Host preference and species richness of wood-inhabiting cool temperate area of Japan

Mycologia

102, 11-19

DOI: 10.3852/09-008

Citation Report

#	Article	IF	CITATIONS
1	Species Composition of Saproxylic Fungal Communities on Decaying Logs in the Boreal Forest. Microbial Ecology, 2011, 61, 898-910.	1.4	23
2	Diversity and conservation of wood-inhabiting polypores and other aphyllophoraceous fungi in Malaysia. Biodiversity and Conservation, 2012, 21, 2375-2396.	1.2	19
3	Changes in community structure of wood-inhabiting aphyllophoraceous fungi after clear-cutting in a cool temperate zone of Japan: Planted conifer forest versus broad-leaved secondary forest. Forest Ecology and Management, 2012, 283, 27-34.	1.4	4
4	Effects of Reduced-Impact Logging on Decomposers in the Deramakot Forest Reserve. Structure and Function of Mountain Ecosystems in Japan, 2012, , 63-87.	0.1	O
5	Modelling the global distribution of fungal species: new insights into microbial cosmopolitanism. Molecular Ecology, 2012, 21, 5599-5612.	2.0	61
6	Host tree-recurrence of wood-decaying Dacrymycetes. Fungal Ecology, 2012, 5, 562-570.	0.7	4
7	Taxonomic study of Asian species of poroid Auriculariales. Mycological Progress, 2014, 13, 987.	0.5	19
8	Effect of improvement cutting on the community structure of aphyllophoraceous fungi on Okinawa Island. Journal of Forest Research, 2014, 19, 143-153.	0.7	2
9	Food web structure of the fungivorous insect community on bracket fungi in a Bornean tropical rain forest. Ecological Entomology, 2015, 40, 390-400.	1.1	17
10	Drivers of CO2 Emission Rates from Dead Wood Logs of 13 Tree Species in the Initial Decomposition Phase. Forests, 2015, 6, 2484-2504.	0.9	40
11	Relationship between the Decomposition Process of Coarse Woody Debris and Fungal Community Structure as Detected by High-Throughput Sequencing in a Deciduous Broad-Leaved Forest in Japan. PLoS ONE, 2015, 10, e0131510.	1.1	17
12	Fungal wood decomposer activities influence community structures of myxomycetes and bryophytes on coarse woody debris. Fungal Ecology, 2015, 14, 44-52.	0.7	33
13	Wood-inhabiting fungi in southern Italy forest stands: morphogroups, vegetation types and decay classes. Mycologia, 2015, 107, 1074-1088.	0.8	8
14	Ecology of the forest microbiome: Highlights of temperate and borealÂecosystems. Soil Biology and Biochemistry, 2016, 103, 471-488.	4.2	140
15	Phylogenetic analysis of Ganoderma australe complex in a Bornean tropical rainforest and implications for mechanism of coexistence of various phylogenetic types. Fungal Ecology, 2016, 24, 1-6.	0.7	6
16	Ethnomycological use of Fomes fomentarius (L.) Fr. and Piptoporus betulinus (Bull.) P. Karst. in Transylvania, Romania. Genetic Resources and Crop Evolution, 2017, 64, 101-111.	0.8	24
17	Impact of woody debris of different tree species on the microbial activity and community of an underlying organic horizon. Soil Biology and Biochemistry, 2017, 115, 516-525.	4.2	25
18	Biogeography of polypores in Malesia, Southeast Asia. Mycoscience, 2017, 58, 1-13.	0.3	4

#	Article	IF	Citations
19	Understanding the distribution of wood-inhabiting fungi in European beech reserves from species-specific habitat models. Fungal Ecology, 2017, 27, 168-174.	0.7	49
20	Community fingerprinting reveals increasing wood-inhabiting fungal diversity in unmanaged Mediterranean forests. Forest Ecology and Management, 2018, 408, 202-210.	1.4	22
21	A check list of non-lichenised fungi occurring on Fagus crenata, a tree endemic to Japan. Mycology, 2018, 9, 29-34.	2.0	4
22	Ecological Determinants of Wood-Rotting Fungal Diversity and First Report of Favolaschia calocera, an Invasive Species from India. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2019, 89, 1177-1188.	0.4	2
23	Species Diversity With Comprehensive Annotations of Wood-Inhabiting Poroid and Corticioid Fungi in Uzbekistan. Frontiers in Microbiology, 2020, 11, 598321.	1.5	39
24	Investigating Wood Decaying Fungi Diversity in Central Siberia, Russia Using ITS Sequence Analysis and Interaction with Host Trees. Sustainability, 2020, 12, 2535.	1.6	11
25	Comparative mitochondrial genome analysis reveals intron dynamics and gene rearrangements in two Trametes species. Scientific Reports, 2021, 11, 2569.	1.6	13
26	Protocorm-Supporting Fungi Are Retained in Roots of Mature Tipularia discolor Orchids as Mycorrhizal Fungal Diversity Increases. Plants, 2021, 10, 1251.	1.6	13
27	Relative importance of climate, vegetation, and spatial factors in the community and functional composition of wood-inhabiting fungi in discontinuously distributed subalpine spruce forests. Canadian Journal of Forest Research, 2021, 51, 1029-1038.	0.8	4
28	Patterns of community composition and diversity in latent fungi of living Quercus serrata trunks across a range of oak wilt prevalence and climate variables in Japan. Fungal Ecology, 2022, 59, 101095.	0.7	3
29	Tree Ecosystem: Microbial Dynamics and Functionality. , 2019, , 411-450.		0
30	Temperature Characteristics of Two Fomitiporia Fungi Determine Their Geographical Distributions in Japan. Forests, 2021, 12, 1580.	0.9	1
31	Coarse woody debris provides cobenefits between carbon stock and diversity of polypore fungi in Malaysian forest stands. Tropics, 2022, , .	0.2	0
33	<i>Fomes fomentarius</i> (L.) Fr , 2023, , 201-220.		O