Coincident ruddy turnstone migration and horseshoe coological $\hat{a} \in \tilde{b}$ hot spot $\hat{a} \in \tilde{b}$ influenza viruses

Proceedings of the Royal Society B: Biological Sciences 277, 3373-3379

DOI: 10.1098/rspb.2010.1090

Citation Report

#	Article	IF	CITATIONS
1	Animal Migration and Infectious Disease Risk. Science, 2011, 331, 296-302.	12.6	696
2	Understanding the ecological drivers of avian influenza virus infection in wildfowl: a continental-scale study across Africa. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1131-1141.	2.6	89
3	The consequences of climate change at an avian influenza â€~hotspot'. Biology Letters, 2012, 8, 1036-1039.	2.3	14
4	DETECTION OF AVIAN INFLUENZA VIRUSES FROM SHOREBIRDS: EVALUATION OF SURVEILLANCE AND TESTING APPROACHES. Journal of Wildlife Diseases, 2012, 48, 382-393.	0.8	42
5	Paired Serologic and Polymerase Chain Reaction Analyses of Avian Influenza Prevalence in Alaskan Shorebirds. Journal of Wildlife Diseases, 2012, 48, 812-814.	0.8	9
6	A horizon scanning assessment of current and potential future threats to migratory shorebirds. Ibis, 2012, 154, 663-679.	1.9	89
7	AVIAN INFLUENZA VIRUS INFECTION DYNAMICS IN SHOREBIRD HOSTS. Journal of Wildlife Diseases, 2012, 48, 322-334.	0.8	43
8	Annual Survival of Ruddy Turnstones Is Not Affected by Natural Infection with Low Pathogenicity Avian Influenza Viruses. Avian Diseases, 2012, 56, 567-573.	1.0	7
9	Investigating Avian Influenza Infection Hotspots in Old-World Shorebirds. PLoS ONE, 2012, 7, e46049.	2.5	37
10	Surveillance for Influenza Viruses in Poultry and Swine, West Africa, 2006–2008. Emerging Infectious Diseases, 2012, 18, 1446-1452.	4.3	37
11	Ecophysiology of avian migration in the face of current global hazards. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1719-1732.	4.0	106
12	Surveillance of feral cats for influenza A virus in North Central Florida. Influenza and Other Respiratory Viruses, 2012, 6, 341-347.	3.4	7
13	Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus. Influenza and Other Respiratory Viruses, 2013, 7, 85-92.	3.4	14
14	Chaos in a seasonally perturbed SIR model: avian influenza in a seabird colony as a paradigm. Journal of Mathematical Biology, 2013, 67, 293-327.	1.9	13
15	Natural history of highly pathogenic avian influenza H5N1. Virus Research, 2013, 178, 63-77.	2.2	122
16	Influenza A Virus Migration and Persistence in North American Wild Birds. PLoS Pathogens, 2013, 9, e1003570.	4.7	83
17	Dissecting a wildlife disease hotspot: the impact of multiple host species, environmental transmission and seasonality in migration, breeding and mortality. Journal of the Royal Society Interface, 2013, 10, 20120804.	3.4	31
19	High Seroprevalence of Antibodies to Avian Influenza Viruses among Wild Waterfowl in Alaska: Implications for Surveillance. PLoS ONE, 2013, 8, e58308.	2.5	34

TATION REPO

#	Article	IF	CITATIONS
20	Novel Coronavirus and Astrovirus in Delaware Bay Shorebirds. PLoS ONE, 2014, 9, e93395.	2.5	24
21	Avian Influenza Virus (H11N9) in Migratory Shorebirds Wintering in the Amazon Region, Brazil. PLoS ONE, 2014, 9, e110141.	2.5	41
22	Avian Influenza Virus Antibodies in Pacific Coast Red Knots (<i>Calidris canutus roselaari</i>). Journal of Wildlife Diseases, 2014, 50, 671-675.	0.8	6
23	Evidence for Seasonal Patterns in the Relative Abundance of Avian Influenza Virus Subtypes in Blue-Winged Teal (Anas discors). Journal of Wildlife Diseases, 2014, 50, 916-922.	0.8	36
24	Wildlife health in a rapidly changing North: focus on avian disease. Frontiers in Ecology and the Environment, 2014, 12, 548-556.	4.0	39
25	Migratory Animals Couple Biodiversity and Ecosystem Functioning Worldwide. Science, 2014, 344, 1242552.	12.6	586
26	Greater migratory propensity in hosts lowers pathogen transmission and impacts. Journal of Animal Ecology, 2014, 83, 1068-1077.	2.8	61
27	Gastro-intestinal microbiota of two migratory shorebird species during spring migration staging in Delaware Bay, USA. Journal of Ornithology, 2014, 155, 969-977.	1.1	42
28	Subtype diversity and reassortment potential for co irculating avian influenza viruses at a diversity hot spot. Journal of Animal Ecology, 2014, 83, 566-575.	2.8	8
29	Avian influenza virus ecology in Iceland shorebirds: Intercontinental reassortment and movement. Infection, Genetics and Evolution, 2014, 28, 130-136.	2.3	18
30	Variation in Immune Parameters and Disease Prevalence among Lesser Black-Backed Gulls (Larus fuscus) Tj ETQq	0 0 0 g rgB⊺ 2.5 rgB⊺	⊺/Qyerlock 1
31	The Genomic Contributions of Avian H1N1 Influenza A Viruses to the Evolution of Mammalian Strains. PLoS ONE, 2015, 10, e0133795.	2.5	7
32	Influenza A Virus on Oceanic Islands: Host and Viral Diversity in Seabirds in the Western Indian Ocean. PLoS Pathogens, 2015, 11, e1004925.	4.7	20
33	Long-term surveillance of H7 influenza viruses in American wild aquatic birds: are the H7N3 influenza viruses in wild birds the precursors of highly pathogenic strains in domestic poultry?. Emerging Microbes and Infections, 2015, 4, 1-9.	6.5	25
34	Loss of migratory behaviour increases infection risk for a butterfly host. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20141734.	2.6	129
35	A social–ecological approach to landscape epidemiology: geographic variation and avian influenza. Landscape Ecology, 2015, 30, 963-985.	4.2	23
36	Flying with diverse passengers: greater richness of parasitic nematodes in migratory birds. Oikos, 2015, 124, 399-405.	2.7	68
37	Avian Influenza Virus H5 Strain with North American and Eurasian Lineage Genes in an Antarctic Penguin. Emerging Infectious Diseases, 2016, 22, 2221-2223.	4.3	20

		CITATION REPORT		
#	Article	IF		CITATIONS
38	Antibodies to Influenza A Viruses in Gulls at Delaware Bay, USA. Avian Diseases, 2016, 60, 3	41-345. 1.0)	9
39	Transmission of influenza reflects seasonality of wild birds across the annual cycle. Ecology 2016, 19, 915-925.	Letters, 6.4	ŧ	59
40	Low Pathogenic Avian Influenza Viruses in Wild Migratory Waterfowl in a Region of High Po Production, Delmarva, Maryland. Avian Diseases, 2016, 61, 128.	ultry 1.0)	4
41	Nematode parasite diversity in birds: the role of host ecology, life history and migration. Jou Animal Ecology, 2016, 85, 1471-1480.	rnal of 2.8	8	57
42	Spring Migration Stopover Ecology of Avian Influenza Virus Shorebird Hosts at Delaware Bay Diseases, 2016, 60, 394-405.	y. Avian 1.0)	11
43	Ecology of Avian Influenza Virus in Wild Birds in Tropical Africa. Avian Diseases, 2016, 60, 29	96-301. 1.0)	11
45	Risk of resistant avian influenza A virus in wild waterfowl as a result of environmental release oseltamivir. Infection Ecology and Epidemiology, 2016, 6, 32870.	e of 0.8	3	6
46	Shorebirds along the Yellow Sea coast of China face an uncertain future—a review of threa 2016, 116, 100-110.	ats. Emu, 0.6	6	95
48	Hampered performance of migratory swans: intra- and inter-seasonal effects of avian influer Integrative and Comparative Biology, 2016, 56, 317-329.	nza virus. 2.0)	21
49	Endohelminths in Bird Hosts from Northern California and an Analysis of the Role of Life Hist Traits on Parasite Richness. Journal of Parasitology, 2016, 102, 199-207.	tory 0.7	7	19
50	First detection of avian influenza virus (H4N7) in Giant Petrel monitored by geolocators in t Antarctic region. Marine Biology, 2017, 164, 1.	ne 1.5	;	10
51	Purifying selection and concerted evolution of RNA-sensing toll-like receptors in migratory w Infection, Genetics and Evolution, 2017, 53, 135-145.	vaders. 2.3	8	15
52	Of Ducks and Men: Ecology and Evolution of a Zoonotic Pathogen in a Wild Reservoir Host. in Environmental Microbiology, 2017, , 247-286.	Advances 0.3	3	4
53	Narrative overview on wild bird migration in the context of highly pathogenic avian influenza incursion into the European Union. EFSA Supporting Publications, 2017, 14, 1283E.	a 0.7	7	4
54	Challenging the conceptual framework of maintenance hosts for influenza A viruses in wild Journal of Applied Ecology, 2017, 54, 681-690.	birds. 4.0)	32
55	Geographic variation in seasonality and its influence on the dynamics of an infectious diseas 2017, 126, 931-936.	se. Oikos, 2.7	7	16
56	Influenza A virus: sampling of the unique shorebird habitat at Delaware Bay, USA. Royal Soci Science, 2017, 4, 171420.	iety Open 2.4	ł	17
57	Infections on the move: how transient phases of host movement influence disease spread. F of the Royal Society B: Biological Sciences, 2017, 284, 20171807.	Proceedings 2.6	5	45

#	Article	IF	CITATIONS
58	Microevolution and independent incursions as main forces shaping H5 Hemagglutinin diversity during a H5N8/H5N5 highly pathogenic avian influenza outbreak in Czech Republic in 2017. Archives of Virology, 2018, 163, 2219-2224.	2.1	5
59	The roles of migratory and resident birds in local avian influenza infection dynamics. Journal of Applied Ecology, 2018, 55, 2963-2975.	4.0	24
60	Integrating social networks, animal personalities, movement ecology and parasites: a framework with examples from a lizard. Animal Behaviour, 2018, 136, 195-205.	1.9	59
61	Assessing the contributions of intraspecific and environmental sources of infection in urban wildlife: <i>Salmonella enterica</i> and white ibis as a case study. Journal of the Royal Society Interface, 2018, 15, 20180654.	3.4	8
62	Evidence of a fixed internal gene constellation in influenza A viruses isolated from wild birds in Argentina (2006–2016). Emerging Microbes and Infections, 2018, 7, 1-13.	6.5	15
63	NEUTRALIZING ANTIBODIES TO TYPE A INFLUENZA VIRUSES IN SHOREBIRDS AT DELAWARE BAY, NEW JERSEY, USA. Journal of Wildlife Diseases, 2018, 54, 708-715.	0.8	3
64	Effects of urbanization on the foraging ecology and microbiota of the generalist seabird Larus argentatus. PLoS ONE, 2018, 13, e0209200.	2.5	72
65	Do avian blood parasites influence hypoxia physiology in a high elevation environment?. BMC Ecology, 2018, 18, 15.	3.0	23
66	Characterization of avian influenza virus attachment patterns to human and pig tissues. Scientific Reports, 2018, 8, 12215.	3.3	20
67	Serologic Evidence of Exposure to Highly Pathogenic Avian Influenza H5 Viruses in Migratory Shorebirds, Australia. Emerging Infectious Diseases, 2019, 25, 1903-1910.	4.3	22
68	The "bander's gripâ€ŧ Reading zones of human–shorebird contact. Environment and Planning E, Nature and Space, 2019, 2, 732-760.	2.5	6
69	Attachment Patterns of Human and Avian Influenza Viruses to Trachea and Colon of 26 Bird Species – Support for the Community Concept. Frontiers in Microbiology, 2019, 10, 815.	3.5	12
70	EXPERIMENTAL INFECTIONS AND SEROLOGY INDICATE THAT AMERICAN WHITE IBIS (EUDOCIUMUS ALBUS) ARE COMPETENT RESERVOIRS FOR TYPE A INFLUENZA VIRUS. Journal of Wildlife Diseases, 2020, 56, 530.	0.8	3
71	Influenza A Viruses in Ruddy Turnstones (Arenaria interpres); Connecting Wintering and Migratory Sites with an Ecological Hotspot at Delaware Bay. Viruses, 2020, 12, 1205.	3.3	6
72	Reactivation of latent infections with migration shapes population-level disease dynamics. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201829.	2.6	16
73	Seasonal dynamics of haemosporidian (Apicomplexa, Haemosporida) parasites in house sparrows Passer domesticus at four European sites: comparison between lineages and the importance of screening methods. International Journal for Parasitology, 2020, 50, 523-532.	3.1	16
74	Genetic diversity of toll-like receptor genes in the vulnerable Chinese egret (Egretta eulophotes). PLoS ONE, 2020, 15, e0233714.	2.5	4
75	Causes and consequences of individual variation in animal movement. Movement Ecology, 2020, 8, 12.	2.8	105

CITATION REPORT

#	Article	IF	CITATIONS
76	â€~Chancing on a spectacle:' coâ€occurring animal migrations and interspecific interactions. Ecography, 2020, 43, 1657-1671.	4.5	29
77	Leveraging genomics to understand threats to migratory birds. Evolutionary Applications, 2021, 14, 1646-1658.	3.1	6
78	Reassortment and Persistence of Influenza A Viruses from Diverse Geographic Origins within Australian Wild Birds: Evidence from a Small, Isolated Population of Ruddy Turnstones. Journal of Virology, 2021, 95, .	3.4	6
79	Why do parasites exhibit reverse latitudinal diversity gradients? Testing the roles of host diversity, habitat and climate. Global Ecology and Biogeography, 2021, 30, 1810-1821.	5.8	14
80	Increasing risks for emerging infectious diseases within a rapidly changing High Asia. Ambio, 2022, 51, 494-507.	5.5	6
81	RNA virome abundance and diversity is associated with host age in a bird species. Virology, 2021, 561, 98-106.	2.4	19
82	Wild Bird Surveillance for Avian Influenza Virus. Methods in Molecular Biology, 2020, 2123, 93-112.	0.9	4
83	Wild Bird Surveillance for Avian Influenza Virus. Methods in Molecular Biology, 2014, 1161, 69-81.	0.9	5
84	RÃ1e des oiseaux sauvages dans la transmission et la dispersion des virus de l'influenza aviaireÂ: apport de l'éco-épidémiologie dans les écosystÃïmes afro-tropicaux. Cahiers Agricultures, 2016, 25, 54001.	0.9	3
86	Avian Influenza Virus Surveillance in Wild Birds in Georgia: 2009–2011. PLoS ONE, 2013, 8, e58534.	2.5	42
87	Neutrality, Cross-Immunity and Subtype Dominance in Avian Influenza Viruses. PLoS ONE, 2014, 9, e88817.	2.5	7
88	Baseline Immune Activity Is Associated with Date Rather than with Moult Stage in the Arctic-Breeding Barnacle Goose (Branta leucopsis). PLoS ONE, 2014, 9, e114812.	2.5	4
89	Molecular Characterization of Subtype H11N9 Avian Influenza Virus Isolated from Shorebirds in Brazil. PLoS ONE, 2015, 10, e0145627.	2.5	9
90	Endemicity of H9N2 and H5N1 avian influenza viruses in poultry in China poses a serious threat to poultry industry and public health. Frontiers of Agricultural Science and Engineering, 2016, 3, 11.	1.4	3
91	Ecology of Influenza A Viruses in Wild Birds and Wetlands of Alaska. Avian Diseases, 2020, 64, 109.	1.0	13
92	Yet Another, But This Time Realistic, Polar Synthesis, Meta-Analysis, and Outlook: Protecting Ice, Snow, People, Species, Habitats, and Clobal Temperatures for Good?. , 2012, , 265-330.		2
97	Maintenance and dissemination of avian-origin influenza A virus within the northern Atlantic Flyway of North America. PLoS Pathogens, 2022, 18, e1010605.	4.7	9
98	First detection of avian influenza subtype H4N6 in Israel in a wild mallard (<i>Anas platyrhynchos</i>) Tj ETQq1 1	0.784314 3.0	l rgBT /Over

IF CITATIONS ARTICLE # Improved predictions and forecasts of chronic wasting disease occurrence using multiple mechanism 99 1.8 1 dynamic occupancy modeling. Journal of Wildlife Management, 2022, 86, . Hemolytic parasites affect survival in migrating red-tailed hawks., 2022, 10, . Surveillance and Phylogenetic Characterisation of Avian Influenza Viruses Isolated from Wild 102 3.0 1 Waterfowl in Zambia in 2015, 2020, and 2021. Transboundary and Emerging Diseases, 2023, 2023, 1-16. Nowhere to escape: the crossâ€age avian haemosporidian exposure of migrants in northeast China. Journal of Avian Biology, 2023, 2023, . Pathogen evolution following spillover from a resident to a migrant host population depends on interactions between host pace of life and tolerance to infection. Journal of Animal Ecology, 2024, 93, 105 2.8 0 475-487.

CITATION REPORT