Understanding the effect of mean pore size on cell activ scaffolds

Cell Adhesion and Migration 4, 377-381 DOI: 10.4161/cam.4.3.11747

Citation Report

#	Article	IF	CITATIONS
1	A multiscale modeling approach to scaffold design and property prediction. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3, 584-593.	1.5	24
2	Applications of knitted mesh fabrication techniques to scaffolds for tissue engineering and regenerative medicine. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 922-932.	1.5	67
3	Collagen scaffolds for orthopedic regenerative medicine. Jom, 2011, 63, 66-73.	0.9	44
4	Biomaterials & scaffolds for tissue engineering. Materials Today, 2011, 14, 88-95.	8.3	2,695
5	Optimal scaffold design and effective progenitor cell identification for the regeneration of vascularized bone. , 2011, 2011, 2464-7.		13
7	Organ-Specific Tubular and Collagen-Based Composite Scaffolds. Tissue Engineering - Part C: Methods, 2011, 17, 327-335.	1.1	21
8	Optimally Porous and Biomechanically Compatible Scaffolds for Large-Area Bone Regeneration. Tissue Engineering - Part A, 2012, 18, 1376-1388.	1.6	108
9	Oxidized Dextran as Crosslinker for Chitosan Cryogel Scaffolds and Formation of Polyelectrolyte Complexes between Chitosan and Gelatin. Macromolecular Bioscience, 2012, 12, 1090-1099.	2.1	49
10	Influence of flow rate and scaffold pore size on cell behavior during mechanical stimulation in a flow perfusion bioreactor. Biotechnology and Bioengineering, 2012, 109, 1583-1594.	1.7	94
11	Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen–glycosaminoglycan scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 11, 53-62.	1.5	228
12	Fabrication and characterization of poly(l-lactide-co-glycolide) knitted mesh-reinforced collagen–chitosan hybrid scaffolds for dermal tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 8, 204-215.	1.5	60
13	Effect of laminated hydroxyapatite/gelatin nanocomposite scaffold structure on osteogenesis using unrestricted somatic stem cells in rat. Cell Biology International, 2013, 37, 1181-1189.	1.4	28
14	Morphological Cues for Regulation of Cell Adhesion and Motility with Tailored Electrospun Scaffolds of PCL and PCL/PVP Blends. Cellular and Molecular Bioengineering, 2013, 6, 482-495.	1.0	14
15	Synthesis and characterization of positively charged interpenetrating double-network hydrogel matrices for biomedical applications. Reactive and Functional Polymers, 2013, 73, 1493-1499.	2.0	19
16	Enzymatically degradable oxidized dextran–chitosan hydrogels with an anisotropic aligned porous structure. Soft Matter, 2013, 9, 11136.	1.2	25
17	Three types of dermal grafts in rats: the importance of mechanical property and structural design. BioMedical Engineering OnLine, 2013, 12, 125.	1.3	17
18	Evaluation of macroporous blood and plasma scaffolds for skeletal muscle tissue engineering. Biomaterials Science, 2013, 1, 402.	2.6	13
19	Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Engineering - Part B: Reviews, 2013, 19, 485-502.	2.5	1,880

#	Article	IF	CITATIONS
20	Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications. Materials Science and Engineering C, 2013, 33, 4032-4038.	3.8	38
21	Fabrication of a multi-layer three-dimensional scaffold with controlled porous micro-architecture for application in small intestine tissue engineering. Cell Adhesion and Migration, 2013, 7, 267-274.	1.1	24
22	Skin Equivalent Tissue-Engineered Construct: Co-Cultured Fibroblasts/ Keratinocytes on 3D Matrices of Sericin Hope Cocoons. PLoS ONE, 2013, 8, e74779.	1.1	63
23	Advances in the design of macroporous polymer scaffolds for potential applications in dentistry. Journal of Periodontal and Implant Science, 2013, 43, 251.	0.9	96
24	Preparation and Characterization of a Collagen-Liposome-Chondroitin Sulfate Matrix with Potential Application for Inflammatory Disorders Treatment. Journal of Nanomaterials, 2014, 2014, 1-9.	1.5	23
25	Liquid Phase Sintered Ceramic Bone Scaffolds by Combined Laser and Furnace. International Journal of Molecular Sciences, 2014, 15, 14574-14590.	1.8	15
26	Rotator cuff healing and repair. Current Orthopaedic Practice, 2014, 25, 266-280.	0.1	0
27	In vitro and in vivo studies of three dimensional porous composites of biphasic calcium phosphate/poly É›-caprolactone: Effect of bio-functionalization for bone tissue engineering. Applied Surface Science, 2014, 301, 307-314.	3.1	14
28	Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Acta Biomaterialia, 2014, 10, 1341-1353.	4.1	94
29	Novel porous scaffolds of pH responsive chitosan/carrageenan-based polyelectrolyte complexes for tissue engineering. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	2.1	33
30	Sericin–carboxymethyl cellulose porous matrices as cellular wound dressing material. Journal of Biomedical Materials Research - Part A, 2014, 102, 1928-1940.	2.1	63
31	Functional analysis reveals angiogenic potential of human mesenchymal stem cells from Wharton's jelly in dermal regeneration. Angiogenesis, 2014, 17, 851-866.	3.7	80
32	Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications. Applied Surface Science, 2014, 322, 162-168.	3.1	84
33	Scaffold pore size modulates <i>in vitro</i> osteogenesis of human adipose-derived stem/stromal cells. Biomedical Materials (Bristol), 2014, 9, 045003.	1.7	56
34	Three-dimensional cancer models mimic cell-matrix interactions in the tumour microenvironment. Carcinogenesis, 2014, 35, 1671-1679.	1.3	123
35	Nano-patterned honey incorporated silk fibroin membranes for improving cellular compatibility. RSC Advances, 2014, 4, 44674-44688.	1.7	19
36	Gelatin–PMVE/MA composite scaffold promotes expansion of embryonic stem cells. Materials Science and Engineering C, 2014, 37, 184-194.	3.8	10
37	Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications. Journal of Biomaterials Applications, 2014, 28, 909-921.	1.2	131

ARTICLE IF CITATIONS # Hydroxyapatite scaffold pore architecture effects in large bone defects inÂvivo. Journal of 38 1.2 35 Biomaterials Applications, 2014, 28, 1016-1027. Novel Technique for Repair of Severed Peripheral Nerves in Rats Using Polyurea Crosslinked Silica Aerogel Scaffold. Journal of Investigative Surgery, 2014, 27, 294-303. 40 Hydrogels Based on Poly(2-oxazoline) S for Pharmaceutical Applications., 2015, , 231-258. 5 <scp>O</scp>steoblast biocompatibility of novel chitosan crosslinker, hexamethyleneâ€1,6â€diaminocarboxysulfonate. Journal of Biomedical Materials Research - Part A, 2015, 103, 3026-3033. Porous three-dimensional carbon nanotube scaffolds for tissue engineering. Journal of Biomedical 42 2.161 Materials Research - Part A, 2015, 103, 3212-3225. Investigation of Magnesium Incorporation within Gelatin/Calcium Phosphate Nanocomposite Scaffold 1.1 for Bone Tissue Engineering. International Journal of Applied Ceramic Technology, 2015, 12, 245-253. Effect of nanofiber content on bone regeneration of silk fibroin/poly(ε-caprolactone) 44 3.3 56 nano/microfibrous composite scaffolds. International Journal of Nanomedicine, 2015, 10, 485. Influence of Different Three-Dimensional Open Porous Titanium Scaffold Designs on Human 1.3 Osteoblasts Behavior in Static and Dynamic Cell Investigations. Materials, 2015, 8, 5490-5507. Failure modes in high strength and stiffness to weight scaffolds produced by Selective Laser Melting. 5.1 46 76 Materials & Design, 2015, 67, 501-508. Influence of 3D porous galactose containing PVA/gelatin hydrogel scaffolds on three-dimensional spheroidal morphology of hepatocytes. Journal of Materials Science: Materials in Medicine, 2015, 26, 1.7 5345. Freeze gelated porous membranes for periodontal tissue regeneration. Acta Biomaterialia, 2015, 23, 48 4.1 95 317-328. Physicochemical properties of 3D collagen-CS scaffolds for potential use in neural tissue 49 3.6 24 engineering. International Journal of Biological Macromolecules, 2015, 80, 732-739. Dose-related effects of sericin on preadipocyte behavior within collagen/sericin hybrid scaffolds. 50 1.8 20 Progress in Natural Science: Materials International, 2015, 25, 122-130. Structural modification and characterization of bacterial cellulose–alginate composite scaffolds 5.1 for tissue engineering. Carbohydrate Polymers, 2015, 132, 146-155. Incorporation of the natural marine multi-mineral dietary supplement Aquamin enhances osteogenesis 52 and improves the mechanical properties of a collagen-based bone graft substitute. Journal of the 1.5 15 Mechanical Behavior of Biomedical Materials, 2015, 47, 114-123. Hierarchically biomimetic scaffold of a collagen–mesoporous bioactive glass nanofiber composite for bone tissue engineering. Biomedical Materials (Bristol), 2015, 10, 025007. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance 54 200 5.7angiogenesis and bone repair. Biomaterials, 2015, 52, 358-366. Endothelial cell sensing, restructuring, and invasion in collagen hydrogel structures. Integrative Biology (United Kingdom), 2015, 7, 1432-1441.

#	Article	IF	CITATIONS
56	Incorporation of fibrin into a collagen–glycosaminoglycan matrix results in a scaffold with improved mechanical properties and enhanced capacity to resist cell-mediated contraction. Acta Biomaterialia, 2015, 26, 205-214.	4.1	49
57	3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration. Acta Biomaterialia, 2015, 27, 88-100.	4.1	99
58	Development of collagen–hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering. Journal of Controlled Release, 2015, 198, 71-79.	4.8	187
59	Effect of fiber orientation of collagen-based electrospun meshes on human fibroblasts for ligament tissue engineering applications. , 2015, 103, 39-46.		39
60	Silk fibroin–keratin based 3D scaffolds as a dermal substitute for skin tissue engineering. Integrative Biology (United Kingdom), 2015, 7, 53-63.	0.6	139
	Fabrication of Poly(<mml:math)="" 0.784314="" 1="" etqq1="" rgbt<="" td="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>/Overlock</td><td>10 Tf 50 5</td></mml:math>	/Overlock	10 Tf 50 5
61	Scaffolds Reinforced with Cellulose Nanofibers, with and without the Addition of Hydroxyapatite Nanoparticles. BioMed Research International. 2016. 2016. 1-10.	0.9	53
62	Physical and mechanical properties of crossâ€linked type I collagen scaffolds derived from bovine, porcine, and ovine tendons. Journal of Biomedical Materials Research - Part A, 2016, 104, 2685-2692.	2.1	65
63	<i>In vitro</i> evaluation of human endometrial stem cellâ€derived osteoblastâ€like cells' behavior on gelatin/collagen/bioglass nanofibers' scaffolds. Journal of Biomedical Materials Research - Part A, 2016, 104, 2210-2219.	2.1	18
64	Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering. Journal of Tissue Engineering, 2016, 7, 204173141562466.	2.3	19
65	Engineering Biomaterials for Enhanced Tissue Regeneration. Current Stem Cell Reports, 2016, 2, 140-146.	0.7	34
66	Collagen–carboxymethyl cellulose–tricalcium phosphate multi-lamellar cryogels for tissue engineering applications: Production and characterization. Journal of Bioactive and Compatible Polymers, 2016, 31, 411-422.	0.8	14
67	Cellularized Bilayer Pullulan-Gelatin Hydrogel for Skin Regeneration. Tissue Engineering - Part A, 2016, 22, 754-764.	1.6	57
68	Fabrication of cell-penetrable microfibrous matrices with a highly porous structure using a simple fluidic device for tissue engineering. Materials Letters, 2016, 168, 116-120.	1.3	2
69	A Novel Nanosilver/Nanosilica Hydrogel for Bone Regeneration in Infected Bone Defects. ACS Applied Materials & Interfaces, 2016, 8, 13242-13250.	4.0	59
70	Role of chemical crosslinking in material-driven assembly of fibronectin (nano)networks: 2D surfaces and 3D scaffolds. Colloids and Surfaces B: Biointerfaces, 2016, 148, 324-332.	2.5	9
71	Manufacture and Characterisation of Porous PLA Scaffolds. Procedia CIRP, 2016, 49, 33-38.	1.0	58
72	Processing and surface modification of polymer nanofibers for biological scaffolds: a review. Journal of Materials Chemistry B, 2016, 4, 5958-5974.	2.9	61
73	Biomimetic Porous PLGA Scaffolds Incorporating Decellularized Extracellular Matrix for Kidney Tissue Regeneration, ACS Applied Materials &: Interfaces, 2016, 8, 21145-21154.	4.0	74

#	Article	IF	CITATIONS
74	Smooth muscle tissue engineering in crosslinked electrospun gelatin scaffolds. Journal of Biomedical Materials Research - Part A, 2016, 104, 313-321.	2.1	22
75	Effect of collagenâ€glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types. Journal of Biomedical Materials Research - Part A, 2016, 104, 291-304.	2.1	68
76	Using carbohydrate-based biomaterials as scaffolds to control human stem cell fate. Organic and Biomolecular Chemistry, 2016, 14, 8648-8658.	1.5	13
77	Amniotic epithelial stem cell biocompatibility for electrospun poly(lactide- co -glycolide), poly(ε-caprolactone), poly(lactic acid) scaffolds. Materials Science and Engineering C, 2016, 69, 321-329.	3.8	27
78	Collagen-grafted porous HDPE/PEAA scaffolds for bone reconstruction. Biomaterials Research, 2016, 20, 23.	3.2	10
79	Effectiveness of wound healing using the novel collagen dermal substitute INSUREGRAF®. RSC Advances, 2016, 6, 59692-59701.	1.7	5
80	Characterisation of a novel light activated adhesive scaffold: Potential for device attachment. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 433-445.	1.5	8
81	Physico-chemical and biological studies on three-dimensional porous silk/spray-dried mesoporous bioactive glass scaffolds. Ceramics International, 2016, 42, 13761-13772.	2.3	18
82	<i>In vitro</i> and <i>in vivo</i> evaluation of porous TiNi-based alloy as a scaffold for cell tissue engineering. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 704-709.	1.9	19
83	A Combinatorial effect of carboxymethyl cellulose based scaffold and microRNA-15b on osteoblast differentiation. International Journal of Biological Macromolecules, 2016, 93, 1457-1464.	3.6	31
84	Designing and modeling pore size distribution in tissue scaffolds. , 2016, , 23-43.		3
85	Collagen–Poly(<i>N</i> -isopropylacrylamide) Hydrogels with Tunable Properties. Biomacromolecules, 2016, 17, 723-734.	2.6	45
86	Electrospun fibers of chitosan-grafted polycaprolactone/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) blends. Journal of Materials Chemistry B, 2016, 4, 600-612.	2.9	47
87	Characterization of tissue engineered cartilage products: Recent developments in advanced therapy. Pharmacological Research, 2016, 113, 823-832.	3.1	7
88	Fabrication and characterisation of biomimetic, electrospun gelatin fibre scaffolds for tunica media-equivalent, tissue engineered vascular grafts. Materials Science and Engineering C, 2016, 61, 473-483.	3.8	61
89	Preparation of a biomimetic composite scaffold from gelatin/collagen and bioactive glass fibers for bone tissue engineering. Materials Science and Engineering C, 2016, 59, 533-541.	3.8	95
90	Sol–gel processing of novel bioactive Mg-containing silicate scaffolds for alveolar bone regeneration. Journal of Biomaterials Applications, 2016, 30, 740-749.	1.2	12
91	DPSC colonization of functionalized 3D textiles. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 785-794.	1.6	8

#	Article	IF	CITATIONS
92	Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen-hydroxyapatite scaffolds for promoting vascularization and bone repair. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1097-1109.	1.3	88
93	Fabrication of novel biodegradable porous bone scaffolds based on amphiphilic hydroxyapatite nanorods. Materials Science and Engineering C, 2017, 75, 699-705.	3.8	25
94	A novel nano-hydroxyapatite — PMMA hybrid scaffolds adopted by conjugated thermal induced phase separation (TIPS) and wet-chemical approach: Analysis of its mechanical and biological properties. Materials Science and Engineering C, 2017, 75, 221-228.	3.8	36
95	A cell-printing approach for obtaining hASC-laden scaffolds by using a collagen/polyphenol bioink. Biofabrication, 2017, 9, 025004.	3.7	55
96	Calcium phosphate-based nanocomposite carriers for local antibiotic delivery against an osteomyelitis agent. Advances in Applied Ceramics, 2017, 116, 316-324.	0.6	4
97	Early and Marked Enhancement of New Bone Quality by Alendronate-Loaded Collagen Sponge Combined with Bone Morphogenetic Protein-2 at High Dose: A Long-Term Study in Calvarial Defects in a Rat Model. Tissue Engineering - Part A, 2017, 23, 1343-1360.	1.6	22
99	Screening of Nanocomposite Scaffolds Arrays Using Superhydrophobicâ€Wettable Micropatterns. Advanced Functional Materials, 2017, 27, 1701219.	7.8	16
100	Influence of residual composition on the structure and properties of extracellular matrix derived hydrogels. Materials Science and Engineering C, 2017, 79, 793-801.	3.8	39
101	Highly porous scaffolds of PEDOT:PSS for bone tissue engineering. Acta Biomaterialia, 2017, 62, 91-101.	4.1	198
102	Freezeâ€Drying as a Novel Biofabrication Method for Achieving a Controlled Microarchitecture within Large, Complex Natural Biomaterial Scaffolds. Advanced Healthcare Materials, 2017, 6, 1700598.	3.9	84
103	Assessment of Scaffolding Properties for Chondrogenic Differentiation of Adiposeâ€Đerived Mesenchymal Stem Cells in Nasal Reconstruction. JAMA Facial Plastic Surgery, 2017, 19, 108-114.	2.2	14
104	Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming. Materials Science and Engineering C, 2017, 72, 53-61.	3.8	73
105	Innovative encapsulation platform based on pancreatic extracellular matrix achieve substantial insulin delivery. Journal of Controlled Release, 2017, 257, 91-101.	4.8	75
106	Influence of Hydroxyl Groups on the Cell Viability of Polyhydroxyalkanoate (PHA) Scaffolds for Tissue Engineering. ACS Biomaterials Science and Engineering, 2017, 3, 3064-3075.	2.6	37
107	An injectable poly(caprolactone trifumarate-gelatin microparticles) (PCLTF-GMPs) scaffold for irregular bone defects: Physical and mechanical characteristics. Materials Science and Engineering C, 2017, 72, 332-340.	3.8	2
108	3D printing of biocomposites for osteochondral tissue engineering. , 2017, , 261-302.		18
109	Biomedical and Microbiological Applications of Bio-Based Porous Materials: A Review. Polymers, 2017, 9, 160.	2.0	69
110	Mechanically Strong CaSiO3 Scaffolds Incorporating B2O3-ZnO Liquid Phase. Applied Sciences (Switzerland), 2017, 7, 387.	1.3	3

#	Article	IF	CITATIONS
111	Evaluation of the Xanthan-Based Film Incorporated with Silver Nanoparticles for Potential Application in the Nonhealing Infectious Wound. Journal of Nanomaterials, 2017, 2017, 1-10.	1.5	17
112	Investigate the Effect of Thawing Process on the Self-Assembly of Silk Protein for Tissue Applications. BioMed Research International, 2017, 2017, 1-16.	0.9	3
113	Cellulose/poly-(m-phenylene isophthalamide) porous film as a tissue-engineered skin bioconstruct. Results in Physics, 2018, 9, 113-120.	2.0	16
114	Evaluation of cellular adhesion and organization in different microporous polymeric scaffolds. Biotechnology Progress, 2018, 34, 505-514.	1.3	8
115	Heparin Functionalized Injectable Cryogel with Rapid Shape-Recovery Property for Neovascularization. Biomacromolecules, 2018, 19, 2257-2269.	2.6	69
116	Nanofiber films of chloroacetated natural rubber/poly(vinyl alcohol) by electrospinning technique: Silica effects on biodegradation. Journal of Applied Polymer Science, 2018, 135, 46432.	1.3	10
117	A collagen based cryogel bioscaffold coated with nanostructured polydopamine as a platform for mesenchymal stem cell therapy. Journal of Biomedical Materials Research - Part A, 2018, 106, 2213-2228.	2.1	23
118	Porous Chitosan/Nano-Hydroxyapatite Composite Scaffolds Incorporating Simvastatin-Loaded PLGA Microspheres for Bone Repair. Cells Tissues Organs, 2018, 205, 20-31.	1.3	35
119	Novel in situ forming hydrogel based on xanthan and chitosan re-gelifying in liquids for local drug delivery. Carbohydrate Polymers, 2018, 186, 54-63.	5.1	113
120	Why the impact of mechanical stimuli on stem cells remains a challenge. Cellular and Molecular Life Sciences, 2018, 75, 3297-3312.	2.4	35
121	Mechanical, material, and biological study of a PCL/bioactive glass bone scaffold: Importance of viscoelasticity. Materials Science and Engineering C, 2018, 90, 280-288.	3.8	54
122	Augmenting endogenous repair of soft tissues with nanofibre scaffolds. Journal of the Royal Society Interface, 2018, 15, 20180019.	1.5	21
123	Amino acid-grafted and N-acylated chitosan thiomers: Construction of 3D bio-scaffolds for potential cartilage repair applications. International Journal of Biological Macromolecules, 2018, 114, 270-282.	3.6	74
124	Macroporous click-elastin-like hydrogels for tissue engineering applications. Materials Science and Engineering C, 2018, 88, 140-147.	3.8	30
125	A collagen cardiac patch incorporating alginate microparticles permits the controlled release of hepatocyte growth factor and insulin-like growth factor-1 to enhance cardiac stem cell migration and proliferation. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e384-e394.	1.3	42
126	Rapid vacuum sintering: A novel technique for fabricating fluorapatite ceramic scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 291-299.	1.6	14
127	An improvement of silk-based scaffold properties using collagen type I for skin tissue engineering applications. Polymer Bulletin, 2018, 75, 685-700.	1.7	10
128	Evaluation of Extracted Î ² -chitosan From Loligo duvauceli for the Preparation of Tissue Engineering Scaffolds. Journal of Polymers and the Environment, 2018, 26, 1231-1238.	2.4	4

#	Article	IF	Citations
129	A Viscoelastic Study of Poly(ε-Caprolactone) Microsphere Sintered Bone Tissue Engineering Scaffold. Journal of Medical and Biological Engineering, 2018, 38, 359-369.	1.0	2
130	Nanofibrous scaffolds with biomimetic structure. Journal of Biomedical Materials Research - Part A, 2018, 106, 370-376.	2.1	25
131	Macroporous scaffolds: Molecular brushes based on oligo(lactic acid)–amino acid–indomethacin conjugated poly(norbornene)s. European Polymer Journal, 2018, 98, 162-171.	2.6	7
132	Introduction to electrofluidodynamic techniques. Part II. , 2018, , 19-36.		1
133	Xenogeneic Mesenchymal Stem Cells in the Formation of Hyaline Cartilage in Osteochondral Goat Failure. Acta Scientiae Veterinariae, 2018, 46, 10.	0.2	0
134	Influence of Regioselectively Sulfated Cellulose on in Vitro Vascularization of Biomimetic Bone Matrices. Biomacromolecules, 2018, 19, 4228-4238.	2.6	7
135	Modelling multi-scale cell–tissue interaction of tissue-engineered muscle constructs. Journal of Tissue Engineering, 2018, 9, 204173141878714.	2.3	12
136	Composite Biomaterials as Longâ€Lasting Scaffolds for 3D Bioprinting of Highly Aligned Muscle Tissue. Macromolecular Bioscience, 2018, 18, e1800167.	2.1	104
137	Towards Alternative Approaches for Coupling of a Soft Robotic Sleeve to the Heart. Annals of Biomedical Engineering, 2018, 46, 1534-1547.	1.3	31
138	Applications of Nanofibers in Tissue Engineering. , 2018, , 179-203.		8
139	Electrohydrodynamic Jet 3D Printed Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair. Polymers, 2018, 10, 753.	2.0	61
140	Nanostructured polymer scaffolds for tissue engineering technology. , 2018, , 451-483.		4
141	Synthesis and characterization of photopolymerizable triblocks for 3D printing tissue engineering scaffolds. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2018, 41, 259-267.	0.6	0
142	Natural calcium phosphates from fish bones and their potential biomedical applications. Materials Science and Engineering C, 2018, 91, 899-911.	3.8	88
143	Pore Alignment in Gelatin Scaffolds Enhances Chondrogenic Differentiation of Infrapatellar Fat Pad Derived Mesenchymal Stromal Cells. ACS Biomaterials Science and Engineering, 2019, 5, 114-125.	2.6	14
144	Advances in Porous Scaffold Design for Bone and Cartilage Tissue Engineering and Regeneration. Tissue Engineering - Part B: Reviews, 2019, 25, 14-29.	2.5	166
145	Preliminary Evaluation of the Viability of Peritoneal Drainage Catheters Implanted in Rats for Extended Durations. Journal of Investigative Surgery, 2019, 32, 321-330.	0.6	1
146	Impact of Four Protein Additives in Cryogels on Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells. Bioengineering, 2019, 6, 67.	1.6	11

#	Article	IF	CITATIONS
147	Sponge (Porifera) Collagen for Bone Tissue Engineering. Springer Series in Biomaterials Science and Engineering, 2019, , 247-283.	0.7	2
148	3D Scaffolds of Polycaprolactone/Copper-Doped Bioactive Glass: Architecture Engineering with Additive Manufacturing and Cellular Assessments in a Coculture of Bone Marrow Stem Cells and Endothelial Cells. ACS Biomaterials Science and Engineering, 2019, 5, 4496-4510.	2.6	25
149	<i>In-vitro</i> biological behavior of calcium phosphate coating applied on nanostructure surface of anodized Nitinol alloy. Materials Research Express, 2019, 6, 095407.	0.8	13
150	Properties of solvent-cast chitin membranes and exploration of potential applications. Materialia, 2019, 8, 100452.	1.3	4
151	The effect of porosity on the mechanical properties of 3D-printed triply periodic minimal surface (TPMS) bioscaffold. Bio-Design and Manufacturing, 2019, 2, 242-255.	3.9	48
152	Halloysite Nanoclay/Biopolymers Composite Materials in Tissue Engineering. Biotechnology Journal, 2019, 14, e1900055.	1.8	42
153	Balancing Porosity and Mechanical Properties of Titanium Samples to Favor Cellular Growth against Bacteria. Metals, 2019, 9, 1039.	1.0	23
154	Biofabrication of Gelatin Tissue Scaffolds with Uniform Pore Size via Microbubble Assembly. Macromolecular Materials and Engineering, 2019, 304, 1900394.	1.7	7
155	Collagen from Turkey (Meleagris gallopavo) tendon: A promising sustainable biomaterial for pharmaceutical use. Sustainable Chemistry and Pharmacy, 2019, 13, 100166.	1.6	19
156	Effect of carbon based fillers on properties of Chitosan/PVA/βTCP based composite scaffold for bone tissue engineering. Materials Today: Proceedings, 2019, 15, 173-182.	0.9	10
157	Mechanically robust cationic cellulose nanofibril 3D scaffolds with tuneable biomimetic porosity for cell culture. Journal of Materials Chemistry B, 2019, 7, 53-64.	2.9	22
158	Cell Integration with Electrospun PMMA Nanofibers, Microfibers, Ribbons, and Films: A Microscopy Study. Bioengineering, 2019, 6, 41.	1.6	32
159	Customization of direct laser lithography-based 3D scaffolds for optimized in vivo outcome. Applied Surface Science, 2019, 487, 692-702.	3.1	19
160	Development and validation of bioengineered intestinal tubules for translational research aimed at safety and efficacy testing of drugs and nutrients. Toxicology in Vitro, 2019, 60, 1-11.	1.1	19
161	3D printing of hydrogel scaffolds for future application in photothermal therapy of breast cancer and tissue repair. Acta Biomaterialia, 2019, 92, 37-47.	4.1	86
162	Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration. ACS Applied Materials & Interfaces, 2019, 11, 17256-17269.	4.0	115
163	Bioprinted scaffolds. , 2019, , 35-60.		6
164	Deformation behavior of porous PHBV scaffold in compression: A finite element analysis study. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 96, 1-8.	1.5	14

#	Article	IF	CITATIONS
165	Alginate/Gelatin Hydrogels Reinforced with TiO2 and Î ² -TCP Fabricated by Microextrusion-based Printing for Tissue Regeneration. Polymers, 2019, 11, 457.	2.0	40
166	Fabrication of Porous Bone Scaffolds Using Alginate and Bioactive Glass. Journal of Functional Biomaterials, 2019, 10, 15.	1.8	32
167	Organically modified hydroxyapatite (ormoHAP) nanospheres stimulate the differentiation of osteoblast and osteoclast precursors: a co-culture study. Biomedical Materials (Bristol), 2019, 14, 035015.	1.7	7
168	A novel method for constructing an acellular 3D biomatrix from bovine spinal cord for neural tissue engineering applications. Biotechnology Progress, 2019, 35, e2814.	1.3	16
169	Comparative study on complexes formed by chitosan and different polyanions: Potential of chitosan-pectin biomaterials as scaffolds in tissue engineering. International Journal of Biological Macromolecules, 2019, 132, 178-189.	3.6	32
170	Designing bioactive porous titanium interfaces to balance mechanical properties and in vitro cells behavior towards increased osseointegration. Surface and Coatings Technology, 2019, 368, 162-174.	2.2	48
171	Improving cellular migration in tissue-engineered laryngeal scaffolds. Journal of Laryngology and Otology, 2019, 133, 135-148.	0.4	6
172	A simple layer-stacking technique to generate biomolecular and mechanical gradients in photocrosslinkable hydrogels. Biofabrication, 2019, 11, 025014.	3.7	24
173	Evaluation of cellulose nanocrystal addition on morphology, compression modulus and cytotoxicity of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds. Journal of Materials Science, 2019, 54, 7198-7210.	1.7	21
174	On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application. ACS Applied Materials & Interfaces, 2019, 11, 8838-8848.	4.0	189
175	Plant-derived resorbable polymers in tissue engineering. , 2019, , 19-40.		3
176	Decellularized Lymph Node Scaffolding as a Carrier for Dendritic Cells to Induce Anti-Tumor Immunity. Pharmaceutics, 2019, 11, 553.	2.0	10
178	Crosslinking of electrospun and bioextruded partially hydrolyzed poly(2-ethyl-2-oxazoline) using glutaraldehyde vapour. European Polymer Journal, 2019, 120, 109218.	2.6	13
179	Improvement of Bone Formation in Rats with Calvarial Defects by Modulating the Pore Size of Tricalcium Phosphate Scaffolds. Biotechnology and Bioprocess Engineering, 2019, 24, 885-892.	1.4	11
180	Silk scaffolds with gradient pore structure and improved cell infiltration performance. Materials Science and Engineering C, 2019, 94, 179-189.	3.8	51
181	Fabrication and in vitro biocompatibility of sodium tripolyphosphate-crosslinked chitosan–hydroxyapatite scaffolds for bone regeneration. Journal of Materials Science, 2019, 54, 3403-3420.	1.7	16
182	Hydrogels based on chitosan in tissue regeneration: How do they work? A mini review. Journal of Applied Polymer Science, 2019, 136, 47235.	1.3	25
183	Bioceramic scaffolds fabrication: Indirect 3D printing combined with ice-templating vs. robocasting. Journal of the European Ceramic Society, 2019, 39, 1595-1602.	2.8	27

#	Article	IF	CITATIONS
184	Mathematical modeling of oxygen transfer in porous scaffolds for stem cell growth: The effects of porosity, cell type, scaffold architecture and cell distribution. Materials Chemistry and Physics, 2019, 222, 377-383.	2.0	10
185	Development of Decellularized Cornea by Organic Acid Treatment for Corneal Regeneration. Tissue Engineering - Part A, 2019, 25, 652-662.	1.6	17
186	Novel bioactive porous starch–siloxane matrix for bone regeneration: Physicochemical, mechanical, and <i>in vitro</i> properties. Biotechnology and Applied Biochemistry, 2019, 66, 43-52.	1.4	26
187	Pore shape and size dependence on cell growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography. Materials Science and Engineering C, 2019, 95, 397-408.	3.8	67
188	Influence of macroporosity on NIH/3T3 adhesion, proliferation, and osteogenic differentiation of MC3T3‣1 over bioâ€functionalized highly porous titanium implant material. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 73-85.	1.6	26
189	Sterilized chitosanâ€based composite hydrogels: Physicochemical characterization and in vitro cytotoxicity. Journal of Biomedical Materials Research - Part A, 2020, 108, 81-93.	2.1	28
190	Quince seed mucilage-based scaffold as a smart biological substrate to mimic mechanobiological behavior of skin and promote fibroblasts proliferation and h-ASCs differentiation into keratinocytes. International Journal of Biological Macromolecules, 2020, 142, 668-679.	3.6	33
191	Silk based scaffolds with immunomodulatory capacity: anti-inflammatory effects of nicotinic acid. Biomaterials Science, 2020, 8, 148-162.	2.6	18
192	Pulp ECM-derived macroporous scaffolds for stimulation of dental-pulp regeneration process. Dental Materials, 2020, 36, 76-87.	1.6	35
193	Characterization of dexamethasone loaded collagen-chitosan sponge and in vitro release study. Journal of Drug Delivery Science and Technology, 2020, 55, 101449.	1.4	15
194	Integrated approach in designing biphasic nanocomposite collagen/nBCP scaffolds with controlled porosity and permeability for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1738-1753.	1.6	8
195	Adipose-Derived Stem Cells (ADSCs) Loaded Gelatin-Sericin-Laminin Cryogels for Tissue Regeneration in Diabetic Wounds. Biomacromolecules, 2020, 21, 294-304.	2.6	37
196	Sacrificial 3D printing of shrinkable silicone elastomers for enhanced feature resolution in flexible tissue scaffolds. Acta Biomaterialia, 2020, 117, 261-272.	4.1	32
197	3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures. International Journal of Molecular Sciences, 2020, 21, 6942.	1.8	38
198	Bioresorbable and degradable behaviors of <scp>PGA</scp> : Current state and future prospects. Polymer Engineering and Science, 2020, 60, 2657-2675.	1.5	45
199	Embedding cells within nanoscale, rapidly mineralizing hydrogels: A new paradigm to engineer cell-laden bone-like tissue. Journal of Structural Biology, 2020, 212, 107636.	1.3	8
200	Transglutaminase release and activity from novel poly(Îμ-caprolactone)-based composites prepared by foaming with supercritical CO2. Journal of Supercritical Fluids, 2020, 166, 105031.	1.6	8
201	Fabrication of guar gum-gelatin scaffold for soft tissue engineering. Carbohydrate Polymer Technologies and Applications, 2020, 1, 100006.	1.6	3

#	Article	IF	CITATIONS
202	Live reporting for hypoxia: Hypoxia sensor–modified mesenchymal stem cells as in vitro reporters. Biotechnology and Bioengineering, 2020, 117, 3265-3276.	1.7	16
203	Nanofibers for soft-tissue engineering. , 2020, , 437-469.		1
204	XRD and IR revelation of a unique g-C3N4 phase with effects on collagen/hydroxyapatite bone scaffold pore geometry and stiffness. SN Applied Sciences, 2020, 2, 1.	1.5	6
205	Ecofriendly multifunctional thiolated carboxymethyl chitosan-based 3D scaffolds with luminescent properties for skin repair and theragnostic of tissue regeneration. International Journal of Biological Macromolecules, 2020, 165, 3051-3064.	3.6	11
206	Use of Impedance Spectroscopy for the Characterization of In-Vitro Osteoblast Cell Response in Porous Titanium Bone Implants. Metals, 2020, 10, 1077.	1.0	3
207	Recent advances and future perspectives of sol–gel derived porous bioactive glasses: a review. RSC Advances, 2020, 10, 33782-33835.	1.7	108
208	Use of in vitro bone models to screen for altered bone metabolism, osteopathies, and fracture healing: challenges of complex models. Archives of Toxicology, 2020, 94, 3937-3958.	1.9	16
209	Utilization of Carbon Nanotubes in Manufacturing of 3D Cartilage and Bone Scaffolds. Materials, 2020, 13, 4039.	1.3	26
210	Leachableâ€Free Fabrication of Hydrogel Foams Enabling Homogeneous Viability of Encapsulated Cells in Largeâ€Volume Constructs. Advanced Healthcare Materials, 2020, 9, e2000543.	3.9	7
211	Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications. Nanomaterials, 2020, 10, 1609.	1.9	73
212	Development of nanocomposite collagen/ HA / βâ€TCP scaffolds with tailored gradient porosity and permeability using vitamin E. Journal of Biomedical Materials Research - Part A, 2020, 108, 2379-2394.	2.1	4
213	Mineralized collagen scaffolds fabricated with amniotic membrane matrix increase osteogenesis under inflammatory conditions. International Journal of Energy Production and Management, 2020, 7, 247-258.	1.9	23
214	Enhanced mechanical and biocompatible properties of strontium ions doped mesoporous bioactive glass. Composites Part B: Engineering, 2020, 196, 108099.	5.9	59
215	Dexamethasone- loaded polymeric porous sponge as a direct pulp capping agent. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1689-1705.	1.9	7
216	Bioactive, degradable and multi-functional three-dimensional membranous scaffolds of bioglass and alginate composites for tissue regenerative applications. Biomaterials Science, 2020, 8, 4003-4025.	2.6	43
217	Fabrication and characterization of ZrO2 incorporated SiO2–CaO–P2O5 bioactive glass scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 109, 103854.	1.5	27
218	Surface-Modified Industrial Acrylonitrile Butadiene Styrene 3D Scaffold Fabrication by Gold Nanoparticle for Drug Screening. Nanomaterials, 2020, 10, 529.	1.9	8
219	Fibronectin Adsorption on Electrospun Synthetic Vascular Grafts Attracts Endothelial Progenitor Cells and Promotes Endothelialization in Dynamic In Vitro Culture. Cells, 2020, 9, 778.	1.8	39

#	Article	IF	CITATIONS
220	Biomimetic collagen-sodium alginate-titanium oxide (TiO2) 3D matrix supports differentiated periodontal ligament fibroblasts growth for periodontal tissue regeneration. International Journal of Biological Macromolecules, 2020, 163, 9-18.	3.6	26
221	Material-Dependent Formation and Degradation of Bone Matrix—Comparison of Two Cryogels. Bioengineering, 2020, 7, 52.	1.6	6
222	Human Plasma-Derived 3D Cultures Model Breast Cancer Treatment Responses and Predict Clinically Effective Drug Treatment Concentrations. Cancers, 2020, 12, 1722.	1.7	22
223	Effect of Geometric Curvature on Collective Cell Migration in Tortuous Microchannel Devices. Micromachines, 2020, 11, 659.	1.4	14
224	Characterization and Potential of a Bilayered Hydrogel of Gellan Gum and Demineralized Bone Particles for Osteochondral Tissue Engineering. ACS Applied Materials & Interfaces, 2020, 12, 34703-34715.	4.0	19
225	Soy protein and chitin sponge-like scaffolds: from natural by-products to cell delivery systems for biomedical applications. Green Chemistry, 2020, 22, 3445-3460.	4.6	23
226	Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices, 2020, 5, 1-9.	1.5	328
227	Surface modification of PLA scaffold using radio frequency (RF) nitrogen plasma in tissue engineering application. Surface Topography: Metrology and Properties, 2020, 8, 015012.	0.9	12
228	Tribocorrosion behaviour of bio-functionalized porous Ti surfaces obtained by two-step anodic treatment. Corrosion Science, 2020, 166, 108467.	3.0	34
229	Mechanically strong poly (vinyl alcohol) hydrogel with macropores and high porosity. Materials Letters, 2020, 266, 127504.	1.3	26
230	Osteochondral and bone tissue engineering scaffold prepared from Gallus var domesticus derived demineralized bone powder combined with gellan gum for medical application. International Journal of Biological Macromolecules, 2020, 149, 381-394.	3.6	15
231	Computational and experimental characterization of 3D-printed PCL structures toward the design of soft biological tissue scaffolds. Materials and Design, 2020, 188, 108488.	3.3	42
232	Integrating cold atmospheric plasma with 3D printed bioactive nanocomposite scaffold for cartilage regeneration. Materials Science and Engineering C, 2020, 111, 110844.	3.8	22
233	High-throughput production of silk fibroin-based electrospun fibers as biomaterial for skin tissue engineering applications. Materials Science and Engineering C, 2020, 112, 110939.	3.8	65
234	Preparation and Evaluation of Nanofibrous Hydroxypropyl Cellulose and β-Cyclodextrin Polyurethane Composite Mats. Nanomaterials, 2020, 10, 754.	1.9	15
235	Nanomaterials combination for wound healing and skin regeneration. , 2020, , 159-217.		3
236	3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications. Materials Science and Engineering C, 2021, 118, 111433.	3.8	66
237	Co-electrospun nano-/microfibrous composite scaffolds with structural and chemical gradients for bone tissue engineering. Materials Science and Engineering C, 2021, 119, 111622.	3.8	17

#	Article	IF	CITATIONS
238	Recent Progress in Magnetically Actuated Microrobots for Targeted Delivery of Therapeutic Agents. Advanced Healthcare Materials, 2021, 10, e2001596.	3.9	56
239	Review on current limits and potentialities of technologies for biomedical ceramic scaffolds production. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 377-393.	1.6	45
240	Micro-Computed Tomography Analysis of Subchondral Bone Regeneration Using Osteochondral Scaffolds in an Ovine Condyle Model. Applied Sciences (Switzerland), 2021, 11, 891.	1.3	2
241	Macro and Microstructural Characteristics of North Atlantic Deep-Sea Sponges as Bioinspired Models for Tissue Engineering Scaffolding. Frontiers in Marine Science, 2021, 7, .	1.2	11
242	The Development of Tissue Engineering Scaffolds Using Matrix from iPS-Reprogrammed Fibroblasts. Methods in Molecular Biology, 2021, , 273-283.	0.4	2
243	A 3D printed Ga containing scaffold with both anti-infection and bone homeostasis-regulating properties for the treatment of infected bone defects. Journal of Materials Chemistry B, 2021, 9, 4735-4745.	2.9	24
245	Senescent cells in 3D culture show suppressed senescence signatures. Biomaterials Science, 2021, 9, 6461-6473.	2.6	10
246	Biomaterial design strategies to address obstacles in craniomaxillofacial bone repair. RSC Advances, 2021, 11, 17809-17827.	1.7	22
247	Chitosan-Human Bone Composite Granulates for Guided Bone Regeneration. International Journal of Molecular Sciences, 2021, 22, 2324.	1.8	13
248	Antibacterial Albumin-Tannic Acid Coatings for Scaffold-Guided Breast Reconstruction. Frontiers in Bioengineering and Biotechnology, 2021, 9, 638577.	2.0	13
249	Osteoblast cell viability over ultra-long tricalcium phosphate nanocrystal-based methacrylate chitosan composite for bone regeneration. Biomedical Materials (Bristol), 2021, 16, 045006.	1.7	5
250	A novel hydrogel scaffold contained bioactive glass nanowhisker (BGnW) for osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro. International Journal of Biological Macromolecules, 2021, 174, 562-572.	3.6	9
251	The Marine Polysaccharide Ulvan Confers Potent Osteoinductive Capacity to PCL-Based Scaffolds for Bone Tissue Engineering Applications. International Journal of Molecular Sciences, 2021, 22, 3086.	1.8	19
252	Enhanced Regeneration of Vascularized Adipose Tissue with Dual 3D-Printed Elastic Polymer/dECM Hydrogel Complex. International Journal of Molecular Sciences, 2021, 22, 2886.	1.8	22
254	Silk fibroin and ceramic scaffolds: Comparative in vitro studies for bone regeneration. Bioengineering and Translational Medicine, 2021, 6, e10221.	3.9	13
255	Synthesis and Characterization of Biocompatible Methacrylated Kefiran Hydrogels: Towards Tissue Engineering Applications. Polymers, 2021, 13, 1342.	2.0	7
256	Optimization of Freeze-FRESH Methodology for 3D Printing of Microporous Collagen Constructs. 3D Printing and Additive Manufacturing, 2022, 9, 411-424.	1.4	3
257	Fabrication and characterization of PCL/PLLA/CS composite fibers as extracellular matrix (ECM) mimetics. International Journal of Polymeric Materials and Polymeric Biomaterials, 0, , 1-21.	1.8	1

#	Article	IF	CITATIONS
258	Fabricating Lattice Structures via 3D Printing: The Case of Porous Bio-Engineered Scaffolds. Applied Mechanics, 2021, 2, 289-302.	0.7	37
259	Structural Investigation of Delicate-Geometry Fused Deposition Modeling Additive Manufacturing Scaffolds: Experiment and Analytics. Journal of Materials Engineering and Performance, 2021, 30, 6529-6541.	1.2	19
260	Pore size modulates in vitro osteogenesis of bone marrow mesenchymal stem cells in fibronectin/gelatin coated silk fibroin scaffolds. Materials Science and Engineering C, 2021, 124, 112088.	3.8	16
262	In Vitro Angiogenic Behavior of HUVECs on Biomimetic SF/SA Composite Scaffolds. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 456-464.	0.4	0
263	Effects of molecular weight on macropore sizes and characterization of porous hydroxyapatite ceramics fabricated using polyethylene glycol: mechanisms to generate macropores and tune their sizes. Materials Today Chemistry, 2021, 20, 100421.	1.7	4
264	3D printed poly(hydroxybutyrate-co-hydroxyvalerate)—45S5 bioactive glass composite resorbable scaffolds suitable for bone regeneration. Journal of Materials Research, 2021, 36, 4000-4012.	1.2	12
265	Porosity parameters in biomaterial science: Definition, impact, and challenges in tissue engineering. Frontiers of Materials Science, 2021, 15, 352-373.	1.1	23
266	Fabrication and Characterization of Collagen/PVA Dual-Layer Membranes for Periodontal Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 630977.	2.0	34
267	From Thermogelling Hydrogels toward Functional Bioinks: Controlled Modification and Cytocompatible Crosslinking. Macromolecular Bioscience, 2021, 21, e2100122.	2.1	12
268	Fabrication of Biocompatible Polycaprolactone–Hydroxyapatite Composite Filaments for the FDM 3D Printing of Bone Scaffolds. Applied Sciences (Switzerland), 2021, 11, 6351.	1.3	28
269	3D-Printed Gelatin Methacrylate Scaffolds with Controlled Architecture and Stiffness Modulate the Fibroblast Phenotype towards Dermal Regeneration. Polymers, 2021, 13, 2510.	2.0	35
270	Sustainable aquaculture side-streams derived hybrid biocomposite for bone tissue engineering. Materials Science and Engineering C, 2021, 126, 112104.	3.8	7
271	Porous aligned ZnSr-doped β-TCP/silk fibroin scaffolds using ice-templating method for bone tissue engineering applications. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1966-1982.	1.9	8
272	Effect of poly (lactic acid) porous membrane prepared via phase inversion induced by water droplets on 3T3 cell behavior. International Journal of Biological Macromolecules, 2021, 183, 2205-2214.	3.6	10
273	Micro-mechanical properties of corneal scaffolds from two different bio-models obtained by an efficient chemical decellularization. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119, 104510.	1.5	8
274	Biodegradable and biocompatible grapheneâ€based scaffolds for functional neural tissue engineering: A strategy approach using dental pulp stem cells and biomaterials. Biotechnology and Bioengineering, 2021, 118, 4217-4230.	1.7	14
275	Comparative in vitro study of commercially available products for alveolar ridge preservation. Journal of Periodontology, 2021, , .	1.7	3
276	Ice Templating Soft Matter: Fundamental Principles and Fabrication Approaches to Tailor Pore Structure and Morphology and Their Biomedical Applications. Advanced Materials, 2021, 33, e2100091.	11.1	97

CITATION RE	PORT

#	Article	IF	CITATIONS
277	An Environmental Friendly Tapioca Starch-Alginate Cultured Scaffold as Biomimetic Muscle Tissue. Polymers, 2021, 13, 2882.	2.0	8
278	Cancer cell migration in collagen-hyaluronan composite extracellular matrices. Acta Biomaterialia, 2021, 130, 183-198.	4.1	10
279	Key parameters and applications of extrusion-based bioprinting. Bioprinting, 2021, 23, e00156.	2.9	20
280	Scaffolds in Periodontal Regenerative Treatment. Dental Clinics of North America, 2022, 66, 111-130.	0.8	13
281	Cytotoxicity and cell response of preosteoblast in calcium sulfate-augmented PMMA bone cement. Biomedical Materials (Bristol), 2021, 16, 055014.	1.7	10
282	Tuning the Properties of PNIPAm-Based Hydrogel Scaffolds for Cartilage Tissue Engineering. Polymers, 2021, 13, 3154.	2.0	20
283	Mechanotransducive Biomimetic Systems for Chondrogenic Differentiation In Vitro. International Journal of Molecular Sciences, 2021, 22, 9690.	1.8	23
284	Structural optimization of 3D-printed patient-specific ceramic scaffolds for in vivo bone regeneration in load-bearing defects. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 121, 104613.	1.5	16
285	3D Poly(Lactic Acid) Scaffolds Promote Different Behaviors on Endothelial Progenitors and Adipose-Derived Stromal Cells in Comparison With Standard 2D Cultures. Frontiers in Bioengineering and Biotechnology, 2021, 9, 700862.	2.0	10
286	Recent Advances in Hydrogels: Ophthalmic Applications in Cell Delivery, Vitreous Substitutes, and Ocular Adhesives. Biomedicines, 2021, 9, 1203.	1.4	18
287	Engineered Biocompatible and Stable Dipeptide Hydrogel with Tunable Mechanical and Cell Growth Properties to Embolden Neuroglial Cell Growth. International Journal of Peptide Research and Therapeutics, 2021, 27, 2795-2808.	0.9	1
288	Application of TPMS structure in bone regeneration. Engineered Regeneration, 2021, 2, 154-162.	3.0	32
289	Synthesis and characterization of a bovine collagen: GAG scaffold with Uruguayan raw material for tissue engineering. Cell and Tissue Banking, 2024, 25, 123-142.	0.5	0
290	Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose bioink. International Journal of Biological Macromolecules, 2021, 189, 398-409.	3.6	25
291	Ascorbic acid-loaded polyvinyl alcohol/cellulose nanofibril hydrogels as precursors for 3D printed materials. Materials Science and Engineering C, 2021, 130, 112424.	3.8	35
292	Three dimensional printed nanostructure biomaterials for bone tissue engineering. Regenerative Therapy, 2021, 18, 102-111.	1.4	46
293	Avoiding artefacts in MicroCT imaging of collagen scaffolds: Effect of phosphotungstic acid (PTA)-staining and crosslink density. Bioactive Materials, 2022, 8, 210-219.	8.6	2
294	Microstructured poly(ether-ether-ketone)-hydroxyapatite composites for bone replacements. Journal of Composite Materials, 2021, 55, 2263-2271.	1.2	5

#	Article	IF	CITATIONS
295	The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. Advanced Materials, 2019, 31, e1801651.	11.1	595
296	Hydrogels as artificial matrices for cell seeding in microfluidic devices. RSC Advances, 2020, 10, 43682-43703.	1.7	62
297	3D Differentiation of Neural Stem Cells in Macroporous Photopolymerizable Hydrogel Scaffolds. PLoS ONE, 2012, 7, e48824.	1.1	84
298	Hybrid Organic-Inorganic Scaffolding Biomaterials for Regenerative Therapies. Current Organic Chemistry, 2014, 18, 2299-2314.	0.9	36
299	Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. , 2010, 20, 218-230.		218
300	Cell-scaffold interactions in the bone tissue engineering triad. , 2013, 26, 120-132.		228
301	Porous Titanium Cylinders Obtained by the Freeze-Casting Technique: Influence of Process Parameters on Porosity and Mechanical Behavior. Metals, 2020, 10, 188.	1.0	22
302	Bacterial Cellulose. Advances in Environmental Engineering and Green Technologies Book Series, 2017, , 255-283.	0.3	3
303	Early biomineralizing chitosan–collagen hybrid scaffold with <i>Cissus quadrangularis</i> extract for regenerative bone tissue engineering. New Journal of Chemistry, 2021, 45, 19733-19745.	1.4	4
304	Poly (l-lactic acid) membrane crosslinked with Genipin for guided bone regeneration. International Journal of Biological Macromolecules, 2021, 191, 1228-1239.	3.6	7
305	Smart Biomaterials in Biomedical Applications. , 2016, , 1-17.		0
307	THE STUDY OF MORPHOLOGICAL AND BIODEGRADABLE PROPERTIES OF POROUS SCAFFOLD OF GELATIN FOR USE IN TISSUE ENGINEERING OF LUNG. Bulletin Physiology and Pathology of Respiration, 2019, , 1-1.	0.0	0
308	Fabrication and characterization of chitosan-titanium oxide nanotubes scaffolds reinforced with tiger milk mushroom. IOP Conference Series: Materials Science and Engineering, 2021, 1195, 012021.	0.3	1
310	Chitin and chitosan composites for bone tissue regeneration. , 2020, , 499-553.		3
311	Temperature effect on the porosity of hydroxyapatite scaffolds and its use in tissue engineering. Revista De Ciencias TecnolA"gicas, 2020, 3, 213-221.	0.0	0
312	Fabricating Honeycomb Titanium by Freeze Casting and Anodizing for Biomedical Applications. Advanced Engineering Materials, 2022, 24, 2101088.	1.6	1
313	Evaluation of the osteogenic potential of crocin-incorporated collagen scaffold on the bone marrow mesenchymal stem cells. Drug Development and Industrial Pharmacy, 2021, , 1-22.	0.9	0
314	Possible Treatment of Myocardial Infarct Based on Tissue Engineering Using a Cellularized Solid Collagen Scaffold Functionalized with Arg-Glyc-Asp (RGD) Peptide. International Journal of Molecular Sciences, 2021, 22, 12563.	1.8	8

#	Article	IF	CITATIONS
315	Improvement of Mechanical and Biological Properties of PLA/HNT Scaffolds Fabricated by Foam Injection Molding: Skin Layer Effect and Laser Texturing. International Polymer Processing, 2021, 36, 564-576.	0.3	1
317	Chitosan-coated pore wall polycaprolactone three-dimensional porous scaffolds fabricated by porogen leaching method for bone tissue engineering: a comparative study on blending technique to fabricate scaffolds. Progress in Biomaterials, 2021, 10, 281-297.	1.8	4
318	The Emerging Role of Decellularized Plant-Based Scaffolds as a New Biomaterial. International Journal of Molecular Sciences, 2021, 22, 12347.	1.8	25
319	Enhanced osseointegration through direct energy deposition porous coating for cementless orthopedic implant fixation. Scientific Reports, 2021, 11, 22317.	1.6	4
320	Modified Synthesis and Physicochemical Characterization of a Bioglass-Based Composite for Guided Bone Regeneration. Scientific World Journal, The, 2021, 2021, 1-9.	0.8	2
321	Effectiveness of bio-dispersant in homogenizing hydroxyapatite for proliferation and differentiation of osteoblast. Journal of Colloid and Interface Science, 2022, 611, 491-502.	5.0	14
322	Injectable Human Hair Keratin–Fibrinogen Hydrogels for Engineering 3D Microenvironments to Accelerate Oral Tissue Regeneration. International Journal of Molecular Sciences, 2021, 22, 13269.	1.8	7
323	Independent effects of structural optimization and resveratrol functionalization on extracellular matrix scaffolds for bone regeneration. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112370.	2.5	4
324	Advantages of decellularized bovine pericardial scaffolds compared to glutaraldehyde fixed bovine pericardial patches demonstrated in a 180-day implant ovine study. Cell and Tissue Banking, 2022, 23, 791-805.	0.5	6
325	Incorporation of Aloe vera extract in bacterial nanocellulose membranes. Polimeros, 2022, 32, .	0.2	2
326	Synthesis and cytotoxicity analysis of porous β-TCP/starch bioceramics. Journal of the Australian Ceramic Society, 2022, 58, 487-494.	1.1	7
327	Influence of Biomimetically Mineralized Collagen Scaffolds on Bone Cell Proliferation and Immune Activation. Polymers, 2022, 14, 602.	2.0	11
328	Ultra-Short Laser Surface Properties Optimization of Biocompatibility Characteristics of 3D Poly-ε-Caprolactone and Hydroxyapatite Composite Scaffolds. Materials, 2021, 14, 7513.	1.3	2
329	3D Bioprinted Spheroidal Droplets for Engineering the Heterocellular Coupling between Cardiomyocytes and Cardiac Fibroblasts. Cyborg and Bionic Systems, 2021, 2021, .	3.7	18
331	HPMC crosslinked chitosan/hydroxyapatite scaffolds containing Lemongrass oil for potential bone tissue engineering applications. Arabian Journal of Chemistry, 2022, 15, 103850.	2.3	19
332	Photocurable antimicrobial silkâ€based hydrogels for corneal repair. Journal of Biomedical Materials Research - Part A, 2022, 110, 1401-1415.	2.1	8
333	In vivo evaluation of additively manufactured multi-layered scaffold for the repair of large osteochondral defects. Bio-Design and Manufacturing, 2022, 5, 481-496.	3.9	16
334	3D printing of cell-laden visible light curable glycol chitosan bioink for bone tissue engineering. Carbohydrate Polymers, 2022, 287, 119328	5.1	31

#	Article	IF	Citations
335	Regulation of macrophage subtype via injectable micro/nano-structured porous microsphere for reprogramming osteoimmune microenvironment. Chemical Engineering Journal, 2022, 439, 135692.	6.6	11
336	Research progress on the biological modifications of implant materials in 3D printed intervertebral fusion cages. Journal of Materials Science: Materials in Medicine, 2022, 33, 2.	1.7	13
337	Additively Manufactured Porous Ti6Al4V for Bone Implants: A Review. Metals, 2022, 12, 687.	1.0	27
338	Development of porous silver nanoparticle/polycaprolactone/polyvinyl alcohol coatings for prophylaxis in titanium interconnected samples for dental implants. Colloids and Interface Science Communications, 2022, 48, 100621.	2.0	19
339	Kappa-carrageenan/chitosan/gelatin scaffolds enriched with potassium chloride for bone tissue engineering. International Journal of Biological Macromolecules, 2022, 209, 1720-1730.	3.6	31
340	Binary polymer systems for biomedical applications. International Materials Reviews, 2023, 68, 184-224.	9.4	7
341	Cartilage tissue engineering by extrusion bioprinting utilizing porous hyaluronic acid microgel bioinks. Biofabrication, 2022, 14, 034105.	3.7	41
342	Green hemostatic sponge-like scaffold composed of soy protein and chitin for the treatment of epistaxis. Materials Today Bio, 2022, 15, 100273.	2.6	5
343	Sulfated carboxymethylcellulose-based scaffold mediated delivery of Timp3 alleviates osteoarthritis. International Journal of Biological Macromolecules, 2022, 212, 54-66.	3.6	6
344	Effect of different pore sizes of 3D printed PLA-based scaffold in bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 1021-1031.	1.8	8
345	Improved fiber control through ohmic/convective flow behavior. Journal of Materials Science, 0, , .	1.7	0
346	3D printed bioresorbable scaffolds for articular cartilage tissue engineering: a comparative study between neat polycaprolactone (PCL) and poly(lactide-b-ethylene glycol) (PLA-PEG) block copolymer. Biomedical Materials (Bristol), 2022, 17, 045028.	1.7	2
347	Electrospun nanofibers for angiogenesis strategies. , 2022, , 383-414.		0
348	A Simple Replica Method as the Way to Obtain a Morphologically and Mechanically Bone-like Iron-Based Biodegradable Material. Materials, 2022, 15, 4552.	1.3	3
349	Bone Tissue Engineering in the Treatment of Bone Defects. Pharmaceuticals, 2022, 15, 879.	1.7	59
350	The Effect of Porosity and Contact Angle on the Fluid Capillary Rise for Bone Scaffold Wettability and Absorption. , 0, , 6-11.		0
352	3D-Printing Graphene Scaffolds for Bone Tissue Engineering. Pharmaceutics, 2022, 14, 1834.	2.0	6
353	Scaffold microarchitecture regulates angiogenesis and the regeneration of large bone defects. Biofabrication, 2022, 14, 045013.	3.7	22

#	Article	IF	CITATIONS
354	Personalized Scaffolds for Diabetic Foot Ulcer Healing Using Extracellular Matrix from Induced Pluripotent Stemâ€Reprogrammed Patient Cells. Advanced NanoBiomed Research, 2022, 2, .	1.7	2
355	Annealing High Aspect Ratio Microgels into Macroporous 3D Scaffolds Allows for Higher Porosities and Effective Cell Migration. Advanced Healthcare Materials, 2022, 11, .	3.9	18
356	A Silk Fibroin Methacryloyl-Modified Hydrogel Promoting Cell Adhesion for Customized 3D Cell-Laden Structures. ACS Applied Polymer Materials, 2022, 4, 7014-7024.	2.0	16
357	Advances in surface modification of tantalum and porous tantalum for rapid osseointegration: A thematic review. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	9
358	3D Printed Composite Scaffolds of GelMA and Hydroxyapatite Nanopowders Doped with Mg/Zn Ions to Evaluate the Expression of Genes and Proteins of Osteogenic Markers. Nanomaterials, 2022, 12, 3420.	1.9	7
359	Migration and 3D Traction Force Measurements inside Compliant Microchannels. Nano Letters, 2022, 22, 7318-7327.	4.5	8
360	A Review on the Effect of Zein in Scaffold for Bone Tissue Engineering. Pertanika Journal of Science and Technology, 2022, 30, 2805-2829.	0.3	2
361	Preparation, Characterization, and Properties of Chitosanâ€Based Semiâ€Interpenetrating Polymer Networks and Poly(2â€hydroxyethyl methacrylate) Structure. Macromolecular Chemistry and Physics, 0, , 2200282.	1.1	1
362	Fabrication of Drug-Loaded 3D-Printed Bone Scaffolds with Radial Gradient Porosity. Journal of Materials Engineering and Performance, 2023, 32, 4249-4257.	1.2	3
363	Controlled formation of highly porous polylactic acid‑calcium phosphate granules with defined structure. , 2023, 144, 213195.		3
364	Bone Tissue Engineering Scaffolds: Materials and Methods. 3D Printing and Additive Manufacturing, 2024, 11, 347-362.	1.4	1
365	Macroporous 3D printed structures for regenerative medicine applications. Bioprinting, 2022, 28, e00254.	2.9	8
366	Characterization of a bioscaffold containing polysaccharide acemannan and native collagen for pulp tissue regeneration. International Journal of Biological Macromolecules, 2023, 225, 286-297.	3.6	5
367	Naturally Derived Biomaterials for Spinal Cord Injury Repair. , 2022, , 1-10.		0
368	Rapid fabrication and screening of tailored functional 3D biomaterials: Validation in bone tissue repair – Part II. , 2023, 145, 213250.		1
369	Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair. Biomaterials Research, 2022, 26, .	3.2	26
370	Mimicked 3D Scaffolds for Articular Cartilage Surgery. Engineering Materials, 2023, , 165-179.	0.3	0
371	A Novel, Image-Based Method for Characterization of the Porosity of Additively Manufactured Bone Scaffolds With Complex Microstructures. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2023, 145, .	1.3	1

#	Article	IF	Citations
372	Matrix mechanophysical factor: pore size governs the cell behavior in cancer. Advances in Physics: X, 2023, 8, .	1.5	1
374	Chitosan, chondroitin sulfate, and hyaluronic acid based in-situ forming scaffold for efficient cell grafting. International Journal of Biological Macromolecules, 2023, 225, 938-951.	3.6	3
375	Biofabrication of Poly(glycerol sebacate) Scaffolds Functionalized with a Decellularized Bone Extracellular Matrix for Bone Tissue Engineering. Bioengineering, 2023, 10, 30.	1.6	3
376	Photo-cross-linkable hyaluronic acid bioinks for bone and cartilage tissue engineering applications. International Materials Reviews, 2023, 68, 901-942.	9.4	15
378	Characterization of Dual-Layer Hybrid Biomatrix for Future Use in Cutaneous Wound Healing. Materials, 2023, 16, 1162.	1.3	4
379	Formulation and evaluation of alginate-gelatin hydrogel scaffolds loaded with zinc-doped hydroxyapatite and 5-fluorouracil. International Journal of Biological Macromolecules, 2023, 237, 124147.	3.6	11
380	Synthesis and evaluation of alginate, gelatin, and hyaluronic acid hybrid hydrogels for tissue engineering applications. International Journal of Biological Macromolecules, 2023, 233, 123438.	3.6	34
381	Enzymatically Crosslinked Collagen as a Versatile Matrix for In Vitro and In Vivo Coâ€Engineering of Blood and Lymphatic Vasculature. Advanced Materials, 2023, 35, .	11.1	6
382	Bioceramic scaffolds with triply periodic minimal surface architectures guide early-stage bone regeneration. Bioactive Materials, 2023, 25, 374-386.	8.6	13
383	Sciatic nerve injury regeneration in adult male rats using gelatin methacrylate (<scp>GelMA</scp>)/poly(2â€ethyâ€2â€oxazoline) (<scp>PEtOx</scp>) hydrogel containing <scp>4â€aminopyridine</scp> (<scp>4â€AP</scp>). Journal of Biomedical Materials Research - Part A, 2023, 111, 1243-1252.	2.1	1
384	Monitoring and control of biological additive manufacturing using machine learning. Journal of Intelligent Manufacturing, 2024, 35, 1055-1077.	4.4	3
385	Next-generation biomaterials for dental pulp tissue immunomodulation. Dental Materials, 2023, 39, 333-349.	1.6	5
386	Eggshell Membrane as a Biomaterial for Bone Regeneration. Polymers, 2023, 15, 1342.	2.0	6
387	Visualization of porosity and pore size gradients in electrospun scaffolds using laser metrology. PLoS ONE, 2023, 18, e0282903.	1.1	4
388	3D bioprinting of human mesenchymal stem cells-laden hydrogels incorporating MXene for spontaneous osteodifferentiation. Heliyon, 2023, 9, e14490.	1.4	9
390	Comparative studies of sterilization processes for sensitive medical nano-devices. Materials Today: Proceedings, 2023, 93, 1-8.	0.9	1
391	Integration of Extracellular Matrices into Organâ€onâ€Chip Systems. Advanced Healthcare Materials, 2023, 12, .	3.9	8
392	Biological activity of a chitosan-carboxymethylcellulose-zinc oxide and calcium carbonate in 3D scaffolds stabilized by physical links for bone tissue engineering. Journal of Biomaterials Applications, 2023, 37, 1776-1788.	1.2	1

#	Article	IF	CITATIONS
393	Engineering Cell–ECM–Material Interactions for Musculoskeletal Regeneration. Bioengineering, 2023, 10, 453.	1.6	1
394	Instabilities induced by mechanical loading determine the viability of chondrocytes grown on porous scaffolds. Journal of Biomechanics, 2023, 152, 111591.	0.9	1
395	Nano-hydroxyapatite/natural polymer composite scaffolds for bone tissue engineering: a brief review of recent trend. In Vitro Models, 2023, 2, 125-151.	1.0	3
396	A comprehensive review of the effects of porosity and macro- and micropore formations in porous β-TCP scaffolds on cell responses. Journal of the Australian Ceramic Society, 2023, 59, 865-879.	1.1	2
397	Aligned Ice Templated Biomaterial Strategies for the Musculoskeletal System. Advanced Healthcare Materials, 2023, 12, .	3.9	3
416	Functional Bone Regeneration in Oral and Maxillofacial Surgery: History, Definition, and Indications. , 2023, , 119-141.		0
418	Cell-Materials Interaction. Pancreatic Islet Biology, 2023, , 239-258.	0.1	0
430	Preparation and Characterization of the Hydrogel System N, O-Carboxymethyl Chitosan/Oxidized Xanthan Gum. IFMBE Proceedings, 2024, , 261-272.	0.2	Ο
444	A Review of Materials Suitable for Tissue-Engineered Bone Scaffolds. Lecture Notes in Electrical Engineering, 2024, , 19-29.	0.3	0
446	Bioprinting strategy toward realization of structural and functional tissue engineering scaffolds. , 2024, , 303-333.		0