thermal source or perfect absorber sensor based on silver 2D grating. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	5
1505	Perfect Absorption by an Atomically Thin Crystal. Physical Review Applied, 2020, 14, .	1.5	29
1506	High-Q dual-band graphene absorbers by selective excitation of graphene plasmon polaritons: Circuit model analysis. Optics and Laser Technology, 2020, 132, 106483.	2.2	24
1507	Three-Dimensional Grids of Optimized Ti-Compounds on Si for Ultra-Wideband Optical Absorption. ACS Applied Materials & Interfaces, 2020, 12, 39826-39833.	4.0	1
1508	Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure. Chinese Physics Letters, 2020, 37, 067801.	1.3	10
1509	Optical Carbon Dioxide Detection in the Visible Down to the Single Digit ppm Range Using Plasmonic Perfect Absorbers. ACS Sensors, 2020, 5, 2628-2635.	4.0	10
1510	Aluminium metal–insulator–metal structure fabricated by the bottom-up approach. Nanoscale Advances, 2020, 2, 2271-2275.	2.2	6
1511	Design and parametric analysis of a wide-angle polarization-insensitive metamaterial absorber with a star shape resonator for optical wavelength applications. Results in Physics, 2020, 18, 103259.	2.0	52
1512	Metasurfaces for Enhancing Light Absorption in Thermoelectric Photodetectors. ACS Photonics, 2020, 7, 2468-2473.	3.2	20
1513	Tunable broadband terahertz absorber using a single-layer square graphene patch with fourfold rotationally symmetric groove. Optical Materials, 2020, 109, 110235.	1.7	10
1514	All-Optical Manipulation of Magnetization in Ferromagnetic Thin Films Enhanced by Plasmonic Resonances. Nano Letters, 2020, 20, 6437-6443.	4.5	21
1515	New compact of absorber thermal surface. Optical and Quantum Electronics, 2020, 52, 1.	1.5	0
1516	High-Sensitive Gas-Mixture Detection Using Localized Surface Plasmon Resonance Behavior in an Optimized MDM Array. IEEE Sensors Journal, 2020, 20, 13444-13450.	2.4	5
1517	Random Möbius maps: Distribution of reflection in non-Hermitian one-dimensional disordered systems. Physical Review E, 2020, 102, 022120.	0.8	0
1518	Self-assembled metamaterial perfect absorbers at visible wavelengths using core–shell Au@SiO ₂ meta-atoms. Journal of Materials Chemistry C, 2020, 8, 12876-12885.	2.7	14
1519	All‣olutionâ€Processed Ultrahigh Broadband and Wideâ€Angle Perfect Absorber Based on Mxene–Gold Nanoparticles. Advanced Optical Materials, 2020, 8, 2000447.	3.6	20

#	Article	IF	CITATIONS
1520	Perfectly absorbing dielectric metasurfaces for photodetection. APL Photonics, 2020, 5, .	3.0	33
1521	Narrowband and flexible perfect absorber based on a thin-film nano-resonator incorporating a dielectric overlay. Scientific Reports, 2020, 10, 17727.	1.6	22
1522	Nonmetallic Broadband Visible-Light Absorbers With Polarization and Incident Angle Insensitivity. IEEE Photonics Journal, 2020, 12, 1-7.	1.0	1
1523	Highly Sensitive Localized Surface Plasmon Polariton Based D-Type Twin-Hole Photonic Crystal Fiber Microbiosensor: Enhanced Scheme for SERS Reinforcement. Sensors, 2020, 20, 5248.	2.1	14
1524	Grating-Coupled Surface Plasmon-Polariton Sensing at a Flat Metal–Analyte Interface in a Hybrid-Configuration. ACS Applied Materials & Interfaces, 2020, 12, 46519-46529.	4.0	62
1525	Toroidal Metaphotonics and Metadevices. Laser and Photonics Reviews, 2020, 14, 1900326.	4.4	95
1526	A general method for analyzing arbitrary planar negative-refractive-index multilayer slab optical waveguide structures. Scientific Reports, 2020, 10, 14964.	1.6	3
1527	Robust Conformal Perfect Absorber Involving Lossy Ultrathin Film. Photonics, 2020, 7, 57.	0.9	1
1528	Ultrabroadband Absorption Enhancement via Hybridization of Localized and Propagating Surface Plasmons. Nanomaterials, 2020, 10, 1625.	1.9	15
1529	Compact Plasmonic Structure Induced Mode Excitation and Fano Resonance. Plasmonics, 2020, 15, 2177-2183.	1.8	9
1530	Metal–Organic Frameworkâ€Surfaceâ€Enhanced Infrared Absorption Platform Enables Simultaneous Onâ€Chip Sensing of Greenhouse Gases. Advanced Science, 2020, 7, 2001173.	5.6	71
1531	Ultra-broadband terahertz absorber based on a multilayer graphene metamaterial. Journal of Applied Physics, 2020, 128, .	1.1	64
1532	Surface-plasmon-coupled optical force sensors based on metal–insulator–metal metamaterials with movable air gap. Scientific Reports, 2020, 10, 14807.	1.6	17
1533	Nanostructured Color Filters: A Review of Recent Developments. Nanomaterials, 2020, 10, 1554.	1.9	15
1534	Nanometer-Scale Heterogeneous Interfacial Sapphire Wafer Bonding for Enabling Plasmonic-Enhanced Nanofluidic Mid-Infrared Spectroscopy. ACS Nano, 2020, 14, 12159-12172.	7.3	54
1535	Polarization independent septuple-band plasmonic perfect absorber based on hexagonal nanorods structure. Optik, 2020, 224, 165526.	1.4	2
1536	Nano-pillars metasurface modelled for perfect absorption at specific wavelengths in infrared spectral regime. Solid State Electronics Letters, 2020, 2, 146-150.	1.0	4
1537	Reduced resonance line-width and enhanced figure of merit in Ag/Si/SiO2 nanopillar array sensors. Results in Physics, 2020, 19, 103612.	2.0	6

#	Article	IF	CITATIONS
1538	Double-humped phonon resonance in doubly resonant vibration systems: Phonon metamaterials analogy with doubly resonant electromagnetic structures. Physical Review B, 2020, 102, .	1.1	0
1539	Narrowband Light Reflection Resonances from Waveguide Modes for High-Quality Sensors. Nanomaterials, 2020, 10, 1966.	1.9	9
1540	Controlling angular dispersions in optical metasurfaces. Light: Science and Applications, 2020, 9, 76.	7.7	95
1541	Enhanced THz absorption of graphene cavity-based electromagnetic metamaterial structures. Journal of Modern Optics, 2020, 67, 547-551.	0.6	7
1542	Temperature Tunable Narrow-Band Terahertz Metasurface Absorber Based on InSb Micro-Cylinder Arrays for Enhanced Sensing Application. IEEE Access, 2020, 8, 82981-82988.	2.6	82
1543	Optically tunable single narrow band all-dielectric terahertz metamaterials absorber. AIP Advances, 2020, 10, 045039.	0.6	8
1544	Graphene-based tunable infrared multi band absorber. Optics Communications, 2020, 474, 126109.	1.0	36
1545	Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization. Applied Physics Reviews, 2020, 7, .	5.5	147
1546	Perfect Narrowband Absorber Based on Patterned Graphene-Silica Multilayer Hyperbolic Metamaterials. Plasmonics, 2020, 15, 1869-1874.	1.8	20
1547	Broadband Terahertz Near-Perfect Absorbers. ACS Applied Materials & Interfaces, 2020, 12, 33352-33360.	4.0	59
1548	Near Zero Index Perfect Metasurface Absorber using Inverted Conformal Mapping. Scientific Reports, 2020, 10, 9731.	1.6	8
1549	Scalable spectrally selective mid-infrared meta-absorbers for advanced radiative thermal engineering. Physical Chemistry Chemical Physics, 2020, 22, 13965-13974.	1.3	7
1550	Silicon-Au nanowire resonators for high-Q multiband near-infrared wave absorption. Nanotechnology, 2020, 31, 375201.	1.3	3
1551	Design of a multilayer nano-antenna as a hyperbolic metamaterial with Fano response for optical sensing. Optical and Quantum Electronics, 2020, 52, 1.	1.5	10
1552	Bowtie Nanoantenna Array Integrated With Artificial Impedance Surfaces for Realizing High Field Enhancement and Perfect Absorption Simultaneously. IEEE Access, 2020, 8, 99858-99869.	2.6	10
1553	Dual-band microwave resonators based on cross hollow structures for refractive index sensing. Physica Scripta, 2020, 95, 085504.	1.2	8
1554	Synergistic plasmon resonance coupling and light capture in ordered nanoarrays as ultrasensitive and reproducible SERS substrates. Nanoscale, 2020, 12, 18056-18066.	2.8	33
1555	Inversion Method Characterization of Graphene-Based Coordination Absorbers Incorporating	1.9	10

#	Article	IF	CITATIONS
1556	Cascaded Nanorod Arrays for Ultrabroadband, Omnidirectional and Polarization-Insensitive Absorption. Applied Sciences (Switzerland), 2020, 10, 3878.	1.3	6
1557	3-D Printed Swastika-Shaped Ultrabroadband Water-Based Microwave Absorber. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 821-825.	2.4	53
1558	Ultra high-sensitivity and tunable dual-band perfect absorber as a plasmonic sensor. Optics and Laser Technology, 2020, 127, 106201.	2.2	58
1559	High-performance plasmonic oblique sensors for the detection of ions. Nanotechnology, 2020, 31, 285501.	1.3	13
1560	Thermally tunable terahertz metasurface absorber based on all dielectric indium antimonide resonator structure. Optical Materials, 2020, 102, 109801.	1.7	43
1561	Complete trapping of light with asymmetric plasmonic resonator arrays. Applied Physics Express, 2020, 13, 042007.	1.1	1
1562	Extending Absorption Edge through the Hybrid Resonator-Based Absorber with Wideband and Near-Perfect Absorption in Visible Region. Materials, 2020, 13, 1470.	1.3	24
1563	Narrowband, infrared absorbing metasurface using polystyrene thin films. Journal of Applied Physics, 2020, 127, .	1.1	4
1564	Radiative and Non-radiative Surface Plasmon Resonance: Comparison of Real-Time Sensing Performance. Plasmonics, 2020, 15, 1351-1358.	1.8	5
1565	Saturable plasmonic metasurfaces for laser mode locking. Light: Science and Applications, 2020, 9, 50.	7.7	50
1566	New scattering features of quaternionic point interaction in non-Hermitian quantum mechanics. Journal of Mathematical Physics, 2020, 61, .	0.5	13
1567	Broadband electrically tunable VO ₂ ‑Metamaterial terahertz switch with suppressed reflection. Microwave and Optical Technology Letters, 2020, 62, 2782-2790.	0.9	14
1568	Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nature Communications, 2020, 11, 1389.	5.8	253
1569	Black Metals: Optical Absorbers. Micromachines, 2020, 11, 256.	1.4	14
1570	Dual-Axis Metasurface Strain Sensor Based on Polarization–Phase-Deformation Relationship. Sensors, 2020, 20, 1307.	2.1	1
1571	A Triple-Band Hybridization Coherent Perfect Absorber Based on Graphene Metamaterial. Applied Sciences (Switzerland), 2020, 10, 1750.	1.3	16
1572	Three-dimensional pyramid metamaterial with tunable broad absorption bandwidth. AIP Advances, 2020, 10, 035125.	0.6	13
1573	Few-layer metasurfaces with arbitrary scattering properties. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	16

ARTICLE IF CITATIONS # Ultrahigh-Q and Polarization-Independent Terahertz Metamaterial Perfect Absorber. Plasmonics, 2020, 1574 1.8 16 15, 1943-1947. Nonlinear metamaterial absorbers enabled by photonic doping of epsilon-near-zero metastructures. 1.1 Physical Review B, 2020, 102, . Optimized Multilayer Structures With Ultrabroadband Near-Perfect Absorption. IEEE Photonics 1576 1.0 5 Journal, 2020, 12, 1-10. Metamaterial and nanomaterial electromagnetic wave absorbers: structures, properties and applications. Journal of Materials Chemistry C, 2020, 8, 12768-12794. Electromechanically Rotatable Cross-Shaped Mid-IR Metamaterial. Crystals, 2020, 10, 431. 1578 1.0 11 Nanocomposite engineered carbon fabric-mat as a passive metamaterial for stealth application. Journal 2.8 of Alloys and Compounds, 2020, 848, 155771. Perfect Absorption Efficiency Circular Nanodisk Array Integrated with a Reactive Impedance Surface 1580 1.9 5 with High Field Enhancement. Nanomaterials, 2020, 10, 258. Intrinsic negative TCR of superblack carbon aerogel films and their ultrabroad band response from 5.4 UV to microwave. Carbon, 2020, 161, 590-598. 1582 Broadband microwave coding metamaterial absorbers. Scientific Reports, 2020, 10, 1810. 1.6 36 Subâ€10 nm Au–Ag Heterogeneous Plasmonic Nanogaps. Advanced Materials Interfaces, 2020, 7, 1902021. 1.9 Lab-on-a-Chip Systems for Aptamer-Based Biosensing. Micromachines, 2020, 11, 220. 77 1584 1.4 Tungsten-Coated Silicon Nanopillars as Ultra-Broadband and Thermally Robust Solar Harvesting 1586 2.4 Materials. ACS Applied Nano Materials, 2020, 3, 2430-2437. Dualâ€Region Resonant Meander Metamaterial. Advanced Optical Materials, 2020, 8, 1901658. 1587 3.6 6 Quasi-3D Perfect Absorber Based on the Self-Similar Parasitic Elements as an Optical Sensor with 1588 1.0 Tunable Attributes for Near-Infrared Application. Journal of Electronic Materials, 2020, 49, 3269-3281. Enhance of the absorption and bandwidth based on a ultra-thin tungsten structure metamaterial 1589 2.2 15 absorber in 400–1500Ânm range. Optics and Laser Technology, 2020, 127, 106142. Active control of narrowband total absorption based on terahertz hybrid Dirac semimetal-graphene 1590 metamaterials. Journal Physics D: Applied Physics, 2020, 53, 205106. Opto-Electronic Refractometric Sensor Based on Surface Plasmon Resonances and the Bolometric 1591 1.35 Effect. Applied Sciences (Switzerland), 2020, 10, 1211. Linear and Circular Dichroism in Graphene-Based Reflectors for Polarization Control. Physical 1592 1.5 44 Review Applied, 2020, 13, .

#	Article	IF	CITATIONS
1593	Ultra-narrowband dielectric metamaterial absorber with ultra-sparse nanowire grids for sensing applications. Scientific Reports, 2020, 10, 1480.	1.6	44
1594	Modulation of single-band to multi-band based on tunable metamaterial absorber in terahertz range. Infrared Physics and Technology, 2020, 106, 103264.	1.3	6
1595	Broadband Visible and Near-Infrared Absorbers Implemented with Planar Nanolayered Stacks. ACS Applied Nano Materials, 2020, 3, 2978-2986.	2.4	25
1596	Low-Cost Hydrogen Sensor in the ppm Range with Purely Optical Readout. ACS Sensors, 2020, 5, 978-983.	4.0	43
1597	Tailoring the plasmonic Fano resonance in metallic photonic crystals. Nanophotonics, 2020, 9, 523-531.	2.9	14
1598	Penta-band terahertz light absorber using five localized resonance responses of three patterned resonators. Results in Physics, 2020, 16, 102930.	2.0	66
1599	A Highly Efficient Visible Absorber Coating on a Curved Substrate. Coatings, 2020, 10, 71.	1.2	0
1600	A Bilayer Plasmonic Metasurface for Polarizationâ€Insensitive Bidirectional Perfect Absorption. Advanced Theory and Simulations, 2020, 3, 1900216.	1.3	12
1601	A Tunable Metasurface with Switchable Functionalities: From Perfect Transparency to Perfect Absorption. Advanced Optical Materials, 2020, 8, 1901548.	3.6	160
1602	Graphene Plasmonic Crystal: Two-Dimensional Gate-Controlled Chemical Potential for Creation of Photonic Bandgap. Plasmonics, 2020, 15, 975-983.	1.8	6
1603	Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material. Nanoscale, 2020, 12, 5374-5379.	2.8	92
1604	Tunable broadband terahertz metamaterial absorber using multi-layer black phosphorus and vanadium dioxide. Journal Physics D: Applied Physics, 2020, 53, 145105.	1.3	30
1605	Multiple Resonance Metamaterial Emitter for Deception of Infrared Emission with Enhanced Energy Dissipation. ACS Applied Materials & Interfaces, 2020, 12, 8862-8869.	4.0	33
1606	Monolithic Metal Dimer-on-Film Structure: New Plasmonic Properties Introduced by the Underlying Metal. Nano Letters, 2020, 20, 2087-2093.	4.5	102
1607	Optical absorber based on self-similar cylindrical element for detecting optical material. Optical and Quantum Electronics, 2020, 52, 1.	1.5	11
1608	A water hybrid graphene metamaterial absorber with broadband absorption. Optics Communications, 2020, 463, 125394.	1.0	32
1609	Design Principles for Sensitivity Optimization in Plasmonic Hydrogen Sensors. ACS Sensors, 2020, 5, 917-927.	4.0	39
1610	Colloid templated semiconductor meta-surface for ultra-broadband solar energy absorber. Solar Energy, 2020, 198, 194-201.	2.9	31

ARTICLE IF CITATIONS # Infrared Propagating Electromagnetic Surface Waves Excited by Induction. MRS Advances, 2020, 5, 0.5 0 1611 1827-1836. The role of Ge2Sb2Te5 in enhancing the performance of functional plasmonic devices. Materials Today Physics, 2020, 12, 100178. Hartman effect from layered PT-symmetric system. European Physical Journal Plus, 2020, 135, 1. 1613 1.2 4 Design of Extremely Sensitive Refractive Index Sensors in Infrared for Blood Glucose Detection. IEEE 1614 2.4 Sensors Journal, 2020, 20, 4628-4634. Perfect absorbers based on dielectric optical mirrors and ultrathin absorptive films. Applied Physics 1615 1.1 3 Express, 2020, 13, 032001. Application of a Terahertz System Combined with an X-Shaped Metamaterial Microfluidic Cartridge. Micromachines, 2020, 11, 74. 1.4 Ultrafast Frequency Shift of Electromagnetically Induced Transparency in Terahertz Metaphotonic 1617 4.4 31 Devices. Laser and Photonics Reviews, 2020, 14, 1900338. Narrowband Perfect Absorber Based on Dielectric-Metal Metasurface for Surface-Enhanced Infrared 1.3 Sensing. Applied Sciences (Switzerland), 2020, 10, 2295. High-<i>Q</i> All-Dielectric Metasurface: Super and Suppressed Optical Absorption. ACS Photonics, 1619 3.2 137 2020, 7, 1436-1443. Compact Mid-Infrared Gas Sensing Enabled by an All-Metamaterial Design. Nano Letters, 2020, 20, 4.5 4169-4176. Optical Metasurfaces Are Coming of Age: Short- and Long-Term Opportunities for Commercial 1621 3.2 35 Applications. ACS Photonics, 2020, 7, 1323-1354. Optically Tunable Triple-Band Perfect Absorber for Nonlinear Optical Liquids Sensing. IEEE Sensors 2.4 Journal, 2020, 20, 10130-10137. Controlling wideband absorption and electromagnetically induced transparency via a phase change 1623 0.7 6 material. Europhysics Letters, 2020, 129, 57003. Coupled Mode Demonstration of Slow-Light Plasmonic Sensor Based on Metasurface at Near-Infrared 1624 1.8 Region. Plasmonics, 2020, 15, 1389-1394. High-Performance Enhancement of a GaAs Photodetector Using a Plasmonic Grating. Plasmonics, 2020, 1625 1.8 14 15, 1377-1387. Broadband selective tailoring of spectral features with multiple-scale and multi-material metasurfaces. Optics Communications, 2020, 467, 125691. Design of dual-band polarization controllable metamaterial absorber at terahertz frequency. Results 1627 2.0 16 in Physics, 2020, 17, 103077. Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film 193 structure. Solar Energy Materials and Solar Cells, 2020, 211, 110535.

ARTICLE IF CITATIONS Narrowband perfect terahertz absorber based on polar-dielectrics metasurface*. Chinese Physics B, 1629 0.7 6 2020, 29, 054210. Ultra-Broadband Infrared Absorbers Using Iron Thin Layers. IEEE Access, 2020, 8, 43407-43412. 2.6 Detailed Experiment-Theory Comparison of Mid-Infrared Metasurface Perfect Absorbers. 1631 1.4 22 Micromachines, 2020, 11, 409. An Electrically Tunable Dual-Wavelength Refractive Index Sensor Based on a Metagrating Structure Integrating Epsilon-Near-Zero Materials. Sensors, 2020, 20, 2301. Ultra-broadband wide-angle terahertz absorber realized by a doped silicon metamaterial. Optics 1633 1.0 35 Communications, 2020, 471, 125835. Diffractive metalens: from fundamentals, practical applications to current trends. Advances in Physics: X, 2020, 5, 1742584. 1634 1.5 Multiple Fano resonances in metal–insulator–metal waveguide with umbrella resonator coupled 1635 0.7 29 with metal baffle for refractive index sensing*. Chinese Physics B, 2020, 29, 067303. Tunable Fano Resonance and Enhanced Sensing in a Simple Au/TiO2 Hybrid Metasurface. Nanomaterials, 1.9 2020, 10, 687. Background-free metamaterial sensor based on resonant asymmetric transmission. Photonics and 1637 1.0 11 Nanostructures - Fundamentals and Applications, 2020, 40, 100792. Highly Sensitive Reconfigurable Plasmonic Metasurface with Dual-Band Response for Optical Sensing 1.0 and Switching in the Mid-Infrared Spectrum. Journal of Electronic Materials, 2021, 50, 120-128. Analytical and Numerical Models of a Highly Sensitive MDM Plasmonic Nano-structure in 1639 7 1.8 Near-infrared Range. Plasmonics, 2021, 16, 413-418. Toroidal Metamaterials. Engineering Materials, 2021, , . 1640 0.3 Wideband graphene-based near-infrared solar absorber using C-shaped rectangular sawtooth 1641 1.3 37 metasurface. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114493. Coherent Chiralâ€Selective Absorption and Wavefront Manipulation in Singleâ€Layer Metasurfaces. 1642 3.6 Advanced Optical Materials, 2021, 9, 2001620. Solutionâ€Processed Allâ€Ceramic Plasmonic Metamaterials for Efficient Solarâ€"Thermal Conversion over 1643 11.1 76 100–727Â°C. Advanced Materials, 2021, 33, e2005074. Farâ&Field Excitation of Acoustic Graphene Plasmons with a Metamaterial Absorber. Advanced 1644 Photonics Research, 2021, 2, 2000066. Narrowband Absorption Platform Based on Graphene and Oblique Incidence in the Infrared Range. 1645 2.7 9 Journal of Lightwave Technology, 2021, 39, 1530-1536. Ultra-broadband spatial light modulation with dual-resonance coupled epsilon-near-zero materials. 1646 5.8 Nano Research, 2021, 14, 2673-2680.

#	Article	IF	CITATIONS
1647	Spectrally Selective Absorbers/Emitters for Solar Steam Generation and Radiative Coolingâ€Enabled Atmospheric Water Harvesting. Global Challenges, 2021, 5, 2000058.	1.8	34
1648	Refractive Index Sensing Utilizing Tunable Polarization Conversion Efficiency With Dielectric Metasurface. Journal of Lightwave Technology, 2021, 39, 682-687.	2.7	7
1649	Graphene-Based Near-IR Plasmonic Wide-angle Broadband Perfect Absorber. Plasmonics, 2021, 16, 293-303.	1.8	1
1650	Independently Tunable Multipurpose Absorber with Single Layer of Metal-Graphene Metamaterials. Materials, 2021, 14, 284.	1.3	6
1651	Metamaterial-Based Broadband Absorber Design. IEEE Transactions on Magnetics, 2022, 58, 1-5.	1.2	8
1652	A wide-angle and TE/TM polarization-insensitive terahertz metamaterial near-perfect absorber based on a multi-layer plasmonic structure. Nanoscale Advances, 2021, 3, 4072-4078.	2.2	14
1653	Coupling Plasmonic System for Efficient Wavefront Control. ACS Applied Materials & Interfaces, 2021, 13, 5844-5852.	4.0	22
1654	Refractory materials and plasmonics based perfect absorbers. Nanotechnology, 2021, 32, 132002.	1.3	16
1655	High Sensing Properties of Magnetic Plasmon Resonance by Strong Coupling in Three-Dimensional Metamaterials. Journal of Lightwave Technology, 2021, 39, 562-565.	2.7	47
1656	Highâ€Q Plasmonic Resonances: Fundamentals and Applications. Advanced Optical Materials, 2021, 9, 2001520.	3.6	98
1657	A wide-angle and ultra-wideband metamaterial absorber based on a cascaded graphite involute windmill blade structure. Journal of Optics (United Kingdom), 2021, 23, 025101.	1.0	0
1658	Freestanding bilayer plasmonic waveguide coupling mechanism for ultranarrow electromagnetic-induced transparency band generation. Scientific Reports, 2021, 11, 1437.	1.6	3
1659	Broadband absorption of infrared dielectric resonators for passive radiative cooling. Journal of Optics (United Kingdom), 2021, 23, 025102.	1.0	7
1660	Infrared metamaterial for surface-enhanced infrared absorption spectroscopy: pushing the frontier of ultrasensitive on-chip sensing. International Journal of Optomechatronics, 2021, 15, 97-119.	3.3	46
1661	High-sensitivity nanophotonic sensors with passive trapping of analyte molecules in hot spots. Light: Science and Applications, 2021, 10, 5.	7.7	40
1662	Impact of the dielectric duty factor on magnetic resonance in Ag-SiO2-Ag magnetic absorber. Optoelectronics Letters, 2021, 17, 5-11.	0.4	1
1663	Recent progresses on metamaterials for optical absorption and sensing: a review. Journal Physics D: Applied Physics, 2021, 54, 113002.	1.3	58
1664	Full-Stokes Polarization Perfect Absorption with Diatomic Metasurfaces. Nano Letters, 2021, 21, 1090-1095.	4.5	78

#	Article	IF	CITATIONS
1665	Engineered nano-sphere array of gold-DNA core–shells and junctions as opto-plasmonic sensors for biodetection. RSC Advances, 2021, 11, 27215-27225.	1.7	3
1666	Integrated and spectrally selective thermal emitters enabled by layered metamaterials. Nanophotonics, 2021, 10, 1285-1293.	2.9	15
1667	Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance. Physical Chemistry Chemical Physics, 2021, 23, 17041-17048.	1.3	219
1669	Transparent broadband microwave metamaterial absorber with thermal insulating and soundproof. Optoelectronics Letters, 2021, 17, 85-89.	0.4	4
1670	Broadening Bandwidths of Few-Layer Absorbers by Superimposing Two High-Loss Resonators. Nanoscale Research Letters, 2021, 16, 26.	3.1	1
1671	An optically transparent broadband metamaterial absorber for radar-infrared bi-stealth. Optical Materials, 2021, 112, 110793.	1.7	39
1672	Phase-change reconfigurable metasurface for broadband, wide-angle, continuously tunable and switchable cloaking. Optics Express, 2021, 29, 5959.	1.7	12
1673	Pole-based analysis of coupled modes in metal–insulator–metal plasmonic structures. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 776.	0.9	2
1674	Ultrabroadband metamaterial absorbers from ultraviolet to near-infrared based on multiple resonances for harvesting solar energy. Optics Express, 2021, 29, 6000.	1.7	38
1675	Wideband Graphene-Based Fractal Absorber and itsÂApplications as Switch and Inverter. Plasmonics, 2021, 16, 1241-1251.	1.8	6
1676	Photonics Empowered Passive Radiative Cooling. Advanced Photonics Research, 2021, 2, 2000106.	1.7	20
1677	A Tunable Metamaterial Absorber Based on Liquid Crystal with the Compact Unit cell and the Wideband Absorption. Liquid Crystals, 2021, 48, 1438-1447.	0.9	25
1678	Surface wave manipulation by plasmonic metasurface based on mode resonance. Scientific Reports, 2021, 11, 3313.	1.6	3
1679	Coupled metamaterial optical resonators for infrared emissivity spectrum modulation. Optics Express, 2021, 29, 5840.	1.7	9
1681	Dynamically controllable terahertz absorber based on a graphene-vanadium dioxide-metal configuration. Superlattices and Microstructures, 2021, 150, 106809.	1.4	5
1682	High-Q perfect absorption induced by the coupling of LSP and SPP modes. Journal of Applied Physics, 2021, 129, .	1.1	5
1683	Broadband tunable terahertz metamaterial absorber based on vanadium dioxide and Fabry-Perot cavity. Optical Materials, 2021, 112, 110803.	1.7	35
1684	Dualâ€band terahertz metamaterial absorber using hexagon graphene structure. Microwave and Optical Technology Letters, 2021, 63, 1797-1802.	0.9	11

#	Article	IF	CITATIONS
1685	Radiative loss control of an embedded silicon perfect absorber in the visible region. Optics Letters, 2021, 46, 805.	1.7	28
1686	A multi-band absorber based on a dual-trident structure for sensing application. Optical and Quantum Electronics, 2021, 53, 1.	1.5	14
1688	Quad-band plasmonic perfect absorber using all-metal nanostructure metasurface for refractive index sensing. Optik, 2021, 229, 166300.	1.4	74
1689	Dualâ€channel glucose concentration sensor based on coupled crossâ€stacked gratings. Microwave and Optical Technology Letters, 2021, 63, 1860-1867.	0.9	0
1690	Interferometric control of magnon-induced nearly perfect absorption in cavity magnonics. Nature Communications, 2021, 12, 1933.	5.8	23
1691	Ultralong phase-correlated networks of plasmonic nanoantennas coherently driven by photonic modes. Applied Materials Today, 2021, 22, 100932.	2.3	6
1692	Coherent Networks of Plasmonic Dipole Domains: Long-Range Optical Coupling of Phase-Correlated Packages of Metallic Nanoparticles. Physical Review Applied, 2021, 15, .	1.5	9
1693	Near-unity broadband omnidirectional emissivity via femtosecond laser surface processing. Communications Materials, 2021, 2, .	2.9	12
1694	Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling. Chinese Physics Letters, 2021, 38, 034201.	1.3	8
1695	Switching between perfect absorption and polarization conversion, based on hybrid metamaterial in the GHz and THz bands. Journal Physics D: Applied Physics, 2021, 54, 234003.	1.3	15
1696	Advances in Plasmonic Sensing at the NIR—A Review. Sensors, 2021, 21, 2111.	2.1	23
1697	On-demand design of spectrally sensitive multiband absorbers using an artificial neural network. Photonics Research, 2021, 9, B153.	3.4	43
1698	Ultrabroadband metal-black absorbers and the performance simulations based on a three-dimensional cluster-structure model. Optics Express, 2021, 29, 8510.	1.7	9
1699	Highly Absorptive Chiral L-Shape MDM Plasmonic Metasurface as Multifunction Device: Design and Computational Studies. Plasmonics, 2021, 16, 1391-1403.	1.8	7
1700	Localized surface plasmon resonance in deep ultraviolet region below 200Ânm using a nanohemisphere on mirror structure. Scientific Reports, 2021, 11, 5169.	1.6	11
1701	Combined role of polarization matching and critical coupling in enhanced absorption of 2D materials based on metamaterials. Optics Express, 2021, 29, 9269.	1.7	13
1702	Vanadium-dioxide microstructures with designable temperature-dependent thermal emission. Optics Letters, 2021, 46, 1768.	1.7	3
1703	Angle-independent plasmonic substrates for multi-mode vibrational strong coupling with molecular thin films. Journal of Chemical Physics, 2021, 154, 104305.	1.2	24

#	Article	IF	CITATIONS
1704	Refractive index sensor based on dual side-coupled rectangular resonators and nanorods array for medical applications. Optical and Quantum Electronics, 2021, 53, 1.	1.5	30
1706	Dynamically tunable ultra-narrowband perfect absorbers for the visible-to-infrared range based on a microcavity integrated graphene pair. Optics Letters, 2021, 46, 2236.	1.7	10
1707	Narrow-band, low-sideband plasmonic filter of asymmetric bi-layer metallic nanoslit arrays. Optics Express, 2021, 29, 13590.	1.7	7
1708	Controlled self-assembly of plasmon-based photonic nanocrystals for high performance photonic technologies. Nano Today, 2021, 37, 101072.	6.2	51
1709	Theory of light reflection and transmission by a plasmonic nanocomposite slab: emergence of broadband perfect absorption. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1442.	0.9	8
1710	Fabrication of perfect plasmonic absorbers for blue and near-ultraviolet lights using double-layer wire-grid structures. Journal of the European Optical Society-Rapid Publications, 2021, 17, .	0.9	12
1711	Semi-analytical approach for refractive index sensors based on reflective metasurfaces. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1676.	0.9	6
1712	Realizing Colorful Holographic Mimicry by Metasurfaces. Advanced Materials, 2021, 33, e2005864.	11.1	70
1714	Highly Q-factor optical metasurface based on DNA nanorods with Fano response for on-chip optical sensing. Optik, 2021, 232, 166576.	1.4	10
1715	Ultra-broadband solar light wave trapping by gradient cavity-thin-film metasurface. Journal Physics D: Applied Physics, 0, , .	1.3	7
1716	Multi-band terahertz resonant absorption based on an all-dielectric grating metasurface for chlorpyrifos sensing. Optics Express, 2021, 29, 13563.	1.7	32
1717	Master origination by 248 nm DUV lithography for plasmonic color generation. Applied Physics Letters, 2021, 118, 141103.	1.5	5
1718	Plasmonic and Hybrid Whispering Gallery Mode–Based Biosensors: Literature Review. JMIR Biomedical Engineering, 2021, 6, e17781.	0.7	2
1719	Multilayered L-shaped nanoantenna arrays with an increased electric field enhancement. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1604.	0.9	3
1720	A Novel 5G Wideband Metamaterial Based Absorber for Microwave Energy Harvesting Applications. , 2021, , .		6
1721	Design of Planar Reconfigurable, Tunable, and Wide Angle Resonant Absorbers for Applications in the IR Spectrum. Advanced Theory and Simulations, 2021, 4, 2100002.	1.3	5
1722	Nanoslot metasurface design and characterization for enhanced organic light-emitting diodes. Scientific Reports, 2021, 11, 9232.	1.6	4
1723	Holographic metasurface gas sensors for instantaneous visual alarms. Science Advances, 2021, 7, .	4.7	149

#	Article	IF	CITATIONS
1724	Reflective Coloration from Structural Plasmonic to Disordered Polarizonic. Advanced Photonics Research, 2021, 2, 2100009.	1.7	6
1725	Reusable Biosensor Based on Differential Phase Detection at the Point of Darkness. Advanced Photonics Research, 2021, 2, 2000147.	1.7	3
1726	Bifunctional plasmonic metamaterial absorber for narrowband sensing detection and broadband optical absorption. Optics and Laser Technology, 2021, 137, 106807.	2.2	11
1727	Efficient inverse design and spectrum prediction for nanophotonic devices based on deep recurrent neural networks. Nanotechnology, 2021, 32, 335201.	1.3	9
1728	S/N ratio improvement of a nanocuboid array photodetector based on a Au/n-Si Schottky junction for broadband near-infrared light. Japanese Journal of Applied Physics, 2021, 60, 076501.	0.8	4
1729	Ultra-narrowband near-infrared tunable two-dimensional perfect absorber for refractive index sensing. Applied Optics, 2021, 60, 4113.	0.9	6
1730	Metamaterial Bandpass Filter Based on Three-Dimensional Structure. Journal of Electronic Materials, 2021, 50, 4358-4363.	1.0	3
1731	High Near-Field Enhancement in Plasmonic Coupled Nanostructure for Spaser Application. Plasmonics, 2021, 16, 1999-2015.	1.8	0
1732	Broadband antireflective random metasurfaces. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1974.	0.9	1
1733	Design and Analysis of a Polarizationâ€Insensitive and Wideâ€Angle Ultrabroadband Metamaterial Absorber. Physica Status Solidi (B): Basic Research, 2021, 258, 2100111.	0.7	2
1735	Dichroic Plasmonic Films Based on Anisotropic Au Nanoparticles for Enhanced Sensitivity and Figure of Merit Sensing. Journal of Physical Chemistry C, 2021, 125, 11799-11812.	1.5	1
1736	Refractive index sensing with hollow metal–insulator–metal metasurfaces. Journal Physics D: Applied Physics, 2021, 54, 285106.	1.3	5
1737	Integrated Infrared Signature Management with Multispectral Selective Absorber via Singleâ€Port Grating Resonance. Advanced Optical Materials, 2021, 9, 2002225.	3.6	13
1738	Ultranarrow and Wavelength-Scalable Thermal Emitters Driven by High-Order Antiferromagnetic Resonances in Dielectric Nanogratings. ACS Applied Materials & Interfaces, 2021, 13, 25306-25315.	4.0	3
1739	Design of Narrow-Band Absorber Based on Symmetric Silicon Grating and Research on Its Sensing Performance. Coatings, 2021, 11, 553.	1.2	5
1740	Metallic Plasmonic Array Structures: Principles, Fabrications, Properties, and Applications. Advanced Materials, 2021, 33, e2007988.	11.1	72
1741	Nonreciprocal Tamm plasmon absorber based on lossy epsilon-near-zero materials. Optics Express, 2021, 29, 17736.	1.7	10
1742	Niobium nitride plasmonic perfect absorbers for tunable infrared superconducting nanowire photodetection. Optics Express, 2021, 29, 17087.	1.7	5

#	Article	IF	CITATIONS
1743	Graphene–silver hybrid metamateria for tunable narrow-band perfect absorption and reflection at visible waveband. Journal of Nanophotonics, 2021, 15, .	0.4	4
1744	Wavelength-Selective Near Unity Absorber Based on Fabry-Pérot Nanoresonators. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2021, 20, 219-227.	0.4	2
1746	All-dielectric perfect absorber based on quadrupole modes. Optics Letters, 2021, 46, 3596.	1.7	21
1747	Simple Design of a Wideband and Wide-Angle Insensitive Metamaterial Absorber Using Lumped Resistors for X- and Ku-Bands. IEEE Photonics Journal, 2021, 13, 1-10.	1.0	22
1748	Asymmetric excitations of toroidal dipole resonance and the magnetic dipole quasi-bound state in the continuum in an all-dielectric metasurface. Optical Materials Express, 2021, 11, 2359.	1.6	14
1749	An infrared energy harvester based on radar cross-section reduction of chiral metasurfaces through phase cancellation approach. Scientific Reports, 2021, 11, 11492.	1.6	7
1750	Infrared Plasmonic Biosensor with Tetrahedral DNA Nanostructure as Carriers for Labelâ€Free and Ultrasensitive Detection of <i>miRâ€155</i> . Advanced Science, 2021, 8, e2100583.	5.6	43
1751	A high sensitive sensor using MIM waveguide coupled with a rectangular cavity with Fano resonance. Optical and Quantum Electronics, 2021, 53, 1.	1.5	16
1752	Quasiâ€Ordered Nanoforests with Hybrid Plasmon Resonances for Broadband Absorption and Photodetection. Advanced Functional Materials, 2021, 31, 2102840.	7.8	22
1753	Actively tunable dual-broadband graphene-based terahertz metamaterial absorber*. Chinese Physics B, 2021, 30, 126101.	0.7	5
1754	Advancements in Grating Nanostructure Based Plasmonic Sensors in Last Two Decades: A Review. IEEE Sensors Journal, 2021, 21, 12633-12644.	2.4	11
1755	Flexible Phase Change Materials for Electricallyâ€Tuned Active Absorbers. Small, 2021, 17, e2101282.	5.2	30
1756	Eigenstate entanglement entropy in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT -invariant non-Hermitian system. Physical Review A, 2021–103</mml:mi </mml:math 	1.0	12
1757	Inverse design of ultra-narrowband selective thermal emitters designed by artificial neural networks. Optical Materials Express, 2021, 11, 1863.	1.6	22
1758	Dynamically tunable perfect THz absorption in graphene-based metamaterial structures. Europhysics Letters, 2021, 134, 57003.	0.7	4
1759	Collective lattice resonances: Plasmonics and beyond. Reviews in Physics, 2021, 6, 100051.	4.4	108
1760	Bio-Sensor Based on Trapped Mode All-Dielectric Metasurface Coated with Graphene Layer to Enhance Sensitivity. IEEE Photonics Journal, 2021, 13, 1-12.	1.0	1
1761	Broadband long-wave infrared metamaterial absorber based on single-sized cut-wire resonators. Optics Express, 2021, 29, 20275.	1.7	28

#	Article	IF	CITATIONS
1762	Theoretical Study of Enhanced Plasmonic–Photonic Hybrid Cavity Modes in Reciprocal Plasmonic Metasurfaces. Plasmonics, 0, , 1.	1.8	1
1763	Optical cages made of graphitic frameworks. Applied Optics, 2021, 60, 5564.	0.9	0
1764	Plasmonic metamaterial absorbers with strong coupling effects for small pixel infrared detectors. Optics Express, 2021, 29, 22907.	1.7	12
1765	Reconfigurable optical rectangular particle array absorber based on metal–DNA–metal structure as a refractive index sensor and optical switch. Optics Communications, 2021, 489, 126866.	1.0	13
1766	Design and Analysis of an Ultra-Broadband Polarization-Independent Wide-Angle Plasmonic THz Absorber. IEEE Journal of Quantum Electronics, 2021, 57, 1-8.	1.0	16
1767	Ultra-broadband metamaterial absorber in the visible and near-infrared range based on silicon carbide hemisphere arrays. Journal Physics D: Applied Physics, 2021, 54, 355102.	1.3	4
1768	A Reversible Tuning of High Absorption in Chalcogenide–Metal Stacked‣ayer Structure and Its Application for Multichannel Biosensing. Advanced Photonics Research, 2021, 2, 2000152.	1.7	5
1769	Metamaterial perfect absorber with morphology-engineered meta-atoms using deep learning. Optics Express, 2021, 29, 19955.	1.7	24
1770	Tunable polarization-sensitive, long-wave infrared MDM subwavelength grating structure with wide-angle, narrow-band, and high absorption. Optics Express, 2021, 29, 21473.	1.7	7
1771	Perfect photon absorption based on the optical parametric process*. Chinese Physics B, 2021, 30, 064203.	0.7	1
1772	Ultra-Broadband Refractory All-Metal Metamaterial Selective Absorber for Solar Thermal Energy Conversion. Nanomaterials, 2021, 11, 1872.	1.9	7
1773	Two-Dimensional-Plasmon-Boosted Iron Single-Atom Electrochemiluminescence for the Ultrasensitive Detection of Dopamine, Hemin, and Mercury. Analytical Chemistry, 2021, 93, 9949-9957.	3.2	42
1774	Narrowband mid-infrared absorber based on a mirror-backed low-index dielectric lattice. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 2306.	0.9	4
1775	Vibrant reflective sensors with percolation film Fabry-Pérot nanocavities. Optics Express, 2021, 29, 25000.	1.7	9
1776	Multi-controlled broadband terahertz absorber engineered with VO ₂ -integrated borophene metamaterials. Optical Materials Express, 2021, 11, 2627.	1.6	17
1777	A comparative study of broadband solar absorbers with different gold metasurfaces and MgF2 on tungsten substrates. Journal of Computational Electronics, 2021, 20, 1840-1850.	1.3	47
1778	Three-Dimensional Printed Ultrabroadband Terahertz Metamaterial Absorbers. Physical Review Applied, 2021, 16, .	1.5	30
1779	Highly Q-factor elliptical absorber with cross slot as refractive index sensor in optical spectrum. Optical and Quantum Electronics, 2021, 53, 1.	1.5	4

#	Article	IF	CITATIONS
1780	Design of line seeds for glancing angle deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	5
1781	Enhancement of refractive index sensing for an infrared plasmonic metamaterial absorber with a nanogap. Optics Express, 2021, 29, 22796.	1.7	9
1782	Transparent Metamaterials for Multispectral Camouflage with Thermal Management. International Journal of Heat and Mass Transfer, 2021, 173, 121173.	2.5	33
1783	Research Advance on the Sensing Characteristics of Refractive Index Sensors Based on Electromagnetic Metamaterials. Advances in Condensed Matter Physics, 2021, 2021, 1-27.	0.4	4
1784	Strong Magnetic Plasmon Resonance in a Simple Metasurface for High-Quality Sensing. Journal of Lightwave Technology, 2021, 39, 4525-4528.	2.7	45
1785	High-Sensitive Numerical Gas Detection Using LSPR Effect and Fano Resonance in a Slotted MDM Structure. Photonic Sensors, 2022, 12, 164-174.	2.5	3
1786	Ultra-narrow-band metamaterial perfect absorber based on surface lattice resonance in a WS ₂ nanodisk array. Optics Express, 2021, 29, 27084.	1.7	27
1787	Tunable Triple-Band Terahertz Absorber Based on Bulk-Dirac-Semimetal Metasurface. IEEE Photonics Journal, 2021, 13, 1-5.	1.0	8
1788	Resonant Dielectric Metagratings for Response Intensified Optical Sensing. Advanced Functional Materials, 2022, 32, 2103143.	7.8	8
1789	Dual-broadband and single ultrawideband absorbers from the terahertz to infrared regime. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 2628.	0.9	22
1790	Numerical Investigation of Graphene and STO Based Tunable Terahertz Absorber with Switchable Bifunctionality of Broadband and Narrowband Absorption. Nanomaterials, 2021, 11, 2044.	1.9	12
1791	Magnetic field-induced emissivity tuning of InSb-based metamaterials in the terahertz frequency regime. Optical Materials Express, 2021, 11, 3141.	1.6	10
1792	An ultra-thin multiband terahertz metamaterial absorber and sensing applications. Optical and Quantum Electronics, 2021, 53, 1.	1.5	18
1793	Refractive index sensing based on multiple Fano resonances in a plasmonic defective ring-cavity system. Results in Physics, 2021, 27, 104508.	2.0	5
1794	High Sensitivity Long-Wave Infrared Detector Design Based on Integrated Plasmonic Absorber and VOâ,, Nanobeam. IEEE Journal of Quantum Electronics, 2021, 57, 1-11.	1.0	3
1795	Active meta-device for angular dispersion elimination of dual-polarized transmission windows. Optics Express, 2021, 29, 26598.	1.7	4
1796	Tailoring Third Harmonic Generation From Anapole Mode in a Metal-Dielectric Hybrid Nanoantenna. IEEE Photonics Journal, 2021, 13, 1-6.	1.0	3
1797	Review on the laser-induced performance of photothermal materials for ignition application. Energetic Materials Frontiers, 2021, 2, 201-217.	1.3	21

#	Article	IF	CITATIONS
			_
1798	Multi-Band Resonant Metasurface and Sensing Applications. , 2021, , .		0
1799	High-performance refractive index sensing system based on multiple Fano resonances in polarization-insensitive metasurface with nanorings. Optics Express, 2021, 29, 28287.	1.7	21
1800	Spectroscopic Mueller matrix ellipsometry of a gap surface plasmon array at conical incidences. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 2551.	0.9	2
1801	Polarization-sensitive tunable multi-band terahertz absorber based on single-layered graphene rings. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 3000.	0.9	3
1802	Artificial Surfaces and Media for Electromagnetic Absorption and Interference Shielding. , 0, , .		0
1803	Enhanced narrowband mid-IR thermal radiation enabled by plasmonic stacked gratings. OSA Continuum, 2021, 4, 2481.	1.8	1
1804	High-sensitive gas-mixture detection based on Mie resonance in slotted MDM metasurface. Optik, 2021, 242, 167096.	1.4	2
1805	Polarization insensitive plasmonic stacked multilayer metasurface with deep nanohole cavity as multi-band absorber. Optik, 2021, 241, 166959.	1.4	11
1806	High-Sensitive Multi-Gas Detection Based on MDM Waveguide With Symmetric Dual Side-Coupled Ring-Resonators. IEEE Sensors Journal, 2021, 21, 20841-20849.	2.4	0
1807	Fast, accurate, point-of-care COVID-19 pandemic diagnosis enabled through advanced lab-on-chip optical biosensors: Opportunities and challenges. Applied Physics Reviews, 2021, 8, 031313.	5.5	61
1808	Electrically tunable absorber based on a graphene integrated lithium niobate resonant metasurface. Optics Express, 2021, 29, 32796.	1.7	17
1809	Flexible Thermocamouflage Materials in Supersonic Flowfields with Selective Energy Dissipation. ACS Applied Materials & amp; Interfaces, 2021, 13, 43524-43532.	4.0	18
1810	Tunable dual-band and high-quality-factor perfect absorption based on VO ₂ -assisted metasurfaces. Optics Express, 2021, 29, 31488.	1.7	13
1811	Broadband tunable perfect absorber with high absorptivity based on double layer graphene. Optical Materials Express, 2021, 11, 3398.	1.6	10
1812	An Asymmetric Silicon Grating Dual-Narrow-Band Perfect Absorber Based on Dielectric-Metal-Dielectric Structure. Frontiers in Materials, 2021, 8, .	1.2	5
1813	Developing Plasmonic Perfect thin-film absorber by studying self-similar formation to have Fano response for optical spectroscopy. Optics Communications, 2022, 504, 127495.	1.0	9
1814	Genetic algorithm optimization for highly efficient solar thermal absorber based on optical metamaterials. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 271, 107712.	1.1	11
1815	Waferâ€Scale Functional Metasurfaces for Midâ€Infrared Photonics and Biosensing. Advanced Materials, 2021, 33, e2102232.	11.1	64

#	Article	IF	CITATIONS
1816	Exploiting zirconium nitride for an efficient heat-resistant absorber and emitter pair for solar thermophotovoltaic systems. Optics Express, 2021, 29, 31537.	1.7	23
1817	Quad-band tunable graphene-based metamaterial absorber operating at THz frequencies. Optical and Quantum Electronics, 2021, 53, 1.	1.5	4
1818	Meta-optical and thin film devices for all-optical information processing. Applied Physics Reviews, 2021, 8, .	5.5	28
1819	Demonstration of Thermally Tunable Multi-Band and Ultra-Broadband Metamaterial Absorbers Maintaining High Efficiency during Tuning Process. Materials, 2021, 14, 5708.	1.3	8
1820	Near-perfect broadband metamaterial absorbers of truncated nanocones using colloidal lithography. Optical Materials, 2021, 119, 111352.	1.7	9
1821	Bistable absorption in a 1D photonic crystal with a nanocomposite defect layer. Applied Optics, 2021, 60, 8445.	0.9	5
1822	Optimal design of ultrabroadband omnidirectional planar structure absorber using anti-reflection coatings. Journal of Optics (India), 2022, 51, 154-160.	0.8	0
1823	Perfect absorption in free-standing GaAs nanocylinder arrays by degenerate critical coupling. Optical Materials, 2021, 121, 111558.	1.7	2
1824	Broadband near infrared all-dielectric metasurface absorber. Results in Physics, 2021, 30, 104813.	2.0	9
1825	Plasmonic induced reflection based on Al2O3 nanoslit side coupled with silicon nanodisk resonator. Results in Optics, 2021, 5, 100126.	0.9	2
1826	Improved dual-band refractive index sensing based on gap plasmon. Photonics and Nanostructures - Fundamentals and Applications, 2021, 47, 100959.	1.0	8
1827	Achieving dual-band absorption and electromagnetically induced transparency in VO2 metamaterials. Physica B: Condensed Matter, 2022, 624, 413391.	1.3	14
1829	A near infrared plasmonic perfect absorber as a sensor for hemoglobin concentration detection. Optical and Quantum Electronics, 2021, 53, 1.	1.5	21
1830	A theoretical approach to develop a black phosphorous coated multilayer plasmonic sensor by using hafnium oxide as dielectric spacer. Materials Today: Proceedings, 2021, 46, 5874-5877.	0.9	0
1831	Fiber optic hydrogen sensor based on a Fabry–Perot interferometer with a fiber Bragg grating and a nanofilm. Lab on A Chip, 2021, 21, 1752-1758.	3.1	33
1832	A Potential Plasmonic Biosensor Based Asymmetric Metal Ring Cavity with Extremely Narrow Linewidth and High Sensitivity. Sensors, 2021, 21, 752.	2.1	4
1833	Ultrasensitive Metasurface Biosensors by the Use of Constrained Mie Resonance and Metallic Dissipation. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-6.	1.9	5
1834	Multi-parameter tunable phase transition based terahertz graphene plasmons and its application. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 224202.	0.2	0

#	Article	IF	CITATIONS
1835	Dual functionality metamaterial enables ultra-compact, highly sensitive uncooled infrared sensor. Nanophotonics, 2021, 10, 1337-1346.	2.9	12
1836	Effective Transmission Modulation at Telecommunication Wavelengths through Continuous Metal Films Using Coupling between Borophene Plasmons and Magnetic Polaritons. Advanced Optical Materials, 2021, 9, 2001809.	3.6	18
1837	Nature Inspired Optimization Techniques for Metamaterial Design. Topics in Applied Physics, 2013, , 97-146.	0.4	15
1838	Plasmonic Gas and Chemical Sensing. NATO Science for Peace and Security Series C: Environmental Security, 2015, , 239-272.	0.1	2
1839	Active control of broadband perfect absorption with phase changing materials-cooperated symmetry-broken nanodisks. Optik, 2020, 217, 164842.	1.4	1
1840	A multi-purpose sensor based on plasmon-induced transparency in the terahertz range. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 122, 114215.	1.3	6
1841	Deposited ultra-thin titanium nitride nanorod array as a plasmonic near-perfect light absorber. Scientific Reports, 2020, 10, 22269.	1.6	8
1842	Dark plasmonic mode based perfect absorption and refractive index sensing. Nanoscale, 2017, 9, 8907-8912.	2.8	23
1843	Realization of red plasmon shifts by the selective etching of Ag nanorods. CrystEngComm, 2020, 22, 7870-7876.	1.3	8
1844	A broadband omnidirectional absorber based on a hetero-structure composed of epsilon-negative material and mu-negative material. EPJ Applied Physics, 2014, 66, 30102.	0.3	3
1845	Design of high-performance plasmonic nanosensors by particle swarm optimization algorithm combined with machine learning. Nanotechnology, 2020, 31, 375202.	1.3	39
1846	Ultra-narrow multi-band polarization-insensitive plasmonic perfect absorber for sensing. Nanotechnology, 2020, 31, 465501.	1.3	37
1847	Terahertz tunable optical dual-functional slow light reflector based on gold-graphene metamaterials. New Journal of Physics, 2020, 22, 123009.	1.2	24
1848	Actively tunable polarization-sensitive multiband absorber based on graphene*. Chinese Physics B, 2020, 29, 114205.	0.7	5
1849	Deep subwavelength manipulation of THz waves by plasmonic surface. Journal of Physics Communications, 2020, 4, 105014.	0.5	1
1850	Light trapping by arbitrarily thin cavities. Physical Review Research, 2020, 2, .	1.3	12
1851	High Q-factor controllable phononic modes in hybrid phononic–dielectric structures. Advanced Photonics, 2019, 1, 1.	6.2	13
1852	Modified field confinement and enhanced optical forces in hybrid dielectric wedge tip-loaded plasmonic waveguide. Journal of Nanophotonics, 2017, 11, 1.	0.4	2

#	Article	IF	CITATIONS
1853	Research on dual-core photonic crystal fiber based on local surface plasmon resonance sensor with silver nanowires. Journal of Nanophotonics, 2018, 12, 1.	0.4	4
1854	Design of a tunable dual-band terahertz absorber based on graphene metamaterial. Optical Engineering, 2018, 57, 1.	0.5	3
1855	Optimization approach for optical absorption in three-dimensional structures including solar cells. Optical Engineering, 2018, 57, 1.	0.5	19
1856	Real-time biosensing of proteins on a DVD nanoplasmonic grating. , 2019, , .		3
1857	Plasmonically induced perfect absorption in graphene/metal system. Nanoscale Research Letters, 2019, 14, 300.	3.1	5
1858	Triple-Band Perfect Light Absorber Based on Hybrid Metasurface for Sensing Application. Nanoscale Research Letters, 2020, 15, 103.	3.1	80
1859	Consequences of Unit Cell Design in Metamaterial Perfect Absorbers. Acta Physica Polonica A, 2016, 129, 792-796.	0.2	2
1860	Demonstration of a dual-channel two-dimensional reflection grating filter. Applied Optics, 2020, 59, A181.	0.9	2
1861	Broadband near-perfect terahertz absorber in single-layered and non-structured graphene loaded with dielectrics. Applied Optics, 2020, 59, 2839.	0.9	11
1862	Mid-wave and long-wave infrared dual-band stacked metamaterial absorber for broadband with high refractive index sensitivity. Applied Optics, 2020, 59, 2695.	0.9	7
1863	Design and equivalent circuit model extraction of a broadband graphene metasurface absorber based on a hexagonal spider web structure in the terahertz band. Applied Optics, 2020, 59, 2165.	0.9	8
1864	Fabry–Perot-resonator-coupled metal pattern metamaterial for infrared suppression and radiative cooling. Applied Optics, 2020, 59, 6861.	0.9	9
1865	Tunable narrowband shortwave-infrared absorber made of a nanodisk-based metasurface and a phase-change material Ge ₂ Sb ₂ Te ₅ layer. Applied Optics, 2020, 59, 6309.	0.9	16
1866	Tunable broadband all-silicon terahertz absorber based on a simple metamaterial structure. Applied Optics, 2020, 59, 6265.	0.9	12
1867	Admittance analysis of broadband omnidirectional near-perfect absorber in epsilon-near-zero mode. Applied Optics, 2020, 59, 10138.	0.9	4
1868	Numerical investigation of an ultra-broadband, wide-angle, and polarization-independent metasurface light absorber. Applied Optics, 2020, 59, 8878.	0.9	6
1869	Wide-angle absorption of visible light from simple bilayers. Applied Optics, 2017, 56, 9779.	0.9	19
1870	Tunable terahertz metamaterial absorber based on Dirac semimetal films. Applied Optics, 2018, 57, 9555.	0.9	25

#	Article	IF	CITATIONS
1871	Wavelength-sensitive PIT-like double-layer graphene-based metal–dielectric–metal waveguide. Applied Optics, 2018, 57, 9770.	0.9	6
1872	Magnetoplasmon excitation and hybridization in gyroelectric cylinders. Applied Optics, 2019, 58, 3712.	0.9	1
1873	Modeling and analysis of high-sensitivity refractive index sensors based on plasmonic absorbers with Fano response in the near-infrared spectral region. Applied Optics, 2019, 58, 5404.	0.9	61
1874	Tunable strong circular dichroism in a non-chiral metallic metasurface integrated with graphene. Applied Optics, 2019, 58, 6217.	0.9	5
1875	Tunable narrow terahertz absorption of one-dimensional photonic crystals embedded with Dirac semimetal-dielectric defect layers. Applied Optics, 2019, 58, 8486.	0.9	7
1876	Electromagnetic metasurfaces: physics and applications. Advances in Optics and Photonics, 2019, 11, 380.	12.1	324
1877	Dual-band refractometric terahertz biosensing with intense wave-matter-overlap microfluidic channel. Biomedical Optics Express, 2019, 10, 3789.	1.5	50
1878	Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2019, 36, 264.	0.8	26
1879	Ultra-broadband metamaterial absorber based on cross-shaped TiN resonators. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, 697.	0.8	22
1880	Ultra-broadband wide-angle perfect absorber in the visible regime through a thin grating–insulator–metal structure. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 153.	0.9	8
1881	Efficient broadband infrared absorbers based on core-shell nanostructures. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2643.	0.9	8
1882	Tunable dual-band plasmonic perfect absorber and its sensing applications. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2750.	0.9	19
1883	Tunable mid-infrared graphene-titanium nitride plasmonic absorber for chemical sensing applications. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2863.	0.9	13
1884	Active metamaterial nearly perfect light absorbers: a review [Invited]. Journal of the Optical Society of America B: Optical Physics, 2019, 36, F131.	0.9	47
1885	Graphene-incorporated plasmo-thermomechanical infrared radiation detection. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 774.	0.9	2
1886	Frequency- and time-domain analyses of multiple reflections and interference phenomena in a metamaterial absorber. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 586.	0.9	10
1887	Dynamically tunable coherent perfect absorption based on bulk Dirac semimetal. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1987.	0.9	2
1888	Ultrathin, polarization-insensitive multi-band absorbers based on graphene metasurface with THz sensing application. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 2372.	0.9	40

		CITATION REPORT		
#	Article		IF	Citations
1889	Mechanisms of perfect absorption in nano-composite systems. Optics Express, 2018, 2	26, 27089.	1.7	7
1890	Cost-effective near-perfect absorber at visible frequency based on homogenous meta-s with two-dimension cylinder array. Optics Express, 2018, 26, 27482.	surface nickel	1.7	34
1891	Theoretical excitation of 2-D (1, 1) cavity mode with asymmetric sword-shaped notche resonators for metamaterial perfect multiband absorbers in infrared range. Optics Exp 31510.	d square ress, 2018, 26,	1.7	7
1892	Electrically tunable multifunctional metasurface for integrating phase and amplitude n based on hyperbolic metamaterial substrate. Optics Express, 2018, 26, 32063.	nodulation	1.7	14
1893	Experimental demonstration of high sensitivity refractive index sensing based on magr in a simple metallic deep nanogroove array. Optics Express, 2018, 26, 34122.	ietic plasmons	1.7	12
1894	Multiple adjustable optical Tamm states in one-dimensional photonic quasicrystals wit bandgaps. Optics Express, 2018, 26, 34872.	h predesigned	1.7	14
1895	Dual band and tunable perfect absorber based on dual gratings-coupled graphene-diele multilayer structures. Optics Express, 2019, 27, 5217.	ectric	1.7	29
1896	Near-infrared absorption-induced switching effect via guided mode resonances in a grametamaterial. Optics Express, 2019, 27, 5253.	phene-based	1.7	82
1897	Realization of perfect selective absorber based on multipole modes in all-dielectric mot structure. Optics Express, 2019, 27, 5703.	:h-eye	1.7	9
1898	Independently tunable multi-band and ultra-wide-band absorbers based on multilayer r metamaterials. Optics Express, 2019, 27, 7393.	netal-graphene	1.7	74
1899	Incoherent perfect absorption in lossy anisotropic materials. Optics Express, 2019, 27,	9561.	1.7	2
1900	Near-infrared optics of nanoparticles embedded silica thin films. Optics Express, 2019,	27, A148.	1.7	9
1901	Metasurface generated polarization insensitive Fano resonance for high-performance r sensing. Optics Express, 2019, 27, 13252.	efractive index	1.7	37
1902	Multiband terahertz absorber and selective sensing performance. Optics Express, 2019	9, 27, 14133.	1.7	19
1903	Subwavelength topological edge states based on localized spoof surface plasmonic mo arrays. Optics Express, 2019, 27, 14407.	etaparticle	1.7	9
1904	High-performance and broadband chirality-dependent absorber based on planar spiral of Optics Express, 2019, 27, 14942.	metasurface.	1.7	13
1905	Core-shell particles as efficient broadband absorbers in infrared optical range. Optics E 27, 17474.	xpress, 2019,	1.7	13
1906	Coupling effects in single-mode and multimode resonator-coupled system. Optics Expl 17718.	ress, 2019, 27,	1.7	31

#	Δρτιςι ε	IF	CITATIONS
" 1907	Ultrasensitive tunable terahertz sensor based on five-band perfect absorber with Dirac semimetal.	1.7	47
	Optics Express, 2019, 27, 20165.		
1908	Alignment-insensitive bilayer THz metasurface absorbers exceeding 100% bandwidth. Optics Express, 2019, 27, 20886.	1.7	17
1909	Hybrid graphene metasurface for near-infrared absorbers. Optics Express, 2019, 27, 24866.	1.7	11
1910	Utilizing niobium plasmonic perfect absorbers for tunable near- and mid-IR photodetection. Optics Express, 2019, 27, 25012.	1.7	16
1911	Metamaterial absorber with independently tunable amplitude and frequency in the terahertz regime. Optics Express, 2019, 27, 25902.	1.7	42
1912	Controllable coherent perfect absorber made of liquid metal-based metasurface. Optics Express, 2019, 27, 25974.	1.7	17
1913	Dual broadband infrared absorptance enhanced by magnetic polaritons using graphene-covered compound metal gratings. Optics Express, 2019, 27, 30182.	1.7	9
1914	Selectively thermal radiation control in long-wavelength infrared with broadband all-dielectric absorber. Optics Express, 2019, 27, 35088.	1.7	12
1915	Optically transparent metamirror with broadband chiral absorption in the microwave region. Optics Express, 2019, 27, 38029.	1.7	6
1916	Spectral, spatial and polarization-selective perfect absorbers with large magnetic response for sensing and thermal emission control. Optics Express, 2019, 27, A1041.	1.7	2
1917	Direction-independent dual-band perfect absorption induced by fundamental magnetic polaritons. Optics Express, 2019, 27, A1431.	1.7	13
1918	Small–sized long wavelength infrared absorber with perfect ultra–broadband absorptivity. Optics Express, 2020, 28, 1279.	1.7	49
1919	Large-range, continuously tunable perfect absorbers based on Dirac semimetals. Optics Express, 2020, 28, 7350.	1.7	16
1920	Thermally switchable bifunctional plasmonic metasurface for perfect absorption and polarization conversion based on VO ₂ . Optics Express, 2020, 28, 4563.	1.7	58
1921	Asymmetric dielectric grating on metallic film enabled dual- and narrow-band absorbers. Optics Express, 2020, 28, 4594.	1.7	9
1922	Simultaneous realizations of absorber and transparent conducting metal in a single metamaterial. Optics Express, 2020, 28, 6565.	1.7	79
1923	Tunable phase change polaritonic perfect absorber in the mid-infrared region. Optics Express, 2020, 28, 11721.	1.7	20
1924	Tuning the phase and amplitude response of plasmonic metasurface etalons. Optics Express, 2020, 28, 17923.	1.7	8

#	Article	IF	CITATIONS
1925	Design of an ultra-broadband near-perfect bilayer grating metamaterial absorber based on genetic algorithm. Optics Express, 2020, 28, 15347.	1.7	49
1926	Bi-tunable terahertz absorber based on strontium titanate and Dirac semimetal. Optics Express, 2020, 28, 15744.	1.7	36
1927	Ultra-high sensitivity sensing based on ultraviolet plasmonic enhancements in semiconductor triangular prism meta-antenna systems. Optics Express, 2020, 28, 17595.	1.7	29
1928	Engineering multimodal dielectric resonance of TiO ₂ based nanostructures for high-performance refractive index sensing applications. Optics Express, 2020, 28, 23509.	1.7	22
1929	Numerical analysis of an ultra-wideband metamaterial absorber with high absorptivity from visible light to near-infrared. Optics Express, 2020, 28, 23748.	1.7	71
1930	Ultrathin multi-band coherent perfect absorber in graphene with high-contrast gratings. Optics Express, 2020, 28, 24285.	1.7	28
1931	Sensing refractive index gradients along dielectric nanopillar metasurfaces. Optics Express, 2020, 28, 31594.	1.7	6
1932	Silicon carbide as a material-based high-impedance surface for enhanced absorption within ultra-thin metallic films. Optics Express, 2020, 28, 31624.	1.7	7
1933	Polarization insensitive, metamaterial absorber-enhanced long-wave infrared detector. Optics Express, 2020, 28, 28843.	1.7	17
1934	Ultra-broadband metamaterial absorber from ultraviolet to long-wave infrared based on CMOS-compatible materials. Optics Express, 2020, 28, 31844.	1.7	23
1935	On the pole expansion of electromagnetic fields. Optics Express, 2020, 28, 32363.	1.7	10
1936	Perfect absorption in GaAs metasurfaces near the bandgap edge. Optics Express, 2020, 28, 35284.	1.7	15
1937	Dual-channel optical switch, refractive index sensor and slow light device based on a graphene metasurface. Optics Express, 2020, 28, 34079.	1.7	52
1938	Ultra-narrowband perfect absorption of monolayer two-dimensional materials enabled by all-dielectric subwavelength gratings. Optics Express, 2020, 28, 38592.	1.7	17
1939	Inverse design of plasmonic metasurfaces by convolutional neural network. Optics Letters, 2020, 45, 1362.	1.7	53
1940	Thin-film perfect infrared absorbers over single- and dual-band atmospheric windows. Optics Letters, 2020, 45, 2800.	1.7	12
1941	Lithography-free flexible perfect broadband absorber in visible light based on an all-dielectric multilayer structure. Optics Letters, 2020, 45, 5464.	1.7	29
1942	Far-field radiative thermal rectifier based on nanostructures with vanadium dioxide. Optics Letters, 2018, 43, 5619.	1.7	13
ARTICLE IF CITATIONS Generalized nonlinear Snell's law at χ⁽²⁾ modulated nonlinear metasurfaces: anomalous 1943 1.7 8 nonlinear refraction and reflection. Optics Letters, 2019, 44, 431. Angle-insensitive dual-functional resonators combining cavity mode resonance and magnetic 1944 1.7 resonance. Optics Letters, 2019, 44, 3118. Integrated dual-channel sensing utilizing polarized dissimilation based on photonic spin-orbit 1945 1.7 5 interaction. Optics Letters, 2019, 44, 3757. Bismuth plasmonics for extraordinary light absorption in deep sub-wavelength geometries. Optics 1946 Letters, 2020, 45, 686. Engineering the absorption spectra of thin film multilayer absorbers for enhanced color purity in 1947 1.6 29 CMY color filters. Optical Materials Express, 2020, 10, 268. Planar ultrathin omni-directional perfect absorber utilizing amorphous silicon for photovoltaics. 1948 1.6 Optical Materials Express, 2020, 10, 532. Tunable graphene-based terahertz absorber via an external magnetic field. Optical Materials Express, 1949 1.6 28 2020, 10, 501. Epsilon-near-zero thin-film metamaterials for wideband near-perfect light absorption. Optical 1950 1.6 Materials Express, 2020, 10, 2439. Thermally tunable metamaterial absorber based on strontium titanate in the terahertz regime. Optical 1951 33 1.6 Materials Express, 2019, 9, 1377. Tunable light trapping and absorption enhancement with graphene-based complementary 1.6 metasurfaces. Optical Materials Express, 2019, 9, 1469. Dynamically tunable coherent perfect absorption and transparency in Dirac semimetal metasurface. 1953 1.6 11 Optical Materials Express, 2019, 9, 3649. Graphene enabled dynamic tuning of the surface lattice mode for broadband infrared light 1954 1.6 modulation. Optical Materials Express, 2019, 9, 4700. Maximal single-frequency electromagnetic response. Optica, 2020, 7, 1746. 1955 4.8 18 Quantum coherent absorption of squeezed light. Optica, 2019, 6, 181. 4.8 Infrared metamaterial absorber by using chalcogenide glass material with a cyclic ring-disk structure. 1957 19 1.8 OSA Continuum, 2018, 1, 573. Effective medium and equivalent circuit analysis of extraordinary transmission through metallic 1.8 grating in the infrared range. OSA Continuum, 2019, 2, 1639. Triple narrow-band plasmonic perfect absorber for refractive index sensing applications of optical 1959 1.8 78 frequency. OSA Continuum, 2019, 2, 2113. Dynamically tunable polarization-independent terahertz absorber based on bulk Dirac semimetals. OSA 1960 1.8 Continuum, 2019, 2, 2477.

#	Article	IF	Citations
1961	Numerical investigation of a narrowband absorber with a simple structure. OSA Continuum, 2020, 3, 3582.	1.8	9
1962	Enhancing sensing capacity of terahertz metamaterial absorbers with a surface-relief design. Photonics Research, 2020, 8, 519.	3.4	43
1963	Interference-enhanced optical magnetism in surface high-index resonators: a pathway toward high-performance ultracompact linear and nonlinear meta-optics. Photonics Research, 2019, 7, 1296.	3.4	9
1964	Metamaterials – from fundamentals and MEMS tuning mechanisms to applications. Nanophotonics, 2020, 9, 3049-3070.	2.9	51
1965	Plasmonic nanostructures in photodetection, energy conversion and beyond. Nanophotonics, 2020, 9, 3135-3163.	2.9	51
1966	Growth of Through Pores and Thermal Dispersion of Continuous Polycrystalline Films of Copper. Metallofizika I Noveishie Tekhnologii, 2016, 38, 1351-1366.	0.2	13
1967	Surface Plasmon Resonance in "Monolayer of Ni Nanoparticles/Dielectric Spacer/Au (Ni) Film― Nanostructure. Ukrainian Journal of Physics, 2018, 63, 386.	0.1	6
1968	Prediction of the Resonance Condition of Metamaterial Emitters and Absorbers Using LC Circuit Model. , 2014, , .		15
1969	Polarizasyon Mod Bağımsız Üçlü Bant Mikrodalga Sinyal Emici. Journal of the Institute of Science and Technology, 2019, 9, 295-301.	0.3	3
1970	On-chip readout plasmonic mid-IR gas sensor. Opto-Electronic Advances, 2020, 3, 190040-190040.	6.4	39
1971	Perfect Absorption and Refractive-Index Sensing by Metasurfaces Composed of Cross-Shaped Hole Arrays in Metal Substrate. Nanomaterials, 2021, 11, 63.	1.9	26
1972	Tunable dual-band perfect metamaterial absorber based on monolayer graphene arrays as refractive index sensor. Japanese Journal of Applied Physics, 2020, 59, 095002.	0.8	8
1973	Electromagnetic Wave Absorbers with Metamaterial Structure for RCS Reduction. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2015, 26, 1-15.	0.0	3
1974	Dual band metamaterial absorber in microwave regime. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 058101.	0.2	29
1975	Study on the design and measurement of dual-directional multi-band metamaterial absorber. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 174102.	0.2	4
1976	Ultrathin flexible transmission metamaterial absorber. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 087802.	0.2	3
1977	Antireflection coatings based on subwavelength artificial engineering microstructures. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 147802.	0.2	3
1978	Review on surface plasmonic coupling systems and their applications in spectra enhancement. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 147304.	0.2	10

ARTICLE IF CITATIONS Research progress of coupling theory of metal surface plasmon. Wuli Xuebao/Acta Physica Sinica, 1979 0.2 12 2019, 68, 247301. Broadband terahertz metamaterial absorber: design and fabrication. Applied Optics, 2021, 60, 10055. Dynamically switchable terahertz absorber based on a hybrid metamaterial with vanadium dioxide and 1981 0.9 26 graphene. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 3425. Theoretical and Numerical Analysis of Active Switching for Narrow-Band Thermal Emission with Graphene Ribbon Metasurface. Sensors, 2021, 21, 6738. Ultra-Narrow SPP Generation from Ag Grating. Sensors, 2021, 21, 6993. 1983 2.1 4 1984 On-demand emission from Tamm plasmons. Nature Materials, 2021, 20, 1595-1596. 13.3 Recent Advances in Fabrication of Flexible, Thermochromic Vanadium Dioxide Films for Smart 1985 1.9 24 Windows. Nanomaterials, 2021, 11, 2674. Tunable ultranarrow-band metamaterial perfect absorber based on electromagnetically induced 1986 1.7 transparency structure. Optical Materials, 2021, 122, 111624. Mie lattice resonance sensors with high figures of merit via Si/SiO2 nanoparticle arrays. Optical 1987 0 1.7 Materials, 2021, 122, 111698. Designing a Thin Film Blackbody Based on Plasmonic Anisotropic Metamaterials., 2012,,. Ultra-broadband near-infrared metamaterial absorber., 2012, , . 1989 0 Plasmonic nanograting structure to detect refractive index., 2013,,. 1990 Super Meta-Absorber for Ultra-Thin OPV Films., 2013,,. 1991 0 Simulation and experiment demonstration of a polarization-independent dual-directional absorption 1992 0.2 metamaterial absorber. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 013701. A polarization-independent and ultra-broadband terahertz metamaterial absorber studied based on 1993 0.2 10 circular-truncated cone structure. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 237801. A polarization-independent transmission absorption metamaterial absorber based on electromagnetic 1994 resonance. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 104102. High-performance refractometric nanosensor using circular plasmonic interferometer arrays. , 2013, , 1995 0 1996 Infrared perfect metamaterial absorber and its potential application as strain sensor., 2013, , .

#	ARTICLE	IF	Citations
1997	Computational Chemistry and Physics, 2013, , 401-429.	0.6	1
1998	Design of low-radar cross section microstrip antenna based on metamaterial absorber. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 064103.	0.2	19
1999	Plasmonic Resonance modes in metallic spherical voids: Transformation and Sensitivity Analysis. , 2014, , .		0
2000	Multiwavelength Resonant Absorption Enhancement and Highly Directional Absorption with Aperiodic Multilayer Structures. , 2015, , .		0
2001	Efficient Broadband Absorber Based on Plasmonic Nanoparticles. , 2015, , .		0
2003	Spectrally selective thermal emitter with flat metallic films based on tunneling effect. , 2016, , .		0
2004	Broadband and low angle-sensitive solar absorber. , 2016, , .		0
2005	Near-Infrared Tunable Reflection and Absorption Using Nanostructured Thin Film Structures Employing Phase-Change Material. Acta Physica Polonica A, 2016, 129, 464-467.	0.2	1
2006	Chapter 8: Broadband Optical Metasurfaces and Metamaterials. , 2016, , 321-370.		0
2007	Four-Headed Arrow Shaped Dual Band Perfect Absorbers for Biosensing Applications. International Journal of Applied Mathematics Electronics and Computers, 0, , 262-262.	0.6	0
2008	Plasmonics and Surface Plasmons. , 2016, , 1062-1082.		0
2009	Design of Optical and Radiative Properties of Surfaces. , 2017, , 1-46.		0
2010	Surface-plasmon-induced broadband light absorbers. , 2017, , .		0
2011	Polarization independent asymmetric light absorption in plasmonic nanostructure. , 2017, , .		0
2012	Polarization-independent multi-peak plasmonic absorber. , 2017, , .		0
2013	Isotropic metamaterial perfect light absorber using 3D split ring resonator in the mid IR region. , 2017,		0
2014	Ultrabroadband polarization-independent absorber based on hyperbolic metamaterial. , 2017, , .		0
2015	Polarization-controlled dual-band broadband infrared absorber. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 107801.	0.2	1

#	Article	IF	Citations
2016	Highly Sensitive Plasmonic Metasensor with Wide Detection Range. , 2018, , .		1
2017	Broadband absorption caused by coupling of epsilon-near-zero mode with plasmon mode. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 207301.	0.2	0
2018	Controlling the shapes and sizes of metallic nanoantennas for detection of biological molecules using hybridization phase of plasmon resonances and photonic lattice modes. , 2018, , .		0
2019	Colorimetric detection of ultrathin dielectrics on strong interference coatings. Optics Letters, 2018, 43, 1379.	1.7	5
2020	Applications of light-trapping sculptured thin films. , 2018, , .		0
2021	Coherent absorption in optical metamaterials. , 2018, , .		0
2022	Ultra-broadband plasmonic groove absorbers for visible light optimized by genetic algorithms. OSA Continuum, 2018, 1, 796.	1.8	3
2024	Identification of the absorption processes in periodic plasmonic structures using energy absorption interferometry. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2019, 36, 12.	0.8	0
2025	Semiconductor and Plasmonic Metasurface towards Perfect Absorbers. The Review of Laser Engineering, 2019, 47, 361.	0.0	0
2026	Design for dynamic wavefront manipulation based on phase change materials. , 2019, , .		0
2027	Fano resonance based on a subwavelength semi-annular-rectangular cavity resonator. , 2019, , .		0
2028	Tunable multi-modes resonator based on MIM plasmonic waveguides with circular cavity and rectangular baffle. , 2019, , .		0
2029	Tunable multiband and broadband terahertz absorber based on cascaded graphene nanoribbon array. Journal of Nanophotonics, 2019, 13, 1.	0.4	1
2030	Elimination of unwanted modes in wavelength-selective uncooled infrared sensors using plasmonic metamaterial absorbers. , 2019, , .		0
2031	Effects of using lossy materials on the metal-insulator-metal nanostructure absorption spectrum. , 2019, , .		0
2032	Preparing pure states with lossy beam splitters using quantum coherent absorption of squeezed light. , 2019, , .		0
2033	Experimental confirmation of plasmonic field cancellation under specific conditions of trapezoidal nanopatterns. Optics Express, 2019, 27, 29168.	1.7	0
2034	Narrowband polarization-dependent fractal based plasmonic absorbers. , 2019, , .		0

C			DEDO	
C	IAI	ION	KEPO	ואי

#	Article	IF	CITATIONS
2035	Enhancement of terahertz absorption in graphene monolayer with Bragg grating and metallic film. Journal of Nanophotonics, 2019, 13, 1.	0.4	0
2036	Performance improvement of refractive index sensor based on two-dimensional metal-dielectric grating. , 2019, , .		0
2037	Ultrawideband midinfrared refractory absorbers. Optical Engineering, 2019, 58, 1.	0.5	4
2038	Quintuple fano-like MIM plasmonics structure based on coupling resonators for refractive index nano-sensor. , 2019, , .		0
2039	Dynamically tunable perfect absorbers based on periodic microstructures. , 2019, , .		0
2040	Optically transparent metamirror with broadband chiral absorption in the microwave region. Optics Express, 2019, 27, 38029.	1.7	15
2041	Selective amplification of spoof localized surface plasmons. Applied Optics, 2019, 58, 9797.	0.9	2
2042	Polarization Dependence of Near-infrared Absorption Spectrum of Si-deposited Gold Nano-grating Structures. IEEJ Transactions on Sensors and Micromachines, 2020, 140, 72-78.	0.0	2
2043	Spectral separation of surface-plasmon-polariton modes to achieve ultranarrow dual-band absorbers. Journal of Nanophotonics, 2020, 14, 1.	0.4	0
2044	Metal-insulator-metal nanoresonators – strongly confined modes for high surface sensitivity. Nanophotonics, 2020, 9, 1547-1552.	2.9	4
2045	Toroidal Metadevices. Engineering Materials, 2021, , 123-142.	0.3	0
2046	Evolution of epsilon-near-zero plasmon with surface roughness and demonstration of perfect absorption in randomly rough indium tin oxide thin films. Journal of Applied Physics, 2021, 130, 173102.	1.1	4
2047	Modeling of microsphere photolithography. Optics Express, 2020, 28, 39700.	1.7	6
2049	Nanostructure-Enhanced Absorption in Thermoelectric photodetector. , 2020, , .		0
2051	Patterned-graphene-based broadband tunable metamaterial absorber in terahertz band. , 2020, , .		0
2052	Plasmonic band structures and its applications. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 157301.	0.2	2
2053	Radiative Properties of Nanomaterials. Mechanical Engineering Series, 2020, , 497-622.	0.1	1
2054	Super Black Stainless Steel Surface Fabricated by Nanosecond Laser Irradiation. , 2020, , .		1

		CHATION REP	OKI	
#	Article		IF	CITATIONS
2055	Spectral emissivity design using aluminum-based hybrid gratings. Optics Express, 2020, 28, 8076.		1.7	9
2056	Second Harmonic Generation-based Nonlinear Plasmonic RI-Sensing in Solution: Pivotal Role of Particle Size. Physical Chemistry Chemical Physics, 2021, 23, 25565-25571.		1.3	1
2057	Resonant states and their role in nanophotonics. Semiconductor Science and Technology, 2022, 3 013002.	7,	1.0	15
2058	Design of hybrid narrow-band plasmonic absorber based on chalcogenide phase change material in infrared spectrum. Scientific Reports, 2021, 11, 21919.	the	1.6	4
2059	Mechanism of wave resonance based on excitation of evanescent waves in locally expanded waveguides. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, , 127817.		0.9	1
2060	Photonic metamaterial planar optical waveguide structures with all Kerr-type nonlinear guiding films. Optical and Quantum Electronics, 2021, 53, 1.		1.5	Ο
2061	Plasmonic Chiral Metamaterials with Sub-10 nm Nanogaps. ACS Nano, 2021, 15, 17657-17667.		7.3	19
2062	Modal control of thermoplasmonic behavior of nanostructures based on excitation of perfect absorption resonances. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 223	В.	0.9	4
2063	Genetic optimization of plasmonic metamaterial absorber towards dual-band infrared imaging polarimetry. Optics Express, 2020, 28, 22617.		1.7	14
2064	Dual-channel sensing by combining geometric and dynamic phases with an ultrathin metasurface. Optics Express, 2020, 28, 28612.		1.7	1
2065	Ultra-broadband long-wavelength infrared metamaterial absorber based on hybrid structure of hole and pillars. , 2020, , .	S		0
2066	Self-reference plasmonic sensor with ultranarrow linewidths based on SPP and cavity resonances. Applied Physics Express, 2020, 13, 092003.		1.1	2
2067	Disorder-immune metasurfaces with constituents exhibiting the anapole mode. New Journal of Physics, 2020, 22, 113011.		1.2	5
2068	Phase Analysis of a VO2 Thin Film by Using Its Current-voltage Characteristics. Journal of the Korea Physical Society, 2020, 77, 975-980.	n	0.3	Ο
2069	Design of a compact polarization-insensitive multi-band metamaterial absorber for terahertz applications. Optik, 2022, 250, 168339.		1.4	13
2070	Deep learning assisted heat-resistant metamaterial absorber design. , 2021, , .			2
2071	All-Dielectric Perfect Absorber of Quadrupole Modes by using Cross-Shaped Mie Resonators. , 202	.,,.		1
2072	Integrated plasmonic biosensor on a vertical cavity surface emitting laser platform. Optics Express, 2021, 29, 40643.		1.7	5

ARTICLE IF CITATIONS Broadband coherent perfect absorption by cavity coupled to three-level atoms in linear and nonlinear 2073 1.2 7 regimes. New Journal of Physics, 2021, 23, 123040. Electrically Tunable Perfect Terahertz Absorber Using Embedded Combline Graphene Layer. Applied 2074 1.3 Sciences (Switzerland), 2021, 11, 10961. Broadband Polarizationâ€Insensitive Coherent Rasorber in Terahertz Metamaterial with Enhanced 2075 3.6 10 Anapole Response and Coupled Toroidal Dipole Modes. Advanced Optical Materials, 2022, 10, 2101688. Terahertz perfect absorber based on flexible active switching of ultra-broadband and ultra-narrowband. Optics Express, 2021, 29, 42787. Allâ€dielectric Fabryâ€Perot Cavity Design for Spectrally Selective Midâ€Infrared Absorption. Physica Status 2077 0.7 7 Solidi (B): Basic Research, 0, , 2100464. Visible transparency tuning and corresponding sensing application of opal photonic crystals. Optics Express, 2021, 29, 40419. 1.7 Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film. Chinese Physics B, O, , . 2079 0.7 19 Wideband mid-infrared thermal emitter based on stacked nanocavity metasurfaces. International 2080 6.3 Journal of Extreme Manufacturing, 2022, 4, 015402. Core-shell metallic alloy nanopillars-in-dielectric hybrid metamaterials with magneto-plasmonic 2081 8.3 14 coupling. Materials Today, 2021, 51, 39-47. All-dielectric magnetic resonance refractive index sensor based on asymmetric cross-shaped split ring metasurface., 2021, , . Analysis of an electrically reconfigurable metasurface for manipulating polarization of near-infrared 2083 3 0.9 light. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 145. An Ultra-Thin Near-Perfect Absorber via Block Copolymer Engineered Metasurfaces. Journal of Colloid 2084 5.0 and Interface Science, 2022, 609, 375-383. Dispersion of resonant modes in patch antenna lattices. Optics Letters, 2022, 47, 158. 2085 1.7 2 Refractive index sensor based on Fano resonance in a ring with a rectangular cavity structure. Results in Physics, 2021, 31, 104997. A Carbon Nanotube Coated Metawall with Ultra-Wideband Perfect Wave Absorption Utilizing Cement 2087 0 0.4 Dielectric. SSRN Electronic Journal, 0, , . A Switchable Metamaterial Absorber for Fine-Tuning of the Coherence Bandwidth in a Reverberation 2088 3.1 Chamber. IEEE Transactions on Antennas and Propagation, 2022, 70, 4908-4913. Non-linear coherent perfect absorption in the proximity of exceptional points. Communications 2089 2.0 15 Physics, 2022, 5, . Plasmon enhanced light–matter interaction of rice-like nanorods by a cube-plate nanocavity. 2090 2.2 Nanoscale Advances, 2022, 4, 1145-1150.

#	Article	IF	CITATIONS
2091	Tunable and switchable bifunctional meta-surface for plasmon-induced transparency and perfect absorption. Optical Materials Express, 2022, 12, 560.	1.6	16
2092	Microwave heating and curing of metal-like CFRP laminates through ultrathin and flexible resonance structures. Composites Science and Technology, 2022, 218, 109200.	3.8	16
2093	Electronically switchable Fano resonances based on spoof localized surface plasmons. , 2020, , .		1
2094	Engineering multi-state transparency on demand. Light Advanced Manufacturing, 2021, 2, 1.	2.2	4
2095	Narrowband tunable graphene perfect absorber based on dielectric microcavity in mid-infrared. , 2021,		0
2096	Tunable liquid crystal metamaterial filter with polarization-insensitive characteristic. Liquid Crystals, 2022, 49, 1338-1346.	0.9	5
2097	Metasurface Colloidal Quantum Dot Photodetectors. ACS Photonics, 2022, 9, 482-492.	3.2	11
2098	Absorption and scattering in perfect thermal radiation absorber-emitter metasurfaces. Optics Express, 2022, 30, 4058.	1.7	17
2099	Multi-Channel High-Performance Absorber Based on SiC-Photonic Crystal Heterostructure-SiC Structure. Nanomaterials, 2022, 12, 289.	1.9	7
2100	Narrowband Plasmonic Absorber Using Gold Nanoparticle Arrays for Refractive Index Sensing. IEEE Sensors Journal, 2022, 22, 4043-4050.	2.4	22
2101	Recent Progress in Improving the Performance of Infrared Photodetectors via Optical Field Manipulations. Sensors, 2022, 22, 677.	2.1	13
2102	Mid-Infrared Dual-Band Absorber Based on Nested Metamaterial Structure. Journal of Applied Spectroscopy, 2022, 88, 1324-1330.	0.3	2
2103	Designing an ultra-thin and wideband low-frequency absorber based on lumped resistance. Optics Express, 2022, 30, 914.	1.7	15
2104	Nanophotonic Chiral Sensing: How Does It Actually Work?. ACS Nano, 2022, 16, 2822-2832.	7.3	30
2105	Metamaterial Electromagnetic Wave Absorbers. Synthesis Lectures on Electromagnetics, 2022, 3, 1-199.	0.5	0
2106	Quad-band terahertz metamaterial absorber using three parallel gold strips surrounded by two identical gold ring arcs. Physica Scripta, 2022, 97, 035501.	1.2	4
2107	Self-Assembled Metal Nanohole Arrays with Tunable Plasmonic Properties for SERS Single-Molecule Detection. Nanomaterials, 2022, 12, 380.	1.9	8
2108	Independently tunable multi-band terahertz absorber based on graphene sheet and nanoribbons. Optics Express, 2022, 30, 3893.	1.7	23

#	Article	IF	CITATIONS
2109	Ensemble learning: a bidirectional framework for designing data-driven THz composite metamaterials. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 835.	0.9	3
2110	Metal–Semiconductor–Metal Metasurface for Multiband Infrared Stealth Technology Using Camouflage Color Pattern in Visible Range. Advanced Optical Materials, 2022, 10, .	3.6	50
2111	Magnetization dynamics in the YIG/Au/YIG magnon valve. APL Materials, 2022, 10, .	2.2	5
2112	Enhancement of Light Absorption by Leaky Modes in a Random Plasmonic Metasurface. Journal of Physical Chemistry C, 2022, 126, 3163-3170.	1.5	5
2113	Plasmon-Induced Transparency for Tunable Atom Trapping in a Chiral Metamaterial Structure. Nanomaterials, 2022, 12, 516.	1.9	4
2114	High absorption and a tunable broadband absorption based on the fractal Technology of Infrared Metamaterial Broadband Absorber. Diamond and Related Materials, 2022, 123, 108872.	1.8	11
2115	Bidirectional tunable nano-film absorber based on Fabry–Pérot resonance incorporating polymer-dispersed liquid crystal. Optics Communications, 2022, 510, 127925.	1.0	4
2116	Colloidal self-assembly based all-metal metasurface absorbers to achieve broadband, polarization-independent light absorption at UV–Vis frequencies. Applied Surface Science, 2022, 584, 152624.	3.1	9
2117	Graphene-based tunable short band absorber for infrared wavelength. Applied Physics B: Lasers and Optics, 2022, 128, 1.	1.1	43
2118	Simultaneous realization of polarization conversion for reflected and transmitted waves with bi-functional metasurface. Scientific Reports, 2022, 12, 2368.	1.6	31
2119	Near-field strong plasmonic resonances in Bi1.5Sb0.5Te1.8Se1.2 topological insulator film. European Physical Journal Plus, 2022, 137, 1.	1.2	0
2120	Numerical Simulations of Metamaterial Absorbers Employing Vanadium Dioxide. Plasmonics, 2022, 17, 1107-1117.	1.8	8
2121	Terahertz Metamaterial Absorbers. Advanced Materials Technologies, 2022, 7, .	3.0	27
2122	Improvement of Heating Uniformity by Limiting the Absorption of Hot Areas in Microwave Processing of CFRP Composites. Materials, 2021, 14, 7769.	1.3	5
2123	Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems. Nanoscale, 2022, 14, 6425-6436.	2.8	69
2124	Terahertz 3D bulk metamaterials with randomly dispersed split-ring resonators. Nanophotonics, 2022, 11, 2065-2074.	2.9	7
2125	High efficiency ambient RF energy harvesting by a metamaterial perfect absorber. Optical Materials Express, 2022, 12, 1242.	1.6	9
2126	Switchable ultra-broadband terahertz wave absorption with VO2-based metasurface. Scientific Reports, 2022, 12, 2501.	1.6	30

#	Article	IF	CITATIONS
2127	Optical properties and application potential of a hybrid cavity compound grating structure. Optics Express, 2022, 30, 7737.	1.7	2
2128	Flexible Assembled Metamaterials for Infrared and Microwave Camouflage. Advanced Optical Materials, 2022, 10, .	3.6	44
2129	Creating hot spots within air for better sensitivity through design of oblique-wire-bundle metamaterial perfect absorbers. Scientific Reports, 2022, 12, 3557.	1.6	0
2130	Terahertz multimode modulator based on tunable triple-plasmon-induced transparency in monolayer graphene metamaterials. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2022, 39, 594.	0.8	19
2131	Metamaterial perfect absorber using elliptical nanoparticles in a multilayer metasurface structure with polarization independence. Optics Express, 2022, 30, 10387.	1.7	25
2132	Reconfigurable and spectrally switchable perfect absorber based on a phase-change material. Applied Optics, 2022, 61, 2888.	0.9	6
2133	Narrowband diffuse thermal emitter based on surface phonon polaritons. Nanophotonics, 2022, 11, 4115-4122.	2.9	11
2134	Ultrabroad perfect absorption of a graphene-covered compound silver grating for mid-infrared multimolecular identification. Europhysics Letters, 0, , .	0.7	0
2135	Plasmonâ€Induced Disorder Engineering for Robust Optical Sensors. Advanced Optical Materials, 2022, 10, .	3.6	6
2136	Ultra-high sensitivity terahertz sensor based on a five-band absorber. Journal of Optics (United) Tj ETQq1 1 0.784	1314 rgBT 1.0	/Oyerlock 10
2136 2137	Ultra-high sensitivity terahertz sensor based on a five-band absorber. Journal of Optics (United) Tj ETQq1 1 0.784 Tuning of Reciprocal Plasmonic Metasurface Resonances by Ultra-Thin Conformal Coatings. Optics, 2022, 3, 70-78.	1314 rgBT 1.0	/Oyerlock I 0 2
2136 2137 2138	Ultra-high sensitivity terahertz sensor based on a five-band absorber. Journal of Optics (United) Tj ETQq1 1 0.784 Tuning of Reciprocal Plasmonic Metasurface Resonances by Ultra-Thin Conformal Coatings. Optics, 2022, 3, 70-78. Deep ultra-violet plasmonics: exploiting momentum-resolved electron energy loss spectroscopy to probe germanium. Optics Express, 2022, 30, 12630.	43 14 rgBT 0.6 1.7	/Oyerlock 10 2 2
2136 2137 2138 2139	Ultra-high sensitivity terahertz sensor based on a five-band absorber. Journal of Optics (United) Tj ETQq1 1 0.784 Tuning of Reciprocal Plasmonic Metasurface Resonances by Ultra-Thin Conformal Coatings. Optics, 2022, 3, 70-78. Deep ultra-violet plasmonics: exploiting momentum-resolved electron energy loss spectroscopy to probe germanium. Optics Express, 2022, 30, 12630. Flexible and Dualâ€Tunable Radar Absorber Enabled by Graphene. Advanced Materials Technologies, 2022, 7, .	43 14 rgBT 0.6 1.7 3.0	/Oyerlock 10 2 2 11
2136 2137 2138 2139 2140	Ultra-high sensitivity terahertz sensor based on a five-band absorber. Journal of Optics (United) Tj ETQq1 1 0.784 Tuning of Reciprocal Plasmonic Metasurface Resonances by Ultra-Thin Conformal Coatings. Optics, 2022, 3, 70-78. Deep ultra-violet plasmonics: exploiting momentum-resolved electron energy loss spectroscopy to probe germanium. Optics Express, 2022, 30, 12630. Flexible and Dualâ€Tunable Radar Absorber Enabled by Graphene. Advanced Materials Technologies, 2022, 7, . Integrating two epsilon-near-zero materials into planar multilayer metamaterial structure for broadband near-perfect mid-IR absorption. Optical Materials Express, 2022, 12, 1374.	43 14 rgBT 0.6 1.7 3.0 1.6	/Oyerlock 10 2 2 11 3
2136 2137 2138 2139 2140 2141	Ultra-high sensitivity terahertz sensor based on a five-band absorber. Journal of Optics (United) Tj ETQq1 1 0.784 Tuning of Reciprocal Plasmonic Metasurface Resonances by Ultra-Thin Conformal Coatings. Optics, 2022, 3, 70-78. Deep ultra-violet plasmonics: exploiting momentum-resolved electron energy loss spectroscopy to probe germanium. Optics Express, 2022, 30, 12630. Flexible and Dualâ€Tunable Radar Absorber Enabled by Graphene. Advanced Materials Technologies, 2022, 7, . Integrating two epsilon-near-zero materials into planar multilayer metamaterial structure for broadband near-perfect mid-IR absorption. Optical Materials Express, 2022, 12, 1374. Metamaterials and Metasurfaces: A Review from the Perspectives of Materials, Mechanisms and Advanced Metadevices. Nanomaterials, 2022, 12, 1027.	43 14 rgBT 0.6 1.7 3.0 1.6 1.9	/Oyerlock 10 2 2 11 3 54
2136 2137 2138 2139 2140 2141 2142	Ultra-high sensitivity terahertz sensor based on a five-band absorber. Journal of Optics (United) Tj ETQq1 1 0.784 Tuning of Reciprocal Plasmonic Metasurface Resonances by Ultra-Thin Conformal Coatings. Optics, 2022, 3, 70-78. Deep ultra-violet plasmonics: exploiting momentum-resolved electron energy loss spectroscopy to probe germanium. Optics Express, 2022, 30, 12630. Flexible and Dualâ€Tunable Radar Absorber Enabled by Graphene. Advanced Materials Technologies, 2022, 7, . Integrating two epsilon-near-zero materials into planar multilayer metamaterial structure for broadband near-perfect mid-IR absorption. Optical Materials Express, 2022, 12, 1374. Metamaterials and Metasurfaces: A Review from the Perspectives of Materials, Mechanisms and Advanced Metadevices. Nanomaterials, 2022, 12, 1027. Resonant Laser Printing of Optical Metasurfaces. Nano Letters, 2022, 22, 2786-2792.	43 14 rgBT 0.6 1.7 3.0 1.6 1.9 4.5	/Oyerlock 10 2 2 11 3 54 20
2136 2137 2138 2139 2140 2141 2142 2143	Ultra-high sensitivity terahertz sensor based on a five-band absorber. Journal of Optics (United) Tj ETQq1 1 0.784 Tuning of Reciprocal Plasmonic Metasurface Resonances by Ultra-Thin Conformal Coatings. Optics, 2022, 3, 70-78. Deep ultra-violet plasmonics: exploiting momentum-resolved electron energy loss spectroscopy to probe germanium. Optics Express, 2022, 30, 12630. Flexible and Dualâ&Tunable Radar Absorber Enabled by Graphene. Advanced Materials Technologies, 2022, 7, . Integrating two epsilon-near-zero materials into planar multilayer metamaterial structure for broadband near-perfect mid-IR absorption. Optical Materials Express, 2022, 12, 1374. Metamaterials and Metasurfaces: A Review from the Perspectives of Materials, Mechanisms and Advanced Metadevices. Nanomaterials, 2022, 12, 1027. Resonant Laser Printing of Optical Metasurfaces. Nano Letters, 2022, 22, 27, 2786-2792. Figures of merit of plasmon lattice resonance sensors: shape and material matters. Nanotechnology, 2022, 33, 225206.	43 14 rg BT 0.6 1.7 3.0 1.6 1.9 4.5 1.3	<pre>/Oyerlock 10 2 2 11 3 54 20 2</pre>

#	Article	IF	CITATIONS
2145	Thermally actuated micro-/nanoscale deformations for optical reconfigurations. Journal of Optics (United Kingdom), 2022, 24, 054007.	1.0	2
2146	Large-area long-wave infrared broadband all-dielectric metasurface absorber based on maskless laser direct writing lithography. Optics Express, 2022, 30, 13391.	1.7	18
2147	Experimental demonstration of extremely asymmetric flexural wave absorption at the exceptional point. Extreme Mechanics Letters, 2022, 52, 101649.	2.0	13
2148	Polarization optical switching based on the molding of coherent light scattering via surface lattice resonances. Materials Today Nano, 2022, 18, 100190.	2.3	4
2149	Ultra-sensitive narrow-band plasmonic perfect absorber for sensing applications. Photonics and Nanostructures - Fundamentals and Applications, 2022, 50, 101018.	1.0	7
2150	Tracking the sun's direction with a wide-angle metasurface for navigation. , 2021, , .		0
2151	Broadband absorption of monolayer MoS ₂ in visible region using a tetramerized nanorod metasurface. Journal of Optics (United Kingdom), 2022, 24, 024001.	1.0	5
2152	Dumbbell Shaped THz Absorber in the Visible Light Spectrum for Low Power IoT Devices. , 2021, , .		1
2153	Simultaneous thermal infrared camouflage and laser scattering with thermal management based on an ultra-thin metasurface. , 2021, , .		1
2154	Waveguide effective plasmonics with structure dispersion. Nanophotonics, 2022, 11, 1659-1676.	2.9	13
2155	Perfect Optical Absorbers by All-Dielectric Photonic Crystal/Metal Heterostructures Due to Optical Tamm State. Nanomaterials, 2021, 11, 3447.	1.9	10
2156	Ultra-broadband near-perfect absorber based on a single-layer Ge-assisted metasurface. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 332.	0.9	7
2157	Polarization-independent perfect absorber enabled by quasibound states in the continuum. Physical Review B, 2021, 104, .	1.1	45
2158	Metamaterialsâ€Based Photoelectric Conversion: From Microwave to Optical Range. Laser and Photonics Reviews, 2022, 16, .	4.4	11
2159	Single-Port Coherent Perfect Loss in a Photonic Crystal Nanobeam Resonator. Nanomaterials, 2021, 11, 3457.	1.9	1
2160	Multi-mode circular dichroism in n-fold rotational symmetric metamaterials. Optical and Quantum Electronics, 2022, 54, 1.	1.5	2
2161	Loss Control with Annealing and Lattice Kerker Effect in Silicon Metasurfaces. Advanced Photonics Research, 2022, 3, .	1.7	7
9169	Multi-mode plasmonic resonance broadband LWIR metamaterial absorber based on lossy metal ring.	1.7	29

#	Article	IF	CITATIONS
2163	Ultra-black Pythagorean-tree metasurface antenna array based absorber and emitter for applications in solar thermophotovoltaics. , 2021, , .		3
2164	A dual-tunable ultra-broadband terahertz absorber based on graphene and strontium titanate. Results in Physics, 2021, 31, 105039.	2.0	14
2165	An allâ€dielectric metasurface longâ€pass cutâ€off filter based on a multiâ€nanocircular array perfect cutâ€off absorber. Microwave and Optical Technology Letters, 2022, 64, 300-304.	0.9	3
2166	Ultra-Narrowband Anisotropic Perfect Absorber Based on α-MoO3 Metamaterials in the Visible Light Region. Nanomaterials, 2022, 12, 1375.	1.9	12
2167	Near-infrared narrow-band minus filter based on a Mie magnetic dipole resonance. Optics Express, 2022, 30, 22830.	1.7	4
2168	Tunable broadband terahertz metamaterial absorber based on vanadium dioxide. AIP Advances, 2022, 12,	0.6	19
2169	Designing a Perfect Phosphorene-Plasmon Adsorbent and Investigating its Geometric Irregularity Effects: A Simulation Study. SSRN Electronic Journal, 0, , .	0.4	0
2170	Metamaterial-based High-Performance Radar Absorbing Structure. Metamaterials Science and Technology, 2022, , 1-46.	0.0	1
2171	Analytical and Numerical Analyses of Multilayer Photonic Metamaterial Slab Optical Waveguide Structures with Kerr-Type Nonlinear Cladding and Substrate. Crystals, 2022, 12, 628.	1.0	1
2172	Nanostructured In ₃ SbTe ₂ antennas enable switching from sharp dielectric to broad plasmonic resonances. Nanophotonics, 2022, 11, 3871-3882.	2.9	14
2173	Lithography-free wide-angle polarization-independent ultra-broadband absorber based on anti-reflection effect. Optics Express, 2022, 30, 16847.	1.7	10
2174	Polarization-selective absorptive and transmissive metamaterials. Optics Express, 2022, 30, 20532.	1.7	4
2175	Terahertz hybrid optical-plasmonic modes: tunable resonant frequency, narrow linewidth, and strong local field enhancement. Optics Express, 2022, 30, 19889.	1.7	1
2177	Numerical investigation of cross metamaterial shaped ultrawideband solar absorber. Optical and Quantum Electronics, 2022, 54, .	1.5	3
2178	High sensitive plasmonic sensor with simple design of the ring and the disk resonators. Optical and Quantum Electronics, 2022, 54, 1.	1.5	5
2179	Tunable mid-infrared ultra-narrowband plasmonic absorber and sensor based on bulk Dirac semimetal metamaterials. Japanese Journal of Applied Physics, 2022, 61, 060907.	0.8	1
2180	Observation of negative photoresponse in joule-heated Au/Cu2SnS3 ternary chalcogenide thin film deposited by low energy pulsed laser deposition. Optical Materials, 2022, 128, 112389.	1.7	14
2181	A carbon nanotube coated metawall with ultra-wideband perfect wave absorption utilizing cement dielectric. Carbon, 2022, 196, 220-228.	5.4	4

# 2182	ARTICLE Dynamic metamaterial perfect absorber based on VO2 phase transition. , 2022, , .	IF	Citations 0
2183	Monolayer crumpled graphene-based mechanically and electrically tunable infrared absorbers for high-sensitivity sensing. Optics and Laser Technology, 2022, 153, 108265.	2.2	5
2184	Electrically Tunable Plasmonic Absorber Based on Cu-ITO Subwavelength Grating on SOI at Telecom Wavelength. Plasmonics, 2022, 17, 1709-1716.	1.8	3
2185	Metasurfaceâ€Enhanced Infrared Spectroscopy: An Abundance of Materials and Functionalities. Advanced Materials, 2023, 35, .	11.1	25
2186	Deep-ultraviolet localized surface plasmon resonance using Ga nanoparticles. Optical Materials Express, 2022, 12, 2444.	1.6	4
2187	Transparent absorber composed of two stacked ultrathin metal films perforated with small holes. Optics Express, 2022, 30, 22922.	1.7	1
2188	All-nitride broadband metamaterial absorbers. Results in Physics, 2022, 38, 105657.	2.0	5
2189	Metamaterial Perfect Absorbers and Performance. Synthesis Lectures on Electromagnetics, 2022, , 29-91.	0.5	1
2191	Loaded Slot Cavity Induced Sensing Enhancement and Transparency Based on Plasmonic Structure. IEEE Sensors Journal, 2022, 22, 14044-14050.	2.4	5
2192	TiN-based Tamm-FP Coupling Infrared Perfect Absorber with a Narrowed Linewidth. , 2022, , .		0
2193	Engineering van der Waals Materials for Advanced Metaphotonics. Chemical Reviews, 2022, 122, 15204-15355.	23.0	33
2194	Tunable liquid crystal metasurface with polarization selection characteristic. Journal Physics D: Applied Physics, 2022, 55, 375001.	1.3	1
2195	Ultrasensitive dual-band terahertz metasurface sensor based on all InSb resonator. Optics Communications, 2022, 522, 128667.	1.0	11
2196	A Triple-Band Terahertz Metamaterial Absorber Using Two Double Rectangular Patches Connected by Two Identical Gold Strips. Journal of Electronic Materials, 2022, 51, 5050-5057.	1.0	3
2197	Generalized approach to quantum interference in lossy N-port devices via a singular value decomposition. Optics Express, 2022, 30, 31267.	1.7	3
2198	Sensitivity Enhancement and Probiotic Detection of Microfluidic Chips Based on Terahertz Radiation Combined with Metamaterial Technology. Micromachines, 2022, 13, 904.	1.4	2
2199	Ultraâ€Broadband Wideâ€Angle Polarizationâ€Independent Enhanced Absorber with Ultraviolet to Farâ€Infrared Absorption Performance. Physica Status Solidi (B): Basic Research, 2022, 259, .	0.7	4
2200	Surface Plasmon-Enhanced Photoelectrochemical Sensor Based on Au Modified TiO2 Nanotubes. Nanomaterials, 2022, 12, 2058.	1.9	10

#	Article	IF	CITATIONS
2201	Surface plasmons interference nanogratings: wafer-scale laser direct structuring in seconds. Light: Science and Applications, 2022, 11, .	7.7	35
2202	Nanoparticle-on-Mirror Metamaterials for Full-Spectrum Selective Solar Energy Harvesting. Nano Letters, 2022, 22, 5659-5666.	4.5	13
2203	Perfect selective metamaterial absorber with thin-film of GaAs layer in the visible region for solar cell applications. Optical and Quantum Electronics, 2022, 54, .	1.5	16
2204	Optical Metasurfaces for Energy Conversion. Chemical Reviews, 2022, 122, 15082-15176.	23.0	52
2205	Optical sensing based on classical analogy of double Electromagnetically induced transparencies. Results in Physics, 2022, 39, 105732.	2.0	15
2206	An Ultra-Thin, SwitchableÂUltra-NarrowÂBand Absorber for High-Performance Terahertz Sensing. SSRN Electronic Journal, 0, , .	0.4	0
2207	Thin Germanium Waveguide-Array-Like Absorber Based on Localized Resonance. IEEE Photonics Journal, 2022, 14, 1-5.	1.0	1
2208	Quantitative exploration of the absorber behavior of metal–insulator–metal metamaterials within terahertz via an asymmetric peak model. European Physical Journal Plus, 2022, 137, .	1.2	1
2209	Toroidal Dipole Excitation in Metamaterial Perfect Absorber Consisting of Dielectric Nanodisks Quadrumer Clusters and Spacer on Metal Substrate. Photonics, 2022, 9, 462.	0.9	1
2210	Lossâ€induced phase transition in midâ€infrared plasmonic metamaterials for ultrasensitive vibrational spectroscopy. InformaÄnÃ-Materiály, 2022, 4, .	8.5	18
2211	Probing Denaturation of Protein A via Surface-Enhanced Infrared Absorption Spectroscopy. Biosensors, 2022, 12, 530.	2.3	5
2212	Dualâ€Quasi Bound States in the Continuum Enabled Plasmonic Metasurfaces. Advanced Optical Materials, 2022, 10, .	3.6	33
2213	Experimental Study of a Quad-Band Metamaterial-Based Plasmonic Perfect Absorber as a Biosensor. Molecules, 2022, 27, 4576.	1.7	7
2214	Nonlinear thermal emission and visible thermometry. Advanced Photonics, 2022, 4, .	6.2	1
2215	Tunable epsilon-near-zero response induced ultrathin perfect absorber with incident angle linear to thickness of film. Optical Engineering, 2022, 61, .	0.5	0
2216	Wafer-scale self-assembled 2.5D metasurface for efficient near-field and far-field electromagnetic manipulation. Applied Surface Science, 2022, 601, 154244.	3.1	6
2217	Hybridized magnetic lattice resonances for narrowband perfect absorption. Optics and Laser Technology, 2022, 156, 108460.	2.2	6
2218	All-Dielectric Transreflective Angle-Insensitive Near-Infrared (NIR) Filter. Nanomaterials, 2022, 12, 2537.	1.9	0

#	Article	IF	CITATIONS
2219	Ultra-broadband metamaterial absorber for capturing solar energy from visible to near infrared. Surfaces and Interfaces, 2022, 33, 102244.	1.5	19
2220	Ultra-thin midwavelength infrared absorber using bismuth based planar thin film metamaterials. Applied Physics Express, 0, , .	1.1	3
2221	Doubling and tripling the absorption peaks of a multi-band graphene terahertz absorber. Diamond and Related Materials, 2022, 128, 109260.	1.8	8
2222	A THz Tuned Plasmonic Material Absorber in Visible Light Spectrum for Low Power Devices. , 2022, , .		0
2223	Refractive index sensor based on Fano resonance in a ring with a stub cavity structure. , 2022, , .		0
2224	Multiwavelength absorption switching based on the metal-dielectric-metal multilayer Kerr metamaterial. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 2589.	0.9	1
2225	Broadband coherent perfect absorption employing an inverse-designed metasurface via genetic algorithm. Optics Express, 2022, 30, 34429.	1.7	15
2226	Fano-resonant graphene metamaterials. Journal of Applied Physics, 2022, 132, 060901.	1.1	2
2227	Large‣cale Laser Nanopatterning of Multiband Tunable Midâ€Infrared Metasurface Absorber. Advanced Optical Materials, 2022, 10, .	3.6	5
2228	High-Performance Ultra-Broadband Absorber for Polarized Long-Wavelength Infrared Light Trapping. Coatings, 2022, 12, 1194.	1.2	3
2229	Water-based metamaterials absorber with broadband absorption in terahertz region. Optics Communications, 2023, 526, 128874.	1.0	6
2230	Perfect terahertz absorber with dynamically tunable peak and bandwidth using graphene-based metamaterials. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 2313.	0.9	3
2231	Metasurface Micro/Nano-Optical Sensors: Principles and Applications. ACS Nano, 2022, 16, 11598-11618.	7.3	80
2232	A polarization-insensitive triple-band perfect metamaterial absorber incorporating ZnSe for terahertz sensing. Journal of Optics (United Kingdom), 2022, 24, 105102.	1.0	16
2233	Design, simulation and measurement of a active selector based on metamaterial in 5G frequency band. Optical Materials, 2022, 132, 112806.	1.7	0
2234	Highly Q-factor refractive index sensor based on graphene stack. Optik, 2022, 268, 169811.	1.4	6
2235	Designing a perfect Phosphorene-Plasmon absorber and investigating its geometric irregularity effects: A simulation study. Optics and Laser Technology, 2022, 156, 108519.	2.2	4
2236	Selective thermal emission and infrared camouflage based on layered media. Chinese Journal of Aeronautics, 2023, 36, 212-219.	2.8	4

#	Article	IF	CITATIONS
2237	Arbitrary Jones matrix on-demand design in metasurfaces using multiple meta-atoms. Nanoscale, 2022, 14, 14240-14247.	2.8	4
2238	The Broad Band Optical Absorber Designed By Multilayered Hyperbolic Metamaterial. Issn 2458-9411, 0, ,	0.2	0
2239	Durable camouflage materials by polyimide nanofilm with thermal management. Applied Surface Science, 2023, 608, 155107.	3.1	6
2240	Ultra-broadband coherent perfect absorption via elements with linear phase response. Optics Express, 2022, 30, 37350.	1.7	3
2241	Rectifying Nonreciprocal Perfect Absorber Based on Generalized Effective-Medium Theory for Composite Magnetic Metamaterials. Photonics, 2022, 9, 699.	0.9	4
2242	Monolithic Metamaterial-Integrated Graphene Terahertz Photodetector with Wavelength and Polarization Selectivity. ACS Nano, 2022, 16, 17263-17273.	7.3	15
2243	Tunable perfect optical absorption in truncated photonic crystals with lossy defects. Frontiers in Physics, 0, 10, .	1.0	0
2244	Silver mirror for enhancing the magnetic plasmon resonance and sensing performance in plasmonic metasurface. Applied Physics Express, 2022, 15, 102003.	1.1	16
2245	Third-order nonlinear optical manifestations in an intramolecular proton transfer fluorophore due to Tamm-plasmon based broadband optical absorbers. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 2857.	0.9	0
2246	High-Q Absorption in All-Dielectric Photonics Assisted by Metamirrors. ACS Photonics, 2022, 9, 3391-3397.	3.2	15
2248	Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition. Nature Communications, 2022, 13, .	5.8	11
2249	Multimodeâ€Assisted Broadband Impedanceâ€Gradient Thin Metamaterial Absorber. Advanced Photonics Research, 2022, 3, .	1.7	11
2250	Background Insensitive Polarization-Independent Ultra-Broadband Metamaterial Perfect Absorber in Mid-Infrared Regions. IEEE Photonics Journal, 2022, 14, 1-6.	1.0	0
2251	Bi-tunable absorber based on borophene and VOâ,, in the optical telecommunication band. Journal of the Optical Society of America B: Optical Physics, 0, , .	0.9	0
2252	Multiband-switchability and high-absorptivity of a metamaterial perfect absorber based on a plasmonic resonant structure in the near-infrared region. RSC Advances, 2022, 12, 30871-30878.	1.7	4
2253	Research progress of non-Hermitian electromagnetic metasurfaces. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 247802.	0.2	2
2254	Design Simulation and Optimization of Germanium-Based Solar Cells with Micro-Nano Cross-Cone Absorption Structure. Coatings, 2022, 12, 1653.	1.2	5
2255	An Application-Based Study on Electromagnetic Absorber Using Metamaterial. , 0, , .		1

#	Article	IF	CITATIONS
2256	Synthesis of Two-Dimensional Hexagonal Boron Nitride and Mid-Infrared Nanophotonics. ACS Applied Electronic Materials, 2023, 5, 34-65.	2.0	3
2257	THz Broadband Absorber Based on MoS2 with Split Rings and Archimedean Spiral Structures. Symmetry, 2022, 14, 2189.	1.1	1
2258	Visible transparent mid-infrared broadband absorbers based on gradient refractive indexes and multi-size cavity resonances. Optics Express, 2022, 30, 43078.	1.7	1
2259	Ultra-Broadband, Omnidirectional, High-Efficiency Metamaterial Absorber for Capturing Solar Energy. Nanomaterials, 2022, 12, 3515.	1.9	5
2260	Self-induced transparency in a perfectly absorbing chiral second-harmonic generator. PhotoniX, 2022, 3, .	5.5	10
2261	GST-Based Plasmonic Biosensor for Hemoglobin and Urine Detection. Plasmonics, 2022, 17, 2391-2404.	1.8	13
2262	Microwave heating and processing of solid metals using electromagnetic resonators. International Journal of Advanced Manufacturing Technology, 2022, 123, 1111-1121.	1.5	4
2263	Design of a Visible Broadband Metamaterial Absorber Based on Nickel Metal. Journal of Russian Laser Research, 2022, 43, 600-606.	0.3	2
2264	Dynamic modulation of multi-mode ultra-strong coupling at ambient conditions. European Physical Journal D, 2022, 76, .	0.6	3
2265	Selective triggering in-plane and out-of-plane dipolar modes of hexagonal Au nanoplate with the polarization of excitation beam. Journal of Physics Condensed Matter, 2022, 34, 505302.	0.7	0
2266	Near-maximum microwave absorption in a thin metal film at the pseudo-free-standing limit. Scientific Reports, 2022, 12, .	1.6	3
2267	Thermo-optic modulator based on vanadium dioxide and nonlinear Kerr medium in terahertz region. Optical Materials, 2022, 134, 113131.	1.7	2
2268	Terahertz narrowband perfect metasurface absorber based on micro-ring-shaped GaAs array for enhanced refractive index sensing. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 146, 115527.	1.3	79
2269	UV–visible broadband polarization-independent metamaterial absorber based on two-dimensional Au grating. Optics and Laser Technology, 2023, 157, 108729.	2.2	11
2270	Coupling of Epsilon-Near-Zero Mode to Mushroom-Type Metamaterial for Optimizing Infrared Suppression and Radiative Cooling. Photonic Sensors, 2023, 13, .	2.5	3
2272	Gas sensing of organophosphorous compounds with Ill–V semiconductor plasmonics. Sensors and Actuators B: Chemical, 2023, 376, 132987.	4.0	5
2273	Highly ordered laser imprinted plasmonic metasurfaces for polarization sensitive perfect absorption. Scientific Reports, 2022, 12, .	1.6	10
2274	Recent advances in photonics of three-dimensional Dirac semimetal Cd3As2. , 2022, 1, .		2

#	Article	IF	CITATIONS
2276	Dual controlled cross-shaped broadband terahertz absorber based on vanadium oxide—liquid crystal metamaterial. Journal of Optics (India), 0, , .	0.8	1
2277	VSRR for isotropic absorption and nanophotonic sensor. , 2017, , .		0
2278	Numerical investigation of ultrawideband solar wave absorber with multiring resonator gold and composited MgF2-Tungsten substrate. Optik, 2023, 273, 170392.	1.4	2
2279	Asymmetric metal-semiconductor-metal cavities enhanced broadband mid-infrared detectors. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 147, 115592.	1.3	0
2280	Dynamically Switchable Sub-THz Absorber Using VO ₂ Metamaterial Suitable in Optoelectronic Applications. IEEE Transactions on Plasma Science, 2022, 50, 5038-5045.	0.6	13
2281	The use of various materials as a metal component in a metamaterial thermophotovoltaic emitter. Radiotekhnika, 2022, , 160-166.	0.1	0
2282	A Reconfigurable Sensing Structure for Fast Optical Modulation by Graphene in Critically Coupled Photonic Crystal Cavities. , 2022, , .		0
2283	Inverse design in the complex plane: Manipulating quasinormal modes. Physical Review A, 2022, 106, .	1.0	3
2284	Quantitative Midâ€Infrared Plasmonic Biosensing on Scalable Graphene Nanostructures. Advanced Materials Interfaces, 2023, 10, .	1.9	4
2285	An Omnidirectional Dual-Functional Metasurface with Ultrathin Thickness. Materials, 2022, 15, 8378.	1.3	0
2286	Stretchable Chiral Metamaterial for Flexible Control of Broadband Asymmetric Transmission. Plasmonics, 2023, 18, 29-37.	1.8	2
2287	Localized Surface Plasmon Resonance Biosensor Design Optimization with Metal–Insulator–Metal Nanodisk/Nanoring. , 2022, , .		0
2288	Maximal absorption in ultrathin TiN films for microbolometer applications. Applied Physics Letters, 2022, 121, 234101.	1.5	2
2289	Ultrathin Broadband Metasurface Superabsorbers from a van der Waals Semimetal. Advanced Optical Materials, 2023, 11, .	3.6	2
2290	High-speed tunable optical absorber based on a coupled photonic crystal slab and monolayer graphene structure. Optics Express, 2022, 30, 47612.	1.7	3
2291	Ultra-broadband polarization-independent perfect absorber based on phase change material (\$\${hbox) Tj ETQq1 Quantum Electronics, 2023, 55, .	1 0.78431 1.5	4 rgBT /Ove 7
2292	Ultrahigh Extinction Ratio Longâ€Wave Infrared Polarizationâ€Selective Broadband Metamaterial Absorber. Advanced Photonics Research, 0, , 2200269.	1.7	0
2293	Simulation of a Near Infrared Perfect Absorber Based on Plasmonic Meta-gratings. , 2022, , .		0

#	Article	IF	CITATIONS
2294	Toroidal dipole bound states in the continuum in all-dielectric metasurface for high-performance refractive index and temperature sensing. Applied Surface Science, 2023, 615, 156408.	3.1	16
2295	A Highâ€∢i>Q Terahertz Metamaterials Absorber for Refractive Index Sensing. Physica Status Solidi (B): Basic Research, 2023, 260, .	0.7	1
2296	All-Dielectric Dual-Band Metamaterial Absorber Based on Ring Nanocavity in Visible Region for Sensing Applications. Photonics, 2023, 10, 58.	0.9	4
2297	Multi-narrowband polarization independent terahertz absorber based on graphene-silica raised ring. Optical and Quantum Electronics, 2023, 55, .	1.5	3
2298	Facile Fabrication of Titanium Nitride Nanoring Broad-Band Absorbers in the Visible to Near-Infrared by Shadow Sphere Lithography. ACS Applied Materials & Interfaces, 2023, 15, 3266-3273.	4.0	6
2299	Manipulating light transmission and absorption via an achromatic reflectionless metasurface. PhotoniX, 2023, 4, .	5.5	9
2300	Simple structured ultranarrowâ€band metamaterial perfect absorber with dielectricâ€dielectricâ€metal configuration. Microwave and Optical Technology Letters, 2023, 65, 1575-1582.	0.9	1
2301	Effects of silicon dioxide as the polar dielectric on the infrared absorption spectrum of the metal-insulator-metal metasurface. Materials Research Express, 2023, 10, 015801.	0.8	1
2302	Polaritonic coherent perfect absorption based on self-hybridization of a quasi-bound state in the continuum and exciton. Optics Express, 2023, 31, 4691.	1.7	4
2303	Supreme-black levels enabled by touchproof microcavity surface texture on anti-backscatter matrix. Science Advances, 2023, 9, .	4.7	5
2304	Two-dimensional simple structured ultranarrow-band metamaterial perfect absorber with dielectric nanocylindrical array. Journal of Nanophotonics, 2023, 17, .	0.4	1
2306	Silicon-based asymmetric dimer-resonator grating for narrowband perfect absorption and sensing. Optics Express, 2023, 31, 4190.	1.7	4
2307	Polarization and angular insensitive perfect metasurface absorber in near-ultraviolet region. Journal of Nanophotonics, 2023, 17, .	0.4	0
2308	Dual-tuning upconversion luminescence based on perfectly absorbed nanocavities under triple NIR excitation. Journal of Alloys and Compounds, 2023, 938, 168534.	2.8	2
2309	Resonant leaky modes in all-dielectric metasystems: Fundamentals and applications. Physics Reports, 2023, 1008, 1-66.	10.3	54
2310	Allâ€Dielectric Insulated 3D Plasmonic Nanoparticles for Enhanced Selfâ€Floating Solar Evaporation under One Sun. Advanced Optical Materials, 2023, 11, .	3.6	12
2311	Magnetic plasmons in plasmonic nanostructures: An overview. Journal of Applied Physics, 2023, 133, .	1.1	5
2312	Substrated inhomogeneous metasurfaces analysis using interaction constant method. Scientific Reports, 2023, 13, .	1.6	0

#	Article	IF	CITATIONS
2313	Visible-Range Multiple-Channel Metal-Shell Rod-Shaped Narrowband Plasmonic Metamaterial Absorber for Refractive Index and Temperature Sensing. Micromachines, 2023, 14, 340.	1.4	17
2314	Metamaterials-based broadband absorption in long-wave infrared frequency enabled by multilayered ENZ films on metal-coated patterned silicon. Optics Express, 2023, 31, 8453.	1.7	3
2315	Near perfect and polarization insensitive broadband absorber based on Al ₂ O ₃ - Ti - Al ₂ O ₃ triple layer structure. Physica Scripta, 2023, 98, 025511.	1.2	4
2316	High-Sensitivity Sensing in All-Dielectric Metasurface Driven by Quasi-Bound States in the Continuum. Nanomaterials, 2023, 13, 505.	1.9	6
2317	Broadband enhancement of absorption by two-dimensional atomic crystals modeled as non-Hermitian photonic scattering. Applied Physics Letters, 2023, 122, .	1.5	1
2318	Continuously controlling the phase transition of In3SbTe2 for tunable high quality-factors absorber. Optics and Laser Technology, 2023, 162, 109239.	2.2	3
2319	A Circular Dipole Nanoantenna with Improved Performance. , 2022, , .		0
2320	Analysis of a Wideband Hybrid Metamaterial as an Absorber vis-a-vis a Polarizer. , 2022, , .		1
2321	Perfect Absorption and Strong Coupling in Supported MoS ₂ Multilayers. ACS Nano, 2023, 17, 3401-3411.	7.3	6
2322	Ultra-narrow band perfect absorber for sensing applications in the visible region. European Physical Journal D, 2023, 77, .	0.6	1
2323	Broadband actively tunable metamaterial absorber based on vanadium dioxide and Fabry-Perot cavity. Optical Materials, 2023, 138, 113716.	1.7	5
2324	Plasmonic spin-multiplexing metasurface for controlling the generation and in-plane propagation of surface plasmon polaritons. Journal of Applied Physics, 2023, 133, .	1.1	1
2325	A new approach to design multi section wideband transmissive absorber using thin resistive sheets and dielectric slabs. Optik, 2023, 277, 170697.	1.4	2
2326	Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Progress in Materials Science, 2023, 135, 101088.	16.0	147
2327	Multilayered gold, MgF2 and tungsten based ultra wide band infrared absorber for solar cell applications. Materials Chemistry and Physics, 2023, 301, 127680.	2.0	5
2328	Metamaterial-based High-Performance Radar Absorbing Structure. Metamaterials Science and Technology, 2022, , 63-108.	0.0	0
2329	A numerical investigation of ultrawideband metamaterial absorber for infrared wavelength spectrum for the solar cell application. , 2023, , .		0
2330	Bound states in the continuum enabling ultra-narrowband perfect absorption. New Journal of Physics, 2023, 25, 023020.	1.2	14

#	Article	IF	CITATIONS
2331	Lithography-free near-infrared broadband absorber based on a multilayer nanosystem. Optik, 2023, 277, 170652.	1.4	2
2332	Working Mechanism and Progress of Electromagnetic Metamaterial Perfect Absorber. Photonics, 2023, 10, 205.	0.9	5
2333	Chiral metasurface refractive index sensor with a large figure of merit. Applied Physics Letters, 2023, 122, .	1.5	4
2335	Plasmonic biosensor with annular aperture array integrated on a resonant cavity LED. Optics Communications, 2023, 535, 129336.	1.0	0
2336	Hexagonal Boron Nitride for Photonic Device Applications: A Review. Materials, 2023, 16, 2005.	1.3	6
2337	Optical axis-driven tunable Brewster effect in anisotropic materials. Applied Optics, 2023, 62, 2821.	0.9	1
2338	Simulated Studies of Polarization-Selectivity Multi-Band Perfect Absorber Based on Elliptical Metamaterial with Filtering and Sensing Effect. Photonics, 2023, 10, 295.	0.9	2
2339	Ultra-narrow bandwidth mid-infrared thermal emitters achieved with all-dielectric metasurfaces. International Communications in Heat and Mass Transfer, 2023, 143, 106728.	2.9	6
2340	Dynamic Beam Steering and Focusing Graphene Metasurface Mirror Based on Fermi Energy Control. Micromachines, 2023, 14, 715.	1.4	3
2341	SPR sensor functionalized with zinc oxide and its detection of gaseous formaldehyde. Scientia Sinica: Physica, Mechanica Et Astronomica, 2023, 53, 114210.	0.2	0
2342	Plasmonic Perfect Absorber Utilizing Polyhexamethylene Biguanide Polymer for Carbon Dioxide Gas Sensing Application. Materials, 2023, 16, 2629.	1.3	2
2343	Nanophotonic Devices and Platforms. Springer Series in Optical Sciences, 2023, , 35-76.	0.5	0
2344	Broad band solar cell absorber based on double-ring coupled disk resonator structure: from visible to mid infrared. Physica Scripta, 2023, 98, 045513.	1.2	3
2345	Variational-based approach to investigate Fano resonant plasmonic metasurfaces. Optics Express, 2023, 31, 16645.	1.7	2
2346	An Ultra-thin, Switchable Ultra-narrow Band Absorber for High-performance Terahertz Sensing. Journal of Physics: Conference Series, 2023, 2470, 012018.	0.3	0
2347	Absorption properties and mechanisms of metallic moth-eye structures. Optics Communications, 2023, 540, 129487.	1.0	1
2348	Double broadband enhanced absorber based on graphene-coupled metal disk resonator structure. Optics Communications, 2023, 540, 129486.	1.0	2
2349	Polarization-selective nanogold absorber by twisted stacking. Nano Research, 2023, 16, 10392-10400.	5.8	0

#	Article	IF	CITATIONS
2350	Dielectric Cavity-Insulator-Metal (DCIM) Metamaterial Absorber in Visible Range. Nanomaterials, 2023, 13, 1401.	1.9	4
2401	Designs of polarization-controlled plasmonic absorber in visible and infrared frequencies. , 2023, , .		0
2402	Design of cephalosporin detection system based on metamaterial infrared absorber. , 2023, , .		0
2408	Multilayer broadband switchable absorbers based on phase-change materials. , 2023, , .		0
2409	Study of Novel Design of Multi-Band and Broad-Band Metamaterial Microwave Absorber. Advances in Wireless Technologies and Telecommunication Book Series, 2023, , 121-135.	0.3	0
2427	Plasmonic Metamaterial Perfect Absorber using Hybrid Split Cross-Ring Nanostructures. , 2023, , .		0
2434	Ultrathin Wideband Metamaterial based Microwave Absorber. , 2023, , .		0
2465	Ultra-Broadband Visible to Near-Infrared Absorber Using Oxide-Coated Asymmetric Fabry-Perot Nanocavity. , 2023, , .		0
2472	TAILORING THE SPECTRAL PROPERTIES OF RADIATIVE HEAT TRANSFER IN DISORDERED MANY-NANOPARTICLE SUSPENSIONS. , 2023, , .		0
2483	Development and optimization of a planar wideband ultrathin absorber based on equivalent circuit model analysis. , 2023, , .		0

2499 Graphene-Based Metamaterial Absorbers. , 2024, , 151-195.

0