Adipose Tissue Derived Stem Cells Secretome: Soluble I Regenerative Medicine

Current Stem Cell Research and Therapy 5, 103-110

DOI: 10.2174/157488810791268564

Citation Report

#	Article	IF	CITATIONS
1	Current developments in the use of stem cell for therapeutic neovascularisation: is the future therapy "cell-free"?. Swiss Medical Weekly, 2010, 140, w13130.	0.8	18
2	Injections of Adipose Tissue-Derived Stem Cells and Stem Cell Lysate Improve Recovery of Erectile Function in a Rat Model of Cavernous Nerve Injury. Journal of Sexual Medicine, 2010, 7, 3331-3340.	0.3	221
3	Adipose tissue-derived stem cells secrete CXCL5 cytokine with chemoattractant and angiogenic properties. Biochemical and Biophysical Research Communications, 2010, 402, 560-564.	1.0	41
4	Regeneration of Dental Pulp by Stem Cells. Advances in Dental Research, 2011, 23, 313-319.	3.6	130
5	Current Status of Human Adipose–Derived Stem Cells: Differentiation into Hepatocyte-Like Cells. Scientific World Journal, The, 2011, 11, 1568-1581.	0.8	40
6	Mesenchymal Stem Cells in the Umbilical Cord: Phenotypic Characterization, Secretome and Applications in Central Nervous System Regenerative Medicine. Current Stem Cell Research and Therapy, 2011, 6, 221-228.	0.6	90
7	Transplantation of Predifferentiated Adipose-Derived Stromal Cells for the Treatment of Spinal Cord Injury. Cellular and Molecular Neurobiology, 2011, 31, 1113-1122.	1.7	71
8	Mapping of the secretome of primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics, 2011, 11, 691-708.	1.3	184
9	Characterization of the Human Smooth Muscle Cell Secretome for Regenerative Medicine. Tissue Engineering - Part C: Methods, 2012, 18, 797-816.	1.1	11
10	EGFR Ligands Drive Multipotential Stromal Cells to Produce Multiple Growth Factors and Cytokines via Early Growth Response-1. Stem Cells and Development, 2012, 21, 2541-2551.	1.1	46
11	Cell Therapy Using Adipose-Derived Stem Cells for Chronic Liver Injury in Mice. Cell Medicine, 2012, 3, 113-119.	5.0	4
12	Cell Therapy Using Induced Pluripotent Stem Cells or Somatic Stem Cells: This is the Question. Current Stem Cell Research and Therapy, 2012, 7, 191-196.	0.6	17
13	Both Immediate and Delayed Intracavernous Injection of Autologous Adipose-derived Stromal Vascular Fraction Enhances Recovery of Erectile Function in a Rat Model of Cavernous Nerve Injury. European Urology, 2012, 62, 720-727.	0.9	91
14	Adipose tissue stem cells: the great WAT hope. Trends in Endocrinology and Metabolism, 2012, 23, 270-277.	3.1	88
15	Activation of VEGF and ERK1/2 and Improvement of Urethral Function by Adipose-derived Stem Cells in a Rat Stress Urinary Incontinence Model. Urology, 2012, 80, 953.e1-953.e8.	0.5	21
16	Characterization of <i>in vitro</i> cultured bone marrow and adipose tissueâ€derived mesenchymal stem cells and their ability to express neurotrophic factors. Cell Biology International, 2012, 36, 1239-1249.	1.4	40
17	Genetic modification of human adipose-derived stem cells for promoting wound healing. Journal of Dermatological Science, 2012, 66, 98-107.	1.0	44
19	The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem Cell Research and Therapy, 2012, 3, 18.	2.4	111

#	Article	IF	CITATIONS
20	Concise Review: Adiposeâ€Derived Stem Cells as a Novel Tool for Future Regenerative Medicine. Stem Cells, 2012, 30, 804-810.	1.4	555
21	Adipose tissue stem cells meet preadipocyte commitment: going back to the future. Journal of Lipid Research, 2012, 53, 227-246.	2.0	339
22	Adipose-Derived Stem Cells Produce Factors Enhancing Peripheral Nerve Regeneration: Influence of Age and Anatomic Site of Origin. Stem Cells and Development, 2012, 21, 1852-1862.	1.1	104
23	Maintenance of rat hepatocytes under inflammation by coculture with human orbital fat-derived stem cells. Cellular and Molecular Biology Letters, 2012, 17, 182-95.	2.7	11
24	Unveiling the effects of the secretome of mesenchymal progenitors from the umbilical cord in different neuronal cell populations. Biochimie, 2013, 95, 2297-2303.	1.3	40
25	Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie, 2013, 95, 2196-2211.	1.3	231
26	Cell-Based Therapy for the Deficient Urinary Sphincter. Current Urology Reports, 2013, 14, 476-487.	1.0	13
27	Adipose stromal/stem cells assist fat transplantation reducing necrosis and increasing graft performance. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 1274-1289.	2.2	56
28	Adipose-derived stem cells in dentistry. Journal of Oral Biosciences, 2013, 55, 122-126.	0.8	2
29	Adipose-Derived Stem Cells: Isolation, Characterization, and Differentiation Potential. Cell Transplantation, 2013, 22, 701-709.	1.2	105
30	Stem-cell therapy for erectile dysfunction. Arab Journal of Urology Arab Association of Urology, 2013, 11, 237-244.	0.7	45
31	Mesenchymal stem cells protect podocytes from apoptosis induced by high glucose via secretion of epithelial growth factor. Stem Cell Research and Therapy, 2013, 4, 103.	2.4	67
32	Equine tendonitis therapy using mesenchymal stem cells and platelet concentrates: a randomized controlled trial. Stem Cell Research and Therapy, 2013, 4, 85.	2.4	87
33	Adipose-derived stem cells for regenerative medicine in the field of plastic and reconstructive surgery. Journal of Oral Biosciences, 2013, 55, 132-136.	0.8	14
34	mTORC1 and mTORC2 Play Different Roles in the Functional Survival of Transplanted Adipose-Derived Stromal Cells in Hind Limb Ischemic Mice Via Regulating Inflammation In Vivo. Stem Cells, 2013, 31, 203-214.	1.4	48
35	Carboxypeptidase M in apoptosis, adipogenesis and cancer. Clinica Chimica Acta, 2013, 415, 306-316.	0.5	11
36	A preliminary approach to the repair of myocardial infarction using adipose tissue-derived stem cells encapsulated in magnetic resonance-labelled alginate microspheres in a porcine model. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 29-39.	2.0	38
37	Enabling stem cell therapies for tissue repair: Current and future challenges. Biotechnology Advances, 2013, 31, 744-751.	6.0	18

#	ARTICLE	IF	CITATIONS
38	Adipose-derived stem cells: Fatty potentials for therapy. International Journal of Biochemistry and Cell Biology, 2013, 45, 1083-1086.	1.2	110
39	Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration?. Cellular and Molecular Life Sciences, 2013, 70, 3871-3882.	2.4	270
40	Adiposeâ€Derived Mesenchymal Stem Cells Exert Antiinflammatory Effects on Chondrocytes and Synoviocytes From Osteoarthritis Patients Through Prostaglandin E ₂ . Arthritis and Rheumatism, 2013, 65, 1271-1281.	6.7	205
41	Mesenchymal stem cells in regenerative medicine applied toÂrheumatic diseases: Role of secretome and exosomes. Biochimie, 2013, 95, 2229-2234.	1.3	214
42	Neuroprotective effect of a cell-free extract derived from human adipose stem cells in experimental stroke models. Neurobiology of Disease, 2013, 54, 414-420.	2.1	36
43	Stem Cell Therapy for Erectile Dysfunction: Progress and Future Directions. Sexual Medicine Reviews, 2013, 1, 50-64.	1.5	22
44	The stem cell secretome and its role in brain repair. Biochimie, 2013, 95, 2271-2285.	1.3	294
45	Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis. Stem Cell Research, 2013, 11, 834-844.	0.3	143
46	Stem Cells in Plastic Surgery: A Review of Current Clinical and Translational Applications. Archives of Plastic Surgery, 2013, 40, 666-675.	0.4	86
47	Neuromodulatory nerve regeneration: Adipose tissueâ€derived stem cells and neurotrophic mediation in peripheral nerve regeneration. Journal of Neuroscience Research, 2013, 91, 1517-1524.	1.3	60
48	The Effect of Age on Human Adipose-Derived Stem Cells. Plastic and Reconstructive Surgery, 2013, 131, 27-37.	0.7	103
49	The ASC: Critical Participants in Paracrine-Mediated Tissue Health and Function. , 0, , .		4
50	The Secretome of Alginate-Encapsulated Limbal Epithelial Stem Cells Modulates Corneal Epithelial Cell Proliferation. PLoS ONE, 2013, 8, e70860.	1.1	15
51	Fibroblasts Derived from Human Pluripotent Stem Cells Activate Angiogenic Responses In Vitro and In Vivo. PLoS ONE, 2013, 8, e83755.	1.1	24
52	Stromal Vascular Cells and Adipogenesis: Cells within Adipose Depots Regulate Adipogenesis. Journal of Genomics, 2013, 1, 56-66.	0.6	36
53	Mesenchymal Cells in the Treatment of Spinal Cord Injury: Current & Entry Future Perspectives. Current Stem Cell Research and Therapy, 2013, 8, 25-38.	0.6	67
54	Adipose-Derived Stem Cells in Tissue Regeneration: A Review. ISRN Stem Cells, 2013, 2013, 1-35.	1.8	121
55	Adipose Derived Stem Cells: Current State of the Art and Prospective Role in Regenerative Medicine and Tissue Engineering. , 0, , .		1

#	Article	IF	CITATIONS
56	Secretion of immunoregulatory cytokines by mesenchymal stem cells. World Journal of Stem Cells, 2014, 6, 552.	1.3	485
57	Regenerative Repair of Damaged Meniscus with Autologous Adipose Tissue-Derived Stem Cells. BioMed Research International, 2014, 2014, 1-10.	0.9	81
58	Adipose-derived stem cells: Implications in tissue regeneration. World Journal of Stem Cells, 2014, 6, 312.	1.3	278
59	Towards a Treatment of Stress Urinary Incontinence: Application of Mesenchymal Stromal Cells for Regeneration of the Sphincter Muscle. Journal of Clinical Medicine, 2014, 3, 197-215.	1.0	15
60	Adipose-Derived Stem Cells â€" Are They the Optimal Cell Source for Urinary Tract Regeneration?. , 2014, , .		1
61	Adipose-Derived Stem Cells as a Novel Tool for Future Regenerative Medicine. Stem Cells and Cancer Stem Cells, 2014, , 165-174.	0.1	9
62	Concentrated Hypoxia-Preconditioned Adipose Mesenchymal Stem Cell-Conditioned Medium Improves Wounds Healing in Full-Thickness Skin Defect Model. International Scholarly Research Notices, 2014, 2014, 1-6.	0.9	14
63	Comparison of Stromal/Stem Cells Isolated from Human Omental and Subcutaneous Adipose Depots: Differentiation and Immunophenotypic Characterization. Cells Tissues Organs, 2014, 200, 204-211.	1.3	10
64	Spinal Cord Injury and Regeneration: A Critical Evaluation of Current and Future Therapeutic Strategies., 2014,, 593-638.		1
65	Application of stems cells in wound healing—An update. Wound Repair and Regeneration, 2014, 22, 151-160.	1.5	68
66	The Biomolecular Basis of Adipogenic Differentiation of Adipose-Derived Stem Cells. International Journal of Molecular Sciences, 2014, 15, 6517-6526.	1.8	50
67	Multiplex Immunoassays for Quantification of Cytokines, Growth Factors, and Other Proteins in Stem Cell Communication. Methods in Molecular Biology, 2014, 1212, 39-63.	0.4	15
68	Current Perspectives in Mesenchymal Stem Cell Therapies for Osteoarthritis. Stem Cells International, 2014, 2014, 1-13.	1.2	68
69	Explant culture: a simple, reproducible, efficient and economic technique for isolation of mesenchymal stromal cells from human adipose tissue and lipoaspirate. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 706-716.	1.3	66
70	Conditioned medium of human adipose-derived mesenchymal stem cells mediates protection in neurons following glutamate excitotoxicity by regulating energy metabolism and GAP-43 expression. Metabolic Brain Disease, 2014, 29, 193-205.	1.4	66
71	Adipose stem cells: biology and clinical applications for tissue repair and regeneration. Translational Research, 2014, 163, 399-408.	2.2	219
72	Adipose Stem Cells and Adipogenesis. , 2014, , 15-32.		3
73	Stimulating the Neurotrophic and Angiogenic Properties of Human Adipose-Derived Stem Cells Enhances Nerve Repair. Stem Cells and Development, 2014, 23, 741-754.	1.1	176

#	Article	IF	Citations
74	Stem Cells in Aesthetic Procedures. , 2014, , .		8
75	Adult adipose-derived stem cells and breast cancer: a controversial relationship. SpringerPlus, 2014, 3, 345.	1.2	57
76	The Therapeutic Effects of Human Adipose-Derived Stem Cells in a Rat Cervical Spinal Cord Injury Model. Stem Cells and Development, 2014, 23, 1659-1674.	1.1	38
77	Immortalization of human adipose-derived stromal cells: production of cell lines with high growth rate, mesenchymal marker expression and capability to secrete high levels of angiogenic factors. Stem Cell Research and Therapy, 2014, 5, 63.	2.4	51
78	Grafting and Early Expression of Growth Factors from Adipose-Derived Stem Cells Transplanted into the Cochlea, in a Guinea Pig Model of Acoustic Trauma. Frontiers in Cellular Neuroscience, 2014, 8, 334.	1.8	22
79	Transplantation of Human Adipose Tissue-Derived Stem Cells Delays Clinical Onset and Prolongs Life Span in ALS Mouse Model. Cell Transplantation, 2014, 23, 1585-1597.	1.2	51
80	Symptomatic knee osteoarthritis treatment using autologous adipose derived stem cells and platelet-rich plasma: a clinical study. Biomedical Research and Therapy, 2014, 1, .	0.3	28
81	Gene profile of soluble growth factors involved in angiogenesis, in an adiposeâ€derived stromal cell/endothelial cell coâ€culture, 3D gel model. Cell Proliferation, 2015, 48, 405-412.	2.4	17
82	<scp>TGF</scp> β signalling pathway regulates angiogenesis by endothelial cells, in an adiposeâ€derived stromal cell/endothelial cell coâ€culture 3D gel model. Cell Proliferation, 2015, 48, 729-737.	2.4	13
83	Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art. Cell Regeneration, 2015, 4, 4:7.	1.1	117
84	Adipose-derived stem cells ameliorate erectile dysfunction after cavernous nerve cryoinjury. Andrology, 2015, 3, 694-701.	1.9	25
85	Improvement of Fat Transplantation. Annals of Plastic Surgery, 2015, 75, 463-470.	0.5	22
86	Management of knee osteoarthritis by combined stromal vascular fraction cell therapy, platelet-rich plasma, and musculoskeletal exercises: a case series. Journal of Pain Research, 2015, 8, 799.	0.8	57
87	Failure of Y-27632 to improve the culture of adult human adipose-derived stem cells. Stem Cells and Cloning: Advances and Applications, 2015, 8, 15.	2.3	4
88	Trends in Mesenchymal Stem Cells' Applications for Skeletal Muscle Repair and Regeneration., 0,,.		7
89	Characterization of In Vitro Engineered Human Adipose Tissues: Relevant Adipokine Secretion and Impact of TNF-α. PLoS ONE, 2015, 10, e0137612.	1.1	32
90	Comprehensive Review of Adipose Stem Cells and Their Implication in Distraction Osteogenesis and Bone Regeneration. BioMed Research International, 2015, 2015, 1-20.	0.9	38
91	Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration. Stem Cells International, 2015, 2015, 1-24.	1.2	135

#	Article	IF	CITATIONS
92	Adipose-derived Mesenchymal Stem Cells and Their Reparative Potential in Ischemic Heart Disease. Revista Espanola De Cardiologia (English Ed), 2015, 68, 599-611.	0.4	28
94	Mesenchymal stem cells: potential for therapy and treatment of chronic non-healing skin wounds. Organogenesis, 2015, 11, 183-206.	0.4	91
95	Lack of anti-inflammatory and anti-catabolic effects on basal inflamed osteoarthritic chondrocytes or synoviocytes by adipose stem cell-conditioned medium. Osteoarthritis and Cartilage, 2015, 23, 2045-2057.	0.6	19
96	Mesenchymal Stem Cells and Biomaterials Systems – Perspectives for Skeletal Muscle Tissue Repair and Regeneration. Procedia Engineering, 2015, 110, 90-97.	1.2	5
97	In vitro augmentation of mesenchymal stem cells viability in stressful microenvironments. Cell Stress and Chaperones, 2015, 20, 237-251.	1.2	85
98	Human Adipose-Derived Stem Cells (ASC): Their Efficacy in Clinical Applications., 2015,, 135-149.		2
99	Early neuroprotective effect with lack of long-term cell replacement effect on experimental stroke after intra-arterial transplantation of adipose-derived mesenchymal stromal cells. Cytotherapy, 2015, 17, 1090-1103.	0.3	44
100	Células madre mesenquimales derivadas de tejido adiposo y su potencial reparador en la enfermedad isquémica coronaria. Revista Espanola De Cardiologia, 2015, 68, 599-611.	0.6	39
101	Human adipose-derived stromal cells for the production of completely autologous self-assembled tissue-engineered vascular substitutes. Acta Biomaterialia, 2015, 24, 209-219.	4.1	30
102	A polyion complex sensor array for markerless and noninvasive identification of differentiated mesenchymal stem cells from human adipose tissue. Chemical Science, 2015, 6, 5831-5836.	3.7	31
103	Cell therapy for liver diseases: current medicine and future promises. Expert Review of Gastroenterology and Hepatology, 2015, 9, 837-850.	1.4	1
104	Adipose-derived stem cells and platelet-rich plasma for preventive treatment of bisphosphonate-related osteonecrosis of the jaw in a murine model. Journal of Cranio-Maxillo-Facial Surgery, 2015, 43, 1161-1168.	0.7	45
105	Enhancing repair of full-thickness excisional wounds in a murine model: Impact of tissue-engineered biological dressings featuring human differentiated adipocytes. Acta Biomaterialia, 2015, 22, 39-49.	4.1	31
106	Implications for human adiposeâ€derived stem cells in plastic surgery. Journal of Cellular and Molecular Medicine, 2015, 19, 21-30.	1.6	77
107	Improved immobilization of gelatin on a modified polyurethane urea. Journal of Bioactive and Compatible Polymers, 2015, 30, 57-73.	0.8	8
108	Transplantation of Adipose Tissue-Derived Stromal Cells Promotes the Survival of Venous-Congested Skin Flaps in Rabbit Ear. Cell Biochemistry and Biophysics, 2015, 71, 557-563.	0.9	3
109	Direct and Indirect Effects of a Combination of Adipose-Derived Stem Cells and Platelet-Rich Plasma on Bone Regeneration. Tissue Engineering - Part A, 2015, 21, 895-905.	1.6	62
110	Stem cells as drug delivery methods: Application of stem cell secretome for regeneration. Advanced Drug Delivery Reviews, 2015, 82-83, 1-11.	6.6	215

#	ARTICLE	IF	Citations
111	Creating capillary networks within human engineered tissues: Impact of adipocytes and their secretory products. Acta Biomaterialia, 2015, 11, 333-345.	4.1	23
112	New and Improved Tissue Engineering Techniques: Production of Exogenous Material-Free Stroma by the Self-Assembly Technique. , 2016, , .		0
113	Evaluation of adipose-derived stem cells for tissue-engineered muscle repair construct-mediated repair of a murine model of volumetric muscle loss injury. International Journal of Nanomedicine, 2016, 11, 1461.	3.3	31
114	Placenta Derived Mesenchymal Stem Cells Hosted on RKKP Glass-Ceramic: A Tissue Engineering Strategy for Bone Regenerative Medicine Applications. BioMed Research International, 2016, 2016, 1-11.	0.9	10
115	Advances in the Use of Stem Cells in Veterinary Medicine: From Basic Research to Clinical Practice. Scientifica, 2016, 2016, 1-12.	0.6	28
116	Neuromuscular Regeneration: Perspective on the Application of Mesenchymal Stem Cells and Their Secretion Products. Stem Cells International, 2016, 2016, 1-16.	1.2	48
117	Secretome of Olfactory Mucosa Mesenchymal Stem Cell, a Multiple Potential Stem Cell. Stem Cells International, 2016, 2016, 1-16.	1.2	55
118	Advances in Adipose-Derived Stem Cells Isolation, Characterization, and Application in Regenerative Tissue Engineering. Stem Cells International, 2016, 2016, 1-9.	1.2	117
119	Cutaneous Applications of Stem Cells for Skin Tissue Engineering. , 2016, , 317-336.		1
120	Adiposeâ€Derived Stem Cells Support Lymphangiogenic Parameters In Vitro. Journal of Cellular Biochemistry, 2016, 117, 2620-2629.	1.2	23
121	Lipoaspirate fluid proteome: A preliminary investigation by LC-MS top-down/bottom-up integrated platform of a high potential biofluid in regenerative medicine. Electrophoresis, 2016, 37, 1015-1026.	1.3	14
122	ADSCs in a fibrin matrix enhance nerve regeneration after epineural suturing in a rat model. Microsurgery, 2016, 36, 491-500.	0.6	33
125	Autologous fat transplantation for breast reconstruction: A literature review. Annals of Medicine and Surgery, 2016, 12, 94-100.	0.5	64
126	Adipose-Derived Stem Cells Enhance Axonal Regeneration through Cross-Facial Nerve Grafting in a Rat Model of Facial Paralysis. Plastic and Reconstructive Surgery, 2016, 138, 387-396.	0.7	24
127	Stem Cells in Functional Bladder Engineering. Transfusion Medicine and Hemotherapy, 2016, 43, 328-335.	0.7	16
128	Adipose-Derived Stem Cells as a Tool in Cell-Based Therapies. Archivum Immunologiae Et Therapiae Experimentalis, 2016, 64, 443-454.	1.0	144
129	Impact of TNF and IL- $1\hat{1}^2$ on capillary networks within engineered human adipose tissues. Journal of Materials Chemistry B, 2016, 4, 3608-3619.	2.9	5
130	Adipose-Derived Stem Cells Improve Collagenase-Induced Tendinopathy in a Rat Model. American Journal of Sports Medicine, 2016, 44, 1983-1989.	1.9	59

#	ARTICLE	IF	CITATIONS
131	Adipose-derived stem cells in cartilage regeneration: current perspectives. Regenerative Medicine, 2016, 11, 693-703.	0.8	15
132	Increasing of blastocyst rate and gene expression in co-culture of bovine embryos with adult adipose tissue-derived mesenchymal stem cells. Journal of Assisted Reproduction and Genetics, 2016, 33, 1395-1403.	1.2	26
133	Paracrine Effects of Adipose-Derived Stem Cells on Matrix Stiffness-Induced Cardiac Myofibroblast Differentiation via Angiotensin II Type 1 Receptor and Smad7. Scientific Reports, 2016, 6, 33067.	1.6	46
134	Adipose-derived stem cell exosomes alleviate pathology of amyotrophic lateral sclerosis inÂvitro. Biochemical and Biophysical Research Communications, 2016, 479, 434-439.	1.0	105
135	Therapeutic potential of adipose stem cellâ€derived conditioned medium against pulmonary hypertension and lung fibrosis. British Journal of Pharmacology, 2016, 173, 2859-2879.	2.7	44
136	Cardiac Adipose-Derived Stem Cells Exhibit High Differentiation Potential to Cardiovascular Cells in C57BL/6 Mice. Stem Cells Translational Medicine, 2016, 5, 141-151.	1.6	49
137	Combination of a peptide-modified gellan gum hydrogel with cell therapy in a lumbar spinal cord injury animal model. Biomaterials, 2016, 105, 38-51.	5.7	68
138	Integrin-binding elastin-like polypeptide as an in situ gelling delivery matrix enhances the therapeutic efficacy of adipose stem cells in healing full-thickness cutaneous wounds. Journal of Controlled Release, 2016, 237, 89-100.	4.8	32
139	Molecular Characterization of Equine APRIL and its Expression Analysis During the Adipogenic Differentiation of Equine Adipose-Derived Stem Cell <i>In Vitro</i> . Animal Biotechnology, 2016, 27, 262-268.	0.7	0
140	Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: multicenter randomized controlled clinical trial (phase I/II). Journal of Translational Medicine, 2016, 14, 246.	1.8	238
141	Adult Human Peripheral Blood Mononuclear Cells Are Capable of Producing Neurocyte or Photoreceptor-Like Cells That Survive in Mouse Eyes After Preinduction With Neonatal Retina. Stem Cells Translational Medicine, 2016, 5, 1515-1524.	1.6	9
142	Fat grafting for breast cancer patients: From basic science to clinical studies. European Journal of Surgical Oncology, 2016, 42, 1088-1102.	0.5	16
143	Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Research and Therapy, 2016, 7, 24.	2.4	195
144	Gene-activated fat grafts for the repair of spinal cord injury: a pilot study. Acta Neurochirurgica, 2016, 158, 367-378.	0.9	8
145	Fat grafting for the prevention of pressure ulcers: a case series. European Journal of Plastic Surgery, 2016, 39, 113-118.	0.3	1
146	Effects of induced pluripotent stem cells-derived conditioned medium on the proliferation and anti-apoptosis of human adipose-derived stem cells. Molecular and Cellular Biochemistry, 2016, 413, 69-85.	1.4	9
147	Smad signal pathway regulates angiogenesis via endothelial cell in an adipose-derived stromal cell/endothelial cell co-culture, 3D gel model. Molecular and Cellular Biochemistry, 2016, 412, 281-288.	1.4	26
148	Type I and II Diabetic Adipose-Derived Stem Cells Respond <i>In Vitro</i> to Dehydrated Human Amnion/Chorion Membrane Allograft Treatment by Increasing Proliferation, Migration, and Altering Cytokine Secretion. Advances in Wound Care, 2016, 5, 43-54.	2.6	39

#	ARTICLE	IF	CITATIONS
149	Interaction Between Breast Cancer Cells and Adipose Tissue Cells Derived from Fat Grafting. Aesthetic Surgery Journal, 2016, 36, 358-363.	0.9	39
150	Poly-3-hydroxybutyrate strips seeded with regenerative cells are effective promoters of peripheral nerve repair. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 812-821.	1.3	32
151	Wound healing potential of adipose tissue stem cell extract. Biochemical and Biophysical Research Communications, 2017, 485, 30-34.	1.0	46
152	Effect of hypoxia on human adipose-derived mesenchymal stem cells and its potential clinical applications. Cellular and Molecular Life Sciences, 2017, 74, 2587-2600.	2.4	60
153	Lipofilling: a promising tool for digital pulp reconstruction. European Journal of Plastic Surgery, 2017, 40, 587-592.	0.3	2
154	The effect of adipose tissue-derived stem cells in a middle cerebral artery occlusion stroke model depends on their engraftment rate. Stem Cell Research and Therapy, 2017, 8, 96.	2.4	18
155	Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs. Biomaterials, 2017, 140, 103-114.	5.7	220
156	Human Adipose-Derived Mesenchymal Stem Cell-Secreted CXCL1 and CXCL8 Facilitate Breast Tumor Growth By Promoting Angiogenesis. Stem Cells, 2017, 35, 2060-2070.	1.4	81
157	Delivered adiposeâ€derived stromal cells improve hostâ€derived adipose tissue formation in composite constructs in vivo. Laryngoscope, 2017, 127, E428-E436.	1.1	4
159	The transplantation of mesenchymal stem cells derived from unconventional sources: an innovative approach to multiple sclerosis therapy. Archivum Immunologiae Et Therapiae Experimentalis, 2017, 65, 363-379.	1.0	18
160	Fibroblast Growth Factor 1-Transfected Adipose-Derived Mesenchymal Stem Cells Promote Angiogenic Proliferation. DNA and Cell Biology, 2017, 36, 401-412.	0.9	20
161	Opposite Effects of Mechanical Action of Fluid Flow on Proangiogenic Factor Secretion From Human Adiposeâ€Derived Stem Cells With and Without Oxidative Stress. Journal of Cellular Physiology, 2017, 232, 2158-2167.	2.0	11
162	Enhanced regeneration potential of mobilized dental pulp stem cells from immature teeth. Oral Diseases, 2017, 23, 620-628.	1.5	25
163	Off-label use of adipose-derived stem cells. Annals of Medicine and Surgery, 2017, 24, 44-51.	0.5	24
164	Secretome released from hydrogel-embedded adipose mesenchymal stem cells protects against the Parkinsonâ \in ^{MS} disease related toxin 6-hydroxydopamine. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 121, 113-120.	2.0	50
165	Adipogenic differentiation of human adipose derived mesenchymal stem cells in 3D architectured gelatin based hydrogels (ArcGel). Clinical Hemorheology and Microcirculation, 2017, 67, 297-307.	0.9	10
166	Recent progresses in plastic surgery using adipose-derived stem cells, biomaterials and growth factors. Journal of Microencapsulation, 2017, 34, 699-706.	1.2	12
167	Cytokines From Mesenchymal Stem Cells Induce Immunosuppressive Cells. , 2017, , 257-276.		0

#	Article	IF	CITATIONS
168	Procedure, applications, and outcomes of autologous fat grafting. Annals of Medicine and Surgery, 2017, 20, 49-60.	0.5	217
169	The science behind autologous fat grafting. Annals of Medicine and Surgery, 2017, 24, 65-73.	0.5	137
170	Combination treatment of adipose-derived stem cells and adiponectin attenuates pulmonary arterial hypertension in rats by inhibiting pulmonary arterial smooth muscle cell proliferation and regulating the AMPK/BMP/Smad pathway. International Journal of Molecular Medicine, 2017, 41, 51-60.	1.8	26
171	Impact of Age on Human Adipose Stem Cells for Bone Tissue Engineering. Cell Transplantation, 2017, 26, 1496-1504.	1.2	110
172	The neuroprotective effects of human bone marrow mesenchymal stem cells are dose-dependent in TNBS colitis. Stem Cell Research and Therapy, 2017, 8, 87.	2.4	22
173	Fibroblast growth factor and vascular endothelial growth factor play a critical role in endotheliogenesis from human adipose-derived stem cells. Journal of Vascular Surgery, 2017, 65, 1483-1492.	0.6	51
174	The <scp>JAK</scp> / <scp>STAT</scp> 3 signalling pathway regulated angiogenesis in an endothelial cell/adiposeâ€derived stromal cell coâ€culture, 3D gel model. Cell Proliferation, 2017, 50, .	2.4	60
175	Periodontal Tissue Regeneration Using Syngeneic Adipose-Derived Stromal Cells in a Mouse Model. Stem Cells Translational Medicine, 2017, 6, 656-665.	1.6	35
176	Scaffold-Free Tissue-Engineered Allogenic Adipose-Derived Stem Cells Promote Meniscus Healing. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2017, 33, 346-354.	1.3	46
177	Environmental preconditioning rejuvenates adult stem cells' proliferation and chondrogenic potential. Biomaterials, 2017, 117, 10-23.	5.7	59
178	Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. International Journal of Molecular Sciences, 2017, 18, 1852.	1.8	842
179	Influence of Different ECM-Like Hydrogels on Neurite Outgrowth Induced by Adipose Tissue-Derived Stem Cells. Stem Cells International, 2017, 2017, 1-10.	1.2	17
180	Trophic Activity and Phenotype of Adipose Tissue-Derived Mesenchymal Stem Cells as a Background of Their Regenerative Potential. Stem Cells International, 2017, 2017, 1-13.	1.2	67
181	The Effect of PEI and PVP-Stabilized Gold Nanoparticles on Equine Platelets Activation: Potential Application in Equine Regenerative Medicine. Journal of Nanomaterials, 2017, 2017, 1-11.	1.5	7
182	Adipose-Derived Stem Cells in Regenerative Medicine. , 2017, , 459-479.		0
183	6.13 Tissue Engineering of Muscle Tissue â~†., 2017,, 216-235.		1
184	Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy. PLoS ONE, 2017, 12, e0178011.	1.1	100
185	Human adipose derived stem cells regress fibrosis in a chronic renal fibrotic model induced by adenine. PLoS ONE, 2017, 12, e0187907.	1.1	21

#	Article	IF	Citations
186	Olfactory Mucosa Mesenchymal Stem Cells and Biomaterials: A New Combination to Regenerative Therapies after Peripheral Nerve Injury. , 0, , .		3
187	Gelatin positively regulates the immunosuppressive capabilities of adipose-derived mesenchymal stem cells. Turkish Journal of Biology, 2017, 41, 969-978.	2.1	6
188	Adipose tissue extract shows potential for wound healing: in vitro proliferation and migration of cell types contributing to wound healing in the presence of adipose tissue preparation and platelet rich plasma. Cytotechnology, 2018, 70, 1193-1204.	0.7	20
189	The secretome of adipose-derived mesenchymal stem cells protects SH-SY5Y cells from arsenic-induced toxicity, independent of a neuron-like differentiation mechanism. NeuroToxicology, 2018, 67, 54-64.	1.4	10
190	Self-assembled human osseous cell sheets as living biopapers for the laser-assisted bioprinting of human endothelial cells. Biofabrication, 2018, 10, 035006.	3.7	56
191	Enhancement of Progenitor Cells by Two-Step Centrifugation of Emulsified Lipoaspirates. Plastic and Reconstructive Surgery, 2018, 142, 99-109.	0.7	46
192	Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration. Advanced Healthcare Materials, 2018, 7, e1701046.	3.9	30
193	Mesenchymal stromal/stem cells as potential therapy in diabetic retinopathy. Immunobiology, 2018, 223, 729-743.	0.8	56
194	Human adipose tissue-derived stromal cells in combination with exogenous stimuli facilitate three-dimensional network formation of human endothelial cells derived from various sources. Vascular Pharmacology, 2018, 106, 28-36.	1.0	17
195	Bladder regeneration through stem cell therapy. Expert Opinion on Biological Therapy, 2018, 18, 525-544.	1.4	10
196	The neuroprotective effect of rat adipose tissue-derived mesenchymal stem cell-conditioned medium on cortical neurons using an in vitro model of SCI inflammation. Neurological Research, 2018, 40, 258-267.	0.6	10
197	Cornea-Derived Mesenchymal Stromal Cells Therapeutically Modulate Macrophage Immunophenotype and Angiogenic Function. Stem Cells, 2018, 36, 775-784.	1.4	49
198	Delivery of adiposeâ€derived stem cells in poloxamer hydrogel improves peripheral nerve regeneration. Muscle and Nerve, 2018, 58, 251-260.	1.0	33
199	Co-Transplantation of Adipose Tissue-Derived Stromal Cells and Olfactory Ensheathing Cells for Spinal Cord Injury Repair. Stem Cells, 2018, 36, 696-708.	1.4	48
200	Biomimetic Tissueâ€Engineered Bone Substitutes for Maxillofacial and Craniofacial Repair: The Potential of Cell Sheet Technologies. Advanced Healthcare Materials, 2018, 7, e1700919.	3.9	60
201	Efficacy of autologous fat graft injection in the treatment of anovaginal fistulas. Techniques in Coloproctology, 2018, 22, 45-51.	0.8	26
202	Adipose-Derived Tissue in the Treatment of Dermal Fibrosis. Annals of Plastic Surgery, 2018, 80, 297-307.	0.5	41
203	Adipose stromal vascular fraction attenuates TH1 cell-mediated pathology in a model of multiple sclerosis. Journal of Neuroinflammation, 2018, 15, 77.	3.1	17

#	Article	IF	CITATIONS
204	Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells – a review. Biotechnology Advances, 2018, 36, 1111-1126.	6.0	343
205	Blockade of Neuroglobin Reduces Protection of Conditioned Medium from Human Mesenchymal Stem Cells in Human Astrocyte Model (T98G) Under a Scratch Assay. Molecular Neurobiology, 2018, 55, 2285-2300.	1.9	34
206	Elucidating the Preadipocyte and Its Role in Adipocyte Formation: a Comprehensive Review. Stem Cell Reviews and Reports, 2018, 14, 27-42.	5.6	58
207	Adipose-derived stem cells decrease pain in a rat model of oxaliplatin-induced neuropathy: Role of VEGF-A modulation. Neuropharmacology, 2018, 131, 166-175.	2.0	33
208	Proliferative Cells From Kaposiform Lymphangiomatosis Lesions Resemble Mesenchyme Stem Cell–like Pericytes Defective in Vessel Formation. Journal of Pediatric Hematology/Oncology, 2018, 40, e495-e504.	0.3	16
209	In vivo Evaluation of Nanostructured Fibrin-Agarose Hydrogels With Mesenchymal Stem Cells for Peripheral Nerve Repair. Frontiers in Cellular Neuroscience, 2018, 12, 501.	1.8	39
210	Fibroblast growth factor-2, but not the adipose tissue-derived stromal cells secretome, inhibits TGF- \hat{l}^21 -induced differentiation of human cardiac fibroblasts into myofibroblasts. Scientific Reports, 2018, 8, 16633.	1.6	31
211	Immunomodulatory Effects of Placenta-derived Mesenchymal Stem Cells on T Cells by Regulation of FoxP3 Expression. International Journal of Stem Cells, 2018, 11, 196-204.	0.8	19
212	Effect of Adipose-Derived Stem Cells and Their Exo as Adjunctive Therapy to Nonsurgical Periodontal Treatment: A Histologic and Histomorphometric Study in Rats. Biomolecules, 2018, 8, 167.	1.8	65
213	Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. Frontiers in Immunology, 2018, 9, 2837.	2.2	350
214	Characterization of Senescence of Human Adipose-Derived Stem Cells After Long-Term Expansion. Advances in Experimental Medicine and Biology, 2018, 1084, 109-128.	0.8	44
215	Adipose Tissue-Derived Stem Cells: Sources and Therapeutic Applications. , 2018, , 45-45.		0
216	Adipose-derived Stem/Stromal Cells on Electrospun Fibrin Microfiber Bundles Enable Moderate Muscle Reconstruction in a Volumetric Muscle Loss Model. Cell Transplantation, 2018, 27, 1644-1656.	1.2	35
217	Short-term post-implantation dynamics of in vitro engineered human microvascularized adipose tissues. Biomedical Materials (Bristol), 2018, 13, 065013.	1.7	6
218	Influence of passage number on the impact of the secretome of adipose tissue stem cells on neural survival, neurodifferentiation and axonal growth. Biochimie, 2018, 155, 119-128.	1.3	20
219	Comparative Analysis of Human Adipose-Derived Mesenchymal Stem Cells from Orbital and Abdominal Fat. Stem Cells International, 2018, 2018, 1-9.	1.2	22
220	Differential Proteomic Analysis Predicts Appropriate Applications for the Secretome of Adipose-Derived Mesenchymal Stem/Stromal Cells and Dermal Fibroblasts. Stem Cells International, 2018, 2018, 1-11.	1,2	33
221	Adipose-Derived Stromal Vascular Fraction/Xenohybrid Bone Scaffold: An Alternative Source for Bone Regeneration. Stem Cells International, 2018, 2018, 1-11.	1.2	36

#	Article	IF	CITATIONS
222	The combination of mannitol and temozolomide increases the effectiveness of stem cell treatment in a chronic stroke model. Cytotherapy, 2018, 20, 820-829.	0.3	19
223	Revisiting the Advances in Isolation, Characterization and Secretome of Adipose-Derived Stromal/Stem Cells. International Journal of Molecular Sciences, 2018, 19, 2200.	1.8	86
224	Adipose-Derived Mesenchymal Stem Cells: A New Tool for the Treatment of Renal Fibrosis. Stem Cells and Development, 2018, 27, 1406-1411.	1.1	14
225	Exploiting the impact of the secretome of MSCs isolated from different tissue sources on neuronal differentiation and axonal growth. Biochimie, 2018, 155, 83-91.	1.3	47
226	Autologous transplantation of adipose-derived stem cells improves functional recovery of skeletal muscle without direct participation in new myofiber formation. Stem Cell Research and Therapy, 2018, 9, 195.	2.4	40
227	The impact of Mesenchymal Stem Cells and their secretome as a treatment for gliomas. Biochimie, 2018, 155, 59-66.	1.3	19
228	Significant therapeutic effects of adult human multipotent neural cells on spinal cord injury. Stem Cell Research, 2018, 31, 71-78.	0.3	10
229	Mesenchymal stem cells promote lymphangiogenic properties of lymphatic endothelial cells. Journal of Cellular and Molecular Medicine, 2018, 22, 3740-3750.	1.6	26
230	Nanovesicles from adipose-derived mesenchymal stem cells inhibit T lymphocyte trafficking and ameliorate chronic experimental autoimmune encephalomyelitis. Scientific Reports, 2018, 8, 7473.	1.6	61
231	Adipose-Derived Stem Cells in Aesthetic Surgery. Aesthetic Surgery Journal, 2019, 39, 423-438.	0.9	20
232	The effect of culture media on large-scale expansion and characteristic of adipose tissue-derived mesenchymal stromal cells. Stem Cell Research and Therapy, 2019, 10, 235.	2.4	55
233	Crosstalk between stem cell and spinal cord injury: pathophysiology and treatment strategies. Stem Cell Research and Therapy, 2019, 10, 238.	2.4	89
234	The Role of Mesenchymal Stem Cells in Radiation-Induced Lung Fibrosis. International Journal of Molecular Sciences, 2019, 20, 3876.	1.8	66
235	Transcriptomic Profiling of Adipose Derived Stem Cells Undergoing Osteogenesis by RNA-Seq. Scientific Reports, 2019, 9, 11800.	1.6	31
237	Human Platelet Lysate as a Functional Substitute for Fetal Bovine Serum in the Culture of Human Adipose Derived Stromal/Stem Cells. Cells, 2019, 8, 724.	1.8	41
238	Adipose-Derived Stem Cells in Cancer Progression: New Perspectives and Opportunities. International Journal of Molecular Sciences, 2019, 20, 3296.	1.8	51
239	Preparation and Characterization of Human Adipose Tissue-Derived Extracellular Matrix, Growth Factors, and Stem Cells: A Concise Review. Tissue Engineering and Regenerative Medicine, 2019, 16, 385-393.	1.6	71
240	GDNF enhances the anti-inflammatory effect of human adipose-derived mesenchymal stem cell-based therapy in renal interstitial fibrosis. Stem Cell Research, 2019, 41, 101605.	0.3	24

#	Article	IF	CITATIONS
241	Cryopreservation Impacts Cell Functionality of Long Term Expanded Adipose-Derived Stem Cells. Journal of Stem Cell Research & Therapy, 2019, 09, .	0.3	11
242	Principal Criteria for Evaluating the Quality, Safety and Efficacy of hMSC-Based Products in Clinical Practice: Current Approaches and Challenges. Pharmaceutics, 2019, 11, 552.	2.0	37
243	Stem cell secretome as a new booster for regenerative medicine. BioScience Trends, 2019, 13, 299-307.	1.1	52
244	Autologous Fat Grafting for Craniofacial Reconstruction in Oncologic Patients. Medicina (Lithuania), 2019, 55, 655.	0.8	7
245	Stromal vascular fraction technologies and clinical applications. Expert Opinion on Biological Therapy, 2019, 19, 1289-1305.	1.4	73
246	Seeding decellularized nerve allografts with adipose-derived mesenchymal stromal cells: An in vitro analysis of the gene expression and growth factors produced. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2019, 72, 1316-1325.	0.5	20
247	The role of stem cells in anti-aging medicine. Clinics in Dermatology, 2019, 37, 320-325.	0.8	13
248	Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte. Stem Cell Research and Therapy, 2019, 10, 95.	2.4	211
249	Adipose tissue-derived stem cells boost vascularization in grafted ovarian tissue by growth factor secretion and differentiation into endothelial cell lineages. Molecular Human Reproduction, 2019, 25, 184-193.	1.3	23
250	Adipose-derived stem cell extracellular vesicles: A systematic review✰. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2019, 72, 1207-1218.	0.5	31
251	Adipose-derived mesenchymal stromal cells improve hemodynamic function in pulmonary arterial hypertension: identification of microRNAs implicated in modulating endothelial function. Cytotherapy, 2019, 21, 416-427.	0.3	8
252	Improved guided bone regeneration by combined application of unmodified, fresh autologous adipose derived regenerative cells and plasma rich in growth factors: A first-in-human case report and literature review. World Journal of Stem Cells, 2019, 11, 124-146.	1.3	18
253	Secretome of Mesenchymal Stem Cells and Its Potential Protective Effects on Brain Pathologies. Molecular Neurobiology, 2019, 56, 6902-6927.	1.9	52
254	Decitabine improves platelet recovery by down-regulating IL-8 level in MDS/AML patients with thrombocytopenia. Blood Cells, Molecules, and Diseases, 2019, 76, 66-71.	0.6	20
255	Surface tethering of stem cells with H2O2-responsive anti-oxidizing colloidal particles for protection against oxidation-induced death. Biomaterials, 2019, 201, 1-15.	5.7	28
256	Efficientln VitroDifferentiation of Adipose Tissue-Derived Mesenchymal Stem Cells Into the Cardiomyocyte Using Plant-Derived Natural Compounds. Proceedings of the Singapore National Academy of Science, 2019, 13, 47-63.	0.1	2
257	Comparison of Properties of Stem Cells Isolated from Adipose Tissue and Lipomas in Dogs. Stem Cells International, 2019, 2019, 1-15.	1.2	12
258	Nanofat Cell Aggregates: A Nearly Constitutive Stromal Cell Inoculum for Regenerative Site-Specific Therapies. Plastic and Reconstructive Surgery, 2019, 144, 1079-1088.	0.7	51

#	ARTICLE	IF	CITATIONS
259	An updated review of adipose derived-mesenchymal stem cells and their applications in musculoskeletal disorders. Expert Opinion on Biological Therapy, 2019, 19, 233-248.	1.4	28
260	A Scaffold-Free Allogeneic Construct From Adipose-Derived Stem Cells Regenerates an Osteochondral Defect in a Rabbit Model. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2019, 35, 583-593.	1.3	25
261	Bone Tissue Engineering Using Human Cells: A Comprehensive Review on Recent Trends, Current Prospects, and Recommendations. Applied Sciences (Switzerland), 2019, 9, 174.	1.3	58
262	Canine Adipose-Derived Mesenchymal Stromal Cells Enhance Neuroregeneration in a Rat Model of Sciatic Nerve Crush Injury. Cell Transplantation, 2019, 28, 47-54.	1.2	19
263	Adiposeâ€derived stem cells onditioned medium improved osteogenic differentiation of induced pluripotent stem cells when grown on polycaprolactone nanofibers. Journal of Cellular Physiology, 2019, 234, 10315-10323.	2.0	21
264	Mapping theme trends and knowledge structure on adipose-derived stem cells: a bibliometric analysis from 2003 to 2017. Regenerative Medicine, 2019, 14, 33-48.	0.8	12
265	Evaluation of Cilia Function in Rat Trachea Reconstructed Using Collagen Sponge Scaffold Seeded with Adipose Tissueâ€Derived Stem Cells. Anatomical Record, 2020, 303, 471-477.	0.8	6
266	Cell therapies for spinal cord injury regeneration. , 2020, , 157-186.		2
267	Clinical safety of intratesticular transplantation of allogeneic bone marrow multipotent stromal cells in stallions. Reproduction in Domestic Animals, 2020, 55, 429-437.	0.6	8
268	Effect of Autologous Adipose-Derived Stromal Vascular Fraction Transplantation on Endometrial Regeneration in Patients of Asherman's Syndrome: a Pilot Study. Reproductive Sciences, 2020, 27, 561-568.	1.1	31
269	3D microtissue–derived human stem cells seeded on electrospun nanocomposites under shear stress: Modulation of gene expression. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102, 103481.	1.5	8
270	Therapeutic mesenchymal stromal stem cells: Isolation, characterization and role in equine regenerative medicine and metabolic disorders. Stem Cell Reviews and Reports, 2020, 16, 301-322.	1.7	27
271	New Frontiers in Skin Rejuvenation, Including Stem Cells and Autologous Therapies. Facial Plastic Surgery Clinics of North America, 2020, 28, 101-117.	0.9	14
272	Efficacy of human HC016 cell transplants on neuroprotection and functional recovery in a rat model of acute spinal cord injury. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 319-333.	1.3	6
273	Clinical Translational Potential in Skin Wound Regeneration for Adipose-Derived, Blood-Derived, and Cellulose Materials: Cells, Exosomes, and Hydrogels. Biomolecules, 2020, 10, 1373.	1.8	26
274	Safety and Tolerability of Stromal Vascular Fraction Combined with \hat{I}^2 -Tricalcium Phosphate in Posterior Lumbar Interbody Fusion: Phase I Clinical Trial. Cells, 2020, 9, 2250.	1.8	9
275	Microfluidic Cell Stretching for Highly Effective Gene Delivery into Hard-to-Transfect Primary Cells. ACS Nano, 2020, 14, 15094-15106.	7.3	55
276	Paracrine effect of human adipose-derived stem cells on lymphatic endothelial cells. Regenerative Medicine, 2020, 15, 2085-2098.	0.8	11

#	ARTICLE	IF	CITATIONS
277	3D Bioprinting of Human Adipose-Derived Stem Cells and Their Tenogenic Differentiation in Clinical-Grade Medium. International Journal of Molecular Sciences, 2020, 21, 8694.	1.8	19
278	Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends in Pharmacological Sciences, 2020, 41, 653-664.	4.0	379
279	Therapeutic applications of adipose cell-free derivatives: a review. Stem Cell Research and Therapy, 2020, 11, 312.	2.4	89
280	Adipose Tissue-Derived Stem Cells: The Biologic Basis and Future Directions for Tissue Engineering. Materials, 2020, 13, 3210.	1.3	26
281	A Systematic Review of the Effectiveness of Cell-Based Therapy in Repairing Peripheral Nerve Gap Defects. Prosthesis, 2020, 2, 153-167.	1.1	3
282	Grafts of human adipose-derived stem cells into a biodegradable poly (acid lactic) conduit enhances sciatic nerve regeneration. Brain Research, 2020, 1747, 147026.	1.1	2
283	Combination of a Gellan Gum-Based Hydrogel With Cell Therapy for the Treatment of Cervical Spinal Cord Injury. Frontiers in Bioengineering and Biotechnology, 2020, 8, 984.	2.0	10
284	Modulation of Human Adipose Stem Cells' Neurotrophic Capacity Using a Variety of Growth Factors for Neural Tissue Engineering Applications: Axonal Growth, Transcriptional, and Phosphoproteomic Analyses In Vitro. Cells, 2020, 9, 1939.	1.8	10
285	Implantation of human adipose-derived stromal cells for the functional recovery of a murine heat-damaged muscle model. Surgery Today, 2020, 50, 1699-1706.	0.7	2
286	Ischemia-Like Stress Conditions Stimulate Trophic Activities of Adipose-Derived Stromal/Stem Cells. Cells, 2020, 9, 1935.	1.8	7
287	HGF and bFGF Secreted by Adipose-Derived Mesenchymal Stem Cells Revert the Fibroblast Phenotype Caused by Vocal Fold Injury in a Rat Model. Journal of Voice, 2022, 36, 622-629.	0.6	7
288	Human Stromal Cell Aggregates Concentrate Adipose Tissue Constitutive Cell Population by In Vitro DNA Quantification Analysis. Plastic and Reconstructive Surgery, 2020, 146, 1285-1293.	0.7	6
289	Obesityâ€Associated Adipose Stromal Cells Promote Breast Cancer Invasion through Direct Cell Contact and ECM Remodeling. Advanced Functional Materials, 2020, 30, 1910650.	7.8	30
290	Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice. Stem Cell Research and Therapy, 2020, 11, 168.	2.4	60
291	Ex-Vivo Stimulation of Adipose Stem Cells by Growth Factors and Fibrin-Hydrogel Assisted Delivery Strategies for Treating Nerve Gap-Injuries. Bioengineering, 2020, 7, 42.	1.6	11
292	Mesenchymal and Induced Pluripotent Stem Cells-Derived Extracellular Vesicles: The New Frontier for Regenerative Medicine?. Cells, 2020, 9, 1163.	1.8	45
293	Adipose tissue and the vascularization of biomaterials: Stem cells, microvascular fragments and nanofat—a review. Cytotherapy, 2020, 22, 400-411.	0.3	34
294	Traumatic Brain Injury and Stem Cells: An Overview of Clinical Trials, the Current Treatments and Future Therapeutic Approaches. Medicina (Lithuania), 2020, 56, 137.	0.8	31

#	Article	IF	Citations
295	Prevention of irradiation-induced damage to salivary glands by local delivery of adipose-derived stem cells via hyaluronic acid-based hydrogels. Journal of Industrial and Engineering Chemistry, 2020, 90, 47-57.	2.9	7
296	Adipose-Derived Stromal Cells Seeded on Integra® Dermal Regeneration Template Improve Post-Burn Wound Reconstruction. Bioengineering, 2020, 7, 67.	1.6	11
297	Exosome Circuitry During (De)(Re)Myelination of the Central Nervous System. Frontiers in Cell and Developmental Biology, 2020, 8, 483.	1.8	19
298	Fat Grafting Improves Fibrosis and Scarring in Vulvar Lichen Sclerosus: Results From a Prospective Cohort Study. Journal of Lower Genital Tract Disease, 2020, 24, 305-310.	0.9	17
299	Adipose Tissue-Derived Stem Cells: Immunomodulatory Effects and Therapeutic Potential. Physiology, 2020, 35, 125-133.	1.6	64
300	Advances in regenerative therapy: A review of the literature and future directions. Regenerative Therapy, 2020, 14, 136-153.	1.4	92
301	<p>Effect of Intracorporeal Human Adipose–Derived Stem Cells (hADSCs) on Corpora Cavernosa Transforming Growth Factor β1 (TGFβ1) and Collagen Type I Concentration in Wistar Rat Priapism Model</p> . Research and Reports in Urology, 2020, Volume 12, 21-27.	0.6	5
302	Cell Secretome: Basic Insights and Therapeutic Opportunities for CNS Disorders. Pharmaceuticals, 2020, 13, 31.	1.7	44
303	Gene expression profile of immunoregulatory cytokines secreted from bone marrow and adipose derived human mesenchymal stem cells in early and late passages. Molecular Biology Reports, 2020, 47, 1723-1732.	1.0	7
304	Coâ€overexpression of VEGF and GDNF in adiposeâ€derived stem cells optimizes therapeutic effect in neurogenic erectile dysfunction model. Cell Proliferation, 2020, 53, e12756.	2.4	18
305	Safety and Efficacy of Human Adipose-Derived Stromal/Stem Cell Therapy in an Immunocompetent Murine Pressure Ulcer Model. Stem Cells and Development, 2020, 29, 440-451.	1.1	9
306	Stem Cells Therapy for Spinal Cord Injury: An Overview of Clinical Trials. International Journal of Molecular Sciences, 2020, 21, 659.	1.8	55
307	Albumin-impregnated bone granules modulate the interactions between mesenchymal stem cells and monocytes under in vitro inflammatory conditions. Materials Science and Engineering C, 2020, 110, 110678.	3.8	15
308	Adipose-derived stem cells improve tendon repair and prevent ectopic ossification in tendinopathy by inhibiting inflammation and inducing neovascularization in the early stage of tendon healing. Regenerative Therapy, 2020, 14, 103-110.	1.4	41
309	Adipose Stem Cell-Derived Extracellular Vesicles Induce Proliferation of Schwann Cells via Internalization. Cells, 2020, 9, 163.	1.8	33
310	Improvement of human pancreatic islet quality after co-culture with human adipose-derived stem cells. Molecular and Cellular Endocrinology, 2020, 505, 110729.	1.6	3
311	Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy. Frontiers in Bioengineering and Biotechnology, 2020, 8, 43.	2.0	204
312	Advances in regenerative medicine for otolaryngology/head and neck surgery. BMJ, The, 2020, 369, m718.	3.0	22

#	Article	IF	CITATIONS
313	Adipose Tissue-derived Stem cells in Plastic and Reconstructive Surgery: A Bibliometric Study. Aesthetic Plastic Surgery, 2021, 45, 679-689.	0.5	17
314	Mesenchymal stem cell–derived small extracellular vesicles and bone regeneration. Basic and Clinical Pharmacology and Toxicology, 2021, 128, 18-36.	1.2	47
315	Adipose-Derived Stromal/Stem Cells from Large Animal Models: from Basic to Applied Science. Stem Cell Reviews and Reports, 2021, 17, 719-738.	1.7	18
316	Epitopeâ€Imprinted Nanoparticles as Transforming Growth Factorâ€Î²3 Sequestering Ligands to Modulate Stem Cell Fate. Advanced Functional Materials, 2021, 31, 2003934.	7.8	21
317	Total breast reconstruction using large-volume condensed and viable fat grafting after mastectomy. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2021, 74, 966-973.	0.5	12
318	Minimally Invasive Cellular Therapies for Osteoarthritis Treatment. Regenerative Engineering and Translational Medicine, 2021, 7, 76-90.	1.6	13
319	Bone marrow mesenchymal stem cells interact with head and neck squamous cell carcinoma cells to promote cancer progression and drug resistance. Neoplasia, 2021, 23, 118-128.	2.3	25
320	Distinct Shades of Adipocytes Control the Metabolic Roles of Adipose Tissues: From Their Origins to Their Relevance for Medical Applications. Biomedicines, 2021, 9, 40.	1.4	10
321	Prospects on the Potential In Vitro Regenerative Features of Mechanically Treated-Adipose Tissue for Osteoarthritis Care. Stem Cell Reviews and Reports, 2021, 17, 1362-1373.	1.7	2
322	Gene expression profiles of human adipose-derived mesenchymal stem cells dynamically seeded on clinically available processed nerve allografts and collagen nerve guides. Neural Regeneration Research, 2021, 16, 1613.	1.6	7
323	Secondary release of the peripheral nerve with autologous fat derivates benefits for functional and sensory recovery. Neural Regeneration Research, 2021, 16, 856.	1.6	5
324	Human Adipose-Derived Stem Cells' Paracrine Factors in Conditioned Medium Can Enhance Porcine Oocyte Maturation and Subsequent Embryo Development. International Journal of Molecular Sciences, 2021, 22, 579.	1.8	11
325	Effect of combined intrathecal/intravenous injection of Bone Marrow Derived Stromal Cells in Platelet Rich Plasma on Spinal Cord Injury in Companion Animals. Open Veterinary Journal, 2021, 11, 270.	0.3	4
326	Superparamagnetic Iron Oxide Particles (VSOPs) Show Genotoxic Effects but No Functional Impact on Human Adipose Tissue-Derived Stromal Cells (ASCs). Materials, 2021, 14, 263.	1.3	5
327	NaHS-Hydrogel and Encapsulated Adipose-Derived Stem Cell Evaluation on an Ex Vivo Second-Degree Burn Model. European Journal of Burn Care, 2021, 2, 9-30.	0.4	1
328	Dissecting the effects of preconditioning with inflammatory cytokines and hypoxia on the angiogenic potential of mesenchymal stromal cell (MSC)-derived soluble proteins and extracellular vesicles (EVs). Biomaterials, 2021, 269, 120633.	5 .7	59
329	Stem Cell-Based Clinical Trials for Diabetes Mellitus. Frontiers in Endocrinology, 2021, 12, 631463.	1.5	58
330	Intraoperative Stromal Vascular Fraction Therapy Improves Histomorphometric and Vascular Outcomes in Irradiated Mandibular Fracture Repair. Plastic and Reconstructive Surgery, 2021, 147, 865-874.	0.7	3

#	Article	IF	Citations
331	Mesenchymal stem cells in the treatment of osteonecrosis of the jaw. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 2021, 47, 65-75.	0.3	4
332	3D cell sheet structure augments mesenchymal stem cell cytokine production. Scientific Reports, 2021, 11, 8170.	1.6	55
333	Comparison of the Effect of Adipocyte-derived Stem Cells and Curcumin Nanoliposomes with Phenytoin on Open Cutaneous Wound Healing in Rats. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2021, 21, 866-877.	0.6	3
334	APPLICATION OF MULTIPOTENT MESENCHYMAL STEM CELL SECRETOME IN THE TREATMENT OF ADJUVANT ARTHRITIS AND CONTACT-ALLERGIC DERMATITIS IN ANIMAL MODELS. Farmatsiya I Farmakologiya, 2021, 8, 416-425.	0.2	2
335	The secretome of mesenchymal stem cells and oxidative stress: challenges and opportunities in cell-free regenerative medicine. Molecular Biology Reports, 2021, 48, 5607-5619.	1.0	21
336	Regenerative and stem cell-based techniques for facial rejuvenation. Experimental Biology and Medicine, 2021, 246, 1829-1837.	1.1	6
337	Neurogenic and Neuroprotective Potential of Stem/Stromal Cells Derived from Adipose Tissue. Cells, 2021, 10, 1475.	1.8	15
338	High-Efficient Production of Adipose-Derived Stem Cell (ADSC) Secretome Through Maturation Process and Its Non-scarring Wound Healing Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 681501.	2.0	28
339	Cell-Based Therapies for Traumatic Brain Injury: Therapeutic Treatments and Clinical Trials. Biomedicines, 2021, 9, 669.	1.4	27
340	Conditioned secretome of adipose-derived stem cells improves dextran sulfate sodium-induced colitis in mice. World Journal of Gastroenterology, 2021, 27, 3342-3356.	1.4	2
341	The Role of Macrophage Migration Inhibitory Factor in Adipose-Derived Stem Cells Under Hypoxia. Frontiers in Physiology, 2021, 12, 638448.	1.3	6
342	Adipose Stromal Cell-Secretome Counteracts Profibrotic Signals From IPF Lung Matrices. Frontiers in Pharmacology, 2021, 12, 669037.	1.6	8
343	Mesenchymal stem cell transplantation for vaginal repair in an ovariectomized rhesus macaque model. Stem Cell Research and Therapy, 2021, 12, 406.	2.4	6
344	Role of adipose mesenchymal stem cells and secretome in peripheral nerve regeneration. Annals of Medicine and Surgery, 2021, 67, 102482.	0.5	18
345	Effects of stem cells from inducible brown adipose tissue on diet-induced obesity in mice. Scientific Reports, 2021, 11, 13923.	1.6	8
346	The promise and challenges of cell therapy for psoriasis*. British Journal of Dermatology, 2021, 185, 887-898.	1.4	13
347	Mesenchymal stem cell-based bioengineered constructs enhance vaginal repair in ovariectomized rhesus monkeys. Biomaterials, 2021, 275, 120863.	5.7	11
348	Differential effects of rat ADSCs encapsulation in fibrin matrix and combination delivery of BDNF and Gold nanoparticles on peripheral nerve regeneration. BMC Neuroscience, 2021, 22, 50.	0.8	11

#	Article	IF	CITATIONS
349	Modular cell-assembled adipose matrix-derived bead foams as a mesenchymal stromal cell delivery platform for soft tissue regeneration. Biomaterials, 2021, 275, 120978.	5.7	4
350	Pathological changes and repair strategies for spinal cord injury. Scientia Sinica Vitae, 2022, 52, 1472-1483.	0.1	1
351	Mesenchymal Stem Cell-Conditioned Media Regulate Steroidogenesis and Inhibit Androgen Secretion in a PCOS Cell Model via BMP-2. International Journal of Molecular Sciences, 2021, 22, 9184.	1.8	24
352	Rapid Magneto-Sonoporation of Adipose-Derived Cells. Materials, 2021, 14, 4877.	1.3	2
353	Biomaterial control of adipose-derived stem/stromal cell differentiation., 2022,, 313-346.		0
354	Adipose stem cells for peripheral nerve engineering. , 2022, , 427-457.		0
355	Pulsed Electromagnetic Field Stimulation in Osteogenesis and Chondrogenesis: Signaling Pathways and Therapeutic Implications. International Journal of Molecular Sciences, 2021, 22, 809.	1.8	41
356	Adipose tissue-derived stem cells in breast reconstruction: a brief review on biology and translation. Stem Cell Research and Therapy, 2021, 12, 8.	2.4	23
357	Stem Cell Therapies for Tissue Regeneration and Wound Healing: Strategies to Enhance Therapeutic Effectiveness., 2019,, 187-199.		2
358	Adipose Tissue: From Energy Reservoir to a Source of Cells for Epithelial Tissue Engineering. , 2014, , 303-326.		6
359	The neurotrophic potential of human platelet lysate substitution for fetal bovine serum in glial induction culture medium. Neuroscience Letters, 2020, 730, 135025.	1.0	3
360	Mesenchymal stem cell-derived secretomes for therapeutic potential of premature infant diseases. Bioscience Reports, 2020, 40, .	1.1	9
361	Treatment of Buerger's disease (Thromboangiitis obliterans) with autologous adipose tissue-derived mesenchymal stem cell: Report of three cases. F1000Research, 0, 8, 2016.	0.8	1
362	Adipose Stromal Cells Amplify Angiogenic Signaling via the VEGF/mTOR/Akt Pathway in a Murine Hindlimb Ischemia Model: A 3D Multimodality Imaging Study. PLoS ONE, 2012, 7, e45621.	1.1	44
363	Neurogenic Effects of Cell-Free Extracts of Adipose Stem Cells. PLoS ONE, 2016, 11, e0148691.	1.1	6
364	Episomal Induced Pluripotent Stem Cells Promote Functional Recovery of Transected Murine Peripheral Nerve. PLoS ONE, 2016, 11, e0164696.	1.1	9
365	Simultaneous Administration of ADSCs-Based Therapy and Gene Therapy Using Ad-huPA Reduces Experimental Liver Fibrosis. PLoS ONE, 2016, 11, e0166849.	1.1	5
366	Soluble factors from adipose tissue-derived mesenchymal stem cells promote canine hepatocellular carcinoma cell proliferation and invasion. PLoS ONE, 2018, 13, e0191539.	1.1	19

#	Article	IF	CITATIONS
367	Adipose-derived stem cells as a remedy. Adipobiology, 2014, 2, 51.	0.1	1
368	Adipobiology of stem cell-based therapy: secretome insight. Biomedical Reviews, 2014, 21, 57.	0.6	4
369	The Combined Effects of Mesenchymal Stem Cell Conditioned Media and Low-Level Laser on Stereological and Biomechanical Parameter in Hypothyroidism Rat Model. Journal of Lasers in Medical Sciences, 2018, 9, 243-248.	0.4	7
370	Effects of Canine and Murine Mesenchymal Stromal Cell Transplantation on Peripheral Nerve Regeneration. International Journal of Stem Cells, 2017, 10, 83-92.	0.8	13
371	TRANSPLANTATION OF ADIPOSE-DERIVED MESENCHYMAL STEM CELLS IN REFRACTORY CROHN'S DISEASE: SYSTEMATIC REVIEW. Arquivos Brasileiros De Cirurgia Digestiva: ABCD = Brazilian Archives of Digestive Surgery, 2019, 32, e1465.	0.5	8
372	Cellular preparations of adipose tissue. Plastic Surgery and Aesthetic Medicine, 2019, , 62.	0.1	2
373	USE OF AUTOLOGOUS ADIPOSE TISSUE DERIVED STROMAL VASCULAR FRACTION IN TREATMENT OF KNEE OSTEOARTHRITIS AND CHONDRAL LESIONS. Journal of Evidence Based Medicine and Healthcare, 2015, 2, 7085-7098.	0.0	1
374	FGF2-induced PI3K/Akt signaling evokes greater proliferation and adipogenic differentiation of human adipose stem cells from breast than from abdomen or thigh. Aging, 2020, 12, 14830-14848.	1.4	5
375	Secretome analysis of breast cancer-associated adipose tissue to identify paracrine regulators of breast cancer growth. Oncotarget, 2017, 8, 47239-47249.	0.8	13
376	Transplantation of Adipose-derived Cells for Periodontal Regeneration: A Systematic Review. Current Stem Cell Research and Therapy, 2019, 14, 504-518.	0.6	6
377	From liposuction to adipose-derived stem cells: indications and technique. Acta Biomedica, 2019, 90, 197-208.	0.2	14
378	Injured Nerve Regeneration using Cell-Based Therapies: Current Challenges. Acta Naturae, 2015, 7, 38-47.	1.7	15
379	Application of adult mesenchymal stem cells in bone and vascular tissue engineering. Physiological Research, 2018, 67, 831-850.	0.4	25
380	Autologous Fat Graft: Not Only an Aesthetic Solution. Open Access Macedonian Journal of Medical Sciences, 2019, 7, 2961-2963.	0.1	3
381	In vitro enhancement and functional characterization of neurite outgrowth by undifferentiated adipose-derived stem cells. International Journal of Molecular Medicine, 2019, 43, 593-602.	1.8	5
382	The role of undifferentiated adipose-derived stem cells in peripheral nerve repair. Neural Regeneration Research, 2018, 13, 757.	1.6	28
383	Combination of mild therapeutic hypothermia and adipose-derived stem cells for ischemic brain injury. Neural Regeneration Research, 2018, 13, 1759.	1.6	15
384	Anti-osteoarthritis effect of a combination treatment with human adipose tissue-derived mesenchymal stem cells and thrombospondin 2 in rabbits. World Journal of Stem Cells, 2019, 11, 1115-1129.	1.3	10

#	Article	IF	Citations
385	Augmenting peripheral nerve regeneration using stem cells: A review of current opinion. World Journal of Stem Cells, 2015, 7, 11.	1.3	119
386	Global knockdown of microRNAs affects the expression of growth factors and cytokines in human adipose-derived mesenchymal stem cells. BMB Reports, 2014, 47, 469-474.	1.1	3
387	Therapeutic effects of adipose derived mesenchymal stem cells on remyelination process in inflammatory demyelinating diseases. Journal of Histology and Histopathology, 2015, 2, 8.	0.4	6
388	Effects of Varied Stimulation Parameters on Adipose-Derived Stem Cell Response to Low-Level Electrical Fields. Annals of Biomedical Engineering, 2021, 49, 3401-3411.	1.3	6
389	Adipose-Derived Stem Cells for Future Regenerative System Medicine. Indonesian Biomedical Journal, 2012, 4, 59.	0.2	30
390	Adipose Tissue-Derived MSCs: Moving to the Clinic. , 2013, , 663-681.		0
391	Human Adipose Tissue as a Source of Multipotent Stem Cells. , 2014, , 67-83.		1
392	Stem Cell Secretome and Paracrine Activity. Pancreatic Islet Biology, 2016, , 123-141.	0.1	1
393	Innovative Concepts of Cell Therapy: Pluripotent and Multipotent Stem Cells and New Bio-Material Solution in Research and Clinical Application. Recent Patents on Regenerative Medicine, 2016, 5, 102-111.	0.4	1
394	Mesenchymal Stem Cells in Treatment of Perianal and Rectovaginal Fistulas. Gastroenterology & Hepatology (Bartlesville, Okla), 2016, 5, .	0.0	0
396	Adipose Tissue Derived- Stem Cells: Applications and Benefits in Tissue Regeneration. Gene, Cell and Tissue, 2017, In Press, .	0.2	0
397	Clinical and Pathological Assessment of Aloe Vera and Propolis for Wound Healing in Normal and Diabetic Albino Rats. Zagazig Veterinary Journal, 2017, 45, 314-325.	0.1	1
398	Mesenchymal Stem Cells as Regulators of Bone, Muscle, and Fat Formation., 2019,, 29-44.		1
399	The Nanofat Method for Mechanical Stromal Vascular Fraction Isolation. Advances in Cosmetic Surgery, 2020, 3, 209-216.	0.4	0
400	Phenotypic and Functional Responses of Human Decidua Basalis Mesenchymal Stem/Stromal Cells to Lipopolysaccharide of Gram-Negative Bacteria. Stem Cells and Cloning: Advances and Applications, 2021, Volume 14, 51-69.	2.3	2
401	Human adipose-derived stem cells reduce receptor-interacting protein 1, receptor-interacting protein 3, and mixed lineage kinase domain-like pseudokinase as necroptotic markers in rat model of Alzheimer's disease. Indian Journal of Pharmacology, 2020, 52, 392.	0.4	9
402	Diabetic Wound Care: A Concise Review of Diabetic Wound and Skincare Ingredients. Journal of Archives in Military Medicine, 2020, 8, .	0.0	0
403	Autologous fat grafting for nerve regeneration and neuropathic pain: current state from bench-to-bedside. Regenerative Medicine, 2020, 15, 2209-2228.	0.8	14

#	Article	IF	CITATIONS
404	Injured Nerve Regeneration using Cell-Based Therapies: Current Challenges. Acta Naturae, 2015, 7, 38-47.	1.7	7
406	Osteogenic Effect of Rabbit Periosteum-derived Precursor Cells Co-induced by Electric Stimulation and Adipose-derived Stem Cells in a 3D Co-culture System. IEEE Open Journal of Nanotechnology, 2021, , 1-1.	0.9	0
407	Safety of autologous fat grafting in breast cancer: a multicenter Italian study among 17 senonetwork breast units autologous fat grafting safety: a multicenter Italian retrospective study. Breast Cancer Research and Treatment, 2022, 191, 355-363.	1.1	10
408	Banking of AT-MSC and its Influence on Their Application to Clinical Procedures. Frontiers in Bioengineering and Biotechnology, 2021, 9, 773123.	2.0	2
409	Cell transplantation and secretome based approaches in spinal cord injury regenerative medicine. Medicinal Research Reviews, 2022, 42, 850-896.	5.0	11
410	Freestanding Magnetic Microtissues for Tissue Engineering Applications. Advanced Healthcare Materials, 2022, 11, e2101532.	3.9	5
411	Electrospun polysaccharide scaffolds: wound healing and stem cell differentiation. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 858-877.	1.9	4
412	Therapeutic potential of adipose tissueâ€derivatives in modern dermatology. Experimental Dermatology, 2022, 31, 1837-1852.	1.4	14
413	Adipose-Derived Stem Cells from Type 2 Diabetic Rats Retain Positive Effects in a Rat Model of Erectile Dysfunction. International Journal of Molecular Sciences, 2022, 23, 1692.	1.8	8
414	Sources and Therapeutic Strategies of Mesenchymal Stem Cells in Regenerative Medicine., 2022, , 1-28.		16
415	Mesenchymal stem cells (MSCs) in Leber's hereditary optic neuropathy (LHON): a potential therapeutic approach for future. International Ophthalmology, 2022, 42, 2949-2964.	0.6	6
416	Effects of Adipose-Derived Stem Cells and Their Conditioned Medium in a Human Ex Vivo Wound Model. Cells, 2022, 11, 1198.	1.8	18
417	Adipose-derived stem cells alleviate liver injury induced by type 1 diabetes mellitus by inhibiting mitochondrial stress and attenuating inflammation. Stem Cell Research and Therapy, 2022, 13, 132.	2.4	13
418	Fat Grafting before Delayed Prophylactic Mastectomy and Immediate Implant Reconstruction for Patients at High Risk of Complications. Plastic and Reconstructive Surgery, 2022, 149, 52-56.	0.7	4
419	Adipose-derived Stem Cells: Potentials, Availability and Market Size in Regenerative Medicine. Current Stem Cell Research and Therapy, 2023, 18, 347-379.	0.6	4
420	Mesenchymal Stem Cells Derived from Umbilical Cord Blood having Excellent Stemness Properties with Therapeutic Benefits - a New Era in Cancer Treatment. Current Stem Cell Research and Therapy, 2022, 17, .	0.6	2
423	Micro-/nano-fluidic devices and <i>in vivo</i> fluorescence imaging based on quantum dots for cytologic diagnosis. Lab on A Chip, 2022, 22, 2223-2236.	3.1	10
424	Non-Cytokine Protein Profile of the Mesenchymal Stem Cell Secretome That Regulates the Androgen Production Pathway. International Journal of Molecular Sciences, 2022, 23, 4633.	1.8	5

#	ARTICLE	IF	CITATIONS
425	Inflammatory cytokine interleukin-6 (IL-6) promotes the proangiogenic ability of adipose stem cells from obese subjects via the IL-6 signaling pathway. Current Stem Cell Research and Therapy, 2022, 17, .	0.6	0
426	Urine-Derived Stem Cells Versus Their Lysate in Ameliorating Erectile Dysfunction in a Rat Model of Type 2 Diabetes. Frontiers in Physiology, 2022, 13, .	1.3	7
427	Musculoskeletal tissue engineering: Adipose derived stromal cell implementation for the treatment of osteoarthritis. Biomaterials, 2022, 286, 121544.	5.7	14
429	Fat Grafting and Adipose Stem Cells to Treat Vulvar Scarring and Fibrosis Post Female Genital Mutilation (FGM)., 2022,, 1521-1533.		1
430	Human Adipose-Derived Stem Cells Combined with Nano-Hydrogel Promote Functional Recovery after Spinal Cord Injury in Rats. Biology, 2022, 11, 781.	1.3	12
431	Mesenchymal Stromal Cells in Osteoarthritis: Evidence for Structural Benefit and Cartilage Repair. Biomedicines, 2022, 10, 1278.	1.4	12
432	Adipose-derived stromal/stem cells are verified to be potential seed candidates for bio-root regeneration in three-dimensional culture. Stem Cell Research and Therapy, 2022, 13, .	2.4	10
434	Feasibility of microsurgery in burn injury and the effect of stem cell application. Turk Plastik, Rekonstruktif Ve Estetik Cerrahi Dergisi, 2022, 30, 69.	0.1	0
436	Association between Mesenchymal Stem Cells and COVID-19 Therapy: Systematic Review and Current Trends. BioMed Research International, 2022, 2022, 1-17.	0.9	6
437	In Vitro Conditioning of Adipose-Derived Mesenchymal Stem Cells by the Endothelial Microenvironment: Modeling Cell Responsiveness towards Non-Genetic Correction of Haemophilia A. International Journal of Molecular Sciences, 2022, 23, 7282.	1.8	4
438	Oncological safety of reconstruction with autologous fat grafting in breast cancer patients: a systematic review and meta-analysis. International Journal of Clinical Oncology, 2022, 27, 1379-1385.	1.0	1
439	Enhancement of Osteoblast Function through Extracellular Vesicles Derived from Adipose-Derived Stem Cells. Biomedicines, 2022, 10, 1752.	1.4	5
440	Mesenchymal Stromal Cell Secretome for Therapeutic Application in Skin Wound Healing: A Systematic Review of Preclinical Studies. Cells Tissues Organs, 2023, 212, 567-582.	1.3	2
441	Single-cell sorting based on secreted products for functionally defined cell therapies. Microsystems and Nanoengineering, 2022, 8, .	3.4	18
442	Advances in cell therapies using stem cells/progenitors as a novel approach for neurovascular repair of the diabetic retina. Stem Cell Research and Therapy, 2022, 13 , .	2.4	5
443	Systematic review: Oncological safety of reconstruction with fat grafting in breast cancer outcomes. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2022, 75, 4160-4168.	0.5	3
444	Regenerative Medicine Procedures Under Ultrasound Guidance. , 2022, , 287-342.		2
445	Mesenchyme Stem Cell-Derived Conditioned Medium as a Potential Therapeutic Tool in Idiopathic Pulmonary Fibrosis. Biomedicines, 2022, 10, 2298.	1.4	3

#	Article	IF	CITATIONS
446	Mesenchymal Stem Cell Sheet Centrifuge-Assisted Layering Augments Pro-Regenerative Cytokine Production. Cells, 2022, 11, 2840.	1.8	2
447	A brief insight into the etiology, genetics, and immunology of polycystic ovarian syndrome (PCOS). Journal of Assisted Reproduction and Genetics, 2022, 39, 2439-2473.	1.2	32
448	ADSCs-derived exosomes ameliorate hepatic fibrosis by suppressing stellate cell activation and remodeling hepatocellular glutamine synthetase-mediated glutamine and ammonia homeostasis. Stem Cell Research and Therapy, 2022, 13, .	2.4	22
449	Advances in microRNA from adipose-derived mesenchymal stem cell-derived exosome: focusing on wound healing. Journal of Materials Chemistry B, 2022, 10, 9565-9577.	2.9	12
450	Preclinical research studies for treating severe muscular injuries: focus on tissue-engineered strategies. Trends in Biotechnology, 2023, 41, 632-652.	4.9	1
451	Basic Science of Autologous Orthobiologics. Physical Medicine and Rehabilitation Clinics of North America, 2023, 34, 25-47.	0.7	1
452	Sources and Therapeutic Strategies of Mesenchymal Stem Cells in Regenerative Medicine., 2022, , 23-49.		O
453	Adipose Tissue-Derived Regenerative Cell-Based Therapies: Current Optimization Strategies for Effective Treatment in Aesthetic Surgery., 2022,, 691-723.		O
454	Knockdown of Adra2a Increases Secretion of Growth Factors and Wound Healing Ability in Diabetic Adipose-Derived Stem Cells. Stem Cells International, 2022, 2022, 1-13.	1.2	2
455	Early tissue growth and cell fate determination following segmental esophageal repair using a tissue engineered esophageal implant composed of a polyurethane scaffold seeded with autologous adipose-derived mesenchymal stromal cells. Journal of Immunology and Regenerative Medicine, 2023, 19, 100068.	0.2	0
457	Neural Regeneration in Regenerative Endodontic Treatment: An Overview and Current Trends. International Journal of Molecular Sciences, 2022, 23, 15492.	1.8	3
458	Injectable Neural Hydrogel as in vivo Therapeutic Delivery Vehicle. Regenerative Engineering and Translational Medicine, 0, , .	1.6	O
459	Influence of culture conditions on the secretome of mesenchymal stem cells derived from feline adipose tissue: Proteomics approach. Biochimie, 2023, 211, 78-86.	1.3	0
460	Fat Graft Retention: Adipose Tissue, Adipose-Derived Stem Cells, and Aging. Plastic and Reconstructive Surgery, 2023, 151, 420e-431e.	0.7	9
461	Impact of umbilical cord mesenchymal stromal/stem cell secretome and cord blood serum in prostate cancer progression. Human Cell, 2023, 36, 1160-1172.	1.2	1
462	Characterisation of mesenchymal stem cells conditioned media obtained at different conditioning times: their effect on glial cells in <i>inÂvitro</i> scratch model. Growth Factors, 0, , 1-14.	0.5	1
463	Sustained Release of Human Adipose Tissue Stem Cell Secretome from Starâ€Shaped Poly(ethylene) Tj ETQq0 0 Spinal Cord Injury Rat Model. Advanced Healthcare Materials, 2023, 12, .	0 rgBT /Ο\ 3.9	verlock 10 Tf : 10
464	Neurotrophic Factors in the Pathogenesis and Treatment of Diabetic Neuropathy. Contemporary Diabetes, 2023, , 127-155.	0.0	0

#	ARTICLE	IF	CITATIONS
465	Adipose-Derived Stem Cells and Tacrolimus Improve Nerve Regeneration in a Rat Sciatic Nerve Defect Model. Orthopedics, 0 , 1 -9.	0.5	0
466	Immunomodulatory Mechanisms and Therapeutic Potential of Mesenchymal Stem Cells. Stem Cell Reviews and Reports, 2023, 19, 1214-1231.	1.7	10
486	Stem Cell-Based Regenerative Therapies for Functional Endocrine System Organs: Tissue Engineering Applications and Future Strategies. , 2023, , 1-32.		0
488	Stem Cell-Based Regenerative Medicine Therapy in Cancer. , 2023, , 1-21.		0
489	Nonsurgical Esthetics for Facial Rejuvenation and Hair Restoration Using Autologous PRP and Adipose Tissue Concentrate., 2023,, 155-186.		0
495	Mesenchymal Cells from Adipose Tissue. , 2023, , 263-271.		0
497	Fat-Derived Orthobiologics for Knee OA. , 2024, , 117-125.		0