p62/SQSTM1 is required for Parkin-induced mitochond VDAC1 is dispensable for both

Autophagy 6, 1090-1106 DOI: 10.4161/auto.6.8.13426

Citation Report

#	Article	IF	CITATIONS
1	Digital Image Compression in Dermatology: Format Comparison. Telemedicine Journal and E-Health, 2008, 14, 666-670.	1.6	12
2	Culling sick mitochondria from the herd. Journal of Cell Biology, 2010, 191, 1225-1227.	2.3	19
3	Mechanisms and Biology of B-Cell Leukemia/Lymphoma 2/Adenovirus E1B Interacting Protein 3 and Nip-Like Protein X. Antioxidants and Redox Signaling, 2011, 14, 1959-1969.	2.5	38
4	Mitochondrial Fission-Fusion and Parkinson's Disease: A Dynamic Question of Compensatory Networks. , 2011, , 197-213.		1
5	To Eat or Not to Eat: Neuronal Metabolism, Mitophagy, and Parkinson's Disease. Antioxidants and Redox Signaling, 2011, 14, 1979-1987.	2.5	30
6	Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature, 2011, 480, 113-117.	13.7	429
7	Autophagy: Renovation of Cells and Tissues. Cell, 2011, 147, 728-741.	13.5	4,844
8	High-Mobility Group Box 1 Is Essential for Mitochondrial Quality Control. Cell Metabolism, 2011, 13, 701-711.	7.2	266
9	Molecular machinery of macroautophagy and its deregulation in diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1490-1497.	1.8	63
10	CCCP induces autophagy in an AMPK-independent manner. Biochemical and Biophysical Research Communications, 2011, 416, 343-348.	1.0	49
11	Mitophagy: the latest problem for Parkinson's disease. Trends in Molecular Medicine, 2011, 17, 158-165.	3.5	143
12	Exploring the link between glucocerebrosidase mutations and parkinsonism. Trends in Molecular Medicine, 2011, 17, 485-493.	3.5	146
13	Genetic mutations and functions of PINK1. Trends in Pharmacological Sciences, 2011, 32, 573-580.	4.0	79
14	Mitochondria: The Next (Neurode)Generation. Neuron, 2011, 70, 1033-1053.	3.8	489
15	Diversity in the Regulation of Autophagy and Mitophagy: Lessons from Parkinson's Disease. Parkinson's Disease, 2011, 2011, 1-8.	0.6	34
16	Preconditioning Involves Selective Mitophagy Mediated by Parkin and p62/SQSTM1. PLoS ONE, 2011, 6, e20975.	1.1	290
17	Pathophysiological Role of Autophagy: Lesson from Autophagy-Deficient Mouse Models. Experimental Animals, 2011, 60, 329-345.	0.7	40
18	Ubiquitylation and autophagy in the control of bacterial infections and related inflammatory responses. Cellular Microbiology, 2011, 13, 1303-1311.	1.1	19

#	Article	IF	CITATIONS
19	Mechanisms of mitophagy. Nature Reviews Molecular Cell Biology, 2011, 12, 9-14.	16.1	2,638
20	The Three Musketeers of Autophagy: phosphorylation, ubiquitylation and acetylation. Trends in Cell Biology, 2011, 21, 195-201.	3.6	143
21	Mitochondrial dynamics and mitophagy in Parkinson's disease: disordered cellular power plant becomes a big deal in a major movement disorder. Current Opinion in Neurobiology, 2011, 21, 935-941.	2.0	56
22	Ubiquitination-mediated autophagy against invading bacteria. Current Opinion in Cell Biology, 2011, 23, 492-497.	2.6	44
23	Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Current Opinion in Cell Biology, 2011, 23, 476-482.	2.6	214
24	Targeting Mitochondrial Dysfunction: Role for PINK1 and Parkin in Mitochondrial Quality Control. Antioxidants and Redox Signaling, 2011, 14, 1929-1938.	2.5	330
25	Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson's disease. BioFactors, 2011, 37, 228-240.	2.6	101
26	Molecular Mechanisms of PINK1-Related Neurodegeneration. Current Neurology and Neuroscience Reports, 2011, 11, 283-290.	2.0	23
27	Spatiotemporally controlled initiation of Parkin-mediated mitophagy within single cells. Autophagy, 2011, 7, 1230-1238.	4.3	50
28	Mitophagy and Disease: New Avenues for Pharmacological Intervention. Current Pharmaceutical Design, 2011, 17, 2056-2073.	0.9	16
29	Parkin Mediates Proteasome-dependent Protein Degradation and Rupture of the Outer Mitochondrial Membrane. Journal of Biological Chemistry, 2011, 286, 19630-19640.	1.6	516
30	Broad activation of the ubiquitin–proteasome system by Parkin is critical for mitophagy. Human Molecular Genetics, 2011, 20, 1726-1737.	1.4	851
31	Autophagy in Protein and Organelle Turnover. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76, 397-402.	2.0	146
32	New thoughts regarding Atg8 and ubiquitination. Autophagy, 2011, 7, 125-126.	4.3	1
33	Parkin Interacts with Ambra1 to Induce Mitophagy. Journal of Neuroscience, 2011, 31, 10249-10261.	1.7	239
34	Selective autophagy mediated by autophagic adapter proteins. Autophagy, 2011, 7, 279-296.	4.3	1,512
35	Aggrephagy: Selective Disposal of Protein Aggregates by Macroautophagy. International Journal of Cell Biology, 2012, 2012, 1-21.	1.0	363
36	Implications of Therapy-Induced Selective Autophagy on Tumor Metabolism and Survival. International Journal of Cell Biology, 2012, 2012, 1-11.	1.0	15

#	Article	IF	CITATIONS
37	The Physiological Role of Mitophagy: New Insights into Phosphorylation Events. International Journal of Cell Biology, 2012, 2012, 1-8.	1.0	46
38	Mitochondrial quality control: a matter of life and death for neurons. EMBO Journal, 2012, 31, 1336-1349.	3.5	335
39	Established Principles and Emerging Concepts on the Interplay between Mitochondrial Physiology and <i>S</i> -(De)nitrosylation: Implications in Cancer and Neurodegeneration. International Journal of Cell Biology, 2012, 2012, 1-20.	1.0	27
40	The interplay between autophagy and ROS in tumorigenesis. Frontiers in Oncology, 2012, 2, 171.	1.3	153
41	Selective Types of Autophagy. International Journal of Cell Biology, 2012, 2012, 1-2.	1.0	51
42	CROSS-TALK BETWEEN THE UBIQUITIN-PROTEASOME SYSTEM AND MACROAUTOPHAGY. , 2012, , 59-85.		0
43	GENETIC MOUSE MODELS FOR ELUCIDATION OF AUTOPHAGY-LYSOSOMAL SYSTEMS IN NEURONS UNDER PHYSIOLOGIC AND PATHOLOGIC CONDITIONS. , 2012, , 175-203.		1
44	Mitochondrial Dynamics and Parkinson's Disease: Focus on Parkin. Antioxidants and Redox Signaling, 2012, 16, 935-949.	2.5	76
45	PINK1- and Parkin-mediated mitophagy at a glance. Journal of Cell Science, 2012, 125, 795-799.	1.2	465
46	PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Scientific Reports, 2012, 2, 1002.	1.6	466
47	The Role of Autophagy in Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009357-a009357.	2.9	377
48	Mitochondrial Regulation by PINK1-Parkin Signaling. , 2012, 2012, 1-15.		9
49	Impaired parkin-mediated mitochondrial targeting to autophagosomes differentially contributes to tissue pathology in lysosomal storage diseases. Human Molecular Genetics, 2012, 21, 1770-1781.	1.4	47
50	Autophagy: More Than a Nonselective Pathway. International Journal of Cell Biology, 2012, 2012, 1-18.	1.0	128
51	Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. Journal of Cell Science, 2012, 125, 1488-99.	1.2	237
52	Lysine modifications and autophagy. Essays in Biochemistry, 2012, 52, 65-77.	2.1	4
53	p62/SQSTM1/A170: Physiology and pathology. Pharmacological Research, 2012, 66, 457-462.	3.1	247
54	Mitochondrial Quality Control Mediated by PINK1 and Parkin: Links to Parkinsonism. Cold Spring Harbor Perspectives in Biology, 2012, 4, a011338-a011338.	2.3	273

	CHATION RI	LPUKI	
#	Article	IF	CITATIONS
55	Targeting autophagy for the treatment of liver diseases. Pharmacological Research, 2012, 66, 463-474.	3.1	63
56	Macroautophagy and Cell Responses Related to Mitochondrial Dysfunction, Lipid Metabolism and Unconventional Secretion of Proteins. Cells, 2012, 1, 168-203.	1.8	8
57	Polyubiquitin-sensor proteins reveal localization and linkage-type dependence of cellular ubiquitin signaling. Nature Methods, 2012, 9, 303-309.	9.0	104
58	Mitochondrial Quality Control and Dynamics in Parkinson's Disease. Antioxidants and Redox Signaling, 2012, 16, 869-882.	2.5	99
59	NBR1 acts as an autophagy receptor for peroxisomes. Journal of Cell Science, 2013, 126, 939-52.	1.2	274
60	Genes for Plant Autophagy: Functions and Interactions. Molecules and Cells, 2012, 34, 413-424.	1.0	66
61	Mitochondria and Mitophagy. Circulation Research, 2012, 111, 1208-1221.	2.0	662
62	PINK1 as a Molecular Checkpoint in the Maintenance of Mitochondrial Function and Integrity. Molecules and Cells, 2012, 34, 7-14.	1.0	33
63	Assurance of mitochondrial integrity and mammalian longevity by the p62–Keap1–Nrf2–Nqo1 cascade. EMBO Reports, 2012, 13, 150-156.	2.0	126
64	Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO Journal, 2012, 31, 3038-3062.	3.5	487
65	Role of PINK1 Binding to the TOM Complex and Alternate Intracellular Membranes in Recruitment and Activation of the E3 Ligase Parkin. Developmental Cell, 2012, 22, 320-333.	3.1	523
66	Mitophagy: mechanisms, pathophysiological roles, and analysis. Biological Chemistry, 2012, 393, 547-564.	1.2	764
67	Autophagy in the Disorders of Central Nervous System: Vital and/or Fatal?. CNS Neuroscience and Therapeutics, 2012, 18, 955-956.	1.9	16
68	Molecular Insights into Parkinson's Disease. Progress in Molecular Biology and Translational Science, 2012, 107, 125-188.	0.9	83
69	Receptor protein complexes are in control of autophagy. Autophagy, 2012, 8, 1701-1705.	4.3	77
70	Mitophagy or how to control the Jekyll and Hyde embedded in mitochondrial metabolism: implications for melanoma progression and drug resistance. Pigment Cell and Melanoma Research, 2012, 25, 721-731.	1.5	16
71	Voltage-dependent Anion Channels (VDACs) Recruit Parkin to Defective Mitochondria to Promote Mitochondrial Autophagy. Journal of Biological Chemistry, 2012, 287, 40652-40660.	1.6	179
72	Mitochondrial Dysfunction in Genetic Animal Models of Parkinson's Disease. Antioxidants and Redox Signaling, 2012, 16, 896-919.	2.5	77

#	Article	IF	CITATIONS
73	miR-375 Inhibits Autophagy and Reduces Viability of Hepatocellular Carcinoma Cells Under Hypoxic Conditions. Gastroenterology, 2012, 143, 177-187.e8.	0.6	255
74	Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biological Chemistry, 2012, 393, 1485-1512.	1.2	376
75	Defective Autophagy in Parkinson's Disease: Role of Oxidative Stress. Molecular Neurobiology, 2012, 46, 639-661.	1.9	124
76	Drosophila as a Model to Study Mitochondrial Dysfunction in Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009944-a009944.	2.9	76
77	Tissue Specific Induction of p62/Sqstm1 by Farnesoid X Receptor. PLoS ONE, 2012, 7, e43961.	1.1	30
78	Parkinson's Disease and Autophagy. Parkinson's Disease, 2012, 2012, 1-6.	0.6	21
79	The Emerging Role of Proteolysis in Mitochondrial Quality Control and the Etiology of Parkinson's Disease. Parkinson's Disease, 2012, 2012, 1-16.	0.6	27
80	Mortalin, Apoptosis, and Neurodegeneration. Biomolecules, 2012, 2, 143-164.	1.8	60
81	Autophagy in mammalian cells. World Journal of Biological Chemistry, 2012, 3, 1.	1.7	72
82	VDAC1 (voltage-dependent anion channel 1). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2012, , .	0.1	1
83	Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nature Reviews Neuroscience, 2012, 13, 77-93.	4.9	678
84	Mitophagy: A Complex Mechanism of Mitochondrial Removal. Antioxidants and Redox Signaling, 2012, 17, 794-802.	2.5	188
85	p62 at the Interface of Autophagy, Oxidative Stress Signaling, and Cancer. Antioxidants and Redox Signaling, 2012, 17, 786-793.	2.5	162
86	Mitochondrial Dynamics: The Intersection of Form and Function. Advances in Experimental Medicine and Biology, 2012, 748, 13-40.	0.8	72
87	Ubiquitin-like proteins and autophagy at a glance. Journal of Cell Science, 2012, 125, 2343-2348.	1.2	43
88	Molecular pathogenesis of Parkinson's disease: update. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 430-436.	0.9	69
89	p62: a versatile multitasker takes on cancer. Trends in Biochemical Sciences, 2012, 37, 230-236.	3.7	214
90	The role of α-synuclein in neurodegeneration — An update. Translational Neuroscience, 2012, 3, .	0.7	16

#	Article	IF	CITATIONS
91	Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson's disease. Acta Neuropathologica, 2012, 123, 173-188.	3.9	118
92	Ubiquitination and selective autophagy. Cell Death and Differentiation, 2013, 20, 21-30.	5.0	572
93	The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death and Differentiation, 2013, 20, 31-42.	5.0	1,279
94	Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nature Communications, 2013, 4, 2111.	5.8	222
95	The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature, 2013, 501, 512-516.	13.7	487
96	Ubiquitin receptors and protein quality control. Journal of Molecular and Cellular Cardiology, 2013, 55, 73-84.	0.9	60
97	PINK1 rendered temperature sensitive by disease-associated and engineered mutations. Human Molecular Genetics, 2013, 22, 2572-2589.	1.4	23
98	The mitochondrial rhomboid protease: Its rise from obscurity to the pinnacle of disease-relevant genes. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2916-2925.	1.4	38
99	Role of p62/SQSTM1 in liver physiology and pathogenesis. Experimental Biology and Medicine, 2013, 238, 525-538.	1.1	112
100	Molecular signaling toward mitophagy and its physiological significance. Experimental Cell Research, 2013, 319, 1697-1705.	1.2	89
101	Bit-by-bit autophagic removal of parkin-labelled mitochondria. Nature Communications, 2013, 4, 2428.	5.8	119
102	Phosphorylation of p62 Activates the Keap1-Nrf2 Pathway during Selective Autophagy. Molecular Cell, 2013, 51, 618-631.	4.5	880
103	Mitochondrial quality control turns out to be the principal suspect in parkin and PINK1-related autosomal recessive Parkinson's disease. Current Opinion in Neurobiology, 2013, 23, 100-108.	2.0	67
104	Parkin Protein Deficiency Exacerbates Cardiac Injury and Reduces Survival following Myocardial Infarction. Journal of Biological Chemistry, 2013, 288, 915-926.	1.6	383
105	Widespread Mitochondrial Depletion via Mitophagy Does Not Compromise Necroptosis. Cell Reports, 2013, 5, 878-885.	2.9	240
106	Zonated induction of autophagy and mitochondrial spheroids limits acetaminophen-induced necrosis in the liver. Redox Biology, 2013, 1, 427-432.	3.9	106
107	Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature, 2013, 496, 372-376.	13.7	851
108	Mitochondrial dysfunction and oxidative stress in Parkinson's disease and monogenic parkinsonism. Neurobiology of Disease, 2013, 51, 35-42.	2.1	387

#	ARTICLE	IF	CITATIONS
109	The interplay of neuronal mitochondrial dynamics and bioenergetics: Implications for Parkinson's disease. Neurobiology of Disease, 2013, 51, 43-55.	2.1	112
110	Mitophagy and Parkinson's disease: Be eaten to stay healthy. Molecular and Cellular Neurosciences, 2013, 55, 37-43.	1.0	87
111	Mitochondrial Diseases of the Brain. Free Radical Biology and Medicine, 2013, 63, 1-29.	1.3	361
112	A role for sequestosome 1/p62 in mitochondrial dynamics, import and genome integrity. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 452-459.	1.9	68
113	Mitochondrial biogenesis and fragmentation as regulators of protein degradation in striated muscles. Journal of Molecular and Cellular Cardiology, 2013, 55, 64-72.	0.9	56
114	SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radical Biology and Medicine, 2013, 63, 222-234.	1.3	339
115	Mitochondrial morphology in mitophagy and macroautophagy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 205-212.	1.9	213
116	Proteolytic control of mitochondrial function and morphogenesis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 195-204.	1.9	86
117	Phosphorylation Events in Selective Mitophagy: Possible Biochemical Markers?. Current Pathobiology Reports, 2013, 1, 273-282.	1.6	2
118	A molecular explanation for the recessive nature of parkin-linked Parkinson's disease. Nature Communications, 2013, 4, 1983.	5.8	123
119	How Parkinsonian Toxins Dysregulate the Autophagy Machinery. International Journal of Molecular Sciences, 2013, 14, 22163-22189.	1.8	62
120	Mitochondrion-associated protein LRPPRC suppresses the initiation of basal levels of autophagy via enhancing Bcl-2 stability. Biochemical Journal, 2013, 454, 447-457.	1.7	53
121	Posttranslational Modification and Quality Control. Circulation Research, 2013, 112, 367-381.	2.0	73
122	AF-6 is a positive modulator of the PINK1/parkin pathway and is deficient in Parkinson's disease. Human Molecular Genetics, 2013, 22, 2083-2096.	1.4	25
123	Ubiquitination Regulates the Morphogenesis and Function of Sperm Organelles. Cells, 2013, 2, 732-750.	1.8	35
124	Mitochondrial Dysfunction in Cancer. Frontiers in Oncology, 2013, 3, 292.	1.3	382
125	A conserved domain in exon 2 coding for the human and murine ARF tumor suppressor protein is required for autophagy induction. Autophagy, 2013, 9, 1553-1565.	4.3	39
126	Functions of autophagy in normal and diseased liver. Autophagy, 2013, 9, 1131-1158.	4.3	384

#	Article	IF	CITATIONS
127	Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Phosphorylation by Protein Kinase Cδ (PKCδ) Inhibits Mitochondria Elimination by Lysosomal-like Structures following Ischemia and Reoxygenation-induced Injury. Journal of Biological Chemistry, 2013, 288, 18947-18960.	1.6	87
128	Regulation and function of mitophagy in development and cancer. Autophagy, 2013, 9, 1720-1736.	4.3	85
129	The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance. Autophagy, 2013, 9, 1801-1817.	4.3	119
130	Tools and techniques to measure mitophagy using fluorescence microscopy. Autophagy, 2013, 9, 1653-1662.	4.3	114
131	Mitophagy in hematopoietic stem cells. Autophagy, 2013, 9, 1737-1749.	4.3	58
132	Mitophagy. Essays in Biochemistry, 2013, 55, 93-104.	2.1	24
133	S-nitrosylation regulates mitochondrial quality control via activation of parkin. Scientific Reports, 2013, 3, 2202.	1.6	80
134	Monoubiquitination of Ancient Ubiquitous Protein 1 Promotes Lipid Droplet Clustering. PLoS ONE, 2013, 8, e72453.	1.1	24
135	Parkin- and PINK1-Dependent Mitophagy in Neurons: Will the Real Pathway Please Stand Up?. Frontiers in Neurology, 2013, 4, 100.	1.1	111
136	Molecular Process and Physiological Significance of Mitophagy. , 2014, , 49-63.		1
137	Quality Control in Mitochondria. , 2014, , 85-101.		0
138	Autophagy Inhibitor LRPPRC Suppresses Mitophagy through Interaction with Mitophagy Initiator Parkin. PLoS ONE, 2014, 9, e94903.	1.1	38
139	Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. ELife, 2014, 3, e01612.	2.8	242
140	Mitophagy Controlled by the PINK1-Parkin Pathway Is Associated with Parkinson's Disease Pathogenesis. , 2014, , 227-238.		1
141	A Conserved Motif Mediates both Multimer Formation and Allosteric Activation of Phosphoglycerate Mutase 5. Journal of Biological Chemistry, 2014, 289, 25137-25148.	1.6	27
142	Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses. Frontiers in Biology, 2014, 9, 423-436.	0.7	10
143	Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy. Autophagy, 2014, 10, 1906-1920.	4.3	104
144	TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control. Autophagy, 2014, 10, 2279-2296.	4.3	174

#	Article	IF	CITATIONS
145	Recent advances in mitochondrial turnover during chronic muscle disuse. Integrative Medicine Research, 2014, 3, 161-171.	0.7	28
146	Autophagy inhibition uncovers the neurotoxic action of the antipsychotic drug olanzapine. Autophagy, 2014, 10, 2362-2378.	4.3	66
147	Parkin Sensitizes toward Apoptosis Induced by Mitochondrial Depolarization through Promoting Degradation of Mcl-1. Cell Reports, 2014, 9, 1538-1553.	2.9	126
148	MicroRNA-137 Is a Novel Hypoxia-responsive MicroRNA That Inhibits Mitophagy via Regulation of Two Mitophagy Receptors FUNDC1 and NIX. Journal of Biological Chemistry, 2014, 289, 10691-10701.	1.6	115
149	Mitochondrial DNA: Impacting Central and Peripheral Nervous Systems. Neuron, 2014, 84, 1126-1142.	3.8	100
150	Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4439-48.	3.3	646
151	Agent-based modeling of autophagy reveals emergent regulatory behavior of spatio-temporal autophagy dynamics. Cell Communication and Signaling, 2014, 12, 56.	2.7	20
152	Mitochondrial protein quality control in health and disease. British Journal of Pharmacology, 2014, 171, 1870-1889.	2.7	51
153	Modulating Autophagy and the "Reverse Warburg Effect― Cancer Drug Discovery and Development, 2014, , 131-156.	0.2	2
154	Activation of autophagy protects against cholestasis-induced hepatic injury. Cell and Bioscience, 2014, 4, 47.	2.1	31
155	BECN1 is involved in the initiation of mitophagy. Autophagy, 2014, 10, 1105-1119.	4.3	92
156	Abnormal alpha-synuclein reduces nigral voltage-dependent anion channel 1 in sporadic and experimental Parkinson's disease. Neurobiology of Disease, 2014, 69, 1-14.	2.1	56
157	Mitochondrial quality control in neurodegenerative diseases. Biochimie, 2014, 100, 177-183.	1.3	44
158	An emerging role of PARK2 in cancer. Journal of Molecular Medicine, 2014, 92, 31-42.	1.7	88
159	PINK1 Loss-of-Function Mutations Affect Mitochondrial Complex I Activity via NdufA10 Ubiquinone Uncoupling. Science, 2014, 344, 203-207.	6.0	300
160	p62/SQSTM1 at the interface of aging, autophagy, and disease. Age, 2014, 36, 9626.	3.0	123
161	To Be or Not to Be? How Selective Autophagy and Cell Death Govern Cell Fate. Cell, 2014, 157, 65-75.	13.5	606
162	Oxidative Stress, Redox Signaling, and Autophagy: Cell Death <i>Versus</i> Survival. Antioxidants and Redox Signaling, 2014, 21, 66-85.	2.5	352

#	Article	IF	CITATIONS
163	Autophagy and Its Normal and Pathogenic States in the Brain. Annual Review of Neuroscience, 2014, 37, 55-78.	5.0	165
164	Autophagy in White Adipose Tissue. , 2014, , 115-127.		0
165	Pancreatic β-Cell Failure Mediated by mTORC1 Hyperactivity and Autophagic Impairment. Diabetes, 2014, 63, 2996-3008.	0.3	95
166	Elevated levels of mitochondrionâ€associated autophagy inhibitor LRPPRC are associated with poor prognosis in patients with prostate cancer. Cancer, 2014, 120, 1228-1236.	2.0	39
167	Autophagy and mitophagy in the myocardium: therapeutic potential and concerns. British Journal of Pharmacology, 2014, 171, 1907-1916.	2.7	60
168	Mitochondrial dismissal in mammals, from protein degradation to mitophagy. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 451-460.	0.5	70
169	Cargo recognition and trafficking in selective autophagy. Nature Cell Biology, 2014, 16, 495-501.	4.6	997
170	The rescue of microtubule-dependent traffic recovers mitochondrial function in Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 7-21.	1.8	98
171	SirT3 Regulates the Mitochondrial Unfolded Protein Response. Molecular and Cellular Biology, 2014, 34, 699-710.	1.1	231
172	<scp>USP</scp> 8 regulates mitophagy by removing <scp>K</scp> 6â€linked ubiquitin conjugates from parkin. EMBO Journal, 2014, 33, 2473-2491.	3.5	298
173	Mitochondrial proteomics investigation of a cellular model of impaired dopamine homeostasis, an early step in Parkinson's disease pathogenesis. Molecular BioSystems, 2014, 10, 1332.	2.9	48
174	Hepatitis C Virus Core Protein Suppresses Mitophagy by Interacting with Parkin in the Context of Mitochondrial Depolarization. American Journal of Pathology, 2014, 184, 3026-3039.	1.9	56
175	Metabolic control of cell death. Science, 2014, 345, 1250256.	6.0	527
176	Altered dopamine homeostasis differentially affects mitochondrial voltage-dependent anion channels turnover. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1816-1822.	1.8	31
177	Select E2 enzymes differentially regulate parkin activation and mitophagy. Journal of Cell Science, 2014, 127, 3488-504.	1.2	65
178	Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy?. British Journal of Pharmacology, 2014, 171, 1917-1942.	2.7	204
179	Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1254-1265.	1.1	164
180	UBE2N, UBE2L3 and UBE2D2/3 ubiquitin-conjugating enzymes are essential for parkin-dependent mitophagy. Journal of Cell Science, 2014, 127, 3280-93.	1.2	81

ARTICLE IF CITATIONS # Organellophagy: Eliminating cellular building blocks via selective autophagy. Journal of Cell Biology, 181 2.3 181 2014, 205, 435-445. Bcl-2 Family Proteins Participate in Mitochondrial Quality Control by Regulating Parkin/PINK1-Dependent Mitophagy. Molecular Cell, 2014, 55, 451-466. 4.5 178 Interplay Between HDAC6 and Its Interacting Partners: Essential Roles in the Aggresome-Autophagy 183 0.9 66 Pathway and Neurodegenerative Diseases. DNA and Cell Biology, 2014, 33, 567-580. Nuclear Cytoplasmic Trafficking of Proteins is a Major Response of Human Fibroblasts to Oxidative 184 1.8 Stress. Journal of Proteome Research, 2014, 13, 4398-4423. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. 185 1.4 264 Human Molecular Genetics, 2014, 23, 5227-5242. Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression. 2.1 Neurobiology of Disease, 2014, 62, 426-440. Paternal Mitochondrial Destruction after Fertilization Is Mediated by a Common Endocytic and 187 3.1 132 Autophagic Pathway in Drosophila. Developmental Cell, 2014, 29, 305-320. Activation of the ubiquitinâ€"proteasome system against arsenic trioxide cardiotoxicity involves 188 2.0 26 ubiquitin ligase Parkin for mitochondrial homeostasis. Toxicology, 2014, 322, 43-50. Bulk autophagy, but not mitophagy, is increased in cellular model of mitochondrial disease. 189 1.8 29 Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1059-1070. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature, 2014, 510, 370-375. 13.7 660 Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance. Biochimica Et 191 1.9 134 Biophysica Acta - Molecular Cell Research, 2014, 1843, 2012-2026. Regulation by mitophagy. International Journal of Biochemistry and Cell Biology, 2014, 53, 147-150. 1.2 Mitophagy mechanisms and role in human diseases. International Journal of Biochemistry and Cell 193 1.2 118 Biology, 2014, 53, 127-133. Protein damage, repair and proteolysis. Molecular Aspects of Medicine, 2014, 35, 1-71. 194 2.7 189 The Different Molecular Mechanisms of Mitophagy Between Yeast and Mammals. Critical Reviews in 195 0.4 5 Eukaryotic Gene Expression, 2014, 24, 29-38. TSPO is a REDOX regulator of cell mitophagy. Biochemical Society Transactions, 2015, 43, 543-552. 53 Optogenetic probing of mitochondrial damage responses. Annals of the New York Academy of 199 1.8 10 Sciences, 2015, 1350, 48-51. The Function of Autophagy in Neurodegenerative Diseases. International Journal of Molecular 1.8 Sciences, 2015, 16, 26797-26812.

#	Article	IF	CITATIONS
202	The Role of Parkin and PINK1 in Mitochondrial Quality Control. , 2015, , 257-271.		0
203	Mitochondria: A Therapeutic Target for Parkinson's Disease?. International Journal of Molecular Sciences, 2015, 16, 20704-20730.	1.8	96
204	A Mechanistic Review of Mitophagy and Its Role in Protection against Alcoholic Liver Disease. Biomolecules, 2015, 5, 2619-2642.	1.8	52
205	Oxidative Stress in Placenta: Health and Diseases. BioMed Research International, 2015, 2015, 1-15.	0.9	118
206	Mitophagy Regulated by the PINK1-Parkin Pathway. , 2015, , .		8
207	The three â€~P's of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes and Development, 2015, 29, 989-999.	2.7	324
208	TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Human Molecular Genetics, 2015, 24, 4429-4442.	1.4	249
209	Convergence of Parkin, PINK1, and α-Synuclein on Stress-induced Mitochondrial Morphological Remodeling. Journal of Biological Chemistry, 2015, 290, 13862-13874.	1.6	76
210	Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death and Differentiation, 2015, 22, 377-388.	5.0	1,505
211	Minireview: Autophagy in Pancreatic β-Cells and Its Implication in Diabetes. Molecular Endocrinology, 2015, 29, 338-348.	3.7	76
212	Teaching the basics of autophagy and mitophagy to redox biologists—Mechanisms and experimental approaches. Redox Biology, 2015, 4, 242-259.	3.9	103
213	The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson's Disease. Neuron, 2015, 85, 257-273.	3.8	1,632
214	Therapeutic Targeting of Autophagy. Circulation Research, 2015, 116, 489-503.	2.0	113
215	Autophagy machinery in the context of mammalian mitophagy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2797-2801.	1.9	76
216	The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Human Molecular Genetics, 2015, 24, 2528-2538.	1.4	165
217	Mitochondrial quality control: Easy come, easy go. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2802-2811.	1.9	91
218	Mending a broken heart: the role of mitophagy in cardioprotection. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H183-H192.	1.5	97
219	Role of Glucose Metabolism and ATP in Maintaining PINK1 Levels during Parkin-mediated Mitochondrial Damage Responses. Journal of Biological Chemistry, 2015, 290, 904-917.	1.6	38

# 220	ARTICLE Selective autophagy: Xenophagy. Methods, 2015, 75, 120-127.	IF 1.9	CITATIONS
221	Mitochondrial dynamics and viral infections: A close nexus. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2822-2833.	1.9	143
222	Mitochondrial Fission and Fusion Factors Reciprocally Orchestrate Mitophagic Culling in Mouse Hearts and Cultured Fibroblasts. Cell Metabolism, 2015, 21, 273-286.	7.2	398
223	Flies with Parkinson's disease. Experimental Neurology, 2015, 274, 42-51.	2.0	29
224	Molecular mechanisms underlying PINK1 and Parkin catalyzed ubiquitylation of substrates on damaged mitochondria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2791-2796.	1.9	35
225	PINK1-induced mitophagy promotes neuroprotection in Huntington's disease. Cell Death and Disease, 2015, 6, e1617-e1617.	2.7	175
226	Regulation of mitophagy in ischemic brain injury. Neuroscience Bulletin, 2015, 31, 395-406.	1.5	44
227	Parkin-induced ubiquitination of Mff promotes its association with p62/SQSTM1 during mitochondrial depolarization. Acta Biochimica Et Biophysica Sinica, 2015, 47, 522-529.	0.9	21
228	Clueless, a protein required for mitochondrial function, interacts with the PINK1-Parkin complex in <i>Drosophila</i> . DMM Disease Models and Mechanisms, 2015, 8, 577-589.	1.2	37
229	Mitochondria, autophagy and age-associated neurodegenerative diseases: New insights into a complex interplay. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1412-1423.	0.5	90
230	Mitophagy: Basic Mechanism and Potential Role in Kidney Diseases. Kidney Diseases (Basel,) Tj ETQq0 0 0 rgBT /0	Dverlock 1 1.2	0 Tf 50 342 ⁻ 42
231	Mitophagy and cancer. Cancer & Metabolism, 2015, 3, 4.	2.4	204
232	Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6637-6642.	3.3	240
233	Compromised autophagy and neurodegenerative diseases. Nature Reviews Neuroscience, 2015, 16, 345-357.	4.9	676
234	Autophagy and Necroptosis in Cancer. , 2015, , 243-273.		0
235	Selective Disposal of Insoluble Protein Aggregates. , 2015, , 183-227.		0
236	ZNF32 inhibits autophagy through the mTOR pathway and protects MCF-7 cells from stimulus-induced cell death. Scientific Reports, 2015, 5, 9288.	1.6	21
237	Impaired mitophagy leads to cigarette smoke stressâ€induced cellular senescence: implications for chronic obstructive pulmonary disease. FASEB Journal, 2015, 29, 2912-2929.	0.2	209

#	Article	IF	CITATIONS
238	Structural and Functional Impact of Parkinson Disease-Associated Mutations in the E3 Ubiquitin Ligase Parkin. Human Mutation, 2015, 36, 774-786.	1.1	69
239	Autophagosome dynamics in neurodegeneration at a glance. Journal of Cell Science, 2015, 128, 1259-1267.	1.2	114
240	Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2784-2790.	1.9	201
241	Insights into the key roles of proteoglycans in breast cancer biology and translational medicine. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1855, 276-300.	3.3	96
242	The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nature Immunology, 2015, 16, 458-466.	7.0	60
243	Molecular Mechanisms of Mitochondrial Autophagy/Mitophagy in the Heart. Circulation Research, 2015, 116, 1477-1490.	2.0	265
244	Phosphorylated ubiquitin chain is the genuine Parkin receptor. Journal of Cell Biology, 2015, 209, 111-128.	2.3	217
245	Autophagy in Cell Life and Cell Death. Current Topics in Developmental Biology, 2015, 114, 67-91.	1.0	132
246	p62/ <scp>SQSTM</scp> 1 functions as a signaling hub and an autophagy adaptor. FEBS Journal, 2015, 282, 4672-4678.	2.2	626
247	NBR1 is dispensable for PARK2-mediated mitophagy regardless of the presence or absence of SQSTM1. Cell Death and Disease, 2015, 6, e1943-e1943.	2.7	35
248	The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature, 2015, 524, 309-314.	13.7	1,969
249	Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance. Nature Communications, 2015, 6, 7926.	5.8	98
250	Tagged tags engage disposal. Nature, 2015, 524, 294-295.	13.7	6
251	The receptor proteins: pivotal roles in selective autophagy. Acta Biochimica Et Biophysica Sinica, 2015, 47, 571-580.	0.9	44
252	Organelle-Specific Initiation of Autophagy. Molecular Cell, 2015, 59, 522-539.	4.5	176
253	The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. Molecular Cell, 2015, 60, 7-20.	4.5	658
254	Double-edged alliance: mitochondrial surveillance by the UPS and autophagy. Current Opinion in Cell Biology, 2015, 37, 18-27.	2.6	25
255	Mitochondrial dynamics and mitochondrial quality control. Redox Biology, 2015, 4, 6-13.	3.9	648

#	Article	IF	CITATIONS
256	A time to reap, a time to sow: Mitophagy and biogenesis in cardiac pathophysiology. Journal of Molecular and Cellular Cardiology, 2015, 78, 62-72.	0.9	62
257	Keeping the immune system in check: a role for mitophagy. Immunology and Cell Biology, 2015, 93, 3-10.	1.0	83
258	Threonine 56 phosphorylation of Bcl-2 is required for LRRK2 G2019S-induced mitochondrial depolarization and autophagy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 12-21.	1.8	53
259	Regulation of autophagy by protein post-translational modification. Laboratory Investigation, 2015, 95, 14-25.	1.7	130
260	Exploring new pathways of neurodegeneration in ALS: The role of mitochondria quality control. Brain Research, 2015, 1607, 36-46.	1.1	64
261	The role of autophagic degradation in the heart. Journal of Molecular and Cellular Cardiology, 2015, 78, 73-79.	0.9	49
262	Autophagic Flux Failure in Neurodegeneration: Identifying the Defect and Compensating Flux Offset. , 0, , .		3
263	Molecular Mechanisms Underlying the Degradation of Peroxisomes. , 2016, , 85-98.		1
264	Mitochondrial Dysfunction in Alzheimer's Disease and the Rationale for Bioenergetics Based Therapies. , 2016, 7, 201.		207
265	Cross Talk of Proteostasis and Mitostasis in Cellular Homeodynamics, Ageing, and Disease. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-24.	1.9	33
266	Is Selective Autophagy Distinct from Starvation-Induced Autophagy?. , 2016, , 113-125.		0
267	Choosing Lunch: The Role of Selective Autophagy Adaptor Proteins. , 0, , .		2
268	Mitophagy. , 2016, , 91-104.		1
269	Parkin Regulation and Neurodegenerative Disorders. Frontiers in Aging Neuroscience, 2015, 7, 248.	1.7	62
270	Synaptosomal Mitochondrial Dysfunction in 5xFAD Mouse Model of Alzheimer's Disease. PLoS ONE, 2016, 11, e0150441.	1.1	66
271	Mitochondrial Quality Control and Muscle Mass Maintenance. Frontiers in Physiology, 2015, 6, 422.	1.3	290
272	The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Reports, 2016, 17, 300-316.	2.0	197
273	Sequestosome 1/p62 Protein Is Associated with Autophagic Removal of Excess Hepatic Endoplasmic Reticulum in Mice. Journal of Biological Chemistry, 2016, 291, 18663-18674.	1.6	65

#	Article	IF	CITATIONS
274	Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes. Scientific Reports, 2016, 6, 20887.	1.6	31
275	Loss of porin function in dopaminergic neurons of Drosophila is suppressed by Buffy. Journal of Biomedical Science, 2016, 23, 84.	2.6	0
276	Receptor-mediated mitophagy. Journal of Molecular and Cellular Cardiology, 2016, 95, 50-56.	0.9	59
277	Parkin Somatic Mutations Link Melanoma and Parkinson's Disease. Journal of Genetics and Genomics, 2016, 43, 369-379.	1.7	23
278	Interfaces between mitochondrial dynamics and disease. Cell Calcium, 2016, 60, 190-198.	1.1	30
279	Mechanisms of mitophagy: putting the powerhouse into the doghouse. Biological Chemistry, 2016, 397, 617-635.	1.2	8
280	Absence of alsin function leads to corticospinal motor neuron vulnerability via novel disease mechanisms. Human Molecular Genetics, 2016, 25, 1074-1087.	1.4	70
281	Controlling quality and amount of mitochondria by mitophagy: insights into the role of ubiquitination and deubiquitination. Biological Chemistry, 2016, 397, 637-647.	1.2	21
282	Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radical Biology and Medicine, 2016, 100, 210-222.	1.3	232
283	Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility. Proceedings of the United States of America, 2016, 113, E6097-E6106.	3.3	122
284	Mitochondrial Changes in Cancer. Handbook of Experimental Pharmacology, 2016, 240, 211-227.	0.9	16
285	Structural basis for the phosphorylation of FUNDC1 LIR as a molecular switch of mitophagy. Autophagy, 2016, 12, 2363-2373.	4.3	101
286	Nutrient restriction in combinatory therapy of tumors. Molecular Biology, 2016, 50, 362-378.	0.4	4
287	Mitochondrial redox system, dynamics, and dysfunction in lung inflammaging and COPD. International Journal of Biochemistry and Cell Biology, 2016, 81, 294-306.	1.2	69
288	Caloric restriction and the precision-control of autophagy: A strategy for delaying neurodegenerative disease progression. Experimental Gerontology, 2016, 83, 97-111.	1.2	57
289	The critical roles of mitophagy in cerebral ischemia. Protein and Cell, 2016, 7, 699-713.	4.8	82
290	Absence of the Autophagy Adaptor SQSTM1/p62 Causes Childhood-Onset Neurodegeneration with Ataxia, Dystonia, and Gaze Palsy. American Journal of Human Genetics, 2016, 99, 735-743.	2.6	99
291	Targeting TEAD/YAP-transcription-dependent necrosis, TRIAD, ameliorates Huntington's disease pathology. Human Molecular Genetics, 2016, 25, ddw303.	1.4	38

		CITATION R	EPORT	
#	Article		IF	CITATIONS
292	NeuCode Proteomics Reveals Bap1 Regulation of Metabolism. Cell Reports, 2016, 16,	583-595.	2.9	57
293	PARKIN/PINK1 Pathway for the Selective Isolation and Degradation of Impaired Mitoch 159-182.	ondria. , 2016, ,		3
294	Defending the mitochondria: The pathways of mitophagy and mitochondrial-derived ve International Journal of Biochemistry and Cell Biology, 2016, 79, 427-436.	2sicles.	1.2	98
295	VCP recruitment to mitochondria causes mitophagy impairment and neurodegeneration Huntington's disease. Nature Communications, 2016, 7, 12646.	on in models of	5.8	144
296	Role of autophagy and lysosomal drug sequestration in acquired resistance to doxorul cells. BMC Cancer, 2016, 16, 762.	picin in MCF-7	1.1	58
297	Mitochondrial and lysosomal biogenesis are activated following <scp>PINK</scp> 1/pa mitophagy. Journal of Neurochemistry, 2016, 136, 388-402.	rkinâ€mediated	2.1	184
298	Mitochondrial Dysfunction in Neurodegenerative Disorders. , 2016, , .			3
299	SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activat macrophages. Autophagy, 2016, 12, 1272-1291.	ion in	4.3	218
300	Autophagy in acute brain injury. Nature Reviews Neuroscience, 2016, 17, 467-484.		4.9	174
302	Deciphering the Molecular Signals of PINK1/Parkin Mitophagy. Trends in Cell Biology, 2	2016, 26, 733-744.	3.6	458
303	Mitochondrial Degradation, Autophagy and Neurodegenerative Disease. , 2016, , 255-	278.		1
304	The regulation of autophagy during exercise in skeletal muscle. Journal of Applied Phys 120, 664-673.	iology, 2016,	1.2	91
305	Ubiquitin modifications. Cell Research, 2016, 26, 399-422.		5.7	1,357
306	Phospho-ubiquitin: upending the PINK–Parkin–ubiquitin cascade. Journal of Bioche 379-385.	emistry, 2016, 159,	0.9	53
307	NF-κB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria. C 896-910.	ell, 2016, 164,	13.5	859
308	Ubiquitin mediated regulation of the E3 ligase GP78 by Mahogunin in <i>trans</i> affe mitochondrial homeostasis. Journal of Cell Science, 2016, 129, 757-73.	ects	1.2	39
309	Mitochondrial dynamics and mitophagy in Parkinson's disease: A fly point of view. Neu Disease, 2016, 90, 58-67.	robiology of	2.1	53
310	Staying young at heart: autophagy and adaptation to cardiac aging. Journal of Molecu Cardiology, 2016, 95, 78-85.	lar and Cellular	0.9	42

#	Article	IF	CITATIONS
311	Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cellular and Molecular Life Sciences, 2016, 73, 775-795.	2.4	310
312	Parkin loss-of-function pathology: Premature neuronal senescence induced by high levels of reactive oxygen species?. Mechanisms of Ageing and Development, 2017, 161, 112-120.	2.2	12
313	The pharmacological regulation of cellular mitophagy. Nature Chemical Biology, 2017, 13, 136-146.	3.9	240
314	PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy, 2017, 13, 654-669.	4.3	249
315	Mechanisms of Parkinson's disease-related proteins in mediating secondary brain damage after cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1910-1926.	2.4	51
316	Target acquired: Selective autophagy in cardiometabolic disease. Science Signaling, 2017, 10, .	1.6	56
317	Autophagy Receptors and Neurodegenerative Diseases. Trends in Cell Biology, 2017, 27, 491-504.	3.6	173
318	Mitophagy: Link to cancer development and therapy. Biochemical and Biophysical Research Communications, 2017, 482, 432-439.	1.0	98
319	Cleaning House: Selective Autophagy of Organelles. Developmental Cell, 2017, 41, 10-22.	3.1	474
320	p62-Mediated mitochondrial clustering attenuates apoptosis induced by mitochondrial depolarization. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1308-1317.	1.9	15
321	Single-Prolonged-Stress-Induced Changes in Autophagy-Related Proteins Beclin-1, LC3, and p62 in the Medial Prefrontal Cortex of Rats with Post-traumatic Stress Disorder. Journal of Molecular Neuroscience, 2017, 62, 43-54.	1.1	42
322	Expanding perspectives on the significance of mitophagy in cancer. Seminars in Cancer Biology, 2017, 47, 110-124.	4.3	131
323	Pathogenic p62/SQSTM1 mutations impair energy metabolism through limitation of mitochondrial substrates. Scientific Reports, 2017, 7, 1666.	1.6	51
324	p62/SQSTM1 Cooperates with Hyperactive mTORC1 to Regulate Glutathione Production, Maintain Mitochondrial Integrity, and Promote Tumorigenesis. Cancer Research, 2017, 77, 3255-3267.	0.4	49
325	Molecular Biology Digest of Cell Mitophagy. International Review of Cell and Molecular Biology, 2017, 332, 233-258.	1.6	10
326	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	3.5	1,230
327	Detection of Hypoxia-Induced and Iron Depletion-Induced Mitophagy in Mammalian Cells. Methods in Molecular Biology, 2017, 1759, 141-149.	0.4	6
328	Lack of Activation of Mitophagy during Endurance Exercise in Human. Medicine and Science in Sports and Exercise, 2017, 49, 1552-1561.	0.2	33

#	Article	IF	CITATIONS
329	Ubiquitin Linkage-Specific Affimers Reveal Insights into K6-Linked Ubiquitin Signaling. Molecular Cell, 2017, 68, 233-246.e5.	4.5	153
330	How to get rid of mitochondria: crosstalk and regulation of multiple mitophagy pathways. Biological Chemistry, 2017, 399, 29-45.	1.2	77
331	Mitochondrial-Associated Membranes in Parkinson's Disease. Advances in Experimental Medicine and Biology, 2017, 997, 157-169.	0.8	26
332	A PGAM5-KEAP1-Nrf2 complex is required for stress-induced mitochondrial retrograde trafficking. Journal of Cell Science, 2017, 130, 3467-3480.	1.2	66
333	VPS34 stimulation of p62 phosphorylation for cancer progression. Oncogene, 2017, 36, 6850-6862.	2.6	54
334	Progressing neurobiological strategies against proteostasis failure: Challenges in neurodegeneration. Progress in Neurobiology, 2017, 159, 1-38.	2.8	27
335	Parkin-Independent Mitophagy Controls Chemotherapeutic Response in Cancer Cells. Cell Reports, 2017, 20, 2846-2859.	2.9	217
336	MTORC1 Regulates both General Autophagy and Mitophagy Induction after Oxidative Phosphorylation Uncoupling. Molecular and Cellular Biology, 2017, 37, .	1.1	90
337	Mitophagy as a Protective Mechanism against Myocardial Stress. , 2017, 7, 1407-1424.		73
338	Phosphorylation of p62 by AMP-activated protein kinase mediates autophagic cell death in adult hippocampal neural stem cells. Journal of Biological Chemistry, 2017, 292, 13795-13808.	1.6	42
339	Toll-interacting protein deficiency promotes neurodegeneration via impeding autophagy completion in high-fat diet-fed ApoEâ^'/â^' mouse model. Brain, Behavior, and Immunity, 2017, 59, 200-210.	2.0	24
340	Phospho-ubiquitin-PARK2 complex as a marker for mitophagy defects. Autophagy, 2017, 13, 201-211.	4.3	23
341	Parkin and mitophagy in cancer. Oncogene, 2017, 36, 1315-1327.	2.6	201
342	PINK1, Parkin, and Mitochondrial Quality Control: What can we Learn about Parkinson's Disease Pathobiology?. Journal of Parkinson's Disease, 2017, 7, 13-29.	1.5	175
343	Detection and Clearance of Damaged Lysosomes byÂthe Endo-Lysosomal Damage Response andÂLysophagy. Current Biology, 2017, 27, R1330-R1341.	1.8	155
344	The cytotoxic effects of dimethyl sulfoxide in mouse preimplantation embryos: a mechanistic study. Theranostics, 2017, 7, 4735-4752.	4.6	59
345	The Role of p62 in Aggregopathies. , 2017, , 139-147.		1
346	Neuronal Mitophagy in Neurodegenerative Diseases. Frontiers in Molecular Neuroscience, 2017, 10, 64.	1.4	150

#	Article	IF	CITATIONS
347	The Interrelation between Reactive Oxygen Species and Autophagy in Neurological Disorders. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-16.	1.9	61
348	Mitophagy. , 2017, , 139-177.		3
349	CSFV induced mitochondrial fission and mitophagy to inhibit apoptosis. Oncotarget, 2017, 8, 39382-39400.	0.8	56
350	Mitophagy and Quality Control Mechanisms inÂMitochondrial Maintenance. Current Biology, 2018, 28, R170-R185.	1.8	1,262
351	Genetic aberrations in macroautophagy genes leading to diseases. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 803-816.	1.9	49
352	Dynamics of PARKIN-Dependent Mitochondrial Ubiquitylation in Induced Neurons and Model Systems Revealed by Digital Snapshot Proteomics. Molecular Cell, 2018, 70, 211-227.e8.	4.5	145
353	Inhibition of Drp1/Fis1 interaction slows progression of amyotrophic lateral sclerosis. EMBO Molecular Medicine, 2018, 10, .	3.3	116
354	Building and decoding ubiquitin chains for mitophagy. Nature Reviews Molecular Cell Biology, 2018, 19, 93-108.	16.1	458
355	Genome-wide CRISPR screen for PARKIN regulators reveals transcriptional repression as a determinant of mitophagy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E180-E189.	3.3	73
356	Autophagy in ischemic stroke. Progress in Neurobiology, 2018, 163-164, 98-117.	2.8	295
357	Autophagy limits activation of the inflammasomes. Immunological Reviews, 2018, 281, 62-73.	2.8	129
358	Impaired autophagy bridges lysosomal storage disease and epithelial dysfunction in the kidney. Nature Communications, 2018, 9, 161.	5.8	114
359	Mitochondrial alterations in Parkinson's disease human samples and cellular models. Neurochemistry International, 2018, 118, 61-72.	1.9	58
360	Continued 26S proteasome dysfunction in mouse brain cortical neurons impairs autophagy and the Keap1-Nrf2 oxidative defence pathway. Cell Death and Disease, 2018, 8, e2531-e2531.	2.7	35
361	Exercise and Doxorubicin Treatment Modulate Cardiac Mitochondrial Quality Control Signaling. Cardiovascular Toxicology, 2018, 18, 43-55.	1.1	40
362	Ubiquitination at the mitochondria in neuronal health and disease. Neurochemistry International, 2018, 117, 55-64.	1.9	24
363	Systematic Analysis of Human Cells Lacking ATG8 Proteins Uncovers Roles for GABARAPs and the CCZ1/MON1 Regulator C18orf8/RMC1 in Macroautophagic and Selective Autophagic Flux. Molecular and Cellular Biology, 2018, 38, .	1.1	95
364	Mechanisms, pathophysiological roles and methods for analyzing mitophagy – recent insights. Biological Chemistry, 2018, 399, 147-178.	1.2	69

		CITATION RE	PORT	
#	Article		IF	Citations
365	Mitophagy and the release of inflammatory cytokines. Mitochondrion, 2018, 41, 2-8.		1.6	69
366	In mammalian skeletal muscle, phosphorylation of TOMM22 by protein kinase CSNK2/C mitophagy. Autophagy, 2018, 14, 311-335.	CK2 controls	4.3	51
367	Skeletal muscle from aged American Quarter Horses shows impairments in mitochondr and expression of autophagy markers. Experimental Gerontology, 2018, 102, 19-27.	ial biogenesis	1.2	10
368	PUMA dependent mitophagy by Abrus agglutinin contributes to apoptosis through cera generation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 480-4	amide 195.	1.9	37
369	Strategies for imaging mitophagy in high-resolution and high-throughput. European Jou Biology, 2018, 97, 1-14.	rnal of Cell	1.6	7
370	Congenital Disorders of Autophagy: What a Pediatric Neurologist Should Know. Neuroj 2018, 49, 018-025.	pediatrics,	0.3	15
371	Mammalian mitophagy – from <i>inÂvitro</i> molecules to <i>inÂvivo</i> models. FE 1185-1202.	BS Journal, 2018, 285,	2.2	106
372	Selective autophagy: The new player in the fight against neurodegenerative diseases?. Bulletin, 2018, 137, 79-90.	Brain Research	1.4	37
373	Xenophagic pathways and their bacterial subversion in cellular self-defense – ï€î±ï"î± flux. International Journal of Medical Microbiology, 2018, 308, 185-196.	Ϊίμî¹ â€" everything is in	1.5	6
374	Mitochondrial stress management: a dynamic journey. Cell Stress, 2018, 2, 253-274.		1.4	55
375	p62/SQSTM1 – steering the cell through health and disease. Journal of Cell Science, 2	2018, 131, .	1.2	214
376	Mitophagy Modulators. , 2018, , 433-433.			5
377	Crosstalk Between Mammalian Autophagy and the Ubiquitin-Proteasome System. Fron Developmental Biology, 2018, 6, 128.	tiers in Cell and	1.8	294
378	Autophagy, EVs, and Infections: A Perfect Question for a Perfect Time. Frontiers in Cellu Infection Microbiology, 2018, 8, 362.	ilar and	1.8	53
379	A MAPK/c-Jun-mediated switch regulates the initial adaptive and cell death responses to damage in a neuronal cell model. International Journal of Biochemistry and Cell Biology, 73-86.		1.2	6
380	Comprehensive analysis of multi Ewing sarcoma microarray datasets identifies several p biomarkers. Molecular Medicine Reports, 2018, 18, 4229-4238.	orognosis	1.1	3
381	Role of Mitochondrial Dysfunction in Degenerative Brain Diseases, an Overview. Brain S 8, 178.	ciences, 2018,	1.1	10
382	Ready player one? Autophagy shapes resistance to photodynamic therapy in cancers. A International Journal on Programmed Cell Death, 2018, 23, 587-606.	poptosis: an	2.2	28

#	Article	IF	CITATIONS
383	<scp>NDP</scp> 52 interacts with mitochondrial <scp>RNA</scp> poly(A) polymerase to promote mitophagy. EMBO Reports, 2018, 19, .	2.0	24
384	Subversion of cellular autophagy during virus infection: Insights from hepatitis B and hepatitis C viruses. Liver Research, 2018, 2, 146-156.	0.5	17
385	Human Immunodeficiency Virus Type 1 gp120 and Tat Induce Mitochondrial Fragmentation and Incomplete Mitophagy in Human Neurons. Journal of Virology, 2018, 92, .	1.5	71
386	Preantral follicular atresia occurs mainly through autophagy, while antral follicles degenerate mostly through apoptosis. Biology of Reproduction, 2018, 99, 853-863.	1.2	44
387	Mitochondrial Bioenergetics. Methods in Molecular Biology, 2018, , .	0.4	9
388	Detection of Iron Depletion- and Hypoxia-Induced Mitophagy in Mammalian Cells. Methods in Molecular Biology, 2018, 1782, 315-324.	0.4	5
389	Biallelic <i>SQSTM1</i> mutations in early-onset, variably progressive neurodegeneration. Neurology, 2018, 91, e319-e330.	1.5	35
390	Cold PSM, but not TRAIL, triggers autophagic cell death: A therapeutic advantage of PSM over TRAIL. International Journal of Oncology, 2018, 53, 503-514.	1.4	10
391	Novel Insights Into the Anti-aging Role of Mitophagy. International Review of Cell and Molecular Biology, 2018, 340, 169-208.	1.6	31
392	Mitochondrial dynamics in cancer-induced cachexia. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 137-150.	3.3	49
393	LC3-II may mediate ATR-induced mitophagy in dopaminergic neurons through SQSTM1/p62 pathway. Acta Biochimica Et Biophysica Sinica, 2018, 50, 1047-1061.	0.9	20
394	Optineurin: A Coordinator of Membrane-Associated Cargo Trafficking and Autophagy. Frontiers in Immunology, 2018, 9, 1024.	2.2	84
395	Role of Optineurin in the Mitochondrial Dysfunction: Potential Implications in Neurodegenerative Diseases and Cancer. Frontiers in Immunology, 2018, 9, 1243.	2.2	50
396	Vulnerable Parkin Loss-of-Function Drosophila Dopaminergic Neurons Have Advanced Mitochondrial Aging, Mitochondrial Network Loss and Transiently Reduced Autophagosome Recruitment. Frontiers in Cellular Neuroscience, 2018, 12, 39.	1.8	26
397	Overview of Autophagy and Its Molecular Regulation. , 2018, , 19-27.		1
398	Interplay Among Oxidative Stress, Redox Signaling, ER Stress, Autophagy, and Protein Ubiquitylation in Cardiometabolic Disorders. , 2018, , 29-42.		0
399	The Role of Mitophagy in Innate Immunity. Frontiers in Immunology, 2018, 9, 1283.	2.2	161
400	Parkin is a disease modifier in the mutant <scp>SOD</scp> 1 mouse model of <scp>ALS</scp> . EMBO Molecular Medicine, 2018, 10, .	3.3	58

#	Article	IF	CITATIONS
401	Mechanisms of selective autophagy and mitophagy: Implications for neurodegenerative diseases. Neurobiology of Disease, 2019, 122, 23-34.	2.1	163
402	Polyglucosan Bodies in Aged Brain and Neurodegeneration: Cause or Consequence?. , 2019, , 57-89.		5
403	Mitophagy protects against statinâ€mediated skeletal muscle toxicity. FASEB Journal, 2019, 33, 11857-11869.	0.2	14
404	Voltage-dependent anion channel isoform 3 as a potential male contraceptive drug target. Future Medicinal Chemistry, 2019, 11, 857-867.	1.1	1
405	Autophagy in Neurotrauma: Good, Bad, or Dysregulated. Cells, 2019, 8, 693.	1.8	83
406	Olesoxime in neurodegenerative diseases: Scrutinising a promising drug candidate. Biochemical Pharmacology, 2019, 168, 305-318.	2.0	22
407	Upregulation of the Autophagy Adaptor p62/SQSTM1 Prolongs Health and Lifespan in Middle-Aged Drosophila. Cell Reports, 2019, 28, 1029-1040.e5.	2.9	90
408	Autophagy in Neurons. Annual Review of Cell and Developmental Biology, 2019, 35, 477-500.	4.0	191
409	Mechanisms of PINK1, ubiquitin and Parkin interactions in mitochondrial quality control and beyond. Cellular and Molecular Life Sciences, 2019, 76, 4589-4611.	2.4	73
410	Crosstalk between Nrf2 signaling and mitochondrial function in Parkinson's disease. Molecular and Cellular Neurosciences, 2019, 101, 103413.	1.0	46
411	Overexpression of pink1 or parkin in indirect flight muscles promotes mitochondrial proteostasis and extends lifespan in Drosophila melanogaster. PLoS ONE, 2019, 14, e0225214.	1.1	27
412	Parkin in early stage LPS-stimulated BV-2 cells regulates pro-inflammatory response and mitochondrial quality via mitophagy. Journal of Neuroimmunology, 2019, 336, 577044.	1.1	7
413	Research on Modeling of Radio Propagation in Vacuum Pipeline Scene. , 2019, , .		1
414	Melatonin Enhances Mitophagy by Upregulating Expression of Heat Shock 70 kDa Protein 1L in Human Mesenchymal Stem Cells under Oxidative Stress. International Journal of Molecular Sciences, 2019, 20, 4545.	1.8	20
415	Effect of Hepatitis Viruses on the Nrf2/Keap1-Signaling Pathway and Its Impact on Viral Replication and Pathogenesis. International Journal of Molecular Sciences, 2019, 20, 4659.	1.8	33
416	Autophagy and cardiac aging. Cell Death and Differentiation, 2019, 26, 653-664.	5.0	63
417	Mitochondria: the indispensable players in innate immunity and guardians of the inflammatory response. Journal of Cell Communication and Signaling, 2019, 13, 303-318.	1.8	103
418	SQSTM1/p62: A Potential Target for Neurodegenerative Disease. ACS Chemical Neuroscience, 2019, 10, 2094-2114.	1.7	107

#	Article	IF	CITATIONS
419	Mitophagy and Oxidative Stress in Cancer and Aging: Focus on Sirtuins and Nanomaterials. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-19.	1.9	32
420	BAG6 deficiency induces misâ€distribution of mitochondrial clusters under depolarization. FEBS Open Bio, 2019, 9, 1281-1291.	1.0	9
421	Structural Properties and Interaction Partners of Familial ALS-Associated SOD1 Mutants. Frontiers in Neurology, 2019, 10, 527.	1.1	74
422	Miro2 supplies a platform for Parkin translocation to damaged mitochondria. Science Bulletin, 2019, 64, 730-747.	4.3	6
423	Mitophagy in human astrocytes treated with the antiretroviral drug Efavirenz: Lack of evidence or evidence of the lack. Antiviral Research, 2019, 168, 36-50.	1.9	7
424	Proteasome dysfunction induces excessive proteome instability and loss of mitostasis that can be mitigated by enhancing mitochondrial fusion or autophagy. Autophagy, 2019, 15, 1757-1773.	4.3	29
425	Mitofusins: Disease Gatekeepers and Hubs in Mitochondrial Quality Control by E3 Ligases. Frontiers in Physiology, 2019, 10, 517.	1.3	55
426	STX17 dynamically regulated by Fis1 induces mitophagy via hierarchical macroautophagic mechanism. Nature Communications, 2019, 10, 2059.	5.8	90
427	Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neuroscience and Therapeutics, 2019, 25, 859-875.	1.9	145
428	Therapeutic approaches to enhance PINK1/Parkin mediated mitophagy for the treatment of Parkinson's disease. Neuroscience Letters, 2019, 705, 7-13.	1.0	93
429	Autophagy, apoptosis, and mitochondria: molecular integration and physiological relevance in skeletal muscle. American Journal of Physiology - Cell Physiology, 2019, 317, C111-C130.	2.1	54
430	Loss of MIEF1/MiD51 confers susceptibility to BAX-mediated cell death and PINK1-PRKN-dependent mitophagy. Autophagy, 2019, 15, 2107-2125.	4.3	34
431	SQSTM1/p62-Directed Metabolic Reprogramming Is Essential for Normal Neurodifferentiation. Stem Cell Reports, 2019, 12, 696-711.	2.3	32
432	Tranexamic acid suppresses the release of mitochondrial DNA, protects the endothelial monolayer and enhances oxidative phosphorylation. Journal of Cellular Physiology, 2019, 234, 19121-19129.	2.0	17
433	P62 deficiency shifts mesenchymal/stromal stem cell commitment toward adipogenesis and disrupts bone marrow homeostasis in aged mice. Journal of Cellular Physiology, 2019, 234, 16338-16347.	2.0	13
434	Omegasome-proximal PtdIns(4,5)P2 couples F-actin mediated mitoaggregate disassembly with autophagosome formation during mitophagy. Nature Communications, 2019, 10, 969.	5.8	30
435	Human immunodeficiency virus Typeâ€1 singleâ€stranded RNA activates the NLRP3 inflammasome and impairs autophagic clearance of damaged mitochondria in human microglia. Glia, 2019, 67, 802-824.	2.5	58
436	Mitochondrial quality control mechanisms as potential therapeutic targets in sepsis-induced multiple organ failure. Journal of Molecular Medicine, 2019, 97, 451-462.	1.7	53

#	Article	IF	CITATIONS
437	Integrated proteogenetic analysis reveals the landscape of a mitochondrial-autophagosome synapse during PARK2-dependent mitophagy. Science Advances, 2019, 5, eaay4624.	4.7	55
438	PPEF2 Opposes PINK1-Mediated Mitochondrial Quality Control by Dephosphorylating Ubiquitin. Cell Reports, 2019, 29, 3280-3292.e7.	2.9	20
439	Downhill Running Acutely Elicits Mitophagy in Rat Soleus Muscle. Medicine and Science in Sports and Exercise, 2019, 51, 1396-1403.	0.2	13
440	URB597 protects against NLRP3 inflammasome activation by inhibiting autophagy dysfunction in a rat model of chronic cerebral hypoperfusion. Journal of Neuroinflammation, 2019, 16, 260.	3.1	74
441	Molecular Regulation Mechanisms and Interactions Between Reactive Oxygen Species and Mitophagy. DNA and Cell Biology, 2019, 38, 10-22.	0.9	73
442	Mitochondrial quality control in the cardiac system: An integrative view. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 782-796.	1.8	18
443	The Roles of Ubiquitin-Binding Protein Shuttles in the Degradative Fate of Ubiquitinated Proteins in the Ubiquitin-Proteasome System and Autophagy. Cells, 2019, 8, 40.	1.8	88
444	PINK1-dependent mitophagy is driven by the UPS and can occur independently of LC3 conversion. Cell Death and Differentiation, 2019, 26, 1428-1441.	5.0	44
445	Evolving and Expanding the Roles of Mitophagy as a Homeostatic and Pathogenic Process. Physiological Reviews, 2019, 99, 853-892.	13.1	145
446	Loss of the selective autophagy receptor p62 impairs murine myeloid leukemia progression and mitophagy. Blood, 2019, 133, 168-179.	0.6	83
447	Mitophagy-driven metabolic switch reprograms stem cell fate. Cellular and Molecular Life Sciences, 2019, 76, 27-43.	2.4	85
448	Multiple recycling routes: Canonical vs. non-canonical mitophagy in the heart. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 797-809.	1.8	18
449	Keratin 6a mutations lead to impaired mitochondrial quality control. British Journal of Dermatology, 2020, 182, 636-647.	1.4	17
450	Novel insights into the clinical and molecular spectrum of congenital disorders of autophagy. Journal of Inherited Metabolic Disease, 2020, 43, 51-62.	1.7	31
451	Emerging role of mitophagy in cardiovascular physiology and pathology. Molecular Aspects of Medicine, 2020, 71, 100822.	2.7	114
452	Somatic and germline mutations in the tumor suppressor gene PARK2 impair PINK1/Parkin-mediated mitophagy in lung cancer cells. Acta Pharmacologica Sinica, 2020, 41, 93-100.	2.8	29
453	Quality Control in Neurons: Mitophagy and Other Selective Autophagy Mechanisms. Journal of Molecular Biology, 2020, 432, 240-260.	2.0	66
454	Ubiquitin and Receptor-Dependent Mitophagy Pathways and Their Implication in Neurodegeneration. Journal of Molecular Biology, 2020, 432, 2510-2524.	2.0	53

#	Article	IF	CITATIONS
455	Selective Autophagy Receptors in Neuronal Health and Disease. Journal of Molecular Biology, 2020, 432, 2483-2509.	2.0	54
456	Loss of Parkin contributes to mitochondrial turnover and dopaminergic neuronal loss in aged mice. Neurobiology of Disease, 2020, 136, 104717.	2.1	56
457	Dynamin-related protein 1: A protein critical for mitochondrial fission, mitophagy, and neuronal death in Parkinson's disease. Pharmacological Research, 2020, 151, 104553.	3.1	72
458	Mitochondrial Quality Control and Restraining Innate Immunity. Annual Review of Cell and Developmental Biology, 2020, 36, 265-289.	4.0	73
459	Biological mechanisms of reactive oxygen species (ROS). , 2020, , 19-35.		1
460	Characterization of a Cul9–Parkin double knockout mouse model for Parkinson's disease. Scientific Reports, 2020, 10, 16886.	1.6	5
461	PINK1: The guard of mitochondria. Life Sciences, 2020, 259, 118247.	2.0	53
462	p62-Nrf2-p62 Mitophagy Regulatory Loop as a Target for Preventive Therapy of Neurodegenerative Diseases. Brain Sciences, 2020, 10, 847.	1.1	27
463	Loss of TAX1BP1-Directed Autophagy Results in Protein Aggregate Accumulation in the Brain. Molecular Cell, 2020, 80, 779-795.e10.	4.5	85
464	GLIPR2 is a negative regulator of autophagy and the BECN1-ATG14-containing phosphatidylinositol 3-kinase complex. Autophagy, 2021, 17, 2891-2904.	4.3	22
465	Human Dopaminergic Neurons Lacking PINK1 Exhibit Disrupted Dopamine Metabolism Related to Vitamin B6 Co-Factors. IScience, 2020, 23, 101797.	1.9	20
466	Selective Autophagy by Close Encounters of the Ubiquitin Kind. Cells, 2020, 9, 2349.	1.8	26
467	Role of Mitofusins and Mitophagy in Life or Death Decisions. Frontiers in Cell and Developmental Biology, 2020, 8, 572182.	1.8	25
468	Decreased Mitochondrial Function, Biogenesis, and Degradation in Peripheral Blood Mononuclear Cells from Amyotrophic Lateral Sclerosis Patients as a Potential Tool for Biomarker Research. Molecular Neurobiology, 2020, 57, 5084-5102.	1.9	20
469	Structure and function of p62/SQSTM1 in the emerging framework of phase separation. FEBS Journal, 2021, 288, 6927-6941.	2.2	29
470	Mitophagy and the Brain. International Journal of Molecular Sciences, 2020, 21, 9661.	1.8	32
471	Disturbed mitochondrial quality control involved in hepatocytotoxicity induced by silica nanoparticles. Nanoscale, 2020, 12, 13034-13045.	2.8	31
472	Deubiquitinating Enzymes in Parkinson's Disease. Frontiers in Physiology, 2020, 11, 535.	1.3	13

#	Article	IF	CITATIONS
473	Mitophagy in the Retinal Pigment Epithelium of Dry Age-Related Macular Degeneration Investigated in the NFE2L2/PGC-11±-/- Mouse Model. International Journal of Molecular Sciences, 2020, 21, 1976.	1.8	31
474	The Aging Heart: Mitophagy at the Center of Rejuvenation. Frontiers in Cardiovascular Medicine, 2020, 7, 18.	1.1	36
475	DJ-1 is indispensable for the S-nitrosylation of Parkin, which maintains function of mitochondria. Scientific Reports, 2020, 10, 4377.	1.6	27
476	Augmenter of Liver Regeneration Protects Renal Tubular Epithelial Cells From Ischemia-Reperfusion Injury by Promoting PINK1/Parkin-Mediated Mitophagy. Frontiers in Physiology, 2020, 11, 178.	1.3	14
477	Parkin, an E3 Ubiquitin Ligase, Plays an Essential Role in Mitochondrial Quality Control in Parkinson's Disease. Cellular and Molecular Neurobiology, 2021, 41, 1395-1411.	1.7	24
478	Bcl-xL inhibits PINK1/Parkin-dependent mitophagy by preventing mitochondrial Parkin accumulation. International Journal of Biochemistry and Cell Biology, 2020, 122, 105720.	1.2	20
479	Mitophagy and Its Contribution to Metabolic and Aging-Associated Disorders. Antioxidants and Redox Signaling, 2020, 32, 906-927.	2.5	35
480	Loss of HSPA9 induces peroxisomal degradation by increasing pexophagy. Autophagy, 2020, 16, 1989-2003.	4.3	34
481	BMAL1 regulates mitochondrial fission and mitophagy through mitochondrial protein BNIP3 and is critical in the development of dilated cardiomyopathy. Protein and Cell, 2020, 11, 661-679.	4.8	64
482	Exploring Neuronal Vulnerability to Head Trauma Using a Whole Exome Approach. Journal of Neurotrauma, 2020, 37, 1870-1879.	1.7	6
483	Quantitative analysis of interactive behavior of mitochondria and lysosomes using structured illumination microscopy. Biomaterials, 2020, 250, 120059.	5.7	77
484	Tollip coordinates Parkinâ€dependent trafficking of mitochondrialâ€derived vesicles. EMBO Journal, 2020, 39, e102539.	3.5	58
485	Mitophagy in the Pathogenesis of Liver Diseases. Cells, 2020, 9, 831.	1.8	48
486	Role and Mechanisms of Mitophagy in Liver Diseases. Cells, 2020, 9, 837.	1.8	132
487	BHRF1, a BCL2 viral homolog, disturbs mitochondrial dynamics and stimulates mitophagy to dampen type I IFN induction. Autophagy, 2021, 17, 1296-1315.	4.3	53
488	Regulation of peroxisomal trafficking and distribution. Cellular and Molecular Life Sciences, 2021, 78, 1929-1941.	2.4	14
489	The connection between the dynamic remodeling of the mitochondrial network and the regulation of muscle mass. Cellular and Molecular Life Sciences, 2021, 78, 1305-1328.	2.4	105
490	Mediators of mitophagy that regulate mitochondrial quality control play crucial role in diverse pathophysiology. Cell Biology and Toxicology, 2021, 37, 333-366.	2.4	14

	Сітатіої	N REPORT	
#	Article	IF	CITATIONS
491	Functions of outer mitochondrial membrane proteins: mediating the crosstalk between mitochondrial dynamics and mitophagy. Cell Death and Differentiation, 2021, 28, 827-842.	5.0	59
492	The therapeutic effect of TBK1 in intervertebral disc degeneration via coordinating selective autophagy and autophagic functions. Journal of Advanced Research, 2021, 30, 1-13.	4.4	17
493	Recent approaches to target apoptosis in neurological disorders. , 2021, , 217-283.		1
494	Plant Mitophagy in Comparison to Mammals: What Is Still Missing?. International Journal of Molecular Sciences, 2021, 22, 1236.	1.8	13
495	Emerging and converging molecular mechanisms in dystonia. Journal of Neural Transmission, 2021, 128, 483-498.	1.4	29
496	Regulation of neuronal bioenergetics as a therapeutic strategy in neurodegenerative diseases. Neural Regeneration Research, 2021, 16, 1467.	1.6	26
497	Mitochondrial biogenesis and mitophagy. , 2021, , 35-90.		2
498	Inhibition of Ref(2)P, the Drosophila homologue of the p62/SQSTM1 gene, increases lifespan and leads to a decline in motor function. BMC Research Notes, 2021, 14, 53.	0.6	4
499	Elevated Lactate by High-Intensity Interval Training Regulates the Hippocampal BDNF Expression and the Mitochondrial Quality Control System. Frontiers in Physiology, 2021, 12, 629914.	1.3	21
500	Exogenous Alpha-Synuclein Evoked Parkin Downregulation Promotes Mitochondrial Dysfunction in Neuronal Cells. Implications for Parkinson's Disease Pathology. Frontiers in Aging Neuroscience, 2021, 13, 591475.	1.7	26
501	Intricate role of mitochondrial calcium signalling in mitochondrial quality control for regulation of cancer cell fate. Mitochondrion, 2021, 57, 230-240.	1.6	11
502	Endoplasmic Reticulum Stress-Mediated p62 Downregulation Inhibits Apoptosis via c-Jun Upregulation. Biomolecules and Therapeutics, 2021, 29, 195-204.	1.1	11
503	Autophagy in the HTR-8/SVneo Cell Oxidative Stress Model Is Associated with the NLRP1 Inflammasome. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-15.	1.9	7
504	Cholesterol alters mitophagy by impairing optineurin recruitment and lysosomal clearance in Alzheimer's disease. Molecular Neurodegeneration, 2021, 16, 15.	4.4	37
505	PINK1: A Bridge between Mitochondria and Parkinson's Disease. Life, 2021, 11, 371.	1.1	20
506	Understanding the Multiple Role of Mitochondria in Parkinson's Disease and Related Disorders: Lesson From Genetics and Protein–Interaction Network. Frontiers in Cell and Developmental Biology, 2021, 9, 636506.	1.8	44
508	Genipin Attenuates Tau Phosphorylation and Aβ Levels in Cellular Models of Alzheimer's Disease. Molecular Neurobiology, 2021, 58, 4134-4144.	1.9	10
509	The role of SQSTM1 (p62) in mitochondrial function and clearance in human cortical neurons. Stem Cell Reports, 2021, 16, 1276-1289.	2.3	17

#	Article	IF	CITATIONS
510	CFTR chloride channel activity modulates the mitochondrial morphology in cultured epithelial cells. International Journal of Biochemistry and Cell Biology, 2021, 135, 105976.	1.2	8
511	SUMOylation of mitofusins: A potential mechanism for perinuclear mitochondrial congression in cells treated with mitochondrial stressors. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166104.	1.8	7
512	Loss of neuronal Miro1 disrupts mitophagy and induces hyperactivation of the integrated stress response. EMBO Journal, 2021, 40, e100715.	3.5	36
514	Miro1 functions as an inhibitory regulator of MFN at elevated mitochondrial Ca ²⁺ levels. Journal of Cellular Biochemistry, 2021, 122, 1848-1862.	1.2	9
515	iTRAQ-based quantitative proteomics suggests mitophagy involvement after Rice black-streaked dwarf virus acquisition in insect vector small brown planthopper Laodelphax striatellus Fallén. Journal of Proteomics, 2021, 246, 104314.	1.2	4
516	VDAC1 regulates mitophagy in NLRP3 inflammasome activation in retinal capillary endothelial cells under high-glucose conditions. Experimental Eye Research, 2021, 209, 108640.	1.2	11
517	Quality control of protein import into mitochondria. Biochemical Journal, 2021, 478, 3125-3143.	1.7	6
518	iPLA2-VIA is required for healthy aging of neurons, muscle, and the female germline in Drosophila melanogaster. PLoS ONE, 2021, 16, e0256738.	1.1	0
519	A mitochondrial membrane-bridging machinery mediates signal transduction of intramitochondrial oxidation. Nature Metabolism, 2021, 3, 1242-1258.	5.1	28
520	A brief overview of BNIP3L/NIX receptorâ€mediated mitophagy. FEBS Open Bio, 2021, 11, 3230-3236.	1.0	23
521	Molecular functions of autophagy adaptors upon ubiquitin-driven mitophagy. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129972.	1.1	7
522	Mitophagy in Huntington's disease. Neurochemistry International, 2021, 149, 105147.	1.9	21
523	Selectivity and trafficking of autophagic cargoes. , 2022, , 39-56.		1
524	The influence of aerobic exercise on mitochondrial quality control in skeletal muscle. Journal of Physiology, 2021, 599, 3463-3476.	1.3	30
525	Mitochondrial Proteins in the Development of Parkinson's Disease. Advances in Experimental Medicine and Biology, 2019, 1158, 17-44.	0.8	3
526	K63-linked ubiquitylation induces global sequestration of mitochondria. Scientific Reports, 2020, 10, 22334.	1.6	10
527	Critical role of mitochondrial ubiquitination and the OPTN–ATG9A axis in mitophagy. Journal of Cell Biology, 2020, 219, .	2.3	114
528	Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance. Journal of Experimental Medicine, 2021, 218, .	4.2	66

#	Article	IF	CITATIONS
531	Enhancement of high glucoseâ€induced PINK1 expression by melatonin stimulates neuronal cell survival: Involvement of MT ₂ /Akt/NFâ€î®B pathway. Journal of Pineal Research, 2017, 63, e12427.	3.4	52
532	Beclin-1 regulates cigarette smoke–induced kidney injury in a murine model of chronic obstructive pulmonary disease. JCI Insight, 2018, 3, .	2.3	15
533	p62 Links β-adrenergic input to mitochondrial function and thermogenesis. Journal of Clinical Investigation, 2013, 123, 469-478.	3.9	107
534	Pale Body-Like Inclusion Formation and Neurodegeneration following Depletion of 26S Proteasomes in Mouse Brain Neurones are Independent of α-Synuclein. PLoS ONE, 2013, 8, e54711.	1.1	23
535	Enhanced mitophagy in bronchial fibroblasts from severe asthmatic patients. PLoS ONE, 2020, 15, e0242695.	1.1	15
536	A Glimmer of Hope: Maintain Mitochondrial Homeostasis to Mitigate Alzheimer's Disease. , 2020, 11, 1260.		13
537	Normal pancreatic β-cell function in mice with <i>RIP-Cre</i> -mediated inactivation of p62/SQSTM1. Endocrine Journal, 2018, 65, 83-89.	0.7	5
538	GBA mutation promotes early mitochondrial dysfunction in 3D neurosphere models. Aging, 2019, 11, 10338-10355.	1.4	15
539	CREB1-driven expression of miR-320a promotes mitophagy by down-regulating VDAC1 expression during serum starvation in cervical cancer cells. Oncotarget, 2015, 6, 34924-34940.	0.8	40
540	Modulating Mitophagy in Mitochondrial Disease. Current Medicinal Chemistry, 2019, 25, 5597-5612.	1.2	65
541	Mitochondria: Prospective Targets for Neuroprotection in Parkinson's Disease. Current Pharmaceutical Design, 2014, 20, 5558-5573.	0.9	22
542	The Dawn of Mitophagy: What Do We Know by Now?. Current Neuropharmacology, 2020, 19, 170-192.	1.4	16
543	Interplay between the Ubiquitin Proteasome System and Mitochondria for Protein Homeostasis. Current Issues in Molecular Biology, 2020, 35, 35-58.	1.0	14
544	The Emerging Role of Mitophagy in Kidney Diseases. Journal of Life Sciences (Westlake Village, Calif), 2019, 1, 13-22.	1.8	23
545	PINK1/Parkin in Neurodegenerative Disorders. Advances in Medical Diagnosis, Treatment, and Care, 2020, , 282-301.	0.1	15
546	The role of sequestosome 1/p62 protein in amyotrophic lateral sclerosis and frontotemporal dementia pathogenesis. Neural Regeneration Research, 2020, 15, 2186.	1.6	22
547	Overview of Autophagy in Plant Cells. Journal of Life Science, 2014, 24, 209-217.	0.2	4
548	Degradation of engulfed mitochondria is rate-limiting in Optineurin-mediated mitophagy in neurons. ELife, 2020, 9, .	2.8	79

#	Article	IF	CITATIONS
549	Regulation of mitochondrial cargo-selective autophagy by posttranslational modifications. Journal of Biological Chemistry, 2021, 297, 101339.	1.6	10
550	Phase separation of Nur77 mediates celastrol-induced mitophagy by promoting the liquidity of p62/SQSTM1 condensates. Nature Communications, 2021, 12, 5989.	5.8	40
551	Nerve growth factor (NGF) with hypoxia response elements loaded by adeno-associated virus (AAV) combined with neural stem cells improve the spinal cord injury recovery. Cell Death Discovery, 2021, 7, 301.	2.0	10
552	Autophagy Induced by Palmitic Acid Regulates Neutrophil Adhesion Through the Granule-Dependent Degradation of αMβ2 Integrin in Dairy Cows With Fatty Liver. Frontiers in Immunology, 2021, 12, 726829.	2.2	2
553	Mitochondrial Quality Control in Cardiac-Conditioning Strategies against Ischemia-Reperfusion Injury. Life, 2021, 11, 1123.	1.1	17
554	Quality control of proteins and organelles by autophagy. Research and Perspectives in Alzheimer's Disease, 2013, , 77-86.	0.1	0
555	Inflammatory Bowel Disease at the Intersection of Autophagy and Immunity: Insights from Human Genetics. , 2013, , 241-264.		1
556	Autophagic Pathways and Parkinson Disease. , 2014, , 727-751.		0
557	Cardiac Cytoarchitecture: How to Maintain a Working Heart—Waste Disposal and Recycling in Cardiomyocytes. , 2015, , 245-309.		0
560	Inflammatory Bowel Disease at the Intersection of Autophagy and Immunity: Insights from Human Genetics. , 2019, , 305-328.		2
561	Mitochondrial Dysfunction in Aging and Neurodegeneration. Advances in Medical Diagnosis, Treatment, and Care, 2019, , 76-101.	0.1	0
562	Advances in the Regulation of Autophagy. Advances in Clinical Medicine, 2019, 09, 163-179.	0.0	0
563	Glutathione Potential and Levels of Hydrogen Peroxide in Vulnerable Parkin Lossâ€ofâ€Function Drosophila Neurons. FASEB Journal, 2019, 33, .	0.2	0
566	ÐуÑ,офагÐ͵ѕкак мÐ͵ÑԴĐµÐ½ÑŒ реÑ,Ð͵Đ½Ð¾Ð¿Ñ€Ð¾Ñ,екÑ,Ð¾Ñ€Ð½Đ¾Đ3Đ¾ ĐΌµ	ıйŴðð,Đ²€),ќй∕4Ð,Ñ,Ð
567	Autophagy as a Target for the Retinoprotective Effects of the Mitochondria-Targeted Antioxidant SkQ1. Biochemistry (Moscow), 2020, 85, 1640-1649.	0.7	6
568	Sources of Oxidants and Function of ROS Inside the Macromolecule Cells. Nanomedicine and Nanotoxicology, 2020, , 99-138.	0.1	1
569	Molecular Mechanisms Underlying the Role of Mitophagy in Neurodegeneration. Advances in Medical Diagnosis, Treatment, and Care, 2020, , 63-87.	0.1	0
570	Endoplasmic Reticulum Stress and Autophagy in Cancer. , 2020, , 355-402.		0

#	Article	IF	CITATIONS
572	The Transcription Factor EB Links Cellular Stress to the Immune Response . Yale Journal of Biology and Medicine, 2017, 90, 301-315.	0.2	40
574	Knockdown of VDAC1 alleviates the cognitive dysfunction secondary to sepsis-associated encephalopathy. American Journal of Translational Research (discontinued), 2021, 13, 7538-7555.	0.0	0
575	ALDOA maintains NLRP3 inflammasome activation by controlling AMPK activation. Autophagy, 2022, 18, 1673-1693.	4.3	18
576	Fast friends – Ubiquitin-like modifiers as engineered fusion partners. Seminars in Cell and Developmental Biology, 2022, 132, 132-145.	2.3	4
577	Mitochondria and Their Cell Hosts: Best of Frenemies. , 2022, , 167-196.		0
578	p62 works as a hub modulation in the ageing process. Ageing Research Reviews, 2022, 73, 101538.	5.0	11
579	Mitochondrial structural variations in the process of mitophagy. Journal of Biophotonics, 2022, 15, e202200006.	1.1	3
580	The dual roles of autophagy and the GPCRs-mediating autophagy signaling pathway after cerebral ischemic stroke. Molecular Brain, 2022, 15, 14.	1.3	14
581	Urolithin A alleviates blood-brain barrier disruption and attenuates neuronal apoptosis following traumatic brain injury in mice. Neural Regeneration Research, 2022, 17, 2007.	1.6	29
582	The different autophagy degradation pathways and neurodegeneration. Neuron, 2022, 110, 935-966.	3.8	150
583	Autophagy-Lysosomal Pathway as Potential Therapeutic Target in Parkinson's Disease. Cells, 2021, 10, 3547.	1.8	28
584	Molecular Mechanisms and Regulation of Mammalian Mitophagy. Cells, 2022, 11, 38.	1.8	45
585	Fumonisin B2 Induces Mitochondrial Stress and Mitophagy in Human Embryonic Kidney (Hek293) Cells—A Preliminary Study. Toxins, 2022, 14, 171.	1.5	4
586	Selective Autophagy Receptor p62/SQSTM1, a Pivotal Player in Stress and Aging. Frontiers in Cell and Developmental Biology, 2022, 10, 793328.	1.8	81
587	Autophagy deficiency abolishes liver mitochondrial DNA segregation. Autophagy, 2022, 18, 2397-2408.	4.3	6
588	Atypical Ubiquitination and Parkinson's Disease. International Journal of Molecular Sciences, 2022, 23, 3705.	1.8	16
589	Essential role of hyperacetylated microtubules in innate immunity escape orchestrated by the EBV-encoded BHRF1 protein. PLoS Pathogens, 2022, 18, e1010371.	2.1	10
590	Multiplexed Delivery of Synthetic (Un)Conjugatable Ubiquitin and SUMO2 Enables Simultaneous Monitoring of Their Localization and Function in Live Cells. ChemBioChem, 2022, , .	1.3	4

#	Article	IF	CITATIONS
591	Steady-State Levels of Miro1 Linked to Phosphorylation at Serine 156 and Mitochondrial Respiration in Dopaminergic Neurons. Cells, 2022, 11, 1269.	1.8	4
592	Mitophagy in neurological disorders. Journal of Neuroinflammation, 2021, 18, 297.	3.1	34
593	HDAC6 Inhibition Extinguishes Autophagy in Cancer: Recent Insights. Cancers, 2021, 13, 6280.	1.7	10
594	Systematic analysis of PINK1 variants of unknown significance shows intact mitophagy function for most variants. Npj Parkinson's Disease, 2021, 7, 113.	2.5	6
595	Cross-talk between mutant p53 and p62/SQSTM1 augments cancer cell migration by promoting the degradation of cell adhesion proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119644119.	3.3	8
597	Mitochondrial quality control in health and in Parkinson's disease. Physiological Reviews, 2022, 102, 1721-1755.	13.1	70
598	MiR-124-3p attenuates brain microvascular endothelial cell injury in vitro by promoting autophagy Histology and Histopathology, 2021, , 18406.	0.5	6
599	Mitochondrial Dysfunction in Aging and Neurodegeneration. , 2022, , 253-278.		0
600	Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease. Cell Death and Disease, 2022, 13, 444.	2.7	76
601	Macroautophagy in CNS health and disease. Nature Reviews Neuroscience, 2022, 23, 411-427.	4.9	44
602	Sexâ€specific mitochondrial dynamics and mitophagy response to muscle damage. Physiological Reports, 2022, 10, .	0.7	2
603	Defective mitophagy and the etiopathogenesis of Alzheimer's disease. Translational Neurodegeneration, 2022, 11, .	3.6	11
605	Modeling of mitochondrial bioenergetics and autophagy impairment in MELAS-mutant iPSC-derived retinal pigment epithelial cells. Stem Cell Research and Therapy, 2022, 13, .	2.4	10
606	Past, present, and future perspectives of transcription factor EB (TFEB): mechanisms of regulation and association with disease. Cell Death and Differentiation, 2022, 29, 1433-1449.	5.0	48
607	Low abundance of mitophagy markers is associated with reactive oxygen species overproduction in cows with fatty liver and causes reactive oxygen species overproduction and lipid accumulation in calf hepatocytes. Journal of Dairy Science, 2022, 105, 7829-7841.	1.4	6
608	The mitochondrial translocator protein (TSPO): a key multifunctional molecule in the nervous system. Biochemical Journal, 2022, 479, 1455-1466.	1.7	7
609	A partial reduction of <scp>VDAC1</scp> enhances mitophagy, autophagy, synaptic activities in a transgenic Tau mouse model. Aging Cell, 2022, 21, .	3.0	6
611	Emerging Therapeutic Approaches for Neurodegenerative Diseases. , 2022, , 161-198.		0

#	Article	IF	CITATIONS
612	Decorin evokes reversible mitochondrial depolarization in carcinoma and vascular endothelial cells. American Journal of Physiology - Cell Physiology, 2022, 323, C1355-C1373.	2.1	3
613	Role of mitophagy in the neurodegenerative diseases and its pharmacological advances: A review. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	5
614	The Potential Role of Voltage-Dependent Anion Channel in the Treatment of Parkinson's Disease. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-13.	1.9	5
615	Targeted protein degradation using the lysosomal pathway. RSC Medicinal Chemistry, 2022, 13, 1476-1494.	1.7	4
616	Manipulating autophagic degradation in human diseases: from mechanisms to interventions. , 2022, 1, 120-148.		4
617	<scp>BNIP3L</scp> / <scp>NIX</scp> regulates both mitophagy and pexophagy. EMBO Journal, 2022, 41, .	3.5	27
618	Cobalt chloride has beneficial effects across species through a hormetic mechanism. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
619	Exploring therapeutic potential of mitophagy modulators using Drosophila models of Parkinson's disease. Frontiers in Aging Neuroscience, 0, 14, .	1.7	1
620	PINK1-PRKN mediated mitophagy: differences between <i>in vitro</i> and <i>in vivo</i> models. Autophagy, 2023, 19, 1396-1405.	4.3	15
621	Osthole Suppresses Knee Osteoarthritis Development by Enhancing Autophagy Activated via the AMPK/ULK1 Pathway. Molecules, 2022, 27, 8624.	1.7	5
622	Mitophagy and ERâ€phagy accelerated by a p62 ZZ ligand alleviates acetaminophenâ€induced hepatotoxicity. British Journal of Pharmacology, 0, , .	2.7	0
623	Orchestration of selective autophagy by cargo receptors. Current Biology, 2022, 32, R1357-R1371.	1.8	32
624	Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics, 2023, 13, 736-766.	4.6	43
625	Sesn2 Serves as a Regulator between Mitochondrial Unfolded Protein Response and Mitophagy in Intervertebral Disc Degeneration. International Journal of Biological Sciences, 2023, 19, 571-592.	2.6	8
626	Gomisin N attenuated cerebral ischemia-reperfusion injury through inhibition of autophagy by activating the PI3K/AKT/mTOR pathway. Phytomedicine, 2023, 110, 154644.	2.3	3
627	Licorice protects against ulcerative colitis via the Nrf2/PINK1â€mediated mitochondrial autophagy. Immunity, Inflammation and Disease, 2023, 11, .	1.3	2
628	Autophagy at the synapse, an early site of dysfunction in neurodegeneration. Current Opinion in Physiology, 2023, 32, 100631.	0.9	1
629	Mitochondria in health, disease, and aging. Physiological Reviews, 2023, 103, 2349-2422.	13.1	56

	CITATION REPORT		
#	Article	IF	Citations
630	Pharmacological Progress of Mitophagy Regulation. Current Neuropharmacology, 2023, 21, 1026-1041.	1.4	2
631	The selective autophagy adaptor p62/SQSTM1 forms phase condensates regulated by HSP27 that facilitate the clearance of damaged lysosomes via lysophagy. Cell Reports, 2023, 42, 112037.	2.9	18
632	Hypoxic postconditioning restores mitophagy against transient global cerebral ischemia via Parkin-induced posttranslational modification of TBK1. Neurobiology of Disease, 2023, 179, 106043.	2.1	0
633	The Role of Mitophagy in Skeletal Muscle Damage and Regeneration. Cells, 2023, 12, 716.	1.8	6
634	Transcription factor EB as a key molecular factor in human health and its implication in diseases. SAGE Open Medicine, 2023, 11, 205031212311572.	0.7	3
635	TNIP1 inhibits selective autophagy via bipartite interaction with LC3/GABARAP and TAX1BP1. Molecular Cell, 2023, 83, 927-941.e8.	4.5	11
656	Ferroptosis regulation through Nrf2 and implications for neurodegenerative diseases. Archives of Toxicology, 2024, 98, 579-615.	1.9	1
657	Autophagy in bone metabolism and its possible role on the function of mineralizing extracellular vesicles. , 2024, , 175-190.		0
658	Synthetic Activators of Autophagy. Biochemistry (Moscow), 2024, 89, 27-52.	0.7	1
661	Involvement of Autophagic Machinery in Neuropathogenesis: Targeting and Relevant Methods of Detection. Methods in Molecular Biology, 2024, , .	0.4	0