Metals, minerals and microbes: geomicrobiology and bi

Microbiology (United Kingdom) 156, 609-643 DOI: 10.1099/mic.0.037143-0

Citation Report

#	Article	IF	CITATIONS
1	Molecular Biological Detection of Anaerobic Gut Fungi (Neocallimastigales) from Landfill Sites. Applied and Environmental Microbiology, 2006, 72, 5659-5661.	1.4	64
2	Geomicrobiology of Eukaryotic Microorganisms. Geomicrobiology Journal, 2010, 27, 491-519.	1.0	96
3	Metallomics: lessons for metalliferous soil remediation. Applied Microbiology and Biotechnology, 2010, 87, 1271-1280.	1.7	75
4	A review of the environmental corrosion, fate and bioavailability of munitions grade depleted uranium. Science of the Total Environment, 2010, 408, 5690-5700.	3.9	72
5	Molecular Characterization of Fungal Communities in Sandstone. Geomicrobiology Journal, 2010, 27, 559-571.	1.0	25
6	Effects of Cu(II) and Zn(II) on growth and cell morphology of thraustochytrids isolated from fallen mangrove leaves in Taiwan. Botanica Marina, 2010, 53, .	0.6	8
7	Uranium and Fungi. Geomicrobiology Journal, 2011, 28, 471-482.	1.0	71
8	Biosynthesis of Metallic Nanoparticles and Their Applications. Fundamental Biomedical Technologies, 2011, , 373-409.	0.2	3
9	Bacterial Extracellular Polysaccharides. Advances in Experimental Medicine and Biology, 2011, 715, 213-226.	0.8	79
10	Synthetic geomicrobiology: engineering microbe–mineral interactions for space exploration and settlement. International Journal of Astrobiology, 2011, 10, 315-324.	0.9	18
11	Potential of Biosorption Technology. , 2011, , 7-17.		22
13	Endophytes of Forest Trees. Forestry Sciences, 2011, , .	0.4	30
14	Microbial Biosorption of Metals. , 2011, , .		65
15	Transgenic Approaches to Improve Phytoremediation of Heavy Metal Polluted Soils. Environmental Pollution, 2011, , 409-438.	0.4	2
16	Hg concentrations and accumulations in fungal fruiting bodies, as influenced by forest soil substrates and moss carpets. Applied Geochemistry, 2011, 26, 1905-1917.	1.4	45
17	Bacteria-induced crystallization of kaolinite. Applied Clay Science, 2011, 53, 566-571.	2.6	37
18	Significance, mechanisms and environmental implications of microbial biomineralization. Comptes Rendus - Geoscience, 2011, 343, 160-167.	0.4	145
19	Characterization of the ER-located zinc transporter ZnT1 and identification of a vesicular zinc storage compartment in Hebeloma cylindrosporum. Fungal Genetics and Biology, 2011, 48, 496-503.	0.9	52

#	Article	IF	CITATIONS
20	Microfluidic fluorescence in situ hybridization and flow cytometry (μFlowFISH). Lab on A Chip, 2011, 11, 2673.	3.1	58
21	An Extracellular Tetrathionate Hydrolase from the Thermoacidophilic Archaeon Acidianus Ambivalens with an Activity Optimum at pH 1. Frontiers in Microbiology, 2011, 2, 68.	1.5	28
22	Fungi in freshwaters: ecology, physiology and biochemical potential. FEMS Microbiology Reviews, 2011, 35, 620-651.	3.9	248
23	The oxalic acid biosynthetic activity of Burkholderia mallei is encoded by a single locus. Microbiological Research, 2011, 166, 531-538.	2.5	19
24	Phytoextraction of gold and copper from mine tailings with Helianthus annuus L. and Kalanchoe serrata L Minerals Engineering, 2011, 24, 1488-1494.	1.8	35
25	Efficient Zn2+ and Pb2+ uptake by filamentous fungus Paecilomyces marquandii with engagement of metal hydrocarbonates precipitation. International Biodeterioration and Biodegradation, 2011, 65, 954-960.	1.9	25
26	Monodispersed biocompatible silver sulfide nanoparticles: Facile extracellular biosynthesis using the Î ³ -proteobacterium, Shewanella oneidensis. Acta Biomaterialia, 2011, 7, 4253-4258.	4.1	138
27	Uranium, thorium and rare earth elements in macrofungi: what are the genuine concentrations?. BioMetals, 2011, 24, 837-845.	1.8	65
28	Hyperaccumulation of trace elements: from uptake and tolerance mechanisms to litter decomposition; selenium as an example. Plant and Soil, 2011, 341, 31-35.	1.8	26
29	Cultureâ€dependent and â€independent molecular analysis of the bacterial community within uranium ore. Journal of Basic Microbiology, 2011, 51, 372-384.	1.8	41
30	Manganese biomining: A review. Bioresource Technology, 2011, 102, 7381-7387.	4.8	167
31	Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials, 2011, 185, 549-574.	6.5	750
32	Bio-dissolution of colloidal-size clay minerals entrapped in microporous silica gels. Journal of Colloid and Interface Science, 2011, 362, 317-324.	5.0	24
33	Kinetics and equilibrium adsorption of nano-TiO2 particles on synthetic biofilm. Surface Science, 2011, 605, 1177-1184.	0.8	31
34	Terphenyl based fluorescent chemosensor for Cu2+ and Fâ^' ions employing excited state intramolecular proton transfer. Tetrahedron, 2011, 67, 1266-1271.	1.0	39
35	Removal of arsenic from aqueous environments by native and chemically modified biomass of <i>Aspergillus niger</i> and <i>Neosartorya fischeri</i> . Environmental Technology (United) Tj ETQq1 1 0.784	3141rgBT /	Overdock 10
36	Metal Tolerance and Biosorption Potential of Soil Fungi: Applications for a Green and Clean Water Treatment Technology. , 2011, , 321-361.		5
37	The Geomicrobiology of Radionuclides. Geomicrobiology Journal, 2011, 28, 383-386.	1.0	29

#	Article	IF	CITATIONS
38	The potential for reductive mobilization of arsenic [As(V) to As(III)] by OSBH ₂ (<i>Pseudomonas stutzeri</i>) and OSBH ₅ (<i>Bacillus cereus</i>) in an oil-contaminated site. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 1239-1246.	0.9	40
39	Molecular survey of concrete sewer biofilm microbial communities. Biofouling, 2011, 27, 993-1001.	0.8	64
40	Microbial Community Succession during Lactate Amendment and Electron Acceptor Limitation Reveals a Predominance of Metal-Reducing Pelosinus spp. Applied and Environmental Microbiology, 2012, 78, 2082-2091.	1.4	42
41	Role of Mycorrhiza in Re-forestation at Heavy Metal-Contaminated Sites. Soil Biology, 2012, , 183-199.	0.6	3
42	Rhizoremediation: A Pragmatic Approach for Remediation of Heavy Metal-Contaminated Soil. , 2012, , 147-161.		8
43	Minerals Affect the Specific Diversity of Forest Soil Bacterial Communities. Geomicrobiology Journal, 2012, 29, 88-98.	1.0	42
44	Biosorption of cadmium by a metal-resistant filamentous fungus isolated from chicken manure compost. Environmental Technology (United Kingdom), 2012, 33, 1661-1670.	1.2	71
45	Isolation and Characterization of Environmental Bacteria Capable of Extracellular Biosorption of Mercury. Applied and Environmental Microbiology, 2012, 78, 1097-1106.	1.4	195
46	Detection of transcriptional triggers in the dynamics of microbial growth: application to the respiratorily versatile bacterium Shewanella oneidensis. Nucleic Acids Research, 2012, 40, 7132-7149.	6.5	20
47	Firing Range Soils Yield a Diverse Array of Fungal Isolates Capable of Organic Acid Production and Pb Mineral Solubilization. Applied and Environmental Microbiology, 2012, 78, 6078-6086.	1.4	36
48	Protection of Metal Artifacts with the Formation of Metal–Oxalates Complexes by Beauveria bassiana. Frontiers in Microbiology, 2011, 2, 270.	1.5	43
49	Pesticide Degradation in Water. , 2012, , 96-147.		1
50	- Mixed Contamination of Polyaromatic Hydrocarbons and Metals at Manufactured Gas Plant Sites: Toxicity and Implications to Bioremediation. , 2012, , 368-391.		1
51	Microbial effects on mineral–radionuclide interactions and radionuclide solid-phase capture processes. Mineralogical Magazine, 2012, 76, 777-806.	0.6	50
52	Biogenic manganese oxide: effective new catalyst for direct bromination of hydrocarbons. RSC Advances, 2012, 2, 6420.	1.7	18
53	Soil Contamination, Nutritive Value, and Human Health Risk Assessment of Heavy Metals: An Overview. , 2012, , 1-27.		62
54	9 The Role of the Stonesphere for the Interactions Between Mycorrhizal Fungi and Mycorrhizosphere Bacteria During Mineral Weathering. , 2012, , 171-180.		0
55	The molecular mechanism of zinc and cadmium stress response in plants. Cellular and Molecular Life Sciences, 2012, 69, 3187-3206.	2.4	521

ARTICLE IF CITATIONS # Review: Metal-Based Nanoparticles; Size, Function, and Areas for Advancement in Applied 1.369 56 Microbiology. Advances in Applied Microbiology, 2012, 80, 113-142. Synthetic biology: advancing biological frontiers by building synthetic systems. Genome Biology, 2012, 13, 240. Spectroscopic characterization of an innovative biological treatment for corroded metal artefacts. 58 1.2 20 Journal of Raman Spectroscopy, 2012, 43, 1612-1616. Micro- and nano-environments of carbon sequestration: Multi-element STXM–NEXAFS spectromicroscopy assessment of microbial carbon and mineral associations. Chemical Geology, 2012, 59 329, 53-73. Proteomic analysis of proteins secreted by Botrytis cinerea in response to heavy metal toxicity. 60 1.0 37 Metallomics, 2012, 4, 835. Persistent Metal Contamination Limits Lotic Ecosystem Heterotrophic Metabolism after More Than 100 Years of Exposure: A Novel Application of the Resazurin Resorufin Smart Tracer. Environmental Science & Sc 4.6 Synergistic Interaction between Electricigens and Natural Pyrrhotite to Produce Active Oxygen 62 1.0 6 Radicals. Geomicrobiology Journal, 2012, 29, 264-273. A Model Sheet Mineral System to Study Fungal Bioweathering of Mica. Geomicrobiology Journal, 2012, 1.0 29, 323-331. Biogeochemistry and geomicrobiology in extreme environments: Preface. Geoscience Frontiers, 2012, 3, 4.3 64 1 269-271. Uncovering the origin of the black stains in <scp>L</scp>ascaux <scp>C</scp>ave in 1.8 <scp>F</scp>rance. Environmental Microbiology, 2012, 14, 3220-3231. Microbial production and environmental applications of Pd nanoparticles for treatment of 66 3.3 68 halogenated compounds. Current Opinion in Biotechnology, 2012, 23, 555-561. Quantifying Hg within ectomycorrhizal fruiting bodies, from emergence to senescence. Fungal Biology, 2012, 116, 1163-1177. 1.1 38 14 Genetic Diversity and Functional Aspects of Ericoid Mycorrhizal Fungi., 2012, , 255-285. 68 21 Metagenomic Approaches in Microbial Bioremediation of Metals and Radionuclides. , 2012, , 525-546. 69 Bacterial Community Composition in the Water Column of a Lake Formed by a Former Uranium Open Pit 70 1.4 9 Mine. Microbial Ecology, 2012, 64, 870-880. Engineering microbial consortia to enhance biomining and bioremediation. Frontiers in Microbiology, 2012, 3, 203. Sedimentological imprint on subseafloor microbial communities in Western Mediterranean Sea 72 1.312 Quaternary sediments. Biogeosciences, 2012, 9, 3491-3512. Biogenic volatile compounds of activated sludge and their application for metal bioremediation. African Journal of Biotechnology, 2012, 11, .

#	Article	IF	CITATIONS
74	Biocorrosion control: Current strategies and promising alternatives. African Journal of Biotechnology, 2012, 11, 15736-15747.	0.3	40
75	Evaluation of potential of molecular and physical techniques in studying biodeterioration. Reviews in Environmental Science and Biotechnology, 2012, 11, 71-104.	3.9	49
76	Metals and Metalloids in the Water–Bloom-Forming Cyanobacteria and Ambient Water from Nanquan Coast of Taihu Lake, China. Bulletin of Environmental Contamination and Toxicology, 2012, 89, 439-443.	1.3	17
77	Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Environmental Science and Pollution Research, 2012, 19, 1066-1083.	2.7	110
78	Lead Transformation to Pyromorphite by Fungi. Current Biology, 2012, 22, 237-241.	1.8	99
79	Fungal Biogeochemistry: A Central Role in the Environmental Fate of Lead. Current Biology, 2012, 22, R82-R84.	1.8	9
80	Geomycology: metals, actinides and biominerals. Environmental Microbiology Reports, 2012, 4, 270-296.	1.0	132
81	The future of biotechnology for gold exploration and processing. Minerals Engineering, 2012, 32, 45-53.	1.8	30
82	Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals. Journal of Environmental Management, 2012, 99, 10-17.	3.8	145
83	Biotransformation of manganese oxides by fungi: solubilization and production of manganese oxalate biominerals. Environmental Microbiology, 2012, 14, 1744-1753.	1.8	63
84	<i>Pseudomonas</i> , <i>Pantoea</i> and <i>Cupriavidus</i> isolates induce calcium carbonate precipitation for biorestoration of ornamental stone. Journal of Applied Microbiology, 2013, 115, 409-423.	1.4	35
85	Rhizoreduction of arsenate and chromate in Australian native grass, shrub and tree vegetation. Plant and Soil, 2013, 367, 615-625.	1.8	25
89	Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Management, 2013, 4, 323-343.	1.2	310
90	Physicochemical and biological interfacial interactions: impacts on soil ecosystem and biodiversity. Environmental Earth Sciences, 2013, 68, 2199-2209.	1.3	8
91	Can biological toxicity drive the contrasting behavior of platinum and gold in surface environments?. Chemical Geology, 2013, 343, 99-110.	1.4	40
92	Influence of arbuscular mycorrhizal fungi (AMF) on zinc biogeochemistry in the rhizosphere of Lindenbergia philippensis growing in zinc-contaminated sediment. BioMetals, 2013, 26, 489-505.	1.8	16
93	Assessment of temporal and spatial evolution of bacterial communities in a biological sand filter mesocosm treating winery wastewater. Journal of Applied Microbiology, 2013, 115, 91-101.	1.4	24
94	Fabrication of Au/Pd alloy nanoparticle/Pichia pastoris composites: a microorganism-mediated approach. RSC Advances, 2013, 3, 15389.	1.7	16

#	Article	IF	CITATIONS
95	Cleanup of industrial effluents containing heavy metals: a new opportunity of valorising the biomass produced by brewing industry. Applied Microbiology and Biotechnology, 2013, 97, 6667-6675.	1.7	25
96	Evaluation of reduction roasting and magnetic separation for upgrading Mn/Fe ratio of fine ferromanganese. International Journal of Mining Science and Technology, 2013, 23, 537-541.	4.6	33
97	Thermal effects on microbial composition and microbiologically induced corrosion and mineral precipitation affecting operation of a geothermal plant in a deep saline aquifer. Extremophiles, 2013, 17, 311-327.	0.9	49
98	Changes in Bacterial Community Structure and Abundance in Agricultural Soils under Varying Levels of Arsenic Contamination. Geomicrobiology Journal, 2013, 30, 635-644.	1.0	27
99	The Role of Bioretention Systems in the Treatment of Stormwater. Advances in Agronomy, 2013, , 223-274.	2.4	33
100	Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems. Journal of Hazardous Materials, 2013, 244-245, 718-725.	6.5	6
102	11 Ectomycorrhiza-Specific Gene Expression. , 2013, , 295-312.		2
103	Geobiological Cycling of Gold: From Fundamental Process Understanding to Exploration Solutions. Minerals (Basel, Switzerland), 2013, 3, 367-394.	0.8	54
104	Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings. Chemosphere, 2013, 90, 2267-2272.	4.2	120
105	Bacterial community structures of an alpine apatite deposit. Geoderma, 2013, 202-203, 30-37.	2.3	9
106	Field evidence of selenium bioreduction in a uraniumâ€contaminated aquifer. Environmental Microbiology Reports, 2013, 5, 444-452.	1.0	54
107	Fluidized-bed denitrification for mine waters. Part II: effects of Ni and Co. Biodegradation, 2014, 25, 417-23.	1.5	30
108	The synthesis of elemental selenium particles by Synechococcus leopoliensis. Applied Microbiology and Biotechnology, 2013, 97, 10511-10519.	1.7	30
109	Fungal biotransformation of zinc silicate and sulfide mineral ores. Environmental Microbiology, 2013, 15, 2173-2186.	1.8	49
110	Magnetite Formation by the Novel Fe(III)-reducing <i>Geothrix fermentans</i> Strain HradG1 Isolated from a Hydrocarbon-Contaminated Sediment with Increased Magnetic Susceptibility. Geomicrobiology Journal, 2013, 30, 863-873.	1.0	30
111	Stable isotope probing in the metagenomics era: A bridge towards improved bioremediation. Biotechnology Advances, 2013, 31, 154-165.	6.0	114
112	An extremely radioresistant green eukaryote for radionuclide bio-decontamination in the nuclear industry. Energy and Environmental Science, 2013, 6, 1230.	15.6	58
113	Synthesising acid mine drainage to maintain and exploit indigenous mining micro-algae and microbial assemblies for biotreatment investigations. Environmental Science and Pollution Research, 2013, 20, 950-956.	2.7	10

#	Article	IF	CITATIONS
114	Bacteria diversity and arsenic mobilization in rock biofilm from an ancient gold and arsenic mine. Science of the Total Environment, 2013, 461-462, 330-340.	3.9	34
115	Laboratory tests of fungal biocorrosion of unbonded lubricated post-tensioned tendons. Construction and Building Materials, 2013, 49, 821-827.	3.2	14
116	Mineral–Water Interface Reactions of Actinides. Chemical Reviews, 2013, 113, 1016-1062.	23.0	271
117	Current Aspects of Metal Resistant Bacteria in Bioremediation: From Genes to Ecosystem. , 2013, , 289-311.		5
118	Transgenic Approaches to Enhance Phytoremediation of Heavy Metal-Polluted Soils. Soil Biology, 2013, , 239-271.	0.6	7
119	Microbial communities in low permeability, high pH uranium mine tailings: characterization and potential effects. Journal of Applied Microbiology, 2013, 114, 1671-1686.	1.4	74
120	Influence of outer membrane <i>c</i> â€type cytochromes on particle size and activity of extracellular nanoparticles produced by <i>Shewanella oneidensis</i> . Biotechnology and Bioengineering, 2013, 110, 1831-1837.	1.7	72
121	Metal Bioremediation by Thermophilic Microorganisms. , 2013, , 171-201.		17
122	Soil metatranscriptomics for mining eukaryotic heavy metal resistance genes. Environmental Microbiology, 2013, 15, 2829-2840.	1.8	43
123	Use of Pseudomonas spp. for the bioremediation of environmental pollutants: a review. Environmental Monitoring and Assessment, 2013, 185, 8147-8155.	1.3	151
124	Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence. Environmental Science and Pollution Research, 2013, 20, 3423-3434.	2.7	15
125	Improved understanding of key elements governing the toxicity of energy ash eluates. Waste Management, 2013, 33, 842-849.	3.7	7
126	Mineral neogenesis as an inspiration for mild, solvent-free synthesis of bulk microporous metal–organic frameworks from metal (Zn, Co) oxides. Green Chemistry, 2013, 15, 2121.	4.6	133
127	An Introduction to Bioremediation. Soil Biology, 2013, , 3-27.	0.6	24
128	Microbial Transformation of Trace Elements in Soils in Relation to Bioavailability and Remediation. Reviews of Environmental Contamination and Toxicology, 2013, 225, 1-56.	0.7	41
129	Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology, 2013, 11, 371-384.	13.6	1,987
130	Fungi and Their Role in Phytoremediation of Heavy Metal-Contaminated Soils. Soil Biology, 2013, , 313-345.	0.6	3
131	Microbially induced selective flotation of sphalerite from galena using mineral-adapted strains of Bacillus megaterium. Colloids and Surfaces B: Biointerfaces, 2013, 112, 279-286.	2.5	16

		CITATION	Report	
#	Article		IF	Citations
132	Geomycology: Fungi as Agents of Biogeochemical Change. Biology and Environment, 24	013, 113, 1-15.	0.2	10
133	Effects of Time and Glucose-C on the Fractionation of Zn and Cu in a Slightly Acidic Soil Communications in Soil Science and Plant Analysis, 2013, 44, 722-732.		0.6	5
134	Survival During Long-Term Starvation: Global Proteomics Analysis of <i>Geobacter sulfurreducens</i> under Prolonged Electron-Acceptor Limitation. Journal of Proteome 2013, 12, 4316-4326.	Research,	1.8	19
135	Solubilization of Magnesium-Bearing Silicate Minerals and the Subsequent Formation o by <i>Aspergillus niger</i> . Geomicrobiology Journal, 2013, 30, 302-312.	f Glushinskite	1.0	21
136	Biosorption of heavy metals in a photo-rotating biological contactor—a batch process Microbiology and Biotechnology, 2013, 97, 5113-5123.	study. Applied	1.7	18
137	extractable forms in the common dandelion rhizospheric and non-rhizospheric soil of th Vistula river floodplain grasslands / Ocena caÅ,kowitej zawartoÅ,ci żelaza, manganu, ich form ekstrahowanych DTPA w glebie ryzosferowej mniszka lekarskiego oraz glebie pozarvzosferowei użvtkÃ3w zielonych z terenÃ3w zalewowych Doliny Dolnei WisÅ.v.	kadmu i niklu oraz	0.4	1
138	Srodowiska I Zasobow Naturalnych, 2013, 24, 19-24. Reductive formation of palladium nanoparticles by Shewanella oneidensis: role of outer cytochromes and hydrogenases. RSC Advances, 2013, 3, 22498.	membrane	1.7	43
139	A New Direction for Biomining: Extraction of Metals by Reductive Dissolution of Oxidize Minerals (Basel, Switzerland), 2013, 3, 49-58.	ed Ores.	0.8	55
140	Bacterially Induced Weathering of Ultramafic Rock and Its Implications for Phytoextract and Environmental Microbiology, 2013, 79, 5094-5103.	ion. Applied	1.4	44
141	Effect of lead on root growth. Frontiers in Plant Science, 2013, 4, 175.		1.7	198
142	Recent Trends in Microbial Biosorption of Heavy Metals: A Review. Biochemistry & Mole 2013, 1, 19.	cular Biology,	0.5	86
143	Human Metallothionein Enhanced Tolerance and Biosorption of Cadmium when Expres <i>Saccharomyces cerevisiae</i> . Advanced Materials Research, 0, 779-780,	sed in 195-200.	0.3	1
145	Geobiology of <i>In Situ </i> Uranium Leaching. Advanced Materials Research	ı, O, 825, 372-375.	0.3	4
146	Semiconducting Mineral Photocatalytic Regeneration of Fe ²⁺ Promotes C Acquisition by <i>Acidithiobacillus ferrooxidans</i> . Acta Geologica Sinica, 2013, 87, 76	arbon Dioxide 51-766.	0.8	1
147	Combined effect of Zn ²⁺ and Mn ²⁺ on physiology of wood-rc basidiomycetes. International Wood Products Journal, 2013, 4, 81-88.	tting	0.6	0
148	Specific jarosite biomineralization by <i><scp>P</scp>urpureocillium lilacinum</i> , an a fungi isolated from <scp>R</scp> Ão <scp>T</scp> into. Environmental Microbiology, 20	icidophilic 013, 15, 2228-2237.	1.8	71
149	Evidence and characteristics of a diverse and metabolically active microbial community subsurface clay borehole water. FEMS Microbiology Ecology, 2013, 86, 458-473.	in deep	1.3	42
150	Interactive effects of global climate change and pollution on marine microbes: the way Ecology and Evolution, 2013, 3, 1808-1818.	ahead.	0.8	39

#	Article	IF	CITATIONS
151	Mineral Influence on Microbial Survival During Carbon Sequestration. Geomicrobiology Journal, 2013, 30, 578-592.	1.0	14
152	Fungal Mn oxides supporting Mn(II) oxidase activity as effective Mn(II) sequestering materials. Environmental Technology (United Kingdom), 2013, 34, 2781-2787.	1.2	17
153	Life in an Arsenic-Containing Gold Mine: Genome and Physiology of the Autotrophic Arsenite-Oxidizing Bacterium Rhizobium sp. NT-26. Genome Biology and Evolution, 2013, 5, 934-953.	1.1	60
154	Role and Importance of Hyphenated Techniques in Speciation Analysis. , 2013, , 250-270.		1
155	Crystal and Fine Structural Transformations of Heat-Treated Biogenic Manganese Oxide. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2013, 60, 92-99.	0.1	0
156	Fungi and Their Role in the Biosphere. , 2013, , .		1
157	Chemolithotrophy. , 2013, , 486-492.		4
158	Metals and Metalloids, Transformation by Microorganisms. , 2013, , .		7
159	Taking nature into lab: biomineralization by heavy metal-resistant streptomycetes in soil. Biogeosciences, 2013, 10, 3605-3614.	1.3	18
160	Calcium in the Early Evolution of Living Systems: A Biohistorical Approach. Current Organic Chemistry, 2013, 17, 1738-1750.	0.9	60
161	Biogeochemical implications of the ubiquitous colonization of marine habitats and redox gradients by Marinobacter species. Frontiers in Microbiology, 2013, 4, 136.	1.5	85
162	Gold Nanoparticles and Nanocomposites in Clinical Diagnostics Using Electrochemical Methods. Journal of Nanoparticles, 2013, 2013, 1-12.	1.4	51
163	Mechanisms of Metal Resistance and Homeostasis in Haloarchaea. Archaea, 2013, 2013, 1-16.	2.3	63
164	Manganese: Its Speciation, Pollution and Microbial Mitigation. International Journal of Applied Sciences and Biotechnology, 2013, 1, 162-170.	0.4	6
165	Optimal Eukaryotic 18S and Universal 16S/18S Ribosomal RNA Primers and Their Application in a Study of Symbiosis. PLoS ONE, 2014, 9, e90053.	1.1	104
166	Phosphate-Mediated Remediation of Metals and Radionuclides. Advances in Ecology, 2014, 2014, 1-14.	0.5	19
167	The Effect of Industrial Heavy Metal Pollution on Microbial Abundance and Diversity in Soils $\hat{a} \in$ " A Review. , O, , .		36
169	Biometallurgical Recovery of Metals from Waste Electrical and Electronic Equipment: a Review. ChemBioEng Reviews, 2014, 1, 148-169.	2.6	76

		CITATION I	Report	
#	Article		IF	CITATIONS
170	An Acidophilic Bacterial-Archaeal-Fungal Ecosystem Linked to Formation of Ferruginous Stalactites. Geomicrobiology Journal, 2014, 31, 407-418.	Crusts and	1.0	12
171	Affinities of Palaeozoic encrusting ascodictyid â€~pseudobryozoans'. Journal of Syst Palaeontology, 2014, 12, 983-999.	ematic	0.6	10
172	Microalgae in Bioremediation. , 2014, , 433-454.			4
173	Changes in the deep subsurface microbial biosphere resulting from a field-scale CO2 ge experiment. Frontiers in Microbiology, 2014, 5, 209.	osequestration	1.5	44
174	Proteome of Geobacter sulfurreducens in the presence of U(VI). Microbiology (United K 160, 2607-2617.	ingdom), 2014,	0.7	34
175	Potential Heavy Metals Accumulation of Indigenous Plant Species along the Mafic and L Terrain in the Mohmand Agency, Pakistan. Clean - Soil, Air, Water, 2014, 42, 339-346.	Iltramafic	0.7	26
176	Mercury Pollution and Bioremediation—A Case Study on Biosorption by a Mercury-Res Bacterium. , 2014, , 137-166.	istant Marine		18
177	Biomineralization of Metal Carbonates by <i>Neurospora crassa</i> . Environmental Scie Technology, 2014, 48, 14409-14416.	ence &	4.6	124
178	Fe(III) Bioreduction in a Kaolin Suspension in Storage. Glass and Ceramics (English Trans	slation of) Tj ETQq0 0 0	rgBT/Over	ock 10 Tf 50
179	Valuing native ectomycorrhizal fungi as a Mediterranean forestry component for sustain innovative solutions. Botany, 2014, 92, 161-171.	nable and	0.5	30
180	Biomineralization mediated by anaerobic methane-consuming cell consortia. Scientific I 5696.	≀eports, 2014, 4,	1.6	26
181	Pyromorphite formation in a fungal biofilm community growing on lead metal. Environn Microbiology, 2014, 16, 1441-1451.	nental	1.8	37
182	Extremophiles: An Overview of Microorganism from Extreme Environment. Internationa Agriculture Environment and Biotechnology, 2014, 7, 371.	Journal of	0.1	73
183	Characterization and Distribution of Selenite Reduction Products in Cultures of the Mar YeastRhodotorula mucilaginosa-13B. Geomicrobiology Journal, 2014, 31, 769-778.	ine	1.0	11
184	Nanoparticles Formed by Microbial Metabolism of Metals and Minerals. , 2014, , 145-17	6.		2
185	Modulation of Medium pH by Caulobacter crescentus Facilitates Recovery from Uraniur Growth Arrest. Applied and Environmental Microbiology, 2014, 80, 5680-5688.	n-Induced	1.4	15
186	Sulphate-reducing bacteria (SRB) and biocorrosion. , 2014, , 77-106.			6

187	Mimicking mineral neogenesis for the clean synthesis of metal–organic materials from mineral feedstocks: coordination polymers, MOFs and metal oxide separation. Green Chemistry, 2014, 16, 121-132.	4.6	46
-----	--	-----	----

#	Article	IF	CITATIONS
188	Prospects for Exploiting Bacteria for Bioremediation of Metal Pollution. Critical Reviews in Environmental Science and Technology, 2014, 44, 519-560.	6.6	58
189	Microbial mineralization of struvite: A promising process to overcome phosphate sequestering crisis. Water Research, 2014, 54, 33-43.	5.3	74
190	Enhanced Pb2+ biosorption by recombinant Saccharomyces cerevisiae expressing human metallothionein. Monatshefte Für Chemie, 2014, 145, 235-240.	0.9	4
191	Review of Reductive Leaching of Iron by Anaerobic Bacteria. Mineral Processing and Extractive Metallurgy Review, 2014, 35, 75-105.	2.6	51
192	Zn biomineralization processes and microbial biofilm in a metal-rich stream (Naracauli, Sardinia). Environmental Science and Pollution Research, 2014, 21, 6793-6808.	2.7	26
193	Microbial leaching of metals from solid industrial wastes. Journal of Microbiology, 2014, 52, 1-7.	1.3	79
194	Rhizobacterial inoculants can improve nickel phytoextraction by the hyperaccumulator Alyssum pintodasilvae. Plant and Soil, 2014, 379, 35-50.	1.8	80
195	Removal of toxic Co-EDTA complex by a halophilic solar-salt-pan isolate Pseudomonas aeruginosa SPB-1. Chemosphere, 2014, 95, 503-510.	4.2	21
196	Hydrogenase Activity of Mineral-Associated and Suspended Populations of Desulfovibrio desulfuricans Essex 6. Microbial Ecology, 2014, 67, 318-326.	1.4	0
197	Biodegradation of the textile dye Mordant Black 17 (Calcon) by Moraxella osloensis isolated from textile effluent-contaminated site. World Journal of Microbiology and Biotechnology, 2014, 30, 915-924.	1.7	24
198	Enhancing phytoextraction of Cd by combining poplar (clone "l-214â€) with Pseudomonas fluorescens and microbial consortia. Environmental Science and Pollution Research, 2014, 21, 1796-1808.	2.7	22
199	Bioaccumulation and biosorption of inorganic nanoparticles: factors affecting the efficiency of nanoparticle mycoextraction by liquid-grown mycelia of Pleurotus eryngii and Trametes versicolor. Mycological Progress, 2014, 13, 525-532.	0.5	21
200	Pseudomorphs of barite and biogenic ZnS after phyto-crystals of calcium oxalate (whewellite) in the peat layer of a poor fen. Environmental Science and Pollution Research, 2014, 21, 7227-7233.	2.7	8
201	Extracellular bio-production and characterization of small monodispersed CdSe quantum dot nanocrystallites. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 130, 344-349.	2.0	38
202	Long-term effects of hydrated lime and quicklime on the decay of human remains using pig cadavers as human body analogues: Field experiments. Forensic Science International, 2014, 238, 141.e1-141.e13.	1.3	27
203	Fungal transformation of metallic lead to pyromorphite in liquid medium. Chemosphere, 2014, 113, 17-21.	4.2	32
204	Watershed-Scale Fungal Community Characterization along a pH Gradient in a Subsurface Environment Cocontaminated with Uranium and Nitrate. Applied and Environmental Microbiology, 2014, 80, 1810-1820.	1.4	15
205	A new colorimetric and fluorescent bifunctional probe for Cu2+ and Fâ^' ions based on perylene bisimide derivatives. Tetrahedron Letters, 2014, 55, 3218-3222.	0.7	43

ARTICLE IF CITATIONS # An oxalylâ€CoA synthetase is important for oxalate metabolism in <i>Saccharomyces cerevisiae</i>. FEBS 206 1.3 36 Letters, 2014, 588, 160-166. Reduction of Selenite by Azospirillum brasilense with the Formation of Selenium Nanoparticles. 1.4 Microbial Ecology, 2014, 68, 495-503. 208 Lead resistance in micro-organisms. Microbiology (United Kingdom), 2014, 160, 12-25. 0.7 154 Platinum in Earth surface environments. Earth-Science Reviews, 2014, 131, 1-21. 209 4.0 Biosorption: current perspectives on concept, definition and application. Bioresource Technology, 210 4.8 827 2014, 160, 3-14. A review with recent advancements on bioremediation-based abolition of heavy metals. Environmental 1.7 Sciences: Processes and Impacts, 2014, 16, 180-193. Gold(III) Reduction by the Rhizobacterium Azospirillum brasilense with the Formation of Gold 212 1.4 5 Nanoparticles. Microbial Ecology, 2014, 67, 155-160. Fungal jarosite biomineralization in RÃo Tinto. Research in Microbiology, 2014, 165, 719-725. 1.0 Determination of elemental distribution in green micro-algae using synchrotron radiation nano X-ray 214 fluorescence (SR-nXRF) and electron microscopy techniques – subcellular localization and 1.0 46 quantitative imaging of silver and cobalt uptake by Coccomyxa actinabiotis. Metallomics, 2014, 6, 316. A little bit of light goes a long way: the role of phototrophs on mercury cycling. Metallomics, 2014, 6, 1.0 396. Environmental Microbiology and Biotechnology: Progress and Prospects. Chemie-Ingenieur-Technik, 216 3 0.4 2014, 86, 2226-2239. <i>Pseudomonas fluorescens</i>JH 70-4 promotes Pb stabilization and early seedling growth of Sudan grass in contaminated mining site soil. Environmental Technology (United Kingdom), 2014, 35, 2589-2596. 1.2 On the possible role of macrofungi in the biogeochemical fate of uranium in polluted forest soils. 218 6.5 25 Journal of Hazardous Materials, 2014, 280, 79-88. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: A 3.8 378 review. Journal of Environmental Management, 2014, 146, 383-399. Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. 220 1.9 291 Fungal Biology Reviews, 2014, 28, 36-55. Calcium signaling mediates the response to cadmium toxicity in <i>Saccharomyces cerevisiae</i> cells. 221 FEBS Letters, 2014, 588, 3202-3212. Identification and characterization of microbial biofilm communities associated with corroded oil 222 0.8 91 pipeline surfaces. Biofouling, 2014, 30, 823-835. Effects of different remediation treatments on crude oil contaminated saline soil. Chemosphere, 2014, 223 4.2 68 117, 486-493.

#	Article	IF	CITATIONS
224	Microbial Bioremediation. , 2014, , 407-419.		15
225	Interaction of U(VI) with Schizophyllum commune studied by microscopic and spectroscopic methods. BioMetals, 2014, 27, 775-785.	1.8	23
226	Interaction between bentonite and Bacillus litoralis strain SWU9. Applied Clay Science, 2014, 100, 88-94.	2.6	28
227	Cupriavidus metallidurans biomineralization ability and its application as a bioconsolidation enhancer for ornamental marble stone. Applied Microbiology and Biotechnology, 2014, 98, 6871-6883.	1.7	11
228	Vaccinium corymbosum L. (blueberry) extracts exhibit protective action against cadmium toxicity in Saccharomyces cerevisiae cells. Food Chemistry, 2014, 152, 516-521.	4.2	18
229	Chromium phytoextraction from tannery effluent-contaminated soil by Crotalaria juncea infested with Pseudomonas fluorescens. Environmental Science and Pollution Research, 2014, 21, 7938-7944.	2.7	4
230	Growth and metal removal potential of a Phormidium bigranulatum-dominated mat following long-term exposure to elevated levels of copper. Environmental Science and Pollution Research, 2014, 21, 10279-10285.	2.7	6
231	Minor differences in sand physicochemistry lead to major differences in bacterial community structure and function after exposure to synthetic acid mine drainage. Biotechnology and Bioprocess Engineering, 2014, 19, 211-220.	1.4	8
232	Indole-3-acetic acid production, solubilization of insoluble metal minerals and metal tolerance of some sclerodermatoid fungi collected from northern Thailand. Annals of Microbiology, 2014, 64, 707-720.	1.1	27
233	Phosphate solubilizing uranium tolerant bacteria associated with monazite sand of a natural background radiation site in South-West coast of India. Annals of Microbiology, 2014, 64, 1683-1689.	1.1	8
234	Biology, Genetic Aspects, and Oxidative Stress Response of Streptomyces and Strategies for Bioremediation of Toxic Metals. , 2014, , 287-299.		1
235	Environmental factors influencing the structural dynamics of soil microbial communities during assisted phytostabilization of acid-generating mine tailings: A mesocosm experiment. Science of the Total Environment, 2014, 500-501, 314-324.	3.9	67
236	Biogeochemical Processes Governing Natural Pyrite Oxidation and Release of Acid Metalliferous Drainage. Environmental Science & Technology, 2014, 48, 5537-5545.	4.6	84
237	Influence of Soil Chemistry and Plant Physiology in the Phytoremediation of Cu, Mn, and Zn. Critical Reviews in Plant Sciences, 2014, 33, 351-373.	2.7	61
238	Surfactin restores and enhances swarming motility under heavy metal stress. Colloids and Surfaces B: Biointerfaces, 2014, 116, 26-31.	2.5	19
239	Shotgun Proteomic Analysis Unveils Survival and Detoxification Strategies by <i>Caulobacter crescentus</i> during Exposure to Uranium, Chromium, and Cadmium. Journal of Proteome Research, 2014, 13, 1833-1847.	1.8	56
240	Gastrointestinal Tract Microbiota and Probiotics in Production Animals. Annual Review of Animal Biosciences, 2014, 2, 469-486.	3.6	158
241	Investigating Microbe-Mineral Interactions: Recent Advances in X-Ray and Electron Microscopy and Redox-Sensitive Methods, Annual Review of Farth and Planetary Sciences, 2014, 42, 271-289	4.6	46

#	Article	IF	Citations
242	A microcosm approach to evaluate the degradation of tributyltin (TBT) by Aeromonas molluscorum Av27 in estuarine sediments. Environmental Research, 2014, 132, 430-437.	3.7	17
243	Gene expression and role in cadmium tolerance of two PLAC8-containing proteins identified in the ericoid mycorrhizal fungus Oidiodendron maius. Fungal Biology, 2014, 118, 695-703.	1.1	17
244	Apparent energy of hydrated biomineral surface and apparent solubility constant: An investigation of hydrozincite. Geochimica Et Cosmochimica Acta, 2014, 140, 349-364.	1.6	20
245	Critical review: Microbially influenced corrosion of buried carbon steel pipes. International Biodeterioration and Biodegradation, 2014, 93, 84-106.	1.9	212
246	Hydrodynamic coupling in microbially mediated fracture mineralization: Formation of self-organized groundwater flow channels. Water Resources Research, 2014, 50, 1-16.	1.7	88
247	Biosurfactant Use in Heavy Metal Removal from Industrial Effluents and Contaminated Sites. , 2014, , 361-370.		28
248	Copper-induced adaptation, oxidative stress and its tolerance in Aspergillus niger UCP1261. Electronic Journal of Biotechnology, 2015, 18, 418-427.	1.2	38
250	Biogeochemistry in Recycling of Trace Elements and Heavy Metals. , 2015, , 281-298.		5
251	Microbiologically Influenced Corrosion and Its Impact on Metals and Other Materials. , 2015, , 401-426.		2
253	Performance of sulphate- and selenium-reducing biochemical reactors using different ratios of labile to recalcitrant organic materials. Water Science and Technology, 2015, 72, 875-881.	1.2	3
254	Neptunium and manganese biocycling in nuclear legacy sediment systems. Applied Geochemistry, 2015, 63, 303-309.	1.4	8
255	Transformation of vanadinite [<scp><scp>Pb₅</scp></scp> (<scp>VO₄</scp>) <scp><scp>_{3by fungi. Environmental Microbiology, 2015, 17, 2018-2034.}</scp></scp>	b> 1C8 <td>> ⊲/scp>]</td>	> ⊲/s cp>]
256	<scp>C</scp> a <scp>CO</scp> ₃ and <scp>S</scp> r <scp>CO</scp> ₃ bioprecipitation by fungi isolated from calcareous soil. Environmental Microbiology, 2015, 17, 3082-3097.	1.8	82
257	Microorganisms and Biosorption of Heavy Metals in the Environment: A Review Paper. Journal of Microbial & Biochemical Technology, 2015, 07, .	0.2	90
258	The Microbial Community of a Passive Biochemical Reactor Treating Arsenic, Zinc, and Sulfate-Rich Seepage. Frontiers in Bioengineering and Biotechnology, 2015, 3, 27.	2.0	88
259	Shewanella sp. O23S as a Driving Agent of a System Utilizing Dissimilatory Arsenate-Reducing Bacteria Responsible for Self-Cleaning of Water Contaminated with Arsenic. International Journal of Molecular Sciences, 2015, 16, 14409-14427.	1.8	16
260	Assessing the utility of trace and rare earth elements as biosignatures in microbial iron oxyhydroxides. Frontiers in Earth Science, 2015, 3, .	0.8	17
261	Phylogenetic diversity of culturable fungi in the Heshang Cave, central China. Frontiers in Microbiology, 2015, 6, 1158.	1.5	34

#	Article	IF	CITATIONS
262	Raw Materials Synthesis from Heavy Metal Industry Effluents with Bioremediation and Phytomining: A Biomimetic Resource Management Approach. Advances in Materials Science and Engineering, 2015, 2015, 1-21.	1.0	29
263	Phytoplankton calcification as an effective mechanism to alleviate cellular calcium poisoning. Biogeosciences, 2015, 12, 6493-6501.	1.3	27
264	Characterization of the enhancement of zero valent iron on microbial azo reduction. BMC Microbiology, 2015, 15, 85.	1.3	19
265	Fungal Bioweathering of Mimetite and a General Geomycological Model for Lead Apatite Mineral Biotransformations. Applied and Environmental Microbiology, 2015, 81, 4955-4964.	1.4	30
266	Low-temperature feldspar and illite formation through bioreduction of Fe(III)-bearing smectite by an alkaliphilic bacterium. Chemical Geology, 2015, 406, 25-33.	1.4	19
267	In situ and ex situ bioremediation of radionuclide-contaminated soils at nuclear and norm sites. , 2015, , 185-236.		20
268	Metabolism of Metals and Metalloids by the Sulfate-Reducing Bacteria. , 2015, , 57-83.		13
269	Biodegradation of Tributyltin (TBT) by Extremophile Bacteria from Atacama Desert and Speciation of Tin By-products. Bulletin of Environmental Contamination and Toxicology, 2015, 95, 126-130.	1.3	11
270	Characterization and efficacy of Muscodor cinnamomi in promoting plant growth and controlling Rhizoctonia root rot in tomatoes. Biological Control, 2015, 90, 25-33.	1.4	19
271	The Diversity of Lichenised Fungi: Ecosystem Functions and Ecosystem Services. , 2015, , 121-145.		17
272	Geomicrobiology and Microbial Geochemistry. Elements, 2015, 11, 389-394.	0.5	20
273	Metallic Nanoparticle Synthesis by Cyanobacteria: Fundamentals and Applications. Cellular Origin and Life in Extreme Habitats, 2015, , 429-448.	0.3	3
274	Zn(II) and Cu(II) removal by <i>Nostoc muscorum</i> : a cyanobacterium isolated from a coal mining pit in Chiehruphi, Meghalaya, India. Canadian Journal of Microbiology, 2015, 61, 209-215.	0.8	25
275	Organic Acids Induce Tolerance to Zinc- and Copper-Exposed Fungi Under Various Growth Conditions. Current Microbiology, 2015, 70, 520-527.	1.0	54
276	Uranium phosphate biomineralization by fungi. Environmental Microbiology, 2015, 17, 2064-2075.	1.8	75
277	Assessment of the physicochemical conditions sediments in a polluted tidal flat colonized by microbial mats in BahAa Blanca Estuary (Argentina). Marine Pollution Bulletin, 2015, 91, 491-505.	2.3	46
278	Biomineralization in Marine Organisms. , 2015, , 1279-1300.		8
279	Rapid Measurement of Microbial Extracellular Respiration Ability Using a High-Throughput Colorimetric Assay. Environmental Science and Technology Letters, 2015, 2, 26-30.	3.9	34

#	Article	IF	CITATIONS
280	Arsenic Biotransformation in Solid Waste Residue: Comparison of Contributions from Bacteria with Arsenate and Iron Reducing Pathways. Environmental Science & Technology, 2015, 49, 2140-2146.	4.6	55
281	Ecology and Biotechnology of Selenium-Respiring Bacteria. Microbiology and Molecular Biology Reviews, 2015, 79, 61-80.	2.9	319
282	Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus. Geochimica Et Cosmochimica Acta, 2015, 148, 442-456.	1.6	89
283	Effects of Forest Management Practices in Temperate Beech Forests on Bacterial and Fungal Communities Involved in Leaf Litter Degradation. Microbial Ecology, 2015, 69, 905-913.	1.4	56
284	The stability of Pb species during the Pb removal process by growing cells of Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 2015, 99, 3685-3693.	1.7	18
285	Advances in Manganese Pollution and Its Bioremediation. Soil Biology, 2015, , 313-328.	0.6	42
286	[Cobalt(III)–EDTA]â^' reduction by thermophilic methanogen Methanothermobacter thermautotrophicus. Chemical Geology, 2015, 411, 49-56.	1.4	8
287	Bioavailability-Based In Situ Remediation To Meet Future Lead (Pb) Standards in Urban Soils and Gardens. Environmental Science & Technology, 2015, 49, 8948-8958.	4.6	82
288	Toxicity of chlortetracycline and its metal complexes to model microorganisms in wastewater sludge. Science of the Total Environment, 2015, 532, 669-675.	3.9	50
289	Lead biotransformation potential of allochthonous Bacillus sp. SKK11 with sesame oil cake extract in mine soil. RSC Advances, 2015, 5, 54564-54570.	1.7	43
290	A preliminary study of the role of bacterial–fungal co-inoculation on heavy metal phytotoxicity in serpentine soil. Australian Journal of Botany, 2015, 63, 261.	0.3	21
291	Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Frontiers in Plant Science, 2014, 5, 755.	1.7	114
292	Aspects of mycorrhizal colonization in adaptation of sweet marjoram (Origanum majorana L.) grown on industrially polluted soil. Turkish Journal of Biology, 2015, 39, 461-468.	2.1	25
293	Climate change effects on enchytraeid performance in metal-polluted soils explained from changes in metal bioavailability and bioaccumulation. Environmental Research, 2015, 142, 177-184.	3.7	32
294	A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Advances in Microbial Physiology, 2015, 66, 55-321.	1.0	238
295	K-Extraction from Muscovite by the Isolated Fungi. Geomicrobiology Journal, 2015, 32, 771-779.	1.0	20
296	Cu(II) removal by E. coli –iron oxide composites during the addition and oxidation of Fe(II). Chemical Geology, 2015, 409, 136-148.	1.4	7
297	Plant-associated fungal communities in the light of meta'omics. Fungal Diversity, 2015, 75, 1-25.	4.7	147

#	Article	IF	CITATIONS
298	Cr(VI) reduction by gluconolactone and hydrogen peroxide, the reaction products of fungal glucose oxidase: Cooperative interaction with organic acids in the biotransformation of Cr(VI). Chemosphere, 2015, 134, 563-570.	4.2	13
299	Early gene expression in Pseudomonas fluorescens exposed to a polymetallic solution. Cell Biology and Toxicology, 2015, 31, 39-81.	2.4	13
300	Responses of the alga Pseudokirchneriella subcapitata to long-term exposure to metal stress. Journal of Hazardous Materials, 2015, 296, 82-92.	6.5	62
301	Role of Microorganisms in Plant Nutrition and Health. , 2015, , 125-161.		8
302	A New Fungal Isolate, Penidiella sp. Strain T9, Accumulates the Rare Earth Element Dysprosium. Applied and Environmental Microbiology, 2015, 81, 3062-3068.	1.4	58
303	Vaterite bio-precipitation induced by Bacillus pumilus isolated from a solutional cave in Paiania, Athens, Greece. International Biodeterioration and Biodegradation, 2015, 99, 73-84.	1.9	52
304	Transfer of heavy metals through terrestrial food webs: a review. Environmental Monitoring and Assessment, 2015, 187, 201.	1.3	564
305	Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environmental and Experimental Botany, 2015, 117, 28-40.	2.0	563
306	Copper Metallurgical Slags – Current Knowledge and Fate: A Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 2424-2488.	6.6	89
307	Biological colonization and biodeterioration of architectural ceramic materials: An overview. Journal of Cultural Heritage, 2015, 16, 759-777.	1.5	65
308	The geomicrobiology of CO2 geosequestration: a focused review on prokaryotic community responses to field-scale CO2 injection. Frontiers in Microbiology, 2015, 6, 263.	1.5	17
309	Nanoparticle Synthesis by Biogenic Approach. , 2015, , 237-257.		5
310	Metabolic reconfigurations aimed at the detoxification of a multi-metal stress in Pseudomonas fluorescens: Implications for the bioremediation of metal pollutants. Journal of Biotechnology, 2015, 200, 38-43.	1.9	17
311	Green Processes for Nanotechnology. , 2015, , .		34
312	Cadmium-induced formation of sulphide and cadmium sulphide particles in the aquatic hyphomycete Heliscus lugdunensis. Journal of Trace Elements in Medicine and Biology, 2015, 31, 92-97.	1.5	5
313	Antifungal properties of silver nanoparticles against indoor mould growth. Science of the Total Environment, 2015, 521-522, 305-314.	3.9	98
314	Microbial Interaction in Mining Soil. Soil Biology, 2015, , 223-241.	0.6	0
315	The Co-Evolution of Fe-Oxides, Ti-Oxides, and Other Microbially Induced Mineral Precipitates In Sandy Sediments: Understanding the Role of Cyanobacteria In Weathering and Early Diagenesis. Journal of Sedimentary Research, 2015, 85, 1213-1227.	0.8	16

#	Article	IF	CITATIONS
316	Release and bioavailability of heavy metals in three typical mafic tailings under the action of Bacillus mucilaginosus and Thiobacillus ferrooxidans. Environmental Earth Sciences, 2015, 74, 5087-5096.	1.3	7
318	Occurrence of Nanomaterials in the Environment. , 2015, , 179-218.		2
319	An artificially constructed Syngonium podophyllum-Aspergillus niger combinate system for removal of uranium from wastewater. Environmental Science and Pollution Research, 2015, 22, 18918-18926.	2.7	17
320	Photophysical and antibacterial properties of complex systems based on smectite, a cationic surfactant and methylene blue. Journal of Photochemistry and Photobiology B: Biology, 2015, 151, 135-141.	1.7	23
321	Field effect transistors based on semiconductive microbially synthesized chalcogenide nanofibers. Acta Biomaterialia, 2015, 13, 364-373.	4.1	22
322	Geological and Economic Significance of Supergene Metal Deposits. Elements, 2015, 11, 305-310.	0.5	62
323	Intracellular detection of Cu ²⁺ and S ^{2â^'} ions through a quinazoline functionalized benzimidazole-based new fluorogenic differential chemosensor. Dalton Transactions, 2015, 44, 16953-16964.	1.6	68
324	Transposon Mutagenesis Paired with Deep Sequencing of Caulobacter crescentus under Uranium Stress Reveals Genes Essential for Detoxification and Stress Tolerance. Journal of Bacteriology, 2015, 197, 3160-3172.	1.0	32
325	The effects of biocide use on the microbiology and geochemistry of produced water in the Eagle Ford formation, Texas, U.S.A Journal of Petroleum Science and Engineering, 2015, 135, 1-9.	2.1	16
326	Immobilization of Shewanella oneidensis MR-1 in diffusive gradients in thin films for determining metal bioavailability. Chemosphere, 2015, 138, 309-315.	4.2	2
327	Potential for impact glass to preserve microbial metabolism. Earth and Planetary Science Letters, 2015, 430, 95-104.	1.8	11
328	Effect of heavy-metal-resistant bacteria on enhanced metal uptake and translocation of the Cu-tolerant plant, Elsholtzia splendens. Environmental Science and Pollution Research, 2015, 22, 5070-5081.	2.7	31
329	Assessment of heavy metals contamination in Mamut river sediments using sediment quality guidelines and geochemical indices. Environmental Monitoring and Assessment, 2015, 187, 4190.	1.3	33
330	Natural Nanoparticles: Implications for Environment and Human Health. Critical Reviews in Environmental Science and Technology, 2015, 45, 861-904.	6.6	76
331	Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environment International, 2015, 75, 180-198.	4.8	122
332	Do macrofungi accumulate uranium?. , 2015, , 369-376.		4
333	Evaluation of mercury biotransformation by heavy metal-tolerant Alcaligenes strain isolated from industrial sludge. International Journal of Environmental Science and Technology, 2015, 12, 995-1002.	1.8	19
334	Disturbed subsurface microbial communities follow equivalent trajectories despite different structural starting points. Environmental Microbiology, 2015, 17, 622-636.	1.8	32

#	Article	IF	CITATIONS
335	Isolation of a strain of Penicillium funiculosum and mutational improvement for UO2 2+ adsorption. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303, 427-432.	0.7	8
336	Community transcriptomics reveals unexpected high microbial diversity in acidophilic biofilm communities. ISME Journal, 2015, 9, 1014-1023.	4.4	59
337	Bioremediation of contaminated marine sediments can enhance metal mobility due to changes of bacterial diversity. Water Research, 2015, 68, 637-650.	5.3	92
339	Metal oxides and polysaccharides: an efficient hybrid association for materials chemistry. Green Chemistry, 2015, 17, 72-88.	4.6	104
340	Hydrocarbon pollution does not influence bacterial diversity as much as geographic location: a Korean case study. International Journal of Environmental Science and Technology, 2015, 12, 1889-1898.	1.8	4
341	Phytoremediation. , 2015, , 63-84.		2
342	Stability and toxicity of ZnO quantum dots: Interplay between nanoparticles and bacteria. Journal of Hazardous Materials, 2015, 283, 110-116.	6.5	45
343	Carbonate Precipitation through Microbial Activities in Natural Environment, and Their Potential in Biotechnology: A Review. Frontiers in Bioengineering and Biotechnology, 2016, 4, 4.	2.0	411
344	Microbiome Analysis Across a Natural Copper Gradient at a Proposed Northern Canadian Mine Site. Frontiers in Environmental Science, 2016, 3, .	1.5	8
345	Degrading Organic Micropollutants: The Next Challenge in the Evolution of Biological Wastewater Treatment Processes. Frontiers in Environmental Science, 2016, 4, .	1.5	26
346	Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems. Frontiers in Microbiology, 2016, 7, 673.	1.5	109
347	Physiological and Metagenomic Analyses of Microbial Mats Involved in Self-Purification of Mine Waters Contaminated with Heavy Metals. Frontiers in Microbiology, 2016, 7, 1252.	1.5	57
348	Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance. International Journal of Environmental Research and Public Health, 2016, 13, 1047.	1.2	455
349	Seasonal Microbial Population Shifts in a Bioremediation System Treating Metal and Sulfate-Rich Seepage. Minerals (Basel, Switzerland), 2016, 6, 36.	0.8	18
350	Fungal Iron Biomineralization in RÃo Tinto. Minerals (Basel, Switzerland), 2016, 6, 37.	0.8	20
351	Role of Fungi in the Biomineralization of Calcite. Minerals (Basel, Switzerland), 2016, 6, 41.	0.8	110
352	Genomics to assist mine reclamation: a review. Restoration Ecology, 2016, 24, 165-173.	1.4	23
353	Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7,	0.7	90

#	Article	IF	CITATIONS
354	Disentangling metabolic pathways involved in copper resistance in <i>Candida fukuyamaensis</i> RCLâ€3 indigenous yeast. Journal of Basic Microbiology, 2016, 56, 698-710.	1.8	6
355	Zinc treatment increases the titre of â€~ <i>Candidatus</i> Liberibacter asiaticus' in huanglongbing-affected citrus plants while affecting the bacterial microbiomes. Journal of Applied Microbiology, 2016, 120, 1616-1628.	1.4	23
356	Mechanisms of manganese bioremediation by microbes: an overview. Journal of Chemical Technology and Biotechnology, 2016, 91, 2733-2739.	1.6	33
357	Rock geochemistry induces stress and starvation responses in the bacterial proteome. Environmental Microbiology, 2016, 18, 1110-1121.	1.8	18
358	Whole resting cells vs. cell free extracts of Candida parapsilosis ATCC 7330 for the synthesis of gold nanoparticles. AMB Express, 2016, 6, 92.	1.4	11
359	Increasing Phytoremediation Efficiency of Heavy Metal-Contaminated Soil Using PGPR for Sustainable Agriculture. , 2016, , 187-204.		19
360	The Effects of Bacterial Surface Adsorption and Exudates on HgO Precipitation. Geomicrobiology Journal, 2016, 33, 367-376.	1.0	1
361	5 Fungi and Industrial Pollutants. , 2016, , 99-125.		6
362	Microbiota and food residues including possible evidence of pre-mammalian hair in Upper Permian coprolites from Russia. Lethaia, 2016, 49, 455-477.	0.6	62
363	Characterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mine. Environmental Science and Pollution Research, 2016, 23, 11814-11822.	2.7	65
364	CymA and Exogenous Flavins Improve Extracellular Electron Transfer and Couple It to Cell Growth in Mtr-Expressing <i>Escherichia coli</i> . ACS Synthetic Biology, 2016, 5, 679-688.	1.9	91
365	Phosphataseâ€mediated bioprecipitation of lead by soil fungi. Environmental Microbiology, 2016, 18, 219-231.	1.8	55
366	Comparison of Cu, Zn and Fe bioleaching from Cu-metallurgical slags in the presence of Pseudomonas fluorescens and Acidithiobacillus thiooxidans. Applied Geochemistry, 2016, 68, 39-52.	1.4	54
367	Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates. Applied Microbiology and Biotechnology, 2016, 100, 5141-5151.	1.7	48
368	Methylmercury degradation by Pseudomonas putida V1. Ecotoxicology and Environmental Safety, 2016, 130, 37-42.	2.9	14
369	An efficient approach towards the bioremediation of copper, cobalt and nickel contaminated field samples. Journal of Soils and Sediments, 2016, 16, 2118-2127.	1.5	16
370	Does bioleaching represent a biotechnological strategy for remediation of contaminated sediments?. Science of the Total Environment, 2016, 563-564, 302-319.	3.9	65
371	Ammonia-Oligotrophic and Diazotrophic Heavy Metal-Resistant Serratia liquefaciens Strains from Pioneer Plants and Mine Tailings, Microbial Ecology, 2016, 72, 324-346	1.4	13

#	Article	IF	CITATIONS
372	Geomicrobiology and Metagenomics of Terrestrial Deep Subsurface Microbiomes. Advances in Applied Microbiology, 2016, 94, 1-77.	1.3	47
373	Microorganism mediated biosynthesis of metal chalcogenides; a powerful tool to transform toxic effluents into functional nanomaterials. Science of the Total Environment, 2016, 565, 804-810.	3.9	40
374	Bio-rescue of marine environments: On the track of microbially-based metal/metalloid remediation. Science of the Total Environment, 2016, 565, 165-180.	3.9	10
375	Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals. Advances in Applied Microbiology, 2016, 94, 79-108.	1.3	143
376	Penidiella sp. strain T9 is an effective dysprosium accumulator, incorporating dysprosium as dysprosium phosphate compounds. Hydrometallurgy, 2016, 166, 260-265.	1.8	4
377	Biological Approaches for Remediation of Metal-Contaminated Sites. , 2016, , 65-112.		8
378	Nanoparticles Synthesized by Microorganisms. , 2016, , 1-51.		5
379	Biotechnological Approaches for Bioremediation: In Vitro Hairy Root Culture. , 2016, , 1-23.		1
380	Magnesium-Calcite Crystal Formation Mediated by the Thermophilic Bacterium Geobacillus thermoglucosidasius Requires Calcium and Endospores. Current Microbiology, 2016, 73, 696-703.	1.0	2
381	Concentrations of Metals, Metalloids, and Chlorinated Pollutants in Blood and Plasma of White Stork (Ciconia ciconia) Nestlings From Spain. Archives of Environmental Contamination and Toxicology, 2016, 71, 313-321.	2.1	9
382	Competitive adsorption of Pb and Cd on bacteria–montmorillonite composite. Environmental Pollution, 2016, 218, 168-175.	3.7	71
383	Fungi as deterioration agents of historic glass plate negatives of Brandys family collection. International Biodeterioration and Biodegradation, 2016, 115, 133-140.	1.9	10
384	Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B. Journal of Environmental Management, 2016, 183, 22-32.	3.8	93
385	Pesticide Toxicity to Microorganisms: Exposure, Toxicity and Risk Assessment Methodologies. , 2016, , 351-410.		7
386	Immobilization of Lead by Alishewanella sp. WH16-1 in Pot Experiments of Pb-Contaminated Paddy Soil. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	20
387	Biofilm adaptation to iron availability in the presence of biotite and consequences for chemical weathering. Geobiology, 2016, 14, 588-598.	1.1	9
388	Short―and Longâ€Term Exposure to Heavy Metals Induced Oxidative Stress Response in <i>Pseudokirchneriella</i> s <i>ubcapitata</i> . Clean - Soil, Air, Water, 2016, 44, 1578-1583.	0.7	23
389	The Astrobiology Primer v2.0. Astrobiology, 2016, 16, 561-653.	1.5	133

#	Article	IF	CITATIONS
390	Raman investigation of the patina layers on Hungarian copper ingots from a fifteenth century shipwreck. Journal of Raman Spectroscopy, 2016, 47, 1528-1533.	1.2	8
391	Intracellular Biosynthesis of Fluorescent CdSe Quantum Dots inBacillus subtilis:A Strategy to Construct Signaling Bacterial Probes for Visually Detecting Interaction BetweenBacillus subtilisandStaphylococcus aureus. Microscopy and Microanalysis, 2016, 22, 13-21.	0.2	11
392	The influence of citrate on surface dissolution and alteration of the micro- and nano-structure of biotite. RSC Advances, 2016, 6, 112544-112551.	1.7	3
393	Effects of aeration frequency on leachate quality and waste in simulated hybrid bioreactor landfills. Journal of the Air and Waste Management Association, 2016, 66, 1245-1256.	0.9	10
394	Geomycology. Fungal Biology, 2016, , 371-401.	0.3	5
395	Methodological approaches for fractionation and speciation to estimate trace element bioavailability in engineered anaerobic digestion ecosystems: An overview. Critical Reviews in Environmental Science and Technology, 2016, 46, 1324-1366.	6.6	40
396	Use of Mycorrhiza as Metal Tolerance Strategy in Plants. , 2016, , 57-68.		7
397	Plant growth-promoting actinobacteria on chickpea seed mineral density: an upcoming complementary tool for sustainable biofortification strategy. 3 Biotech, 2016, 6, 138.	1.1	49
398	Reductive leaching of jarosites by Aeromonas hydrophila. Minerals Engineering, 2016, 95, 21-28.	1.8	16
399	Extracellular mercury sequestration by exopolymeric substances produced by Yarrowia spp.: Thermodynamics, equilibria, and kinetics studies. Journal of Bioscience and Bioengineering, 2016, 122, 701-707.	1.1	18
400	Bacterial chromate reduction: A review of important genomic, proteomic, and bioinformatic analysis. Critical Reviews in Environmental Science and Technology, 2016, 46, 1659-1703.	6.6	46
401	Green Synthesis of Metal Nanoparticles by Fungi: Current Trends and Challenges. Fungal Biology, 2016, , 71-89.	0.3	15
402	Microbial stress response to heavy metals in the environment. RSC Advances, 2016, 6, 109862-109877.	1.7	136
403	Preservation of Archaeal Surface Layer Structure During Mineralization. Scientific Reports, 2016, 6, 26152.	1.6	52
405	Differential cadmium stress tolerance in wheat genotypes under mycorrhizal association. Journal of Plant Nutrition, 2016, 39, 2025-2036.	0.9	18
406	Oxidative biotransformation of biotite and glauconite by alkaliphilic anaerobes: The effect of Fe oxidation on the weathering of phyllosilicates. Chemical Geology, 2016, 439, 98-109.	1.4	24
407	Solid phase characterization and metal deportment in a mussel shell bioreactor for the treatment of AMD, Stockton Coal Mine, New Zealand. Applied Geochemistry, 2016, 67, 133-143.	1.4	11
408	Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Applied Soil Ecology, 2016, 107, 66-78.	2.1	134

#	Article	IF	CITATIONS
409	Potential Impact of Seawater Uranium Extraction on Marine Life. Industrial & Engineering Chemistry Research, 2016, 55, 4278-4284.	1.8	15
410	Microorganisms meet solid minerals: interactions and biotechnological applications. Applied Microbiology and Biotechnology, 2016, 100, 6935-6946.	1.7	32
411	Production of Manganese Oxide Nanoparticles by Shewanella Species. Applied and Environmental Microbiology, 2016, 82, 5402-5409.	1.4	73
412	Model systems to unravel the molecular mechanisms of heavy metal tolerance in the ericoid mycorrhizal symbiosis. Mycorrhiza, 2016, 26, 263-274.	1.3	51
413	The microbial genomics of arsenic. FEMS Microbiology Reviews, 2016, 40, 299-322.	3.9	221
414	Root endophytic bacteria of a 137Cs and Mn accumulator plant, Eleutherococcus sciadophylloides, increase 137Cs and Mn desorption in the soil. Journal of Environmental Radioactivity, 2016, 153, 112-119.	0.9	29
415	Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production. Journal of Hazardous Materials, 2016, 304, 434-440.	6.5	41
416	Diversity and ecology of oxalotrophic bacteria. World Journal of Microbiology and Biotechnology, 2016, 32, 28.	1.7	36
417	Evidences for Microbial Precipitation of Calcite in Speleothems from Krem Syndai in Jaintia Hills, Meghalaya, India. Geomicrobiology Journal, 2016, 33, 906-933.	1.0	18
418	Purification and characterization of exopolysaccharide bioflocculant produced by heavy metal resistant Achromobacter xylosoxidans. Carbohydrate Polymers, 2016, 137, 441-451.	5.1	60
419	Fungal Biomineralization of Manganese as a Novel Source of Electrochemical Materials. Current Biology, 2016, 26, 950-955.	1.8	53
420	Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production. Water Research, 2016, 93, 56-64.	5.3	60
421	Phosphogypsum biotransformation by aerobic bacterial flora and isolated Trichoderma asperellum from Tunisian storage piles. Journal of Hazardous Materials, 2016, 308, 362-373.	6.5	16
422	Xanthan Exopolysaccharide: Cu ²⁺ Complexes Affected from the pH-Dependent Conformational State; Implications for Environmentally Relevant Biopolymers. Environmental Science & Technology, 2016, 50, 3477-3485.	4.6	12
423	Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags. Environmental Science & Technology, 2016, 50, 2735-2742.	4.6	113
424	Microbial mobilization of cesium from illite: The role of organic acids and siderophores. Chemical Geology, 2016, 428, 8-14.	1.4	23
425	The igneous oceanic crust – Earth's largest fungal habitat?. Fungal Ecology, 2016, 20, 249-255.	0.7	56
426	Biomineralization, Bioremediation and Biorecovery of Toxic Metals and Radionuclides. Geomicrobiology Journal, 2016, 33, 175-178.	1.0	34

#	Article	IF	CITATIONS
427	4 Fungal Molecular Response to Heavy Metal Stress. , 2016, , 47-68.		13
428	Heavy Metal Tolerance and Biotransformation of Toxic Metal Compounds by New Isolates of Wood-Rotting Fungi from Thailand. Geomicrobiology Journal, 2016, 33, 283-288.	1.0	39
429	Lead Bioprecipitation by Yeasts Utilizing Organic Phosphorus Substrates. Geomicrobiology Journal, 2016, 33, 294-307.	1.0	27
430	Bioremediation of Cesium-Contaminated Soil by <i>Sorghum Bicolor</i> and Soil Microbial Community Analysis. Geomicrobiology Journal, 2016, 33, 216-221.	1.0	12
431	A New Lead Hydroxycarbonate Produced During Transformation of Lead Metal by the Soil Fungus <i>Paecilomyces javanicus</i> . Geomicrobiology Journal, 2016, 33, 250-260.	1.0	22
432	Bacterially-mediated weathering of crystalline and amorphous Cu-slags. Applied Geochemistry, 2016, 64, 92-106.	1.4	29
433	State-of-the-art on geotechnical engineering perspective on bio-mediated processes. Environmental Earth Sciences, 2016, 75, 1.	1.3	24
434	Current Perspectives on Plant Growth-Promoting Rhizobacteria. Journal of Plant Growth Regulation, 2016, 35, 877-902.	2.8	145
435	On the bioavailability of trace metals in surface sediments: a combined geochemical and biological approach. Environmental Science and Pollution Research, 2016, 23, 10679-10692.	2.7	14
436	<i>In vitro</i> toxic effects of heavy metals on fungal growth and phosphate-solubilising abilities of isolates obtained from <i>Phragmites australis</i> rhizosphere. Chemistry and Ecology, 2016, 32, 49-67.	0.6	5
437	Cell Surface Interference with Plasma Membrane and Transport Processes in Yeasts. Advances in Experimental Medicine and Biology, 2016, 892, 11-31.	0.8	19
438	Modifications of Selected Clay Minerals Due to Activity of Filamentous Alkaline Cyanobacteria. Lecture Notes in Earth System Sciences, 2016, , 29-42.	0.5	0
439	Process analysis of AuCl4â ^{~'} sorption leading to gold nanoparticle synthesis by Shewanella putrefaciens. Chemical Engineering Journal, 2016, 288, 482-488.	6.6	9
440	Distinct Weathering Ability and Populations of Culturable Mineral-Weathering Bacteria in the Rhizosphere and Bulk Soils ofMorus Alba. Geomicrobiology Journal, 2016, 33, 39-45.	1.0	5
441	Biological and Bioelectrochemical Recovery of Critical and Scarce Metals. Trends in Biotechnology, 2016, 34, 137-155.	4.9	234
442	Fungal weathering of asbestos in semi arid regions of India. Ecotoxicology and Environmental Safety, 2016, 124, 186-192.	2.9	8
443	Application of statistical design of experiments for optimization of As(V) biosorption by immobilized bacterial biomass. Ecological Engineering, 2016, 86, 13-23.	1.6	40
444	Silver Accumulation in the Green Microalga <i>Coccomyxa actinabiotis</i> : Toxicity, in Situ Speciation, and Localization Investigated Using Synchrotron XAS, XRD, and TEM. Environmental Science & amp: Technology, 2016, 50, 359-367	4.6	54

	Сг	tation Report	
# 445	ARTICLE Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Diversity, 2016, 77, 367-379.	IF 4.7	Citations
446	Effect of Lead on Plant and Human DNA Damages and Its Impact on the Environment. , 2016, , 41-67.		11
447	Microbial Diversity in Caves. Geomicrobiology Journal, 2016, 33, 20-38.	1.0	96
448	Paleoenvironmental investigations, chemical analysis and characterization of underwater strata of Marigondon Cave. Quaternary International, 2017, 431, 223-231.	0.7	2
449	Metal bioleaching from anaerobic sediments from Reconquista River basin (Argentina) as a potential remediation strategy. Environmental Science and Pollution Research, 2017, 24, 25561-25570.	2.7	10
450	Carbonate Mineral Precipitation for Soil Improvement Through Microbial Denitrification. Geomicrobiology Journal, 2017, 34, 139-146.	1.0	84
451	Essential oils and metal ions as alternative antimicrobial agents: a focus on tea tree oil and silver. International Wound Journal, 2017, 14, 369-384.	1.3	25
452	Comparison of the Rhodotorula mucilaginosa Biofilm and Planktonic Culture on Heavy Metal Susceptibility and Removal Potential. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	46
453	Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Science of the Total Environment, 2017, 581-582, 209-220.	3.9	185
454	Bioremediation of copper-contaminated soils by bacteria. World Journal of Microbiology and Biotechnology, 2017, 33, 26.	1.7	69
455	Synthesis, Complexation and DFT Computational Studies of Bis(naphthyl)methaneâ€â€œCapped― Triazoleâ€Linked Calix[4]arenes as Fe ³⁺ Fluorescent Chemosensors. ChemistrySelect, 20 1214-1218.	017, 2, 0.7	7
456	The Geomycology of Elemental Cycling and Transformations in the Environment. Microbiology Spectrum, 2017, 5, .	1.2	26
458	Assessment of Ni accumulation capability by fungi for a possible approach to remove metals from soil and waters. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2017, 52, 166-170.	s 0.7	31
459	Native fungi as metal remediators: SilverÂmyco-accumulation from metal contaminated waste-rock dumps (Libiola Mine, Italy). Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2017, 52, 191-195.	0.7	44
460	Characterization of bacterial communities from Masseiras, a unique Portuguese greenhouse agricultural system. Antonie Van Leeuwenhoek, 2017, 110, 665-676.	0.7	3
461	Prospects of Bacterial-Assisted Remediation of Metal-Contaminated Soils. , 2017, , 41-58.		4
462	A Preliminary Investigation on Metal Bioaccumulation by Perenniporia fraxinea. Bulletin of Environmental Contamination and Toxicology, 2017, 98, 508-512.	1.3	10
463	Facile and Efficient Removal of Tungsten Anions Using Lysine-Promoted Precipitation for Recycling High-Purity Tungsten. ACS Sustainable Chemistry and Engineering, 2017, 5, 3141-3147.	3.2	16

#	Article	IF	CITATIONS
464	Abundance and Diversity of Psychrotolerant Cultivable Mycobiota in Winter of a Former Aluminous Shale Mine. Geomicrobiology Journal, 2017, 34, 823-833.	1.0	14
465	Microbial fouling and corrosion of carbon steel in deep anoxic alkaline groundwater. Biofouling, 2017, 33, 195-209.	0.8	21
466	Stone-Eating Fungi. Advances in Applied Microbiology, 2017, 99, 83-101.	1.3	14
467	Poplar biomass production at phytomanagement sites is significantly enhanced by mycorrhizal inoculation. Environmental and Experimental Botany, 2017, 139, 48-56.	2.0	44
469	Cellularly preserved microbial fossils from â^1⁄43.4 Ga deposits of South Africa: A testimony of early appearance of oxygenic life?. Precambrian Research, 2017, 295, 117-129.	1.2	20
470	Toxicity of nickel to soil microbial community with and without the presence of its mineral collectors—a calorimetric approach. Environmental Science and Pollution Research, 2017, 24, 15134-15147.	2.7	11
471	Biotechnological Approaches for Bioremediation: In Vitro Hairy Root Culture. Reference Series in Phytochemistry, 2017, , 597-619.	0.2	2
472	Kinetics and pH-dependent uranium bioprecipitation by Shewanella putrefaciens under aerobic conditions. Journal of Radioanalytical and Nuclear Chemistry, 2017, 312, 531-541.	0.7	30
473	Metallophilic fungi research: an alternative for its use in the bioremediation of hexavalent chromium. International Journal of Environmental Science and Technology, 2017, 14, 2023-2038.	1.8	43
474	Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: A review. Journal of Environmental Management, 2017, 198, 132-143.	3.8	178
475	A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 2017, 182, 247-268.	1.5	877
476	Microbiological corrosion: mechanism, control and impact—a review. International Journal of Advanced Manufacturing Technology, 2017, 92, 4241-4252.	1.5	94
477	Non-ureolytic calcium carbonate precipitation by Lysinibacillus sp. YS11 isolated from the rhizosphere of Miscanthus sacchariflorus. Journal of Microbiology, 2017, 55, 440-447.	1.3	33
478	A proteomicâ€based investigation of potential copperâ€responsive biomarkers: Proteins, conceptual networks, and metabolic pathways featuring <i>Penicillium janthinellum</i> from aÂheavy metalâ€polluted ecological niche. MicrobiologyOpen, 2017, 6, e00485.	1.2	18
479	Ecology, adaptation, and function of methaneâ€sulfidic spring water biofilm microorganisms, including a strain of anaerobic fungus <i>Mucor hiemalis</i> . MicrobiologyOpen, 2017, 6, e00483.	1.2	6
480	Plant Biotechnology: Recent Advancements and Developments. , 2017, , .		16
481	Fungi: geoactive agents of metal and mineral transformations. Environmental Microbiology, 2017, 19, 2533-2536.	1.8	3
482	Fungi, Rocks, and Minerals. Elements, 2017, 13, 171-176.	0.5	67

#	Article	IF	CITATIONS
483	An upscaled rate law for magnesite dissolution in heterogeneous porous media. Geochimica Et Cosmochimica Acta, 2017, 210, 289-305.	1.6	48
484	Geomicrobiology of the built environment. Nature Microbiology, 2017, 2, 16275.	5.9	113
485	Fertilization of Phaseolus vulgaris with the Tunisian rock phosphate affects richness and structure of rhizosphere bacterial communities. Applied Soil Ecology, 2017, 114, 1-8.	2.1	26
486	The reduction of chromium (VI) phytotoxicity and phytoavailability to wheat (Triticum aestivum L.) using biochar and bacteria. Applied Soil Ecology, 2017, 114, 90-98.	2.1	87
487	A rock-weathering bacterium isolated from rock surface and its role in ecological restoration on exposed carbonate rocks. Ecological Engineering, 2017, 101, 162-169.	1.6	21
488	Immobilization of Carbon in Mycorrhizal Mycelial Biomass and Secretions. , 2017, , 413-440.		10
489	The possible association between selected sediment characteristics and the occurrence of benthic macroinvertebrates in a minimally affected river in South Africa. Chemistry and Ecology, 2017, 33, 18-33.	0.6	12
490	Mineral Types and Tree Species Determine the Functional and Taxonomic Structures of Forest Soil Bacterial Communities. Applied and Environmental Microbiology, 2017, 83, .	1.4	39
491	Bioleaching of manganese by Aspergillus sp. isolated from mining deposits. Chemosphere, 2017, 172, 302-309.	4.2	75
492	FTIR spectroscopic studies of selenite reduction by cells of the rhizobacterium Azospirillum brasilense Sp7 and the formation of selenium nanoparticles. Journal of Molecular Structure, 2017, 1140, 106-112.	1.8	78
493	Antibiofilm agents: A new perspective for antimicrobial strategy. Journal of Microbiology, 2017, 55, 753-766.	1.3	127
494	Biorecovery of Metals from Electronic Waste. Environmental Chemistry for A Sustainable World, 2017, , 241-278.	0.3	7
495	Optimization of microbial detoxification for an aquatic mercury-contaminated environment. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 788-796.	1.1	3
496	Heavy metal ions removal from wastewater using electrocoagulation processes: A comprehensive review. Separation Science and Technology, 0, , 1-28.	1.3	57
497	Potential Role of Plant-Associated Bacteria in Plant Metal Uptake and Implications in Phytotechnologies. Advances in Botanical Research, 2017, , 87-126.	0.5	36
498	Metal and metalloid biorecovery using fungi. Microbial Biotechnology, 2017, 10, 1199-1205.	2.0	74
499	Fungal nanoscale metal carbonates and production of electrochemical materials. Microbial Biotechnology, 2017, 10, 1131-1136.	2.0	28
500	Biological re-colonization of sub-aerial boundaries of an â€~artificial construction-niche' contaminated by iron mine tailings: laboratory bioassays. Environmental Earth Sciences, 2017, 76, 1.	1.3	3

#	Article	IF	CITATIONS
501	Sustainable Heavy Metal Remediation. Environmental Chemistry for A Sustainable World, 2017, , .	0.3	8
502	Bioelectrochemical Systems for Heavy Metal Removal and Recovery. Environmental Chemistry for A Sustainable World, 2017, , 165-198.	0.3	9
503	Mg Isotope Fractionation during Uptake by a Rock-Inhabiting, Model Microcolonial Fungus <i>Knufia petricola</i> at Acidic and Neutral pH. Environmental Science & Technology, 2017, 51, 9691-9699.	4.6	31
504	Bioprotection of the built environment and cultural heritage. Microbial Biotechnology, 2017, 10, 1152-1156.	2.0	44
506	Stability of biological and inorganic hemimorphite: Implications for hemimorphite precipitation in non-sulfide Zn deposits. Ore Geology Reviews, 2017, 89, 808-821.	1.1	22
507	A fluorescence "turn-on―sensor for multiple analytes: OAcâ^' and Fâ^' triggered fluorogenic detection of Zn2+ in a co-operative fashion. Tetrahedron, 2017, 73, 5418-5424.	1.0	17
508	Biosolubilisation of Metals and Metalloids. Environmental Chemistry for A Sustainable World, 2017, , 233-283.	0.3	4
509	Biosynthesis of copper carbonate nanoparticles by ureolytic fungi. Applied Microbiology and Biotechnology, 2017, 101, 7397-7407.	1.7	41
510	The Molecular Basis for Binding of an Electron Transfer Protein to a Metal Oxide Surface. Journal of the American Chemical Society, 2017, 139, 12647-12654.	6.6	33
511	The roles of endolithic fungi in bioerosion and disease in marine ecosystems. I. General concepts. Mycology, 2017, 8, 205-215.	2.0	25
512	Extraction of gold (Au) particles from sea water by Delftia Acidovorans microbes. Journal of Physics: Conference Series, 2017, 908, 012045.	0.3	1
513	Aerobic degradation of crude oil by microorganisms in soils from four geographic regions of China. Scientific Reports, 2017, 7, 14856.	1.6	43
514	Imposed Environmental Stresses Facilitate Cell-Free Nanoparticle Formation by Deinococcus radiodurans. Applied and Environmental Microbiology, 2017, 83, .	1.4	16
515	Synthesis, Photocatalytic, and Antifungal Properties of MgO, ZnO and Zn/Mg Oxide Nanoparticles for the Protection of Calcareous Stone Heritage. ACS Applied Materials & amp; Interfaces, 2017, 9, 24873-24886.	4.0	121
516	Biosorption and equilibrium isotherms study of cadmium removal by Nostoc muscorum Meg 1: morphological, physiological and biochemical alterations. 3 Biotech, 2017, 7, 104.	1.1	27
517	Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil. Journal of Cleaner Production, 2017, 164, 198-208.	4.6	123
518	Formation of silver nanoparticles in water samples from Antarctic Lake Untersee. Microbiology, 2017, 86, 355-362.	0.5	4
519	Do biofilm communities respond to the chemical signatures of fracking? A test involving streams in North-central Arkansas. BMC Microbiology, 2017, 17, 29.	1.3	19

		CITATION REPO	ORT	
#	ARTICLE		IF	CITATIONS
520	Applications of biochar in redox-mediated reactions. Bioresource Technology, 2017, 246,	271-281.	4.8	322
521	Bio-precipitates produced by two autochthonous boron tolerant Streptomyces strains. Jo Environmental Chemical Engineering, 2017, 5, 3373-3383.	urnal of	3.3	7
522	Seasonal variations in the blood concentration of selected heavy metals in sheep and thei the biochemical and hematological parameters. Chemosphere, 2017, 168, 365-371.	r effects on	4.2	34
523	Lead bioaccumulation in Opuntia ficus-indica following foliar or root exposure to lead-bea apatite. Environmental Pollution, 2017, 220, 779-787.	ring	3.7	16
524	Role of Ni-tolerant <i>Bacillus</i> spp. and <i>Althea rosea</i> L. in the phytoremediation o Ni-contaminated soils. International Journal of Phytoremediation, 2017, 19, 470-477.	F :	1.7	25
525	Chemical characterization of Pseudomonas veronii 2E soluble exopolymer as Cd(II) ligand biotreatment of electroplating wastes. International Biodeterioration and Biodegradation 605-613.	for the 2017, 119,	1.9	12
526	Anaerobic bioleaching of jarosites by Shewanella putrefaciens, influence of chelators and formation. Hydrometallurgy, 2017, 168, 56-63.	biofilm	1.8	21
527	Impact of wastewater derived dissolved organic carbon on reduction, mobility, and bioava As(V) and Cr(VI) in contaminated soils. Journal of Environmental Management, 2017, 186		3.8	30
528	Development of cadmium specific recombinant biosensor and its application in milk samp and Actuators B: Chemical, 2017, 240, 248-254.	les. Sensors	4.0	51
529	Biotechnology and the Mine of Tomorrow. Trends in Biotechnology, 2017, 35, 79-89.		4.9	49
530	Fe(II)-mediated autotrophic denitrification: A new bioprocess for ironÂbioprecipitation/bio simultaneous treatment of nitrate-containing wastewaters. International Biodeterioration Biodegradation, 2017, 119, 631-648.	recovery and and	1.9	132
531	New horizons in geomycology. Environmental Microbiology Reports, 2017, 9, 4-7.		1.0	3
532	Microbial Diversity in Phosphate Rock and Phosphogypsum. Waste and Biomass Valorizat 2473-2483.	ion, 2017, 8,	1.8	9
533	Iron concretions within a highly altered unit of the Berlins Porphyry, New Zealand: an abio biotic story?. Mineralogy and Petrology, 2017, 111, 173-181.	tic or	0.4	1
534	Stabilization of fly ash using cementing bacteria. Assessment of cementation and trace el mobilization. Journal of Hazardous Materials, 2017, 321, 316-325.	ement	6.5	24
535	Manganese in Marine Microbiology. Advances in Microbial Physiology, 2017, 70, 37-83.		1.0	53
536	Microbial Interaction with Metals and Metalloids: A Prospective Clean Environment. , 201	7, , 307-342.		1
537	Role of Plant Growth Promoting Rhizobacteria in Reclamation of Wasteland. , 2017, , 61-	30.		4

#	Article	IF	CITATIONS
538	Fungi: An Effective Tool for Bioremediation. , 2017, , 593-606.		13
539	Stress Effects on Yeast During Brewing and Distilling Fermentations: High-Gravity Effects. , 2017, , 199-240.		2
540	<i>Bacillus amyloliquefaciens</i> BSL16 improves phytoremediation potential of <i>Solanum lycopersicum</i> during copper stress. Journal of Plant Interactions, 2017, 12, 550-559.	1.0	27
541	Biotechnology Processes for Scalable, Selective Rare Earth Element Recovery. , 0, , .		3
542	The Geomycology of Elemental Cycling and Transformations in the Environment. , 2017, , 369-386.		1
543	Bioactive Metabolites from the Deep Subseafloor Fungus Oidiodendron griseum UBOCC-A-114129. Marine Drugs, 2017, 15, 111.	2.2	17
544	Antimicrobial Properties of Silver Cations Substituted to Faujasite Mineral. Nanomaterials, 2017, 7, 240.	1.9	12
545	Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review. International Journal of Environmental Research and Public Health, 2017, 14, 1504.	1.2	685
546	Reactivation of Deep Subsurface Microbial Community in Response to Methane or Methanol Amendment. Frontiers in Microbiology, 2017, 08, 431.	1.5	28
547	Genomic and Transcriptomic Insights into Calcium Carbonate Biomineralization by Marine Actinobacterium Brevibacterium linens BS258. Frontiers in Microbiology, 2017, 8, 602.	1.5	44
548	The Impact of Space Flight on Survival and Interaction of Cupriavidus metallidurans CH34 with Basalt, a Volcanic Moon Analog Rock. Frontiers in Microbiology, 2017, 8, 671.	1.5	19
549	Alleviation of Heavy Metal Stress in Plants and Remediation of Soil by Rhizosphere Microorganisms. Frontiers in Microbiology, 2017, 8, 1706.	1.5	371
550	Effects of Montmorillonite on the Mineralization and Cementing Properties of Microbiologically Induced Calcium Carbonate. Advances in Materials Science and Engineering, 2017, 2017, 1-13.	1.0	9
551	Fungal Biorecovery of Gold From E-waste. Advances in Applied Microbiology, 2017, 99, 53-81.	1.3	51
552	Fungal Mineralization Processes in Rio Tinto. Solid State Phenomena, 0, 262, 354-357.	0.3	0
553	AN EXPERIMENTAL LOOK AT THE TAPHONOMY OF CYANOBACTERIAL MATS IN SILICICLASTIC SEDIMENTS. Palaios, 2017, 32, 725-738.	0.6	7
554	Heavy Metals Pollution Influence the Community Structure of Cyanobacteria in Nutrient Rich Tropical Estuary. Oceanography Open Access, 2017, 03, .	0.1	1
555	Functional diversity of microbial communities in pristine aquifers inferred by PLFA- and sequencing-based approaches. Biogeosciences, 2017, 14, 2697-2714.	1.3	72

#	Article	IF	CITATIONS
556	Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production. Archives of Microbiology, 2018, 200, 883-895.	1.0	27
557	Tolerance and growth kinetics of bacteria isolated from gold and gemstone mining sites in response to heavy metal concentrations. Journal of Environmental Management, 2018, 212, 357-366.	3.8	35
558	Enhanced immobilization of U(VI) on Mucor circinelloides in presence of As(V): Batch and XAFS investigation. Environmental Pollution, 2018, 237, 228-236.	3.7	30
559	Current challenges and future directions for bacterial self-healing concrete. Applied Microbiology and Biotechnology, 2018, 102, 3059-3070.	1.7	139
560	Bacterial Communities of Uranium-Contaminated Tailing Ponds and Their Interactions with Different Heavy Metals. Microorganisms for Sustainability, 2018, , 109-128.	0.4	3
561	Preparation and Properties of Novel Modified Humidity Control Composite Materials. Journal of Macromolecular Science - Physics, 2018, 57, 21-30.	0.4	1
562	Iron and sulfur cycling in acid sulfate soil wetlands under dynamic redox conditions: A review. Chemosphere, 2018, 197, 803-816.	4.2	150
563	Rare earth elements concentration in mushroom cultivation substrates affects the production process and fruitâ€bodies content of <i><scp>P</scp>leurotus ostreatus</i> and <i><scp>C</scp>yclocybe cylindracea</i> Journal of the Science of Food and Agriculture, 2018, 98, 5418-5427.	1.7	26
564	Comparing Rock-inhabiting Microbial Communities in Different Rock Types from a High Arctic Polar Desert. FEMS Microbiology Ecology, 2018, 94, .	1.3	20
565	Implications in studies of environmental risk assessments: Does culture medium influence the results of toxicity tests of marine bacteria?. Chemosphere, 2018, 205, 24-30.	4.2	2
566	Isolation, Characterization, and Metal Response of Novel, Acid-Tolerant Penicillium spp. from Extremely Metal-Rich Waters at a Mining Site in Transbaikal (Siberia, Russia). Microbial Ecology, 2018, 76, 911-924.	1.4	18
567	Biological approaches to tackle heavy metal pollution: A survey of literature. Journal of Environmental Management, 2018, 217, 56-70.	3.8	421
568	Fungal strategies for dealing with environment- and agriculture-induced stresses. Fungal Biology, 2018, 122, 602-612.	1.1	52
569	Metal recovery by microbial electro-metallurgy. Progress in Materials Science, 2018, 94, 435-461.	16.0	110
570	Microbial Remediation of Persistent Agro-chemicals by Soil Bacteria: An Overview. , 2018, , 275-301.		24
571	Different efficiencies of the same mechanisms result in distinct Cd tolerance within Rhizobium. Ecotoxicology and Environmental Safety, 2018, 150, 260-269.	2.9	20
572	Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio, 2018, 47, 170-197.	2.8	244
573	Bacterial iron reduction and biogenic mineral formation for the stabilisation of corroded iron objects. Scientific Reports, 2018, 8, 764.	1.6	31

#	Article	IF	CITATIONS
574	Cadmium and cadmiumâ€ŧolerant soil bacteria in cacao crops from northeastern Colombia. Journal of Applied Microbiology, 2018, 124, 1175-1194.	1.4	36
575	Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora. Chemosphere, 2018, 196, 386-392.	4.2	44
576	Bioremediation of Heavy Metals. Environmental Chemistry for A Sustainable World, 2018, , 277-311.	0.3	15
577	Lobarioid A, unusual antibacterial depsidone possessing an eight-membered diether ring from the edible lichen Lobaria sp Tetrahedron Letters, 2018, 59, 743-746.	0.7	4
578	A New Application for Klebsiella oxytoca in Bioremediation: Treatment of Manganese-Laden Wastewaters. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	5
579	Molybdenum anode: a novel electrode for enhanced power generation in microbial fuel cells, identified via extensive screening of metal electrodes. Biotechnology for Biofuels, 2018, 11, 39.	6.2	45
580	Perspectives regarding the use of metallurgical slags as secondary metal resources – A review of bioleaching approaches. Journal of Environmental Management, 2018, 219, 138-152.	3.8	102
581	Uranium toxicity to aquatic invertebrates: A laboratory assay. Environmental Pollution, 2018, 239, 359-366.	3.7	24
582	Phosphatase mediated bioprecipitation of lead as pyromorphite by Achromobacter xylosoxidans. Journal of Environmental Management, 2018, 217, 754-761.	3.8	23
584	A comparative study of the wild and mutated heavy metal resistant <i>Klebsiella variicola</i> generated for cadmium bioremediation. Bioremediation Journal, 2018, 22, 28-42.	1.0	7
585	The Ability of Basalt to Leach Nutrients and Support Growth of <i>Cupriavidus metallidurans</i> CH34 Depends on Basalt Composition and Element Release. Geomicrobiology Journal, 2018, 35, 438-446.	1.0	5
586	Biosurfactant-induced remediation of contaminated marine sediments: Current knowledge and future perspectives. Marine Environmental Research, 2018, 137, 196-205.	1.1	39
587	Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety, 2018, 156, 225-246.	2.9	529
588	Use of dairy reject and fermented Aleo sp. Leaf Gel mixture in the biological Pre-treatment of landfill leachate. Water Practice and Technology, 2018, 13, 219-228.	1.0	1
589	Electrochemical Probes of Microbial Community Behavior. Annual Review of Analytical Chemistry, 2018, 11, 441-461.	2.8	13
590	Analysis of Biosorption Parameters, Equilibrium Isotherms and Thermodynamic Studies of Chromium (VI) Uptake by a Nostoc sp. Isolated from a Coal Mining Site in Meghalaya, India. Mine Water and the Environment, 2018, 37, 713-723.	0.9	11
591	Silica Solubilization Potential of Certain Bacterial Species in the Presence of Different Silicate Minerals. Silicon, 2018, 10, 267-275.	1.8	52
592	Selenium reducing Citrobacter fruendii strain KP6 from Mandovi estuary and its potential application in selenium nanoparticle synthesis. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2018, 88, 747-754.	0.4	8

#	Article	IF	CITATIONS
593	Biogeochemical cycling of metals impacting by microbial mobilization and immobilization. Journal of Environmental Sciences, 2018, 66, 146-154.	3.2	48
594	Effect of rhizobacteria on arsenic uptake by macrophyte <i>Eichhornia crassipes</i> (Mart.) Solms. International Journal of Phytoremediation, 2018, 20, 114-120.	1.7	53
595	Fungal Communities on Rock Surfaces in Demäovská Ice Cave and Demäovská Cave of Liberty (Slovakia). Geomicrobiology Journal, 2018, 35, 266-276.	1.0	8
596	Clinoform identification and correlation in fineâ€grained sediments: A case study using the Triassic Montney Formation. Sedimentology, 2018, 65, 263-302.	1.6	28
597	Evaluating the microbial community and gene regulation involved in crystallization kinetics of ZnS formation in reduced environments. Geochimica Et Cosmochimica Acta, 2018, 220, 201-216.	1.6	14
598	Identification of Heterotrophic Zinc Mobilization Processes among Bacterial Strains Isolated from Wheat Rhizosphere (Triticum aestivum L.). Applied and Environmental Microbiology, 2018, 84, .	1.4	61
599	The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling. Science of the Total Environment, 2018, 613-614, 398-408.	3.9	47
600	Aquatic urban ecology at the scale of a capital: community structure and interactions in street gutters. ISME Journal, 2018, 12, 253-266.	4.4	11
601	Multiple-pathway remediation of mercury contamination by a versatile selenite-reducing bacterium. Science of the Total Environment, 2018, 615, 615-623.	3.9	33
602	Back to the future in a petri dish: Origin and impact of resurrected microbes in natural populations. Evolutionary Applications, 2018, 11, 29-41.	1.5	28
603	Nickel phytoextraction through bacterial inoculation in Raphanus sativus. Chemosphere, 2018, 190, 234-242.	4.2	57
604	Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicology and Environmental Safety, 2018, 147, 175-191.	2.9	377
605	The Role of the Rhizosphere and Microbes Associated with Hyperaccumulator Plants in Metal Accumulation. Mineral Resource Reviews, 2018, , 157-188.	1.5	18
606	Effects of pollution and bioleaching process on the mineral composition and texture of contaminated sediments of the Reconquista River, Argentina. Environmental Science and Pollution Research, 2018, 25, 21368-21384.	2.7	5
607	Potential urban runoff impacts and contaminant distributions in shoreline and reservoir environments of Lake Havasu, southwestern United States. Science of the Total Environment, 2018, 621, 95-107.	3.9	14
609	The contribution of Acidiphilium cryptum to the dissolution of low-grade manganese ores. Hydrometallurgy, 2018, 175, 312-318.	1.8	9
610	A Microbial Analysis Primer for Biogeochemists. , 2018, , 599-609.		3
611	Removal and Recovery of Metals by Using Bio-electrochemical System. , 2018, , 307-333.		2

#	Article	IF	CITATIONS
612	Metal transformation as a strategy for bacterial detoxification of heavy metals. Journal of Basic Microbiology, 2018, 58, 17-29.	1.8	17
613	Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthus viridis L. and Portulaca oleracea L. under lead chloride stress. Environmental Science and Pollution Research, 2018, 25, 2958-2971.	2.7	29
614	Does plant—Microbe interaction confer stress tolerance in plants: A review?. Microbiological Research, 2018, 207, 41-52.	2.5	446
615	Metabolic synergies in the biotransformation of organic and metallic toxic compounds by a saprotrophic soil fungus. Applied Microbiology and Biotechnology, 2018, 102, 1019-1033.	1.7	19
616	Nitrate and Phosphate Contents on Sediments Related to The Density Levels of MangroveRhizophoraSp. in Mangrove Park Waters of Pekalongan, Central Java. IOP Conference Series: Earth and Environmental Science, 2018, 116, 012013.	0.2	2
617	Heavy Metal Pollution as a Biodiversity Threat. , 0, , .		21
618	Understanding geology through crystal engineering: coordination complexes, coordination polymers and metal–organic frameworks as minerals. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2018, 74, 539-559.	0.5	18
619	In vitro selection of ecologically adapted ectomycorrhizal fungi through production of fungal biomass and metabolites for use in reclamation of biotite mine tailings. Mycologia, 2018, 110, 1017-1032.	0.8	4
620	Biosynthesis of Nanomaterials by Shewanella Species for Application in Lithium Ion Batteries. Frontiers in Microbiology, 2018, 9, 2817.	1.5	23
621	Bioremediation using chelator agents (Agrobacterium Sp. I26 and manure) to support environment friendly and healthy agriculture. AIP Conference Proceedings, 2018, , .	0.3	2
622	Assessment of Bioleaching Microbial Community Structure and Function Based on Next-Generation Sequencing Technologies. Minerals (Basel, Switzerland), 2018, 8, 596.	0.8	8
623	Effect of Acidic Industrial Effluent Release on Microbial Diversity and Trace Metal Dynamics During Resuspension of Coastal Sediment. Frontiers in Microbiology, 2018, 9, 3103.	1.5	31
624	Marine-Derived Fungi: Promising Candidates for Enhanced Bioremediation. Nanotechnology in the Life Sciences, 2018, , 281-300.	0.4	4
625	Mining and Planetary Health: A <i>GeoHealth</i> ‣ed Special Collection. GeoHealth, 2018, 2, 278-282.	1.9	4
626	Supragingival Plaque Microbiome Ecology and Functional Potential in the Context of Health and Disease. MBio, 2018, 9, .	1.8	58
627	Marine ammonification and carbonic anhydrase activity induce rapid calcium carbonate precipitation. Geochimica Et Cosmochimica Acta, 2018, 243, 116-132.	1.6	36
628	A review of biotechnology processes applied for manganese recovery from wastes. Reviews in Environmental Science and Biotechnology, 2018, 17, 791-811.	3.9	62
629	Measuring Microbial Metabolism in Atypical Environments. Methods in Microbiology, 2018, 45, 123-144.	0.4	2

#	Article	IF	CITATIONS
630	Rich growth medium promotes an increased on Mn(II) removal and manganese oxide production by Serratia marcescens strains isolates from wastewater. Biochemical Engineering Journal, 2018, 140, 148-156.	1.8	19
631	Bacterial community shaped by heavy metals and contributing to health risks in cornfields. Ecotoxicology and Environmental Safety, 2018, 166, 259-269.	2.9	49
632	Sterilization impacts on marine sedimentAre we able to inactivate microorganisms in environmental samples?. FEMS Microbiology Ecology, 2018, 94, .	1.3	32
633	Short-term microbial effects of a large-scale mine-tailing storage facility collapse on the local natural environment. PLoS ONE, 2018, 13, e0196032.	1.1	12
634	Impact of heavy metals on inhibitory concentration of Escherichia coli—a case study of river Yamuna system, Delhi, India. Environmental Monitoring and Assessment, 2018, 190, 674.	1.3	19
635	Biogenic Weathering: Solubilization of Iron from Minerals by Epilithic Freshwater Algae and Cyanobacteria. Microorganisms, 2018, 6, 8.	1.6	17
636	Co-occurrence pattern of ground beetle (Coleoptera, Carabidae) assemblages along pollution gradient in scotch pine forest. Community Ecology, 2018, 19, 148-155.	0.5	6
637	Magnesium Stable Isotope Fractionation on a Cellular Level Explored by Cyanobacteria and Black Fungi with Implications for Higher Plants. Environmental Science & Technology, 2018, 52, 12216-12224.	4.6	23
638	Coproporphyrin III Produced by the Bacterium <i>Glutamicibacter arilaitensis</i> Binds Zinc and Is Upregulated by Fungi in Cheese Rinds. MSystems, 2018, 3, .	1.7	41
639	Accessing crystal–crystal interaction forces with oriented nanocrystal atomic force microscopy probes. Nature Protocols, 2018, 13, 2005-2030.	5.5	12
641	Hydrodynamic Shear-Induced Densification of Bacteriogenic Iron Oxides: Mechanisms and Implications. Geosciences (Switzerland), 2018, 8, 423.	1.0	1
642	Fungi in Deep Subsurface Environments. Advances in Applied Microbiology, 2018, 102, 83-116.	1.3	22
643	Removal of selenate from brine using anaerobic bacteria and zero valent iron. Journal of Environmental Management, 2018, 222, 348-358.	3.8	11
644	Repurposing bacterial extracellular matrix for selective and differential abstraction of rare earth elements. Green Chemistry, 2018, 20, 3512-3520.	4.6	36
645	Manganese (Mn2+) tolerance and biosorption by Meyerozyma guilliermondii and Meyerozyma caribbica strains. Journal of Environmental Chemical Engineering, 2018, 6, 4538-4545.	3.3	16
646	Diversity and Applications of Penicillium spp. in Plant-Growth Promotion. , 2018, , 261-276.		10
647	Extracellular polymeric substances (EPS) secreted by <i>Purpureocillium lilacinum</i> strain Y3 promote biosynthesis of jarosite. RSC Advances, 2018, 8, 22635-22642.	1.7	19
648	A Novel Adaptation Mechanism Underpinning Algal Colonization of a Nuclear Fuel Storage Pond. MBio, 2018, 9, .	1.8	25

#	Article	IF	CITATIONS
649	Biosynthesis of Metal Nanoparticles via Fungal Dead Biomass in Industrial Bioremediation Process. , 2018, , 165-199.		2
650	Microcalorimetry and enzyme activity to determine the effect of nickel and sodium butyl xanthate on soil microbial community. Ecotoxicology and Environmental Safety, 2018, 163, 577-584.	2.9	29
651	Isolation of multi-metal tolerant ubiquitin fusion protein from metal polluted soil by metatranscriptomic approach. Journal of Microbiological Methods, 2018, 152, 119-125.	0.7	15
652	Metal-ion-induced expression of gene fragments from subseafloor micro-organisms in the Kumano forearc basin, Nankai Trough. Journal of Applied Microbiology, 2018, 125, 1396-1407.	1.4	2
653	Microbial community assembly differs across minerals in a rhizosphere microcosm. Environmental Microbiology, 2018, 20, 4444-4460.	1.8	77
654	Self-mediated pH changes in culture medium affecting biosorption and biomineralization of Cd2+ by Bacillus cereus Cd01. Journal of Hazardous Materials, 2018, 358, 178-186.	6.5	90
655	Bioremediation potential of bacteria able to reduce high levels of selenium and tellurium oxyanions. Archives of Microbiology, 2018, 200, 1411-1417.	1.0	19
656	Developing Sustainable Agromining Systems in Agricultural Ultramafic Soils for Nickel Recovery. Frontiers in Environmental Science, 2018, 6, .	1.5	63
657	Genetic and Physiological Adaptations of Marine Bacterium Pseudomonas stutzeri 273 to Mercury Stress. Frontiers in Microbiology, 2018, 9, 682.	1.5	46
658	Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation. Frontiers in Microbiology, 2018, 9, 1636.	1.5	713
659	Endophytic Microorganisms: Their Role in Plant Growth and Crop Improvement. , 2018, , 391-413.		3
660	Diversity and functionality of archaeal, bacterial and fungal communities in deep Archaean bedrock groundwater. FEMS Microbiology Ecology, 2018, 94, .	1.3	30
661	Enhanced Tolerance to Cadmium in Bacterial-Fungal Co-Cultures as a Strategy for Metal Biorecovery from e-Waste. Minerals (Basel, Switzerland), 2018, 8, 121.	0.8	7
662	Reduction of Hexavalent Chromium and Detection of Chromate Reductase (ChrR) in Stenotrophomonas maltophilia. Molecules, 2018, 23, 406.	1.7	93
663	Characterization of Microbial Communities Hosted in Quartzofeldspathic and Serpentinite Lithologies in Jeffrey Mine, Canada. Astrobiology, 2018, 18, 1008-1022.	1.5	2
664	Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. Journal of Cleaner Production, 2018, 198, 1602-1631.	4.6	262
665	Experimental Modeling of Platinum Biomineralization by Microscopic Fungi Isolated from a Lignite Deposit. Geochemistry International, 2018, 56, 450-461.	0.2	5
666	Floating Wetlands: A Sustainable Tool for Wastewater Treatment. Clean - Soil, Air, Water, 2018, 46, 1800120.	0.7	85

#	Article	IF	CITATIONS
667	Biomarker panels for characterizing microbial community biofilm formation as composite molecular process. PLoS ONE, 2018, 13, e0202032.	1.1	4
668	The chelating effect of citric acid, oxalic acid, amino acids and <i>Pseudomonas fluorescens</i> bacteria on phytoremediation of Cu, Zn, and Cr from soil using <i>Suaeda vera</i> . International Journal of Phytoremediation, 2018, 20, 1033-1042.	1.7	25
669	Comparative Transcriptome Analysis of Pseudomonas putida KT2440 Revealed Its Response Mechanisms to Elevated Levels of Zinc Stress. Frontiers in Microbiology, 2018, 9, 1669.	1.5	16
670	Dynamics of silver nanoparticles at the solution/biofilm/mineral interface. Environmental Science: Nano, 2018, 5, 2394-2405.	2.2	10
671	Intricate tunnels in garnets from soils and river sediments in Thailand – Possible endolithic microborings. PLoS ONE, 2018, 13, e0200351.	1.1	3
672	Removal of Heavy Metals Using Bentonite Clay and Inorganic Coagulants. , 0, , .		3
673	Comparison of a bio-based corrosion inhibitor versus benzotriazole on corroded copper surfaces. Corrosion Science, 2018, 143, 84-92.	3.0	52
674	Plant Species and Heavy Metals Affect Biodiversity of Microbial Communities Associated With Metal-Tolerant Plants in Metalliferous Soils. Frontiers in Microbiology, 2018, 9, 1425.	1.5	59
675	Methylation and dealkykation of tin compounds by sulfate- and nitrate-reducing bacteria. Chemosphere, 2018, 208, 871-879.	4.2	16
676	Biotechnologies for metal recovery from electronic waste and printed circuit boards. , 2018, , 241-269.		4
677	Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry, 2018, 139, 103-122.	1.7	203
678	Applications of Microbial Processes in Geotechnical Engineering. Advances in Applied Microbiology, 2018, 104, 39-91.	1.3	41
679	Authigenic replacement of cyanobacterially precipitated calcium carbonate by aluminiumâ€silicates in giant microbialites of Lake Van (Turkey). Sedimentology, 2019, 66, 285-304.	1.6	15
680	Rehabilitation of Radioactively Contaminated Soil: Use of Bioremediation/Phytoremediation Techniques. , 2019, , 163-200.		2
681	Heavy Metal Pollutants: Environmental and Biotechnological Aspects. , 2019, , .		5
682	Effect of dissolved oxygen and nutrient levels on heavy metal contents and fractions in river surface sediments. Science of the Total Environment, 2019, 648, 861-870.	3.9	90
683	Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) – A review. Journal of Hazardous Materials, 2019, 362, 467-481.	6.5	215
684	Advances in catalytic/photocatalytic bacterial inactivation by nano Ag and Cu coated surfaces and medical devices. Applied Catalysis B: Environmental, 2019, 240, 291-318.	10.8	112

#	Article	IF	CITATIONS
685	Biofertilizers and Their Role in Sustainable Agriculture. Soil Biology, 2019, , 285-300.	0.6	14
686	Microbe-Mediated Removal of Heavy Metals for Sustainable Agricultural Practices. Soil Biology, 2019, , 521-544.	0.6	1
687	Role of Microbes in Plant Health, Disease Management, and Abiotic Stress Management. , 2019, , 231-250.		13
688	Beyond N and P: The impact of Ni on crude oil biodegradation. Chemosphere, 2019, 237, 124545.	4.2	9
689	Biological Effects of Uranium and Its Decay Products on Soil Microbes, Plants, and Humans. , 2019, , 369-391.		4
690	In vitro synthesis of bio-brick using locally isolated marine ureolytic bacteria, a comparison with natural calcareous rock. Ecological Engineering, 2019, 138, 97-105.	1.6	8
691	Corrosion and biofouling tendency of carbon steel in anoxic groundwater containing sulphate reducing bacteria and methanogenic archaea. Corrosion Science, 2019, 159, 108148.	3.0	20
692	Role of Microorganisms in Soil Genesis and Functions. , 2019, , 25-52.		11
693	Rationalization and prediction of the impact of different metals and root exudates on carbon dioxide emission from soil. Science of the Total Environment, 2019, 691, 348-359.	3.9	3
694	Potential for biocolloid transport of cesium at high ionic strength. Chemosphere, 2019, 235, 1059-1065.	4.2	1
695	Fundamentals of Fermentation Media. Learning Materials in Biosciences, 2019, , 41-84.	0.2	8
696	Nanoscale Tungsten-Microbial Interface of the Metal Immobilizing Thermoacidophilic Archaeon Metallosphaera sedula Cultivated With Tungsten Polyoxometalate. Frontiers in Microbiology, 2019, 10, 1267.	1.5	24
697	Biomineralization of Pd nanoparticles using Phanerochaete chrysosporium as a sustainable approach to turn platinum group metals (PGMs) wastes into catalysts. International Biodeterioration and Biodegradation, 2019, 143, 104724.	1.9	26
698	Assessment of heavy metals uptake by cauliflower (Brassica oleracea var. botrytis) grown in integrated industrial effluent irrigated soils: A prediction modeling study. Scientia Horticulturae, 2019, 257, 108682.	1.7	52
699	Molecular Biology-Based Analysis of the Interactive Effect of Nickel and Xanthates on Soil Bacterial Community Diversity and Structure. Sustainability, 2019, 11, 3888.	1.6	3
700	Role of microorganisms in rehabilitation of mining sites, focus on Sub Saharan African countries. Journal of Geochemical Exploration, 2019, 205, 106327.	1.5	21
701	Vanadium-basidiomycete fungi interaction and its impact on vanadium biogeochemistry. Environment International, 2019, 130, 104891.	4.8	9
702	Mechanisms of olivine dissolution by rock-inhabiting fungi explored using magnesium stable isotopes. Chemical Geology, 2019, 525, 18-27.	1.4	16

ARTICLE IF CITATIONS # Sequestration of Radionuclides Radium-226 and Strontium-90 by Cyanobacteria Forming Intracellular 703 4.6 33 Calcium Carbonates. Environmental Science & amp; Technology, 2019, 53, 12639-12647. Challenges and Opportunities for Soil Biodiversity in the Anthropocene. Current Biology, 2019, 29, 704 1.8 R1036-Ř1044. Biogeochemical Characterization of Metal Behavior from Novel Mussel Shell Bioreactor Sludge 705 1.0 1 Residues. Geosciences (Switzerland), 2019, 9, 50. Fungal Bioremediation: A Step Towards Cleaner Environment., 2019, , 229-249. 706 Amino acid secretion influences the size and composition of copper carbonate nanoparticles 707 1.7 40 synthesized by ureolytic fungi. Applied Microbiology and Biotechnology, 2019, 103, 7217-7230. Prospecting Microbial Strains for Bioremediation and Probiotics Development for Metaorganism 0.2 Research and Preservation. Journal of Visualized Experiments, 2019, , . 709 Mycorrhizal symbiosis: an effective tool for metal bioremediation., 2019, , 113-128. 7 Fossilized Endolithic Microorganisms in Pillow Lavas from the Troodos Ophiolite, Cyprus. Geosciences (Switzerland), 2019, 9, 456. Multi-element effects on arsenate accumulation in a geochemical matrix determined using Âu-XRF, 712 1.0 11 µ-XANES and spatial statistics. Journal of Synchrotron Radiation, 2019, 26, 1967-1979. A fungal mycelium templates the growth of aragonite needles. Journal of Materials Chemistry B, 2019, 7, 5725-5731. Direct and Indirect Bioleaching of Cobalt from Low Grade Laterite and Pyritic Ores by <i>Aspergillus 714 1.0 18 niger </i>. Geomicrobiology Journal, 2019, 36, 940-949. Whole genome sequence analysis reveals high genetic variation of newly isolated Acidithiobacillus ferrooxidans IO-2C. Scientific Reports, 2019, 9, 13049. 1.6 Proto-dolomite formation in microbial consortia dominated by Halomonas strains. Extremophiles, 716 0.9 9 2019, 23, 765-781. Prospective (Bio)leaching of Historical Copper Slags as an Alternative to Their Disposal. Minerals (Basel, Switzerland), 2019, 9, 542. 0.8 Cupriavidus sp. strain Cd02-mediated pH increase favoring bioprecipitation of Cd2+ in medium and reduction of cadmium bioavailability in paddy soil. Ecotoxicology and Environmental Safety, 2019, 184, 718 2.9 29 109655. A review of the mechanisms of mineral-based metabolism in early Earth analog rock-hosted hydrothermal ecosystems. World Journal of Microbiology and Biotechnology, 2019, 35, 29. Batch and column approach on biosorption of fluoride from aqueous medium using live, dead and 720 1.518 various pretreated Aspergillus niger (FS18) biomass. Surfaces and Interfaces, 2019, 15, 60-69. Biologically mediated weathering in modern cryptogamic ground covers and the early Paleozoic fossil record. Journal of the Geological Society, 2019, 176, 430-439.

#	Article	IF	CITATIONS
722	Influences of multiple clay minerals on the phosphorus transport driven by Aspergillus niger. Applied Clay Science, 2019, 177, 12-18.	2.6	14
723	Biocompatible functionalisation of nanoclays for improved environmental remediation. Chemical Society Reviews, 2019, 48, 3740-3770.	18.7	104
724	Biofilm-Templated Heteroatom-Doped Carbon–Palladium Nanocomposite Catalyst for Hexavalent Chromium Reduction. ACS Applied Materials & Interfaces, 2019, 11, 24018-24026.	4.0	24
725	The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI),) Tj ETQq1 1 0.7 Assessment, 2019, 191, 419.	'84314 rg 1.3	BT /Overlock 679
726	Anaerobic respiration. , 2019, , 268-320.		1
727	Chemolithotrophy. , 2019, , 321-350.		0
728	Biomineralization of Platinum by Escherichia coli. Metals, 2019, 9, 407.	1.0	5
729	A modeling approach integrating microbial activity, mass transfer, and geochemical processes to interpret biological assays: An example for PCE degradation in a multi-phase batch setup. Water Research, 2019, 160, 484-496.	5.3	19
730	Geomimetic approaches in the design and synthesis of metal-organic frameworks. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180221.	1.6	14
731	pH Influences the Distribution of Microbial Rock-Weathering Phenotypes in Weathered Shale Environments. Geomicrobiology Journal, 2019, 36, 752-763.	1.0	5
732	Alkaliphiles: The Emerging Biological Tools Enhancing Concrete Durability. Advances in Biochemical Engineering/Biotechnology, 2019, 172, 293-342.	0.6	13
733	Biogeochemical cycling, speciation and transformation pathways of arsenic in aquatic environments with the emphasis on algae. Comprehensive Analytical Chemistry, 2019, 85, 15-51.	0.7	21
734	Interactions between microorganisms and clay minerals: New insights and broader applications. Applied Clay Science, 2019, 177, 91-113.	2.6	98
735	An Oxalateâ€Bridged Binuclear Iron(III) Ionic Liquid for the Highly Efficient Glycolysis of Polyethylene Terephthalate under Microwave Irradiation. ChemPlusChem, 2019, 84, 786-793.	1.3	31
736	Does the primary deposit affect the biogeochemical transformation of placer gold and associated biofilms?. Gondwana Research, 2019, 73, 77-95.	3.0	10
737	Microbial Biodeterioration of Cultural Heritage: Events, Colonization, and Analyses. Microbial Ecology, 2019, 78, 1014-1029.	1.4	75
738	The metagenomic landscape of xenobiotics biodegradation in mangrove sediments. Ecotoxicology and Environmental Safety, 2019, 179, 232-240.	2.9	17
739	Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria. Environment International, 2019, 127, 395-401.	4.8	156

#	Article	IF	CITATIONS
740	Fungal evolution: major ecological adaptations and evolutionary transitions. Biological Reviews, 2019, 94, 1443-1476.	4.7	181
741	Experimental and geochemical simulation of nickel carbonate mineral precipitation by carbonate-laden ureolytic fungal culture supernatants. Environmental Science: Nano, 2019, 6, 1866-1875.	2.2	18
742	Elemental analysis of summer truffles Tuber aestivum from Germany. Journal of Radioanalytical and Nuclear Chemistry, 2019, 320, 475-483.	0.7	6
743	Characterization of arsenic oxidation and uranium bioremediation potential of arsenic resistant bacteria isolated from uranium ore. Environmental Science and Pollution Research, 2019, 26, 12907-12919.	2.7	25
744	Colonization, penetration and transformation of manganese oxide nodules by <i>Aspergillus niger</i> . Environmental Microbiology, 2019, 21, 1821-1832.	1.8	15
745	Metal bioavailability and the soil microbiome. Advances in Agronomy, 2019, 155, 79-120.	2.4	31
746	Interactions among microfungi and pyrite-chalcopyrite mineralizations: tolerance, mineral bioleaching, and metal bioaccumulation. Mycological Progress, 2019, 18, 415-423.	0.5	10
747	Tellurite-dependent blackening of bacteria emerges from the dark ages. Environmental Chemistry, 2019, 16, 266.	0.7	41
748	Copper biosorption from an aqueous solution by the dead biomass of Penicillium ochrochloron. Environmental Monitoring and Assessment, 2019, 191, 247.	1.3	19
749	In-vitro bio-mineralization of arsenic and lead from aqueous solution and soil by wood rot fungus, Trichoderma sp Ecotoxicology and Environmental Safety, 2019, 174, 699-705.	2.9	37
750	Biology of Rhodococcus. Microbiology Monographs, 2019, , .	0.3	21
751	Interaction of Rhodococcus with Metals and Biotechnological Applications. Microbiology Monographs, 2019, , 333-357.	0.3	11
753	Dissolution of Al from metakaolin with carboxylic acids produced by Aspergillus niger, Penicillium bilaji, Pseudomonas putida, and Pseudomonas koreensis. Hydrometallurgy, 2019, 186, 235-243.	1.8	15
754	Binding of Sb(III) by Sb-tolerant Bacillus cereus cell and cell-goethite composite: implications for Sb mobility and fate in soils and sediments. Journal of Soils and Sediments, 2019, 19, 2850-2858.	1.5	15
755	Biosorption of lanthanum and samarium by viable and autoclaved mycelium of <i>Botryosphaeria rhodina</i> MAMBâ€05. Biotechnology Progress, 2019, 35, e2783.	1.3	17
756	Bacterial leaching of critical metal values from Polish copper metallurgical slags using Acidithiobacillus thiooxidans. Journal of Environmental Management, 2019, 236, 436-445.	3.8	35
757	Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 2019, 125, 365-385.	4.8	1,135
758	Sustainable Green Technologies for Environmental Management. , 2019, , .		20

#	Article	IF	CITATIONS
759	Microbial Biofortification: A Green Technology Through Plant Growth Promoting Microorganisms. , 2019, , 255-269.		41
760	Metal Toxicity and Resistance in Plants and Microorganisms in Terrestrial Ecosystems. Reviews of Environmental Contamination and Toxicology, 2019, 249, 1-27.	0.7	13
761	Bioremediation Options for Heavy Metal Pollution. Journal of Health and Pollution, 2019, 9, 191203.	1.8	180
766	Enhancement of amorphous silica dissolution by interaction with six-membered ring heterocyclic compounds. Clays and Clay Minerals, 2019, 67, 450-459.	0.6	0
767	Review: Mekanisme Akumulasi Logam Berat di Ekosistem Pascatambang Timah. Jurnal Ilmu Lingkungan, 2019, 17, 408.	0.0	4
768	Extreme Environments and High-Level Bacterial Tellurite Resistance. Microorganisms, 2019, 7, 601.	1.6	21
769	First Insights into the Microbiome of a Mangrove Tree Reveal Significant Differences in Taxonomic and Functional Composition among Plant and Soil Compartments. Microorganisms, 2019, 7, 585.	1.6	18
770	Microbial diversity and mineral composition of weathered serpentine rock of the Khalilovsky massif. PLoS ONE, 2019, 14, e0225929.	1.1	26
771	Soil Narratives: Toward a Symbiotic Art-Science Activisim. Public Art Dialogue, 2019, 9, 166-180.	0.0	0
772	Seasonal microbial variation accounts for arsenic dynamics in shallow alluvial aquifer systems. Journal of Hazardous Materials, 2019, 367, 109-119.	6.5	34
773	Using stable isotope fractionation factors to identify Cr(VI) reduction pathways: Metal-mineral-microbe interactions. Water Research, 2019, 151, 98-109.	5.3	51
774	Response of the biomining Acidithiobacillus ferrooxidans to high cadmium concentrations. Journal of Proteomics, 2019, 198, 132-144.	1.2	32
775	Cycling of biogenic elements drives biogeochemical gold cycling. Earth-Science Reviews, 2019, 190, 131-147.	4.0	30
776	A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential. Journal of Hazardous Materials, 2019, 367, 215-223.	6.5	89
777	Integrated phytobial heavy metal remediation strategies for a sustainable clean environment - A review. Chemosphere, 2019, 217, 925-941.	4.2	132
778	A new insight into lead (II) tolerance of environmental fungi based on a study of <i>Aspergillus niger</i> and <i>Penicillium oxalicum</i> . Environmental Microbiology, 2019, 21, 471-479.	1.8	77
779	Biotransformation of lanthanum by Aspergillus niger. Applied Microbiology and Biotechnology, 2019, 103, 981-993.	1.7	24
780	Simultaneous mitigation of tissue cadmium and lead accumulation in rice via sulfate-reducing bacterium. Ecotoxicology and Environmental Safety, 2019, 169, 292-300.	2.9	35

#	Article	IF	CITATIONS
781	From biotechnology principles to functional and low-cost metallic bionanocatalysts. Biotechnology Advances, 2019, 37, 154-176.	6.0	34
782	Characterization of the Cd-resistant fungus Aspergillus aculeatus and its potential for increasing the antioxidant activity and photosynthetic efficiency of rice. Ecotoxicology and Environmental Safety, 2019, 171, 373-381.	2.9	23
783	Occurrence, fate, and transport of potentially toxic metals (PTMs) in an alkaline rhizosphere soil-plant (Maize, Zea mays L.) system: the role of Bacillus subtilis. Environmental Science and Pollution Research, 2019, 26, 5564-5576.	2.7	6
784	Do soil bacterial communities respond differently to abrupt or gradual additions of copper?. FEMS Microbiology Ecology, 2019, 95, .	1.3	5
785	Roles of saprotrophic fungi in biodegradation or transformation of organic and inorganic pollutants in co-contaminated sites. Applied Microbiology and Biotechnology, 2019, 103, 53-68.	1.7	50
786	Plant Growth-Promoting Rhizobacteria: Diversity and Applications. , 2019, , 129-173.		57
787	Exploring the Potential and Opportunities of Current Tools for Removal of Hazardous Materials From Environments. , 2019, , 501-516.		28
788	The selective pressures on the microbial community in a metal-contaminated aquifer. ISME Journal, 2019, 13, 937-949.	4.4	56
789	Eoarchean Life From the Isua Supracrustal Belt (Greenland). , 2019, , 965-983.		1
790	Specificity of Mo and V Removal from a Spent Catalyst by Cupriavidus metallidurans CH34. Waste and Biomass Valorization, 2019, 10, 1037-1042.	1.8	4
791	Leaching of metals from end-of-life solar cells. Environmental Science and Pollution Research, 2019, 26, 29524-29531.	2.7	17
792	Functional Diversity of Plant Endophytes and Their Role in Assisted Phytoremediation. , 2020, , 237-255.		3
793	Plant-Microbe Interaction: An Ecofriendly Approach for the Remediation of Metal Contaminated Environments. , 2020, , 444-450.		4
794	Comparison of the Wild-Type Obligate Methylotrophic Bacterium Methylophilus quaylei and its Isogenic Streptomycin-Resistant Mutant via Metal Nanoparticle Generation. Biological Trace Element Research, 2020, 193, 564-573.	1.9	5
795	Recycling Wastes in Concrete Production: Performance and Eco-toxicity Assessment. Waste and Biomass Valorization, 2020, 11, 1169-1180.	1.8	10
796	Recent trends in the detection and degradation of organic pollutants. , 2020, , 67-79.		4
797	Effect of depleted uranium on a soil microcosm fungal community and influence of a plant-ectomycorrhizal association. Fungal Biology, 2020, 124, 289-296.	1.1	6
798	Bioaccumulation and Dispersion of Uranium by Freshwater Organisms. Archives of Environmental Contamination and Toxicology, 2020, 78, 254-266.	2.1	10

#	Article	IF	CITATIONS
799	Plant growth-promoting potential of bacteria associated to pioneer plants from an active volcanic site of Chiapas (Mexico). Applied Soil Ecology, 2020, 146, 103390.	2.1	24
800	Organic acids, siderophores, enzymes and mechanical pressure for black slate bioweathering with the basidiomycete <i>Schizophyllum commune</i> . Environmental Microbiology, 2020, 22, 1535-1546.	1.8	33
801	Biotechnological Intervention as an Aquatic Clean Up Tool. , 2020, , 183-196.		20
802	Biosorption as Environmentally Friendly Technique for Heavy Metal Removal from Wastewater. , 2020, , 167-181.		18
803	Influence of Water Flow on <i>In Situ</i> Rates of Bacterial Fe(II) Oxidation. Geomicrobiology Journal, 2020, 37, 67-75.	1.0	3
804	Pyrazolone structural motif in medicinal chemistry: Retrospect and prospect. European Journal of Medicinal Chemistry, 2020, 186, 111893.	2.6	114
805	Metabolic processes applied to endangered metal and wood heritage objects: Call a microbial plumber!. New Biotechnology, 2020, 56, 21-26.	2.4	6
806	Phylogenetic signature of fungal response to long-term chemical pollution. Soil Biology and Biochemistry, 2020, 140, 107644.	4.2	18
807	Characterization of a high cadmium accumulating soil bacterium, Cupriavidus sp. WS2. Chemosphere, 2020, 247, 125834.	4.2	27
808	Multiscale Study of Physical and Mechanical Properties of Sandstone in Three Gorges Reservoir Region Subjected to Cyclic Wetting–Drying of Yangtze River Water. Rock Mechanics and Rock Engineering, 2020, 53, 2215-2231.	2.6	65
809	Effects of Phosphorus and Zinc on the Neotropical Cladoceran Ceriodaphnia silvestrii by Dietary Routes. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	2
810	Floriculture: alternate non-edible plants for phyto-remediation of heavy metal contaminated soils. International Journal of Phytoremediation, 2020, 22, 725-732.	1.7	13
811	Accumulation of transition metals and metalloids in sulfidized stromatolites of the 3.48 billion–year–old Dresser Formation, Pilbara Craton. Precambrian Research, 2020, 337, 105534.	1.2	19
812	Brown gold of marginal soil: Plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration. Science of the Total Environment, 2020, 711, 135062.	3.9	55
813	Major natural sinks for harboring microorganisms with altered antibiotic resistance versus major human contributing sources of antibiotic resistance: a detailed insight. , 2020, , 70-98.		3
814	The utilization of biomineralization technique based on microbial induced phosphate precipitation in remediation of potentially toxic ions contaminated soil: A mini review. Ecotoxicology and Environmental Safety, 2020, 191, 110009.	2.9	51
815	Biorecovery of cobalt and nickel using biomass-free culture supernatants from Aspergillus niger. Applied Microbiology and Biotechnology, 2020, 104, 417-425.	1.7	20
816	The improved methods of heavy metals removal by biosorbents: A review. Environmental Pollution, 2020, 258, 113777.	3.7	215

#	Article	IF	CITATIONS
817	Amelioration of chromium and heat stresses in Sorghum bicolor by Cr6+ reducing-thermotolerant plant growth promoting bacteria. Chemosphere, 2020, 244, 125521.	4.2	75
818	Intracellular and Extracellular Biomineralization Induced by <i>Klebsiella pneumoniae</i> LH1 Isolated from Dolomites. Geomicrobiology Journal, 2020, 37, 262-278.	1.0	11
819	Advances in Methods for Recovery of Ferrous, Alumina, and Silica Nanoparticles from Fly Ash Waste. Ceramics, 2020, 3, 384-420.	1.0	39
820	Plant Responses to Soil Pollution. , 2020, , .		10
821	In vitro analyses of fungi and dolomitic limestone interactions: Bioreceptivity and biodeterioration assessment. International Biodeterioration and Biodegradation, 2020, 155, 105107.	1.9	16
822	The fossil record of igneous rock. Earth-Science Reviews, 2020, 210, 103342.	4.0	19
823	Lead tolerant endophyte Trametes hirsuta improved the growth and lead accumulation in the vegetative parts of Triticum aestivum L Heliyon, 2020, 6, e04188.	1.4	24
824	Biocorrosion of copper metal by Aspergillus niger. International Biodeterioration and Biodegradation, 2020, 154, 105081.	1.9	14
825	New Approaches for Competing Microbial Resistance and Virulence. , 2020, , .		0
826	Biomineralization of Cu ₂ S Nanoparticles by Geobacter sulfurreducens. Applied and Environmental Microbiology, 2020, 86, .	1.4	17
827	Signal transduction schemes in Pseudomonas syringae. Computational and Structural Biotechnology Journal, 2020, 18, 3415-3424.	1.9	4
828	Detection of Microorganisms in Low-Temperature Water Environments by in situ Generation of Biogenic Nanoparticles. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	1
829	Photocatalytic and biological oxidation treatment of real textile wastewater. Nanotechnology for Environmental Engineering, 2020, 5, 1.	2.0	28
830	Fungal Tolerance: An Alternative for the Selection of Fungi with Potential for the Biological Recovery of Precious Metals. Applied Sciences (Switzerland), 2020, 10, 8096.	1.3	3
831	Development and evolution of biocyanidation in metal recovery from solid waste: a review. Reviews in Environmental Science and Biotechnology, 2020, 19, 509-530.	3.9	16
832	Myco-decontamination of azo dyes: nano-augmentation technologies. 3 Biotech, 2020, 10, 384.	1.1	14
833	High potential of tellurite bioremediation by moderately halophilic Staphylococcus xylosus. SN Applied Sciences, 2020, 2, 1.	1.5	0
834	Biomass—a resource for environmental bioremediation and bioenergy. , 2020, , 19-63.		2

#	Article	IF	CITATIONS
835	Implementation of Floating Treatment Wetlands for Textile Wastewater Management: A Review. Sustainability, 2020, 12, 5801.	1.6	38
836	Benefits at the nanoscale: a review of <scp>nanoparticleâ€enabled</scp> processes favouring microbial growth and functionality. Environmental Microbiology, 2020, 22, 3633-3649.	1.8	15
837	Impacts of holmium and lithium to the growth of selected basidiomycetous fungi and their ability to degrade textile dyes. 3 Biotech, 2020, 10, 357.	1.1	1
838	Evaluation of Multifarious Plant Growth Promoting Trials of Yeast Isolated from the Soil of Assam Tea (Camellia sinensis var. assamica) Plantations in Northern Thailand. Microorganisms, 2020, 8, 1168.	1.6	25
839	Characterisation of bacterial communities from an active mining site and assessment of its potential metal solubilising activity. Journal of Environmental Chemical Engineering, 2020, 8, 104495.	3.3	8
840	Fungus Aspergillus niger Processes Exogenous Zinc Nanoparticles into a Biogenic Oxalate Mineral. Journal of Fungi (Basel, Switzerland), 2020, 6, 210.	1.5	7
841	Microbial Interaction with Clay Minerals and Its Environmental and Biotechnological Implications. Minerals (Basel, Switzerland), 2020, 10, 861.	0.8	66
842	Fungal bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals. Applied Microbiology and Biotechnology, 2020, 104, 8999-9008.	1.7	65
843	Comparison of three different bioleaching systems for Li recovery from lepidolite. Scientific Reports, 2020, 10, 14594.	1.6	35
844	Two new selenite reducing bacterial isolates from paddy soil and the potential Se biofortification of paddy rice. Ecotoxicology, 2021, 30, 1465-1475.	1.1	12
845	Realizing Bioremediation Through Metagenomics: A Technical Review. , 2020, , 91-107.		1
846	Bioprospecting of potential petroleum hydrocarbon degraders using bacterial strains isolated from soils around transformer installation areas. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, , 1-14.	1.2	3
847	Bio-purification of sugar industry wastewater and production of high-value industrial products with a zero-waste concept. Critical Reviews in Food Science and Nutrition, 2021, 61, 3537-3554.	5.4	15
848	Environmental Factors Causing the Development of Microorganisms on the Surfaces of National Cultural Monuments Made of Mineral Building Materials—Review. Coatings, 2020, 10, 1203.	1.2	29
849	Processing of Metals and Metalloids by Actinobacteria: Cell Resistance Mechanisms and Synthesis of Metal(loid)-Based Nanostructures. Microorganisms, 2020, 8, 2027.	1.6	31
850	Properties and Occurrences of Rock Coatings in Jeli, Kelantan As A Record of Environmental Processes. IOP Conference Series: Earth and Environmental Science, 2020, 549, 012024.	0.2	0
851	Identification of Bacterial and Fungal Communities in the Roots of Orchids and Surrounding Soil in Heavy Metal Contaminated Area of Mining Heaps. Applied Sciences (Switzerland), 2020, 10, 7367.	1.3	12
852	Challenges in the Assessment of Mining Process Water Quality. Minerals (Basel, Switzerland), 2020, 10, 940.	0.8	8

#	Article	IF	CITATIONS
853	Elemental Content in Pleurotus ostreatus and Cyclocybe cylindracea Mushrooms: Correlations with Concentrations in Cultivation Substrates and Effects on the Production Process. Molecules, 2020, 25, 2179.	1.7	21
854	Plasmidome of an environmental Acinetobacter lwoffii strain originating from a former gold and arsenic mine. Plasmid, 2020, 110, 102505.	0.4	14
855	Prospective directions for biohydrometallurgy. Hydrometallurgy, 2020, 195, 105376.	1.8	67
856	Fungi and Arsenic: Tolerance and Bioaccumulation by Soil Saprotrophic Species. Applied Sciences (Switzerland), 2020, 10, 3218.	1.3	12
858	Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environmental Science and Pollution Research, 2020, 27, 27563-27581.	2.7	108
859	Microbiology in Water-Miscible Metalworking Fluids. Tribology Transactions, 2020, 63, 1147-1171.	1.1	4
860	Biotechnological recycling of critical metals from waste printed circuit boards. Journal of Chemical Technology and Biotechnology, 2020, 95, 2796-2810.	1.6	42
861	Near-zero-waste processing of low-grade, complex primary ores and secondary raw materials in Europe: technology development trends. Resources, Conservation and Recycling, 2020, 160, 104919.	5.3	114
862	Lactobacillus fermentum and Lactobacillus plantarum bioremediation ability assessment for copper and zinc. Archives of Microbiology, 2020, 202, 1957-1963.	1.0	18
863	Resistance, removal, and bioaccumulation of Ni (II) and Co (II) and their impacts on antioxidant enzymes of Anoxybacillus mongoliensis. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 235, 108790.	1.3	11
864	A genomic perspective of metal-resistant bacteria from gold particles: Possible survival mechanisms during gold biogeochemical cycling. FEMS Microbiology Ecology, 2020, 96, .	1.3	11
865	Removal mechanism of Pb(II) by Penicillium polonicum: immobilization, adsorption, and bioaccumulation. Scientific Reports, 2020, 10, 9079.	1.6	27
866	Cadmium and proton adsorption onto a halophilic archaeal species: The role of cell envelope sulfhydryl sites. Geochimica Et Cosmochimica Acta, 2020, 276, 186-197.	1.6	2
867	Biological approaches of fluoride remediation: potential for environmental clean-up. Environmental Science and Pollution Research, 2020, 27, 13044-13055.	2.7	36
868	Role of microalgae in treatment of acid mine drainage and recovery of valuable metals. Materials Today: Proceedings, 2020, 30, 346-350.	0.9	23
869	Indirect bioleaching of Co and Ni from iron rich laterite ore, using metabolic carboxylic acids generated by P. putida, P. koreensis, P. bilaji and A. niger. Hydrometallurgy, 2020, 193, 105309.	1.8	25
870	Monazite transformation into Ce―and La ontaining oxalates by <i>Aspergillus niger</i> . Environmental Microbiology, 2020, 22, 1635-1648.	1.8	25
871	Efficacy of fenugreek plant for ascorbic acid assisted phytoextraction of copper (Cu); A detailed study of Cu induced morpho-physiological and biochemical alterations. Chemosphere, 2020, 251, 126424.	4.2	22

#	Article	IF	CITATIONS
872	Biological treatment for the recovery of minerals from low-grade ores. , 2020, , 437-458.		4
873	Removal and biomineralization of Pb2+ in water by fungus Phanerochaete chrysoporium. Journal of Cleaner Production, 2020, 260, 120980.	4.6	30
874	Types of inorganic pollutants: metals/metalloids, acids, and organic forms. , 2020, , 17-31.		38
875	Application of Pb(II) to probe the physiological responses of fungal intracellular vesicles. Ecotoxicology and Environmental Safety, 2020, 194, 110441.	2.9	18
876	Marine Sediments Illuminate Chlamydiae Diversity and Evolution. Current Biology, 2020, 30, 1032-1048.e7.	1.8	52
877	Improvement of Thermosynechococcus sp. CL-1 performance on biomass productivity and CO2 fixation via growth factors arrangement. Journal of Photochemistry and Photobiology B: Biology, 2020, 205, 111822.	1.7	11
878	Geomicrobial Investigations of Colored Outer Coatings from an Ethiopian Rock Art Gallery. Coatings, 2020, 10, 536.	1.2	5
879	Impacts of Anthropogenic Pollutants on Benthic Prokaryotic Communities in Mediterranean Touristic Ports. Frontiers in Microbiology, 2020, 11, 1234.	1.5	15
880	Plants mitigate restrictions to phosphatase activity in metal contaminated soils. Environmental Pollution, 2020, 265, 114801.	3.7	7
881	Microbe-mediated biofortification for micronutrients: Present status and future challenges. , 2020, , 1-17.		51
882	Influence of metals and metalloids on the composition and fluorescence quenching of the extracellular polymeric substances produced by the polymorphic fungus Aureobasidium pullulans. Applied Microbiology and Biotechnology, 2020, 104, 7155-7164.	1.7	1
883	Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment, 2020, 1, 366-381.	12.2	493
884	Heavy metal concentrations in Brazilian port areas and their relationships with microorganisms: can pollution in these areas change the microbial community?. Environmental Monitoring and Assessment, 2020, 192, 512.	1.3	8
885	How Microbial Biofilms Control the Environmental Fate of Engineered Nanoparticles?. Frontiers in Environmental Science, 2020, 8, .	1.5	18
886	Tracking the fungusâ€assisted biocorrosion of lead metal by Raman imaging and scanning electron microscopy technique. Journal of Raman Spectroscopy, 2020, 51, 508-513.	1.2	9
888	Biotransformation of struvite by <i>Aspergillus niger</i> : phosphate release and magnesium biomineralization as glushinskite. Environmental Microbiology, 2020, 22, 1588-1602.	1.8	26
892	The role of plant growth promoting bacteria on arsenic removal: A review of existing perspectives. Environmental Technology and Innovation, 2020, 17, 100602.	3.0	47
894	Burkholderia sp. Y4 inhibits cadmium accumulation in rice by increasing essential nutrient uptake and preferentially absorbing cadmium. Chemosphere, 2020, 252, 126603.	4.2	40

ARTICLE IF CITATIONS Fungal transformation of selenium and tellurium located in a volcanogenic sulfide deposit. 895 1.8 12 Environmental Microbiology, 2020, 22, 2346-2364. Response of particle-associated bacteria to long-term heavy metal contamination in a tropical estuary. 896 1.7 World Journal of Microbiology and Biotechnology, 2020, 36, 65. 897 A Cryptic Alternative for the Evolution of Hyphae. BioEssays, 2020, 42, e1900183. 1.2 8 Biological leaching of rare earth elements. World Journal of Microbiology and Biotechnology, 2020, 898 36,61. Exopolysaccharides from marine bacteria: production, recovery and applications. Environmental 899 1.4 16 Sustainability, 2020, 3, 139-154. An overview on heavy metal resistant microorganisms for simultaneous treatment of multiple chemical pollutants at co-contaminated sites, and their multipurpose application. Journal of 6.5 Hazardou's Materials, 2020, 396, 122682. Reviews and syntheses: Biological weathering and its consequences at different spatial levels – from 901 1.3 58 nanoscale to global scale. Biogeosciences, 2020, 17, 1507-1533. Effect of multiple heavy metals pollution to bacterial diversity and community structure in farmland soils. Human and Ecological Risk Assessment (HERA), 2021, 27, 724-741. 902 1.7 Trichoderma viride involvement in the sorption of Pb(II) on muscovite, biotite and phlogopite: Batch 903 6.5 15 and spectroscopic studies. Journal of Hazardous Materials, 2021, 401, 123249. Indicator species and co-occurrence pattern of sediment bacterial community in relation to alkaline 904 2.6 copper mine drainage contamination. Ecological Indicators, 2021, 120, 106884. Newly-discovered interactions between bacteriophages and the process of calcium carbonate 905 1.6 13 precipitation. Geochimica Et Cosmochimica Acta, 2021, 292, 482-498. Intrinsic enzymeâ€like activity of magnetite particles is enhanced by cultivation with <i>Trichoderma 1.8 guizhouensé</i>. Environmental Microbiology, 2021, 23, 893-907. Microbial Cd(II) and Cr(VI) resistance mechanisms and application in bioremediation. Journal of 907 6.5 105 Hazardous Materials, 2021, 401, 123685. Tolerance of <i>Trichoderma</i> isolates to increasing concentrations of heavy metals. International Journal of Environmental Studies, 2021, 78, 185-197. 908 Genomic and phenotypic analysis of siderophore-producing Rhodococcus qingshengii strain S10 isolated from an arid weathered serpentine rock environment. Archives of Microbiology, 2021, 203, 909 1.0 6 855-860. Biological-based methods for the removal of volatile organic compounds (VOCs) and heavy metals. Environmental Science and Pollution Research, 2021, 28, 2485-2508. 2.7 49 911 Role of fungi in bioremediation of contaminated soil., 2021, 121-156. 9 Reducing cadmium bioavailability and accumulation in vegetable by an alkalizing bacterial strain. Science of the Total Environment, 2021, 758, 143596.

#	Article	IF	CITATIONS
913	Synthetic biology approaches to copper remediation: bioleaching, accumulation and recycling. FEMS Microbiology Ecology, 2021, 97, .	1.3	11
914	Microbial biomodification of clay minerals. Advances in Applied Microbiology, 2021, 114, 111-139.	1.3	16
915	Abiotic Influences on the Early Evolution of Life. Encyclopedia of the UN Sustainable Development Goals, 2021, , 1-12.	0.0	0
916	The diversity of molecular mechanisms of carbonate biomineralization by bacteria. Discover Materials, 2021, 1, 1.	1.0	46
917	Microbial regulation of dissolution, adsorption and precipitation of phosphates influenced by various carbon sources. Chemical Geology, 2021, 560, 120021.	1.4	5
918	High cadmium pollution from sediments in a eutrophic lake caused by dissolved organic matter complexation and reduction of manganese oxide. Water Research, 2021, 190, 116711.	5.3	61
919	Role of Protein in Fungal Biomineralization of Copper Carbonate Nanoparticles. Current Biology, 2021, 31, 358-368.e3.	1.8	24
920	Using multiple endpoints to assess the toxicity of cadmium and cobalt for chlorophycean Raphidocelis subcapitata. Ecotoxicology and Environmental Safety, 2021, 208, 111628.	2.9	15
921	Thallium shifts the bacterial and fungal community structures in thallium mine waste rocks. Environmental Pollution, 2021, 268, 115834.	3.7	19
922	Effective Se reduction by lactate-stimulated indigenous microbial communities in excavated waste rocks. Journal of Hazardous Materials, 2021, 403, 123908.	6.5	4
923	Toward Closing a Loophole: Recovering Rare Earth Elements from Uranium Metallurgical Process Tailings. Jom, 2021, 73, 39-53.	0.9	16
924	Exploring the synergic effect of fly ash and garbage enzymes on biotransformation of organic wastes in in-vessel composting system. Bioresource Technology, 2021, 322, 124557.	4.8	27
925	A newly isolated bacterium Comamonas sp. XL8 alleviates the toxicity of cadmium exposure in rice seedlings by accumulating cadmium. Journal of Hazardous Materials, 2021, 403, 123824.	6.5	37
926	Recent advances in phytoremediation of heavy metals-contaminated soils: a review. , 2021, , 23-41.		1
927	Effect of the direct use of biomass in agricultural soil on heavy metals <u></u> activation or immobilization?. Environmental Pollution, 2021, 272, 115989.	3.7	75
928	The impact of increased flooding occurrence on the mobility of potentially toxic elements in floodplain soil – A review. Science of the Total Environment, 2021, 754, 142040.	3.9	77
929	Fungal-Mediated Bioremediation of Heavy Metal–Polluted Environment. Microorganisms for Sustainability, 2021, , 51-76.	0.4	5
930	Effect of Heavy Metals on Activities of Soil Microorganism. Microorganisms for Sustainability, 2021, , 115-142.	0.4	2

#	Article	IF	CITATIONS
931	Biopassivation Method for the Preservation of Copper and Bronze Artefacts. Frontiers in Materials, 2021, 7, .	1.2	3
932	Metal Bioremediation, Mechanisms, Kinetics and Role of Marine Bacteria in the Bioremediation Technology. , 2021, , 173-199.		1
933	Phosphorus and selected metals and metalloids. , 2021, , 523-555.		1
934	Biogeochemical formation of metalliferous laminations in surficial environments. Mineralogical Magazine, 2021, 85, 49-67.	0.6	2
935	Protection from metal toxicity by Hsp40-like protein isolated from contaminated soil using functional metagenomic approach. Environmental Science and Pollution Research, 2021, 28, 17132-17145.	2.7	4
936	Microbe-driven generation of reactive oxygen species for contaminant degradation. , 2021, , 293-324.		3
937	Applications of Myconanoparticles in Remediation: Current Status and Future Challenges. Fungal Biology, 2021, , 225-239.	0.3	0
938	Heavy Metal Removal Processes by Sulfate-Reducing Bacteria. Environmental and Microbial Biotechnology, 2021, , 367-394.	0.4	0
939	Bioremediation of Arsenic-Contaminated Water Through Application of Bioengineered Shewanella oneidensis. , 2021, , 559-574.		3
940	Solubilization of Micronutrients Using Indigenous Microorganisms. , 2021, , 365-417.		3
941	Management of stormwater pollution using green infrastructure: The role of rain gardens. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1507.	2.8	54
942	Electro-Phytoremediation of Cropland and Mine Tailings Polluted by Mercury, Using IrO2-Ta2O5/Ti Electrodes, Lavandula vera, and Solanum tuberosum. Environmental Pollution, 2021, , 263-295.	0.4	0
943	Heavy metals toxicity to food crops and application of microorganisms in bioremediation. , 2021, , 421-434.		1
944	Microbial Biocontrol Agents for Agricultural Soil Remediation: Prospects and Application. Fungal Biology, 2021, , 217-245.	0.3	0
945	Molecular Basis of Plant–Microbes Interaction in Remediating Metals and Inorganic Pollutants. , 2021, , 385-403.		1
946	Diversity of Biodeteriorative Bacterial and Fungal Consortia in Winter and Summer on Historical Sandstone of the Northern Pergola, Museum of King John Ill's Palace at Wilanow, Poland. Applied Sciences (Switzerland), 2021, 11, 620.	1.3	10
947	Sustainable green approaches in sorption-based defluoridation: Recent progress. , 2021, , 141-174.		1
948	Kaolinite weakens the co-stress of ampicillin and tetracycline on Escherichia coli through multiple pathways. Environmental Science and Pollution Research, 2021, 28, 25228-25240.	2.7	2

#	Article	IF	CITATIONS
949	Augmenting the Abiotic Stress Tolerance in Plants Through Microbial Association. , 2021, , 179-198.		1
950	Antioxidant Defense Systems and Remediation of Metal Toxicity in Plants. , 2021, , 91-124.		18
951	Minerals in biology and medicine. RSC Advances, 2021, 11, 1939-1951.	1.7	7
952	Bioremediation and Phytoremediation. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 38-64.	0.3	Ο
953	Pollution Affecting Cyanobacteria in Aquatic Habitats. , 2021, , 11-37.		0
954	Oxalate formation by <i>Aspergillus niger</i> on minerals of manganese ores. American Mineralogist, 2022, 107, 100-109.	0.9	9
955	Rhizobacteria associated with Miscanthus x giganteus improve metal accumulation and plant growth in the flotation tailings. Plant and Soil, 2021, 462, 349-363.	1.8	12
956	Microbial deterioration of lamb meat from European local breeds as affected by its intrinsic properties. Small Ruminant Research, 2021, 195, 106298.	0.6	4
957	Microbe-Mineral Interaction and Novel Proteins for Iron Oxide Mineral Reduction in the Hyperthermophilic Crenarchaeon Pyrodictium delaneyi. Applied and Environmental Microbiology, 2021, 87, .	1.4	9
958	Production of cadmium sulfide quantum dots by the lithobiontic Antarctic strain Pedobacter sp. UYP1 and their application as photosensitizer in solar cells. Microbial Cell Factories, 2021, 20, 41.	1.9	21
959	Dichotomy between Regulation of Coral Bacterial Communities and Calcification Physiology under Ocean Acidification Conditions. Applied and Environmental Microbiology, 2021, 87, .	1.4	8
960	Cryptogamic ground covers as analogues for early terrestrial biospheres: Initiation and evolution of biologically mediated protoâ€soils. Geobiology, 2021, 19, 292-306.	1.1	17
961	Colonization and bioweathering of monazite by <i>Aspergillus niger</i> : solubilization and precipitation of rare earth elements. Environmental Microbiology, 2021, 23, 3970-3986.	1.8	18
962	Mineralosphere Microbiome Leading to Changed Geochemical Properties of Sedimentary Rocks from Aiqigou Mud Volcano, Northwest China. Microorganisms, 2021, 9, 560.	1.6	3
964	Phytoremediation and Microorganisms-Assisted Phytoremediation of Mercury-Contaminated Soils: Challenges and Perspectives. International Journal of Environmental Research and Public Health, 2021, 18, 2435.	1.2	47
965	Influences of geochemical factors and substrate availability on Gram-positive and Gram-negative bacterial distribution and bio-processes in ageing municipal landfills. International Microbiology, 2021, 24, 311-324.	1.1	3
966	Pengaruh Aplikasi Abu Terbang dan Pupuk Kotoran Sapi terhadap Populasi Mikroorganisme di Tanah Ultisol. Agriprima Journal of Applied Agricultural Sciences, 2021, 5, 41-49.	0.1	1
967	Microbial interactions with silicate glasses. Npj Materials Degradation, 2021, 5, .	2.6	22

#	Article	IF	CITATIONS
968	Global and local parameters for characterizing and modeling external corrosion in underground coated steel pipelines: A review of critical factors. Journal of Pipeline Science and Engineering, 2021, 1, 17-35.	2.4	34
969	Rock phosphate solubilization by abiotic and fungalâ€produced oxalic acid: reaction parameters and bioleaching potential. Microbial Biotechnology, 2022, 15, 1189-1202.	2.0	10
970	Evaluation of bacterial strains isolated from Late Quaternary alluvial sediments spanning ~ 28 m in depth for heavy metal tolerance and Cr(VI) removal ability. International Microbiology, 2021, 24, 385-398.	1.1	2
971	Bio-weathering of granites from Eastern Dharwar Craton (India): a tango of bacterial metabolism and mineral chemistry. Biogeochemistry, 2021, 153, 303-322.	1.7	6
972	Crackling noise and bio-cementation. Engineering Fracture Mechanics, 2021, 247, 107675.	2.0	16
973	Inorganic arsenic toxicity and alleviation strategies in rice. Journal of Hazardous Materials, 2021, 408, 124751.	6.5	98
974	Extracellular sulfite is protective against reactive oxygen species and antibiotic stress in <i>Shewanella oneidensis</i> MRâ€1. Environmental Microbiology Reports, 2021, 13, 394-400.	1.0	2
975	Role of Exposure on the Microbial Consortiums on Historical Rural Granite Buildings. Applied Sciences (Switzerland), 2021, 11, 3786.	1.3	12
976	Redox cycling of manganese by Bacillus horikoshii biET1 via oxygen switch. Electrochimica Acta, 2021, 375, 137963.	2.6	9
977	Lichens and biofilms: Common collective growth imparts similar developmental strategies. Algal Research, 2021, 54, 102217.	2.4	13
978	A native Zn-solubilising bacterium from mine soil promotes plant growth and facilitates phytoremediation. Journal of Soils and Sediments, 2021, 21, 2301-2314.	1.5	2
979	Evidence linking calcium to increased organo-mineral association in soils. Biogeochemistry, 2021, 153, 223-241.	1.7	33
980	Bio-Mercury Remediation Suitability Index: A Novel Proposal That Compiles the PGPR Features of Bacterial Strains and Its Potential Use in Phytoremediation. International Journal of Environmental Research and Public Health, 2021, 18, 4213.	1.2	17
981	Distinct effects of volcanic cone types on soil microbiomes: Evidence from cinder cone and spatter cone. Catena, 2021, 200, 105180.	2.2	7
982	Feasibility Study of Metal Bioleaching in a Gold-Rich Ore Sample by Acidithiobacillus thiooxidans DSM 26636. Transactions of the Indian Institute of Metals, 2021, 74, 1865-1872.	0.7	1
983	Functional Diversity of the Litter-Associated Fungi from an Oxalate-Carbonate Pathway Ecosystem in Madagascar. Microorganisms, 2021, 9, 985.	1.6	6
984	Chemical and biological properties of cocoa beans affected by processing: a review. Critical Reviews in Food Science and Nutrition, 2022, 62, 8403-8434.	5.4	17
985	Fungal transformation of natural and synthetic cobaltâ€bearing manganese oxides and implications for cobalt biogeochemistry. Environmental Microbiology, 2022, 24, 667-677.	1.8	8

#	Article	IF	CITATIONS
986	Complete Genome Sequence of Pseudomonas taiwanensis WRS8, a Plant Growth-Promoting and Biotite-Weathering Strain. Microbiology Resource Announcements, 2021, 10, .	0.3	0
987	Responses of <scp><i>Rhodotorula mucilaginosa</i></scp> under Pb(<scp>II</scp>) stress: carotenoid production and budding. Environmental Microbiology, 2022, 24, 678-688.	1.8	12
988	Acidophilic Iron- and Sulfur-Oxidizing Bacteria, <i>Acidithiobacillus ferrooxidans</i> , Drives Alkaline pH Neutralization and Mineral Weathering in Fe Ore Tailings. Environmental Science & Technology, 2021, 55, 8020-8034.	4.6	24
989	Effects of a compound microbial agent and plants on soil properties, enzyme activities, and bacterial composition of Pisha sandstone. Environmental Science and Pollution Research, 2021, 28, 53353-53364.	2.7	5
990	Plant-assisted metal remediation in mine-degraded land: a scientometric review. International Journal of Environmental Science and Technology, 2022, 19, 8085-8112.	1.8	5
991	Synthesis of Cellulose/Nano-hydroxyapatite Composite Hydrogel Absorbent for Removal of Heavy Metal Ions from Palm Oil Mill Effluents. Journal of Polymers and the Environment, 2021, 29, 4106-4119.	2.4	17
992	Molecular Insight Into Key Eco-Physiological Process in Bioremediating and Plant-Growth-Promoting Bacteria. Frontiers in Agronomy, 2021, 3, .	1.5	2
993	Arsenic biogeochemical cycling in paddy soil-rice system: Interaction with various factors, amendments and mineral nutrients. Science of the Total Environment, 2021, 773, 145040.	3.9	100
994	Correlative Microscopy: a tool for understanding soil weathering in modern analogues of early terrestrial biospheres. Scientific Reports, 2021, 11, 12736.	1.6	7
995	Bioaugmentation with Acidithiobacillus species accelerates mineral weathering and formation of secondary mineral cements for hardpan development in sulfidic Pb-Zn tailings. Journal of Hazardous Materials, 2021, 411, 124988.	6.5	13
996	Microscopic and biomolecular complementary approaches to characterize bioweathering processes at petroglyph sites from the Negev Desert, Israel. Environmental Microbiology, 2022, 24, 967-980.	1.8	9
997	The Stratified Distribution of Dissolved Organic Matter in an AMD Lake Revealed by Multi-sample Evaluation Procedure. Environmental Science & Technology, 2021, 55, 8401-8409.	4.6	25
998	A Review on Organic Adsorbents for the Removal of Toxic Metals from Waste Water. Asian Journal of Advanced Research and Reports, 0, , 75-85.	0.0	2
999	Insight Into the Role of PGPR in Sustainable Agriculture and Environment. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	83
1000	Role of plant growth promoting bacteria in driving speciation gradients across soil-rhizosphere-plant interfaces in zinc-contaminated soils. Environmental Pollution, 2021, 279, 116909.	3.7	16
1001	Nanozyme-mediated elemental biogeochemical cycling and environmental effects. Science China Earth Sciences, 2021, 64, 1015-1025.	2.3	15
1002	Assessing the influence of pore structure formation on heavy metal immobilization through image-based CFD. Chemosphere, 2021, 275, 129997.	4.2	0
1003	Metal(loid) speciation and transformation by aerobic methanotrophs. Microbiome, 2021, 9, 156.	4.9	10

ARTICLE IF CITATIONS Introducing palaeolithobiology. Gff, 2021, 143, 305-319. 1004 0.4 4 Bioweathering of Znâ€"Pb-bearing rocks: Experimental exposure to water, microorganisms, and root 1.4 exudates. Applied Geochemistry, 2021, 130, 104966. Characterization of Arsenic-Resistant Endophytic Bacteria From Alfalfa and Chickpea Plants. Frontiers 1006 9 1.7 in Plant Science, 2021, 12, 696750. Biological Synthesis of PbS, As3S4, HgS, CdS Nanoparticles using Pseudomonas aeruginosa and their Structural, Morphological, Photoluminescence as well as Whole Cell Protein Profiling Studies. Journal of Fluorescence, 2021, 31, 1445-1459. 1.3 Toxicity of metal cations and phenolic compounds to the bioluminescent fungus Neonothopanus 1008 2.2 7 gardneri. Environmental Advances, 2021, 4, 100044. Unraveling the Underlying Heavy Metal Detoxification Mechanisms of Bacillus Species. Microorganisms, 2021, 9, 1628. 1.6 Recent Advances in Research on Antibacterial Metals and Alloys as Implant Materials. Frontiers in 1010 1.8 37 Cellular and Infection Microbiology, 2021, 11, 693939. Stress causes interspecific facilitation within a compost community. Ecology Letters, 2021, 24, 2169-2177. Small RNAs as a New Platform for Tuning the Biosynthesis of Silver Nanoparticles for Enhanced 1012 4.0 3 Material and Functional Properties. ACS Applied Materials & amp; Interfaces, 2021, 13, 36769-36783. Mycoremediation of environmental pollutants: a review with special emphasis on mushrooms. 1.4 Environmental Sustainability, 2021, 4, 605-618. Characterization of multi-metal-resistant Serratia sp. GP01 for treatment of effluent from fertilizer 1014 4 1.0 industries. Archives of Microbiology, 2021, 203, 5425-5435. Partial overlap of fungal communities associated with nettle and poplar roots when co-occurring at 3.9 a trace metal contaminated site. Science of the Total Environment, 2021, 782, 146692. Biomineralization of Fe(sup)3+(sup) to Nanosized $\hat{I}^3Fe(sub)2(sub)3(sub)3(sub)$ by (i)Haloferax 1016 1.0 1 alexandrinus</i> GUSF-1. Geomicrobiology Journal, 2021, 38, 809-815. Deep-sea mercury resistant bacteria from the Central Indian Ocean: A potential candidate for mercury 2.3 bioremediation. Marine Pollution Bulletin, 2021, 169, 112549. Comparison of response mechanism of ordinary Cordyceps militaris and domesticated Cordyceps 1018 2 1.8 militaris to Pb2+ stress. Process Biochemistry, 2021, 107, 112-120. Unsnarling Plausible Role of Plant Growth-Promoting Rhizobacteria for Mitigating Cd-Toxicity from Plants: An Environmental Safety Aspect. Journal of Plant Growth Regulation, 2022, 41, 2514-2542. Growth Enhancement of Arabidopsis (Arabidopsis thaliana) and Onion (Allium cepa) With Inoculation of Three Newly Identified Mineral-Solubilizing Fungi in the Genus Aspergillus Section Nigri. Frontiers 1020 1.510 in Microbiology, 2021, 12, 705896. Bioaugmentation-assisted bioremediation and kinetics modelling of heavy metal-polluted landfill soil. 1.8 International Journal of Environmental Science and Technology, 2022, 19, 6729-6754.

#	Article	IF	CITATIONS
1022	Siderophore mediated mineralization of struvite: A novel greener route of sustainable phosphate management. Water Research, 2021, 203, 117511.	5.3	10
1023	Relationships Between the Microbial Composition and the Geochemistry and Mineralogy of the Cobalt-Bearing Legacy Mine Tailings in Northeastern Ontario. Frontiers in Microbiology, 2021, 12, 660190.	1.5	5
1024	Transformation of calcite (CaCO3) into earlandite [Ca3(C6H5O7)2·4H2O] by the fungus Trichoderma asperellum BDH65. International Biodeterioration and Biodegradation, 2021, 163, 105278.	1.9	1
1025	The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health. GeoHealth, 2021, 5, e2020CH000380.	1.9	19
1026	Bioleaching of Manganese Oxides at Different Oxidation States by Filamentous Fungus Aspergillus niger. Journal of Fungi (Basel, Switzerland), 2021, 7, 808.	1.5	5
1027	Characterization of a mercury tolerant strain of Staphylococcus arlettae from Darjeeling hills with an account of its antibiotic resistance pattern and metabolome. Archives of Microbiology, 2021, 203, 5745-5754.	1.0	5
1028	Discovery and characterization of UipA, a uranium- and iron-binding PepSY protein involved in uranium tolerance by soil bacteria. ISME Journal, 2022, 16, 705-716.	4.4	13
1029	Emergent probability fluxes in confined microbial navigation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
1030	Soil heterogeneity within a vineyard impacts the beta but not the alpha microbial agro-diversity. Applied Soil Ecology, 2021, 166, 104088.	2.1	6
1031	Microaerophilia enhances heavy metal biosorption and internal binding by polyphosphates in photosynthetic Euglena gracilis. Algal Research, 2021, 58, 102384.	2.4	4
1032	Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere, 2021, 280, 130595.	4.2	397
1033	Assessment of hexavalent chromium (VI) biosorption competence of indigenous Aspergillus tubingensis AF3 isolated from bauxite mine tailing. Chemosphere, 2021, 282, 131055.	4.2	30
1034	Assessing the effect of herbicide diuron on river biofilm: A statistical model. Chemosphere, 2021, 282, 131104.	4.2	4
1035	Copper mine tailings valorization using microbial induced calcium carbonate precipitation. Journal of Environmental Management, 2021, 298, 113440.	3.8	21
1036	Variable metal resistance of P. putida CZ1 biofilms in different environments suggests its remediation application scope. Journal of Environmental Management, 2021, 298, 113458.	3.8	2
1037	Myco-remediation: A mechanistic understanding of contaminants alleviation from natural environment and future prospect. Chemosphere, 2021, 284, 131325.	4.2	54
1038	Spectroscopic characterization of samples from different environments in a Volcano-Glacial region in Iceland: Implications for in situ planetary exploration. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 263, 120205.	2.0	9
1039	Quaternary volcanic activities influence core soil microorganisms in a typical steppe. Catena, 2021, 207, 105609.	2.2	8

#	Article	IF	CITATIONS
1040	Phytobial remediation by bacteria and fungi. , 2022, , 285-344.		3
1041	Phytoremediation of cadmium-contaminated sediment using Hydrilla verticillata and Elodea canadensis harbor two same keystone rhizobacteria Pedosphaeraceae and Parasegetibacter. Chemosphere, 2022, 286, 131648.	4.2	22
1042	Extremophilic microbes and their application in bioremediation of environmental contaminants. , 2021, , 115-128.		4
1043	Removal of heavy metals by microbial communities. , 2021, , 537-566.		3
1044	Role of the endogenous fungal metabolites in the plant growth improvement and stress tolerance. , 2021, , 381-401.		8
1045	Functional Annotation and Biotechnological Applications of Soil Microbiomes: Current Research and Future Challenges. Sustainable Development and Biodiversity, 2021, , 605-634.	1.4	0
1046	Current approaches in horticultural crops to mitigate the effect of metal stress. , 2021, , 275-288.		0
1047	Role of Fungi in Bioremediation of Soil Contaminated with Heavy Metals. Fungal Biology, 2021, , 509-540.	0.3	2
1048	Long-term Impact of Gold and Platinum on Microbial Diversity in Australian Soils. Microbial Ecology, 2021, 81, 977-989.	1.4	4
1049	Effect of Heavy Metals on Plant Growth: An Overview. , 2020, , 79-101.		46
1050	Biological Strategies for Heavy Metal Remediation. Environmental Chemistry for A Sustainable World, 2020, , 393-413.	0.3	5
1051	Plant Microbiome and Its Important in Stressful Agriculture. , 2020, , 13-48.		12
1052	Diversity and Role of Endophytic and Rhizosphere Microbes Associated with Hyperaccumulator Plants During Metal Accumulation. Mineral Resource Reviews, 2021, , 239-279.	1.5	7
1053	Strategies to Ameliorate Soils Contaminated with Boron Compounds. , 2014, , 41-51.		4
1054	Investigations on the Effects of Microorganisms on Coarse Grained Soil. Sustainable Civil Infrastructures, 2018, , 123-131.	0.1	1
1055	The Role of Mineralogy and Geochemistry in Hazard Potential Assessment of Mining Areas. Soil Biology, 2012, , 35-79.	0.6	6
1056	Upscaling the Biogeochemical Role of Arbuscular Mycorrhizal Fungi in Metal Mobility. Soil Biology, 2013, , 285-311.	0.6	3
1057	Heavy Metal Bioremediation and Nanoparticle Synthesis by Metallophiles. Soil Biology, 2014, , 101-118.	0.6	6

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1058	Toxic Metal/Metalloid Tolerance in Fungi—A Biotechnology-Oriented Approach. , 2011, , 31-58.			22
1059	Dark Septate Endophytes and Mycorrhizal Fungi of Trees Affected by Pollution. Forestry Sciences , 189-201.	s, 2011,	0.4	12
1060	Microbial Roles in Mineral Transformations and Metal Cycling in the Earth's Critical Zone. , 20 115-165.)13,,		12
1061	Biotechnological Strategies for Remediation of Toxic Metal(loid)s from Environment. , 2017, , 31	5-359.		8
1062	Role of Microbes for Attaining Enhanced Food Crop Production. Environmental and Microbial Biotechnology, 2020, , 55-78.		0.4	9
1063	PGPR and Earthworm-Assisted Phytoremediation of Heavy Metals. , 2020, , 227-245.			4
1064	Concepts and Application of Plant–Microbe Interaction in Remediation of Heavy Metals. Rhizo Biology, 2021, , 55-77.	sphere	0.4	14
1065	Systematic assessment of extraction of pharmaceuticals and personal care products in water an sediment followed by liquid chromatography–tandem mass spectrometry. Analytical and Bioar Chemistry, 2020, 412, 113-127.	d halytical	1.9	20
1066	Genetic engineering approaches and applicability for the bioremediation of metalloids. , 2020, , 2	207-235.		7
1067	Plant–microbe interactions in plants and stress tolerance. , 2020, , 355-396.			14
1068	Fungal diversity and its contribution to the biodeterioration of mural paintings in two 1700-year- tombs of China. International Biodeterioration and Biodegradation, 2020, 152, 104972.	old	1.9	57
1069	Biosorption of Elements. RSC Green Chemistry, 2013, , 80-113.		0.0	2
1074	Chapter 9 Geomycology. Mycology, 2017, , 119-136.		0.5	1
1075	Chapter 29 Mycorrhizal Fungi and Accompanying Microorganisms in Improving Phytoremediatio Techniques. Mycology, 2017, , 419-432.	n	0.5	2
1076	Microbial metal resistance and metabolism across dynamic landscapes: high-throughput environmental microbiology. F1000Research, 2017, 6, 1026.		0.8	25
1077	Digging the New York City Skyline: Soil Fungal Communities in Green Roofs and City Parks. PLoS 2013, 8, e58020.	ONE,	1.1	174
1078	Control of Temperature on Microbial Community Structure in Hot Springs of the Tibetan Plateau PLoS ONE, 2013, 8, e62901.		1.1	157
1079	A Fungal-Prokaryotic Consortium at the Basalt-Zeolite Interface in Subseafloor Igneous Crust. PL ONE, 2015, 10, e0140106.	oS	1.1	37

#	Article	IF	CITATIONS
1080	Fungal Ferromanganese Mineralisation in Cretaceous Dinosaur Bones from the Gobi Desert, Mongolia. PLoS ONE, 2016, 11, e0146293.	1.1	22
1081	Biodegradative potential of fungal isolates from sacral ambient: In vitro study as risk assessment implication for the conservation of wall paintings. PLoS ONE, 2018, 13, e0190922.	1.1	38
1082	Defining the sediment prokaryotic communities of the Indian River Lagoon, FL, USA, an Estuary of National Significance. PLoS ONE, 2020, 15, e0236305.	1.1	9
1083	Copper resistant strain Candida tropicalis RomCu5 interaction with soluble and insoluble copper compounds. Biotechnologia Acta, 2015, 8, 93-102.	0.3	10
1084	Remediation of Heavy Metal Pollution in Soil by Microbial Immobilization with Carbon Microspheres. International Journal of Environmental Science and Development, 2020, 11, 43-47,.	0.2	9
1085	Role of Alginate and Oxalic acid in Ameliorating Se Toxicity in Hapalosiphon cyanobacterium. International Journal of Current Microbiology and Applied Sciences, 2016, 5, 132-139.	0.0	3
1086	Unravelling the Role of Rhizospheric Plant-Microbe Synergy in Phytoremediation: A Genomic Perspective. Current Genomics, 2020, 21, 334-342.	0.7	20
1087	Heavy Metals in Sewage Treated Effluents: Pollution and Microbial Bioremediation from Arid Regions. Open Biotechnology Journal, 2016, 10, 352-362.	0.6	8
1088	The Geomicrobiology of Chromium (VI) Pollution: Microbial Diversity and its Bioremediation Potential. Open Biotechnology Journal, 2016, 10, 379-389.	0.6	14
1089	Screening of Halophilic Bacteria Able to Degrade Crude Oil Contamination from Alborz Oil Field, Qom, Iran. Journal of Pure and Applied Microbiology, 2017, 11, 773-778.	0.3	2
1090	Tolerance of Trichoderma sp. to Heavy Metals and its Antifungal Activity in Algerian Marine Environment. Journal of Pure and Applied Microbiology, 2018, 12, 855-870.	0.3	9
1091	Biological links between nanoparticle biosynthesis and stress responses in bacteria. Mexican Journal of Biotechnology, 2018, 3, 44-69.	0.2	1
1092	Organic contamination versus mineral properties: competing selective forces shaping bacterial community assembly in aquifer sediments. Aquatic Microbial Ecology, 2016, 76, 243-255.	0.9	11
1093	Geochemistry, Mineralogy and Microbiology of Cobalt in Mining-Affected Environments. Minerals (Basel, Switzerland), 2021, 11, 22.	0.8	14
1094	Potential of Bioremediation and PGP Traits in Streptomyces as Strategies for Bio-Reclamation of Salt-Affected Soils for Agriculture. Pathogens, 2020, 9, 117.	1.2	24
1095	Apophysomyces thailandensis (Mucorales, Mucoromycota), a new species isolated from soil in northern Thailand and its solubilization of non-soluble minerals. MycoKeys, 2019, 45, 75-92.	0.8	12
1096	Isolation and Characterization of Strontium Resistant Mutant of Neurospora crassa. Asian Journal of Biochemistry, 2015, 10, 156-164.	0.5	1
1097	Ecorestoration of Coal Mine Overburden Dump to Prevent Environmental Degradation: A Review. Research Journal of Environmental Sciences, 2015, 9, 307-319.	0.5	18

ARTICLE IF CITATIONS Microorganisms in heavy metal bioremediation: strategies for applying microbial-community 1098 0.6 38 engineering to remediate soils. AIMS Bioengineering, 2016, 3, 211-229. Microbial Response against Metal Toxicity. Advances in Environmental Engineering and Green 1099 0.3 Technologies Book Series, 2016, , 75-96. Metal Toxicity in Microorganism. Advances in Environmental Engineering and Green Technologies 1100 0.34 Book Series, 2017, , 1-23. Insight of Proteomics and Genomics in Environmental Bioremediation. Advances in Environmental 0.3 Engineering and Green Technologies Book Series, 2017, , 46-69. Biodegradation of Acid Blue 113 Containing Textile Effluent by Constructed Aerobic Bacterial 1102 0.5 11 Consortia: Optimization and Mechanism. Journal of Bioremediation & Biodegradation, 2012, 03, . The Impact of Leachate on the Quality of Surface and Groundwater and Proposal of Measures for 0.3 Pollution Remediation. Journal of Environmental Protection, 2016, 07, 745-759. Interactive Effect of Copper and Its Mineral Collectors on Soil Microbial Activityâ€"A 1104 0.3 2 Microcalorimetric Analysis. Open Journal of Soil Science, 2019, 09, 47-64. Influence of Clay Minerals on Some Soil Fertility Attributes: A Review. Open Journal of Soil Science, 0.3 2019, 09, 155-188. Performance of Fusarium oxysporum EKT01/02 isolate in cyanide biodegradation system. Environmental 1106 9 1.5 Engineering Research, 2018, 23, 223-227. Evaluation of Contamination and Ecological Risk of Heavy Metals Associated with Cement Production 1109 1.8 in Ewekoro, Southwest Nigeria. Journal of Health and Pollution, 2020, 10, 200306. Taxonomic and chemical assessment of exceptionally abundant rock mine biofilm. Peerl, 2017, 5, e3635. 1110 0.9 5 Microbial Interaction with Metals and Metalloids., 2021, , 243-272. 1111 Fungal strategies of potassium extraction from silicates of different resistance as manifested in 1112 1.6 7 differential weathering and gene expression. Geochimica Et Cosmochimica Acta, 2022, 316, 168-200. Biodeterioration of Glass-Based Historical Building Materials: An Overview of the Heritage Literature 1.3 from the 21st Century. Applied Sciences (Switzerland), 2021, 11, 9552. Arsenate and Arsenite Sorption Using Biogenic Iron Compounds: Treatment of Real Polluted Waters in 1114 1.0 5 Batch and Continuous Systems. Metals, 2021, 11, 1608. Usage of laboratory bench scale testing in environmental remediation strategies., 2011,,. Isolation and Screening of Some Filamentous Fungi with Various Trace Metals. Indian Journal of 1116 0.00 Applied Research, 2011, 4, 7-12. Bioenergetics Theory and Components | Chemolithotrophy., 2013, , 23-30.

#	Article	IF	CITATIONS
1118	Nanotechnology in Contemporary Mine Water Issues. Lecture Notes in Nanoscale Science and Technology, 2014, , 307-361.	0.4	2
1121	Phytoremediation Using Leguminous Plants: Managing Cadmium Stress with Applications of Arbuscular Mycorrhiza (AM) Fungi. , 2015, , 131-142.		2
1122	Evaluation of the Potential of Cadmium and Dyes Removal by Chitosan Obtained from Zygomycetes. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 0, s4, .	0.1	1
1125	Arsenic Pollution Study at Nitra-KrÅ _i ka Ny Location as an Example of Line Contamination. Acta Regionalia Et Environmentalica, 2016, 13, 6-11.	0.1	0
1126	Determining the Biochemical Properties of the Oxalate Biosynthetic Component (Obc)1 from Burkholderia mallei. PLoS ONE, 2016, 11, e0163294.	1.1	0
1127	Genesis of Natural Nanogold. Springer Mineralogy, 2017, , 87-126.	0.4	0
1128	Bioremediation of Sulfide Mine Tailings: Response of Different Soil Fractions. , 2017, , 169-186.		0
1129	Testing and Monitoring of Biodegradable Contaminants in Bioremediation Technique. Advances in Environmental Engineering and Green Technologies Book Series, 2017, , 470-492.	0.3	0
1130	Isolation, Identification and Characterization of Some Bacteria from Soil Samples of Agbaja Iron Ore Mining Site of Kogi State. Journal of Bacteriology & Mycology Open Access, 2017, 4, .	0.2	1
1131	Chapter 35 Microorganisms for Safeguarding Cultural Heritage. Mycology, 2017, , 509-518.	0.5	0
1132	USO DA BORRA DE FOSFATO COMO FONTE DE FÓSFORO PARA AGRICULTURA, A PARTIR DA SOLUBILIZAÇÃO DE P POR BACTÉRIAS ACIDÓFILAS , 0, , .		0
1133	Reviews in Infrared Spectroscopy and Computational Chemistry to Reveal Rhizospheric Interactions among Organic Acids, Oxyanions and Metal oxides: Fundamental Principles and Spectrum Processing. Daehan Hwan'gyeong Gonghag Hoeji, 2017, 39, 426-439.	0.4	0
1134	Dynamics of Heavy Metal(loid)s in Mine Soils. , 2017, , 259-288.		0
1135	Co-relation between heavy metal resistance and antibiotic susceptibility in halotolerant bacteria isolated from the antarctic oceanic region. International Journal of Pharma and Bio Sciences, 2017, 8, .	0.1	1
1138	BIORREMEDIACIÓN: ACTUALIDAD DE CONCEPTOS Y APLICACIONES. Biotecnia, 2018, 21, 37-44.	0.1	4
1139	Problem of Mercury Toxicity in Crop Plants: Can Plant Growth Promoting Microbes (PGPM) Be an Effective Solution?. Sustainable Development and Biodiversity, 2019, , 253-278.	1.4	24
1140	Soil Microbes for Sustainable Agriculture. , 2019, , 339-382.		5
1141	Application of Geopolymer Composites in Wastewater Treatment. Advances in Chemical and Materials Engineering Book Series, 2019, , 131-149.	0.2	3

#	Article	IF	CITATIONS
1142	RESISTANCE OF ACIDOPHILIC CHEMOLYTOTROPHIC BACTERIA ISOLATED FROM TECHNOGENIC RAW MATERIALS TO HEAVY METALS. Mikrobiologia I Biotehnologia, 2019, .	0.0	0
1143	Headwater Streams Contain Amounts of Heavy Metal in an Alpine Forest in the Upper Reaches of the Yangtze River. Sains Malaysiana, 2019, 48, 1565-1574.	0.3	1
1146	Response and Tolerance of Fabaceae Plants to Metal/Metalloid Toxicity. , 2020, , 435-482.		2
1147	Manganese Oxidation. , 2020, , 1-3.		0
1148	Cadmiumâ€ŧolerant bacteria: current trends and applications in agriculture. Letters in Applied Microbiology, 2022, 74, 311-333.	1.0	22
1149	Arsenic biotransformation and mobilization: the role of bacterial strains and other environmental variables. Environmental Science and Pollution Research, 2022, 29, 1763-1787.	2.7	16
1150	Microorganismos del suelo y sus usos potenciales en la agricultura frente al escenario del cambio climático. Magna Scientia UCEVA, 2021, 1, 104-119.	0.1	2
1151	Biogenic formation of amorphous carbon by anaerobic methanotrophs and select methanogens. Science Advances, 2021, 7, eabg9739.	4.7	8
1152	Perspectives on phytoremediation of zinc pollution in air, water and soil. Sustainable Chemistry and Pharmacy, 2021, 24, 100550.	1.6	8
1153	Astrobiological context as a strategic tool for the teaching of biology: a perspective from Brazilian curriculum. Research, Society and Development, 2020, 9, e200911879.	0.0	0
1154	Modeling the Competitive Heavy Metal Sorption onto Sediments with the Use of Multifactorial Experiment. Russian Journal of General Chemistry, 2020, 90, 2654-2658.	0.3	0
1155	Heavy Metal Tolerance Bacillus spp Isolated From Crude Oil Polluted Soil. Nigerian Journal of Research and Review in Science, 2020, 7, .	0.0	0
1156	Bioinformatics: A New Insight Tool to Deal with Environment Management. , 2021, , 155-184.		0
1157	The Use of Three Species of Lactic Acid Bacteria in the Mocaf (Modified Cassava Flour) Production. Industria Jurnal Teknologi Dan Manajemen Agroindustri, 2020, 9, 163-172.	0.1	5
1158	Soil Management and Conservation: An Approach to Mitigate and Ameliorate Soil Contamination. , 0, , .		0
1159	Role of plant-associated bacteria as bio-stimulants in alleviation of chromium toxicity in plants. , 2022, , 199-212.		2
1160	Microbes-based bio-stimulants towards sustainable oilseeds production: Nutrient recycling and genetics involved. , 2022, , 111-130.		0
1161	Abiotic Influences on the Early Evolution of Life. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-13.	0.0	0

#	Article	IF	CITATIONS
1162	Inorganic Soil Contaminants and Their Biological Remediation. , 2020, , 133-153.		1
1163	Bioremediation of Toxic Pollutants: Features, Strategies, and Applications. , 2020, , 361-383.		2
1164	Bioremediation of Spent Engine Oil Contaminated Soils Using Indigenous Fungi Species. International Journal of Scientific Research in Science and Technology, 2020, , 445-461.	0.1	0
1165	Assessment of Biofortification Approaches Used to Improve Micronutrient-Dense Plants That Are a Sustainable Solution to Combat Hidden Hunger. Journal of Soil Science and Plant Nutrition, 2022, 22, 475-500.	1.7	30
1166	Fungal-induced CaCO3 and SrCO3 precipitation: a potential strategy for bioprotection of concrete. Science of the Total Environment, 2022, 816, 151501.	3.9	18
1168	Mechanistic Insight to Bioremediation of Hazardous Metals and Pesticides from Water Bodies by Microbes. , 2021, , 467-487.		1
1169	Facing Lethal Impacts of Industrialization via Green and Sustainable Microbial Removal of Hazardous Pollutants and Nanobioremediation. , 2021, , 133-160.		0
1171	Biosorption: Principles, and Applications. Lecture Notes in Civil Engineering, 2021, , 501-510.	0.3	2
1172	Involvement of Synergistic Interactions Between Plant and Rhizospheric Microbes for the Removal of Toxic/Hazardous Contaminants. Rhizosphere Biology, 2021, , 223-238.	0.4	0
1173	High potential application in bioremediation of selenate by Proteus hauseri strain QW4. Iranian Journal of Microbiology, 2015, 7, 94-102.	0.8	3
1174	Potential of anaerobic bacteria in bioremediation of metal-contaminated marine and estuarine environment. , 2022, , 305-326.		2
1175	A more accurate definition of water characteristics in stone materials for an improved understanding and effective protection of cultural heritage from biodeterioration. International Biodeterioration and Biodegradation, 2022, 166, 105338.	1.9	27
1176	Bioweathering of minerals and dissolution assessment by experimental simulations—Implications for sandstone rocks: A review. Construction and Building Materials, 2022, 316, 125862.	3.2	19
1177	Electrochemical biosensors for monitoring of bioorganic and inorganic chemical pollutants in biological and environmental matrices. , 2022, , 509-531.		3
1178	Effect of Biologically Induced Cementation <i>via</i> Ureolysis in Stabilization of Silty Soil. Geomicrobiology Journal, 2022, 39, 66-82.	1.0	8
1179	The role of fungi in the biogeochemical cycling of supergene gold and satellite transition metals: A potential new exploration tool. Ore Geology Reviews, 2022, 140, 104595.	1.1	4
1180	Functional Biochar and Its Balanced Design. ACS Environmental Au, 2022, 2, 115-127.	3.3	37
1181	Statistical optimization of chromium (VI) reduction using response surface methodology (RSM) by newly isolated Stenotrophomonas sp. (a novel strain). BioMetals, 2021, , 1.	1.8	0

#	Article	IF	Citations
1182	An Insight into Microbes Mediated Heavy Metal Detoxification in Plants: a Review. Journal of Soil Science and Plant Nutrition, 2022, 22, 914-936.	1.7	36
1183	Excess copper promotes catabolic activity of gram-positive bacteria and resistance of gram-negative bacteria but inhibits fungal community in soil. Environmental Science and Pollution Research, 2022, 29, 22602-22612.	2.7	2
1184	Hyphal tips actively develop strong adhesion with nutrient-bearing silicate to promote mineral weathering and nutrient acquisition. Geochimica Et Cosmochimica Acta, 2022, 318, 55-69.	1.6	3
1185	Vertical distribution of the toxic metal(loid)s chemical fraction and microbial community in waste heap at a nonferrous metal mining site. Ecotoxicology and Environmental Safety, 2021, 228, 113037.	2.9	11
1186	A review of fungal influenced corrosion of metals. Materials Protection, 2021, 62, 333-339.	0.1	4
1187	Microbes–Surfaces Interactions. Environmental and Microbial Biotechnology, 2022, , 473-499.	0.4	3
1188	Why do microbes make minerals?. Comptes Rendus - Geoscience, 2022, 354, 1-39.	0.4	16
1189	Screening of Rhamnolipid Produced by Marine Bacterium for Heavy Metal Removal in Mangrove Soil. Journal of Research Management and Governance, 2019, 1, 29-36.	0.1	Ο
1190	Screening of Fungi Isolates from Kaduna Refinery Effluent and Romi River and Their Potential for Bioremediation. Journal of Applied Sciences and Environmental Management, 2020, 24, 1655-1662.	0.1	0
1191	Microbial Deterioration of Portuguese Lamb Meat as Affected by Its Intrinsic Properties. Proceedings (mdpi), 2020, 70, .	0.2	0
1192	Nanoparticle and nanomineral production by fungi. Fungal Biology Reviews, 2022, 41, 31-44.	1.9	33
1193	Bacterial Redox Cycling of Manganese in Calcareous Soil Enhances the Nutrients Bioavailability to Wheat. Journal of Soil Science and Plant Nutrition, 2022, 22, 1215-1223.	1.7	5
1194	Heavy Metal Contamination of Food Crops: Transportation via Food Chain, Human Consumption, Toxicity and Management Strategies. , 0, , .		3
1195	Production of Safer Vegetables from Heavy Metals Contaminated Soils: The Current Situation, Concerns Associated with Human Health and Novel Management Strategies. , 2022, , 301-312.		26
1196	New Optimization Understanding of the Removal of Harmful Elements from Gold Tailings: A Review. Jom, 2022, 74, 1641.	0.9	1
1198	Future research directions for sustainable remediation. , 2022, , 555-564.		0
1199	Solubilization of struvite and biorecovery of cerium by Aspergillus niger. Applied Microbiology and Biotechnology, 2022, 106, 821-833.	1.7	4
1200	Controlling pore-scale processes to tame subsurface biomineralization. Reviews in Environmental Science and Biotechnology, 2022, 21, 27-52.	3.9	8

#	Article	IF	CITATIONS
1201	Bacterial remediation to control pollution. , 2022, , 285-305.		0
1202	The smallest space miners: principles of space biomining. Extremophiles, 2022, 26, 7.	0.9	26
1203	Transformation of metals and metalloids by microorganisms. , 2022, , .		1
1204	Chronic Environmental Perturbation Influences Microbial Community Assembly Patterns. Environmental Science & Technology, 2022, 56, 2300-2311.	4.6	21
1205	Photoelectrochemical and energy storage properties for metal sulfides regulated by biomineralization of sulfate reducing bacteria. Journal of Cleaner Production, 2022, 340, 130741.	4.6	10
1206	Recent Advances in Understanding the Facets of Eco-corona on Engineered Nanomaterials. Journal of the Indian Institute of Science, 2022, 102, 621-637.	0.9	5
1207	The symbiotic system of sulfate-reducing bacteria and clay-sized fraction of purplish soil strengthens cadmium fixation through iron-bearing minerals. Science of the Total Environment, 2022, 820, 153253.	3.9	7
1208	Effectivity of Biocatalyst of Probiotic Lignocellulolytic Bacteria as Starter of Agricultural By-Product. Journal of Biological Sciences, 2022, 22, 11-23.	0.1	0
1209	Soil microbial biomass, activities and diversity in Southern Italy areas chronically exposed to trace element input from industrial and agricultural activities. Applied Soil Ecology, 2022, 174, 104392.	2.1	8
1211	Fungi: A Sustainable and Versatile Tool for Transformation, Detoxification, and Degradation of Environmental Pollutants. , 2021, , 593-619.		1
1212	Plant–Microbe Interactions in Combating Abiotic Stresses. Advances in Science, Technology and Innovation, 2022, , 217-234.	0.2	2
1213	Microbial community in soil-plant systems: Role in heavy metal(loid) detoxification and sustainable agriculture. , 2022, , 471-498.		1
1214	Applying enzymatic biomarkers of the in situ microbial community to assess the risk of coastal sediment. , 2022, , 305-335.		0
1215	Microorganisms in metal recovery—Tools or teachers?. , 2022, , 71-86.		5
1216	Biologically engineered microbes for bioremediation of electronic waste: Wayposts, challenges and future directions. Engineering Biology, 2022, 6, 23-34.	0.8	10
1217	Bioremediation of Hazardous Wastes. , 0, , .		2
1218	Diversity of culturable microfungi of coal mine spoil tips in Svalbard. Polar Science, 2022, 32, 100793.	0.5	3
1219	Tellurium biogeochemical transformation and cycling in a metalliferous semi-arid environment. Geochimica Et Cosmochimica Acta, 2022, 321, 265-292.	1.6	6

#	Article	IF	CITATIONS
1220	Bio-Based Processes for Material and Energy Production from Waste Streams under Acidic Conditions. Fermentation, 2022, 8, 115.	1.4	7
1221	The Critical Role of Environmental Synergies in the Creation of Bionanohybrid Microbes. Applied and Environmental Microbiology, 2022, 88, e0232121.	1.4	2
1222	Diversity and Potential Function of Prokaryotic and Eukaryotic Communities from Different Mangrove Sediments. Sustainability, 2022, 14, 3333.	1.6	8
1223	Significance of Shewanella Species for the Phytoavailability and Toxicity of Arsenic—A Review. Biology, 2022, 11, 472.	1.3	6
1224	Epilithic Microbial Community Functionality in Deep Oligotrophic Continental Bedrock. Frontiers in Microbiology, 2022, 13, 826048.	1.5	10
1225	Highly mercury-resistant strains from different Colombian Amazon ecosystems affected by artisanal gold mining activities. Applied Microbiology and Biotechnology, 2022, 106, 2775-2793.	1.7	16
1226	Insights into microbial diversity on plastisphere by multi-omics. Archives of Microbiology, 2022, 204, 216.	1.0	5
1227	Not all permafrost microbiomes are created equal: Influence of permafrost thaw on the soil microbiome in a laboratory incubation study. Soil Biology and Biochemistry, 2022, 167, 108605.	4.2	7
1228	Biogeochemical Redox Processes Controlling the Element Cycling: Insights from Karst-Type Bauxite, Greece. Minerals (Basel, Switzerland), 2022, 12, 446.	0.8	3
1229	Nanomicrobiology: Emerging Trends in Microbial Synthesis of Nanomaterials and Their Applications. Journal of Cluster Science, 2023, 34, 639-664.	1.7	7
1230	The role of divalent iron cations in the growth, adhesive properties and extracellular adaptation mechanisms of Propionibacterium sp. Saudi Journal of Biological Sciences, 2022, 29, 3642-3646.	1.8	7
1231	Soil minerals affect taxon-specific bacterial growth. ISME Journal, 2022, 16, 1318-1326.	4.4	24
1232	First-principles characterisation and comparison of clean, hydrated, and defect α-Al ₂ O ₃ and α-Fe ₂ O ₃ (110) surfaces. Molecular Simulation, 2022, 48, 247-263.	0.9	4
1233	Effect of bacteria on strength properties and toxicity of incinerated biomedical waste ash concrete. Environmental Technology (United Kingdom), 2023, 44, 1705-1729.	1.2	4
1235	BIOREMEDIATION: THE ECO-FRIENDLY SOLUTION TO THE HAZARDOUS PROBLEM OF ENVIRONMENTAL POLLUTION. Journal of Environmental Engineering and Landscape Management, 2021, 29, 477-483.	0.4	6
1236	Microbes from Brine Systems with Fluctuating Salinity Can Thrive under Simulated Martian Chemical Conditions. Life, 2022, 12, 12.	1.1	1
1237	Bioaccumulation, Resistance, Removal of U(VI) and Th(IV) and Their Effects on Antioxidant Enzymes on Thermophilic <i>Anoxybacillus flavithermus</i> ST15. Geomicrobiology Journal, 2022, 39, 54-65.	1.0	5
1238	Biomineralization by Extremely Halophilic and Metal-Tolerant Community Members from a Sulfate-Dominated Metal-Rich Environment. Microorganisms, 2022, 10, 79.	1.6	11

#	Article	IF	CITATIONS
1239	Microorganisms of Microbial Mats from an Alkaline Hot Spring of Baikal Rift Zone as Bioagents in a Biofuel Cell. Geomicrobiology Journal, 2022, 39, 566-576.	1.0	1
1241	Bioaccumulation, tolerance, and removal of U(VI) and Th(IV) by a novel thermophilic Bacillus cereus ST14 isolated from hot spring mud samples in Afyonkarahisar, Turkey. Biomass Conversion and Biorefinery, 2024, 14, 4341-4353.	2.9	2
1242	Assessment of arsenic sorption properties of lactic acid bacteria isolated from fecal samples for application as bioremediation tool. Applied Water Science, 2022, 12, 1.	2.8	4
1243	Review on metal extraction technologies suitable for critical metal recovery from mining and processing wastes. Minerals Engineering, 2022, 182, 107537.	1.8	38
1268	Fungal and oomycete pathogens and heavy metals: an inglorious couple in the environment. IMA Fungus, 2022, 13, 6.	1.7	24
1272	Silicate Minerals Induced by Microorganisms. Microbiology Monographs, 2022, , 125-159.	0.3	3
1275	Soil improvement by microbially induced calcite precipitation (MICP): a review about mineralization mechanism, factors, and soil properties. Arabian Journal of Geosciences, 2022, 15, .	0.6	17
1276	Microbial Interventions in Bioremediation of Heavy Metal Contaminants in Agroecosystem. Frontiers in Microbiology, 2022, 13, .	1.5	62
1277	Prospecting Cellular Gold Nanoparticle Biomineralization as a Viable Alternative to Prefabricated Gold Nanoparticles. Advanced Science, 2022, 9, e2105957.	5.6	13
1278	In vitro Sequestration of Molecular and Mass Spectra Characterized Metallophilic Cadmium Tolerant Bacteria for Sustainable Agriculture. Frontiers in Microbiology, 2022, 13, 845853.	1.5	3
1281	Insights on the biomineralisation processes and related diversity of cyanobacterial microflora in thermogenic travertine deposits in Greek hot springs (<scp>Northâ€West</scp> Euboea Island). Depositional Record, 0, , .	0.8	3
1282	Harnessing the Potential of Bacillus altitudinis MT422188 for Copper Bioremediation. Frontiers in Microbiology, 2022, 13, .	1.5	7
1283	Insight Into the Molecular Mechanisms Underpinning the Mycoremediation of Multiple Metals by Proteomic Technique. Frontiers in Microbiology, 2022, 13, .	1.5	8
1284	Bacterial extracellular polymeric substances: Impact on soil microbial community composition and their potential role in heavy metal-contaminated soil. Ecotoxicology and Environmental Safety, 2022, 240, 113701.	2.9	11
1285	Landslides: An emerging model for ecosystem and soil chronosequence research. Earth-Science Reviews, 2022, 231, 104064.	4.0	10
1286	Green synthesis of nanoparticles by probiotics and their application. Advances in Applied Microbiology, 2022, , 83-128.	1.3	9
1287	Bioremediation of soil: an overview. , 2022, , 13-27.		0
1289	Bioleaching of Typical Electronic Waste—Printed Circuit Boards (WPCBs): A Short Review. International Journal of Environmental Research and Public Health, 2022, 19, 7508.	1.2	20

~			<u> </u>	
	ΙΤΔΤΙ	ON	REPC	D T
\sim	/			

#	Article	IF	CITATIONS
1290	Microorganisms Accelerate REE Mineralization in Supergene Environments. Applied and Environmental Microbiology, 2022, 88, .	1.4	9
1291	High-Resolution Hyperspectral Imaging Using Low-Cost Components: Application within Environmental Monitoring Scenarios. Sensors, 2022, 22, 4652.	2.1	17
1292	Geochemical Negative Emissions Technologies: Part I. Review. Frontiers in Climate, 0, 4, .	1.3	20
1293	A critical review of mineral–microbe interaction and co-evolution: mechanisms and applications. National Science Review, 2022, 9, .	4.6	86
1294	Phosphorus biogeochemistry regulated by carbonates in soil. Environmental Research, 2022, 214, 113894.	3.7	16
1295	Using geogenic radon potential to assess radon priority area designation, a case study around Castleisland, Co. Kerry, Ireland. Journal of Environmental Radioactivity, 2022, 251-252, 106956.	0.9	3
1296	PHYSIO-CHEMICAL EVALUATION AND BIOLOGICAL ACTIVITY OF AJUGA BRACTEOSA WALL. AND VIOLA ODOROTO LINN. Tropical Journal of Obstetrics and Gynaecology, 2016, 13, 40-46.	0.3	1
1297	A Review of Biodeterioration in Iranian Historical Monuments with Emphasis on Porous Architectural Materials. Journal of Research on Archaeometry, 2021, 7, 159-182.	0.1	0
1298	MRG Chip: A High-Throughput qPCR-Based Tool for Assessment of the Heavy Metal(loid) Resistome. Environmental Science & Technology, 2022, 56, 10656-10667.	4.6	10
1299	Microbial Induced Carbonate Precipitation: Environments, Applications, and Mechanisms. Geomicrobiology Journal, 2022, 39, 833-851.	1.0	6
1300	Bacterial-mediated phytoremediation of heavy metals. , 2022, , 147-164.		0
1301	Bioaccumulation of Heavy Metals by Bacteria Isolates from Mambilla Mining Site, Nguroje, Taraba State, Nigeria. Biotechnology, 2022, 21, 156-162.	0.5	0
1302	Fungal biorecovery of cerium as oxalate and carbonate biominerals. Fungal Biology, 2023, 127, 1187-1197.	1.1	2
1303	Streptomyces plumbidurans sp. nov., a Pb2+-tolerant actinomycete. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	0.8	0
1304	Ecophysiological and genomic analyses of a representative isolate of highly abundant <scp><i>Bacillus cereus</i></scp> strains in contaminated subsurface sediments. Environmental Microbiology, 2022, 24, 5546-5560.	1.8	4
1305	Role of Microorganisms in Alleviating the Abiotic Stress Conditions Affecting Plant Growth. , 0, , .		2
1306	Lichens: An update on their ethnopharmacological uses and potential as sources of drug leads. Journal of Ethnopharmacology, 2022, 298, 115657.	2.0	15
1307	Integrating microbial DNA community analyses into time-integrated suspended sediment sampling methods. Journal of Soils and Sediments, 0, , .	1.5	2

#	Article	IF	CITATIONS
1309	Using Bacillus thuringiensis HM-311@hydroxyapatite@biochar beads to remediate Pb and Cd contaminated farmland soil. Chemosphere, 2022, 307, 135797.	4.2	10
1310	Fungal transformation of mineral substrata of biodeteriorated medieval murals in Saint Sophia's cathedral, Kyiv, Ukraine. International Biodeterioration and Biodegradation, 2022, 175, 105486.	1.9	2
1311	Attachment of Extracellular Metabolic Products of <i>Lysinibacillus sp</i> . DRG3 on Sand Surface under Variable Flow Velocities and Bioprocesses. Journal of Environmental Engineering, ASCE, 2022, 148, .	0.7	1
1312	Role of microorganism in phytoremediation of mine spoiled soils. , 2022, , 379-400.		0
1313	Metal oxidizing microbes and potential application in bioremediation of soil and water. , 2022, , 309-330.		0
1314	Acute toxicity of potentially toxic elements on ciliated protozoa from Lake Maracaibo (Venezuela). Acta Limnologica Brasiliensia, 0, 34, .	0.4	0
1315	Phytoremediation: A Sustainable Solution to Combat Pollution. , 2022, , 237-257.		0
1316	Background level, occurrence, speciation, bioavailability, uptake detoxification mechanisms and management of Mn-polluted soil. , 2022, , 61-80.		0
1317	Microbial augmented phytoremediation with improved ecosystems services. , 2022, , 27-62.		1
1318	Role of genetic engineering in microbe-assisted phytoremediation of polluted sites. , 2022, , 63-84.		0
1319	Plant-microbe association to improve phytoremediation of heavy metal. , 2022, , 113-146.		4
1320	Background level, occurrence, speciation, bioavailability, and phyto-management of Cu-polluted soils. , 2022, , 135-164.		0
1321	Mineral weathering of iron ore tailings primed by Acidithiobacillus ferrooxidans and elemental sulfur under contrasting pH conditions. Science of the Total Environment, 2023, 856, 159078.	3.9	3
1322	Microbial community and their role in bioremediation of polluted e-waste sites. , 2023, , 261-283.		1
1323	Mechanism of Microbial Detoxification of Heavy Metals: A Review. Journal of Pure and Applied Microbiology, 2022, 16, 1562-1574.	0.3	3
1324	Comprehensive assessment of pollution indices, sources apportionment and ecological risk mapping of heavy metals in agricultural soils of Raebareli District, Uttar Pradesh, India, employing a GIS approach. Land Degradation and Development, 2023, 34, 173-195.	1.8	13
1325	Drivers of Pb, Sb and As release from spent gunshot in wetlands: Enhancement by organic matter and native microorganisms. Science of the Total Environment, 2023, 857, 159121.	3.9	3
1326	Biosorption behavior and biomineralization mechanism of low concentration uranium (VI) by pseudomonas fluorescens. Journal of Radioanalytical and Nuclear Chemistry, 0, , .	0.7	3

#	Article	IF	CITATIONS
1327	Safety and Technical Feasibility of Sustainable Reuse of Shale Gas Flowback and Produced Water after Advanced Treatment Aimed at Wheat Irrigation. ACS Sustainable Chemistry and Engineering, 2022, 10, 12540-12551.	3.2	6
1329	Chromium in plant-soil nexus: Speciation, uptake, transport and sustainable remediation techniques. Environmental Pollution, 2022, 315, 120350.	3.7	14
1330	Warhorses in soil bioremediation: Seed biopriming with PGPF secretome to phytostimulate crop health under heavy metal stress. Environmental Research, 2023, 216, 114498.	3.7	5
1331	Sediment mineralogy influences the rate of microbial sulfate reduction in marine sediments. Earth and Planetary Science Letters, 2022, 598, 117841.	1.8	5
1332	Bioremediation of Heavy Metals by Rhizobacteria. Applied Biochemistry and Biotechnology, 2023, 195, 4689-4711.	1.4	9
1333	Microorganisms and Bioprocessing, General. , 2023, , 53-87.		0
1334	Chronicle of Research into Lichen-Associated Bacteria. Microorganisms, 2022, 10, 2111.	1.6	3
1335	Ecological Aerobic Ammonia and Methane Oxidation Involved Key Metal Compounds, Fe and Cu. Life, 2022, 12, 1806.	1.1	7
1336	Geochemical bio-signatures in Martian analogue basaltic environments using laboratory experiments and thermochemical modelling. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	1
1337	Catalysis toward metal-based substrates: A new prospect for inorganic chemistry. Chem Catalysis, 2023, 3, 100459.	2.9	2
1338	Environmental Impact of Magnetized Water: Evidence from Heavy Metals in the System Soil-Plant. Green and Sustainable Chemistry, 2022, 12, 118-137.	0.8	0
1339	Different sulfide to arsenic ratios driving arsenic speciation and microbial community interactions in two alkaline hot springs. Environmental Research, 2023, 218, 115033.	3.7	2
1340	Filamentous fungi for sustainable vegan food production systems within a circular economy: Present status and future prospects. Food Research International, 2023, 164, 112318.	2.9	9
1341	Microbial Bioremediation and Biodegradation of Petroleum Products—A Mini Review. Applied Sciences (Switzerland), 2022, 12, 12212.	1.3	11
1342	The Role of Microorganisms in the Nucleation of Carbonates, Environmental Implications and Applications. Minerals (Basel, Switzerland), 2022, 12, 1562.	0.8	12
1343	The contribution of living organisms to rock weathering in the critical zone. Npj Materials Degradation, 2022, 6, .	2.6	15
1344	Living electronics: A catalogue of engineered living electronic components. Microbial Biotechnology, 2023, 16, 507-533.	2.0	17
1345	Multiverse Predictions for Habitability: Element Abundances. Universe, 2022, 8, 651.	0.9	3

#	Article	IF	CITATIONS
1346	Metal-containing landfills as a source of antibiotic tolerance. Environmental Monitoring and Assessment, 2023, 195, .	1.3	2
1347	Mobilization and fractionation of rare earth elements during experimental bio-weathering of granites. Geochimica Et Cosmochimica Acta, 2023, 343, 384-395.	1.6	7
1348	Essentiality, Fate, Ecotoxicity, and Health Effects of Xanthates and Xanthates Based-Compounds—A Review. Journal of Geoscience and Environment Protection, 2022, 10, 161-203.	0.2	0
1349	Carbonate and Oxalate Crystallization Effected by the Metabolism of Fungi and Bacteria in Various Trophic Conditions: The Case of Penicillium chrysogenum and Penicillium chrysogenum with Bacillus subtilis. Crystals, 2023, 13, 94.	1.0	1
1350	Diversity and Heavy Metal Tolerance of Fungi Associated with Different Coal Overburden Strata of Tikak Colliery, Assam. Current Microbiology, 2023, 80, .	1.0	3
1351	Contamination levels and health risk assessment of heavy metals in food crops in Ishiagu area, lower Benue trough South-eastern Nigeria. International Journal of Environmental Science and Technology, 2023, 20, 12069-12088.	1.8	2
1352	Impact of the immobilized Bacillus cereus MG708176 on the characteristics of the bio-based self-healing concrete. Scientific Reports, 2023, 13, .	1.6	4
1353	Mycosynthesis of Zinc Oxide Nanoparticles Exhibits Fungal Species Dependent Morphological Preference. Small, 2023, 19, .	5.2	1
1354	Melatonin improves the removal and the reduction of Cr(VI) and alleviates the chromium toxicity by antioxidative machinery in Rhodobacter sphaeroides. Environmental Pollution, 2023, 319, 120973.	3.7	6
1355	A contrast of Pb(II), Cd(II), and Cu(II) toxicities to Aspergillus niger through biochemical, morphological, and genetic investigations. Journal of Hazardous Materials, 2023, 446, 130691.	6.5	3
1356	Combined Gold Recovery and Nanoparticle Synthesis in Microbial Systems Using Fractional Factorial Design. Nanomaterials, 2023, 13, 83.	1.9	4
1358	Characterization of Biomineralizing and Plant Growth-Promoting Attributes of Lithobiontic Bacteria. Current Microbiology, 2023, 80, .	1.0	Ο
1359	Heavy metals in the environment: toxicity to microbial remediation. , 2023, , 181-203.		0
1360	Phytoremediation strategies of plants: Challenges and opportunities. , 2023, , 211-229.		1
1361	Impact of Silicon on Plant Nutrition and Significance of Silicon Mobilizing Bacteria in Agronomic Practices. Silicon, 2023, 15, 3797-3817.	1.8	7
1362	Nanomaterials originated from microbes for the removal of toxic pollutants from water. , 2023, , 347-363.		Ο
1363	Bioremoval of copper by filamentous fungi isolated from contaminated soils of PuchuncavÃ-Ventanas Central Chile. Environmental Geochemistry and Health, 2023, 45, 4275-4293.	1.8	5
1364	Bio-mineral Interactions and the Environment. Earth and Environmental Sciences Library, 2023, , 67-116.	0.3	ο

	Сітаті	ION REPORT	
#	Article	IF	Citations
1365	Integrated approach to testing and assessment and development in arsenic toxicology. , 2023, , 821-870.		0
1366	The relationships between heavy metals and bacterial communities in a coal gangue site. Environmental Pollution, 2023, 322, 121136.	3.7	21
1367	Aqueous Co removal by mycogenic Mn oxides from simulated mining wastewaters. Chemosphere, 2023, 327, 138467.	4.2	2
1368	Metallophiles and Heavy Metal Bioremediation. , 2023, , 247-274.		0
1369	Highlighting the Role of Archaea in Urban Mine Waste Exploitation and Valorisation. Recycling, 2023, 8, 20.	2.3	2
1371	Phytoremediation and Contaminants. , 2023, , 15-48.		0
1372	Metabolite Profile of the Micromycete Lecanicillium gracile Isolated from Plaster and Limestone. Doklady Biological Sciences, 2022, 507, 456-462.	0.2	0
1373	Carbon based nanomaterial interactions with metals and metalloids in terrestrial environment: A review. Carbon, 2023, 206, 325-339.	5.4	1
1374	Microbial consortia and their application for environmental sustainability. , 2023, , 205-222.		0
1375	Geomicrobiology of African lakes. , 2023, , 195-246.		0
1376	E-waste and Its Management by Using Algae. , 2023, , 231-244.		0
1377	Biochar: An effective measure to strengthen phosphorus solubilizing microorganisms for remediation of heavy metal pollution in soil. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	9
1378	Applications of microbial calcium carbonate precipitation in concrete through denitrification: a review. Innovative Infrastructure Solutions, 2023, 8, .	1.1	0
1379	Prospect Research on the Diversity of Extracellular Mineralization Process Induced by Mineralizing Microorganisms and Its Use as a Treatment for Soil Pollutants. Sustainability, 2023, 15, 4858.	1.6	1
1380	Effects of Mineral on Taxonomic and Functional Structures of Microbial Community in Tengchong Hot Springs via in-situ cultivation. Environmental Microbiomes, 2023, 18, .	2.2	0
1381	Antarctic heavy metal pollution and remediation efforts: state of the art of research and scientific publications. Brazilian Journal of Microbiology, 2023, 54, 2011-2026.	0.8	2
1382	A Critical Review on the Recovery of Base and Critical Elements from Electronic Waste-Contaminated Streams Using Microbial Biotechnology. Applied Biochemistry and Biotechnology, 2023, 195, 7859-7888.	1.4	7
1383	Biofertilizers to Improve Soil Health and Crop Yields. Sustainable Agriculture Reviews, 2023, , 247-272.	0.6	1

ARTICLE

IF CITATIONS

Ectomycorrhizal Community Shifts at a Former Uranium Mining Site. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /Overlock 10,Tf 50 742

1385	Optimisation of process parameters of a thermal digester for the rapid conversion of food waste into value-added soil conditioner. Waste Management and Research, 0, , 0734242X2311670.	2.2	0
1386	As and S speciation in a submarine sulfide mine tailings deposit and its environmental significance: The study case of Portmán Bay (SE Spain). Science of the Total Environment, 2023, 882, 163649.	3.9	1
1391	Microbial Remediation of Heavy Metals. , 2023, , 1-41.		0
1399	Fungal-Based Land Remediation. Environmental Contamination Remediation and Management, 2023, , 165-188.	0.5	3
1413	Manganese Oxidation. , 2023, , 1755-1758.		0
1416	Microbial symbionts for alleviation of heavy metal toxicity in crop plants. , 2023, , 371-400.		1
1424	Recovery of Various Metals from Industrial Wastewater by Biological Methods. Springer Water, 2023, , 125-143.	0.2	0
1425	The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 0, , .	13.6	23
1428	Unlocking the potential of microbes: biocementation technology for mine tailings restoration — a comprehensive review. Environmental Science and Pollution Research, 2023, 30, 91676-91709.	2.7	0
1435	Biological perspectives in geotechnics: theoretical developments. Reviews in Environmental Science and Biotechnology, 0, , .	3.9	1
1436	Book—Resource Recovery from Wastewater Through Biological Methods Publisher—Springer Nature. Springer Water, 2023, , 145-172.	0.2	0
1446	Bioremediation: An Alternative Tool for Restoration of Urban Agroecosystem Contaminated with Harmful Xenobiotics. , 2023, , 291-319.		0
1447	Plant–Microbe Interaction for Legume Biofortification: Present Status and Future Challenges. , 2023, , 271-293.		0
1453	Responses of Marine Fungi to Heavy Metal Contamination. , 2023, , 263-277.		0
1454	Mechanisms of microbial resistance against cadmium – a review. Journal of Environmental Health Science & Engineering, 0, , .	1.4	1
1459	Phytoremediation of Chromium from Soil and Water. Environmental Science and Engineering, 2023, , 253-291.	0.1	0
1461	Industrial Sustainability: Economics, Cost, and Bioavailability of Biofertilizers. , 2023, , 363-385.		0

#	Article	IF	CITATIONS
1464	Biotechnological Approaches in Remediation of Lead Toxicity. Environmental Contamination Remediation and Management, 2024, , 277-298.	0.5	0
1468	A importância dos estudos ecotoxicológicos no contexto da engenharia ambiental. , 0, , 35-50.		0
1476	Rhizoremediation as a green technology for heavy metal remediation: Prospects and challenges. , 2024, , 61-71.		0
1480	Metagenomics for microbial degradation and detoxification of heavy metals. , 2024, , 129-137.		0
1486	Microbes, Metal(Loid)s and Microbe–Metal(Loid) Interactions in the Context of Mining Industry. Advances in Science, Technology and Innovation, 2024, , 1-22.	0.2	0
1489	Diversity of Microbes Inside Plants and Their Reaction to Biotic and Abiotic Stress. , 2024, , 207-239.		0