PI(3,5)P2 controls membrane trafficking by direct activation channels in the endolysosome

Nature Communications

1, 38

DOI: 10.1038/ncomms1037

Citation Report

#	Article	IF	Citations
1	The transient receptor potential family of ion channels. Genome Biology, 2011, 12, 218.	13.9	707
2	Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochemical Journal, 2011, 439, 349-378.	1.7	329
3	Endosome maturation. EMBO Journal, 2011, 30, 3481-3500.	3.5	1,878
4	Identification of Intracellular and Plasma Membrane Calcium Channel Homologues in Pathogenic Parasites. PLoS ONE, 2011, 6, e26218.	1.1	107
5	Acidic calcium stores of Saccharomyces cerevisiae. Cell Calcium, 2011, 50, 129-138.	1.1	112
6	Acidic Ca2+ stores come to the fore. Cell Calcium, 2011, 50, 109-112.	1.1	61
7	The endo-lysosomal system as an NAADP-sensitive acidic Ca2+ store: Role for the two-pore channels. Cell Calcium, 2011, 50, 157-167.	1.1	60
8	A ménage à trois made in heaven: G-protein-coupled receptors, lipids and TRP channels. Cell Calcium, 2011, 50, 9-26.	1.1	38
9	TRPML: Transporters of metals in lysosomes essential for cell survival?. Cell Calcium, 2011, 50, 288-294.	1.1	59
10	Physiological roles of NAADP-mediated Ca2+ signaling. Science China Life Sciences, 2011, 54, 725-732.	2.3	26
11	Pairing phosphoinositides with calcium ions in endolysosomal dynamics. BioEssays, 2011, 33, 448-457.	1.2	55
12	Role of TRP Channels in the Regulation of the Endosomal Pathway. Physiology, 2011, 26, 14-22.	1.6	60
13	Congenital CNS Hypomyelination in the <i>Fig4</i> Null Mouse Is Rescued by Neuronal Expression of the PI(3,5)P ₂ Phosphatase <i>Fig4</i> . Journal of Neuroscience, 2011, 31, 17736-17751.	1.7	44
14	Phosphatidylinositol 4,5-bisphosphate (PIP2) controls magnesium gatekeeper TRPM6 activity. Scientific Reports, 2011, 1, 146.	1.6	78
15	Pathogenic Mechanism of the FIG4 Mutation Responsible for Charcot-Marie-Tooth Disease CMT4J. PLoS Genetics, 2011, 7, e1002104.	1.5	90
16	Autophagy in lysosomal storage disorders. Autophagy, 2012, 8, 719-730.	4.3	345
17	Modulation of synaptic function by VAC14, a protein that regulates the phosphoinositides PI(3,5)P ₂ and PI(5)P. EMBO Journal, 2012, 31, 3442-3456.	3.5	45
18	Role of TRPML and Two-Pore Channels in Endolysosomal Cation Homeostasis. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 236-244.	1.3	72

#	Article	IF	CITATIONS
19	Cross-talk between TRPML1 channel, lipids and lysosomal storage diseases. Communicative and Integrative Biology, 2012, 5, 111-113.	0.6	14
20	Loss of Lysosomal Ion Channel Transient Receptor Potential Channel Mucolipin-1 (TRPML1) Leads to Cathepsin B-dependent Apoptosis. Journal of Biological Chemistry, 2012, 287, 8082-8091.	1.6	49
21	Constitutive Activity of TRPML2 and TRPML3 Channels versus Activation by Low Extracellular Sodium and Small Molecules. Journal of Biological Chemistry, 2012, 287, 22701-22708.	1.6	29
22	PIKfyve and its Lipid Products in Health and in Sickness. Current Topics in Microbiology and Immunology, 2012, 362, 127-162.	0.7	48
23	In vivo, Pikfyve generates PI(3,5)P ₂ , which serves as both a signaling lipid and the major precursor for PI5P. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17472-17477.	3.3	191
24	Constitutive Activity of TRPML2 and TRPML3 Channels versus Activation by Low Extracellular Sodium and Small Molecules. Journal of Biological Chemistry, 2012, 287, 22701-22708.	1.6	26
25	Lysosomes shape $Ins(1,4,5)$ (i>P3-evoked Ca2+ signals by selectively sequestering Ca2+ released from the endoplasmic reticulum. Journal of Cell Science, 2013, 126, 289-300.	1.2	121
26	TPC Proteins Are Phosphoinositide- Activated Sodium-Selective Ion Channels in Endosomes and Lysosomes. Cell, 2012, 151, 372-383.	13.5	456
27	<scp>TRP</scp> Channels. , 2012, 2, 563-608.		134
28	Phosphoinositide isoforms determine compartment-specific ion channel activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11384-11389.	3.3	131
29	Phosphoinositides and vesicular membrane traffic. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 1104-1113.	1.2	99
30	How nascent phagosomes mature to become phagolysosomes. Trends in Immunology, 2012, 33, 397-405.	2.9	229
31	Studying Lipids Involved in the Endosomal Pathway. Methods in Cell Biology, 2012, 108, 19-46.	0.5	19
32	TRPML Channels in Function, Disease, and Prospective Therapies. Methods in Pharmacology and Toxicology, 2012, , 159-191.	0.1	0
33	Drosophila TRPML Is Required for TORC1 Activation. Current Biology, 2012, 22, 1616-1621.	1.8	99
34	Phosphoinositides in the Mammalian Endo-lysosomal Network. Sub-Cellular Biochemistry, 2012, 59, 65-110.	1.0	27
35	Phosphoinositide Sensitivity of Ion Channels, a Functional Perspective. Sub-Cellular Biochemistry, 2012, 59, 289-333.	1.0	33
36	Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nature Communications, 2012, 3, 731.	5.8	387

#	Article	IF	Citations
37	Neuronal expression of Fig4 is both necessary and sufficient to prevent spongiform neurodegeneration. Human Molecular Genetics, 2012, 21, 3525-3534.	1.4	49
38	New Aspects of the Contribution of ER to SOCE Regulation. , 2012, , 163-175.		0
39	Phosphatidylinositolâ€3,5â€ <i>Bis</i> phosphate: No Longer the Poor PIP ₂ . Traffic, 2012, 13, 1-8.	1.3	120
40	Intracellular Ca2+ channels – A growing community. Molecular and Cellular Endocrinology, 2012, 353, 21-28.	1.6	19
41	The Role of Calcium Stores in Apoptosis and Autophagy. Current Molecular Medicine, 2013, 13, 252-265.	0.6	99
42	Evidence that transport of iron from the lysosome to the cytosol in <scp>A</scp> frican trypanosomes is mediated by a mucolipin orthologue. Molecular Microbiology, 2013, 89, 420-432.	1.2	23
43	Lysosomal Membrane Proteins and Their Central Role in Physiology. Traffic, 2013, 14, 739-748.	1.3	175
44	Inositol lipids: from an archaeal origin to phosphatidylinositol 3,5-bisphosphate faults in human disease. FEBS Journal, 2013, 280, 6281-6294.	2.2	46
45	Regulation of membrane trafficking by signalling on endosomal and lysosomal membranes. Journal of Physiology, 2013, 591, 4389-4401.	1.3	57
46	Ca2+ signaling during activation and fertilization in the eggs of teleost fish. Cell Calcium, 2013, 53, 24-31.	1.1	24
47	mTOR Regulates Lysosomal ATP-Sensitive Two-Pore Na+ Channels to Adapt to Metabolic State. Cell, 2013, 152, 778-790.	13.5	313
48	A TRP Channel in the Lysosome Regulates Large Particle Phagocytosis via Focal Exocytosis. Developmental Cell, 2013, 26, 511-524.	3.1	244
49	Fig4 deficiency: A newly emerged lysosomal storage disorder?. Progress in Neurobiology, 2013, 101-102, 35-45.	2.8	25
51	The endoplasmic reticulum and junctional membrane communication during calcium signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2542-2559.	1.9	99
52	AKT Facilitates EGFR Trafficking and Degradation by Phosphorylating and Activating PIKfyve. Science Signaling, 2013, 6, ra45.	1.6	87
53	Zinc-dependent lysosomal enlargement in TRPML1-deficient cells involves MTF-1 transcription factor and ZnT4 (Slc30a4) transporter. Biochemical Journal, 2013, 451, 155-163.	1.7	70
54	Lipid Sorting and Multivesicular Endosome Biogenesis. Cold Spring Harbor Perspectives in Biology, 2013, 5, a016816-a016816.	2.3	131
55	Phosphatidylinositol-3,5-bisphosphate: metabolism and physiological functions. Journal of Biochemistry, 2013, 154, 211-218.	0.9	25

#	Article	IF	CITATIONS
56	Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation. Physiological Reviews, 2013, 93, 1019-1137.	13.1	1,281
57	Vac14 Protein Multimerization Is a Prerequisite Step for Fab1 Protein Complex Assembly and Function. Journal of Biological Chemistry, 2013, 288, 9363-9372.	1.6	24
58	Genetically encoded fluorescent probe to visualize intracellular phosphatidylinositol 3,5-bisphosphate localization and dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21165-21170.	3.3	119
59	Molecular Bases of Multimodal Regulation of a Fungal Transient Receptor Potential (TRP) Channel. Journal of Biological Chemistry, 2013, 288, 15303-15317.	1.6	19
60	Rapid Structural Changes and Acidification of Guard Cell Vacuoles during Stomatal Closure Require Phosphatidylinositol 3,5-Bisphosphate Â. Plant Cell, 2013, 25, 2202-2216.	3.1	114
61	Cyclic ADP-Ribose and NAADP in Vascular Regulation and Diseases. Messenger (Los Angeles, Calif:) Tj ETQq1 1 C).784314 t O.3	rgBT_/Overlo
62	Ca ²⁺ –Sensor Proteins in the Autophagic and Endocytic Traffic. Current Protein and Peptide Science, 2013, 14, 97-110.	0.7	26
63	A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV. Nature Communications, 2014, 5, 4681.	5.8	125
64	The Two-pore channel (TPC) interactome unmasks isoform-specific roles for TPCs in endolysosomal morphology and cell pigmentation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13087-13092.	3.3	109
65	A novel role of transient receptor potential mucolipin1 (TRPML1) in protecting against imidazole-induced cytotoxicity. Biochemistry and Cell Biology, 2014, 92, 279-286.	0.9	5
66	Convergent regulation of the lysosomal two-pore channel-2 by Mg2+, NAADP, PI(3,5)P2 and multiple protein kinases. EMBO Journal, 2014, 33, 501-511.	3.5	162
67	Mucolipin Co-deficiency Causes Accelerated Endolysosomal Vacuolation of Enterocytes and Failure-to-Thrive from Birth to Weaning. PLoS Genetics, 2014, 10, e1004833.	1.5	28
68	Activation of a TRP-like channel and intracellular calcium dynamics during phospholipase C-mediated cell death. Journal of Cell Science, 2014, 127, 3817-29.	1.2	16
69	How does NAADP release lysosomal Ca ²⁺ ?. Channels, 2014, 8, 174-175.	1.5	6
70	Mouse Models of PI(3,5)P2 Deficiency with Impaired Lysosome Function. Methods in Enzymology, 2014, 534, 245-260.	0.4	25
71	Reconstituted Human TPC1 Is a Proton-Permeable Ion Channel and Is Activated by NAADP or Ca ²⁺ . Science Signaling, 2014, 7, ra46.	1.6	79
72	Identification of a Membrane-targeting Domain of the Transient Receptor Potential Canonical (TRPC)4 Channel Unrelated to Its Formation of a Tetrameric Structure. Journal of Biological Chemistry, 2014, 289, 34990-35002.	1.6	13
73	Drosophila TRPML Forms PI(3,5)P2-activated Cation Channels in Both Endolysosomes and Plasma Membrane. Journal of Biological Chemistry, 2014, 289, 4262-4272.	1.6	62

#	ARTICLE	IF	CITATIONS
74	Differential mechanisms of action of the mucolipin synthetic agonist, ML-SA1, on insect TRPML and mammalian TRPML1. Cell Calcium, 2014, 56, 446-456.	1.1	29
75	Phosphatidylinositol 3,5â€bisphosphate: Low abundance, high significance. BioEssays, 2014, 36, 52-64.	1.2	175
76	A non-inactivating high-voltage-activated two-pore Na+ channel that supports ultra-long action potentials and membrane bistability. Nature Communications, 2014, 5, 5015.	5.8	36
77	Class C ABC transporters and <i>Saccharomyces cerevisiae </i> vacuole fusion. Cellular Logistics, 2014, 4, e943588.	0.9	8
78	The signaling lipid PI(3,5)P ₂ stabilizes V ₁ â€"V _o sector interactions and activates the V-ATPase. Molecular Biology of the Cell, 2014, 25, 1251-1262.	0.9	117
79	Cellular and molecular interactions of phosphoinositides and peripheral proteins. Chemistry and Physics of Lipids, 2014, 182, 3-18.	1.5	95
80	Zinc efflux through lysosomal exocytosis prevents zinc-induced toxicity. Journal of Cell Science, 2014, 127, 3094-103.	1.2	61
81	The voltage-gated sodium channel TPC1 confers endolysosomal excitability. Nature Chemical Biology, 2014, 10, 463-469.	3.9	142
82	Longâ€√erm Effects of Nanoparticles on Nutrition and Metabolism. Small, 2014, 10, 3603-3611.	5.2	60
83	The intracellular Ca2+ channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy. Nature Medicine, 2014, 20, 1187-1192.	15.2	101
84	<scp>PIKfyve</scp> Inhibition Interferes with Phagosome and Endosome Maturation in Macrophages. Traffic, 2014, 15, 1143-1163.	1.3	98
85	Evolutionarily Conserved, Multitasking TRP Channels: Lessons from Worms and Flies. Handbook of Experimental Pharmacology, 2014, 223, 937-962.	0.9	47
86	SLC17A9 Protein Functions as a Lysosomal ATP Transporter and Regulates Cell Viability. Journal of Biological Chemistry, 2014, 289, 23189-23199.	1.6	53
87	Bioinformatics analysis of plant orthologous introns: identification of an intronic tRNA-like sequence. Gene, 2014, 548, 81-90.	1.0	4
88	Lysosomal exocytosis and lipid storage disorders. Journal of Lipid Research, 2014, 55, 995-1009.	2.0	141
89	P2X4 Forms Functional ATP-activated Cation Channels on Lysosomal Membranes Regulated by Luminal pH. Journal of Biological Chemistry, 2014, 289, 17658-17667.	1.6	115
90	Host PI(3,5)P ₂ Activity Is Required for <i>Plasmodium berghei</i> Growth During Liver Stage Infection. Traffic, 2014, 15, 1066-1082.	1.3	21
91	Twoâ€pore channels (<scp>TPC</scp> s): Current controversies. BioEssays, 2014, 36, 173-183.	1.2	96

#	Article	IF	CITATIONS
92	High susceptibility to fatty liver disease in two-pore channel 2-deficient mice. Nature Communications, 2014, 5, 4699.	5.8	164
93	Small regulators, major consequences – Ca2+ and cholesterol at the endosome–ER interface. Journal of Cell Science, 2014, 127, 929-38.	1.2	79
94	New Experimental Trends for Phosphoinositides Research on Ion Transporter/Channel Regulation. Journal of Pharmacological Sciences, 2014, 126, 186-197.	1.1	5
95	The Phosphoinositideâ€Gated Lysosomal Ca ²⁺ Channel, TRPML1, Is Required for Phagosome Maturation. Traffic, 2015, 16, 1010-1026.	1.3	85
96	Two-pore channels at the intersection of endolysosomal membrane traffic. Biochemical Society Transactions, 2015, 43, 434-441.	1.6	54
97	Regulation of TRPML1 function. Biochemical Society Transactions, 2015, 43, 442-446.	1.6	24
98	Expression of Ca ²⁺ â€permeable twoâ€pore channels rescues <scp>NAADP</scp> signalling in <scp>TPC</scp> â€deficient cells. EMBO Journal, 2015, 34, 1743-1758.	3.5	144
99	Two-Pore Channels: Lessons from Mutant Mouse Models. Messenger (Los Angeles, Calif: Print), 2015, 4, 4-22.	0.3	22
100	Impaired myelination and reduced ferric iron in mucolipidosis IV brain. DMM Disease Models and Mechanisms, 2015, 8, 1591-601.	1.2	40
101	The Amyloid Precursor Protein Controls PIKfyve Function. PLoS ONE, 2015, 10, e0130485.	1.1	21
102	The ML1Nx2 Phosphatidylinositol 3,5-Bisphosphate Probe Shows Poor Selectivity in Cells. PLoS ONE, 2015, 10, e0139957.	1.1	32
103	Lysosomal Storage Diseases-Regulating Neurodegeneration. Journal of Experimental Neuroscience, 2015, 9s2, JEN.S25475.	2.3	27
104	A strategy for analyzing bond strength and interaction kinetics between Pleckstrin homology domains and Pl(4,5)P2 phospholipids using force distance spectroscopy and surface plasmon resonance. Analyst, The, 2015, 140, 4558-4565.	1.7	3
105	BK Channels Alleviate Lysosomal Storage Diseases by Providing Positive Feedback Regulation of Lysosomal Ca2+ Release. Developmental Cell, 2015, 33, 427-441.	3.1	99
106	Emerging intracellular receptors for hemorrhagic fever viruses. Trends in Microbiology, 2015, 23, 392-400.	3.5	42
107	The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium, 2015, 58, 48-56.	1.1	166
108	Calcium signaling in membrane repair. Seminars in Cell and Developmental Biology, 2015, 45, 24-31.	2.3	69
109	A primer of NAADP-mediated Ca2+ signalling: From sea urchin eggs to mammalian cells. Cell Calcium, 2015, 58, 27-47.	1.1	110

#	Article	IF	CITATIONS
110	Lysosomal Physiology. Annual Review of Physiology, 2015, 77, 57-80.	5.6	768
111	PIPs in neurological diseases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1066-1082.	1.2	46
112	Lysosome electrophysiology. Methods in Cell Biology, 2015, 126, 197-215.	0.5	7
113	Imaging approaches to measuring lysosomal calcium. Methods in Cell Biology, 2015, 126, 159-195.	0.5	36
114	Mucolipin 1 positively regulates TLR7 responses in dendritic cells by facilitating RNA transportation to lysosomes. International Immunology, 2015, 27, 83-94.	1.8	19
115	Evolution of acidic Ca2+ stores and their resident Ca2+-permeable channels. Cell Calcium, 2015, 57, 222-230.	1.1	74
116	Methods for monitoring lysosomal morphology. Methods in Cell Biology, 2015, 126, 1-19.	0.5	17
117	Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nature Cell Biology, 2015, 17, 288-299.	4.6	1,006
118	Lysosomal Two-pore Channel Subtype 2 (TPC2) Regulates Skeletal Muscle Autophagic Signaling. Journal of Biological Chemistry, 2015, 290, 3377-3389.	1.6	69
119	Function and dysfunction of two-pore channels. Science Signaling, 2015, 8, re7.	1.6	135
120	A Voltage-Gated Calcium Channel Regulates Lysosomal Fusion with Endosomes and Autophagosomes and Is Required for Neuronal Homeostasis. PLoS Biology, 2015, 13, e1002103.	2.6	85
121	Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion. Journal of Cell Biology, 2015, 209, 879-894.	2.3	108
122	A lipid switch unlocks Parkinson's disease-associated ATP13A2. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9040-9045.	3.3	87
123	Mucolipidosis Type IV. , 2015, , 457-468.		0
124	TRPML1-Dependent Processes as Therapeutic Targets. , 2015, , 469-482.		0
125	A glance at … exercise and glucose uptake. Nutrition, 2015, 31, 893-897.	1.1	0
126	Reactivation of Lysosomal Ca ²⁺ Efflux Rescues Abnormal Lysosomal Storage in FIG4-Deficient Cells. Journal of Neuroscience, 2015, 35, 6801-6812.	1.7	42
127	Organellar channels and transporters. Cell Calcium, 2015, 58, 1-10.	1.1	83

#	Article	IF	CITATIONS
128	Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1373-81.	3.3	170
129	Phosphatidylinositol-3,4,5-trisphosphate stimulates Ca2+ elevation and Akt phosphorylation to constitute a major mechanism of thromboxane A2 formation in human platelets. Cellular Signalling, 2015, 27, 1488-1498.	1.7	8
130	Diminished MTORC1-Dependent JNK Activation Underlies the Neurodevelopmental Defects Associated with Lysosomal Dysfunction. Cell Reports, 2015, 12, 2009-2020.	2.9	25
131	Release of calcium from endolysosomes increases calcium influx through N-type calcium channels: Evidence for acidic store-operated calcium entry in neurons. Cell Calcium, 2015, 58, 617-627.	1.1	30
132	Presenilin 1 Maintains Lysosomal Ca2+ Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification. Cell Reports, 2015, 12, 1430-1444.	2.9	272
133	The Fab1/PIKfyve Phosphoinositide Phosphate Kinase Is Not Necessary to Maintain the pH of Lysosomes and of the Yeast Vacuole. Journal of Biological Chemistry, 2015, 290, 9919-9928.	1.6	46
134	Lipid kinases are essential for apicoplast homeostasis in $\langle i \rangle T \langle i \rangle \langle i \rangle$ oxoplasma gondii $\langle i \rangle$. Cellular Microbiology, 2015, 17, 559-578.	1.1	36
135	Above the fray: Surface remodeling by secreted lysosomal enzymes leads to endocytosis-mediated plasma membrane repair. Seminars in Cell and Developmental Biology, 2015, 45, 10-17.	2.3	41
136	TMEM175 Is an Organelle K+ Channel Regulating Lysosomal Function. Cell, 2015, 162, 1101-1112.	13.5	153
137	Role of TRP channels in the cardiovascular system. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H157-H182.	1.5	152
138	Phosphoinositides regulate ion channels. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 844-856.	1.2	264
139	Acidic Ca ² ⁺ Stores in Neurodegeneration. Messenger (Los Angeles, Calif:) Tj ETQq1 1	0.784314	rgBT /Over
140	PI(3,5)P2 biosynthesis regulates oligodendrocyte differentiation by intrinsic and extrinsic mechanisms. ELife, 2016, 5, .	2.8	25
141	Targeting TRPM2 in ROS-Coupled Diseases. Pharmaceuticals, 2016, 9, 57.	1.7	33
142	Lysosomal Calcium in Neurodegeneration. Messenger (Los Angeles, Calif: Print), 2016, 5, 56-66.	0.3	21
143	Phagocytosis Enhances Lysosomal and Bactericidal Properties by Activating the Transcription Factor TFEB. Current Biology, 2016, 26, 1955-1964.	1.8	97
144	A melanosomal two-pore sodium channel regulates pigmentation. Scientific Reports, 2016, 6, 26570.	1.6	64
145	Conventional and Secretory Lysosomes. , 2016, , 225-234.		1

#	Article	IF	CITATIONS
146	Fusion of lysosomes with secretory organelles leads to uncontrolled exocytosis in the lysosomal storage disease mucolipidosis type <scp>IV</scp> . EMBO Reports, 2016, 17, 266-278.	2.0	39
147	Deviant Lysosomal Ca2+ Signalling in Neurodegeneration. An Introduction. Messenger (Los Angeles,) Tj ETQq1 1	0.784314	rgBT /Overlo
148	Endo-lysosomal TRP mucolipin-1 triggers global ER Ca2+ release and Ca2+ influx. Journal of Cell Science, 2016, 129, 3859-3867.	1,2	57
149	Connecting Ca2+ and Lysosomes to Parkinson Disease. Messenger (Los Angeles, Calif: Print), 2016, 5, 76-86.	0.3	5
150	A lysosome-centered view of nutrient homeostasis. Autophagy, 2016, 12, 619-631.	4.3	89
151	FIG4 regulates lysosome membrane homeostasis independent of phosphatase function. Human Molecular Genetics, 2016, 25, 681-692.	1.4	46
152	Modulation of Calcium Entry by the Endo-lysosomal System. Advances in Experimental Medicine and Biology, 2016, 898, 423-447.	0.8	12
153	The amyloid precursor protein (APP) binds the PIKfyve complex and modulates its function. Biochemical Society Transactions, 2016, 44, 185-190.	1.6	18
154	A cell-permeable tool for analysing APP intracellular domain function and manipulation of PIKfyve activity. Bioscience Reports, 2016 , 36 , .	1.1	5
155	Arf6 and the 5'phosphatase of synaptojanin 1 regulate autophagy in cone photoreceptors. BioEssays, 2016, 38, S119-35.	1.2	64
156	Activation of lysosomal P2X4 by ATP transported into lysosomes via VNUT/SLC17A9 using Vâ€ATPase generated voltage gradient as the driving force. Journal of Physiology, 2016, 594, 4253-4266.	1.3	17
157	Arf6 and the 5'phosphatase of synaptojanin 1 regulate autophagy in cone photoreceptors. Inside the Cell, 2016, 1 , $117-133$.	0.4	38
158	Regulation of lysosomal ion homeostasis by channels and transporters. Science China Life Sciences, 2016, 59, 777-791.	2.3	84
159	PIKfyve Regulates Vacuole Maturation and Nutrient Recovery following Engulfment. Developmental Cell, 2016, 38, 536-547.	3.1	118
160	Phosphatidylinositol 3,5-bisphosphate: regulation of cellular events in space and time. Biochemical Society Transactions, 2016, 44, 177-184.	1.6	79
161	Phosphatidic Acid Sequesters <scp>Sec18p</scp> from <i>cis</i> â€ <scp>SNARE</scp> Complexes to Inhibit Priming. Traffic, 2016, 17, 1091-1109.	1.3	28
162	The hills and valleys of calcium signaling. Science China Life Sciences, 2016, 59, 743-748.	2.3	7
163	Vps34 regulates Rab7 and late endocytic trafficking through recruitment of the GTPase activating protein Armus. Journal of Cell Science, 2016, 129, 4424-4435.	1.2	59

#	Article	IF	Citations
164	MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nature Communications, 2016, 7, 12109.	5.8	369
165	Biallelic Mutations of VAC14 in Pediatric-Onset Neurological Disease. American Journal of Human Genetics, 2016, 99, 188-194.	2.6	45
166	A New Perspective of Lysosomal Cation Channel-Dependent Homeostasis in Alzheimer's Disease. Molecular Neurobiology, 2016, 53, 1672-1678.	1.9	11
167	The mucolipin-2 (TRPML2) ion channel: a tissue-specific protein crucial to normal cell function. Pflugers Archiv European Journal of Physiology, 2016, 468, 177-192.	1.3	39
168	Rescue of neurodegeneration in the <i>Fig4</i> null mouse by a catalytically inactive FIG4 transgene. Human Molecular Genetics, 2016, 25, 340-347.	1.4	14
169	A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nature Cell Biology, 2016, 18, 404-417.	4.6	302
170	APP controls the formation of PI(3,5)P2 vesicles through its binding of the PIKfyve complex. Cellular and Molecular Life Sciences, 2016, 73, 393-408.	2.4	48
171	Crosstalk between calcium and reactive oxygen species signaling in cancer. Cell Calcium, 2017, 63, 70-96.	1.1	163
172	Structural basis of dual Ca2+/pH regulation of the endolysosomal TRPML1 channel. Nature Structural and Molecular Biology, 2017, 24, 205-213.	3.6	83
173	Identification of apilimod as a first-in-class PIKfyve kinase inhibitor for treatment of B-cell non-Hodgkin lymphoma. Blood, 2017, 129, 1768-1778.	0.6	143
174	Inhibition of Transient Receptor Potential Channel Mucolipin-1 (TRPML1) by Lysosomal Adenosine Involved in Severe Combined Immunodeficiency Diseases. Journal of Biological Chemistry, 2017, 292, 3445-3455.	1.6	23
175	Gastric Acid Secretion from Parietal Cells Is Mediated by a Ca2+ Efflux Channel in the Tubulovesicle. Developmental Cell, 2017, 41, 262-273.e6.	3.1	42
176	A voltage-dependent K+ channel in the lysosome is required for refilling lysosomal Ca2+ stores. Journal of Cell Biology, 2017, 216, 1715-1730.	2.3	69
177	Novel degenerative and developmental defects in a zebrafish model of mucolipidosis type IV. Human Molecular Genetics, 2017, 26, 2701-2718.	1.4	16
178	A well-known potassium channel plays a critical role in lysosomes. Journal of Cell Biology, 2017, 216, 1513-1515.	2.3	4
179	Vacuolar convolution: possible mechanisms and role of phosphatidylinositol 3,5-bisphosphate. Functional Plant Biology, 2017, 44, 751.	1.1	4
180	Yunis-Var \tilde{A}^3 n syndrome caused by biallelic VAC14 mutations. European Journal of Human Genetics, 2017, 25, 1049-1054.	1.4	21
181	Early protection to stress mediated by CDK-dependent PI3,5P2 signaling from the vacuole/lysosome. Journal of Cell Biology, 2017, 216, 2075-2090.	2.3	29

#	Article	IF	CITATIONS
182	Drinking problems: mechanisms of macropinosome formation and maturation. FEBS Journal, 2017, 284, 3778-3790.	2.2	117
183	The signaling lipid phosphatidylinositolâ€3,5â€bisphosphate targets plant <scp>CLC </scp> â€a anion/H ⁺ exchange activity. EMBO Reports, 2017, 18, 1100-1107.	2.0	48
184	The lysosomal Ca2+ release channel TRPML1 regulates lysosome size by activating calmodulin. Journal of Biological Chemistry, 2017, 292, 8424-8435.	1.6	84
185	The N-terminal region of organic anion transporting polypeptide 1B3 (OATP1B3) plays an essential role in regulating its plasma membrane trafficking. Biochemical Pharmacology, 2017, 131, 98-105.	2.0	17
186	Methods for monitoring Ca 2+ and ion channels in the lysosome. Cell Calcium, 2017, 64, 20-28.	1.1	26
187	Phosphoinositide Diversity, Distribution, and Effector Function: Stepping Out of the Box. BioEssays, 2017, 39, 1700121.	1.2	50
188	Structure of mammalian endolysosomal TRPML1 channel in nanodiscs. Nature, 2017, 550, 415-418.	13.7	244
189	Human TRPML1 channel structures in open and closed conformations. Nature, 2017, 550, 366-370.	13.7	109
190	Cryo-electron microscopy structure of the lysosomal calcium-permeable channel TRPML3. Nature, 2017, 550, 411-414.	13.7	104
191	<scp>PIKfyve</scp> activity regulates reformation of terminal storage lysosomes from endolysosomes. Traffic, 2017, 18, 747-757.	1.3	85
192	Leukocyte TRP channel gene expressions inÂpatients with non-valvular atrial fibrillation. Scientific Reports, 2017, 7, 9272.	1.6	19
193	New Aspects of the Contribution of ER to SOCE Regulation: TRPC Proteins as a Link Between Plasma Membrane Ion Transport and Intracellular Ca2+ Stores. Advances in Experimental Medicine and Biology, 2017, 993, 239-255.	0.8	16
194	Cryo-EM structures of the mammalian endo-lysosomal TRPML1 channel elucidate the combined regulation mechanism. Protein and Cell, 2017, 8, 834-847.	4.8	39
195	The two-pore channel TPC1 is required for efficient protein processing through early and recycling endosomes. Scientific Reports, 2017, 7, 10038.	1.6	40
196	Patch-clamp technique to characterize ion channels in enlarged individual endolysosomes. Nature Protocols, 2017, 12, 1639-1658.	5.5	68
197	Development of Three Orthogonal Assays Suitable for the Identification and Qualification of PIKfyve Inhibitors. Assay and Drug Development Technologies, 2017, 15, 210-219.	0.6	6
198	The Lipid Kinase PIKfyve Coordinates the Neutrophil Immune Response through the Activation of the Rac GTPase. Journal of Immunology, 2017, 199, 2096-2105.	0.4	31
199	Cryo-EM structures of the human endolysosomal TRPML3 channel in three distinct states. Nature Structural and Molecular Biology, 2017, 24, 1146-1154.	3.6	71

#	Article	IF	CITATIONS
200	The 5-phosphatase OCRL in Lowe syndrome and Dent disease 2. Nature Reviews Nephrology, 2017, 13, 455-470.	4.1	106
201	Redox regulation of transient receptor potential channels in the endothelium. Microcirculation, 2017, 24, e12329.	1.0	33
202	Phagocytosis: Hungry, Hungry Cells. Methods in Molecular Biology, 2017, 1519, 1-16.	0.4	42
203	PI5P and PI(3,5)P ₂ : Minor, but Essential Phosphoinositides. Cell Structure and Function, 2017, 42, 49-60.	0.5	126
204	Two-Pore Channels: Catalyzers of Endolysosomal Transport and Function. Frontiers in Pharmacology, 2017, 08, 45.	1.6	67
205	Curcumin Exerts Effects on the Pathophysiology of Alzheimer's Disease by Regulating PI(3,5)P2 and Transient Receptor Potential Mucolipin-1 Expression. Frontiers in Neurology, 2017, 8, 531.	1.1	16
206	IP3 Receptor-Mediated Calcium Signaling and Its Role in Autophagy in Cancer. Frontiers in Oncology, 2017, 7, 140.	1.3	123
207	The phosphatidylinositol-3-phosphate 5-kinase inhibitor apilimod blocks filoviral entry and infection. PLoS Neglected Tropical Diseases, 2017, 11, e0005540.	1.3	97
208	Annexins: Ca2+ Effectors Determining Membrane Trafficking in the Late Endocytic Compartment. Advances in Experimental Medicine and Biology, 2017, 981, 351-385.	0.8	19
209	The mucolipin-1 TRPML1 ion channel transmembrane-163 TMEM163 protein and lysosomal zinc handling. Frontiers in Bioscience - Landmark, 2017, 22, 1330-1343.	3.0	21
210	A negative feedback regulation of MTORC1 activity by the lysosomal Ca ²⁺ channel MCOLN1 (mucolipin 1) using a CALM (calmodulin)-dependent mechanism. Autophagy, 2018, 14, 38-52.	4.3	58
211	Glucocorticoids, genes and brain function. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 82, 136-168.	2.5	111
212	Myelin abnormality in Charcot–Marie–Tooth type 4J recapitulates features of acquired demyelination. Annals of Neurology, 2018, 83, 756-770.	2.8	28
213	Control of vacuole membrane homeostasis by a resident Pl-3,5-kinase inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4684-4689.	3.3	19
214	Lysosome enlargement during inhibition of the lipid kinase PIKfyve proceeds through lysosome coalescence. Journal of Cell Science, 2018, 131, .	1.2	86
215	In vitro and in vivo characterization of modulation of the vacuolar cation channel TRPY 1 from Saccharomyces cerevisiae. FEBS Journal, 2018, 285, $1146-1161$.	2.2	14
216	The regulatory mechanism of mammalian TRPML s revealed by cryo―EM. FEBS Journal, 2018, 285, 2579-2585.	2.2	7
217	Exacerbation of sensorimotor dysfunction in mice deficient in Atp13a2 and overexpressing human wildtype alpha-synuclein. Behavioural Brain Research, 2018, 343, 41-49.	1.2	17

#	Article	IF	CITATIONS
218	Phosphoinositide conversion in endocytosis and the endolysosomal system. Journal of Biological Chemistry, 2018, 293, 1526-1535.	1.6	152
219	A copper-controlled RNA interference system for reversible silencing of target genes in Trichoderma reesei. Biotechnology for Biofuels, 2018, 11, 33.	6.2	18
220	Phosphatidylinositol-3,5-bisphosphate lipid-binding-induced activation of the human two-pore channel 2. Cellular and Molecular Life Sciences, 2018, 75, 3803-3815.	2.4	28
221	Detection of Weakly Expressed <i>Trypanosoma cruzi</i> Membrane Proteins Using Highâ€Performance Probes. Journal of Eukaryotic Microbiology, 2018, 65, 722-728.	0.8	10
222	The hidden potential of lysosomal ion channels: A new era of oncogenes. Cell Calcium, 2018, 72, 91-103.	1.1	40
223	Lipid-Mediated Modulation of Intracellular Ion Channels and Redox State: Physiopathological Implications. Antioxidants and Redox Signaling, 2018, 28, 949-972.	2.5	8
224	TRPML1: The Ca(2+)retaker of the lysosome. Cell Calcium, 2018, 69, 112-121.	1.1	105
225	TRPs and Ca2+ in cell death and survival. Cell Calcium, 2018, 69, 4-18.	1.1	40
226	Robust lysosomal calcium signaling through channel TRPML1 is impaired by lysosomal lipid accumulation. FASEB Journal, 2018, 32, 782-794.	0.2	36
227	Ebola virus requires phosphatidylinositol (3,5) bisphosphate production for efficient viral entry. Virology, 2018, 513, 17-28.	1.1	41
228	Degradation of TRPML1 in Neurons Reduces Neuron Survival in Transient Global Cerebral Ischemia. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-11.	1.9	5
229	Resolution of macropinosomes, phagosomes and autolysosomes: Osmotically driven shrinkage enables tubulation and vesiculation. Traffic, 2018, 19, 965-974.	1.3	33
230	Organellar TRP channels. Nature Structural and Molecular Biology, 2018, 25, 1009-1018.	3.6	41
231	Endosomal and Phagosomal SNAREs. Physiological Reviews, 2018, 98, 1465-1492.	13.1	68
232	Calcium signaling in Alzheimer's disease & Eamp; therapies. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1745-1760.	1.9	155
233	Pl(3,5)P ₂ controls vacuole potassium transport to support cellular osmoregulation. Molecular Biology of the Cell, 2018, 29, 1718-1731.	0.9	19
234	The PH domain from the Toxoplasma gondii PH-containing protein-1 (TgPH1) serves as an ectopic reporter of phosphatidylinositol 3-phosphate in mammalian cells. PLoS ONE, 2018, 13, e0198454.	1.1	4
235	Ethanol's Effects on Transient Receptor Potential Channel Expression in Brain Microvascular Endothelial Cells. Journal of NeuroImmune Pharmacology, 2018, 13, 498-508.	2.1	11

#	Article	IF	CITATIONS
236	<i><scp>CLC</scp>â€Nt1</i> affects <i>Potato Virus Y</i> infection via regulation of endoplasmic reticulum luminal Ph. New Phytologist, 2018, 220, 539-552.	3.5	21
237	The Lysosome and Intracellular Signalling. Progress in Molecular and Subcellular Biology, 2018, 57, 151-180.	0.9	33
238	The Endosomal Network: Mediators and Regulators of Endosome Maturation. Progress in Molecular and Subcellular Biology, 2018, 57, 1-38.	0.9	25
239	Mechanisms of lysosomal positioning and movement. Traffic, 2018, 19, 761-769.	1.3	177
240	PIKfyve regulates melanosome biogenesis. PLoS Genetics, 2018, 14, e1007290.	1.5	14
241	Current concepts in the neuropathogenesis of mucolipidosis type <scp>IV</scp> . Journal of Neurochemistry, 2019, 148, 669-689.	2.1	36
242	Lysosome trafficking and signaling in health and neurodegenerative diseases. Neurobiology of Disease, 2019, 122, 94-105.	2.1	208
243	From hitchhiker to hijacker: pathogen exploitation of endosomal phosphoinositides. Biochemistry and Cell Biology, 2019, 97, 1-9.	0.9	6
244	Biogenesis of lysosomeâ€related organelles complexâ€1 (BORC) regulates late endosomal/lysosomal size through PIKfyveâ€dependent phosphatidylinositolâ€3,5â€bisphosphate. Traffic, 2019, 20, 674-696.	1.3	30
245	Control of lysosomal TRPML1 channel activity and exosome release by acid ceramidase in mouse podocytes. American Journal of Physiology - Cell Physiology, 2019, 317, C481-C491.	2.1	33
246	CRISPR knockout screen implicates three genes in lysosome function. Scientific Reports, 2019, 9, 9609.	1.6	21
247	Sub-nanomolar sensitive GZnP3 reveals TRPML1-mediated neuronal Zn2+ signals. Nature Communications, 2019, 10, 4806.	5.8	27
248	Calcium Dyshomeostasis and Lysosomal Ca2+ Dysfunction in Amyotrophic Lateral Sclerosis. Cells, 2019, 8, 1216.	1.8	28
249	TRPML1 Promotes Protein Homeostasis in Melanoma Cells by Negatively Regulating MAPK and mTORC1 Signaling. Cell Reports, 2019, 28, 2293-2305.e9.	2.9	34
250	Phosphoinositides in the control of lysosome function and homeostasis. Biochemical Society Transactions, 2019, 47, 1173-1185.	1.6	33
251	RNA Granules Hitchhike on Lysosomes for Long-Distance Transport, Using Annexin A11 as a Molecular Tether. Cell, 2019, 179, 147-164.e20.	13.5	327
252	Endolysosomal Ca2+ Signalling and Cancer Hallmarks: Two-Pore Channels on the Move, TRPML1 Lags Behind!. Cancers, 2019, 11, 27.	1.7	45
253	Remodeling of secretory lysosomes during education tunes functional potential in NK cells. Nature Communications, 2019, 10, 514.	5.8	103

#	Article	IF	Citations
254	PIKfyve complex regulates early melanosome homeostasis required for physiological amyloid formation. Journal of Cell Science, 2019, 132, .	1.2	22
255	The amino acid transporter SLC-36.1 cooperates with PtdIns3P 5-kinase to control phagocytic lysosome reformation. Journal of Cell Biology, 2019, 218, 2619-2637.	2.3	18
256	Structure of the Human TRPML2 Ion Channel Extracytosolic/Lumenal Domain. Structure, 2019, 27, 1246-1257.e5.	1.6	16
257	Phosphoinositides modulate the voltage dependence of two-pore channel 3. Journal of General Physiology, 2019, 151, 986-1006.	0.9	17
258	Recent advances in understanding phosphoinositide signaling in the nervous system. F1000Research, 2019, 8, 278.	0.8	13
259	Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR. PLoS Biology, 2019, 17, e3000252.	2.6	70
260	Lysosomal Ca2+ release channel TRPML1 regulates lysosome size by promoting mTORC1 activity. European Journal of Cell Biology, 2019, 98, 116-123.	1.6	13
261	VacA generates a protective intracellular reservoir for Helicobacter pylori that is eliminated by activation of the lysosomal calcium channel TRPML1. Nature Microbiology, 2019, 4, 1411-1423.	5.9	68
262	Revisiting the role of calcium in phagosome formation and maturation. Journal of Leukocyte Biology, 2019, 106, 837-851.	1.5	23
263	A34 EFFECT OF AUTOPHAGY INDUCTION VIA TRPML1 ACTIVATION ON HEPATIC STEATOSIS. Journal of the Canadian Association of Gastroenterology, 2019, 2, 68-69.	0.1	2
264	Muscle Cell Membrane Repair and Therapeutic Implications. , 2019, , 453-467.		0
265	P2X4 and lysosome fusion. Current Opinion in Pharmacology, 2019, 47, 126-132.	1.7	31
266	Transient Receptor Potential Mucolipin-1 Channels in Glioblastoma: Role in Patient's Survival. Cancers, 2019, 11, 525.	1.7	36
267	Interaction of the late endo-lysosomal lipid PI(3,5)P2 with the Vph1 isoform of yeast V-ATPase increases its activity and cellular stress tolerance. Journal of Biological Chemistry, 2019, 294, 9161-9171.	1.6	36
268	Calcium Cation Cycling and Signaling Pathways in Fungi. , 2019, , 111-123.		0
269	Transient Receptor Potential Channels and Calcium Signaling. Cold Spring Harbor Perspectives in Biology, 2019, 11, a035048.	2.3	66
270	Lysophosphatidylinositolâ€acyltransferaseâ€1 is involved in cytosolic Ca2+oscillations in macrophages. Genes To Cells, 2019, 24, 366-376.	0.5	6
271	PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of Legionella infection. PLoS Pathogens, 2019, 15, e1007551.	2.1	35

#	Article	IF	CITATIONS
272	Lipid–Protein Interactions in Niemann–Pick Type C Disease: Insights from Molecular Modeling. International Journal of Molecular Sciences, 2019, 20, 717.	1.8	19
273	HRASâ€driven cancer cells are vulnerable to TRPML1 inhibition. EMBO Reports, 2019, 20, .	2.0	59
274	Cerebral hypomyelination associated with biallelic variants of <i>FIG4</i> . Human Mutation, 2019, 40, 619-630.	1,1	18
275	TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKK \hat{l}^2 /VPS34 pathway. Nature Communications, 2019, 10, 5630.	5.8	96
276	Phosphatidylinositol 3,5-bisphosphate regulates the transition between <i>trans</i> -SNARE complex formation and vacuole membrane fusion. Molecular Biology of the Cell, 2019, 30, 201-208.	0.9	15
277	Lysosomal Ion Channels as Decoders of Cellular Signals. Trends in Biochemical Sciences, 2019, 44, 110-124.	3.7	105
278	The Phosphoinositide Kinase PIKfyve Promotes Cathepsin-S-Mediated Major Histocompatibility Complex Class II Antigen Presentation. IScience, 2019, 11, 160-177.	1.9	41
279	Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochemical Journal, 2019, 476, 1-23.	1.7	176
280	Calcium signalling in T cells. Nature Reviews Immunology, 2019, 19, 154-169.	10.6	306
281	Phosphoinositides in the kidney. Journal of Lipid Research, 2019, 60, 287-298.	2.0	5
282	PIKfyve accelerates phagosome acidification through activation of TRPML1 while arrests aberrant vacuolation independent of the Ca2+ channel. Journal of Biochemistry, 2019, 165, 75-84.	0.9	23
283	Release and uptake mechanisms of vesicular Ca2+ stores. Protein and Cell, 2019, 10, 8-19.	4.8	76
284	Lysosomal Ca ²⁺ Homeostasis and Signaling in Health and Disease. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035311.	2.3	39
284		2.3	39 130
	Perspectives in Biology, 2020, 12, a035311.		
285	Perspectives in Biology, 2020, 12, a035311. Lysosomal size matters. Traffic, 2020, 21, 60-75.	1.3	130
285	Perspectives in Biology, 2020, 12, a035311. Lysosomal size matters. Traffic, 2020, 21, 60-75. Structural insights into group II TRP channels. Cell Calcium, 2020, 86, 102107. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nature Reviews Molecular Cell	1.3	130

#	Article	IF	Citations
290	TRPC channels: Structure, function, regulation and recent advances in small molecular probes., 2020, 209, 107497.		126
291	Targeting Two-Pore Channels: Current Progress and Future Challenges. Trends in Pharmacological Sciences, 2020, 41, 582-594.	4.0	35
292	The intracellular Ca ²⁺ release channel TRPML1 regulates lower urinary tract smooth muscle contractility. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30775-30786.	3.3	13
293	TRP Channels Regulation of Rho GTPases in Brain Context and Diseases. Frontiers in Cell and Developmental Biology, 2020, 8, 582975.	1.8	8
294	Mitochondria-lysosome contacts regulate mitochondrial Ca ²⁺ dynamics via lysosomal TRPML1. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19266-19275.	3.3	164
295	Endo-Lysosomal Cation Channels and Infectious Diseases. Reviews of Physiology, Biochemistry and Pharmacology, 2020, , 259-276.	0.9	19
296	A trimeric Rab7 GEF controls NPC1-dependent lysosomal cholesterol export. Nature Communications, 2020, 11, 5559.	5.8	52
297	Involvement of the TRPML Mucolipin Channels in Viral Infections and Anti-viral Innate Immune Responses. Frontiers in Immunology, 2020, 11, 739.	2.2	30
298	Phosphatidylinositol 3, <scp>5â€bisphosphate</scp> regulates Ca ²⁺ transport during yeast vacuolar fusion through the Ca ²⁺ <scp>ATPase Pmc1</scp> . Traffic, 2020, 21, 503-517.	1.3	8
299	Emerging Role of Mucolipins TRPML Channels in Cancer. Frontiers in Oncology, 2020, 10, 659.	1.3	18
300	The Role of Ca2+-NFATc1 Signaling and Its Modulation on Osteoclastogenesis. International Journal of Molecular Sciences, 2020, 21, 3646.	1.8	47
301	TRPML1 channels initiate Ca ²⁺ sparks in vascular smooth muscle cells. Science Signaling, 2020, 13, .	1.6	25
302	Dual Targeting of BRAF and mTOR Signaling in Melanoma Cells with Pyridinyl Imidazole Compounds. Cancers, 2020, 12, 1516.	1.7	13
303	TPC2-mediated Ca2+ signaling is required for axon extension in caudal primary motor neurons in zebrafish embryos. Journal of Cell Science, 2020, 133, .	1.2	7
304	An emerging focus on lipids in extracellular vesicles. Advanced Drug Delivery Reviews, 2020, 159, 308-321.	6.6	289
305	Impairment of Lysosome Function and Autophagy in Rare Neurodegenerative Diseases. Journal of Molecular Biology, 2020, 432, 2714-2734.	2.0	46
306	Podocyte Lysosome Dysfunction in Chronic Glomerular Diseases. International Journal of Molecular Sciences, 2020, 21, 1559.	1.8	17
307	Regulation of V-ATPase Activity and Organelle pH by Phosphatidylinositol Phosphate Lipids. Frontiers in Cell and Developmental Biology, 2020, 8, 510.	1.8	54

#	Article	IF	CITATIONS
308	Molecular Basis for PI(3,5)P2 Recognition by SNX11, a Protein Involved in Lysosomal Degradation and Endosome Homeostasis Regulation. Journal of Molecular Biology, 2020, 432, 4750-4761.	2.0	14
309	Molecular Mechanisms of Lysosome and Nucleus Communication. Trends in Biochemical Sciences, 2020, 45, 978-991.	3.7	24
310	TMEM16K is an interorganelle regulator of endosomal sorting. Nature Communications, 2020, 11, 3298.	5.8	32
311	Small-molecule activation of lysosomal TRP channels ameliorates Duchenne muscular dystrophy in mouse models. Science Advances, 2020, 6, eaaz2736.	4.7	31
312	A lysosomal K+ channel regulates large particle phagocytosis by facilitating lysosome Ca2+ release. Scientific Reports, 2020, 10, 1038.	1.6	25
313	Molecular regulation of autophagy machinery by mTORâ€dependent and â€independent pathways. Annals of the New York Academy of Sciences, 2020, 1467, 3-20.	1.8	162
314	TRP Channels as Interior Designers: Remodeling the Endolysosomal Compartment in Natural Killer Cells. Frontiers in Immunology, 2020, 11, 753.	2.2	13
315	Pathophysiological Role of Transient Receptor Potential Mucolipin Channel 1 in Calcium-Mediated Stress-Induced Neurodegenerative Diseases. Frontiers in Physiology, 2020, 11, 251.	1.3	17
316	Phosphoinositides in Retinal Function and Disease. Cells, 2020, 9, 866.	1.8	20
317	Trehalose limits opportunistic mycobacterial survival during HIV co-infection by reversing HIV-mediated autophagy block. Autophagy, 2021, 17, 476-495.	4.3	39
318	TORC1 Determines Fab1 Lipid Kinase Function at Signaling Endosomes and Vacuoles. Current Biology, 2021, 31, 297-309.e8.	1.8	31
319	Abnormal podocyte TRPML1 channel activity and exosome release in mice with podocyte-specific Asah1 gene deletion. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158856.	1.2	12
320	Two-pore and TRPML cation channels: Regulators of phagocytosis, autophagy and lysosomal exocytosis., 2021, 220, 107713.		21
321	Endolysosomal Ca2+ signaling in cardiovascular health and disease. International Review of Cell and Molecular Biology, 2021, 363, 203-269.	1.6	18
322	Lysosomal calcium and autophagy. International Review of Cell and Molecular Biology, 2021, 362, 141-170.	1.6	26
323	Endomembrane Tension and Trafficking. Frontiers in Cell and Developmental Biology, 2020, 8, 611326.	1.8	30
324	Molecular Processes and Regulation of Autophagy. , 2021, , 1-27.		0
325	Phospholipids Lipid Signaling and Ion Channels. , 2021, , 537-544.		0

#	Article	IF	Citations
326	Vascular Dysfunction in Diabetes and Obesity: Focus on TRP Channels. Frontiers in Physiology, 2021, 12, 645109.	1.3	17
327	Monitoring Phosphoinositide Fluxes and Effectors During Leukocyte Chemotaxis and Phagocytosis. Frontiers in Cell and Developmental Biology, 2021, 9, 626136.	1.8	5
328	The lysosomotrope GPN mobilises Ca2+ from acidic organelles. Journal of Cell Science, 2021, 134, .	1.2	14
329	Phosphoinositides: Roles in the Development of Microglial-Mediated Neuroinflammation and Neurodegeneration. Frontiers in Cellular Neuroscience, 2021, 15, 652593.	1.8	13
330	Lysosomal ion channels involved in cellular entry and uncoating of enveloped viruses: Implications for therapeutic strategies against SARS-CoV-2. Cell Calcium, 2021, 94, 102360.	1.1	26
331	MCOLN1/TRPML1 finely controls oncogenic autophagy in cancer by mediating zinc influx. Autophagy, 2021, 17, 4401-4422.	4.3	29
332	HIV-1 gp120-Induced Endolysosome de-Acidification Leads to Efflux of Endolysosome Iron, and Increases in Mitochondrial Iron and Reactive Oxygen Species. Journal of NeuroImmune Pharmacology, 2022, 17, 181-194.	2.1	21
333	Knock-Down of Mucolipin 1 Channel Promotes Tumor Progression and Invasion in Human Glioblastoma Cell Lines. Frontiers in Oncology, 2021, 11, 578928.	1.3	8
334	Lysosome biogenesis: Regulation and functions. Journal of Cell Biology, 2021, 220, .	2.3	154
335	Autophagy Induction as a Host-Directed Therapeutic Strategy against Mycobacterium tuberculosis Infection. Medicina (Lithuania), 2021, 57, 522.	0.8	8
338	Structures and Dynamics of Native-State Transmembrane Protein Targets and Bound Lipids. Membranes, 2021, 11, 451.	1.4	12
340	The role of endolysosomal trafficking in anticancer drug resistance. Drug Resistance Updates, 2021, 57, 100769.	6.5	23
341	Choreographing endo-lysosomal Ca2+ throughout the life of a phagosome. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119040.	1.9	10
342	Mechanosensitive ion channels in cell migration. Cells and Development, 2021, 166, 203683.	0.7	28
343	Atomic insights into ML-SI3 mediated human TRPML1 inhibition. Structure, 2021, 29, 1295-1302.e3.	1.6	14
344	Novel Approaches of Dysregulating Lysosome Functions in Cancer Cells by Specific Drugs and Its Nanoformulations: A Smart Approach of Modern Therapeutics. International Journal of Nanomedicine, 2021, Volume 16, 5065-5098.	3.3	18
345	Drugâ€like sphingolipid SHâ€BCâ€893 opposes ceramideâ€induced mitochondrial fission and corrects dietâ€induced obesity. EMBO Molecular Medicine, 2021, 13, e13086.	3.3	17
346	Regulation of TRPML1 channel activity and inflammatory exosome release by endogenously produced reactive oxygen species in mouse podocytes. Redox Biology, 2021, 43, 102013.	3.9	19

#	Article	IF	CITATIONS
347	From the inside out: Ion fluxes at the centre of endocytic traffic. Current Opinion in Cell Biology, 2021, 71, 77-86.	2.6	19
348	Vacuolar H+-ATPase dysfunction rescues intralumenal vesicle cargo sorting in yeast lacking PI(3,5)P2 or Doa4. Journal of Cell Science, 2021, 134, .	1.2	7
349	Reprint of: Mechanosensitive ion channels in cell migration. Cells and Development, 2021, , 203730.	0.7	1
350	Plasma Membrane and Organellar Targets of STIM1 for Intracellular Calcium Handling in Health and Neurodegenerative Diseases. Cells, 2021, 10, 2518.	1.8	6
351	Lysosomal calcium is modulated by STIM1/TRPML1 interaction which participates to neuronal survival during ischemic preconditioning. FASEB Journal, 2021, 35, e21277.	0.2	9
352	Detection of Plasma Membrane Phosphoinositide Dynamics Using Genetically Encoded Fluorescent Protein Probes. Methods in Molecular Biology, 2021, 2251, 73-89.	0.4	1
353	Methods to study phosphoinositide regulation of ion channels. Methods in Enzymology, 2021, 652, 49-79.	0.4	5
354	Endolysosomal TRPMLs in Cancer. Biomolecules, 2021, 11, 65.	1.8	17
355	Phosphoinositide Regulation of TRP Channels. Handbook of Experimental Pharmacology, 2014, 223, 1143-1176.	0.9	104
356	What Do We Really Know and What Do We Need to Know: Some Controversies, Perspectives, and Surprises. Handbook of Experimental Pharmacology, 2014, 223, 1239-1280.	0.9	16
357	TRPML1: An Ion Channel in the Lysosome. Handbook of Experimental Pharmacology, 2014, 222, 631-645.	0.9	72
358	TRPML2 and Mucolipin Evolution. Handbook of Experimental Pharmacology, 2014, 222, 647-658.	0.9	23
359	TRPML3. Handbook of Experimental Pharmacology, 2014, 222, 659-674.	0.9	17
360	Trpml controls actomyosin contractility and couples migration to phagocytosis in fly macrophages. Journal of Cell Biology, 2020, 219, .	2.3	7
365	Targeting cancer metabolism by simultaneously disrupting parallel nutrient access pathways. Journal of Clinical Investigation, 2016, 126, 4088-4102.	3.9	56
366	Lipid Regulation of Cardiac Ion Channels in Heart Disease. , 2013, , 77-100.		1
367	The journey of Ca2+ through the cell $\hat{a}\in$ " pulsing through the network of ER membrane contact sites. Journal of Cell Science, 2020, 133, .	1.2	25
368	Identification and Analysis of Cation Channel Homologues in Human Pathogenic Fungi. PLoS ONE, 2012, 7, e42404.	1.1	27

#	Article	IF	CITATIONS
369	Endosomal Maturation, Rab7 GTPase and Phosphoinositides in African Swine Fever Virus Entry. PLoS ONE, 2012, 7, e48853.	1.1	61
370	Inhibition of PIKfyve by YM-201636 Dysregulates Autophagy and Leads to Apoptosis-Independent Neuronal Cell Death. PLoS ONE, 2013, 8, e60152.	1.1	66
371	Rapid Recycling of Ca2+ between IP3-Sensitive Stores and Lysosomes. PLoS ONE, 2014, 9, e111275.	1.1	32
372	Overexpression of transient receptor potential mucolipin-2 ion channels in gliomas: role in tumor growth and progression. Oncotarget, 2016, 7, 43654-43668.	0.8	48
373	RNA Granules Hitchhike on Lysosomes for Long-Distance Transport, Using Annexin A11 as a Molecular Tether. SSRN Electronic Journal, 0 , , .	0.4	7
374	Transient Receptor Potential (TRP) Channels and Cardiac Fibrosis. Current Topics in Medicinal Chemistry, 2013, 13, 270-282.	1.0	74
375	Transient Receptor Potential channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	7
376	Calcium homeostasis and signaling in fungi and their relevance forpathogenicity of yeasts and filamentous fungi. AIMS Molecular Science, 2016, 3, 505-549.	0.3	23
377	Regulation of mTORC1 by lysosomal calcium and calmodulin. ELife, 2016, 5, .	2.8	107
378	Myotubularin related protein-2 and its phospholipid substrate PIP2 control Piezo2-mediated mechanotransduction in peripheral sensory neurons. ELife, 2018, 7, .	2.8	37
379	Selective agonist of TRPML2 reveals direct role in chemokine release from innate immune cells. ELife, 2018, 7, .	2.8	71
380	Structural mechanisms of phospholipid activation of the human TPC2 channel. ELife, 2019, 8, .	2.8	103
381	Agonist-specific voltage-dependent gating of lysosomal two-pore Na+ channels. ELife, 2019, 8, .	2.8	32
382	Cryo-EM structure of the lysosomal chloride-proton exchanger CLC-7 in complex with OSTM1. ELife, 2020, 9, .	2.8	41
383	Crosstalk between autophagy inhibitors and endosome-related secretory pathways: a challenge for autophagy-based treatment of solid cancers. Molecular Cancer, 2021, 20, 140.	7.9	36
385	Glioblastoma cytotoxicity conferred through dual disruption of endolysosomal homeostasis by Vacquinol-1. Neuro-Oncology Advances, 2021, 3, vdab152.	0.4	1
386	Membrane trafficking: PIP2 calcium let-out cause. Lipidomics Gateway, 2010, , .	0.0	0
387	TRPML Channels and Mucolipidosis Type IV. , 2014, , 365-379.		0

#	Article	IF	CITATIONS
388	TRP Channels: What Do They Look Like?. Frontiers in Neuroscience, 2017, , 1-10.	0.0	0
389	Channel Function of TRPML1 Prompts Lipolysis in Mature Adipocytes. International Journal of Oral Biology: Official Journal of the Korean Academy of Oral Biology and the UCLA Dental Research Institute, 2018, 43, 23-27.	0.1	0
400	Epimedokoreanin C, a prenylated flavonoid isolated from , induces non-apoptotic cell death with the characteristics of methuosis in lung cancer cells. American Journal of Cancer Research, 2021, 11, 3496-3514.	1.4	0
401	Reactive oxygen species prevent lysosome coalescence during PIKfyve inhibition. PLoS ONE, 2021, 16, e0259313.	1.1	9
403	The ins and outs of virus trafficking through acidic Ca2+ stores. Cell Calcium, 2022, 102, 102528.	1.1	8
404	Lysosomal potassium channels. Cell Calcium, 2022, 102, 102536.	1.1	9
405	Phosphoinositide transport and metabolism at membrane contact sites. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159107.	1.2	3
406	LAMTOR1 inhibition of TRPML1â€dependent lysosomal calcium release regulates dendritic lysosome trafficking and hippocampal neuronal function. EMBO Journal, 2022, 41, e108119.	3.5	8
407	Structural biology of cation channels important for lysosomal calcium release. Cell Calcium, 2022, 101, 102519.	1.1	5
408	Disruption of PIKFYVE causes congenital cataract in human and zebrafish. ELife, 2022, 11, .	2.8	9
409	Lipid kinases VPS34 and PlKfyve coordinate a phosphoinositide cascade to regulate retriever-mediated recycling on endosomes. ELife, 2022, 11 , .	2.8	24
410	The cellular response to plasma membrane disruption for nanomaterial delivery. Nano Convergence, 2022, 9, 6.	6.3	10
411	Cryo-EM structure of mouse TRPML2 in lipid nanodiscs. Journal of Biological Chemistry, 2022, 298, 101487.	1.6	3
412	Activation of endo-lysosomal two-pore channels by NAADP and PI(3,5)P2. Five things to know Cell Calcium, 2022, 103, 102543.	1.1	10
413	Structural mechanism of allosteric activation of TRPML1 by $PI(3,5)P < sub > 2 < / sub > and rapamycin.$ Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	23
414	TRPMLs and TPCs: Targets for lysosomal storage and neurodegenerative disease therapy?. Cell Calcium, 2022, 103, 102553.	1.1	14
415	Ion Channels and Pumps in Autophagy: A Reciprocal Relationship. Cells, 2021, 10, 3537.	1.8	10
416	Lysosomal TRPML1 Channel: Implications in Cardiovascular and Kidney Diseases. Advances in Experimental Medicine and Biology, 2021, 1349, 275-301.	0.8	7

#	Article	IF	CITATIONS
417	Ca2+ regulation of constitutive vesicle trafficking. Faculty Reviews, 2022, 11, 6.	1.7	11
418	Current Methods to Unravel the Functional Properties of Lysosomal Ion Channels and Transporters. Cells, 2022, 11, 921.	1.8	7
419	Endolysosomal cation channels point the way towards precision medicine of cancer and infectious diseases. Biomedicine and Pharmacotherapy, 2022, 148, 112751.	2.5	9
420	Identification of putative binding interface of PI(3,5)P2 lipid on rice black-streaked dwarf virus (RBSDV) P10 protein. Virology, 2022, 570, 81-95.	1.1	3
421	Identification and Characterization Analysis of Transient Receptor Potential Mucolipin Protein of Laodelphax striatellus Fallén. Insects, 2021, 12, 1107.	1.0	1
423	Axonal transport of late endosomes and amphisomes is selectively modulated by local Ca ²⁺ efflux and disrupted by PSEN1 loss of function. Science Advances, 2022, 8, eabj5716.	4.7	28
424	Rendezvous with PI(3,5)P2 â€" A rapalog gets caught opening TRPML1. Cell Calcium, 2022, 105, 102597.	1.1	0
425	Phosphoinositides as membrane organizers. Nature Reviews Molecular Cell Biology, 2022, 23, 797-816.	16.1	114
426	Tonic inhibition of the chloride/proton antiporter ClC-7 by $PI(3,5)P2$ is crucial for lysosomal pH maintenance. ELife, $0,11,.$	2.8	28
427	Insights into innovative therapeutics for drug-resistant tuberculosis: Host-directed therapy and autophagy inducing modified nanoparticles. International Journal of Pharmaceutics, 2022, 622, 121893.	2.6	5
428	PIKfyve-Dependent Phosphoinositide Dynamics in Megakaryocyte/Platelet Granule Integrity and Platelet Functions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 987-1004.	1.1	4
430	Activated Endolysosomal Cation Channel TRPML1 Facilitates Maturation of \hat{l}_{\pm} -Synuclein-Containing Autophagosomes. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	3
431	A Structural Overview of TRPML1 and the TRPML Family. Handbook of Experimental Pharmacology, 2022, , 181-198.	0.9	1
432	Lysosomal Potassium Channels. Handbook of Experimental Pharmacology, 2022, , .	0.9	1
433	Vacuolal and Peroxisomal Calcium Ion Transporters in Yeasts and Fungi: Key Role in the Translocation of Intermediates in the Biosynthesis of Fungal Metabolites. Genes, 2022, 13, 1450.	1.0	7
434	Electrophysiology of Endolysosomal Two-Pore Channels: A Current Account. Cells, 2022, 11, 2368.	1.8	6
435	<scp>TPC2</scp> rescues lysosomal storage in mucolipidosis type <scp>IV</scp> , <scp>Niemann–Pick</scp> type <scp>C1,</scp> and Batten disease. EMBO Molecular Medicine, 2022, 14, .	3.3	18
436	Lysosomal K ⁺ channel TMEM175 promotes apoptosis and aggravates symptoms of Parkinson's disease. EMBO Reports, 2022, 23, .	2.0	11

#	Article	IF	Citations
437	TRPML1 and TFEB, an Intimate Affair. Handbook of Experimental Pharmacology, 2022, , 109-126.	0.9	3
438	Regulation of exosome release by lysosomal acid ceramidase in coronary arterial endothelial cells: Role of TRPML1 channel. Current Topics in Membranes, 2022, , .	0.5	O
439	NAADP-Dependent TPC Current. Handbook of Experimental Pharmacology, 2022, , .	0.9	1
440	Expanding the Toolbox: Novel Modulators of Endolysosomal Cation Channels. Handbook of Experimental Pharmacology, 2022, , 249-276.	0.9	3
441	Identification and Utilization of a Chemical Probe to Interrogate the Roles of PIKfyve in the Lifecycle of \hat{l}^2 -Coronaviruses. Journal of Medicinal Chemistry, 2022, 65, 12860-12882.	2.9	6
442	A plant virus hijacks phosphatidylinositol-3,5-bisphosphate to escape autophagic degradation in its insect vector. Autophagy, 2023, 19, 1128-1143.	4.3	9
445	Lysosomal positioning diseases: beyond substrate storage. Open Biology, 2022, 12, .	1.5	14
446	The intracellular Ca ²⁺ channel TRPML3 is a PI3P effector that regulates autophagosome biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119,	3.3	3
447	Lysosomal solute and water transport. Journal of Cell Biology, 2022, 221, .	2.3	9
448	Oxidative stressâ€induced phosphorylation of <scp>JIP4</scp> regulates lysosomal positioning in coordination with <scp>TRPML1</scp> and <scp>ALG2</scp> . EMBO Journal, 2022, 41, .	3.5	6
449	The interdependent transport of yeast vacuole Ca2+ and H+ and the role of phosphatidylinositol 3,5-bisphosphate. Journal of Biological Chemistry, 2022, 298, 102672.	1.6	2
450	Choreographing the motor-driven endosomal dance. Journal of Cell Science, 2023, 136, .	1.2	8
451	Beyond PI3Ks: targeting phosphoinositide kinases in disease. Nature Reviews Drug Discovery, 2023, 22, 357-386.	21.5	27
452	Chloroquine corrects enlarged lysosomes in FIG4 null cells and reduces neurodegeneration in Fig4 null mice. Molecular Genetics and Metabolism, 2022, , .	0.5	2
453	Lysosome signaling in cell survival and programmed cell death for cellular homeostasis. Journal of Cellular Physiology, 2023, 238, 287-305.	2.0	19
456	Conventional and Secretory Lysosomes. , 2016, , 271-280.		O
457	Vascular mechanotransduction. Physiological Reviews, 2023, 103, 1247-1421.	13.1	36
458	GTP energy dependence of endocytosis and autophagy in the aging brain and Alzheimer's disease. GeroScience, 2023, 45, 757-780.	2.1	6

#	Article	IF	Citations
459	A gain-of-function TPC2 variant R210C increases affinity to $PI(3,5)P2$ and causes lysosome acidification and hypopigmentation. Nature Communications, 2023, 14, .	5.8	5
460	The Biology of Lysosomes: From Order to Disorder. Biomedicines, 2023, 11, 213.	1.4	4
461	Altered phenotypes due to genetic interaction between the mouse phosphoinositide biosynthesis genes <i>Fig4</i> and <i>Pip4k2c</i> G3: Genes, Genomes, Genetics, 2023, 13, .	0.8	3
462	Electrophysiological Techniques on the Study of Endolysosomal Ion Channels. Handbook of Experimental Pharmacology, 2023, , .	0.9	0
464	New Insights into the Regulation of mTOR Signaling via Ca2+-Binding Proteins. International Journal of Molecular Sciences, 2023, 24, 3923.	1.8	5
465	The synthetic TRPML1 agonist ML-SA1 rescues Alzheimer-related alterations of the endosomal-autophagic-lysosomal system. Journal of Cell Science, 2023, 136, .	1.2	7
466	Lysosomal Ion Channels and Lysosome–Organelle Interactions. Handbook of Experimental Pharmacology, 2023, , .	0.9	0
467	Characterization of Endo-Lysosomal Cation Channels Using Calcium Imaging. Handbook of Experimental Pharmacology, 2023, , .	0.9	0
468	Macropinocytosis: mechanisms and regulation. Biochemical Journal, 2023, 480, 335-362.	1.7	12
469	Human variation impacting MCOLN2 restricts Salmonella Typhi replication by magnesium deprivation. Cell Genomics, 2023, 3, 100290.	3.0	1
488	Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nature Reviews Molecular Cell Biology, 2024, 25, 223-245.	16.1	5
492	Regulation of autophagy by perilysosomal calcium: a new player in β-cell lipotoxicity. Experimental and Molecular Medicine, 2024, 56, 273-288.	3.2	O