Caloric restriction or catalase inactivation extends yeas inducing H ₂ O ₂ and superoxi

Proceedings of the National Academy of Sciences of the Unite 107, 15123-15128

DOI: 10.1073/pnas.1004432107

Citation Report

#	Article	IF	CITATIONS
1	Hydrogen Peroxide as a Cell-Survival Signaling Molecule. Antioxidants and Redox Signaling, 2009, 11, 2655-2671.	2.5	274
2	Accumulation of Non-Superoxide Anion Reactive Oxygen Species Mediates Nitrogen-Limited Alcoholic Fermentation by <i>Saccharomyces cerevisiae</i> . Applied and Environmental Microbiology, 2010, 76, 7918-7924.	1.4	28
3	DNA DamageDNA damage and DNA Replication StressDNA replication stress in Yeast Models of Aging. Sub-Cellular Biochemistry, 2011, 57, 187-206.	1.0	13
4	The Role of Mitochondria in the Aging Processes of Yeast. Sub-Cellular Biochemistry, 2011, 57, 55-78.	1.0	43
5	Regulation of Yeast Chronological Life Span by TORC1 via Adaptive Mitochondrial ROS Signaling. Cell Metabolism, 2011, 13, 668-678.	7.2	273
6	A Radical Role for TOR in Longevity. Cell Metabolism, 2011, 13, 617-618.	7.2	11
7	Redox regulation in respiring Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 945-958.	1.1	55
8	Hormesis does not make sense except in the light of TOR-driven aging. Aging, 2011, 3, 1051-1062.	1.4	67
9	A Network-Based Approach on Elucidating the Multi-Faceted Nature of Chronological Aging in S. cerevisiae. PLoS ONE, 2011, 6, e29284.	1.1	10
10	Role for Sit4pâ€dependent mitochondrial dysfunction in mediating the shortened chronological lifespan and oxidative stress sensitivity of lsc1pâ€deficient cells. Molecular Microbiology, 2011, 81, 515-527.	1.2	45
11	Peroxisome Metabolism and Cellular Aging. Traffic, 2011, 12, 252-259.	1.3	145
12	Taking a "good―look at free radicals in the aging process. Trends in Cell Biology, 2011, 21, 569-576.	3.6	484
13	Quick and reliable assessment of chronological life span in yeast cell populations by flow cytometry. Mechanisms of Ageing and Development, 2011, 132, 315-323.	2.2	45
14	Mitochondria, reactive oxygen species, and chronological aging: A message from yeast. Experimental Gerontology, 2011, 46, 847-852.	1.2	112
15	Extending life span by increasing oxidative stress. Free Radical Biology and Medicine, 2011, 51, 327-336.	1.3	603
16	A genetic analysis of nitric oxide-mediated signaling during chronological aging in the yeast. Biogerontology, 2011, 12, 309-320.	2.0	15
17	Oxidative Stresses and Ageing. Sub-Cellular Biochemistry, 2011, 57, 13-54.	1.0	28
18	Identification of Potential Calorie Restriction-Mimicking Yeast Mutants with Increased Mitochondrial Respiratory Chain and Nitric Oxide Levels. Journal of Aging Research, 2011, 2011, 1-16.	0.4	27

#	Article	IF	CITATIONS
19	Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk. Molecular Biology of the Cell, 2011, 22, 1440-1451.	0.9	175
20	MutS HOMOLOG1 Is a Nucleoid Protein That Alters Mitochondrial and Plastid Properties and Plant Response to High Light Â. Plant Cell, 2011, 23, 3428-3441.	3.1	125
21	Caloric restriction and redox state: Does this diet increase or decrease oxidant production?. Redox Report, 2011, 16, 237-241.	1.4	30
22	Lack of Ach1 CoA-Transferase Triggers Apoptosis and Decreases Chronological Lifespan in Yeast. Frontiers in Oncology, 2012, 2, 67.	1.3	21
23	Evolutionary significance of metabolic network properties. Journal of the Royal Society Interface, 2012, 9, 1168-1176.	1.5	19
24	The biphasic redox sensing of SENP3 accounts for the HIF-1 transcriptional activity shift by oxidative stress. Acta Pharmacologica Sinica, 2012, 33, 953-963.	2.8	34
25	Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells. Frontiers in Oncology, 2012, 2, 59.	1.3	24
26	Calorie Restriction, Mitochondria and Longevity in Saccharomyces cerevisiae. Oxidative Stress and Disease, 2012, , 299-318.	0.3	0
27	Fructose protects baker's yeast against peroxide stress: potential role of catalase and superoxide dismutase. FEMS Yeast Research, 2012, 12, 761-773.	1.1	43
28	Aging biology: a new frontier for drug discovery. Expert Opinion on Drug Discovery, 2012, 7, 217-229.	2.5	20
29	Nutritional stress in eukaryotic cells: Oxidative species and regulation of survival in time of scarceness. Molecular Genetics and Metabolism, 2012, 105, 186-192.	0.5	17
30	Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1363-1373.	1.8	494
31	Manganese superoxide dismutase, MnSOD and its mimics. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 794-814.	1.8	312
32	Replicative and Chronological Aging in Saccharomyces cerevisiae. Cell Metabolism, 2012, 16, 18-31.	7.2	509
33	Physiological Roles of Mitochondrial Reactive Oxygen Species. Molecular Cell, 2012, 48, 158-167.	4.5	2,067
34	Reactive Oxygen Species in the Signaling and Adaptation of Multicellular Microbial Communities. Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-13.	1.9	130
35	The Impact of Peroxisomes on Cellular Aging and Death. Frontiers in Oncology, 2012, 2, 50.	1.3	46
36	Resveratrol Sensitizes Acute Myelogenous Leukemia Cells to Histone Deacetylase Inhibitors through Reactive Oxygen Species-Mediated Activation of the Extrinsic Apoptotic Pathway. Molecular Pharmacology, 2012, 82, 1030-1041.	1.0	36

#	Article	IF	CITATIONS
37	Aging Research in Yeast. Sub-Cellular Biochemistry, 2012, , .	1.0	27
38	Gis1 and Rph1 Regulate Glycerol and Acetate Metabolism in Glucose Depleted Yeast Cells. PLoS ONE, 2012, 7, e31577.	1.1	32
39	Extension of Yeast Chronological Lifespan by Methylamine. PLoS ONE, 2012, 7, e48982.	1.1	8
40	Growth Culture Conditions and Nutrient Signaling Modulating Yeast Chronological Longevity. Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-10.	1.9	14
41	Adaptive responses to alloxanâ€induced mild oxidative stress ameliorate certain tauopathy phenotypes. Aging Cell, 2012, 11, 51-62.	3.0	11
42	An alternative respiratory pathway on Candida krusei: implications on susceptibility profile and oxidative stress. FEMS Yeast Research, 2012, 12, 423-429.	1.1	19
43	Activation of the Hog1p kinase in lsc1p-deficient yeast cells is associated with mitochondrial dysfunction, oxidative stress sensitivity and premature aging. Mechanisms of Ageing and Development, 2012, 133, 317-330.	2.2	28
44	Local silencing controls the oxidative stress response and the multidrug resistance in <i><scp>C</scp>andida glabrata</i> . Molecular Microbiology, 2013, 88, 1135-1148.	1.2	50
45	Loss of Cytochrome c Oxidase Promotes RAS-Dependent ROS Production from the ER Resident NADPH Oxidase, Yno1p, in Yeast. Cell Metabolism, 2013, 18, 279-286.	7.2	131
46	Cytochrome c peroxidase is a mitochondrial heme-based H2O2 sensor that modulates antioxidant defense. Free Radical Biology and Medicine, 2013, 65, 541-551.	1.3	36
47	Oxidative Stress and Anti-Oxidant Enzyme Activities in the Trophocytes and Fat Cells of Queen Honeybees (<i>Apis mellifera</i>). Rejuvenation Research, 2013, 16, 295-303.	0.9	18
48	Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast. Experimental Gerontology, 2013, 48, 1455-1468.	1.2	25
49	Neuronal ROS signaling rather than AMPK/sirtuin-mediated energy sensing links dietary restriction to lifespan extension. Molecular Metabolism, 2013, 2, 92-102.	3.0	136
50	Model-based identification of drug targets that revert disrupted metabolism and its application to ageing. Nature Communications, 2013, 4, 2632.	5.8	90
51	Dietary restriction and mitochondrial function link replicative and chronological aging in Saccharomyces cerevisiae. Experimental Gerontology, 2013, 48, 1006-1013.	1.2	54
52	Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae. BMC Genomics, 2013, 14, 838.	1.2	50
53	Taking the rap: Multiple effects of blocking mammalian target of rapamycin. Hepatology, 2013, 57, 1-3.	3.6	3
54	DNA replication stress-induced loss of reproductive capacity in <i>S. cerevisiae</i> and its inhibition by caloric restriction. Cell Cycle, 2013, 12, 1189-1200.	1.3	16

#	Article	IF	CITATIONS
55	Mitochondrial hormesis links lowâ€dose arsenite exposure to lifespan extension. Aging Cell, 2013, 12, 508-517.	3.0	125
56	The bacterial secondary metabolite 2,4-diacetylphloroglucinol impairs mitochondrial function and affects calcium homeostasis in Neurospora crassa. Fungal Genetics and Biology, 2013, 56, 135-146.	0.9	22
57	The Hallmarks of Aging. Cell, 2013, 153, 1194-1217.	13.5	10,992
58	Regulation of Lifespan by the Mitochondrial Electron Transport Chain: Reactive Oxygen Species-Dependent and Reactive Oxygen Species-Independent Mechanisms. Antioxidants and Redox Signaling, 2013, 19, 1953-1969.	2.5	59
59	Fructation <i>In Vivo</i> : Detrimental and Protective Effects of Fructose. BioMed Research International, 2013, 2013, 1-9.	0.9	41
60	Superoxide radicals have a protective role during H ₂ O ₂ stress. Molecular Biology of the Cell, 2013, 24, 2876-2884.	0.9	57
61	Reducing signs of aging and increasing lifespan by drug synergy. Aging Cell, 2013, 12, 652-660.	3.0	23
62	Oxidative stress-induced mutagenesis in single-strand DNA occurs primarily at cytosines and is DNA polymerase zeta-dependent only for adenines and guanines. Nucleic Acids Research, 2013, 41, 8995-9005.	6.5	58
63	The significance of peroxisome function in chronological aging of <i>Saccharomyces cerevisiae</i> . Aging Cell, 2013, 12, 784-793.	3.0	36
64	A Metabolomics-driven Elucidation of the Anti-obesity Mechanisms of Xanthohumol. Journal of Biological Chemistry, 2013, 288, 19000-19013.	1.6	76
65	P. brasiliensis Virulence Is Affected by SconC, the Negative Regulator of Inorganic Sulfur Assimilation. PLoS ONE, 2013, 8, e74725.	1.1	15
66	Effects of caloric restriction on oxidative stress parameters. General Physiology and Biophysics, 2013, 32, 277-283.	0.4	49
67	Hormesis in Aging and Neurodegeneration—A Prodigy Awaiting Dissection. International Journal of Molecular Sciences, 2013, 14, 13109-13128.	1.8	35
68	Medicinal Chemistry of the Epigenetic Diet and Caloric Restriction. Current Medicinal Chemistry, 2013, 20, 4050-4059.	1.2	70
69	Hormesis: Biphasic Dose-Responses to Fungicides in Plant Pathogens and Their Potential Threat to Agriculture. , 0, , .		7
70	When less is more: hormesis against stress and disease. Microbial Cell, 2014, 1, 150-153.	1.4	37
71	Longevity pathways and maintenance of the proteome: the role of autophagy and mitophagy during yeast ageing. Microbial Cell, 2014, 1, 118-127.	1.4	30
72	Bio-inspired porous antenna-like nanocube/nanowire heterostructure as ultra-sensitive cellular interfaces. NPG Asia Materials, 2014, 6, e117-e117.	3.8	33

#	Article	IF	Citations
73	Aging and energetics' †Top 40' future research opportunities 2010-2013. F1000Research, 2014, 3, 21	9. 0.8	17
74	Sphingolipid signalling mediates mitochondrial dysfunctions and reduced chronological lifespan in the yeast model of <scp>N</scp> iemannâ€ <scp>P</scp> ick type <scp>C</scp> 1. Molecular Microbiology, 2014, 91, 438-451.	1.2	26
75	Molecular mechanisms linking the evolutionary conserved TORC1-Sch9 nutrient signalling branch to lifespan regulation in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2014, 14, 17-32.	1.1	64
76	Reactive oxygen species, ageing and the hormesis police. FEMS Yeast Research, 2014, 14, 33-39.	1.1	60
77	Respiration triggers heme transfer from cytochrome <i>c</i> peroxidase to catalase in yeast mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17468-17473.	3.3	33
78	Aging and cell death in the other yeasts, <i>Schizosaccharomyces pombe</i> and <i>Candida albicans</i> . FEMS Yeast Research, 2014, 14, 119-135.	1.1	64
79	Extension of Saccharomyces paradoxus Chronological Lifespan by Retrotransposons in Certain Media Conditions Is Associated with Changes in Reactive Oxygen Species. Genetics, 2014, 198, 531-545.	1.2	16
80	Mitohormesis: Promoting Health and Lifespan by Increased Levels of Reactive Oxygen Species (ROS). Dose-Response, 2014, 12, dose-response.1.	0.7	376
81	Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 53-64.	1.1	86
82	Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast. Redox Biology, 2014, 2, 308-313.	3.9	97
83	Mitochondrial free radical theory of aging: Who moved my premise?. Geriatrics and Gerontology International, 2014, 14, 740-749.	0.7	22
84	Cells with Impaired Mitochondrial H ₂ O ₂ Sensing Generate Less [•] OH Radicals and Live Longer. Antioxidants and Redox Signaling, 2014, 21, 1490-1503.	2.5	19
85	Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan. Cell Cycle, 2014, 13, 3336-3349.	1.3	34
86	Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae. DNA Repair, 2014, 23, 49-58.	1.3	56
87	The Search for Antiaging Interventions: From Elixirs to Fasting Regimens. Cell, 2014, 157, 1515-1526.	13.5	302
88	ROS Function in Redox Signaling and Oxidative Stress. Current Biology, 2014, 24, R453-R462.	1.8	4,622
89	Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype. International Journal of Microbiology, 2015, 2015, 1-8.	0.9	17
90	Cellular Longevity of Budding Yeast During Replicative and Chronological Aging. , 2015, , 89-109.		Ο

#	Article	IF	CITATIONS
91	CTT1 overexpression increases life span of calorie-restricted Saccharomyces cerevisiae deficient in Sod1. Biogerontology, 2015, 16, 343-351.	2.0	18
92	Manganese rescues adverse effects on lifespan and development in Podospora anserina challenged by excess hydrogen peroxide. Experimental Gerontology, 2015, 63, 8-17.	1.2	8
93	Artemisinin mimics calorie restriction to extend yeast lifespan via a dual-phase mode: a conclusion drawn from global transcriptome profiling. Science China Life Sciences, 2015, 58, 451-465.	2.3	17
94	The Interplay Between Respiratory Supercomplexes and ROS in Aging. Antioxidants and Redox Signaling, 2015, 23, 208-238.	2.5	115
95	Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production. Metabolic Engineering, 2015, 31, 53-61.	3.6	70
97	Dietary restriction, mitochondrial function and aging: from yeast to humans. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1434-1447.	0.5	111
98	Caloric restriction, resveratrol and melatonin: Role of SIRT1 and implications for aging and related-diseases. Mechanisms of Ageing and Development, 2015, 146-148, 28-41.	2.2	137
99	Near-infrared light increases ATP, extends lifespan and improves mobility in aged <i>Drosophila melanogaster</i> . Biology Letters, 2015, 11, 20150073.	1.0	35
100	Spatial reorganization of telomeres in long-lived quiescent cells. Genome Biology, 2015, 16, 206.	3.8	75
101	Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD+ homeostasis and contributes to longevity. Frontiers in Biology, 2015, 10, 333-357.	0.7	10
102	N-(3-Aminoalkyl)proline derivatives with potent antigycation activity. RSC Advances, 2015, 5, 77332-77340.	1.7	6
103	The Amazing Ubiquitin-Proteasome System: Structural Components and Implication inÂAging. International Review of Cell and Molecular Biology, 2015, 314, 171-237.	1.6	59
104	Dietary Restriction and Nutrient Balance in Aging. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10.	1.9	41
105	Cyclophilin D Is Involved in the Regulation of Autophagy and Affects the Lifespan of P. anserina in Response to Mitochondrial Oxidative Stress. Frontiers in Genetics, 2016, 7, 165.	1.1	21
106	Antioxidant Supplementation in the Treatment of Aging-Associated Diseases. Frontiers in Pharmacology, 2016, 7, 24.	1.6	142
107	Autophagy and Immune Senescence. Trends in Molecular Medicine, 2016, 22, 671-686.	3.5	67
108	Iron-depletion promotes mitophagy to maintain mitochondrial integrity in pathogenic yeast <i>Candida glabrata</i> . Autophagy, 2016, 12, 1259-1271.	4.3	47
109	Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis. Applied and Environmental Microbiology, 2016, 82, 4673-4681.	1.4	8

		CITATION REPORT		
#	Article		IF	Citations
110	Mitochondrial form, function and signalling in aging. Biochemical Journal, 2016, 473, 3421-3449.		1.7	30
111	Effect of lipoic acid on the activity of caspases and the characteristics of the immune and antioxida statuses in rats with rheumatoid arthritis. Russian Journal of Bioorganic Chemistry, 2016, 42, 389-3	nt 96.	0.3	3
112	Oma1 Links Mitochondrial Protein Quality Control and TOR Signaling To Modulate Physiological Plasticity and Cellular Stress Responses. Molecular and Cellular Biology, 2016, 36, 2300-2312.		1.1	18
113	Hormetic Effect of H ₂ O ₂ in <i>Saccharomyces cerevisiae</i> . Dose-Resp 2016, 14, 155932581663613.	onse,	0.7	13
114	8 Molecular Control of Fungal Senescence and Longevity. , 2016, , 155-181.			5
115	Caloric restriction alleviates alpha-synuclein toxicity in aged yeast cells by controlling the opposite roles of Tor1 and Sir2 on autophagy. Mechanisms of Ageing and Development, 2017, 161, 270-276		2.2	21
116	Glycation inhibitors extend yeast chronological lifespan by reducing advanced glycation end products and by back regulation of proteins involved in mitochondrial respiration. Journal of Proteomics, 2017, 156, 104-112.		1.2	26
117	Starvation signals in yeast are integrated to coordinate metabolic reprogramming and stress response to ensure longevity. Current Genetics, 2017, 63, 839-843.		0.8	74
118	Versatility of peroxisomes: An evolving concept. Tissue and Cell, 2017, 49, 209-226.		1.0	27
119	Comparative Analysis of Oxidative Stress During Aging of Kluyveromyces marxianus in Synthetic an Whey Media. Applied Biochemistry and Biotechnology, 2017, 183, 348-361.	d	1.4	8
120	Hormesis enables cells to handle accumulating toxic metabolites during increased energy flux. Redo Biology, 2017, 13, 674-686.	ж	3.9	31
121	Emodin extends lifespan of <i>Caenorhabditis elegans</i> through insulin/IGF-1 signaling pathway depending on DAF-16 and SIR-2.1. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1908-19	16.	0.6	25
122	Sphingolipid accumulation causes mitochondrial dysregulation and cell death. Cell Death and Differentiation, 2017, 24, 2044-2053.		5.0	38
123	Oxidative Stress and Amyloid Toxicity: Insights From Yeast. Journal of Cellular Biochemistry, 2017, 21442-1452.	.18,	1.2	29
124	Nonlinear feedback drives homeostatic plasticity in H2O2 stress response. ELife, 2017, 6, .		2.8	56
125	The Mitochondrial Basis of Aging and Age-Related Disorders. Genes, 2017, 8, 398.		1.0	228
126	<i>MET18</i> Deficiency Increases the Sensitivity of Yeast to Oxidative Stress and Shortens Replica Lifespan by Inhibiting Catalase Activity. BioMed Research International, 2017, 2017, 1-8.	itive	0.9	7
127	Glutathione levels influence chronological life span of <scp><i>Saccharomyces cerevisiae</i>in a glucoseâ€dependent manner. Yeast, 2018, 35, 387-396.</scp>		0.8	11

#	ARTICLE	IF	CITATIONS
129	GIT2—A keystone in ageing and age-related disease. Ageing Research Reviews, 2018, 43, 46-63.	5.0	29
130	The ceramide activated protein phosphatase Sit4 impairs sphingolipid dynamics, mitochondrial function and lifespan in a yeast model of Niemann-Pick type C1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 79-88.	1.8	12
131	Relevance of the p53–MDM2 axis to aging. Cell Death and Differentiation, 2018, 25, 169-179.	5.0	151
132	Mechanisms and Applications of Redox-Sensitive Green Fluorescent Protein-Based Hydrogen Peroxic Probes. Antioxidants and Redox Signaling, 2018, 29, 552-568.	de 2.5	33
133	Role/s of â€~Antioxidant' Enzymes in Ageing. Sub-Cellular Biochemistry, 2018, 90, 425-450.	1.0	16
134	Stem Cell Aging. , 2018, , .		1
135	Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes. Scientific Reports, 2018, 8, 16500.	1.6	14
136	Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31.	1.4	158
137	Redox Signaling of NADPH Oxidases Regulates Oxidative Stress Responses, Immunity and Aging. Antioxidants, 2018, 7, 130.	2.2	52
138	The peroxisome: an update on mysteries 2.0. Histochemistry and Cell Biology, 2018, 150, 443-471.	0.8	217
139	Low doses of DNA damaging agents extend Saccharomyces cerevisiae chronological lifespan by promoting entry into quiescence. Experimental Gerontology, 2018, 108, 189-200.	1.2	16
140	The TORC1-Sch9 pathway as a crucial mediator of chronological lifespan in the yeast Saccharomyce cerevisiae. FEMS Yeast Research, 2018, 18, .	'S 1.1	39
141	Peroxisomes: role in cellular ageing and age related disorders. Biogerontology, 2018, 19, 303-324.	2.0	39
142	Adaptive homeostasis and the free radical theory of ageing. Free Radical Biology and Medicine, 2018 124, 420-430.	8, <u>1.3</u>	142
143	Mitohormesis, an Antiaging Paradigm. International Review of Cell and Molecular Biology, 2018, 340 35-77.	0, 1.6	111
144	Genetic re-engineering of polyunsaturated phospholipid profile of Saccharomyces cerevisiae identifi a novel role for Cld1 in mitigating the effects of cardiolipin peroxidation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1354-1368.	es 1.2	16
145	The role of melatonin, a multitasking molecule, in retarding the processes of ageing. Ageing Researc Reviews, 2018, 47, 198-213.	ch 5.0	84
146	Aging Hallmarks: The Benefits of Physical Exercise. Frontiers in Endocrinology, 2018, 9, 258.	1.5	148

#	Article	IF	CITATIONS
147	Environmental hormesis and its fundamental biological basis: Rewriting the history of toxicology. Environmental Research, 2018, 165, 274-278.	3.7	73
148	A Budding Topic. , 2018, , 389-415.		1
149	Genetic Pathways of Aging and Their Relevance in the Dog as a Natural Model of Human Aging. Frontiers in Genetics, 2019, 10, 948.	1.1	36
150	The Microbiome and Aging. Annual Review of Genetics, 2019, 53, 239-261.	3.2	127
151	Trehalose increases the oxidative stress tolerance and biocontrol efficacy of Candida oleophila in the microenvironment of pear wounds. Biological Control, 2019, 132, 23-28.	1.4	26
152	Ctt1 catalase activity potentiates antifungal azoles in the emerging opportunistic pathogen Saccharomyces cerevisiae. Scientific Reports, 2019, 9, 9185.	1.6	9
153	Nutrient Sensing and Redox Balance: GCN2 as a New Integrator in Aging. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-9.	1.9	16
154	Caloric restriction induces H2O2 formation as a trigger of AMPK-eNOS-NO pathway in obese rats: Role for CAMKII. Free Radical Biology and Medicine, 2019, 139, 35-45.	1.3	15
155	Yeast at the Forefront of Research on Ageing and Age-Related Diseases. Progress in Molecular and Subcellular Biology, 2019, 58, 217-242.	0.9	21
156	Calorie Restriction in Adulthood Reduces Hepatic Disorders Induced by Transient Postnatal Overfeeding in Mice. Nutrients, 2019, 11, 2796.	1.7	19
157	The Anti-Aging Potential of Neohesperidin and Its Synergistic Effects with Other Citrus Flavonoids in Extending Chronological Lifespan of Saccharomyces Cerevisiae BY4742. Molecules, 2019, 24, 4093.	1.7	31
158	Conserved signaling pathways genetically associated with longevity across the species. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1745-1755.	1.8	30
159	A review of the molecular pathways mediating the improvement in diabetes mellitus following caloric restriction. Journal of Cellular Physiology, 2019, 234, 8436-8442.	2.0	9
160	Cell organelles and yeast longevity: an intertwined regulation. Current Genetics, 2020, 66, 15-41.	0.8	10
161	Aging and bone. , 2020, , 275-292.		2
162	Eustress, distress, and oxidative stress: Promising pathways for mind-body medicine. , 2020, , 583-617.		5
163	Stress and ageing in yeast. FEMS Yeast Research, 2020, 20, .	1.1	19
164	Healthful aging mediated by inhibition of oxidative stress. Ageing Research Reviews, 2020, 64, 101194.	5.0	118

#	Article	IF	CITATIONS
165	Tissue-specific roles of GCN2 in aging and autosomal dominant retinitis pigmentosa. Biochemical and Biophysical Research Communications, 2020, 533, 1054-1060.	1.0	4
166	<i>Daphnia magna</i> modifies its gene expression extensively in response to caloric restriction revealing a novel effect on haemoglobin isoform preference. Molecular Ecology, 2020, 29, 3261-3276.	2.0	5
167	Finding MEMO—Emerging Evidence for MEMO1′s Function in Development and Disease. Genes, 2020, 11, 1316.	1.0	13
168	Protective effect of quercetin in combination with caloric restriction against oxidative stressâ€induced cell death of <i>Saccharomyces cerevisiae</i> cells. Letters in Applied Microbiology, 2020, 71, 272-279.	1.0	8
169	Beneficial and Detrimental Effects of Reactive Oxygen Species on Lifespan: A Comprehensive Review of Comparative and Experimental Studies. Frontiers in Cell and Developmental Biology, 2021, 9, 628157.	1.8	203
170	Hydrogen sulfide treatment at the late growth stage of Saccharomyces cerevisiae extends chronological lifespan. Aging, 2021, 13, 9859-9873.	1.4	4
171	Understanding the Impact of Industrial Stress Conditions on Replicative Aging in Saccharomyces cerevisiae. Frontiers in Fungal Biology, 2021, 2, .	0.9	12
172	Nanocosmeceuticals for the management of ageing: Rigors and Vigors. Journal of Drug Delivery Science and Technology, 2021, 63, 102448.	1.4	7
173	Postâ€ŧranslational modifications of proteins associated with yeast peroxisome membrane: An essential mode of regulatory mechanism. Genes To Cells, 2021, 26, 843-860.	0.5	5
174	Yeast YPK9 deficiency results in shortened replicative lifespan and sensitivity to hydrogen peroxide. Biogerontology, 2021, 22, 547-563.	2.0	0
175	Redox Regulation in Aging Lungs and Therapeutic Implications of Antioxidants in COPD. Antioxidants, 2021, 10, 1429.	2.2	9
176	An Environmental Perspective on Health. Healthy Ageing and Longevity, 2020, , 371-382.	0.2	1
177	Cross-talk between redox signalling and protein aggregation. Biochemical Society Transactions, 2020, 48, 379-397.	1.6	29
179	Identification and Analysis of the Role of Superoxide Dismutases Isoforms in the Pathogenesis of Paracoccidioides spp PLoS Neglected Tropical Diseases, 2016, 10, e0004481.	1.3	58
180	Stress Resistance and Longevity Are Not Directly Linked to Levels of Enzymatic Antioxidants in the Ponerine Ant Harpegnathos saltator. PLoS ONE, 2011, 6, e14601.	1.1	24
181	Involvement of Catalase in Saccharomyces Cerevisiae Hormetic Response to Hydrogen Peroxide. Journal of Vasyl Stefanyk Precarpathian National University, 2020, 2, 107-114.	0.1	2
182	Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae. Microbial Cell, 2014, 1, 163-178.	1.4	33
183	Oxygen availability strongly affects chronological lifespan and thermotolerance in batch cultures of Saccharomyces cerevisiae. Microbial Cell, 2015, 2, 429-444.	1.4	25

#	Article	IF	Citations
184	Mitochondrial proteomics of the acetic acid - induced programmed cell death response in a highly tolerant Zygosaccharomyces bailii - derived hybrid strain. Microbial Cell, 2016, 3, 65-78.	1.4	11
185	pH homeostasis links the nutrient sensing PKA/TORC1/Sch9 ménage-Ã-trois to stress tolerance and longevity. Microbial Cell, 2018, 5, 119-136.	1.4	42
186	Spontaneous mutations in CYC8 and MIG1 suppress the short chronological lifespan of budding yeast lacking SNF1/AMPK. Microbial Cell, 2018, 5, 233-248.	1.4	13
187	Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence. Aging, 2010, 2, 709-726.	1.4	93
188	The sweet taste of death: glucose triggers apoptosis during yeast chronological aging. Aging, 2010, 2, 643-649.	1.4	23
189	Peroxisomal catalase deficiency modulates yeast lifespan depending on growth conditions. Aging, 2013, 5, 67-83.	1.4	25
190	Slm35 links mitochondrial stress response and longevity through TOR signaling pathway. Aging, 2016, 8, 3255-3271.	1.4	13
191	Adaptive response to chronic mild ethanol stress involves ROS, sirtuins and changes in chromosome dosage in wine yeasts. Oncotarget, 2016, 7, 29958-29976.	0.8	16
192	The Tangled Mitochondrial Metabolism in Cancer: An Innovative Pharmacological Approach. Current Medicinal Chemistry, 2020, 27, 2106-2117.	1.2	2
193	Oxidative stress, cellular senescence and ageing. AIMS Molecular Science, 2016, 3, 300-324.	0.3	82
194	NADPH oxidase-mediated redox signaling promotes oxidative stress resistance and longevity through memo-1 in C. elegans. ELife, 2017, 6, .	2.8	70
195	Hydrogen peroxide induced loss of heterozygosity correlates with replicative lifespan and mitotic asymmetry in <i>Saccharomyces cerevisiae</i> . PeerJ, 2016, 4, e2671.	0.9	1
196	Artemisinin mimics calorie restriction to trigger mitochondrial biogenesis and compromise telomere shortening in mice. PeerJ, 2015, 3, e822.	0.9	17
197	Microbial contribution to the caloric restriction-triggered regulation of the intestinal levels of glutathione transferases, taurine, and bile acid. Gut Microbes, 2021, 13, 1992236.	4.3	7
199	ART for Antiaging. Springer Briefs in Molecular Science, 2015, , 79-108.	0.1	0
201	Genomics of Lung Aging and Idiopathic Pulmonary Fibrosis. , 2016, , 389-408.		0
202	Extension of Chronological Life in <i>Saccharomyces cerevisiae</i> under Ethanol Stress by Thermally Processed Rice <i>Koji</i> Extracts. Advances in Microbiology, 2016, 06, 575-589.	0.3	1
204	Yeast Models in Biogerontological Studies. , 2019, , 443-443.		0

#	Article	IF	CITATIONS
206	The Many Roles Mitochondria Play in Mammalian Aging. Antioxidants and Redox Signaling, 2022, 36, 824-843.	2.5	5
207	The Role of Immune Cells in Oxi-Inflamm-Aging. Cells, 2021, 10, 2974.	1.8	46
208	Lysosomes and Peroxisomes. Biological and Medical Physics Series, 2020, , 277-332.	0.3	1
209	Protein Oxidative Modifications: Beneficial Roles in Disease and Health. Journal of Biochemical and Pharmacological Research, 2013, 1, 15-26.	1.7	100
211	Regulation of the mitochondrial permeability transition pore and its effects on aging. Microbial Cell, 2020, 7, 222-233.	1.4	0
212	The relevance of hormesis at higher levels of biological organization: Hormesis in microorganisms. Current Opinion in Toxicology, 2022, 29, 1-9.	2.6	23
213	Regulation of the mitochondrial permeability transition pore and its effects on aging. Microbial Cell, 2020, 7, 222-233.	1.4	4
214	Increased peroxisome proliferation is associated with early yeast replicative ageing. Current Genetics, 2022, 68, 207-225.	0.8	7
215	Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Report, 2022, 27, 45-52.	1.4	102
216	Positive Aspects of Oxidative Stress at Different Levels of the Human Body: A Review. Antioxidants, 2022, 11, 572.	2.2	31
217	Oxidative Stress and Redox Signaling in the Pathophysiology of Liver Diseases. , 2022, 12, 3167-3192.		17
219	Temporal changes in mitochondrial function and reactive oxygen species generation during the development of replicative senescence in human fibroblasts. Experimental Gerontology, 2022, 165, 111866.	1.2	3
220	Targeting the "hallmarks of aging―to slow aging and treat age-related disease: fact or fiction?. Molecular Psychiatry, 2023, 28, 242-255.	4.1	27
222	Premature aging is associated with higher levels of 8â€oxoguanine and increased <scp>DNA</scp> damage in the Polg mutator mouse. Aging Cell, 2022, 21, .	3.0	12
223	Elimination of damaged cells-dependent antiaging strategy. , 2022, , 75-111.		0
224	CoQ10 and Resveratrol Effects to Ameliorate Aged-Related Mitochondrial Dysfunctions. Nutrients, 2022, 14, 4326.	1.7	5
225	Tra1 controls the transcriptional landscape of the aging cell. G3: Genes, Genomes, Genetics, 2023, 13, .	0.8	3
226	The nexus between peroxisome abundance and chronological ageing in Saccharomyces cerevisiae. Biogerontology, 2023, 24, 81-97.	2.0	3

#	Article	IF	CITATIONS
227	Aging mechanism. , 2023, , 229-238.		0
228	Enhancement of biocontrol efficacy of Kluyveromyces marxianus induced by N-acetylglucosamine against Penicillium expansum. Food Chemistry, 2023, 404, 134658.	4.2	5
229	New insights into vascular aging: Emerging role of mitochondria function. Biomedicine and Pharmacotherapy, 2022, 156, 113954.	2.5	3
230	Detecting the metabolism of individual yeast mutant strain cells when aged, stressed or treated with antioxidants with diamond magnetometry. Nano Today, 2023, 48, 101704.	6.2	10
231	The Lipid Profile of the Endomyces magnusii Yeast upon the Assimilation of the Substrates of Different Types and upon Calorie Restriction. Journal of Fungi (Basel, Switzerland), 2022, 8, 1233.	1.5	1
232	Future foods, dietary factors and healthspan. Journal of Future Foods, 2023, 3, 75-98.	2.0	2
233	Sex differences in markers of oxidation and inflammation. Implications for ageing. Mechanisms of Ageing and Development, 2023, 211, 111797.	2.2	19
237	Assessing chronological aging in Saccharomyces cerevisiae. Methods in Cell Biology, 2023, , .	0.5	0