The Potential of Human Allogeneic Juvenile Chondrocy Cartilage

American Journal of Sports Medicine 38, 1324-1333 DOI: 10.1177/0363546510361950

Citation Report

#	Article	IF	CITATIONS
1	Role of cartilage-forming cells in regenerative medicine for cartilage repair. Orthopedic Research and Reviews, 2010, Volume 2, 85-94.	0.7	10
2	Tissue Engineering in Regenerative Medicine. , 2011, , .		7
3	Cocultures of Adult and Juvenile Chondrocytes Compared With Adult and Juvenile Chondral Fragments. American Journal of Sports Medicine, 2011, 39, 2355-2361.	1.9	69
4	What's New in Sports Medicine. Journal of Bone and Joint Surgery - Series A, 2011, 93, 789-797.	1.4	26
5	Direct delayed human adenoviral BMP-2 or BMP-6 gene therapy for bone and cartilage regeneration in a pony osteochondral model. Osteoarthritis and Cartilage, 2011, 19, 1066-1075.	0.6	65
6	Structured three-dimensional co-culture of mesenchymal stem cells with chondrocytes promotes chondrogenic differentiation without hypertrophy. Osteoarthritis and Cartilage, 2011, 19, 1210-1218.	0.6	121
7	Recent progress in cartilage tissue engineering. Current Opinion in Biotechnology, 2011, 22, 734-740.	3.3	99
8	Potential of Human Embryonic Stem Cells in Cartilage Tissue Engineering and Regenerative Medicine. Stem Cell Reviews and Reports, 2011, 7, 544-559.	5.6	96
9	Staging and Comorbidities. Journal of Knee Surgery, 2011, 24, 217-224.	0.9	3
10	Porcine Intervertebral Disc Repair Using Allogeneic Juvenile Articular Chondrocytes or Mesenchymal Stem Cells. Tissue Engineering - Part A, 2011, 17, 3045-3055.	1.6	127
11	Pain Perception in Knees With Circumscribed Cartilage Lesions Is Associated With Intra-articular IGF-1 Expression. American Journal of Sports Medicine, 2011, 39, 1989-1996.	1.9	19
12	Chondral Defect Repair with Particulated Juvenile Cartilage Allograft. Cartilage, 2011, 2, 346-353.	1.4	98
13	Particulated Articular Cartilage: CAIS and DeNovo NT. Journal of Knee Surgery, 2012, 25, 023-030.	0.9	97
14	Cell Seeding Densities in Autologous Chondrocyte Implantation Techniques for Cartilage Repair. Cartilage, 2012, 3, 108-117.	1.4	51
15	Response of Human Engineered Cartilage Based on Articular or Nasal Chondrocytes to Interleukin-1β and Low Oxygen. Tissue Engineering - Part A, 2012, 18, 362-372.	1.6	70
16	Characteristic Markers of the WNT Signaling Pathways Are Differentially Expressed in Osteoarthritic Cartilage. Cartilage, 2012, 3, 43-57.	1.4	19
17	Management of Articular Cartilage Defects of the Knee. Physician and Sportsmedicine, 2012, 40, 20-35.	1.0	29
18	Unlike Bone, Cartilage Regeneration Remains Elusive. Science, 2012, 338, 917-921.	6.0	899

#	Article	IF	CITATIONS
19	Cell Senescence: A Challenge in Cartilage Engineering and Regeneration. Tissue Engineering - Part B: Reviews, 2012, 18, 270-287.	2.5	94
20	Chondrocytes or adult stem cells for cartilage repair: The indisputable role of growth factors. Injury, 2012, 43, 259-265.	0.7	142
21	The Role of Mechanical Forces in the Initiation and Progression of Osteoarthritis. HSS Journal, 2012, 8, 37-38.	0.7	22
22	Industry Perspective on OA. HSS Journal, 2012, 8, 78-79.	0.7	0
23	Fibrinâ€chitosan composite substrate for <i>in vitro</i> culture of chondrocytes. Journal of Biomedical Materials Research - Part A, 2013, 101A, 404-412.	2.1	3
24	Human cartilage fragments in a composite scaffold for single-stage cartilage repair: an in vitro study of the chondrocyte migration and the influence of TGF-Î21 and G-CSF. Knee Surgery, Sports Traumatology, Arthroscopy, 2013, 21, 1819-1833.	2.3	42
25	Cartilage Regeneration. Journal of the American Academy of Orthopaedic Surgeons, The, 2013, 21, 303-311.	1.1	156
26	DeNovo NT Allograft. Operative Techniques in Sports Medicine, 2013, 21, 82-89.	0.2	39
27	Treatment of Focal Cartilage Defects With a Juvenile Allogeneic 3-Dimensional Articular Cartilage Graft. Operative Techniques in Sports Medicine, 2013, 21, 95-99.	0.2	31
28	BioCartilage: Background and Operative Technique. Operative Techniques in Sports Medicine, 2013, 21, 116-124.	0.2	54
29	Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage. Osteoarthritis and Cartilage, 2013, 21, 1997-2005.	0.6	29
30	Transient anabolic effects accompany epidermal growth factor receptor signal activation in articular cartilage in vivo. Arthritis Research and Therapy, 2013, 15, R60.	1.6	39
31	Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels. Scientific Reports, 2013, 3, 3553.	1.6	73
32	Genetic Engineering of Juvenile Human Chondrocytes Improves Scaffold-free Mosaic Neocartilage Grafts. Clinical Orthopaedics and Related Research, 2013, 471, 26-38.	0.7	9
33	Treatment of a Patellar Chondral Defect Using Juvenile Articular Cartilage Allograft Implantation. Arthroscopy Techniques, 2013, 2, e351-e354.	0.5	9
34	Particulated Juvenile Articular Cartilage Allograft Transplantation for Osteochondral Lesions of the Talus. Foot and Ankle Clinics, 2013, 18, 79-87.	0.5	35
35	Preliminary Results of a Novel Single-Stage Cartilage Restoration Technique: Particulated Juvenile Articular Cartilage Allograft for Chondral Defects of the Patella. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2013, 29, 1661-1670.	1.3	113
36	Osteochondral Lesions of the Talus. Foot and Ankle Clinics, 2013, 18, 13-34.	0.5	29

#	Article	IF	CITATIONS
37	Articular cartilage tissue regeneration—current research strategies and outlook for the future. European Surgery - Acta Chirurgica Austriaca, 2013, 45, 142-153.	0.3	3
39	Enhanced Tissue Regeneration Potential of Juvenile Articular Cartilage. American Journal of Sports Medicine, 2013, 41, 2658-2667.	1.9	42
40	Chondrogenically Tuned Expansion Enhances the Cartilaginous Matrix-Forming Capabilities of Primary, Adult, Leporine Chondrocytes. Cell Transplantation, 2013, 22, 331-340.	1.2	19
41	Hyaluronic Acid Enhances the Mechanical Properties of Tissue-Engineered Cartilage Constructs. PLoS ONE, 2014, 9, e113216.	1.1	124
42	Juvenile allogene Knorpel-Partikel zur Behandlung osteochondraler Läonen am Talus (OCLT). Eine Kasuistik. Fuss Und Sprunggelenk, 2014, 12, 208-214.	0.1	0
43	Arthroscopic Treatment of Talus Osteochondral Lesions With Particulated Juvenile Allograft Cartilage. Foot and Ankle International, 2014, 35, 1087-1094.	1.1	40
44	One-Step Repair for Cartilage Defects in a Rabbit Model. American Journal of Sports Medicine, 2014, 42, 583-591.	1.9	47
45	Arthroscopic Delivery of Particulated Juvenile Cartilage Allograft for Osteochondral Lesions of the Talus. Techniques in Foot and Ankle Surgery, 2014, 13, 39-45.	0.1	2
46	Clinical, Radiographic, and Histological Outcomes After Cartilage Repair With Particulated Juvenile Articular Cartilage. American Journal of Sports Medicine, 2014, 42, 1417-1425.	1.9	173
47	Ongoing studies of cell-based therapies for articular cartilage defects in Japan. Orthopedic Research and Reviews, 0, , 1.	0.7	1
48	Minced Cartilage Techniques. Operative Techniques in Orthopaedics, 2014, 24, 27-34.	0.2	6
49	General Treatment Algorithm for Cartilage Defects. , 2014, , 39-49.		2
50	Developing Insights in Cartilage Repair. , 2014, , .		3
51	Magnetic Resonance Imaging of Cartilage Repair Procedures. Magnetic Resonance Imaging Clinics of North America, 2014, 22, 671-701.	0.6	9
52	Cartilage grafts for bone repair and regeneration. , 2014, , 219-243.		1
53	Particulated Juvenile Cartilage Allograft Transplantation for the Treatment of Osteochondral Lesions of the Talus. Operative Techniques in Orthopaedics, 2014, 24, 181-189.	0.2	6
54	Articular Cartilage Injury and Potential Remedies. Journal of Orthopaedic Trauma, 2015, 29, S47-S52.	0.7	41
55	Particulated articular cartilage for symptomatic chondral defects of the knee. Current Reviews in Musculoskeletal Medicine, 2015, 8, 429-435.	1.3	54

#	Article	IF	CITATIONS
56	Cytokine preconditioning of engineered cartilage provides protection against interleukin-1 insult. Arthritis Research and Therapy, 2015, 17, 361.	1.6	8
57	DeNovo NT Particulated Juvenile Cartilage Implant. Sports Medicine and Arthroscopy Review, 2015, 23, 125-129.	1.0	39
58	BioCartilage. Sports Medicine and Arthroscopy Review, 2015, 23, 143-148.	1.0	44
59	Osteochondral allograft transplantation in the ankle: a review of current practice. Orthopedic Research and Reviews, 2015, , 95.	0.7	0
60	Generation of Scaffoldless Hyaline Cartilaginous Tissue from Human iPSCs. Stem Cell Reports, 2015, 4, 404-418.	2.3	224
61	Immunology and cartilage regeneration. Immunologic Research, 2015, 63, 181-186.	1.3	26
62	What Is the Effect of Matrices on Cartilage Repair? A Systematic Review. Clinical Orthopaedics and Related Research, 2015, 473, 1673-1682.	0.7	29
63	The state of cartilage regeneration: current and future technologies. Current Reviews in Musculoskeletal Medicine, 2015, 8, 1-8.	1.3	22
64	Dextran-coated fluorapatite crystals doped with Yb3+/Ho3+ for labeling and tracking chondrogenic differentiation of bone marrow mesenchymal stem cells inÂvitro and inÀvivo. Biomaterials, 2015, 52, 441-451.	5.7	49
65	Early induction of a prechondrogenic population allows efficient generation of stable chondrocytes from human induced pluripotent stem cells. FASEB Journal, 2015, 29, 3399-3410.	0.2	48
66	State of the Art: MR Imaging after Knee Cartilage Repair Surgery. Radiology, 2015, 277, 23-43.	3.6	97
67	Human Fetal and Adult Chondrocytes. Methods in Molecular Biology, 2015, 1340, 25-40.	0.4	0
68	Cartilage Tissue Engineering: What Have We Learned in Practice?. Methods in Molecular Biology, 2015, 1340, 3-21.	0.4	16
69	N-succinyl chitosan preparation, characterization, properties and biomedical applications: a state of the art review. Reviews in Chemical Engineering, 2015, 31, .	2.3	51
70	Strategies for improving the repair of focal cartilage defects. Nanomedicine, 2015, 10, 2893-2905.	1.7	18
71	Comparative Potential of Juvenile and Adult Human Articular Chondrocytes for Cartilage Tissue Formation in Three-Dimensional Biomimetic Hydrogels. Tissue Engineering - Part A, 2015, 21, 147-155.	1.6	38
72	Cartilage Allograft Techniques and Materials. Clinics in Podiatric Medicine and Surgery, 2015, 32, 93-98.	0.2	7
73	Emergence of Scaffold-Free Approaches for Tissue Engineering Musculoskeletal Cartilages. Annals of Biomedical Engineering, 2015, 43, 543-554.	1.3	122

#	Article	IF	CITATIONS
74	TGF-β1, GDF-5, and BMP-2 Stimulation Induces Chondrogenesis in Expanded Human Articular Chondrocytes and Marrow-Derived Stromal Cells. Stem Cells, 2015, 33, 762-773.	1.4	131
75	The Bioactivity of Cartilage Extracellular Matrix in Articular Cartilage Regeneration. Advanced Healthcare Materials, 2015, 4, 29-39.	3.9	136
76	Repair and tissue engineering techniques for articular cartilage. Nature Reviews Rheumatology, 2015, 11, 21-34.	3.5	923
77	Treatment of osteochondral lesions of the talus in athletes: what is the evidence?. Joints, 2016, 04, 111-120.	1.5	15
78	Identification of Human Juvenile Chondrocyte-Specific Factors that Stimulate Stem Cell Growth. Tissue Engineering - Part A, 2016, 22, 645-653.	1.6	19
79	CD24 enrichment protects while its loss increases susceptibility of juvenile chondrocytes towards inflammation. Arthritis Research and Therapy, 2016, 18, 292.	1.6	11
80	Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel. Acta Biomaterialia, 2016, 38, 94-105.	4.1	146
81	Optimizing nutrient channel spacing and revisiting TGF-beta in large engineered cartilage constructs. Journal of Biomechanics, 2016, 49, 2089-2094.	0.9	8
82	Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials, 2016, 98, 1-22.	5.7	325
83	High seeding density of human chondrocytes in agarose produces tissue-engineered cartilage approaching native mechanical and biochemical properties. Journal of Biomechanics, 2016, 49, 1909-1917.	0.9	49
84	Cellular senescence in aging and osteoarthritis. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 87, 6-14.	1.2	96
85	Effects of passage number and post-expansion aggregate culture on tissue engineered, self-assembled neocartilage. Acta Biomaterialia, 2016, 43, 150-159.	4.1	16
86	Nutrient Channels Aid the Growth of Articular Surface-Sized Engineered Cartilage Constructs. Tissue Engineering - Part A, 2016, 22, 1063-1074.	1.6	20
87	Acknowledging tissue donation: Human cadaveric specimens in musculoskeletal research. Clinical Anatomy, 2016, 29, 65-69.	1.5	18
88	Rat Articular Cartilages Change Their Tissue and Protein Compositions During Perinatal Period. Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 2016, 45, 9-18.	0.3	3
89	Ammonium–Chloride–Potassium Lysing Buffer Treatment of Fully Differentiated Cells Increases Cell Purity and Resulting Neotissue Functional Properties. Tissue Engineering - Part C: Methods, 2016, 22, 895-903.	1.1	20
90	Limited Immunogenicity of Human Induced Pluripotent Stem Cell-Derived Cartilages. Tissue Engineering - Part A, 2016, 22, 1367-1375.	1.6	27
91	Alloreactivity and Immunosuppressive Properties of Articular Chondrocytes from Osteoarthritic Cartilage. Journal of Orthopaedic Surgery, 2016, 24, 232-239.	0.4	8

#	Article	IF	CITATIONS
92	Fetal Cartilage-Derived Cells Have Stem Cell Properties and Are a Highly Potent Cell Source for Cartilage Regeneration. Cell Transplantation, 2016, 25, 449-461.	1.2	40
93	Implantation of juvenile human chondrocytes demonstrates no adverse effect on spinal nerve tissue in rats. European Spine Journal, 2016, 25, 2958-2966.	1.0	2
94	Recent Advances in Egypt for Treatment of Talar Osteochondral Lesions. Foot and Ankle Clinics, 2016, 21, 405-420.	0.5	3
95	Implantation of Autologous Cartilage Chips Improves Cartilage Repair Tissue Quality in Osteochondral Defects. American Journal of Sports Medicine, 2016, 44, 1597-1604.	1.9	26
96	Chondroinduction from Naturally Derived Cartilage Matrix: A Comparison Between Devitalized and Decellularized Cartilage Encapsulated in Hydrogel Pastes. Tissue Engineering - Part A, 2016, 22, 665-679.	1.6	54
97	Chondroinductive Hydrogel Pastes Composed of Naturally Derived Devitalized Cartilage. Annals of Biomedical Engineering, 2016, 44, 1863-1880.	1.3	33
98	Cell-based cartilage repair strategies in the horse. Veterinary Journal, 2016, 208, 1-12.	0.6	25
99	The use of autologous adult, allogenic juvenile, and combined juvenile–adult cartilage fragments for the repair of chondral defects. Knee Surgery, Sports Traumatology, Arthroscopy, 2016, 24, 3988-3996.	2.3	21
100	Engineering biomechanically functional neocartilage derived from expanded articular chondrocytes through the manipulation of cell-seeding density and dexamethasone concentration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2323-2332.	1.3	14
101	Concise Review: Mesenchymal Stem Cells for Functional Cartilage Tissue Engineering: Taking Cues from Chondrocyte-Based Constructs. Stem Cells Translational Medicine, 2017, 6, 1295-1303.	1.6	69
102	Elastin-like protein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration. Biomaterials, 2017, 127, 132-140.	5.7	159
103	Autologous Cartilage Chip Transplantation Improves Repair Tissue Composition Compared With Marrow Stimulation. American Journal of Sports Medicine, 2017, 45, 1490-1496.	1.9	27
104	Osteochondral lesions of the talus in the athlete: up to date review. Current Reviews in Musculoskeletal Medicine, 2017, 10, 131-140.	1.3	25
105	Three-dimensional Bioprinting for Cartilage Regeneration. Frontiers in Nanobiomedical Research, 2017, , 49-74.	0.1	1
106	Human chondroprogenitors in alginate-collagen hybrid scaffolds produce stable cartilage <i>in vivo</i> . Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3014-3026.	1.3	31
107	Engineering Niches for Cartilage Tissue Regeneration a^—. , 2017, , 531-546.		3
108	Human iPSC-derived chondrocytes mimic juvenile chondrocyte function for the dual advantage of increased proliferation and resistance to IL-11². Stem Cell Research and Therapy, 2017, 8, 244.	2.4	17
109	Particulated Autograft Cartilage Implantation for the Treatment of Osteochondral Lesions of the Talus: A Novel Technique. Foot and Ankle Specialist, 2018, 11, 365-371.	0.5	7

#	Article	IF	CITATIONS
110	Design and fabrication of injectable microcarriers composed of acellular cartilage matrix and chitosan. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 683-700.	1.9	25
111	Patellofemoral Cartilage Lesions Treated With Particulated Juvenile Allograft Cartilage: A Prospective Study With Minimum 2-Year Clinical and Magnetic Resonance Imaging Outcomes. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2018, 34, 1498-1505.	1.3	48
112	Kartogenin Enhanced Chondrogenesis in Cocultures of Chondrocytes and Bone Mesenchymal Stem Cells. Tissue Engineering - Part A, 2018, 24, 990-1000.	1.6	20
113	Comparison of Juvenile Allogenous Articular Cartilage and Bone Marrow Aspirate Concentrate Versus Microfracture With and Without Bone Marrow Aspirate Concentrate in Arthroscopic Treatment of Talar Osteochondral Lesions. Foot and Ankle International, 2018, 39, 393-405.	1.1	42
114	Efficacy of Particulated Juvenile Cartilage Allograft Transplantation for Osteochondral Lesions of the Talus. Foot and Ankle International, 2018, 39, 278-283.	1.1	34
115	Autologous Bone Marrow Cell Stimulation and Allogenic Chondrocyte Implantation for the Repair of Full-Thickness Articular Cartilage Defects in a Rabbit Model. Cartilage, 2018, 9, 402-409.	1.4	17
116	Relationship between symptomatic osteochondral lesions of the talus and quality of life, body mass index, age, size and anatomic location. Foot and Ankle Surgery, 2018, 24, 365-372.	0.8	33
117	Transcriptome-Wide Analyses of Human Neonatal Articular Cartilage and Human Mesenchymal Stem Cell-Derived Cartilage Provide a New Molecular Target for Evaluating Engineered Cartilage. Tissue Engineering - Part A, 2018, 24, 335-350.	1.6	27
118	The Immune Response to Allogeneic Differentiated Mesenchymal Stem Cells in the Context of Bone Tissue Engineering. Tissue Engineering - Part B: Reviews, 2018, 24, 75-83.	2.5	24
119	The Use of Particulated Juvenile Allograft Cartilage in Foot and Ankle Surgery. Clinics in Podiatric Medicine and Surgery, 2018, 35, 11-18.	0.2	6
120	First Metatarsal Head Osteochondral Defect Treatment With Particulated Juvenile Cartilage Allograft Transplantation: A Case Series. Foot and Ankle International, 2018, 39, 236-241.	1.1	19
121	Extracellular Matrix Cartilage Allograft and Particulate Cartilage Allograft for Osteochondral Lesions of the Knee and Ankle Joints: A Systematic Review. American Journal of Sports Medicine, 2018, 46, 1758-1766.	1.9	26
122	Application of Hydrogels in Cartilage Tissue Engineering. Current Stem Cell Research and Therapy, 2018, 13, 497-516.	0.6	16
123	Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem Cells: Characterization, Differentiation, and Applications in Cartilage Tissue Engineering. Critical Reviews in Eukaryotic Gene Expression, 2018, 28, 285-310.	0.4	61
124	40 Allograft Management Osteochondral Lesion of the Talus (OLT): Juvenile Cartilage. , 2018, , .		0
125	A comparative study of cartilage engineered constructs in immunocompromised, humanized and immunocompetent mice. Journal of Immunology and Regenerative Medicine, 2018, 2, 36-46.	0.2	9
126	Considerations in hiPSC-derived cartilage for articular cartilage repair. Inflammation and Regeneration, 2018, 38, 17.	1.5	27
127	Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes. Nature Communications, 2018, 9, 3634.	5.8	49

#	Article	IF	CITATIONS
128	Endochondral Ossification. , 2018, , 125-148.		8
129	Clinical Translation of Cartilage Tissue Engineering, From Embryonic Development to a Promising Long-Term Solution. , 2018, , 225-246.		1
130	Overcoming Challenges in Engineering Large, Scaffold-Free Neocartilage with Functional Properties. Tissue Engineering - Part A, 2018, 24, 1652-1662.	1.6	20
131	Conservative Management and Biological Treatment Strategies: Proceedings of the International Consensus Meeting on Cartilage Repair of the Ankle. Foot and Ankle International, 2018, 39, 9S-15S.	1.1	49
132	Repair of osteochondral defects in a rabbit model with artificial cartilage particulates derived from cultured collagen-chondrocyte microspheres. Journal of Materials Chemistry B, 2018, 6, 5164-5173.	2.9	9
133	Effects of collagen matrix and bioreactor cultivation on cartilage regeneration of a full-thickness critical-size knee joint cartilage defects with subchondral bone damage in a rabbit model. PLoS ONE, 2018, 13, e0196779.	1.1	13
134	Particulated Cartilage Auto- and Allograft. , 2018, , 287-296.		2
136	"A Unifying Theory―Treatment Algorithm for Cartilage Defects. , 2018, , 39-49.		1
137	Enhancement of cartilage repair through the addition of growth plate chondrocytes in an immature skeleton animal model. Journal of Orthopaedic Surgery and Research, 2019, 14, 260.	0.9	8
138	Optimizing 3D Co-culture Models to Enhance Synergy Between Adipose-Derived Stem Cells and Chondrocytes for Cartilage Tissue Regeneration. Regenerative Engineering and Translational Medicine, 2019, 5, 270-279.	1.6	1
139	Restorative procedures for articular cartilage in the ankle: state-of-the-art review. Journal of ISAKOS, 2019, 4, 270-284.	1.1	5
140	No Effect of Platelet-Rich Plasma Injections as an Adjuvant to Autologous Cartilage Chips Implantation for the Treatment of Chondral Defects. Cartilage, 2021, 13, 277S-284S.	1.4	9
141	Enrichment of CD146 ⁺ Adipose-Derived Stem Cells in Combination with Articular Cartilage Extracellular Matrix Scaffold Promotes Cartilage Regeneration. Theranostics, 2019, 9, 5105-5121.	4.6	60
142	The Use of Particulated Juvenile Allograft Cartilage for the Repair of Porcine Articular Cartilage Defects. American Journal of Sports Medicine, 2019, 47, 2308-2315.	1.9	32
143	Biomarkers and osteoarthritis. , 2019, , 429-444.		3
144	Arthroscopic Technique for Treating Patella and Femoral Condyle Lesions With DeNovo Natural Tissue Allograft. Arthroscopy Techniques, 2019, 8, e1201-e1207.	0.5	2
145	Fluorescent Nanodiamonds Enable Long-Term Detection of Human Adipose-Derived Stem/Stromal Cells in an In Vivo Chondrogenesis Model Using Decellularized Extracellular Matrices and Fibrin Glue Polymer. Polymers, 2019, 11, 1391.	2.0	8
146	Understanding tissue-engineered endochondral ossification; towards improved bone formation. , 2019, 37, 277-291.		7

	Сітат	TION REPORT	
#	Article	IF	CITATIONS
147	An injectable heparin-conjugated hyaluronan scaffold for local delivery of transforming growth factor β1 promotes successful chondrogenesis. Acta Biomaterialia, 2019, 99, 168-180.	4.1	50
148	Characterization of polydactyly chondrocytes and their use in cartilage engineering. Scientific Reports, 2019, 9, 4275.	1.6	33
149	Evidence-Based Treatment of Articular Cartilage Lesions in the Knee. , 2019, , 269-293.		0
150	Joint Preservation of the Knee. , 2019, , .		8
151	Report on a large animal study with Göttingen Minipigs where regenerates and controls for articular cartilage were created in a large number. Focus on the conditions of the operated stifle joints and suggestions for standardized procedures. PLoS ONE, 2019, 14, e0224996.	1.1	4
152	Orthobiologics. Clinics in Podiatric Medicine and Surgery, 2019, 36, 609-626.	0.2	8
153	Integration Capacity of Human Induced Pluripotent Stem Cell-Derived Cartilage. Tissue Engineering - Part A, 2019, 25, 437-445.	1.6	12
154	Biologics in Sports Medicine—Introduction. , 2019, , 63-68.		1
155	Preserving the Articulating Surface of the Knee. , 2019, , 85-100.		1
156	Assessment of Cell Viability of Fresh Osteochondral Allografts in N-Acetylcysteine-Enriched Medium. Cartilage, 2020, 11, 117-121.	1.4	5
157	Microribbon-hydrogel composite scaffold accelerates cartilage regeneration in vivo with enhanced mechanical properties using mixed stem cells and chondrocytes. Biomaterials, 2020, 228, 119579.	5.7	43
158	Holistic Approach of Swiss Fetal Progenitor Cell Banking: Optimizing Safe and Sustainable Substrates for Regenerative Medicine and Biotechnology. Frontiers in Bioengineering and Biotechnology, 2020, 8, 557758.	2.0	18
159	Cartilage articulation exacerbates chondrocyte damage and death after impact injury. Journal of Orthopaedic Research, 2021, 39, 2130-2140.	1.2	13
160	Quality assessment tests for tumorigenicity of human iPS cell-derived cartilage. Scientific Reports, 2020, 10, 12794.	1.6	18
161	Acetabular cartilage repair:Âstate of the art in surgical treatment. Journal of Hip Preservation Surgery, 2020, 7, 205-224.	0.6	6
162	Gradient Hydrogels for Optimizing Niche Cues to Enhance Cell-Based Cartilage Regeneration. Tissue Engineering - Part A, 2021, 27, 929-939.	1.6	9
163	Arthroscopic Treatment of Osteochondral Lesions of the Talus Utilizing Juvenile Particulated Cartilage Allograft: A Case Series. Journal of Foot and Ankle Surgery, 2020, 59, 436-439.	0.5	4
164	Patient-specific Scaffolds with a Biomimetic Gradient Environment for Articular Cartilage–Subchondral Bone Regeneration. ACS Applied Bio Materials, 2020, 3, 4820-4831.	2.3	12

#	Article	IF	CITATIONS
165	Outcomes and Predictors of Postoperative Pain Improvement Following Particulated Juvenile Cartilage Allograft Transplant for Osteochondral Lesions of the Talus. Foot and Ankle International, 2020, 41, 572-581.	1.1	10
166	Particulated juvenile articular cartilage allograft transplantation for osteochondral lesions of the knee and ankle. Expert Review of Medical Devices, 2020, 17, 235-244.	1.4	10
167	Particulated Cartilage for Chondral and Osteochondral Repair: A Review. Cartilage, 2021, 13, 1047S-1057S.	1.4	33
168	Cartilage Surface Treatment: Factors Affecting Success and Failure Mechanisms. Operative Techniques in Sports Medicine, 2020, 28, 150711.	0.2	1
169	Maturity-dependent cartilage cell plasticity and sensitivity to external perturbation. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 106, 103732.	1.5	6
170	Role of Particulated Juvenile Cartilage Allograft Transplantation in Osteochondral Lesions of the Talus: A systematic review. Foot and Ankle Surgery, 2021, 27, 10-14.	0.8	10
171	Proliferation ability of particulated juvenile allograft cartilage. Journal of Orthopaedic Surgery and Research, 2021, 16, 56.	0.9	8
172	Algorithm for Treatment of Focal Cartilage Defects of the Knee: Classic and New Procedures. Cartilage, 2021, 13, 473S-495S.	1.4	40
173	Clinical and Radiographic Outcomes After Treatment of Patellar Chondral Defects: A Systematic Review. Sports Health, 2021, 13, 490-501.	1.3	7
174	Long-term Patient-Reported Outcome Measures Following Particulated Juvenile Allograft Cartilage Implantation for Treatment of Difficult Osteochondral Lesions of the Talus. Foot and Ankle International, 2021, 42, 1399-1409.	1.1	7
175	Chondrocyte Aging: The Molecular Determinants and Therapeutic Opportunities. Frontiers in Cell and Developmental Biology, 2021, 9, 625497.	1.8	18
176	Generation of Monkey Induced Pluripotent Stem Cell-Derived Cartilage Lacking Major Histocompatibility Complex Class I Molecules on the Cell Surface. Tissue Engineering - Part A, 2022, 28, 94-106.	1.6	6
177	Allogeneic chondrocyte implantation: What is stopping it from being a standard of care?. Journal of Arthroscopic Surgery and Sports Medicine, 0, .	0.0	4
178	Osteochondral Allograft Transplantation: The Rationale and Basic Science. , 2014, , 131-147.		1
179	Commercially Available Bioengineered Cartilage Grafts. , 2020, , 427-443.		2
180	Novel therapies using cell sheets engineered from allogeneic mesenchymal stem/stromal cells. Emerging Topics in Life Sciences, 2020, 4, 677-689.	1.1	17
181	Management of Large Focal Chondral and Osteochondral Defects in the Knee. Journal of Knee Surgery, 2020, 33, 1187-1200.	0.9	19
182	Endoscopic Treatment of Symptomatic Foot and Ankle Bone Cyst with 3D Printing Application. BioMed Research International, 2020, 2020, 1-10.	0.9	7

#	ARTICLE	IF	CITATIONS
183	Age Estimation by Telomeric Length Using Human (Homo sapiens) and Domestic Cat (Felis catus) Epidermis, Bone and Cartilage Samples was Found to be Ineffective. Chiang Mai University Journal of Natural Sciences, 2020, 19, .	0.2	1
184	Articular cartilage restoration using principles of tissue engineering. OA Orthopaedics, 2013, 1, .	0.1	1
185	Micromass co-culture of human articular chondrocytes and human bone marrow mesenchymal stem cells to investigate stable neocartilage tissue formation in vitro. , 2010, 20, 245-259.		134
186	Tissue engineering for articular cartilage repair – the state of the art. , 2013, 25, 248-267.		305
187	Cartilage Regeneration. Journal of the American Academy of Orthopaedic Surgeons, The, 2013, 21, 303-311.	1.1	8
188	Articular Cartilage Fragmentation Improves Chondrocyte Migration by Upregulating Membrane Type 1 Matrix Metalloprotease. Cartilage, 2021, 13, 1054S-1063S.	1.4	4
189	Safety and efficacy of human juvenile chondrocyte-derived cell sheets for osteochondral defect treatment. Npj Regenerative Medicine, 2021, 6, 65.	2.5	16
190	The Effect of Neonatal, Juvenile, and Adult Donors on Rejuvenated Neocartilage Functional Properties. Tissue Engineering - Part A, 2022, 28, 383-393.	1.6	6
191	Cell-Based Procedures for Early Osteoarthritis. , 2022, , 301-311.		0
192	Engineering Functional Cartilage Grafts. , 2011, , 237-250.		1
193	Challenges In Cartilage Tissue Engineering. Journal of Tissue Science & Engineering, 2013, 03, .	0.2	0
194	Pure Cartilage-Based Repair Modalities of Focal Cartilage Lesions. , 2014, , 309-322.		0
195	ESSKA Book Series – Techniques in Cartilage Repair Surgery Minced Cartilage: DeNovo and CAIS. , 2014, , 153-161.		0
197	Comparison between Chondrogenic Markers of Differentiated Chondrocytes from Adipose Derived Stem Cells and Articular Chondrocytes In Vitro. Iranian Journal of Basic Medical Sciences, 2013, 16, 763-73.	1.0	24
199	Clinical outcomes of patellar chondral lesions treated with juvenile particulated cartilage allografts. Iowa orthopaedic journal, The, 2014, 34, 44-9.	0.5	39
201	Pluripotent Stem Cells: Embryonic/Fetal Stem Cells and Induced Pluripotent Stem Cells. , 2022, , 371-381.		1
202	Technique Corner: Particulate Cartilage. , 2022, , 375-377.		0
203	Mid-term outcomes following acute particulated autologous cartilage implantation to treat displaced traumatic osteochondral lesions of the talus. Foot & Ankle Surgery Techniques, Reports & Cases, 2022, 2, 100165.	0.1	0

#	Article	IF	CITATIONS
204	Insights into the present and future of cartilage regeneration and joint repair. Cell Regeneration, 2022, 11, 3.	1.1	15
205	The transplantation of particulated juvenile allograft cartilage and synovium for the repair of meniscal defect in a lapine model. Journal of Orthopaedic Translation, 2022, 33, 72-89.	1.9	6
209	Moving towards single stage cartilage repair—is there evidence for the minced cartilage procedure?. Journal of Cartilage & Joint Preservation, 2022, 2, 100053.	0.2	3
210	New frontiers for cartilage repair, joint preservation and prevention. Journal of Cartilage & Joint Preservation, 2022, 2, 100060.	0.2	6
211	Human acellular amniotic membrane scaffolds encapsulating juvenile cartilage fragments accelerate the repair of rabbit osteochondral defects. Bone and Joint Research, 2022, 11, 349-361.	1.3	2
212	Single Stage Minced Cartilage Repair. Operative Techniques in Sports Medicine, 2022, 30, 150961.	0.2	1
213	Augmented Marrow Stimulation: Drilling Techniques and Scaffold Options. Operative Techniques in Sports Medicine, 2022, 30, 150958.	0.2	1
214	Vitrified Particulated Articular Cartilage for Joint Resurfacing: A Swine Model. American Journal of Sports Medicine, 2022, 50, 3671-3680.	1.9	1
215	Direct Reprogramming of Mouse Subchondral Bone Osteoblasts into Chondrocyte-like Cells. Biomedicines, 2022, 10, 2582.	1.4	0
216	Cartilage Tissue Engineering: An Introduction. Methods in Molecular Biology, 2023, , 1-7.	0.4	Ο
217	Biologic principles of minced cartilage implantation: a narrative review. Archives of Orthopaedic and Trauma Surgery, 2023, 143, 3259-3269.	1.3	3
218	Clinical Trials of Stem Cell Therapy in Japan: The Decade of Progress under the National Program. Journal of Clinical Medicine, 2022, 11, 7030.	1.0	2
219	Cell–Cell Interactions Enhance Cartilage Zonal Development in 3D Gradient Hydrogels. ACS Biomaterials Science and Engineering, 2023, 9, 831-843.	2.6	1
220	Comparison of arthroscopic debridement and microfracture in the treatment of osteochondral lesion of talus. Frontiers in Surgery, 0, 9, .	0.6	2
221	Cell transplantation techniques for cartilage restoration. Journal of Cartilage & Joint Preservation, 2023, 3, 100103.	0.2	1
222	OCD of the Knee in Adolescents. , 0, , .		0
223	Engineering Inflammationâ€Resistant Cartilage: Bridging Gene Therapy and Tissue Engineering. Advanced Healthcare Materials, 2023, 12, .	3.9	6
224	Chondral and Osteochondral Lesions in the Patellofemoral Joint. , 2023, , 315-328.		0

#	Article	IF	CITATIONS
225	Suitable characteristics in the selection of human allogeneic chondrocytes donors to increase the number of viable cells for cartilage repair. Cell and Tissue Banking, 0, , .	0.5	0
226	Arthroscopic Cartilage Transplantation. Clinics in Podiatric Medicine and Surgery, 2023, 40, 483-494.	0.2	Ο
229	Einfluss körperlicher Aktivitäauf den wachsenden Bewegungsapparat. , 2023, , 33-43.		0