Toward Extracting All Phylogenetic Information from N

Science 327, 1376-1379

DOI: 10.1126/science.1182300

Citation Report

#	Article	IF	CITATIONS
1	Trees, Fast and Accurate. Science, 2010, 327, 1334-1335.	6.0	5
2	TASI Lectures on Complex Structures. , 2011, , .		6
3	On the Inference of Large Phylogenies with Long Branches: How Long Is Too Long?. Bulletin of Mathematical Biology, 2011, 73, 1627-1644.	0.9	11
4	Algebraic Methods in Mathematical Biology. Bulletin of Mathematical Biology, 2011, 73, 701-705.	0.9	O
5	Polytomy identification in microbial phylogenetic reconstruction. BMC Systems Biology, 2011, 5, S2.	3.0	15
6	Estimating phylogenetic trees from pairwise likelihoods and posterior probabilities of substitution counts. Journal of Theoretical Biology, 2011, 280, 159-166.	0.8	2
7	DACTAL: divide-and-conquer trees (almost) without alignments. Bioinformatics, 2012, 28, i274-i282.	1.8	41
8	Combinatorics of distance-based tree inference. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16443-16448.	3.3	13
9	Estimating Optimal Species Trees from Incomplete Gene Trees Under Deep Coalescence. Journal of Computational Biology, 2012, 19, 591-605.	0.8	36
10	Global alignment of molecular sequences via ancestral state reconstruction. Stochastic Processes and Their Applications, 2012, 122, 3852-3874.	0.4	10
11	PHYRN: A Robust Method for Phylogenetic Analysis of Highly Divergent Sequences. PLoS ONE, 2012, 7, e34261.	1.1	15
12	Novel algorithm for phylogenetic analysis of proteins: application to analysis of the evolution of H5N1 influenza viruses. Journal of Mathematical Chemistry, 2013, 51, 2238-2255.	0.7	10
13	Phylogenetic Tree Reconstruction: Geometric Approaches. , 2013, , 307-342.		3
14	Models and Algorithms for Genome Evolution. Computational Biology, 2013, , .	0.1	7
15	Robust Estimation of Latent Tree Graphical Models: Inferring Hidden States With Inexact Parameters. IEEE Transactions on Information Theory, 2013, 59, 4357-4373.	1.5	10
16	Evolutionary inference via the Poisson Indel Process. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1160-1166.	3.3	34
17	<scp>SIDIER</scp> : substitution and indel distances to infer evolutionary relationships. Methods in Ecology and Evolution, 2013, 4, 1195-1200.	2.2	25
18	New sample complexity bounds for phylogenetic inference from multiple loci. , 2014, , .		2

#	Article	IF	CITATIONS
19	Phylogenetic relationships among Porodaedalea pini from Poland and related Porodaedalea species. Open Life Sciences, 2014, 9, 614-627.	0.6	2
20	ASTRID: Accurate Species TRees from Internode Distances. BMC Genomics, 2015, 16, S3.	1.2	143
21	Data Requirement for Phylogenetic Inference from Multiple Loci: A New Distance Method. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12, 422-432.	1.9	36
22	Species Trees from Gene Trees Despite a High Rate of Lateral Genetic Transfer: A Tight Bound (Extended) Tj ETQq1	1 0.7843	14 rgBT /
23	Distance-based species tree estimation under the coalescent: Information-theoretic trade-off between number of loci and sequence length. Annals of Applied Probability, 2017, 27, .	0.6	5
24	A Poissonian Model of Indel Rate Variation for Phylogenetic Tree Inference. Systematic Biology, 2017, 66, 698-714.	2.7	4
26	Phase transition in the sample complexity of likelihood-based phylogeny inference. Probability Theory and Related Fields, 2017, 169, 3-62.	0.9	14
27	α-Acetoxyarone synthesis via iodine-catalyzed and tert-butyl hydroperoxide-mediateded self-intermolecular oxidative coupling of aryl ketones. Beilstein Journal of Organic Chemistry, 2017, 13, 1079-1084.	1.3	13
28	A Two-State Model of Tree Evolution and Its Applications to Alu Retrotransposition. Systematic Biology, 2018, 67, 475-489.	2.7	5
29	On the Variance of Internode Distance Under the Multispecies Coalescent. Lecture Notes in Computer Science, 2018, , 196-206.	1.0	1
30	Optimal sequence length requirements for phylogenetic tree reconstruction with indels. , 2019, , .		4
31	Hands-on Introduction to Sequence-Length Requirements in Phylogenetics. Computational Biology, 2019, , 47-86.	0.1	4
32	Constrained incremental tree building: new absolute fast converging phylogeny estimation methods with improved scalability and accuracy. Algorithms for Molecular Biology, 2019, 14, 2.	0.3	9
33	Broadcasting on Random Directed Acyclic Graphs. IEEE Transactions on Information Theory, 2020, 66, 780-812.	1.5	6
34	Indel-K2P: a modified Kimura 2 Parameters (K2P) model to incorporate insertion and deletion (Indel) information in phylogenetic analysis. Cyber-Physical Systems, 2022, 8, 32-44.	1.6	21
35	Reconstruction on 2D Regular Grids. , 2021, , .		1
37	Large-Scale Multiple Sequence Alignment and Phylogeny Estimation. Computational Biology, 2013, , 85-146.	0.1	14
38	Reconstruction on Trees: Exponential Moment Bounds for Linear Estimators. Electronic Communications in Probability, 2011, 16, .	0.1	2

CITATION REPORT

#	Article	IF	CITATIONS
39	Evolutionary Distances in the Twilight Zoneâ€"A Rational Kernel Approach. PLoS ONE, 2010, 5, e15788.	1.1	13
40	First Large-Scale DNA Barcoding Assessment of Reptiles in the Biodiversity Hotspot of Madagascar, Based on Newly Designed COI Primers. PLoS ONE, 2012, 7, e34506.	1.1	171
41	Fast and accurate estimation of the covariance between pairwise maximum likelihood distances. PeerJ, 2014, 2, e583.	0.9	1
45	Broadcasting on Two-Dimensional Regular Grids. IEEE Transactions on Information Theory, 2022, , 1-1.	1.5	1
46	A deep learning approach to real-time HIV outbreak detection using genetic data. PLoS Computational Biology, 2022, 18, e1010598.	1.5	3
47	Species tree estimation under joint modeling of coalescence and duplication: Sample complexity of quartet methods. Annals of Applied Probability, 2022, 32, .	0.6	2