Towards certain fixes with editing rules and master dat

Proceedings of the VLDB Endowment 3, 173-184 DOI: 10.14778/1920841.1920867

Citation Report

#	Article	IF	CITATIONS
1	Guided data repair. Proceedings of the VLDB Endowment, 2011, 4, 279-289.	3.8	150
2	Interaction between record matching and data repairing. , 2011, , .		76
3	Foundations of Data Quality Management. Synthesis Lectures on Data Management, 2012, 4, 1-217.	0.6	88
4	Matching dependencies: semantics and query answering. Frontiers of Computer Science, 2012, 6, 278.	2.4	3
5	Towards certain fixes with editing rules and master data. VLDB Journal, 2012, 21, 213-238.	4.1	97
6	Discovering meaning on the go in large heterogenous data. Artificial Intelligence Review, 2013, 40, 107-126.	15.7	4
7	Efficient filtering and ranking schemes for finding inclusion dependencies on the web. , 2013, , .		1
8	NADEEF. Proceedings of the VLDB Endowment, 2013, 6, 1218-1221.	3.8	24
9	Don't be SCAREd. , 2013, , .		83
10	Towards data cleansing via planning. Intelligenza Artificiale, 2014, 8, 57-69.	1.6	6
11	Interaction between Record Matching and Data Repairing. Journal of Data and Information Quality, 2014, 4, 1-38.	2.1	27
12	A sample-and-clean framework for fast and accurate query processing on dirty data. , 2014, , .		77
13	Data quality: The other face of Big Data. , 2014, , .		134
14	Mapping and cleaning. , 2014, , .		31
15	Parallel mining of dependencies. , 2014, , .		5
16	CrowdCleaner: Data cleaning for multi-version data on the web via crowdsourcing. , 2014, , .		45
17	Enriching data imputation with extensive similarity neighbors. Proceedings of the VLDB Endowment, 2015, 8, 1286-1297.	3.8	32
18	Messing up with BART. Proceedings of the VLDB Endowment, 2015, 9, 36-47.	3.8	45

TATION REDO

# 19	ARTICLE Trends in Cleaning Relational Data: Consistency and Deduplication. Foundations and Trends in Databases, 2015, 5, 281-393.	IF 5.5	Citations 97
20	A Model-Based Approach for Developing Data Cleansing Solutions. Journal of Data and Information Quality, 2015, 5, 1-28.	2.1	14
21	Discovery of Field Functional Dependencies. , 2015, , .		0
22	Cleaning structured event logs: A graph repair approach. , 2015, , .		31
23	Big RDF data cleaning. , 2015, , .		4
24	Extending Conditional Dependencies with Built-in Predicates. IEEE Transactions on Knowledge and Data Engineering, 2015, 27, 3274-3288.	5.7	5
25	Interactive error correction in implicative theories. International Journal of Approximate Reasoning, 2015, 63, 89-100.	3.3	4
26	A model-based evaluation of data quality activities in KDD. Information Processing and Management, 2015, 51, 144-166.	8.6	32
27	Data Cleaning. , 2016, , .		214
28	PARC., 2016,,.		3
29	Qualitative data cleaning. Proceedings of the VLDB Endowment, 2016, 9, 1605-1608.	3.8	22
30	Web-based techniques for automatically detecting and correcting information errors in a database. , 2016, , .		0
31	A minimized-rule based approach for improving data currency. Journal of Combinatorial Optimization, 2016, 32, 812-841.	1.3	8
32	Web-ADARE: A web-aided data repairing system. Neurocomputing, 2017, 253, 201-214.	5.9	3
33	Staging User Feedback toward Rapid Conflict Resolution in Data Fusion. , 2017, , .		7
34	Cleaning Data with Forbidden Itemsets. , 2017, , .		13
35	HoloClean. Proceedings of the VLDB Endowment, 2017, 10, 1190-1201.	3.8	252
36	Time series data cleaning. Proceedings of the VLDB Endowment, 2017, 10, 1046-1057.	3.8	85

#	Article	IF	CITATIONS
37	Sifting Truths from Multiple Low-Quality Data Sources. Lecture Notes in Computer Science, 2017, , 74-81.	1.3	2
38	Finding Interesting Cleaning Rules from Dirty Data. , 2017, , .		0
39	Data context informed data wrangling. , 2017, , .		11
40	On-line imputation for missing values. , 2017, , .		1
41	InfoClean. Journal of Data and Information Quality, 2017, 9, 1-26.	2.1	6
42	Incomplete data management: a survey. Frontiers of Computer Science, 2018, 12, 4-25.	2.4	28
43	The BigDAWG polystore system. , 2018, , 279-289.		1
44	Where we have failed. , 2018, , 155-164.		0
45	The implementation of POSTGRES. , 2018, , 519-559.		3
46	OLTP through the looking glass, and what we found there. , 2018, , 409-439.		9
47	The end of an architectural era: it's time for a complete rewrite. , 2018, , 463-489.		19
48	DeepClean: Data Cleaning via Question Asking. , 2018, , .		1
49	The later Ingres years. , 2018, , 191-203.		0
50	In-memory, horizontal, and transactional: the H-store OLTP DBMS project. , 2018, , 245-251.		0
51	Research contributions of Mike Stonebraker: an overview. , 2018, , 181-189.		0
52	The commercial Ingres codeline. , 2018, , 301-310.		0
53	The BigDAWG codeline. , 2018, , 367-376.		0
54	How to start a company in five (not so) easy steps. , 2018, , 117-128.		1

#	Article	IF	CITATIONS
55	Mike Stonebraker speaks out: an interview. , 2018, , 57-83.		0
56	Aurum: a story about research taste. , 2018, , 387-391.		Ο
57	The relational database management systems genealogy. , 2018, , 173-179.		1
58	Where good ideas come from and how to exploit them. , 2018, , 145-153.		1
59	C-store: a column-oriented DBMS. , 2018, , 491-518.		27
60	Leadership and advocacy. , 2018, , 85-92.		Ο
61	Advanced Data Integration with Signifiers: Case Studies for Rail Automation. Communications in Computer and Information Science, 2018, , 87-110.	0.5	2
62	Relational data imputation with quality guarantee. Information Sciences, 2018, 465, 305-322.	6.9	Ο
63	Contextual Data Cleaning. , 2018, , .		2
64	Discovery of MicroDependencies. IEEE Access, 2019, 7, 50198-50213.	4.2	0
65	Efficient Join Processing Over Incomplete Data Streams. , 2019, , .		4
66	Skyline queries over incomplete data streams. VLDB Journal, 2019, 28, 961-985.	4.1	11
67	Enriching Data Imputation under Similarity Rule Constraints. IEEE Transactions on Knowledge and Data Engineering, 2020, 32, 275-287.	5.7	27
68	Automatic weighted matching rectifying rule discovery for data repairing. VLDB Journal, 2020, 29, 1433-1447.	4.1	1
69	Incorporating Data Context to Cost-Effectively Automate End-to-End Data Wrangling. IEEE Transactions on Big Data, 2021, 7, 169-186.	6.1	7
70	Effective and efficient top-k query processing over incomplete data streams. Information Sciences, 2021, 544, 343-371.	6.9	8
71	Master Data-Supply Chain Management, the Key Lever for Collaborative and Compliant Partnerships in Big Data Era. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 2021, , 72-101.	0.5	0
72	Contextual Data Cleaning with Ontology FDs. , 2021, , .		Ο

#	ARTICLE Online Topic-Aware Entity Resolution Over Incomplete Data Streams. , 2021, , .	IF	CITATIONS
73	An Al Planning System for Data Cleaning. Lecture Notes in Computer Science, 2017, , 349-353.	1.3	3
75	A Policy-Based Cleansing and Integration Framework for Labour and Healthcare Data. Lecture Notes in Computer Science, 2014, , 141-168.	1.3	6
76	A Novel Data Cleaning with Data Matching. , 2016, , .		1
77	CerFix. Proceedings of the VLDB Endowment, 2011, 4, 1375-1378.	3.8	9
78	RPT. Proceedings of the VLDB Endowment, 2021, 14, 1254-1261.	3.8	23
79	Improving Data Cleansing Accuracy - A Model-based Approach. , 2014, , .		1
82	Accurate Data Cleansing through Model Checking and Machine Learning Techniques. Communications in Computer and Information Science, 2015, , 62-80.	0.5	1
83	Efficient Dependable Rules Generation Approach for Data Quality Enhancement. , 2015, , .		0
84	A Pattern-Based Framework for Addressing Data Representational Inconsistency. Lecture Notes in Computer Science, 2016, , 395-406.	1.3	1
85	Data Cleaning Utilizing Ontology Tool. International Journal of Grid and Distributed Computing, 2016, 9, 43-52.	0.8	2
86	A perspective of Mike from a 50-year vantage point. , 2018, , 107-115.		0
87	The design and implementation of INGRES. , 2018, , 561-605.		1
88	Make it happen: the life of Michael Stonebraker. , 2018, , 39-56.		0
89	Perspectives: the 2014 ACM turing award. , 2018, , 93-95.		0
90	Query-Oriented Answer Imputation for Aggregate Queries. Lecture Notes in Computer Science, 2019, , 302-318.	1.3	0
91	A hybrid Technique for Cleaning Missing and Misspelling Arabic Data in Data Warehouse. International Journal of Information Technology and Computer Science, 2019, 11, 17-25.	1.0	0
92	Master Data Taxonomy - A systematic approach to assess and migrate master data. , 2021, , .		Ο

		Сіта	tion Report	
#	Article		IF	Citations
93	Swapping Repair for Misplaced Attribute Values. , 2020, , .			6
94	Imputing Various Incomplete Attributes via Distance Likelihood Maximization. , 2020,	, .		7
95	Machine Learning and Data Cleaning: Which Serves the Other?. Journal of Data and Int Quality, 2022, 14, 1-11.	ormation	2.1	9
97	On Aligning Tuples for Regression. , 2022, , .			1
98	Planning meets Data Cleansing. , 0, 24, 439-443.			9
99	Efficiently Cleaning Structured Event Logs: A Graph Repair Approach. ACM Transactior Systems, 2023, 48, 1-44.	ns on Database	2.8	1
100	IoT data cleaning techniques: A survey. Intelligent and Converged Networks, 2022, 3,	325-339.	4.8	4
101	A Novel Data Cleaning Framework Based on Knowledge Graph. , 2022, , .			0
102	Datenqualitä– Lebenselixier der Digitalisierung. , 2023, , 311-332.			0
103	Data Quality—Lifeblood of Digitalization. , 2023, , 295-315.			0