Charge carrier separation induced by intrinsic surface s

Applied Physics Letters 97, DOI: 10.1063/1.3467262

Citation Report

#	Article	IF	CITATIONS
1	Local-Strain-Induced Charge Carrier Separation and Electronic Structure Modulation in Zigzag ZnO Nanotubes: Role of Built-In Polarization Electric Field. Journal of Physical Chemistry C, 2011, 115, 2381-2385.	1.5	15
2	Unusual nonlinear strain dependence of valence-band splitting in ZnO. Physical Review B, 2012, 86, .	1.1	11
3	Size-Dependent Bandgap Modulation of ZnO Nanowires by Tensile Strain. Nano Letters, 2012, 12, 4595-4599.	4.5	173
4	Emergent properties and trends of a new class of carbon nanocomposites: graphene nanoribbons encapsulated in a carbon nanotube. Nanoscale, 2013, 5, 3306.	2.8	12
5	Piezoelectric properties of zinc oxide nanowires: an <i>ab initio</i> study. Nanotechnology, 2013, 24, 475401.	1.3	20
6	Tunable electronic properties of ZnO nanowires and nanotubes under a transverse electric field. Journal of Applied Physics, 2013, 113, 034301.	1.1	10
7	Strain effects in a single ZnO microwire with wavy configurations. Nanotechnology, 2013, 24, 455703.	1.3	6
8	Oxygen induced strained ZnO nanoparticles: an investigation of Raman scattering and visible photoluminescence. Journal of Materials Chemistry C, 2014, 2, 7264-7274.	2.7	30
9	Theoretical studies of geometry asymmetry in tellurium nanostructures: intrinsic dipole, charge separation, and semiconductor–metal transition. RSC Advances, 2014, 4, 44004-44010.	1.7	2
10	Achieving Type I, II, and III Heterojunctions Using Functionalized MXene. ACS Applied Materials & Interfaces, 2015, 7, 7163-7169.	4.0	120
11	Enhanced photo-collection in single BiFeO3 nanowire due to carrier separation from radial surface field. Nano Energy, 2015, 13, 240-248.	8.2	30
12	Electronic structures of in-plane two-dimensional transition-metal dichalcogenide heterostructures. Physical Chemistry Chemical Physics, 2015, 17, 29380-29386.	1.3	34
13	Improvement in the Piezoelectric Performance of a ZnO Nanogenerator by a Combination of Chemical Doping and Interfacial Modification. Journal of Physical Chemistry C, 2016, 120, 6971-6977.	1.5	76
14	Lattice Strain Induced Remarkable Enhancement in Piezoelectric Performance of ZnO-Based Flexible Nanogenerators. ACS Applied Materials & Interfaces, 2016, 8, 1381-1387.	4.0	135
15	Diameter Tuning of β \$\$ eta \$\$ -Ga2O3 Nanowires Using Chemical Vapor Deposition Technique. Nanoscale Research Letters, 2017, 12, 184.	3.1	30
16	Uniaxial strain-modulated electronic structures of Cd <i>X</i> (<i>X</i> = S, Se, Te) from first-principles calculations: A comparison between bulk and nanowires. Chinese Physics B, 2017, 26, 087103.	0.7	1
17	Tunable Strain in Magnetoelectric ZnO Microrod Composite Interfaces. ACS Applied Materials & Interfaces, 2017, 9, 25571-25577.	4.0	13
18	Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light. Journal of Materials Chemistry A, 2019, 7, 603-610.	5.2	268

#	Article	IF	CITATIONS
19	Strain gradient induced spatially indirect excitons in single crystalline ZnO nanowires. Nanoscale, 2020, 12, 19083-19087.	2.8	6
20	Nanoscale mapping of surface strain in tapered nanorods using confocal photoluminescence spectroscopy. Nanotechnology, 0, , .	1.3	0
21	Penta-BCN monolayer: a metal-free photocatalyst with a high carrier mobility for water splitting. Physical Chemistry Chemical Physics, 2022, 24, 26863-26869.	1.3	1