Detection of Water in the LCROSS Ejecta Plume

Science

330, 463-468

DOI: 10.1126/science.1186986

Citation Report

#	Article	IF	CITATIONS
2	High power gain-clamped EDFAs with flat gain. , 0, , .		1
4	Lunar Water: A Brief Review. Earth, Moon and Planets, 2010, 107, 65-73.	0.3	70
5	Generating an Atmosphere. Science, 2010, 330, 1755-1756.	6.0	2
6	LRO-LAMP Observations of the LCROSS Impact Plume. Science, 2010, 330, 472-476.	6.0	141
7	The LCROSS Cratering Experiment. Science, 2010, 330, 468-472.	6.0	167
8	Observations of the lunar impact plume from the LCROSS event. Geophysical Research Letters, 2010, 37,	1.5	27
9	Diviner Lunar Radiometer Observations of the LCROSS Impact. Science, 2010, 330, 477-479.	6.0	68
10	Hydrogen Mapping of the Lunar South Pole Using the LRO Neutron Detector Experiment LEND. Science, 2010, 330, 483-486.	6.0	265
11	Diviner Lunar Radiometer Observations of Cold Traps in the Moon's South Polar Region. Science, 2010, 330, 479-482.	6.0	385
12	Effects of orbital evolution on lunar ice stability. Journal of Geophysical Research, 2011, 116, .	3.3	63
13	Results from the NMSU-NASA Marshall Space Flight Center LCROSS observational campaign. Journal of Geophysical Research, 2011, 116, .	3.3	7
14	Modeling of the vapor release from the LCROSS impact: Parametric dependencies. Journal of Geophysical Research, 2011, 116, .	3.3	12
15	Optimal Lunar Orbit Insertion from a Variable Symmetric Free-Return Trajectory. Journal of Guidance, Control, and Dynamics, 2011, 34, 1867-1875.	1.6	3
16	Prospects for robotic lunar exploration by commercial enterprise. , 2011, , .		3
17	Fluorine and chlorine abundances in lunar apatite: Implications for heterogeneous distributions of magmatic volatiles in the lunar interior. Geochimica Et Cosmochimica Acta, 2011, 75, 5073-5093.	1.6	140
18	Geomicrobiology and occluded O2–CO2–Ar gas analyses provide evidence of microbial respiration in ancient terrestrial ground ice. Earth and Planetary Science Letters, 2011, 306, 46-54.	1.8	27
19	Impact cratering in sandstone: The MEMIN pilot study on the effect of pore water. Meteoritics and Planetary Science, 2011, 46, 890-902.	0.7	61
20	Brown dwarfs and free-floating planets. , 0, , 209-216.		O

#	Article	IF	Citations
21	Formation and evolution., 0,, 217-254.		3
22	Water on the Moon. Physics Today, 2011, 64, 74-75.	0.3	1
23	Apollo renaissance. Nature Geoscience, 2011, 4, 69-69.	5.4	1
24	Characterization of lunar dust and a synopsis of available lunar simulants. Planetary and Space Science, 2011, 59, 1769-1783.	0.9	59
25	Optical measurements of the Moon as a tool to study its surface. Planetary and Space Science, 2011, 59, 1326-1371.	0.9	201
26	Photometry and bulk physical properties of Solar System surfaces icy analogs: The Planetary Ice Laboratory at University of Bern. Planetary and Space Science, 2011, 59, 1601-1612.	0.9	33
27	Simulations of a comet impact on the Moon and associated ice deposition in polar cold traps. Icarus, 2011, 215, 1-16.	1.1	55
28	Water on the Moon. Nature Geoscience, 2011, 4, 586-588.	5.4	6
29	Surface Composition of Vesta: Issues and Integrated Approach. Space Science Reviews, 2011, 163, 117-139.	3.7	25
31	Wireless Sensor Networks – A potential tool to probe for water on Moon. Advances in Space Research, 2011, 48, 601-612.	1.2	28
32	Illumination conditions of the lunar polar regions using LOLA topography. Icarus, 2011, 211, 1066-1081.	1.1	218
33	Permeability of JSC-1A: A lunar soil simulant. Icarus, 2011, 212, 383-389.	1.1	25
34	Thermal stability of water and hydroxyl on the surface of the Moon from temperature-programmed desorption measurements of lunar analog materials. Icarus, 2011, 213, 64-72.	1.1	68
35	A ground-based observation of the LCROSS impact events using the Subaru Telescope. Icarus, 2011, 214, 21-29.	1.1	3
36	FORMATION OF D ₂ -WATER AND D ₂ -CARBONIC ACID IN OXYGEN-RICH SOLAR SYSTEM ICES VIA D Value of the company of the comp	1.6	10
37	Spacecraft instrument technology and cosmochemistry. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19177-19182.	3.3	8
38	Excavation of the Subsurface by Hypervelocity Impacts: Insight from Experiments and Lessons from Missions. , 2012, , .		0
39	The Role of Synthetic Biology for <i>In Situ </i> li>Resource Utilization (ISRU). Astrobiology, 2012, 12, 1135-1142.	1.5	48

#	Article	lF	Citations
40	Lunar Drilling, Excavation and Mining in Support of Science, Exploration, Construction, and In Situ Resource Utilization (ISRU)., 2012,, 235-265.		15
41	Nuclear Planetology: Especially Concerning the Moon and Mars. Research in Astronomy and Astrophysics, 2012, 12, 1313-1380.	0.7	5
42	Mobile In-Situ Water Extractor (MISWE) for Mars, Moon, and Asteroids In Situ Resource Utilization., 2012,,.		18
44	The Southwest Research Institute ultraviolet reflectance chamber (SwURC): a far ultraviolet reflectometer., 2012,,.		2
45	An upper limit for ice in Shackleton crater as revealed by LRO Miniâ∈RF orbital radar. Geophysical Research Letters, 2012, 39, .	1.5	65
46	Lunar Prospecting Rover Utilizing a Lunar Drill, Pneumatic Excavator, and Gas Jet Trencher. , 2012, , .		5
47	High spatial resolution studies of epithermal neutron emission from the lunar poles: Constraints on hydrogen mobility. Journal of Geophysical Research, 2012, 117, .	3.3	38
48	Back to the Moon: The scientific rationale for resuming lunar surface exploration. Planetary and Space Science, 2012, 74, 3-14.	0.9	119
49	Scientific preparations for lunar exploration with the European Lunar Lander. Planetary and Space Science, 2012, 74, 208-223.	0.9	34
50	Remote laserâ€induced breakdown spectroscopy (LIBS) for lunar exploration. Journal of Geophysical Research, 2012, 117, .	3.3	55
51	Origin and stability of lunar polar volatiles. Advances in Space Research, 2012, 50, 1638-1646.	1.2	21
52	The production of oxygen and metal from lunar regolith. Planetary and Space Science, 2012, 74, 49-56.	0.9	103
53	Mobile Payload Element (MPE): Concept study for a sample fetching rover for the ESA Lunar Lander Mission. Planetary and Space Science, 2012, 74, 283-295.	0.9	13
54	A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications. Planetary and Space Science, 2012, 74, 42-48.	0.9	200
55	L-VRAPâ€"A lunar volatile resources analysis package for lunar exploration. Planetary and Space Science, 2012, 74, 254-263.	0.9	8
56	Geology, geochemistry, and geophysics of the Moon: Status of current understanding. Planetary and Space Science, 2012, 74, 15-41.	0.9	104
57	The Use of Lunar Resources for Energy Generation on the Moon. , 2012, , 325-334.		2
58	Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water. Nature Geoscience, 2012, 5, 779-782.	5.4	120

#	Article	IF	CITATIONS
59	Ionization photophysics and Rydberg spectroscopy of diacetylene. Molecular Physics, 2012, 110, 2843-2856.	0.8	7
60	LunarVader: Testing of a 1 meter lunar drill in a 3.5 meter vacuum chamber and in the Antarctic lunar analog site. , $2012,$, .		4
61	Volatile Analysis by Pyrolysis of Regolith for planetary resource exploration. , 2012, , .		9
62	Testing lunar permanently shadowed regions for water ice: LEND results from LRO. Journal of Geophysical Research, 2012, 117, .	3.3	49
63	Elemental Mapping by Dawn Reveals Exogenic H in Vesta's Regolith. Science, 2012, 338, 242-246.	6.0	201
64	Hydroxyl (OH) production on airless planetary bodies: Evidence from H+/D+ ion-beam experiments. Earth and Planetary Science Letters, 2012, 345-348, 90-94.	1.8	59
65	Modeling of the vapor release from the LCROSS impact: 2. Observations from LAMP. Journal of Geophysical Research, 2012, 117 , .	3.3	23
66	Farâ€ultraviolet reflectance properties of the Moon's permanently shadowed regions. Journal of Geophysical Research, 2012, 117, .	3.3	115
67	Testing polar spots of waterâ€rich permafrost on the Moon: LEND observations onboard LRO. Journal of Geophysical Research, 2012, 117, .	3.3	60
68	LEND neutron data processing for the mapping of the Moon. Journal of Geophysical Research, 2012, 117,	3.3	18
69	Twoâ€dimensional distribution of volatiles in the lunar regolith from space weathering simulations. Geophysical Research Letters, 2012, 39, .	1.5	61
70	Plasma wake simulations and object charging in a shadowed lunar crater during a solar storm. Journal of Geophysical Research, 2012, 117 , .	3.3	37
71	Enhanced hydrogen at the lunar poles: New insights from the detection of epithermal and fast neutron signatures. Journal of Geophysical Research, 2012, 117 , .	3.3	16
72	Oxygen in the Outer Solar System. Journal of Chemical Education, 2012, 89, 181-182.	1.1	O
73	In-Space Propulsion Engine Architecture Based on Sublimation of Planetary Resources: From Exploration Robots to NEO Mitigation. , 2012, , .		1
74	Analysis of Water Extraction from Lunar Regolith. , 2012, , .		3
75	VPDSL: A DSL for Software in the Loop Simulations Covering Material Flow. , 2012, , .		3
76	A QUANTITATIVE COMPARISON OF LUNAR ORBITAL NEUTRON DATA. Astrophysical Journal, 2012, 747, 6.	1.6	18

#	ARTICLE	IF	CITATIONS
77	Threeâ€dimensional SLAM for mapping planetary work site environments. Journal of Field Robotics, 2012, 29, 381-412.	3.2	31
78	Axel and DuAxel rovers for the sustainable exploration of extreme terrains. Journal of Field Robotics, 2012, 29, 663-685.	3.2	65
79	Ice structures, patterns, and processes: A view across the icefields. Reviews of Modern Physics, 2012, 84, 885-944.	16.4	277
80	An Overview of the Lunar Crater Observation and Sensing Satellite (LCROSS). Space Science Reviews, 2012, 167, 3-22.	3.7	56
81	Lunar Netâ€"a proposal in response to an ESA M3 call in 2010 for a medium sized mission. Experimental Astronomy, 2012, 33, 587-644.	1.6	15
82	The Lunar Crater Observation and Sensing Satellite (LCROSS) Payload Development and Performance inÂFlight. Space Science Reviews, 2012, 167, 23-69.	3.7	26
83	LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned. Space Science Reviews, 2012, 167, 93-140.	3.7	19
84	Locating the LCROSS Impact Craters. Space Science Reviews, 2012, 167, 71-92.	3.7	11
85	Constraints on the flux of meteoritic and cometary water on the Moon from volatile element (N–Ar) analyses of single lunar soil grains, Luna 24 core. Icarus, 2012, 218, 220-229.	1.1	33
86	Scouring the surface: Ejecta dynamics and the LCROSS impact event. Icarus, 2012, 218, 654-665.	1.1	28
87	Toward a global space exploration program: A stepping stone approach. Advances in Space Research, 2012, 49, 2-48.	1.2	50
88	Gas permeability and flow characterization of simulated lunar regolith. Advances in Space Research, 2012, 49, 1271-1276.	1.2	7
89	The development of the Space Environment Viability of Organics (SEVO) experiment aboard the Organism/Organic Exposure to Orbital Stresses (O/OREOS) satellite. Planetary and Space Science, 2012, 60, 121-130.	0.9	22
90	Surface mineralogy and stratigraphy of the lunar South Pole-Aitken basin determined from Clementine UV/VIS and NIR data. Planetary and Space Science, 2012, 68, 76-85.	0.9	31
91	In situ dielectric spectroscopy for water detection on the lunar surface. Planetary and Space Science, 2012, 65, 76-82.	0.9	4
92	An explanation of bright areas inside Shackleton Crater at the Lunar South Pole other than waterâ€ice deposits. Geophysical Research Letters, 2013, 40, 3814-3818.	1.5	23
93	Remote detection of magmatic water in Bullialdus Crater on the Moon. Nature Geoscience, 2013, 6, 737-741.	5.4	55
94	Space-Weathering of Solar System Bodies: A Laboratory Perspective. Chemical Reviews, 2013, 113, 9086-9150.	23.0	130

#	ARTICLE	IF	CITATIONS
95	The selfâ€sputtered contribution to the lunar exosphere. Journal of Geophysical Research E: Planets, 2013, 118, 1934-1944.	1.5	16
96	The formation of molecular hydrogen from water ice in the lunar regolith by energetic charged particles. Journal of Geophysical Research E: Planets, 2013, 118, 1257-1264.	1.5	20
97	Kinetic modeling of sodium in the lunar exosphere. Icarus, 2013, 226, 1538-1549.	1.1	32
98	New results and questions of lunar exploration from SELENE, Chang'E-1, Chandrayaan-1 and LRO/LCROSS. Advances in Space Research, 2013, 52, 285-305.	1.2	92
99	Evidence for water ice on the Moon: Results for anomalous polar craters from the LRO Miniâ€RF imaging radar. Journal of Geophysical Research E: Planets, 2013, 118, 2016-2029.	1.5	152
100	Hydrogen Isotopes in Lunar Volcanic Glasses and Melt Inclusions Reveal a Carbonaceous Chondrite Heritage. Science, 2013, 340, 1317-1320.	6.0	218
101	On the chronology of lunar origin and evolution. Astronomy and Astrophysics Review, 2013, 21, 1.	9.1	25
102	Affordable, Rapid Bootstrapping of the Space Industry and Solar System Civilization. Journal of Aerospace Engineering, 2013, 26, 18-29.	0.8	42
103	Shackleton Energy Company's Propellant Depot and Space Transportation Architecture. New Space, 2013, 1, 91-100.	0.4	1
104	Regolith Advanced Surface Systems Operations Robot (RASSOR)., 2013,,.		17
105	Mapping and characterization of non-polar permanent shadows on the lunar surface. Icarus, 2013, 223, 566-581.	1.1	47
106	Thermal Stability of Volatiles in the North Polar Region of Mercury. Science, 2013, 339, 300-303.	6.0	119
107	Proton flux and radiation dose from galactic cosmic rays in the lunar regolith and implications for organic synthesis at the poles of the Moon and Mercury. Icarus, 2013, 226, 1192-1200.	1.1	26
108	A hydrogen-based oxidation mechanism relevant to planetary formation. Earth and Planetary Science Letters, 2013, 380, 88-97.	1.8	115
109	Persistently illuminated regions at the lunar poles: Ideal sites for future exploration. Icarus, 2013, 222, 122-136.	1.1	67
110	Redistribution of lunar polar water to mid-latitudes and its role in forming an OH veneer. Planetary and Space Science, 2013, 89, 15-20.	0.9	18
111	Location selection and layout for LB10, a lunar base at the Lunar North Pole with a liquid mirror observatory. Acta Astronautica, 2013, 85, 61-72.	1.7	14
112	Recursive plasma wake formation on the Moon and its effect on polar volatiles. Icarus, 2013, 226, 992-998.	1.1	21

#	ARTICLE	IF	Citations
113	Performance of a small and low-cost chamber to simulate lunar surface environment. Acta Astronautica, 2013, 89, 149-153.	1.7	7
114	Investigating the Effects of Percussion on Excavation Forces. Journal of Aerospace Engineering, 2013, 26, 87-96.	0.8	17
115	Combustion of Nanoaluminum and Water Propellants: Effect of Equivalence Ratio and Safety/Aging Characterization. Propellants, Explosives, Pyrotechnics, 2013, 38, 56-66.	1.0	35
116	Characterization of the LCROSS impact plume from a ground-based imaging detection. Nature Communications, 2013, 4, 2620.	5.8	17
117	RESOLVE OVEN Field Demonstration Unit for Lunar Resource Extraction. , 2013, , .		4
118	LunarVader: Development and Testing of Lunar Drill in Vacuum Chamber and in Lunar Analog Site of Antarctica. Journal of Aerospace Engineering, 2013, 26, 74-86.	0.8	54
119	Highly sensitive tunable diode laser spectrometers for in situ planetary exploration. , 2013, , .		1
120	Investigation of three Fe–Ti oxide deposits associated with Grenvillian anorthosite massifs as potential source for lunar analogue ilmenite. Canadian Journal of Earth Sciences, 2013, 50, 64-77.	0.6	6
121	Reducing extra-terrestrial excavation forces with percussion. , 2013, , .		6
122	Rover odometry aided by a star tracker. , 2013, , .		9
123	Motion planning and control for a tethered, rimless wheel differential drive vehicle. , 2013, , .		7
125	Experimental Feasibility Study of On-Site Detection of OH/H2O due to In-Situ Thermal Processing of Lunar Regolith. , 2013, , .		0
126	Preparation of a Frozen Regolith Simulant Bed for ISRU Component Testing in a Vacuum Chamber. , 2013, , .		6
127	Water interactions with micronized lunar surrogates JSCâ€1A and albite under ultraâ€high vacuum with application to lunar observations. Journal of Geophysical Research E: Planets, 2013, 118, 105-115.	1.5	34
128	On the Extraction of Volatiles from Lunar Regolith Using Solar Power. , 2013, , .		1
129	Circular polarization ratio characteristics of impact craters from Miniâ€RF observations and implications for ice detection at the polar regions of the Moon. Journal of Geophysical Research E: Planets, 2013, 118, 1582-1608.	1.5	61
130	Water in a Land of False Seas. , 0, , 227-260.		0
132	Extraction of Volatiles from Lunar Regolith Using Solar Power. Journal of Thermophysics and Heat Transfer, 2014, 28, 343-346.	0.9	4

#	ARTICLE	IF	CITATIONS
133	The global albedo of the Moon at 1064 nm from LOLA. Journal of Geophysical Research E: Planets, 2014, 119, 1665-1679.	1.5	96
134	Automated Design of Optimal Finite Thrust Orbit Insertion with Ballistic Flyby Constraints. Journal of Spacecraft and Rockets, 2014, 51, 1872-1884.	1.3	4
135	Active moon: evidences from Chandrayaan-1 and the proposed Indian missions. Geoscience Letters, 2014, $1, \dots$	1.3	4
136	10. Spectroscopy from Space. , 2014, , 399-446.		1
137	Understanding the origin and evolution of water in the Moon through lunar sample studies. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130254.	1.6	35
138	Prospecting for Native Metals in Lunar Polar Craters. , 2014, , .		8
139	Review of possible mineral materials and production techniques for a building material on the moon. Structural Concrete, 2014, 15, 419-428.	1.5	51
140	A Sublimation-driven Exospheric Model of Ceres. Planetary and Space Science, 2014, 104, 157-162.	0.9	14
141	Reconfigurable Integrated Multirobot Exploration System (RIMRES): Heterogeneous Modular Reconfigurable Robots for Space Exploration. Journal of Field Robotics, 2014, 31, 3-34.	3.2	52
142	Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa's water vapor aurora. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5123-32.	3.3	65
143	DETECTION OF OCEAN GLINT AND OZONE ABSORPTION USING <i>LCROSS</i> EARTH OBSERVATIONS. Astrophysical Journal, 2014, 787, 171.	1.6	93
144	The Moon's Surface, Structure, and Evolution. Astronomy and Astrophysics Library, 2014, , 197-230.	0.2	O
145	Characterizing transient thermal interactions between lunar regolith and surface spacecraft. Planetary and Space Science, 2014, 92, 101-116.	0.9	6
146	Laboratory spectroscopic detection of hydration in pristine lunar regolith. Earth and Planetary Science Letters, 2014, 390, 157-164.	1.8	9
147	Properties of the lunar exosphere during the Perseid 2009 meteor shower. Planetary and Space Science, 2014, 96, 90-98.	0.9	22
148	Chlorine distribution and its isotopic composition in "rusty rock―66095. Implications for volatile element enrichments of "rusty rock―and lunar soils, origin of "rusty―alteration, and volatile element behavior on the Moon. Geochimica Et Cosmochimica Acta, 2014, 139, 411-433.	1.6	52
149	Spectroscopy from Space. Reviews in Mineralogy and Geochemistry, 2014, 78, 399-446.	2.2	17
150	Slope Descent using Plowing to Minimize Slip for Planetary Rovers. Journal of Field Robotics, 2014, 31, 803-819.	3.2	8

#	Article	IF	Citations
151	Organics Exposure in Orbit (OREOcube): A Next-Generation Space Exposure Platform. Langmuir, 2014, 30, 13217-13227.	1.6	14
152	Lunar exploration: opening a window into the history and evolution of the inner Solar System. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130315.	1.6	53
153	Migration calculations for water in the exosphere of the Moon: Duskâ€dawn asymmetry, heterogeneous trapping, and D/H fractionation. Geophysical Research Letters, 2014, 41, 4888-4893.	1.5	29
154	Geological context of potential landing site of the Luna-Glob mission. Solar System Research, 2014, 48, 391-402.	0.3	6
155	High-priority lunar landing sites for in situ and sample return studies of polar volatiles. Planetary and Space Science, 2014, 101, 149-161.	0.9	36
156	Volatile lunacy. Nature Geoscience, 2014, 7, 389-389.	5.4	0
157	Impact chemistry of methanol: Implications for volatile evolution on icy satellites and dwarf planets, and cometary delivery to the Moon. Icarus, 2014, 243, 39-47.	1.1	6
158	Hydrogen implantation in silicates: The role of solar wind in SiOH bond formation on the surfaces of airless bodies in space. Journal of Geophysical Research E: Planets, 2014, 119, 2017-2028.	1.5	50
159	Lunar polar craters – lcy, rough or just sloping?. Icarus, 2014, 241, 66-78.	1.1	34
160	Organic matter on the Earth's Moon. Geochimica Et Cosmochimica Acta, 2014, 134, 1-15.	1.6	22
161	Identification of surface hydrogen enhancements within the Moon's Shackleton crater. Icarus, 2014, 233, 229-232.	1.1	27
162	Volatiles in lunar regolith samples: A survey. Solar System Research, 2014, 48, 113-129.	0.3	19
163	Mechanisms and cross sections for water desorption from a lunar impact melt breccia. Journal of Geophysical Research E: Planets, 2014, 119, 884-893.	1.5	11
164	Planetary laser spectrometer for sensitive in situ detection of water at 1881nm. Planetary and Space Science, 2014, 92, 127-135.	0.9	0
165	Heat storage and electricity generation in the Moon during the lunar night. Acta Astronautica, 2014, 93, 352-358.	1.7	27
166	Hard X-ray continuum from lunar surface: Results from High Energy X-ray spectrometer (HEX) onboard Chandrayaan-1. Advances in Space Research, 2014, 54, 2041-2049.	1.2	10
167	Vacuum ultraviolet photoabsorption of pure solid ozone and its implication on the identification of ozone on Moon. Chemical Physics Letters, 2014, 603, 33-36.	1.2	12
168	Flowability of lunar regolith simulants under reduced gravity and vacuum in hopper-based conveying devices. Journal of Terramechanics, 2014, 55, 61-72.	1.4	7

#	Article	IF	Citations
169	How well do we know the polar hydrogen distribution on the Moon?. Journal of Geophysical Research E: Planets, 2014, 119, 574-593.	1.5	27
170	On the average temperature of airless spherical bodies and the magnitude of Earth's atmospheric thermal effect. SpringerPlus, 2014, 3, 723.	1.2	9
171	Introducing the Resource Prospector (RP) Mission. , 2014, , .		20
172	RESEARCH FOCUS: MESSENGER Into Darkness. Geology, 2014, 42, 1111-1112.	2.0	0
173	Development and Testing of a Lunar Prospecting Drill (LPD) to Search for Water-Ice., 2015,,.		2
174	Thermal stability of ice on Ceres with rough topography. Journal of Geophysical Research E: Planets, 2015, 120, 1567-1584.	1.5	93
175	Revolutionary Aerospace Concepts - Academic Linkage (RASC-AL); Space pioneering and prospecting towards Earth independence (1st Place Winning Team)., 2015,,.		0
176	Spillage of lunar polar crater volatiles onto adjacent terrains: The case for dynamic processes. Geophysical Research Letters, 2015, 42, 3160-3165.	1.5	17
177	The effect of craters on the lunar neutron flux. Journal of Geophysical Research E: Planets, 2015, 120, 1377-1395.	1.5	7
178	Creation of Statistically Equivalent Periodic Unit Cells for Protein-Bound Soils. , 2015, , .		4
179	Identification of magnetite in lunar regolith breccia 60016: Evidence for oxidized conditions at the lunar surface. Meteoritics and Planetary Science, 2015, 50, 1157-1172.	0.7	22
180	Dielectric breakdown weathering of the Moon's polar regolith. Journal of Geophysical Research E: Planets, 2015, 120, 210-225.	1.5	26
181	Water on the Moon. Proceedings of the International Astronomical Union, 2015, 11, 402-406.	0.0	2
182	The Moon as a Recorder of Organic Evolution in the Early Solar System: A Lunar Regolith Analog Study. Astrobiology, 2015, 15, 154-168.	1.5	18
183	Prototype of the gas chromatograph–mass spectrometer to investigate volatile species in the lunar soil for the Luna-Resurs mission. Planetary and Space Science, 2015, 111, 126-133.	0.9	25
184	Water on the Terrestrial Planets. , 2015, , 367-409.		7
185	Detection of hydroxyl-bearing exposures of possible magmatic origin on the central peak of crater Theophilus using Chandrayaan-1 Moon Mineralogy Mapper (M3) data. Icarus, 2015, 260, 167-173.	1.1	5
186	Water, fluorine, and sulfur concentrations in the lunar mantle. Earth and Planetary Science Letters, 2015, 427, 37-46.	1.8	93

#	Article	IF	CITATIONS
187	Capability and Technology Performance Goals for the Next Step in Affordable Human Exploration of Space. , $2015, \dots$		2
188	Transient thermal envelope for rovers and sample collecting devices on the Moon. Advances in Space Research, 2015, 55, 1477-1494.	1.2	1
189	Design and development of volatile analysis system for analog field test of lunar exploration mission. Advances in Space Research, 2015, 55, 2457-2471.	1.2	7
190	Lunar resources. Progress in Physical Geography, 2015, 39, 137-167.	1.4	183
191	Evolution of lunar polar ice stability. Icarus, 2015, 255, 78-87.	1.1	72
192	Temperature programmed desorption studies of water interactions with Apollo lunar samples 12001 and 72501. Icarus, 2015, 255, 24-29.	1.1	53
193	Transport of water in a transient impact-generated lunar atmosphere. Icarus, 2015, 255, 148-158.	1.1	55
194	A qualitative study of the retention and release of volatile gases in JSC-1A lunar soil simulant at room temperature under ultrahigh vacuum (UHV) conditions. Icarus, 2015, 255, 30-43.	1.1	7
195	Solar wind implantation into lunar regolith: Hydrogen retention in a surface with defects. Icarus, 2015, 255, 116-126.	1.1	64
196	Bulk hydrogen abundances in the lunar highlands: Measurements from orbital neutron data. Icarus, 2015, 255, 127-134.	1.1	21
197	High-resolution mapping of lunar polar hydrogen with a low-resource orbital mission. Acta Astronautica, 2015, 115, 452-462.	1.7	9
198	Evidence for the sequestration of hydrogen-bearing volatiles towards the Moon's southern pole-facing slopes. Icarus, 2015, 255, 88-99.	1.1	14
199	Real-time science operations to support a lunar polar volatiles rover mission. Advances in Space Research, 2015, 55, 2427-2437.	1.2	16
200	Simulation of solar wind space weathering in orthopyroxene. Planetary and Space Science, 2015, 115, 110-114.	0.9	15
201	Simulated real-time lunar volatiles prospecting with a rover-borne neutron spectrometer. Advances in Space Research, 2015, 55, 2438-2450.	1.2	9
202	Evolution of the dust and water ice plume components as observed by the LCROSS visible camera and UV–visible spectrometer. Icarus, 2015, 254, 262-275.	1.1	14
203	Improved Views of the Moon in the Early Twenty First Century: A Review. Earth, Moon and Planets, 2015, 114, 101-135.	0.3	8
204	Moonshine: Diurnally varying hydration through natural distillation on the Moon, detected by the Lunar Exploration Neutron Detector (LEND). Icarus, 2015, 255, 100-115.	1.1	16

#	ARTICLE	IF	Citations
205	Evidence for exposed water ice in the Moon's south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements. Icarus, 2015, 255, 58-69.	1.1	188
206	The age of lunar south circumpolar craters Haworth, Shoemaker, Faustini, and Shackleton: Implications for regional geology, surface processes, and volatile sequestration. Icarus, 2015, 255, 70-77.	1.1	36
207	Water delivery to the Moon by asteroidal and cometary impacts. Planetary and Space Science, 2015, 117, 444-452.	0.9	40
208	Accessing, Drilling and Operating at the Lunar South Pole: Status of European Plans and Activities. , $2015, \ldots$		5
209	Magmatic volatiles (H, C, N, F, S, Cl) in the lunar mantle, crust, and regolith: Abundances, distributions, processes, and reservoirs. American Mineralogist, 2015, 100, 1668-1707.	0.9	160
210	Lunar COTS: An Economical and Sustainable Approach to Reaching Mars. , 2015, , .		11
211	Integrated modeling and optimization of lunar In-Situ Resource Utilization systems., 2015,,.		2
212	Advanced Materials and Designs for Hydraulic, Earth, and Aerospace Structures. , 2016, , .		1
213	Development and Testing of the Lunar Resource Prospector Drill (RPD)., 2016,,.		4
214	Exploration and Utilization of Extra-Terrestrial Bodies. , 2016, , .		0
215	Automated Additive Construction (AAC) for Earth and Space Using In Situ Resources. , 2016, , .		24
216	Organic Matter Responses to Radiation under Lunar Conditions. Astrobiology, 2016, 16, 900-912.	1.5	5
217	Investigation of the properties of icy lunar polar regolith simulants. Advances in Space Research, 2016, 57, 1197-1208.	1.2	29
218	Laboratory goniometer approach for spectral polarimetric directionality. Proceedings of SPIE, 2016, , .	0.8	0
219	Lunar concrete: Prospects and challenges. Astronomy Reports, 2016, 60, 306-312.	0.2	14
220	Tethered lunar subsatellites for multipoint and low altitude measurements. Acta Astronautica, 2016, 128, 464-472.	1.7	2
221	Establishing lunar resource viability. Space Policy, 2016, 37, 52-57.	0.8	38
222	Chapter 2 Chemistry, Thermodynamics, and Material Processes at Low Temperatures., 2016, , 11-26.		2

#	Article	IF	CITATIONS
223	ARTEMIS observations of terrestrial ionospheric molecular ion outflow at the Moon. Geophysical Research Letters, 2016, 43, 6749-6758.	1.5	26
224	Lunar water migration in the interval between large impacts: Heterogeneous delivery to Permanently Shadowed Regions, fractionation, and diffusive barriers. Journal of Geophysical Research E: Planets, 2016, 121, 46-60.	1.5	24
225	Space development and space science together, an historic opportunity. Space Policy, 2016, 37, 77-91.	0.8	29
226	Ground tests of nuclear planetology instruments at the JINR experimental facility. Physics of Particles and Nuclei Letters, 2016, 13, 234-243.	0.1	3
227	Relative Trajectory Estimation During Chang'e-2 Probe's Flyby of Asteroid Toutatis Using Dynamics, Optical, and Radio Constraints. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 4680-4693.	2.7	5
228	Optimized traverse planning for future polar prospectors based on lunar topography. Icarus, 2016, 273, 337-345.	1.1	22
229	Lunar polar rover science operations: Lessons learned and mission architecture implications derived from the Mojave Volatiles Prospector (MVP) terrestrial field campaign. Advances in Space Research, 2016, 58, 545-559.	1.2	6
230	Site selection and traverse planning to support a lunar polar rover mission: A case study at Haworth Crater. Acta Astronautica, 2016, 127, 308-320.	1.7	23
231	Heterogeneous distribution of H ₂ O in the Martian interior: Implications for the abundance of H ₂ O in depleted and enriched mantle sources. Meteoritics and Planetary Science, 2016, 51, 2036-2060.	0.7	103
232	Mechanical Properties of Icy Mars Regolith Simulant: Assessment of a Potential ISRU Feedstock. , 2016, , .		O
233	Spacecraft Autonomy Challenges for Next-Generation Space Missions. Lecture Notes in Control and Information Sciences, 2016, , 1-48.	0.6	57
234	Life Support for a Low-Cost Lunar Settlement: No Showstoppers. New Space, 2016, 4, 40-49.	0.4	11
235	Lunar true polar wander inferred from polar hydrogen. Nature, 2016, 531, 480-484.	13.7	90
236	Thermal behavior of regolith at cold traps on the moon \times^3 s south pole: Revealed by Chang \times^3 E-2 microwave radiometer data. Planetary and Space Science, 2016, 122, 101-109.	0.9	10
237	Electron irradiation of carbon dioxide-carbon disulphide ice analog and its implication on the identification of carbon disulphide on Moon. Journal of Chemical Sciences, 2016, 128, 159-164.	0.7	5
238	The Lunar Reconnaissance Orbiter Mission – Six years of science and exploration at the Moon. Icarus, 2016, 273, 2-24.	1.1	38
240	Bistatic radar observations of the Moon using Mini-RF on LRO and the Arecibo Observatory. Icarus, 2017, 283, 2-19.	1.1	59
241	Contributions of solar wind and micrometeoroids to molecular hydrogen in the lunar exosphere. lcarus, 2017, 283, 31-37.	1.1	30

#	Article	IF	CITATIONS
242	The statistical mechanics of solar wind hydroxylation at the Moon, within lunar magnetic anomalies, and at Phobos. Journal of Geophysical Research E: Planets, 2017, 122, 269-289.	1.5	39
243	Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth. Biotechnology Advances, 2017, 35, 905-932.	6.0	48
244	Evidence for surface water ice in the lunar polar regions using reflectance measurements from the Lunar Orbiter Laser Altimeter and temperature measurements from the Diviner Lunar Radiometer Experiment. Icarus, 2017, 292, 74-85.	1.1	119
245	Searches for extraterrestrial life in the solar system: Status and perspectives. Astronomy Reports, 2017, 61, 324-331.	0.2	1
246	Stability of ice on the Moon with rough topography. Icarus, 2017, 296, 99-109.	1.1	24
247	The new Moon. Physics Today, 2017, 70, 38-44.	0.3	4
248	Temperature regime and water/hydroxyl behavior in the crater Boguslawsky on the Moon. Icarus, 2017, 285, 118-136.	1.1	27
249	A tale of two poles: Toward understanding the presence, distribution, and origin of volatiles at the polar regions of the Moon and Mercury. Journal of Geophysical Research E: Planets, 2017, 122, 21-52.	1.5	69
250	Scientific Objectives of Small Carry-on Impactor (SCI) and Deployable Camera 3 Digital (DCAM3-D): Observation of an Ejecta Curtain and a Crater Formed on the Surface of Ryugu by an Artificial High-Velocity Impact. Space Science Reviews, 2017, 208, 187-212.	3.7	44
251	How thick are Mercury's polar water ice deposits?. Icarus, 2017, 284, 407-415.	1.1	21
252	Surface water-ice deposits in the northern shadowed regions of Ceres. Nature Astronomy, 2017, 1, .	4.2	70
253	An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter. Earth, Moon and Planets, 2017, 120, 113-146.	0.3	8
254	Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond. Space Science Reviews, 2017, 209, 83-181.	3.7	54
255	lces on Mercury: Chemistry of volatiles in permanently cold areas of Mercury's north polar region. lcarus, 2017, 281, 19-31.	1.1	26
256	The rate of dielectric breakdown weathering of lunar regolith in permanently shadowed regions. lcarus, 2017, 283, 352-358.	1.1	22
257	Hydrogen distribution in the lunar polar regions. Icarus, 2017, 283, 20-30.	1.1	7 5
258	Robust Exploration and Commercial Missions to the Moon Using LANTR Propulsion and In-Situ Propellants Derived from Lunar Polar Ice (LPI) Deposits. , 2017, , .		3
259	Fundamental Problems of Lunar Research, Technical Solutions, and Priority Lunar Regions for Research. Solar System Research, 2017, 51, 441-456.	0.3	5

#	Article	IF	CITATIONS
260	The Main Belt Comets and ice in the Solar System. Astronomy and Astrophysics Review, 2017, 25, 1.	9.1	60
261	Sources of Extraterrestrial Rare Earth Elements: To the Moon and Beyond. Resources, 2017, 6, 40.	1.6	32
262	Enabling Deep Space Exploration with an In-Space Propellant Depot Supplied from Lunar Ice. , 2017, , .		3
263	Experimental impact cratering: A summary of the major results of the <scp>MEMIN</scp> research unit. Meteoritics and Planetary Science, 2018, 53, 1543-1568.	0.7	25
264	Discovery of moganite in a lunar meteorite as a trace of H ₂ O ice in the Moon's regolith. Science Advances, 2018, 4, eaar4378.	4.7	21
265	Using complementary remote sensing techniques to assess the presence of volatiles at the lunar north pole. Planetary and Space Science, 2018, 162, 133-147.	0.9	15
266	Simulations of lunar exospheric water events from meteoroid impacts. Planetary and Space Science, 2018, 162, 148-156.	0.9	9
267	Potential impact-induced water-solid reactions on the Moon. Planetary and Space Science, 2018, 162, 157-169.	0.9	14
268	SMART-1 technology, scientific results and heritage for future space missions. Planetary and Space Science, 2018, 151, 141-148.	0.9	13
269	Using proton radiation from the moon to search for diurnal variation of regolith hydrogenation. Planetary and Space Science, 2018, 162, 113-132.	0.9	9
270	SELMA mission: How do airless bodies interact with space environment? The Moon as an accessible laboratory. Planetary and Space Science, 2018, 156, 23-40.	0.9	5
271	Strategic Autonomy for Reducing Risk of Sun-Synchronous Lunar Polar Exploration. Springer Proceedings in Advanced Robotics, 2018, , 465-479.	0.9	0
272	Crater age and hydrogen content in lunar regolith from LEND neutron data. Planetary and Space Science, 2018, 162, 105-112.	0.9	2
273	The New Moon: Major Advances in Lunar Science Enabled by Compositional Remote Sensing from Recent Missions. Geosciences (Switzerland), 2018, 8, 498.	1.0	11
274	Multiscale Modeling and Testing of Protein-Bound Regolith and Soils. , 2018, , .		3
275	Soil Mechanics in Vacuum Chamber. , 2018, , .		1
276	Imaging Plasma Density Structures in the Soft X-Rays Generated by Solar Wind Charge Exchange with Neutrals. Space Science Reviews, 2018, 214, 1.	3.7	47
277	Mercury's Polar Deposits. , 2018, , 346-370.		9

#	Article	IF	CITATIONS
278	Volatiles Loss from Water Bearing Regolith Simulant at Lunar Environments., 2018,,.		5
279	Modeling the Thermal Extraction of Water Ice from Regolith. , 2018, , .		1
280	Boguslawsky Crater on the Moon: Landing Site Selection for the Luna–Glob Mission Descent Module. Solar System Research, 2018, 52, 570-577.	0.3	3
281	Examining the Potential Contribution of the Hokusai Impact to Water Ice on Mercury. Journal of Geophysical Research E: Planets, 2018, 123, 2628-2646.	1.5	23
282	Solar Windâ€Induced Water Cycle on the Moon. Geophysical Research Letters, 2018, 45, 10,959.	1.5	45
283	Unravelling the Mystery of Lunar Anomalous Craters Using Radar and Infrared Observations. Journal of Geophysical Research E: Planets, 2018, 123, 2119-2137.	1.5	37
285	Radial velocities., 0,, 17-80.		0
286	Astrometry. , 0, , 81-102.		0
287	Timing., 0,, 103-118.		0
288	Microlensing. , 0, , 119-152.		0
290	Host stars. , 0, , 373-428.		0
291	Brown dwarfs and free-floating planets. , 0, , 429-448.		0
292	Formation and evolution., 0,, 449-558.		0
293	Interiors and atmospheres. , 0, , 559-648.		0
294	The solar system. , 0, , 649-700.		0
302	A novel authentication biometric for pacemakers. , 2018, , .		2
303	ISSM 2018 TOC., 2018,,.		0
304	D/H fractionation during sublimation of water ice at low temperatures into a vacuum. Planetary and Space Science, 2018, 158, 25-33.	0.9	7

#	Article	IF	CITATIONS
305	Assessment of the Shielding Effect of the Earth's Magnetic Field on Lunar OH/H ₂ O. Journal of Geophysical Research E: Planets, 2018, 123, 2110-2118.	1.5	2
306	Volatile monitoring of soil cuttings during drilling in cryogenic, water-doped lunar simulant. Advances in Space Research, 2018, 62, 1025-1033.	1.2	5
307	The Temperature Regime of the Proposed Landing Sites for the Luna-Glob Mission in the South Polar Region of the Moon. Earth, Moon and Planets, 2018, 122, 1-13.	0.3	1
308	Lunar and Martian Silica. Minerals (Basel, Switzerland), 2018, 8, 267.	0.8	19
309	Transits. , 0, , 153-328.		0
310	Dust Phenomena Relating to Airless Bodies. Space Science Reviews, 2018, 214, 1.	3.7	21
311	On the Possibility of the Existence of Volatile Compounds in the Region of the Scott Crater on the Moon. Cosmic Research, 2018, 56, 169-179.	0.2	1
312	Volatile Species in Comet 67P/Churyumov-Gerasimenko: Investigating the Link from the ISM to the Terrestrial Planets. ACS Earth and Space Chemistry, 2019, 3, 1792-1811.	1.2	39
313	Seasonal Polar Temperatures on the Moon. Journal of Geophysical Research E: Planets, 2019, 124, 2505-2521.	1.5	80
314	Thick ice deposits in shallow simple craters on the Moon and Mercury. Nature Geoscience, 2019, 12, 597-601.	5.4	78
315	The Young Age of the LAMPâ€observed Frost in Lunar Polar Cold Traps. Geophysical Research Letters, 2019, 46, 8680-8688.	1.5	41
316	Unsteady Heat Transfer for Pressure Vessels in Atmospheric Flight at Orbital Velocities. Journal of Thermophysics and Heat Transfer, 2019, 33, 1037-1054.	0.9	0
317	Potential Lunar Base on Mons Malapert: Topographic, Geologic and Trafficability Considerations. Solar System Research, 2019, 53, 383-398.	0.3	19
318	Pattern of Impact-induced Ejecta from Granular Targets with Large Inclusions. Astrophysical Journal Letters, 2019, 880, L30.	3.0	9
319	Advanced Curation of Astromaterials for Planetary Science. Space Science Reviews, 2019, 215, 1.	3.7	50
320	Future science goals of in situ Lunar explorations. , 2019, , .		0
321	Making it Through the Lunar Night Using Chemicals: Internal Combustion Engine Solar Independent Propulsion. , $2019, , .$		0
322	Commercialization and Human Settlement of the Moon and Cislunar Space - A Look Ahead at the Possibilities Over the Next 50 Years. , 2019 , , .		1

#	Article	IF	CITATIONS
323	Evidence for ultra-cold traps and surface water ice in the lunar south polar crater Amundsen. Icarus, 2019, 332, 1-13.	1.1	19
324	A Model for the Thermophysical Properties of Lunar Regolith at Low Temperatures. Journal of Geophysical Research E: Planets, 2019, 124, 1989-2011.	1.5	39
325	Age constraints of Mercury's polar deposits suggest recent delivery of ice. Earth and Planetary Science Letters, 2019, 520, 26-33.	1.8	19
326	Untangling the formation and liberation of water in the lunar regolith. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11165-11170.	3.3	40
327	Study of Chang'E-2 Microwave Radiometer Data in the Lunar Polar Region. Advances in Astronomy, 2019, 2019, 1-10.	0.5	10
328	Lunar soil hydration constrained by exospheric water liberated by meteoroid impacts. Nature Geoscience, 2019, 12, 333-338.	5.4	81
329	Analyses of Lunar Orbiter Laser Altimeter 1,064â€nm Albedo in Permanently Shadowed Regions of Polar Crater Flat Floors: Implications for Surface Water Ice Occurrence and Future In Situ Exploration. Earth and Space Science, 2019, 6, 467-488.	1.1	24
330	The Lunar Paleoâ€Magnetosphere: Implications for the Accumulation of Polar Volatile Deposits. Geophysical Research Letters, 2019, 46, 5778-5787.	1.5	19
331	Design and Characterization of the Multi-Band SWIR Receiver for the Lunar Flashlight CubeSat Mission. Remote Sensing, 2019, 11, 440.	1.8	5
332	Impact Ejecta and Gardening in the Lunar Polar Regions. Journal of Geophysical Research E: Planets, 2019, 124, 143-154.	1.5	19
333	Volatile distributions in and on the Moon revealed by Cu and Fe isotopes in the †Rusty Rock†M66095. Geochimica Et Cosmochimica Acta, 2019, 266, 131-143.	1.6	15
334	Commercial lunar propellant architecture: A collaborative study of lunar propellant production. Reach, 2019, 13, 100026.	0.4	65
335	A Survey of Lunar Cranes and Some Inspiration from the Perspective of Earth Crane Technology. , 2019, , .		1
336	ELECTRONICA 2019 Author Index. , 2019, , .		0
337	Computer-Aided Design System of Navigation Equipment Test Table. , 2019, , .		1
338	Using Multiple Chains in Cross-Correlation Receivers to Improve Sensitivity. , 2019, , .		2
339	The Semi Reverberating Chamber (SRC) Used for Emulating Typical Real-Life Environments. , 2019, , .		1
340	The Mode and Definition of the Content Variation Angle by Yang Dongfang. , 2019, , .		0

#	Article	IF	CITATIONS
341	Target-based Visual Navigation with Channel-aware Network. , 2019, , .		0
342	A Development of Measurement System for Radioulnar Instability by Using 3D Electromagnetic Sensor and Pressure Sensor. , 2019, , .		O
343	Parkinson's Disease Detection using Gray Level Spatial Dependance Matrix (GLSDM)., 2019,,.		0
344	MIMO Triangular Patch Antenna for Multiple Applications. , 2019, , .		2
345	An Efficient Approach for Image Resolution Enhancement Using Multi Step Magnification Method. , 2019, , .		0
346	The Impact of Architecture on the Deep Neural Networks Training. , 2019, , .		0
347	Difference Set Coding in Stepped Frequency Radar. , 2019, , .		0
348	Numerical Validation of an Algorithm for Combined Soiling and Degradation Analysis of Photovoltaic Systems., 2019,,.		8
349	Adaptive multilayer level set method for segmenting images with intensity inhomogeneity. IET Image Processing, 2019, 13, 1714-1724.	1.4	5
350	Pitfalls Analyzer: Quality Control for Model-Driven Data Science Pipelines. , 2019, , .		4
351	Implementation of Aggregate Functioms for Interval-Valued Java Data Type in the Oracle DBMS. , 2019, , .		0
352	Four-phase transverse flux permanent magnet motor control system with AC current control based on PR regulator. , 2019, , .		1
354	Lunar Crater Detection based on Grid Partition using Deep Learning., 2019,,.		5
355	Importance of Power Flow and Load Analysis in Pre-Installation Power Systems., 2019,,.		2
358	Synthesis of Linear Array Antenna using Hybrid IWO/WDO Algorithm., 2019,,.		2
359	Signal reconstruction by means of Embedding, Clustering and AutoEncoder Ensembles. , 2019, , .		5
360	System Construction for Both Lunar Obstacle Detection and Annotation Support Based on Neurons' Decision Validity., 2019,,.		0
361	Internet of Resources - Concept for an Agent-based Distributed Resource Management in the Fourth Industrial Revolution. , 2019, , .		0

#	Article	IF	CITATIONS
362	Investigating the Potential to Estimate Insar Penetration Depth Over Ice Sheets from Pol-Insar Data. , 2019, , .		O
363	The Speed estimation based on MRAS Induction motor. , 2019, , .		4
364	A New Saliency-Based Sensorless Method For Interior Permanent Magnet Synchronous Motor Drive. , 2019, , .		0
365	A Comparative Analysis of Longitudinal and Lateral Directional Dynamics of Aircraft from Different Classes. , 2019, , .		1
366	Ice Mining in Lunar Permanently Shadowed Regions. New Space, 2019, 7, 235-244.	0.4	44
367	Constraining the Evolutionary History of the Moon and the Inner Solar System: A Case for New Returned Lunar Samples. Space Science Reviews, 2019, 215, 1.	3.7	41
368	Surface Water at Lunar Magnetic Anomalies. Geophysical Research Letters, 2019, 46, 14318-14327.	1.5	17
369	Traverses for the ISECG-GER design reference mission for humans on the lunar surface. Advances in Space Research, 2019, 63, 692-727.	1.2	14
370	How Many Hydrated NEOs Are There?. Journal of Geophysical Research E: Planets, 2019, 124, 128-142.	1.5	19
371	Lunar Science for Landed Missions Workshop Findings Report. Earth and Space Science, 2019, 6, 2-40.	1.1	50
372	Volatiles: Origin and Transport. , 2019, , 199-227.		0
373	Lunar surface processes inferred from cosmogenic radionuclides in Apollo 16 double drive core 68002/68001. Geochimica Et Cosmochimica Acta, 2019, 244, 336-351.	1.6	3
374	Analyzing the ages of south polar craters on the Moon: Implications for the sources and evolution of surface water ice Icarus, 2020, 336, 113455.	1.1	53
375	Regenerative water purification for space applications: Needs, challenges, and technologies towards 'closing the loop'. Life Sciences in Space Research, 2020, 24, 64-82.	1.2	36
376	Review of techniques for In-Situ oxygen extraction on the moon. Planetary and Space Science, 2020, 181, 104753.	0.9	54
377	Benchmarking impact hydrocodes in the strength regime: Implications for modeling deflection by a kinetic impactor. Icarus, 2020, 338, 113446.	1.1	32
378	Lunar polar water resource exploration $\hat{a}\in$ Examination of the lunar cold trap reservoir system model and introduction of play-based exploration (PBE) techniques. Planetary and Space Science, 2020, 180, 104742.	0.9	16
379	Hydrogen reduction of ilmenite: Towards an in situ resource utilization demonstration on the surface of the Moon. Planetary and Space Science, 2020, 180, 104751.	0.9	17

#	Article	IF	Citations
380	Searching for potential ice-rich mining sites on the Moon with the Lunar Volatiles Scout. Planetary and Space Science, 2020, 181, 104826.	0.9	14
381	In-situ approach for thermal energy storage and thermoelectricity generation on the Moon: Modelling and simulation. Planetary and Space Science, 2020, 181, 104789.	0.9	22
382	Regions of interest (ROI) for future exploration missions to the lunar South Pole. Planetary and Space Science, 2020, 180, 104750.	0.9	44
383	Advection diffusion model for gas transport within a packed bed of JSC-1A regolith simulant. Acta Astronautica, 2020, 169, 32-39.	1.7	8
384	When the Moon had a magnetosphere. Science Advances, 2020, 6, .	4.7	11
385	The Lunar Polar Hydrogen Mapper CubeSat Mission. IEEE Aerospace and Electronic Systems Magazine, 2020, 35, 54-69.	2.3	15
386	Accessibility Data Set for Large Permanent Cold Traps at the Lunar Poles. Earth and Space Science, 2020, 7, e2020EA001291.	1.1	4
387	Case Studies for Lunar ISRU Systems Utilizing Polar Water. , 2020, , .		8
388	H ₂ O and Other Volatiles in the Moon, 50 Years and on. ACS Earth and Space Chemistry, 2020, 4, 1480-1499.	1.2	5
389	DART mission determination of momentum transfer: Model of ejecta plume observations. Icarus, 2020, 352, 113989.	1.1	34
390	Characterizing the hydroxyl observation of the LCROSS UV-visible spectrometer: Modeling of the impact plume. Icarus, 2020, 343, 113626.	1.1	3
391	Micrometeoroids: the Flux on the Moon and a Source of Volatiles. Solar System Research, 2020, 54, 263-274.	0.3	3
392	Thermal Extraction of Volatiles from Lunar and Asteroid Regolith in Axisymmetric Crank–Nicolson Modeling. Journal of Aerospace Engineering, 2020, 33, .	0.8	10
393	Stratigraphy of Ice and Ejecta Deposits at the Lunar Poles. Geophysical Research Letters, 2020, 47, e2020GL088920.	1.5	32
394	Lunar Dust Fountain Observed Near Twilight Craters. Geophysical Research Letters, 2020, 47, e2020GL089593.	1.5	16
395	Laboratory investigations of Lunar ice imaging in permanently shadowed regions using reflected starlight. Acta Astronautica, 2020, 177, 604-610.	1.7	2
396	MARAUDERS: A mission concept to probe volatile distribution and properties at the lunar poles with miniature impactors. Planetary and Space Science, 2020, 189, 104969.	0.9	5
397	Meteoroid Bombardment of Lunar Poles. Astrophysical Journal, 2020, 894, 114.	1.6	8

#	Article	IF	CITATIONS
398	Deep-Hole Soil-Sampling Tools for Future Russian Lunar Polar Missions. Solar System Research, 2020, 54, 203-222.	0.3	5
399	Geologic context and potential EVA targets at the lunar south pole. Advances in Space Research, 2020, 66, 1247-1264.	1.2	22
400	High Peak Power Acousto-Optically Q-Switched Ho:Y ₂ O ₃ Ceramic Laser at 2117 nm. IEEE Photonics Technology Letters, 2020, 32, 492-495.	1.3	7
401	Adaptive Feedback Cancellation in Hearing Aids Based on Orthonormal Basis Functions With Prediction-Error Method Based Prewhitening. IEEE/ACM Transactions on Audio Speech and Language Processing, 2020, 28, 1260-1269.	4.0	3
402	Application of Natural Language Processing (NLP) and Text-Mining of Big-Data to Engineering-Procurement-Construction (EPC) Bid and Contract Documents. , 2020, , .		8
403	Enhancement-Mode AlGaN/GaN MIS-HEMTs With High V _{TH} and High I _{Dmax} Using Recessed-Structure With Regrown AlGaN Barrier. IEEE Electron Device Letters, 2020, 41, 693-696.	2.2	39
404	Adaptive Hierarchical Distributed Control with Cooperative Task Allocation for Robot Swarms. , 2020, , .		1
405	Development of a chamber to simulate lunar surface environment. Planetary and Space Science, 2020, 191, 105038.	0.9	2
406	Robotic Lunar Surface Operations 2. Acta Astronautica, 2020, 176, 424-437.	1.7	18
407	The beneficiation of lunar regolith for space resource utilisation: A review. Planetary and Space Science, 2020, 186, 104879.	0.9	50
408	The role of initial speed in projectile impacts into light granular media. Scientific Reports, 2020, 10, 3207.	1.6	10
409	Integrated in-situ resource utilization system design and logistics for Mars exploration. Acta Astronautica, 2020, 170, 80-92.	1.7	35
410	Estimation of Lung Properties From the Forced Expiration Data. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 3317-3324.	2.4	2
411	Overcurrent protection scheme for collector lines in wind farm based on fault component current correlation analysis and multiâ€agent system. IET Renewable Power Generation, 2020, 14, 313-320.	1.7	10
412	Using Boulder Tracks as a Tool to Understand the Bearing Capacity of Permanently Shadowed Regions of the Moon. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006157.	1.5	24
413	Geosynchronous transfer orbits as a market for impulse delivered by lunar sourced propellant. Planetary and Space Science, 2020, 182, 104843.	0.9	8
414	Progress in the Design of a Hybrid HTS-Nb ₃ Sn-NbTi Central Solenoid for the EU DEMO. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.1	27
415	Lunar Flashlight: Illuminating the Lunar South Pole. IEEE Aerospace and Electronic Systems Magazine, 2020, 35, 46-52.	2.3	16

#	Article	IF	Citations
416	Penetration and relaxation behavior of JSC-1A lunar regolith simulant under cryogenic conditions. Icarus, 2020, 346, 113812.	1.1	10
417	High-Frequency Drilling Data Analysis to Characterize Water-Ice on the Moon. , 2020, , .		3
418	A geologic model for lunar ice deposits at mining scales. Icarus, 2020, 347, 113778.	1.1	52
419	Numerical modeling of the formation of Shackleton crater at the lunar south pole. Icarus, 2021, 354, 113992.	1.1	9
420	Water within a permanently shadowed lunar crater: Further LCROSS modeling and analysis. Icarus, 2021, 354, 114089.	1.1	17
421	Gas purification for oxygen extraction from lunar regolith. Acta Astronautica, 2021, 179, 371-381.	1.7	11
422	Concentrated lunar resources: imminent implications for governance and justice. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190563.	1.6	13
423	Human habitats: prospects for infrastructure supporting astronomy from the Moon. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190568.	1.6	11
424	Geomorphic Evidence for the Presence of Ice Deposits in the Permanently Shadowed Regions of Scottâ€E Crater on the Moon. Geophysical Research Letters, 2021, 48, e2020GL090780.	1.5	14
425	Illumination conditions within permanently shadowed regions at the lunar poles: Implications for in-situ passive remote sensing. Acta Astronautica, 2021, 178, 432-451.	1.7	8
426	Development of a micro-ice production apparatus and NIR spectral measurements of frosted minerals for future lunar ice exploration missions. Icarus, 2021, 357, 114273.	1.1	8
427	Micro cold traps on the Moon. Nature Astronomy, 2021, 5, 169-175.	4.2	63
429	In-Situ Planetary Spectroscopy. , 2021, , 194-206.		0
430	Earth Wind as a Possible Exogenous Source of Lunar Surface Hydration. Astrophysical Journal Letters, 2021, 907, L32.	3.0	18
431	Results of Solar System Explorations and Their Implications to the Utilization of Space Resources. Resources Processing, 2021, 68, 3-9.	0.4	0
432	Ground Ice. , 2022, , 428-457.		3
433	Sulfur Ice Astrochemistry: A Review of Laboratory Studies. Space Science Reviews, 2021, 217, 1.	3.7	22
434	Controlling soil disturbance of a lunar regolith simulant bed during depressurization in a vacuum chamber. Scientific Reports, 2021, 11, 1878.	1.6	2

#	Article	IF	CITATIONS
435	Small Penetrator Instrument Concept for the Advancement of Lunar Surface Science. Planetary Science Journal, 2021, 2, 38.	1.5	5
436	Molecular Dynamics Simulations of Dielectric Breakdown of Lunar Regolith: Implications for Water Ice Formation on Lunar Surface. Geophysical Research Letters, 2021, 48, e2020GL091681.	1.5	7
437	Review of the research on detection and inversion on lunar polar water ice., 2021,,.		0
438	Characterization of H2O transport through Johnson Space Center number 1A lunar regolith simulant at low pressure for <i>ii-situii> resource utilization. Physics of Fluids, 2021, 33, .</i>	1.6	4
439	Exploring Extreme Lunar Environments through In-Flight Swarm Deployments. , 2021, , .		2
440	Evaluating Data-Driven Techniques to Optimize Drilling on the Moon. , 2021, , .		0
441	Bootstrapping a Scalable Power Infrastructure for Lunar Mining. , 2021, , .		0
442	The LUVMI Volatile Sampler and Volatile Analysis Package for In Situ ISRU Applications on the Moon and Other Airless Bodies. , 2021, , .		0
443	A Framework for Lunar Resource Extraction Site Investigations: The Current State and Needs of the Industry., 2021,,.		0
444	Ice Prospecting on the Moon at Mining Scales. , 2021, , .		0
445	Experimental Investigations of Water Extraction Process within Permanently Shadowed Regions of the Moon. , 2021, , .		0
446	LUVMI-X: A Versatile Platform for Resource Prospecting on the Moon. , 2021, , .		3
447	Practical and Economic Rocket Mining of Lunar Ice. , 2021, , .		0
448	Space weathering of iron sulfides in the lunar surface environment. Geochimica Et Cosmochimica Acta, 2021, 299, 69-84.	1.6	18
449	Lunar thermal mining: Phase change interface movement, production decline and implications for systems engineering. Planetary and Space Science, 2021, 199, 105199.	0.9	8
450	Framework for Coordinated Efforts in the Exploration of Volatiles in the South Polar Region of the Moon. Planetary Science Journal, 2021, 2, 103.	1.5	22
451	Hydroxylation of Apollo 17 Soil Sample 78421 by Solar Wind Protons. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006845.	1.5	10
452	The Business Case for Lunar Ice Mining. New Space, 2021, 9, 77-94.	0.4	14

#	Article	IF	CITATIONS
453	Impacts on the Moon: Analysis methods and size distribution of impactors. Planetary and Space Science, 2021, 200, 105201.	0.9	10
454	Experimental investigations of thermal properties of icy lunar regolith and their influence on phase change interface movement. Planetary and Space Science, 2021, 200, 105197.	0.9	16
455	Key Technologies, Systems, and Infrastructure Enabling the Commercialization and Human Settlement of Low Earth Orbit, the Moon, and Cislunar Space. New Space, 2021, 9, 104-122.	0.4	1
456	Supplementing Closed Ecological Life Support Systems with In-Situ Resources on the Moon. Life, 2021, 11, 770.	1.1	13
457	Vertical Transport of Lunar Regolith and Ice Particles Using Electrodynamic Traveling Wave. Journal of Aerospace Engineering, 2021, 34, .	0.8	4
458	Mineral Processing and Metal Extraction on the Lunar Surface - Challenges and Opportunities. Mineral Processing and Extractive Metallurgy Review, 2022, 43, 865-891.	2.6	12
459	Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS): following the water trail from the interstellar medium to oceans. , $2021, \ldots$		8
460	Temperatures Near the Lunar Poles and Their Correlation With Hydrogen Predicted by LEND. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006598.	1.5	11
461	The search for lunar mantle rocks exposed on the surface of the Moon. Nature Communications, 2021, 12, 4659.	5.8	26
462	Implications of surface roughness in models of water desorption on the Moon. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3421-3429.	1.6	16
463	Are There Biomimetic Lessons from Genetic Regulatory Networks for Developing a Lunar Industrial Ecology?. Biomimetics, 2021, 6, 50.	1.5	3
464	Basic Lunar Topography and Geology for Space Scientists. Uju Gisulgwa Eungyong, 2021, 1, 217-240.	0.1	2
465	Molecular Dynamics Simulations of Water Formation and Retention by Micrometeoroid Impact on Lunar Surface. Geophysical Research Letters, 2021, 48, e2021GL093509.	1.5	2
466	Waste Management for Lunar Resources Activities: Toward a Circular Lunar Economy. New Space, 0, , .	0.4	0
468	Bridging the gap between microbial limits and extremes in space: space microbial biotechnology in the next 15 years. Microbial Biotechnology, 2022, 15, 29-41.	2.0	7
469	Water Group Exospheres and Surface Interactions on the Moon, Mercury, and Ceres. Space Science Reviews, 2021, 217, 1.	3.7	21
470	A drill-integrated miniaturized device for detecting ice in lunar regolith: the PROSPECT permittivity sensor. Measurement Science and Technology, 2021, 32, 125117.	1.4	1
471	Secondary Impact Burial and Excavation Gardening on the Moon and the Depth to Ice in Permanent Shadow. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006933.	1.5	14

#	Article	IF	CITATIONS
472	Prominent volcanic source of volatiles in the south polar region of the Moon. Advances in Space Research, 2021, 68, 4691-4701.	1.2	8
473	Equipping an extraterrestrial laboratory: Overview of open research questions and recommended instrumentation for the Moon. Advances in Space Research, 2021, 68, 2565-2599.	1.2	8
474	Peering into lunar permanently shadowed regions with deep learning. Nature Communications, 2021, 12, 5607.	5.8	13
475	A novel auger-based system for extraterrestrial in-situ water resource extraction. lcarus, 2021, 367, 114552.	1.1	6
476	Thermal evolution of water and hydrogen from Apollo lunar regolith grains. Earth and Planetary Science Letters, 2021, 571, 117107.	1.8	4
477	Vertical Transportation of Lunar Regolith and Ice Particles Using Vibrating Tube. Journal of Aerospace Engineering, 2021, 34, 04021097.	0.8	1
478	Water on the Moon: What Is Derived from the Observations?., 2012,, 57-85.		10
479	Oxygen from Lunar Regolith. , 2012, , 165-187.		4
480	Moon, The., 2015, , 1637-1643.		1
481	Thermal extraction of water ice from the lunar surface - A 3D numerical model. Planetary and Space Science, 2020, 193, 105082.	0.9	18
483	Impact Gardening as a Constraint on the Age, Source, and Evolution of Ice on Mercury and the Moon. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006172.	1.5	43
484	Most Used Codons per Amino Acid and per Genome in the Code of Man Compared to Other Organisms According to the Rotating Circular Genetic Code. NeuroQuantology, 2011, 9, .	0.1	12
485	Material Characterization While Drilling on the Moon: Comparing the Atmospheric and Cryogenic Drilling Data., 2020,,.		2
486	Impact Experiment on Asteroid (162173) Ryugu: Structure beneath the Impact Point Revealed by In Situ Observations of the Ejecta Curtain. Astrophysical Journal Letters, 2020, 899, L22.	3.0	19
487	Mapping of Ice Storage Processes on the Moon with Time-dependent Temperatures. Planetary Science Journal, 2020, 1, 54.	1.5	23
488	Lunar Crater Observation and Sensing Satellite (LCROSS). , 2021, , 1-16.		0
489	Carbon Dioxide Cold Traps on the Moon. Geophysical Research Letters, 2021, 48, .	1.5	20
490	Analyzing Surface Ruggedness Inside and Outside of Ice Stability Zones at the Lunar Poles. Planetary Science Journal, 2021, 2, 213.	1.5	12

#	Article	IF	CITATIONS
491	Astronomers comb through Moon smash haul. Nature, 0, , .	13.7	0
492	Surface Composition of Vesta: Issues and Integrated Approach. , 2011, , 117-139.		0
493	Moon, Mars and Beyond. , 2012, , 441-460.		0
494	Contaminant Robust Water Extraction from Lunar and Martian Soil for In Situ Resource Utilization - System Architecture Development., 2012, , .		1
495	LANDSAFE: LANDING SITE RISK ANALYSIS SOFTWARE FRAMEWORK. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XXXIX-B4, 505-510.	0.2	2
496	Turbulent Chaos and Self-Organization in Cosmic Natural Media. Astrophysics and Space Science Library, 2013, , 1-144.	1.0	O
497	Polar Exploration and Reconnaissance for Lunar Studies. Frontiers in Aerospace Engineering, 2013, 2, 247.	0.8	0
498	Surface and Near-Surface Thermal Environment of the Moon. , 2014, , 1-11.		0
500	An Introduction to Water. , 2014, , 1-58.		0
501	- Lunar Geodesy and Sensing: Methods and Results from Recent Lunar Exploration Missions. , 2014, , 16-33.		0
503	Lunar Atmosphere., 2015,, 1-6.		1
504	Internal Combustion Engine Solar Independent Propulsion for the Exploration of Permanently Shaded Lunar Craters. , 2015, , .		0
505	Scientific Objectives of Small Carry-on Impactor (SCI) and Deployable Camera 3 Digital (DCAM3-D): Observation of an Ejecta Curtain and a Crater Formed on the Surface of Ryugu by an Artificial High-Velocity Impact., 2016,, 187-212.		0
506	Essays on Lunar Toponymy. Events and People Reflected in the Names on Lunar Maps. Astrophysics and Space Science Library, 2016, , 77-113.	1.0	0
507	A SEMI-RIGOROUS SENSOR MODEL FOR PRECISION GEOMETRIC PROCESSING OF MINI-RF BISTATIC RADAR IMAGES OF THE MOON. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLI-B4, 425-429.	0.2	1
508	The Application Research of Ground Penetrating Radar Technology to Lunar Exploration. Advances in Geosciences, 2017, 07, 158-166.	0.0	0
510	Lunar Atmosphere, Transport and Storage of Volatiles. , 2017, , 1-4.		2
512	Design and characterization of a low cost CubeSat multi-band optical receiver to map water ice on the lunar surface for the Lunar Flashlight mission. , 2017, , .		0

#	Article	IF	CITATIONS
513	Development of the LunaH-Map miniature neutron spectrometer., 2017,,.		1
514	Detection of Water., 2018,, 1-9.		0
515	Physical Properties of Icy Materials. , 2018, , 15-29.		0
516	Volatiles on the Lunar Surface and Subsurface. , 2018, , 1-6.		1
517	Optical and mechanical designs of the multi-band SWIR receiver for the Lunar Flashlight CubeSat mission. , 2018, , .		0
518	The Lunar Flashlight CubeSat instrument: A compact SWIR laser reflectometer to quantify and map water ice on the surface of the Moon. , 2018 , , .		1
519	Nature of and lessons learned from Lunar Ice Cube and the first deep space cubesat 'cluster'. , 2018, , .		2
520	In-Situ Resource Utilization. Advances in Public Policy and Administration, 2019, , 193-210.	0.1	0
521	Lunar Ice Cube: first generation deep space CubeSat with compact broadband IR spectrometer development story. , 2019, , .		2
522	Correction: Commercialization and Human Settlement of the Moon and Cislunar Space - A Look Ahead at the Possibilities Over the Next 50 Years. , 2019, , .		0
523	Moon, Mars and Beyond. , 2020, , 709-733.		2
524	Lunar and off Earth resource drivers, estimations and the development conundrum. Advances in Space Research, 2020, 66, 359-377.	1.2	2
525	Indirect solar receiver development for the thermal extraction of $H2O(\nu)$ from lunar regolith: Heat and mass transfer modeling. Acta Astronautica, 2022, 190, 365-376.	1.7	4
526	Spatio-Temporal Path Planning for Lunar Polar Exploration with Robustness against Schedule Delay. Transactions of the Japan Society for Aeronautical and Space Sciences, 2021, 64, 304-311.	0.4	2
527	Lunar Rocks and the Moon's Interior. Springer Textbooks in Earth Sciences, Geography and Environment, 2020, , 573-582.	0.1	0
528	A Review of Different Aspects of Off-Earth Drilling. Energies, 2021, 14, 7351.	1.6	14
529	Olivine Dissolution in Simulated Lung and Gastric Fluid as an Analog to the Behavior of Lunar Particulate Matter Inside the Human Respiratory and Gastrointestinal Systems. GeoHealth, 2021, 5, e2021GH000491.	1.9	4
530	Proving lunar resources are actually reserves. , 2020, , .		0

#	ARTICLE	IF	Citations
531	The lunar surface as a recorder of astrophysical processes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190562.	1.6	11
532	GrowMars Process for Expanding Oxygen, Food, Radiation, Manufacturing Material Production Rates. , 2020, , .		1
534	In situ resource utilisation: The potential for space biomining. Minerals Engineering, 2022, 176, 107288.	1.8	13
536	Assessing the Effects of Induced Field Rotation on Water Ice Detection of Tianwen-1 Full-Polarimetric Mars Rover Penetrating Radar. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	2.7	16
537	Effusive silicate volcanism: Observations and processes. , 2022, , 5-75.		1
538	Luna-25: The First Polar Mission to the Moon. Solar System Research, 2021, 55, 485-495.	0.3	8
539	A Geoscientific Review on CO and CO2 Ices in the Outer Solar System. Geosciences (Switzerland), 2022, 12, 51.	1.0	7
540	Granular dynamics in auger sampling. Journal of Fluid Mechanics, 2022, 935, .	1.4	3
541	Challenges of operating a drilling instrument on a small rover at the lunar poles - LVS-PIE phase A study results. Planetary and Space Science, 2022, 212, 105426.	0.9	3
542	Exogenic origin for the volatiles sampled by the Lunar CRater Observation and Sensing Satellite impact. Nature Communications, 2022, 13, 642.	5.8	13
543	Sizeâ€"frequency measurements of meter-sized craters and boulders in the lunar polar regions for landing-site selections of future lunar polar missions. Icarus, 2022, 378, 114938.	1.1	4
546	Spatial Distribution and Thermal Diversity of Surface Volatile Cold Traps at the Lunar Poles. Planetary Science Journal, 2022, 3, 39.	1.5	16
547	Analysis and prediction of uniaxial compressive strength of icy lunar regolith under extreme temperature. Advances in Space Research, 2022, 69, 4391-4407.	1.2	9
548	D-depleted water isotopic measurement with a miniaturized cavity ring-down spectrometer aiming for exploration of lunar water. Sensors and Actuators A: Physical, 2022, 338, 113481.	2.0	3
549	Ground-Based Testing of the Lunar Manipulator Complex of the Luna-25 Project. Solar System Research, 2021, 55, 605-619.	0.3	2
550	Volatile interactions with the lunar surface. Chemie Der Erde, 2022, 82, 125858.	0.8	26
551	Regional Map of Molecular Water at High Southern Latitudes on the Moon Using 6Âνm Data From the Stratospheric Observatory for Infrared Astronomy. Geophysical Research Letters, 2022, 49, .	1.5	10
553	An Innovative Synthetic Aperture Radar Design Method for Lunar Water Ice Exploration. Remote Sensing, 2022, 14, 2148.	1.8	1

#	ARTICLE	IF	CITATIONS
554	Polar Ice Accumulation from Volcanically Induced Transient Atmospheres on the Moon. Planetary Science Journal, 2022, 3, 99.	1.5	13
555	Res Lunae: Characterizing Diverse Lunar Resource Systems Using the Social-Ecological System Framework. New Space, 2022, 10, 155-165.	0.4	2
556	Perspectiveâ€"Solid Oxide Cell Technology for Space Exploration. Journal of the Electrochemical Society, 2022, 169, 054528.	1.3	4
557	Exosphere-mediated migration of volatile species on airless bodies across the solar system. Icarus, 2022, 384, 115092.	1.1	6
558	PyNAPLE: Lunar Surface Impact Crater Detection. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	0
559	Vibration conveyance of lunar regolith in lunar environment. Acta Astronautica, 2022, 197, 139-144.	1.7	0
560	Temperature programmed desorption comparison of lunar regolith to lunar regolith simulants LMS-1 and LHS-1. Earth and Planetary Science Letters, 2022, 592, 117632.	1.8	3
561	Evidence of water on the lunar surface from Chang'E-5 in-situ spectra and returned samples. Nature Communications, 2022, 13, .	5.8	18
562	Polar Ice on the Moon., 2022,, 1-9.		2
565	Impact-Caused Regolith Reworking within the Polar Regions of the Moon. Solar System Research, 2022, 56, 155-163.	0.3	1
567	Global Hydrogen Abundances on the Lunar Surface. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	5
569	Solar System Science with the Orbiting Astronomical Satellite Investigating Stellar Systems (OASIS) Observatory. Space Science Reviews, 2022, 218, .	3.7	1
570	Miniaturized time-of-flight mass spectrometer for lunar water detection. Vacuum, 2022, 204, 111312.	1.6	3
571	Ozone production in electron irradiated CO ₂ :O ₂ ices. Physical Chemistry Chemical Physics, 2022, 24, 18169-18178.	1.3	4
572	The Lunar Cosmic-Ray and Neutron Spectrometer: Phase-A Design and Technology Studies. , 2022, , .		0
573	Analysis of the Direct Shear Test and Microstructure of the Lunar Soil Simulant Solidified by Sodium Silicate. Advances in Materials Science and Engineering, 2022, 2022, 1-11.	1.0	2
574	Artemis Accords: Are Safety Zones Practical for Long Term Commercial Lunar Resource Utilisation?. Space Policy, 2022, 62, 101504.	0.8	4
575	Statistical Significance of Mission Parameters on the Deflection Efficiency of Kinetic Impacts: Applications for the Next-generation Kinetic Impactor. Planetary Science Journal, 2022, 3, 186.	1.5	4

#	Article	IF	CITATIONS
576	Pyrite as promising monograin layer solar cell absorber material for in-situ solar cell fabrication on the Moon. Acta Astronautica, 2022, 199, 420-424.	1.7	6
577	Luna – 25 robotic arm: Results of experiment with analog of lunar regolith in lunar like conditions. Acta Astronautica, 2022, 200, 282-290.	1.7	5
578	NASA's Lunar Trailblazer Mission: A Pioneering Small Satellite for Lunar Water and Lunar Geology. , 2022, , .		4
579	Molecular Dynamics Simulation of Solar Wind Implantation in the Permanently Shadowed Regions on the Lunar Surface. Geophysical Research Letters, 2022, 49, .	1.5	2
580	Miniature semiconductor neutron spectrometer HardPix for surface mapping of lunar water. Acta Astronautica, 2022, 200, 620-625.	1.7	0
581	Directed Operational Research. , 2022, , 1-18.		O
582	Origin, Geography, and Geology of the Moon. , 2022, , 1-22.		0
583	Effect of projectile shape and interior structure on crater size in strength regime. Earth, Planets and Space, 2022, 74, .	0.9	2
584	The Lunar Regolith Structure and Electromagnetic Properties of Chang'E-5 Landing Site. Remote Sensing, 2022, 14, 4539.	1.8	2
585	Hydrogen ice within lunar polar craters. International Journal of Hydrogen Energy, 2022, 47, 34825-34830.	3.8	1
586	Surface Conditions and Resource Accessibility at Potential Artemis Landing Sites 007 and 011. Planetary Science Journal, 2022, 3, 224.	1.5	5
587	A Comprehensive Model for Pickup Ion Formation at the Moon. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	4
588	LunaR: Overview of a versatile Raman spectrometer for lunar exploration. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	0
589	Seasons of Ice: Water Ice Migration and Seasonal Transient Shadow at the Lunar Poles. Journal of Geophysical Research E: Planets, 0, , .	1.5	1
590	Assessing the Distribution of Water Ice and Other Volatiles at the Lunar South Pole with LUVMI-X: A Mission Concept. Planetary Science Journal, 2022, 3, 229.	1.5	4
591	LRO‣AMP Survey of Lunar South Pole Cold Traps: Implication for the Presence of Condensed H ₂ O. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	4
592	Water extraction from icy lunar regolith by drilling-based thermal method in a pilot-scale unit. Acta Astronautica, 2023, 202, 386-399.	1.7	8
593	Integral equation modeling for dielectric retrieval of the lunar surface using Chandrayaan-2 fully-Polarimetric L-band dual frequency SAR (DFSAR) data. Icarus, 2023, 391, 115350.	1.1	3

#	Article	IF	CITATIONS
594	Dynamic thermal interactions between spacesuits and lunar regolith in permanently shaded regions on the moon. Acta Astronautica, 2023, 203, 351-369.	1.7	2
595	Time Series Analysis Methods and Detectability Factors for Ground-Based Imaging of the LCROSS Impact Plume. Remote Sensing, 2023, 15, 37.	1.8	0
596	The Distribution and Accessibility of Geologic Targets near the Lunar South Pole and Candidate Artemis Landing Sites. Planetary Science Journal, 2022, 3, 275.	1.5	6
597	Repurposing Drilling Control Diagnostics for Subsurface Edge Detection and Boundary Advisement during Planetary Drilling. , 2023, , .		0
598	Volatile Prospecting through Thermal Properties of Subsurface Icy Regolith., 2023,,.		0
599	Rapid Extraction of Volatiles from Excavated Icy Regolith Using a Rotary Extraction Drum. , 2023, , .		0
600	Urine and grey water based liquid fertilizer – Production and the response of plants. Journal of Environmental Management, 2023, 331, 117248.	3.8	6
601	Solar/planetary formation and evolution. , 2023, , 1-54.		0
602	Lunar explorations—Discovering water, minerals, and underground caves andÂtunnel complexes. , 2023, , 399-452.		0
603	Particle handling with electrostatic force. , 2023, , 157-190.		0
604	Laboratory measurements show temperature-dependent permittivity of lunar regolith simulants. Earth, Planets and Space, 2023, 75, .	0.9	2
605	Surface Exospheric Interactions. Space Science Reviews, 2023, 219, .	3.7	2
606	Review of Comprehensive Exploitation Technology of Lunar Water Ice Resource. Kongjian Kexue Xuebao, 2023, 43, 273.	0.2	0
607	Reachable set analysis of practical trans-lunar orbit via a retrograde semi-analytic model. Earth, Planets and Space, 2023, 75, .	0.9	0
608	Statistical estimates of rock-free lunar regolith thickness from diviner. Planetary and Space Science, 2023, 229, 105662.	0.9	0
609	Energetic charged particle dose rates in water ice on the Moon. Icarus, 2023, 395, 115477.	1.1	1
610	Economics of in-space industry and competitiveness of lunar-derived rocket propellant. Acta Astronautica, 2023, 207, 425-444.	1.7	1
611	Optimum energy efficiency in lunar in-situ water ice utilization. Acta Astronautica, 2023, 207, 307-315.	1.7	2

#	ARTICLE	IF	CITATIONS
612	Detecting and characterizing the abundance and form of water-ice in permanently-shadowed regions of the moon using a three-band lidar system. Icarus, 2023, 400, 115540.	1.1	0
613	Characterising water in Lunar and Martian regolith materials using nuclear magnetic resonance. Icarus, 2023, 399, 115544.	1.1	3
614	Numerical investigation of the ground-based thermal environment experimental approaches to reveal the ice-sublimation phenomenon inside lunar regolith. Acta Astronautica, 2023, 205, 295-309.	1.7	2
616	Estimation of the Influence of Contamination by Rocket Fuel Combustion Products on the Chemical and Isotopic Composition of the Lunar Regolith in the Polar Regions. , 2023, , 411-423.		O
617	Highly Sensitive Chemiresistive H $<$ sub $>$ 2 $<$ /sub $>$ S Detection at Subzero Temperature over the Sb-Doped SnO $<$ sub $>$ 2 $<$ /sub $>$ 0g-C $<$ sub $>$ 3 $<$ /sub $>$ N $<$ sub $>$ 4 $<$ /sub $>$ Heterojunctions under UV Illumination. ACS Applied Materials & Differences, 0, , .	4.0	1
618	The Mechanism for the Barrier of Lunar Regolith on the Migration of Water Molecules. Journal of Geophysical Research E: Planets, 2023, 128, .	1.5	1
619	The Distribution of Molecular Water in the Lunar South Polar Region Based upon 6 μm Spectroscopic Imaging. Planetary Science Journal, 2023, 4, 45.	1.5	3
620	Characterization of H2O vapor transport through lunar mare and lunar highland simulants at low pressures for in-situ resource utilization. Advances in Space Research, 2023, 72, 614-622.	1.2	O
621	Research of Lunar Water-Ice and Exploration for China's Future Lunar Water-Ice Exploration. Space: Science & Technology, 2023, 3, .	1.0	1
622	Illumination conditions near the Moon's south pole: Implication for a concept design of China's Chang'Eâ^'7 lunar polar exploration. Acta Astronautica, 2023, 208, 74-81.	1.7	9
623	A solar wind-derived water reservoir on the Moon hosted by impact glass beads. Nature Geoscience, 2023, 16, 294-300.	5 . 4	11
624	Buried Ice Deposits in Lunar Polar Cold Traps Were Disrupted by Ballistic Sedimentation. Journal of Geophysical Research E: Planets, 2023, 128, .	1.5	2
625	Exploration of the Moon by Automatic Spacecraft. Cosmic Research, 2023, 61, 46-69.	0.2	0
626	The Geochemical Effect of Impact Processing of Polar Regolith on the Moon. Solar System Research, 2023, 57, 45-51.	0.3	0
627	Overview of the Lunar In Situ Resource Utilization Techniques for Future Lunar Missions. Space: Science & Technology, 2023, 3, .	1.0	5
628	Polar Ice on the Moon. , 2023, , 971-980.		1
629	Surface and Near-Surface Thermal Environment of the Moon. , 2023, , 1140-1148.		0
630	Lunar Atmosphere, Transport and Storage of Volatiles. , 2023, , 470-473.		0

#	Article	IF	CITATIONS
631	Volatiles on the Lunar Surface and Subsurface. , 2023, , 1244-1249.		0
634	Lunar Crater Observation and Sensing Satellite (LCROSS). , 2023, , 506-520.		0
635	Lunar Atmosphere. , 2023, , 443-448.		0
636	Detection of Water. , 2023, , 197-204.		0
637	LCROSS, Lunar Diviner Instrument. , 2023, , 412-415.		0
639	SMART-1 Mission. , 2023, , 1106-1130.		0
644	Towards Mining Rare Earth Elements on the Moon. , 2023, , .		0
652	Concept of the habitable modular lunar base. AIP Conference Proceedings, 2023, , .	0.3	0
655	Moon, The. , 2023, , 2022-2028.		0
669	Next generation compact IR spectrometers for the Moon. , 2023, , .		0
696	Cold-trapped ices at the poles of Mercury and the Moon. , 2024, , 1-29.		0
697	Parametric Modeling of a Lunar Base. , 2024, , .		O