The Development of Aortic Insufficiency in Left Ventric Patients

Circulation: Heart Failure 3, 668-674

DOI: 10.1161/circheartfailure.109.917765

Citation Report

#	Article	IF	CITATIONS
2	Acute Presentations of Valvular Heart Disease. , 2010, , 339-354.		2
3	Unforeseen Consequences of Therapy With Continuous-Flow Pumps. Circulation: Heart Failure, 2010, 3, 647-649.	1.6	42
4	Tips on Tuning Each Device: Technical Pearls. Cardiology Clinics, 2011, 29, 551-556.	0.9	7
5	Current Technology: Devices Available for Destination Therapy. Cardiology Clinics, 2011, 29, 499-504.	0.9	1
6	The 2011 Canadian Cardiovascular Society Heart Failure Management Guidelines Update: Focus on Sleep Apnea, Renal Dysfunction, Mechanical Circulatory Support, and Palliative Care. Canadian Journal of Cardiology, 2011, 27, 319-338.	0.8	139
7	Cardiovascular prevention and rehabilitation for patients with ventricular assist device From exercise therapy to long-term therapy Part II: Long-term therapy. Monaldi Archives for Chest Disease, 2011, 76, 136-45.	0.3	11
8	The next decade in mechanical assist: advances that will help the patient and the doctor. Current Opinion in Cardiology, 2011, 26, 256-260.	0.8	4
10	Managing long-term complications of left ventricular assist device therapy. Current Opinion in Cardiology, 2011, 26, 237-244.	0.8	40
12	Left ventricular assist device management in patients chronically supported for advanced heart failure. Current Opinion in Cardiology, 2011, 26, 149-154.	0.8	15
13	Less Frequent Opening of the Aortic Valve and a Continuous Flow Pump Are Risk Factors for Postoperative Onset of Aortic Insufficiency in Patients With a Left Ventricular Assist Device. Circulation Journal, 2011, 75, 1147-1155.	0.7	96
14	How to Treat Stage D Heart Failure? - When to Implant Left Ventricular Assist Devices in the Era of Continuous Flow Pumps? Circulation Journal, 2011, 75, 2038-2045.	0.7	59
15	Durable Mechanical Circulatory Support Devices. Progress in Cardiovascular Diseases, 2011, 54, 132-143.	1.6	8
16	Late Aortic Insufficiency Related to Poor Prognosis During Left Ventricular Assist Device Support. Annals of Thoracic Surgery, 2011, 92, 929-934.	0.7	117
17	Continuous Flow Left Ventricular Assist Device Outcomes in Commercial Use Compared With the Prior Clinical Trial. Annals of Thoracic Surgery, 2011, 92, 1406-1413.	0.7	97
18	Lessons Learned From Experience With Over 100 Consecutive HeartMate II Left Ventricular Assist Devices. Annals of Thoracic Surgery, 2011, 92, 1593-1600.	0.7	90
20	Effect of LVAD Outlet Graft Anastomosis Angle on the Aortic Valve, Wall, and Flow. ASAIO Journal, 2012, 58, 373-381.	0.9	30
21	Allosensitization in Cardiac Transplantation. ASAIO Journal, 2012, 58, 548-549.	0.9	2
22	Development of Aortic Insufficiency in Patients Supported With Continuous Flow Left Ventricular Assist Devices. ASAIO Journal, 2012, 58, 326-329.	0.9	53

ATION REDO

#	Article	IF	CITATIONS
23	<i>Circulation: Heart Failure</i> Editors' Picks. Circulation: Heart Failure, 2012, 5, .	1.6	0
25	Valvular disease in patients requiring long-term left ventricular assist devices: pathophysiology and therapeutic options. Expert Review of Cardiovascular Therapy, 2012, 10, 205-213.	0.6	5
26	Continuousâ€flow left ventricular assist device support in patients with advanced heart failure: points of interest for the daily management. European Journal of Heart Failure, 2012, 14, 351-356.	2.9	34
27	Mechanical Circulatory Support for Advanced Heart Failure. Circulation, 2012, 125, 1304-1315.	1.6	182
29	Percutaneous Transcatheter Closure of the Aortic Valve to Treat Cardiogenic Shock in a Left Ventricular Assist Device Patient With Severe Aortic Insufficiency. Annals of Thoracic Surgery, 2012, 94, 985-988.	0.7	17
30	Ramping Up Evidence-Based Ventricular Assist Device Care. Journal of the American College of Cardiology, 2012, 60, 1776-1777.	1.2	3
31	Monitoring of Aortic Valve Opening and Systolic Aortic Insufficiency in Optimization of Continuous-Flow Left Ventricular Assist Device Settings. Journal of Cardiothoracic and Vascular Anesthesia, 2012, 26, 1063-1066.	0.6	6
32	The Year in Heart Failure. Journal of the American College of Cardiology, 2012, 60, 359-368.	1.2	19
33	Percutaneous Transcatheter Closure of the Native Aortic Valve to Treat De Novo Aortic Insufficiency After Implantation of a Left Ventricular Assist Device. JACC: Cardiovascular Interventions, 2012, 5, 358-359.	1.1	11
34	Development of a Novel Echocardiography Ramp Test for Speed Optimization and Diagnosis of Device Thrombosis in Continuous-Flow Left Ventricular Assist Devices. Journal of the American College of Cardiology, 2012, 60, 1764-1775.	1.2	322
35	Late de Novo Aortic Regurgitation with the Jarvik 2000 Flowmaker® left ventricular assist device. International Journal of Artificial Organs, 2012, 35, 1080-1082.	0.7	6
36	TAVI for Pure Aortic Valve Insufficiency in a Patient With a Left Ventricular Assist Device. Annals of Thoracic Surgery, 2012, 93, e89-e91.	0.7	84
37	Evaluating Heart Failure After Implantation of Mechanical Circulatory Support Devices. Current Heart Failure Reports, 2012, 9, 65-74.	1.3	1
38	Impact of Adverse Events on Ventricular Assist Device Outcomes. Current Heart Failure Reports, 2013, 10, 89-100.	1.3	23
39	Translational Approach to Heart Failure. , 2013, , .		3
40	Development of a novel drive mode to prevent aortic insufficiency during continuous-flow LVAD support by synchronizing rotational speed with heartbeat. Journal of Artificial Organs, 2013, 16, 129-137.	0.4	40
41	Mechanical circulatory support for heart failure: past, present and a look at the future. Expert Review of Medical Devices, 2013, 10, 55-71.	1.4	32
42	The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: Executive summary. Journal of Heart and Lung Transplantation, 2013, 32, 157-187.	0.3	1,225

#	Article	IF	CITATIONS
43	Mechanical circulatory support: devices, outcomes and complications. Heart Failure Reviews, 2013, 18, 35-53.	1.7	37
44	Percutaneous Transcatheter Aortic Valve Closure Successfully Treats Left Ventricular Assist Device–Associated Aortic Insufficiency and Improves Cardiac Hemodynamics. JACC: Cardiovascular Interventions, 2013, 6, 84-89.	1.1	69
45	Dual defibrillation for refractory ventricular fibrillation in a patient with a left ventricular assist device. Journal of Heart and Lung Transplantation, 2013, 32, 1144-1145.	0.3	8
46	Pump Replacement for Left Ventricular Assist Device Failure Can Be Done Safely and Is Associated With Low Mortality. Annals of Thoracic Surgery, 2013, 95, 500-505.	0.7	115
47	The Development of Aortic Insufficiency in Continuous-Flow Left Ventricular Assist Device–Supported Patients. Annals of Thoracic Surgery, 2013, 95, 493-498.	0.7	112
48	Surgical correction of aortic valve insufficiency after left ventricular assist device implantation. Journal of Thoracic and Cardiovascular Surgery, 2013, 146, 1247-1252.	0.4	61
49	Loading conditions influence reliability of the echocardiographic RAMP test in continuous-flow left ventricular assist devices. Journal of Heart and Lung Transplantation, 2013, 32, 1142-1144.	0.3	12
50	CASE 7—2013Percutaneous Closure of the Aortic Valve for Severe Aortic Insufficiency Due to a Left Ventricular Assist Device. Journal of Cardiothoracic and Vascular Anesthesia, 2013, 27, 1407-1413.	0.6	3
51	Transapical Implantation of a Second-Generation Transcatheter Heart Valve in Patients With Noncalcified Aortic Regurgitation. JACC: Cardiovascular Interventions, 2013, 6, 590-597.	1.1	66
52	Natural history and clinical effect of aortic valve regurgitation after left ventricular assist device implantation. Journal of Thoracic and Cardiovascular Surgery, 2013, 145, 1373-1379.	0.4	81
53	Axial and centrifugal continuous-flow rotary pumps: A translation from pump mechanics to clinical practice. Journal of Heart and Lung Transplantation, 2013, 32, 1-11.	0.3	302
54	Effect of cannula position in the thoracic aorta with continuous left ventricular support: four-dimensional flow-sensitive magnetic resonance imaging in an in vitro model. European Journal of Cardio-thoracic Surgery, 2013, 44, 551-558.	0.6	21
55	Long-term ventricular assist devices in current clinical practice. Vojnosanitetski Pregled, 2013, 70, 679-687.	0.1	2
56	Medical and Nursing Care of the Child on Mechanical Circulatory Support. Pediatric Critical Care Medicine, 2013, 14, S43-S50.	0.2	2
57	The Use of Left Ventricular Assist Devices in the Treatment of Class IV Heart Failure Patients. Cardiology in Review, 2013, 21, 37-41.	0.6	1
58	Percutaneous Closure of an Incompetent Aortic Valve Using an Occluder Device in a Patient with Left Ventricular Assist Device. Anesthesia and Analgesia, 2013, 117, 1078-1080.	1.1	2
59	Percutaneous Intervention for Recurrent Aortic Insufficiency in a Patient With a Left Ventricular Assist Device and a Centrally Oversewn Aortic Valve. Circulation: Heart Failure, 2013, 6, e43-4.	1.6	4
60	Analysis of aortic valve commissural fusion after support with continuous-flow left ventricular assist device. Interactive Cardiovascular and Thoracic Surgery, 2013, 17, 616-624.	0.5	38

#	Article	IF	CITATIONS
61	Concomitant Transcatheter Aortic Valve and Left Ventricular Assist Device Implantation. ASAIO Journal, 2013, 59, 90-92.	0.9	21
62	In Vitro Evaluation of Aortic Insufficiency With a Rotary Left Ventricular Assist Device. Artificial Organs, 2013, 37, 802-809.	1.0	13
63	Effects of the <scp>H</scp> eart <scp>M</scp> ate II Left Ventricular Assist Device as Observed by Serial Echocardiography. Echocardiography, 2013, 30, 513-520.	0.3	20
64	Pulsatility and the Risk of Nonsurgical Bleeding in Patients Supported With the Continuous-Flow Left Ventricular Assist Device HeartMate II. Circulation: Heart Failure, 2013, 6, 517-526.	1.6	208
65	Management of Complications in Long-Term LVAD Support. International Journal of Artificial Organs, 2013, 36, 444-446.	0.7	3
66	Can a Central Stitch over the Arantius' Nodules Provide a Solution for Pre-Operative Severe Native Al in LVAD Patients?. International Journal of Artificial Organs, 2013, 36, 220-224.	0.7	4
67	Ventricular assist devices for heart failure: a focus on patient selection and complications. Research Reports in Clinical Cardiology, 2014, , 199.	0.2	2
68	Valvular Heart Disease in Patients Supported With Left Ventricular Assist Devices. Circulation: Heart Failure, 2014, 7, 215-222.	1.6	60
69	Why pulsatility still matters: a review of current knowledge. Croatian Medical Journal, 2014, 55, 609-620.	0.2	41
70	Assessment of aortic valve pressure overload and leaflet functions in an ex vivo beating heart loaded with a continuous flow cardiac assist device. European Journal of Cardio-thoracic Surgery, 2014, 45, 377-383.	0.6	19
71	Pathological analysis of the aortic valve after long-term left ventricular assist device support. European Journal of Cardio-thoracic Surgery, 2014, 46, 193-197.	0.6	38
72	Review of Recent Results using Computational Fluid Dynamics Simulations in Patients Receiving Mechanical Assist Devices for End-Stage Heart Failure. Methodist DeBakey Cardiovascular Journal, 2021, 10, 185.	0.5	17
73	Prevalence, Significance, and Management of Aortic Insufficiency in Continuous Flow Left Ventricular Assist Device Recipients. Circulation: Heart Failure, 2014, 7, 310-319.	1.6	185
74	De Novo Aortic Insufficiency During Long-Term Support on a Left Ventricular Assist Device. ASAIO Journal, 2014, 60, 183-188.	0.9	60
75	Noninvasive Arterial Blood Pressure Waveforms in Patients with Continuous-Flow Left Ventricular Assist Devices. ASAIO Journal, 2014, 60, 154-161.	0.9	26
76	Destination to Nowhere: A New Look at Aggressive Treatment for Heart Failure—A Case Study. Critical Care Nurse, 2014, 34, 47-56.	0.5	4
78	Assessment of myocardial viability and left ventricular function in patients supported by a left ventricular assist device. Journal of Heart and Lung Transplantation, 2014, 33, 372-381.	0.3	26
79	Cardiac arrest secondary to sudden LVAD failure in the setting of aortic valve fusion successfully managed with emergent transcatheter aortic valve replacement. International Journal of Cardiology, 2014, 171, e40-e41.	0.8	6

#	Article	IF	CITATIONS
80	Impact of concurrent surgical valve procedures in patients receiving continuous-flow devices. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 581-589.	0.4	85
81	Assessment of Aortic Valve Opening During Rotary Blood Pump Support Using Pump Signals. Artificial Organs, 2014, 38, 290-297.	1.0	25
82	Management of Aortic Insufficiency in the Continuous Flow Left Ventricular Assist Device Population. Current Heart Failure Reports, 2014, 11, 103-110.	1.3	53
83	Physiologic and hematologic concerns of rotary blood pumps: what needs to be improved?. Heart Failure Reviews, 2014, 19, 259-266.	1.7	16
84	ECMO-Extracorporeal Life Support in Adults. , 2014, , .		22
85	Consequences of aortic insufficiency during long-term axial continuous-flow left ventricular assist device support. Journal of Heart and Lung Transplantation, 2014, 33, 1233-1240.	0.3	72
86	Clinical Outcomes After Continuous-Flow Left Ventricular Assist Device. Circulation: Heart Failure, 2014, 7, 1003-1013.	1.6	140
87	Myocardial Atrophy and Chronic Mechanical Unloading of the FailingÂHumanÂHeart. Journal of the American College of Cardiology, 2014, 64, 1602-1612.	1.2	83
88	De Novo Aortic Regurgitation After Continuous-Flow Left Ventricular Assist DeviceÂImplantation. Annals of Thoracic Surgery, 2014, 98, 850-857.	0.7	45
89	Medical Management of Patients With Continuous-Flow Left Ventricular Assist Devices. Current Treatment Options in Cardiovascular Medicine, 2014, 16, 283.	0.4	27
90	Direct aortic transcatheter aortic valve implantation for pure aortic valve regurgitation after implantation of a left ventricular assist device. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, e38-e41.	0.4	9
91	Computational fluid dynamics in patients with continuous-flow left ventricular assist device support show hemodynamic alterations in the ascending aorta. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 1326-1333.e1.	0.4	65
92	Blood Pressure Control in Continuous Flow Left Ventricular Assist Devices: Efficacy and Impact onÂAdverse Events. Annals of Thoracic Surgery, 2014, 97, 139-146.	0.7	85
93	Efficacy and durability of central oversewing for treatment of aortic insufficiency in patients with continuous-flow left ventricular assist devices. Journal of Heart and Lung Transplantation, 2014, 33, 937-942.	0.3	16
94	The vexing problem of thrombosis in long-term mechanical circulatory support. Journal of Heart and Lung Transplantation, 2014, 33, 1-11.	0.3	176
95	Implantable physiologic controller for left ventricular assist devices with telemetry capability. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 192-202.	0.4	24
96	Current indications for heart transplantation and left ventricular assist device: A practical point of view. European Journal of Internal Medicine, 2014, 25, 422-429.	1.0	47
97	A History of Devices as an Alternative to Heart Transplantation. Heart Failure Clinics, 2014, 10, S1-S12.	1.0	21

#	Article	IF	CITATIONS
98	Mechanism of Aortic Valve Opening: Beyond the Pressure Gradient. JACC: Cardiovascular Imaging, 2014, 7, 633-634.	2.3	6
99	Left Ventricular Assist Device-Acquired Aortic Insufficiency. Circulation Journal, 2014, 79, 43-44.	0.7	1
101	Pump Speed Waveform Analysis to Detect Aortic Valve Opening in Patients on Ventricular Assist Device Support. Artificial Organs, 2015, 39, 704-709.	1.0	21
102	Complications of Continuous-Flow Mechanical Circulatory Support Devices. Clinical Medicine Insights: Cardiology, 2015, 9s2, CMC.S19708.	0.6	24
103	Preservation of Native Aortic Valve Flow and Full Hemodynamic Support with the TORVAD Using a Computational Model of the Cardiovascular System. ASAIO Journal, 2015, 61, 259-265.	0.9	12
104	Programmed Speed Reduction Enables Aortic Valve Opening and Increased Pulsatility in the LVAD-Assisted Heart. ASAIO Journal, 2015, 61, 540-547.	0.9	40
105	Late Complications Following Continuous-Flow Left Ventricular Assist Device Implantation. Frontiers in Surgery, 2015, 2, 42.	0.6	11
106	Left Ventricular Assist Devices Ramp Studies. JACC: Heart Failure, 2015, 3, 300-302.	1.9	1
107	A computational fluid dynamics comparison between different outflow graft anastomosis locations of Left Ventricular Assist Device (LVAD) in a patientâ€specific aortic model. International Journal for Numerical Methods in Biomedical Engineering, 2015, 31, e02700.	1.0	40
108	A novel passive left heart platform for device testing and research. Medical Engineering and Physics, 2015, 37, 361-366.	0.8	36
109	Blood Pressure and Adverse Events During Continuous Flow Left Ventricular Assist Device Support. Circulation: Heart Failure, 2015, 8, 551-556.	1.6	74
110	Can Intraoperative Transesophageal Echocardiography Predict Postoperative Aortic Insufficiency in Patients Receiving Implantable Left Ventricular Assist Devices?. Journal of Cardiothoracic and Vascular Anesthesia, 2015, 29, 901-905.	0.6	7
111	Comprehensive review and suggested strategies for the detection and management of aortic insufficiency in patients with a continuous-flow left ventricular assist device. Journal of Heart and Lung Transplantation, 2015, 34, 149-157.	0.3	92
112	Aortic Valve Function Under Support of a Left Ventricular Assist Device: Continuous vs. Dynamic Speed Support. Annals of Biomedical Engineering, 2015, 43, 1727-1737.	1.3	8
113	Does CircuLite Synergy assist device as partial ventricular support have a place in modern management of advanced heart failure?. Expert Review of Medical Devices, 2015, 12, 49-60.	1.4	17
114	Concomitant aortic valve procedures in patients undergoing implantation of continuous-flow left ventricular assist devices: An INTERMACS database analysis. Journal of Heart and Lung Transplantation, 2015, 34, 797-805.	0.3	80
115	Investigation of hemodynamics in an inÂvitro system simulating left ventricular support through the right subclavian artery using 4-dimensional flow magnetic resonance imaging. Journal of Thoracic and Cardiovascular Surgery, 2015, 150, 200-207.	0.4	6
116	Echocardiography in the Management of Patients with Left Ventricular Assist Devices: Recommendations from the American Society of Echocardiography. Journal of the American Society of Echocardiography, 2015, 28, 853-909.	1.2	250

#	Article	IF	CITATIONS
117	Echocardiography and Continuous-Flow Left Ventricular Assist Devices. JACC: Heart Failure, 2015, 3, 554-564.	1.9	29
118	Gastrointestinal Bleeding in Recipients of the HeartWare Ventricular Assist System. JACC: Heart Failure, 2015, 3, 303-313.	1.9	74
119	Echocardiographic Ramp Test forÂContinuous-Flow LeftÂVentricularÂAssistÂDevices. JACC: Heart Failure, 2015, 3, 291-299.	1.9	18
121	Early and mid-term outcomes of left ventricular assist device implantation and future prospects. General Thoracic and Cardiovascular Surgery, 2015, 63, 557-564.	0.4	13
122	Does pulsatility matter in the era of continuous-flow blood pumps?. Journal of Heart and Lung Transplantation, 2015, 34, 999-1004.	0.3	78
123	Computational fluid dynamic study of hemodynamic effects on aortic root blood flow of systematically varied left ventricular assist device graft anastomosis design. Journal of Thoracic and Cardiovascular Surgery, 2015, 150, 696-704.	0.4	43
124	Antithrombotic therapy for ventricular assist devices in children: do we really know what to do?. Journal of Thrombosis and Haemostasis, 2015, 13, S343-S350.	1.9	21
125	Evaluation of late aortic insufficiency with continuous flow left ventricular assist deviceâ€. European Journal of Cardio-thoracic Surgery, 2015, 48, 400-406.	0.6	17
126	Left Ventricular Assist Devices: The Adolescence of a Disruptive Technology. Journal of Cardiac Failure, 2015, 21, 824-834.	0.7	10
127	Hypertension: an unstudied potential risk factor for adverse outcomes during continuous flow ventricular assist device support. Heart Failure Reviews, 2015, 20, 317-322.	1.7	28
128	Pathophysiology of Heart Failure and an Overview of Therapies. , 2016, , 271-339.		4
129	Creating adequate pulsatility with a continuous flow left ventricular assist device. Current Opinion in Cardiology, 2016, 31, 329-336.	0.8	25
130	Prevalence of De Novo Aortic Valve Insufficiency in Patients After HeartWare VAD Implantation with an Intermittent Low-Speed Algorithm. ASAIO Journal, 2016, 62, 565-570.	0.9	21
131	Echocardiography in Mechanical Circulatory Support. , 2016, , 151-165.		0
132	Predictors of survival following trans atheter aortic valve closure for left ventricular assist device associated aortic insufficiency. Catheterization and Cardiovascular Interventions, 2016, 87, 971-979.	0.7	20
133	Percutaneous aortic valve closure for patients with left ventricular assist deviceâ€associated aortic insufficiency. Catheterization and Cardiovascular Interventions, 2016, 88, 1170-1173.	0.7	5
134	Ventricular Assist Devices in Pediatric Cardiac Intensive Care. Pediatric Critical Care Medicine, 2016, 17, S160-S170.	0.2	8
135	Aortic vasculature changes following support with a continuous-flow left ventricular assist device: The role of pulsatility. Journal of Heart and Lung Transplantation, 2016, 35, 421-422.	0.3	2

#	Article	IF	CITATIONS
136	HeartMate 3: Facing the challenge of past success. Journal of Thoracic and Cardiovascular Surgery, 2016, 152, 683-685.	0.4	7
138	Watchful Waiting in Continuous-Flow Left Ventricular Assist Device Patients With Ongoing Hemolysis Is Associated With an Increased Risk for Cerebrovascular Accident or Death. Circulation: Heart Failure, 2016, 9, .	1.6	41
139	Aortic regurgitation during continuous-flow left ventricular assist device support: An insufficient understanding of an insufficient lesion. Journal of Heart and Lung Transplantation, 2016, 35, 973-975.	0.3	5
140	Transcatheter aortic valve repair for management of aortic insufficiency in patients supported with left ventricular assist devices. Journal of Cardiac Surgery, 2016, 31, 654-657.	0.3	8
141	Current status of the implantable LVAD. General Thoracic and Cardiovascular Surgery, 2016, 64, 501-508.	0.4	40
142	Aortic Valve Pathology in Patients Supported by Continuous-Flow Left Ventricular Assist Device. Circulation Journal, 2016, 80, 1371-1377.	0.7	19
143	Challenges faced in long term ventricular assist device support. Expert Review of Medical Devices, 2016, 13, 727-740.	1.4	2
144	Preoperative Prediction of Aortic Insufficiency During Ventricular Assist Device Treatment. International Heart Journal, 2016, 57, 3-10.	0.5	5
145	Vascular inflammation and abnormal aortic histomorphometry in patients after pulsatile- and continuous-flow left ventricular assist device placement. Journal of Heart and Lung Transplantation, 2016, 35, 1085-1091.	0.3	13
146	Development of de novo aortic valve incompetence in patients with the continuous-flow HeartWare ventricular assist device. Journal of Heart and Lung Transplantation, 2016, 35, 312-319.	0.3	25
147	Influence of aortic valve opening in patients with aortic insufficiency after left ventricular assist device implantation. European Journal of Cardio-thoracic Surgery, 2016, 49, 784-787.	0.6	39
148	Does postoperative blood pressure influence development of aortic regurgitation following continuous-flow left ventricular assist device implantation?. European Journal of Cardio-thoracic Surgery, 2016, 49, 788-794.	0.6	32
149	Proximal thoracic aorta dimensions after continuous-flow left ventricular assist device implantation: Longitudinal changes and relation to aortic valve insufficiency. Journal of Heart and Lung Transplantation, 2016, 35, 423-432.	0.3	27
150	Mathematical analysis of the effects of valvular regurgitation on the pumping efficacy of continuous and pulsatile left ventricular assist devices. Integrative Medicine Research, 2016, 5, 22-29.	0.7	7
151	Concomitant aortic valve repair with continuous-flow left ventricular assist devices: Results and implications. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, 201-210.e2.	0.4	19
152	Balancing our biases. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, 211-212.	0.4	0
153	Emergency transcatheter aortic valve implantation in patients with severe aortic regurgitation and a left ventricle assist device: A case report and systematic review. European Heart Journal: Acute Cardiovascular Care, 2017, 6, 719-727.	0.4	10
154	LVAD Outflow Graft Angle and Thrombosis Risk. ASAIO Journal, 2017, 63, 14-23.	0.9	67

#	Article	IF	CITATIONS
155	The influence of pump rotation speed on hemodynamics and myocardial oxygen metabolism in left ventricular assist device support with aortic valve regurgitation. Journal of Artificial Organs, 2017, 20, 194-199.	0.4	13
156	The Hemodynamic Effects of Aortic Insufficiency in Patients Supported With Continuous-Flow Left Ventricular Assist Devices. Journal of Cardiac Failure, 2017, 23, 545-551.	0.7	41
157	PREVENtion of HeartMate II Pump Thrombosis Through Clinical Management: The PREVENT multi-center study. Journal of Heart and Lung Transplantation, 2017, 36, 1-12.	0.3	229
158	Concomitant repair for mild aortic insufficiency and continuous-flow left ventricular assist devices. European Journal of Cardio-thoracic Surgery, 2017, 52, 1062-1068.	0.6	21
159	Recommendations for the Use of Mechanical Circulatory Support: Ambulatory and Community Patient Care: A Scientific Statement From the American Heart Association. Circulation, 2017, 135, e1145-e1158.	1.6	80
160	De Novo Aortic Regurgitation After Continuous-Flow Left Ventricular Assist Device Implantation. Annals of Thoracic Surgery, 2017, 104, 704-711.	0.7	32
161	Mind the Gap: Current Challenges and Future State of Heart Failure Care. Canadian Journal of Cardiology, 2017, 33, 1434-1449.	0.8	19
162	Impact of LVAD Implantation Site on Ventricular Blood Stagnation. ASAIO Journal, 2017, 63, 392-400.	0.9	28
163	Percutaneous Transcatheter Interventions for Aortic Insufficiency in Continuous-Flow Left Ventricular Assist Device Patients: A Systematic Review and Meta-Analysis. ASAIO Journal, 2017, 63, 117-122.	0.9	63
164	Percutaneous Transcatheter Implantable Gadgets for De Novo Aortic Valve Regurgitation After Left Ventricular Assist Device Implant: Pushing the Limits or a Feasible Bailout?. ASAIO Journal, 2017, 63, 115-116.	0.9	0
165	Existing issues and valid concerns in continuous-flow ventricular assist devices. Expert Review of Medical Devices, 2017, 14, 949-959.	1.4	4
166	The Physiology of Continuous-Flow Left Ventricular Assist Devices. Journal of Cardiac Failure, 2017, 23, 169-180.	0.7	61
167	Aortic insufficiency in continuous-flow left ventricular assist device support patients is common but does not impact long-term mortality. Journal of Heart and Lung Transplantation, 2017, 36, 91-96.	0.3	46
168	The axial continuous-flow blood pump: Bench evaluation of changes in flow associated with changes of inflow cannula angle. Journal of Heart and Lung Transplantation, 2017, 36, 106-112.	0.3	3
169	Transfemoral transcatheter aortic valve replacement with a self-expanding valve for severe aortic regurgitation in a patient with left ventricular assist device. Journal of Cardiac Surgery, 2017, 32, 741-745.	0.3	11
170	Transfemoral aortic valve replacement prior to HeartMate II left ventricular assist device exchange. Interactive Cardiovascular and Thoracic Surgery, 2017, 25, 157-159.	0.5	0
171	HeartMate 3—a "Step―in the right direction. Journal of Thoracic Disease, 2017, 9, E457-E460.	0.6	10
172	Advances in Left Ventricular Assist Devices and Mechanical Circulatory Support. Journal of Cardiothoracic and Vascular Anesthesia, 2018, 32, 1193-1213.	0.6	16

#	Article	IF	Citations
173	The Physiological Rationale for Incorporating Pulsatility in Continuous-Flow Left Ventricular Assist Devices. Cardiology in Review, 2018, 26, 294-301.	0.6	10
174	Contemporary Perspectives in Durable Mechanical Circulatory Support: What Did We Learn in the Last 3ÂYears?. Current Cardiology Reports, 2018, 20, 6.	1.3	2
175	The Jarvik 2000 left ventricular assist device as a bridge to transplantation: Japanese Registry for Mechanically Assisted Circulatory Support. Journal of Heart and Lung Transplantation, 2018, 37, 71-78.	0.3	25
176	Chronic Management of Patients with Left Ventricular Assist Devices. , 2018, , 145-159.		0
177	Surveillance Echocardiography for LVAD Patients. , 2018, , 161-189.		0
178	Outflow graft anastomosis site design could be correlated to aortic valve regurgitation under left ventricular assist device support. Journal of Artificial Organs, 2018, 21, 150-155.	0.4	14
179	Transcatheter Aortic Valve Replacement for Left Ventricular Assist Device–Induced Aortic Insufficiency. Journal of Cardiothoracic and Vascular Anesthesia, 2018, 32, 1982-1990.	0.6	3
180	Left heart pressures can be the key to know the limitation of left ventricular assist device support against progression of aortic insufficiency. Journal of Artificial Organs, 2018, 21, 265-270.	0.4	5
181	Mechanical Circulatory Support for Advanced Heart Failure. , 2018, , .		1
182	Pulmonary Valve Opening With Two Rotary Left Ventricular Assist Devices for Biventricular Support. Artificial Organs, 2018, 42, 31-40.	1.0	7
183	17â€Imaging of LVAD complications: experience from mayo clinic. , 2018, , .		0
184	16â€Perioperative care of LVAD. , 2018, , .		0
185	Hemodynamic Pump-Patient Interactions and Left Ventricular Assist Device Imaging. Cardiology Clinics, 2018, 36, 561-569.	0.9	6
186	Aortic Insufficiency During Contemporary Left Ventricular Assist Device Support. JACC: Heart Failure, 2018, 6, 951-960.	1.9	106
187	Aortic regurgitation in patients with a left ventricular assist device: A contemporary review. Journal of Heart and Lung Transplantation, 2018, 37, 1289-1297.	0.3	51
188	Ventricular-Assist Devices and Kidney Disease. , 2018, , .		0
189	The angle of the outflow graft to the aorta can affect recirculation due to aortic insufficiency under left ventricular assist device support. Journal of Artificial Organs, 2018, 21, 399-404.	0.4	11
190	Living Without a Pulse. Circulation: Heart Failure, 2018, 11, e004670.	1.6	63

#	Article	IF	CITATIONS
191	First-generation ventricular assist devices. , 2018, , 93-115.		2
192	Pulsatile vs. continuous flow. , 2018, , 379-406.		4
193	Complications of mechanical circulatory and respiratory support. , 2018, , 495-528.		3
194	Neurohormone levels remain elevated in continuous flow left ventricular assist device recipients. Journal of Cardiac Surgery, 2018, 33, 403-411.	0.3	6
195	Complications of Durable Left Ventricular Assist Device Therapy. Critical Care Clinics, 2018, 34, 465-477.	1.0	9
196	Echocardiography in Assessment of Ventricular Assist Devices. , 2019, , 264-269.e1.		0
197	Comparison of heart transplant outcomes between recipients with pulsatile―vs continuousâ€flow LVAD. Journal of Cardiac Surgery, 2019, 34, 1062-1068.	0.3	5
198	Left Ventricular Assist Device as Destination Therapy: a State of the Science and Art of Long-Term Mechanical Circulatory Support. Current Heart Failure Reports, 2019, 16, 168-179.	1.3	20
199	Hemodynamic effects of support modes of LVADs on the aortic valve. Medical and Biological Engineering and Computing, 2019, 57, 2657-2671.	1.6	7
200	Hurdles to Cardioprotection in the Critically III. International Journal of Molecular Sciences, 2019, 20, 3823.	1.8	6
201	Left ventricular assist devices and their complications: A review for emergency clinicians. American Journal of Emergency Medicine, 2019, 37, 1562-1570.	0.7	57
202	2019 EACTS Expert Consensus on long-term mechanical circulatory support. European Journal of Cardio-thoracic Surgery, 2019, 56, 230-270.	0.6	255
203	Valvular Regurgitation in a Biventricular Mock Circulatory Loop. ASAIO Journal, 2019, 65, 551-557.	0.9	11
204	Haemodynamic management of patients with left ventricular assist devices using echocardiography: the essentials. European Heart Journal Cardiovascular Imaging, 2019, 20, 373-382.	0.5	25
205	Short-term results with transcatheter aortic valve replacement for treatment of left ventricular assist device patients with symptomatic aortic insufficiency. Journal of Heart and Lung Transplantation, 2019, 38, 920-926.	0.3	64
206	Aortic Insufficiency and Hemocompatibility-related Adverse Events in Patients with Left Ventricular Assist Devices. Journal of Cardiac Failure, 2019, 25, 787-794.	0.7	13
207	Current Role of the Total Artificial Heart in the Management of Advanced Heart Failure. Current Cardiology Reports, 2019, 21, 142.	1.3	26
208	TAVI Using a Self-Expandable Device for Aortic Regurgitation Following LVAD Implantation. The Thoracic and Cardiovascular Surgeon Reports, 2019, 08, e33-e36.	0.1	4

#	Article	IF	Citations
209	Commentary: When less is more: Is valve repair the optimal intervention for aortic insufficiency at time of ventricular assist device implantation?. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, e385-e386.	0.4	1
210	Beatâ€ŧoâ€beat detection of aortic valve opening in HeartWare left ventricular assist device patients. Artificial Organs, 2019, 43, 458-466.	1.0	15
211	Adult Critical Care Medicine. , 2019, , .		0
212	Acute Presentations of Valvular Heart Disease. , 2019, , 257-274.e4.		0
213	Editorial commentary: Durable mechanical circulatory support, the challenges ahead. Trends in Cardiovascular Medicine, 2020, 30, 230-231.	2.3	0
214	Commentary: Mapping a future for continuous-flow ventricular assist devices. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, e209-e210.	0.4	0
215	Valve-in-Ring Transcatheter Aortic Valve Replacement After Left Ventricular Assist Device Therapy. Annals of Thoracic Surgery, 2020, 109, e163-e165.	0.7	8
216	Circulatory Assist Devices in Heart Failure. , 2020, , 649-664.e3.		0
217	Percutaneous Aortic Valve Closure in Patient With Left Ventricular Assist Device and Dilated Aortic Annulus. Annals of Thoracic Surgery, 2020, 109, e25-e27.	0.7	3
218	Surgical device exchange provides improved clinical outcomes compared to medical therapy in treating continuousâ€flow left ventricular assist device thrombosis. Artificial Organs, 2020, 44, 367-374.	1.0	7
219	Moderate Aortic Insufficiency with a Left Ventricular Assist Device Portends a Worse Long-Term Survival. ASAIO Journal, 2020, 66, 780-785.	0.9	9
220	Continuous-Flow Left Ventricular Assist Devices and Valvular Heart Disease: A Comprehensive Review. Canadian Journal of Cardiology, 2020, 36, 244-260.	0.8	22
221	Estimation of the Severity of Aortic Insufficiency by HVAD Flow Waveform. Annals of Thoracic Surgery, 2020, 109, 945-949.	0.7	5
222	Adverse Events and Mitigation Strategies. , 2020, , 145-165.		0
223	Transcatheter aortic valve replacement: A potential option for aortic insufficiency management in patients with left ventricular assist device. IJC Heart and Vasculature, 2020, 26, 100425.	0.6	4
224	Management of Aortic Insufficiency Using Transcatheter Aortic Valve Replacement in Patients with Left Ventricular Assist Device Support. ASAIO Journal, 2020, 66, e82-e86.	0.9	15
225	The role of renin-angiotensin system in patients with left ventricular assist devices. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2020, 21, 147032032096644.	1.0	4
226	Aortic Insufficiency After Left Ventricular Assist Device Implantation: Predictors and Outcomes. Annals of Thoracic Surgery, 2020, 110, 836-843.	0.7	15

#	Article	IF	CITATIONS
227	The impact of uncorrected mild aortic insufficiency at theÂtime of left ventricular assist device implantation. Journal of Thoracic and Cardiovascular Surgery, 2020, 160, 1490-1500.e3.	0.4	15
228	Treatment With Impella Increases the Risk of De Novo Aortic Insufficiency Post Left Ventricular Assist Device Implant. Journal of Cardiac Failure, 2020, 26, 870-875.	0.7	5
229	Shear Stress and Hemolysis Analysis of Blood Pump under Constant and Pulsation Speed Based on a Multiscale Coupling Model. Mathematical Problems in Engineering, 2020, 2020, 1-14.	0.6	2
230	The determinants of functional capacity in left ventricular assist device patients: many actors with not well defined roles. Journal of Cardiovascular Medicine, 2020, 21, 472-480.	0.6	4
231	Transcatheter aortic valve implantation in patients with a left ventricular assist device: a word of caution. European Journal of Cardio-thoracic Surgery, 2020, 58, 1309-1310.	0.6	3
232	Limited Efficacy of Thrombolytics for Pump Thrombosis in Durable Left Ventricular Assist Devices. Annals of Thoracic Surgery, 2020, 110, 2047-2054.	0.7	7
233	Aortic Insufficiency During HeartMate 3 Left Ventricular Assist Device Support. Journal of Cardiac Failure, 2020, 26, 863-869.	0.7	18
234	Update of Non-Pharmacological Therapy for Heart Failure. , 2020, , .		0
235	Continuous-Flow Left Ventricular Assist Devices and the Aortic Valve: Interactions, Issues, and Surgical Therapy. Current Heart Failure Reports, 2020, 17, 97-105.	1.3	14
236	Use of patient-specific computational models for optimization of aortic insufficiency after implantation of left ventricular assist device. Journal of Thoracic and Cardiovascular Surgery, 2021, 162, 1556-1563.	0.4	16
237	American Association for Thoracic Surgery/International Society for Heart and Lung Transplantation guidelines on selected topics in mechanical circulatory support. Journal of Heart and Lung Transplantation, 2020, 39, 187-219.	0.3	71
238	Transcatheter aortic valve replacement thrombosis in patient supported with durable left ventricular assist device. Catheterization and Cardiovascular Interventions, 2020, 96, 500-503.	0.7	9
239	American Association for Thoracic Surgery/International Society for Heart and Lung Transplantation guidelines on selected topics in mechanical circulatory support. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 865-896.	0.4	41
240	Significance of Aortopulmonary Collaterals in a Single-Ventricle Patient Supported With a HeartMate 3. Circulation: Heart Failure, 2020, 13, e006473.	1.6	4
241	Endothelial Function in Patients With Continuous-Flow Left Ventricular Assist Devices. Angiology, 2021, 72, 9-15.	0.8	10
242	Noninvasive measurement of arterial blood pressure in patients with continuous-flow left ventricular assist devices: a systematic review. Heart Failure Reviews, 2021, 26, 47-55.	1.7	6
243	Impact of worsening of aortic insufficiency during HeartMate 3 LVAD support. Artificial Organs, 2021, 45, 297-302.	1.0	14
244	Can the intermittent low-speed function of left ventricular assist device prevent aortic insufficiency?. Journal of Artificial Organs, 2021, 24, 191-198.	0.4	4

#	Article	IF	CITATIONS
245	Comparative assessment of different versions of axial and centrifugal LVADs: A review. Artificial Organs, 2021, 45, 665-681.	1.0	8
246	Unusual complications following left ventricular assisted device implantation: case series. Journal of Cardiothoracic Surgery, 2021, 16, 70.	0.4	4
247	The Hero of Haarlem: Seeking Simple Solutions to Failures of Complex Systems. Journal of Cardiothoracic and Vascular Anesthesia, 2021, 35, 1539-1540.	0.6	0
248	Model based optimization of a novel ventricular assist device. Automatisierungstechnik, 2021, 69, 619-631.	0.4	1
249	Analysis of the HeartWare HVAD pump characteristics under pulsatile operation. Biomedical Signal Processing and Control, 2021, 68, 102754.	3.5	2
250	Use of Intracardiac Echocardiography to Evaluate Continuous-Flow Left Ventricular Assist Device Function in a Man With Obesity. Texas Heart Institute Journal, 2021, 48, .	0.1	1
251	An Integrative Study of Aortic mRNA/miRNA Longitudinal Changes in Long-Term LVAD Support. International Journal of Molecular Sciences, 2021, 22, 7414.	1.8	2
252	Patient-Specific Computational Fluid Dynamics Reveal Localized Flow Patterns Predictive of Post–Left Ventricular Assist Device Aortic Incompetence. Circulation: Heart Failure, 2021, 14, e008034.	1.6	9
253	Predictors and Long-Term Impact of De Novo Aortic Regurgitation in Continuous Flow Left Ventricular Assist Devices Using Vena Contracta. ASAIO Journal, 2021, Publish Ahead of Print, .	0.9	1
254	Proximal ascending aorta size is associated with the incidence of de novo aortic insufficiency with left ventricular assist device. Heart and Vessels, 2022, 37, 647-653.	0.5	3
255	Opportunities and Challenges for LVAD Therapy Now and in the Future. , 2014, , 1-22.		2
256	Intraventricular Flow Patterns in Patients Treated with Left Ventricular Assist Devices. ASAIO Journal, 2021, 67, 74-83.	0.9	14
257	Tolerance of Sustained Ventricular Fibrillation During Continuous-Flow Left Ventricular Assist Device Support. Texas Heart Institute Journal, 2017, 44, 357-360.	0.1	6
258	Treatment of Advanced Heart Failure: Beyond Medical Treatment. Korean Journal of Medicine, 2012, 82, 658.	0.1	2
259	Left ventricular assist device implantation strategies and outcomes. Journal of Thoracic Disease, 2015, 7, 2088-96.	0.6	15
260	Facilitating noncardiac surgery for the patient with left ventricular assist device: A guide for the anesthesiologist. Annals of Cardiac Anaesthesia, 2018, 21, 351.	0.3	13
261	Interest of Ventricular Assist Device in Peripartum Cardiomyopathy, a Case Report and Review Article*. World Journal of Cardiovascular Surgery, 2013, 03, 58-62.	0.1	1
262	Late de novo aortic regurgitation with the Jarvik 2000 Flowmaker® left ventricular assist device. International Journal of Artificial Organs, 2012, 35, 1080-1082.	0.7	5

#	Article	IF	CITATIONS
263	Development of De Novo Aortic Insufficiency in Patients With HeartMate 3. Annals of Thoracic Surgery, 2022, 114, 450-456.	0.7	12
264	Left Ventricular Assist Devices: From Bridge to Transplant to Destination Therapy. , 2013, , 385-423.		0
265	Treatment Options for End-Stage Cardiac Failure. , 2014, , 217-235.		0
266	Outcomes of continuous flow ventricular assist devices. World Journal of Surgical Procedures, 2014, 4, 1.	0.1	0
273	Medical Management of the Patient with Chronic Mechanical Circulatory Support. , 2017, , 665-690.		0
274	Mechanical Circulatory Support as a Bridge to Heart Transplantation. , 2017, , 639-663.		0
275	Management of Hypertension after Ventricular Assist Device Implant. , 2018, , 135-141.		0
277	Perioperative Management of the Heart Transplant and Mechanical Circulatory Support Device Patient. , 2019, , 39-64.		0
278	The LVAD Patient with Dark Urine and Elevated LDH: Diagnosis and Treatment of Pump Thrombosis. Difficult Decisions in Surgery: an Evidence-based Approach, 2019, , 289-298.	0.0	0
280	LVAD Therapy. , 2020, , 87-95.		0
281	Introduction to Artificial Hearts. , 2020, , 1-19.		0
282	End-Organ Physiology Under Continuous-Flow Mechanical Circulatory Support. , 2020, , 279-300.		0
283	Perioperative Considerations in Left Ventricular Assist Device Placement. , 2020, , 151-169.		0
284	Postoperative Management Strategies in Mechanical Circulatory Support Patients. , 2020, , 647-670.		0
285	New Mechanical Circulatory Device: TORVAD. , 2020, , 555-561.		0
287	Left ventricular assist devices as a bridge to cardiac transplantation. Journal of Thoracic Disease, 2014, 6, 1110-9.	0.6	24
288	Blood pressure management in mechanical circulatory support. Journal of Thoracic Disease, 2015, 7, 2125-8.	0.6	22
289	Echocardiographic assessment for ventricular assist device placement. Journal of Thoracic Disease, 2015, 7, 2139-50.	0.6	15

ARTICLE IF CITATIONS Percutaneous Transcatheter Therapies for the Management of Left Ventricular Assist Device 290 0.4 8 Complications. Journal of Invasive Cardiology, 2017, 29, 151-162. Advances in transcatheter aortic valve replacement. Journal of Geriatric Cardiology, 2019, 16, 724-732. 0.2 Aortic Insufficiency Causes Symptomatic Heart Failure during Left Ventricular Assist Device Support. 292 0.5 4 Tohoku Journal of Experimental Medicine, 2021, 255, 229-237. In vivo proof of concept of a pulsatile physiologic controller framework for ventricular assist 299 Progression of aortic valve insufficiency during centrifugal versus axial flow left ventricular assist 300 0.6 8 device support. European Journal of Cardio-thoracic Surgery, 2022, 61, 1188-1196. Exercise in patients with left ventricular devices: The interaction between the device and the patient. 1.6 Progress in Cardiovascular Diseases, 2022, 70, 33-39. Biomarkers in Patients with Left Ventricular Assist Device: An Insight on Current Evidence. 303 1.8 10 Biomolecules, 2022, 12, 334. Transcatheter Aortic Valve Replacement in Patients With Left Ventricular Assist Devices and Aortic Regurgitationâ€"Single Institution Retrospective Analysis. Journal of Cardiothoracic and Vascular 304 0.6 Anesthesia, 2022, 36, 2839-2840. JCS/JSCVS/JATS/JSVS 2021 Guideline on Implantable Left Ventricular Assist Device for Patients With 305 9 0.7 Advanced Heart Failure. Circulation Journal, 2022, 86, 1024-1058. Management of Hypertension in Patients With Ventricular Assist Devices: A Scientific Statement From 1.6 the American Heart Association. Circulation: Heart Failure, 2022, 15, 101161HHF0000000000000074. Continuous-Flow Ventricular Assist Devices., 2022, , 79-119. 310 0 Impact of progressive aortic regurgitation on outcomes after left ventricular assist device 0.5 implantation. Heart and Vessels, 2022, 37, 1985-1994. Pathophysiology of heart failure and an overview of therapies., 2022, , 149-221. 312 1 Aortic valve opening in mock-loop with continuous-flow left ventricular assist device. International Journal of Artificial Organs, 0, , 039139882211118. 314 Aortic Insufficiency in LVAD Patients., 0, , . 0 Recurrent Heart Failure after Left Ventricular Assist Device Placement., 0, , . Impact of preoperative Impella support on destination left ventricular assist device outcomes. Journal 316 0.3 3 of Cardiac Surgery, 2022, 37, 3576-3583. Transcatheter Aortic Valve Replacement and Surgical Aortic Valve Replacement Outcomes in Left 1.2 Ventricular Assist Device Patients with Aortic Insufficiency. Cardiac Failure Review, 0, 8, .

0

#	Article	IF	CITATIONS
318	Pathophysiology and management of valvular disease in patients with destination left ventricular assist devices. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	2
319	Redo heart transplantation in a highâ€risk patient due to severe aortic regurgitation and accompanying right ventricular failure after LVAD implantation and temporary RVAD support. Journal of Cardiac Surgery, 0, , .	0.3	0
320	Cardiac output assessment methods in left ventricular assist device patients: A problem of heteroscedasticity. Journal of Heart and Lung Transplantation, 2023, 42, 145-149.	0.3	2
321	Key questions about aortic insufficiency in patients with durable left ventricular assist devices. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	1
322	Incidence and clinical correlates of <i>deâ€novo</i> aortic regurgitation with a fully magnetically levitated left ventricular assist device: a <scp>MOMENTUM 3</scp> trial portfolio analysis. European Journal of Heart Failure, 2023, 25, 286-294.	2.9	6
323	Transcatheter Aortic Valve Replacement for Left Ventricular Assist Device–Related Aortic Regurgitation: The Michigan Medicine Experience. , 2022, , 100530.		1
324	Reciprocal interferences of the left ventricular assist device and the aortic valve competence. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	3
325	Aortic valve disorders and left ventricular assist devices. Frontiers in Cardiovascular Medicine, 0, 10,	1.1	4
326	Concomitant triple-valve repair with durable left ventricular assist device implantation in severe right ventricle dysfunction. JTCVS Techniques, 2023, , .	0.2	0
327	Transcatheter valvular therapies in patients with left ventricular assist devices. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	1
328	Management of hypertension in patients supported with continuous flow left ventricular assist devices. Current Opinion in Cardiology, 0, Publish Ahead of Print, .	0.8	0
330	Managing valvular pathology during LVAD implantation. Indian Journal of Thoracic and Cardiovascular Surgery, 2023, 39, 101-113.	0.2	0

Outpatient Management of the Mechanical Circulatory Support Patients. , 2023, , 1-17.