Peroxisome proliferator-activated receptor gamma action of innate antimicrobial immunity in the colon

Proceedings of the National Academy of Sciences of the Unite 107, 8772-8777

DOI: 10.1073/pnas.0905745107

Citation Report

#	Article	IF	CITATIONS
1	The immune system and the gut microbiota: friends or foes?. Nature Reviews Immunology, 2010, 10, 735-744.	10.6	582
2	Antimicrobial Peptides in Gastrointestinal Inflammation. International Journal of Inflammation, 2010, 2010, 1-11.	0.9	37
4	Therapeutic Potential of Peroxisome Proliferator-Activated Receptors in Chronic Inflammation and Colorectal Cancer. Gastroenterology Clinics of North America, 2010, 39, 697-707.	1.0	19
5	Peroxisome proliferator–activated receptor γ–mediated suppression of dendritic cell function prevents the onset ofÂatopic dermatitis in NC/Tnd mice. Journal of Allergy and Clinical Immunology, 2011, 127, 420-429.e6.	1.5	47
6	Natural roles of antimicrobial peptides in microbes, plants and animals. Research in Microbiology, 2011, 162, 363-374.	1.0	232
7	Peroxisome proliferator-activated receptors and cancer: challenges and opportunities. British Journal of Pharmacology, 2011, 164, 68-82.	2.7	119
8	Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1. Nature, 2011, 469, 419-423.	13.7	428
9	Waking the wimp: Redox-modulation activates human beta-defensin 1. Gut Microbes, 2011, 2, 262-266.	4.3	21
10	Molecular signatures of a disturbed nasal barrier function in the primary tissue of Wegener's granulomatosis. Mucosal Immunology, 2011, 4, 564-573.	2.7	26
11	Probiotics, Nuclear Receptor Signaling, and Anti-Inflammatory Pathways. Gastroenterology Research and Practice, 2011, 2011, 1-16.	0.7	54
12	Role of Antimicrobial Peptides in Inflammatory Bowel Disease. Polymers, 2011, 3, 2010-2017.	2.0	13
13	Biology and Therapeutic Applications of Peroxisome Proliferator- Activated Receptors. Current Topics in Medicinal Chemistry, 2012, 12, 548-584.	1.0	56
15	PPARs at the crossroads of lipid signaling and inflammation. Trends in Endocrinology and Metabolism, 2012, 23, 351-363.	3.1	537
16	Olfactomedin-4 is a glycoprotein secreted into mucus in active IBD. Journal of Crohn's and Colitis, 2012, 6, 425-434.	0.6	61
17	Results of the 2nd Scientific Workshop of the ECCO (III): Basic mechanisms of intestinal healing. Journal of Crohn's and Colitis, 2012, 6, 373-375.	0.6	50
18	β-Defensins: Multifunctional Modulators of Infection, Inflammation and More?. Journal of Innate Immunity, 2012, 4, 337-348.	1.8	296
19	Therapeutic modulators of peroxisome proliferator-activated receptors (PPAR): a patent review (2008–present). Expert Opinion on Therapeutic Patents, 2012, 22, 803-841.	2.4	60
21	Intestinal defensin secretion in infancy is associated with the emergence of sensitization and atopic dermatitis. Clinical and Experimental Allergy, 2012, 42, 405-411.	1.4	13

# 22	ARTICLE Innate immune dysfunction in inflammatory bowel disease. Journal of Internal Medicine, 2012, 271, 421-428.	lF 2.7	CITATIONS
23	Association of peroxisome proliferator-activated receptor gamma polymorphisms with inflammatory bowel disease in a Hungarian cohort. Inflammatory Bowel Diseases, 2012, 18, 472-479.	0.9	13
24	PPARÎ ³ as a sensor of lipase activity and a target for the lipase inhibitor orlistat. Lipids in Health and Disease, 2013, 12, 48.	1.2	9
25	Antimicrobial Peptides and Innate Immunity. , 2013, , .		11
26	Peroxisome Proliferator-Activated Receptors. , 2013, , .		5
27	PPARÎ ³ ligand attenuates portal inflammation in the MRL-lpr mouse: a new strategy to restrain cholangiopathy in primary biliary cirrhosis. Medical Molecular Morphology, 2013, 46, 153-159.	0.4	15
28	Tetradecylthioacetic Acid Attenuates Inflammation and Has Antioxidative Potential During Experimental Colitis in Rats. Digestive Diseases and Sciences, 2013, 58, 97-106.	1,1	12
29	Transcriptional analysis of the intestinal mucosa of patients with ulcerative colitis in remission reveals lasting epithelial cell alterations. Gut, 2013, 62, 967-976.	6.1	208
30	Honokiol: A non-adipogenic PPARÎ ³ agonist from nature. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4813-4819.	1.1	108
31	Human colonic mucus is a reservoir for antimicrobial peptides. Journal of Crohn's and Colitis, 2013, 7, e652-e664.	0.6	92
32	<scp>A</scp> ntimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Molecular Medicine, 2013, 5, 1465-1483.	3.3	293
33	Disruption of the intestinal mucosal barrier in Candida albicans infections. Microbiological Research, 2013, 168, 389-395.	2.5	104
34	Peroxisome Proliferator-Activated Receptors. , 2013, , 15-23.		0
35	Tissue Distribution and Versatile Functions of PPARs. , 2013, , 33-69.		0
36	Inflammatory bowel disease: an impaired barrier disease. Langenbeck's Archives of Surgery, 2013, 398, 1-12.	0.8	110
38	Antimicrobial Activity of High-Mobility-Group Box 2: a New Function to a Well-Known Protein. Antimicrobial Agents and Chemotherapy, 2013, 57, 4782-4793.	1.4	19
39	Fundamental role for HIF-1α in constitutive expression of human β defensin-1. Mucosal Immunology, 2013, 6, 1110-1118.	2.7	119
40	Looking beyond histological healing in ulcerative colitis: towards the establishment of a molecular signature for quiescent but progressive disease. Gut, 2013, 62, 959-960.	6.1	6

#	Article	IF	CITATIONS
41	Methyl donor deficiency affects small-intestinal differentiation and barrier function in rats. British Journal of Nutrition, 2013, 109, 667-677.	1.2	32
42	Polyunsaturated Fatty Acids in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2013, 19, 650-661.	0.9	89
43	Cigarette Smoke Decreases Airway Epithelial FABP5 Expression and Promotes Pseudomonas aeruginosa Infection. PLoS ONE, 2013, 8, e51784.	1.1	35
44	Relevance of TNBS-Colitis in Rats: A Methodological Study with Endoscopic, Histologic and Transcriptomic Characterization and Correlation to IBD. PLoS ONE, 2013, 8, e54543.	1.1	59
45	Whole Genome Gene Expression Meta-Analysis of Inflammatory Bowel Disease Colon Mucosa Demonstrates Lack of Major Differences between Crohn's Disease and Ulcerative Colitis. PLoS ONE, 2013, 8, e56818.	1.1	111
46	Intestinal barrier in inflammatory bowel disease. World Journal of Gastroenterology, 2014, 20, 1165.	1.4	309
47	An Endoplasmic Reticulum Stress-Initiated Sphingolipid Metabolite, Ceramide-1-Phosphate, Regulates Epithelial Innate Immunity by Stimulating β-Defensin Production. Molecular and Cellular Biology, 2014, 34, 4368-4378.	1.1	25
48	Peroxisome Proliferator–activated Receptor Gamma in the Colon. Journal of Clinical Gastroenterology, 2014, 48, S23-S27.	1.1	20
49	<scp>DEFB</scp> 1 gene 5′ untranslated region (UTR) polymorphisms are marginally involved in inflammatory bowel disease in south <scp>B</scp> razilians. International Journal of Immunogenetics, 2014, 41, 138-142.	0.8	3
50	Dietary and Nutritional Manipulation of the Nuclear Transcription Factors Peroxisome Proliferator-Activated Receptor and Sterol Regulatory Element-Binding Proteins As a Tool for Reversing the Primary Diseases of Premature Death and Delaying Aging. Rejuvenation Research, 2014, 17, 140-144.	0.9	5
51	Identification of Isosilybin A from Milk Thistle Seeds as an Agonist of Peroxisome Proliferator-Activated Receptor Gamma. Journal of Natural Products, 2014, 77, 842-847.	1.5	48
52	The interplay between the innate immune system and the microbiota. Current Opinion in Immunology, 2014, 26, 41-48.	2.4	111
53	Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nature Reviews Drug Discovery, 2014, 13, 852-869.	21.5	291
54	Activity-guided isolation of NF-κB inhibitors and PPARγ agonists from the root bark of Lycium chinense Miller. Journal of Ethnopharmacology, 2014, 152, 470-477.	2.0	57
55	Regulation of the gut microbiota by the mucosal immune system in mice. International Immunology, 2014, 26, 481-487.	1.8	26
56	TCF-1-mediated Wnt signaling regulates Paneth cell innate immune defense effectors HD-5 and -6: implications for Crohn's disease. American Journal of Physiology - Renal Physiology, 2014, 307, G487-G498.	1.6	41
57	Increased Gut Permeability and Microbiota Change Associate with Mesenteric Fat Infl ammation and Metabolic Dysfunction in Diet-Induced Obese Mice. , 2014, , 77-102.		0
58	Natural compound methyl protodioscin protects against intestinal inflammation through modulation of intestinal immune responses. Pharmacology Research and Perspectives, 2015, 3, e00118.	1.1	33

#	Article	IF	CITATIONS
60	Nutritional Modulation of Gene Expression: Might This be of Benefit to Individuals with Crohn's Disease?. Frontiers in Immunology, 2015, 6, 467.	2.2	10
61	Regulation of the Intestinal Barrier Function by Host Defense Peptides. Frontiers in Veterinary Science, 2015, 2, 57.	0.9	104
62	An Evolutionary History of Defensins: A Role for Copy Number Variation in Maximizing Host Innate and Adaptive Immune Responses. Frontiers in Immunology, 2015, 6, 115.	2.2	84
63	Genome-wide gene expression analysis for target genes to differentiate patients with intestinal tuberculosis and Crohn's disease and discriminative value of FOXP3 mRNA expression. Gastroenterology Report, 2016, 4, gov015.	0.6	11
64	Complexity of antimicrobial peptide regulation during pathogen–host interactions. International Journal of Antimicrobial Agents, 2015, 45, 447-454.	1.1	20
65	Intestinal nuclear receptors in HDL cholesterol metabolism. Journal of Lipid Research, 2015, 56, 1262-1270.	2.0	15
66	Therapeutic benefits of enhancing permeability barrier for atopic eczema. Dermatologica Sinica, 2015, 33, 84-89.	0.2	8
67	Neutrophils and inflammatory metabolism in antimicrobial functions of the mucosa. Journal of Leukocyte Biology, 2015, 98, 517-522.	1.5	25
68	An optimized inexpensive emollient mixture improves barrier repair in murine skin. Dermatologica Sinica, 2015, 33, 96-102.	0.2	5
69	Preventive and Therapeutic Effects of Lactobacillus Paracasei B21060–Based Synbiotic Treatment on Gut Inflammation and Barrier Integrity in Colitic Mice. Journal of Nutrition, 2015, 145, 1202-1210.	1.3	36
70	An update on the role of omega-3 fatty acids on inflammatory and degenerative diseases. Journal of Physiology and Biochemistry, 2015, 71, 341-349.	1.3	90
71	Pseudoceramide stimulates peroxisome proliferator-activated receptor-î± expression in a murine model of atopic dermatitis: molecular basis underlying the anti-inflammatory effect and the preventive effect against steroid-induced barrier impairment. Archives of Dermatological Research, 2015, 307, 781-792.	1.1	9
72	PPARγ ligands and their therapeutic applications: a patent review (2008 – 2014). Expert Opinion on Therapeutic Patents, 2015, 25, 175-191.	2.4	15
73	Characteristic changes in microbial community composition and expression of innate immune genes in acute appendicitis. Innate Immunity, 2015, 21, 30-41.	1.1	21
74	Mammalian Antimicrobial Peptides; Defensins and Cathelicidins. , 2015, , 539-565.		5
75	Xenobiotic Receptor-Mediated Regulation of Intestinal Barrier Function and Innate Immunity. Nuclear Receptor Research, 2016, 3, .	2.5	32
76	Recent advances in understanding and managing Crohn's disease. F1000Research, 2016, 5, 2896.	0.8	14
77	Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Frontiers in Immunology, 2016, 7, 290.	2.2	93

#	Article	IF	CITATIONS
78	High-fat diet modifies the PPAR-γ pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5934-E5943.	3.3	180
79	Intestinal PPARÎ ³ signalling is required for sympathetic nervous system activation in response to caloric restriction. Scientific Reports, 2016, 6, 36937.	1.6	20
80	Food, nutrients and nutraceuticals affecting the course of inflammatory bowel disease. Pharmacological Reports, 2016, 68, 816-826.	1.5	109
81	Cationic host defense peptides; novel antimicrobial therapeutics against Category A pathogens and emerging infections. Pathogens and Global Health, 2016, 110, 137-147.	1.0	37
82	Antimicrobial Peptides in the Gut. , 2016, , 67-88.		1
84	Specific inulinâ€ŧype fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis. Molecular Nutrition and Food Research, 2017, 61, 1601006.	1.5	121
85	Improvement of a â€~Leaky' Intestinal Barrier. Digestive Diseases, 2017, 35, 21-24.	0.8	11
86	Sodium butyrate improved intestinal immune function associated with NF-κB and p38MAPK signalling pathways in young grass carp (Ctenopharyngodon idella). Fish and Shellfish Immunology, 2017, 66, 548-563.	1.6	149
87	Madecassic acid, the contributor to the anti-colitis effect of madecassoside, enhances the shift of Th17 toward Treg cells via the PPARÎ ³ /AMPK/ACC1 pathway. Cell Death and Disease, 2017, 8, e2723-e2723.	2.7	81
88	Microbiota-activated PPAR-Î ³ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science, 2017, 357, 570-575.	6.0	796
89	Oxytocin, a main breastfeeding hormone, prevents hypertension acquired in utero: A therapeutics preview. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3071-3084.	1.1	5
90	Epithelial Cells. , 2017, , 437-456.		0
91	The Expression of the Short Isoform of Thymic Stromal Lymphopoietin in the Colon Is Regulated by the Nuclear Receptor Peroxisome Proliferator Activated Receptor-Gamma and Is Impaired during Ulcerative Colitis. Frontiers in Immunology, 2017, 8, 1052.	2.2	13
92	The Interplay between Defensins and Microbiota in Crohn's Disease. Mediators of Inflammation, 2017, 2017, 1-8.	1.4	39
93	Effects of Obesity on Function and Quality of Life in Chronic Pain. , 2017, , 151-170.		1
94	Immunization with intestinal microbiota-derived Staphylococcus aureus and Escherichia coli reduces bacteria-specific recolonization of the intestinal tract. Immunology Letters, 2018, 196, 149-154.	1.1	3
95	Low or excess levels of dietary cholesterol impaired immunity and aggravated inflammation response in young grass carp (Ctenopharyngodon idella). Fish and Shellfish Immunology, 2018, 78, 202-221.	1.6	35
96	Astragalus polysaccharides exerts antiâ€infective activity by inducing human cathelicidin antimicrobial peptide <scp>LLâ€37</scp> in respiratory epithelial cells. Phytotherapy Research, 2018, 32, 1521-1529.	2.8	25

#	Article	IF	CITATIONS
97	PPARÎ ³ -activation increases intestinal M1 macrophages and mitigates formation of serrated adenomas in mutant <i>KRAS</i> mice. Oncolmmunology, 2018, 7, e1423168.	2.1	12
98	miR-130a and miR-212 Disrupt the Intestinal Epithelial Barrier through Modulation of PPARγ and Occludin Expression in Chronic Simian Immunodeficiency Virus–Infected Rhesus Macaques. Journal of Immunology, 2018, 200, 2677-2689.	0.4	39
99	Roles of Peroxisome Proliferator-Activated Receptor Gamma on Brain and Peripheral Inflammation. Cellular and Molecular Neurobiology, 2018, 38, 121-132.	1.7	240
100	Expression of the human antimicrobial peptide \hat{l}^2 -defensin-1 is repressed by the EGFR-ERK-MYC axis in colonic epithelial cells. Scientific Reports, 2018, 8, 18043.	1.6	22
101	Recombinant β-defensin 126 promotes bull sperm binding to bovine oviductal epithelia. Reproduction, Fertility and Development, 2018, 30, 1472.	0.1	21
102	6â€Dihydroparadol, a Ginger Constituent, Enhances Cholesterol Efflux from THPâ€1â€Derived Macrophages. Molecular Nutrition and Food Research, 2018, 62, e1800011.	1.5	17
103	Host Defense Peptides as Innate Immunomodulators in the Pathogenesis of Colitis. , 2018, , 133-164.		2
104	Enteric Microbiota–Gut–Brain Axis from the Perspective of Nuclear Receptors. International Journal of Molecular Sciences, 2018, 19, 2210.	1.8	21
105	β-Defensin 1 Is Prominent in the Liver and Induced During Cholestasis by Bilirubin and Bile Acids via Farnesoid X Receptor and Constitutive Androstane Receptor. Frontiers in Immunology, 2018, 9, 1735.	2.2	12
106	Current understanding of the gut microbiota shaping mechanisms. Journal of Biomedical Science, 2019, 26, 59.	2.6	104
107	Encapsulation of Lactobacillus plantarum in cellulose based microgel with controlled release behavior and increased long-term storage stability. Carbohydrate Polymers, 2019, 223, 115065.	5.1	54
108	The Role of Adipose Tissue in the Pathogenesis and Therapeutic Outcomes of Inflammatory Bowel Disease. Cells, 2019, 8, 628.	1.8	51
109	Microbiota and mucosal defense in IBD: an update. Expert Review of Gastroenterology and Hepatology, 2019, 13, 963-976.	1.4	98
110	Interactions between Host PPARs and Gut Microbiota in Health and Disease. International Journal of Molecular Sciences, 2019, 20, 387.	1.8	46
111	Association between beta defensin gene polymorphism and clinical endometritis in dairy cows. Comparative Clinical Pathology, 2019, 28, 377-382.	0.3	4
112	A Novel View of Human Helicobacter pylori Infections: Interplay between Microbiota and Beta-Defensins. Biomolecules, 2019, 9, 237.	1.8	39
113	The PPAR–microbiota–metabolic organ trilogy to fineâ€ŧune physiology. FASEB Journal, 2019, 33, 9706-9730.	0.2	46
114	Mechanisms by which sialylated milk oligosaccharides impact bone biology in a gnotobiotic mouse model of infant undernutrition. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11988-11996.	3.3	55

#	Article	IF	CITATIONS
115	Remission induction, maintenance, and endoscopic outcome with oral 5â€aminosalicylic acid in intestinal Behçet's disease. Journal of Gastroenterology and Hepatology (Australia), 2019, 34, 1929-1939.	1.4	14
116	Differential Responses of Colorectal Cancer Cell Lines to Enterococcus faecalis' Strains Isolated from Healthy Donors and Colorectal Cancer Patients. Journal of Clinical Medicine, 2019, 8, 388.	1.0	28
117	Proteolytic Degradation of reduced Human Beta Defensin 1 generates a Novel Antibiotic Octapeptide. Scientific Reports, 2019, 9, 3640.	1.6	20
118	Modulation of Gut Microbiota Composition by Serotonin Signaling Influences Intestinal Immune Response and Susceptibility to Colitis. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 709-728.	2.3	132
119	Molecular characterization of pulmonary defenses against bacterial invasion in allergic asthma: The role of Foxa2 in regulation of β-defensin 1. PLoS ONE, 2019, 14, e0226517.	1.1	5
120	Identification of Epigenetic Methylation Signatures With Clinical Value in Crohn's Disease. Clinical and Translational Gastroenterology, 2019, 10, e00083.	1.3	22
121	Human antimicrobial peptides in autoimmunity. Autoimmunity, 2020, 53, 137-147.	1.2	18
122	Enzyme-treated soy protein supplementation in low protein diet enhanced immune function of immune organs in on-growing grass carp. Fish and Shellfish Immunology, 2020, 106, 318-331.	1.6	8
123	Peroxisome Proliferator-Activated Receptors and Caloric Restriction—Common Pathways Affecting Metabolism, Health, and Longevity. Cells, 2020, 9, 1708.	1.8	39
124	The effect of Faecalibacterium prausnitzii and its extracellular vesicles on the permeability of intestinal epithelial cells and expression of PPARs and ANGPTL4 in the Caco-2 cell culture model. Journal of Diabetes and Metabolic Disorders, 2020, 19, 1061-1069.	0.8	22
125	Transcriptional signatures of the small intestinal mucosa in response to ethanol in transgenic mice rich in endogenous n3 fatty acids. Scientific Reports, 2020, 10, 19930.	1.6	3
126	PPARs and Microbiota in Skeletal Muscle Health and Wasting. International Journal of Molecular Sciences, 2020, 21, 8056.	1.8	50
127	Mapping global research trends in stem cell therapy for inflammatory bowel disease: a bibliometric analysis from 1991 to 2019. Journal of International Medical Research, 2020, 48, 030006052096582.	0.4	5
128	Peroxisome Proliferator-Activated Receptors: Experimental Targeting for the Treatment of Inflammatory Bowel Diseases. Frontiers in Pharmacology, 2020, 11, 730.	1.6	78
129	Does an Apple a Day Also Keep the Microbes Away? The Interplay Between Diet, Microbiota, and Host Defense Peptides at the Intestinal Mucosal Barrier. Frontiers in Immunology, 2020, 11, 1164.	2.2	20
130	Administration of Metabiotics Extracted From Probiotic Lactobacillus rhamnosus MD 14 Inhibit Experimental Colorectal Carcinogenesis by Targeting Wnt/β-Catenin Pathway. Frontiers in Oncology, 2020, 10, 746.	1.3	16
131	Hypoxia and Innate Immunity: Keeping Up with the HIFsters. Annual Review of Immunology, 2020, 38, 341-363.	9.5	105
132	Characterization of local gut microbiome and intestinal transcriptome responses to rosiglitazone treatment in diabetic db/db mice. Biomedicine and Pharmacotherapy, 2021, 133, 110966.	2.5	12

	CITATION	n Report	
#	ARTICLE Transcriptional programmes underlying cellular identity and microbial responsiveness in the	IF	Citations
133	intestinal epithelium. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 7-23.	8.2	28
134	Regulation of Gastrointestinal Immunity by Metabolites. Nutrients, 2021, 13, 167.	1.7	26
135	Can Echinacea be a potential candidate to target immunity, inflammation, and infection - The trinity of coronavirus disease 2019. Heliyon, 2021, 7, e05990.	1.4	25
136	Gut Microbiota-Derived Short-Chain Fatty Acids Facilitate Microbiota:Host Cross talk and Modulate Obesity and Hypertension. Current Hypertension Reports, 2021, 23, 8.	1.5	52
137	Location is important: differentiation between ileal and colonic Crohn's disease. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 544-558.	8.2	63
138	Luminal microvesicles uniquely influence translocating bacteria after SIV infection. Mucosal Immunology, 2021, 14, 937-948.	2.7	3
139	Gut microbiota-derived inosine from dietary barley leaf supplementation attenuates colitis through PPARÎ ³ signaling activation. Microbiome, 2021, 9, 83.	4.9	101
140	Bioderived materials that disarm the gut mucosal immune system: Potential lessons from commensal microbiota. Acta Biomaterialia, 2021, 133, 187-207.	4.1	4
141	The paraventricular thalamus serves as a nexus in the regulation of stress and immunity. Brain, Behavior, and Immunity, 2021, 95, 36-44.	2.0	0
142	The Multifaceted Role of Serotonin in Intestinal Homeostasis. International Journal of Molecular Sciences, 2021, 22, 9487.	1.8	36
143	Regulation of Oxygen Homeostasis at the Intestinal Epithelial Barrier Site. International Journal of Molecular Sciences, 2021, 22, 9170.	1.8	34
144	Probiotics and Trained Immunity. Biomolecules, 2021, 11, 1402.	1.8	17
145	Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Frontiers in Nutrition, 2021, 8, 718356.	1.6	98
146	Inflammatory Bowel Disease: New Insights into the Interplay between Environmental Factors and PPARÎ ³ . International Journal of Molecular Sciences, 2021, 22, 985.	1.8	25
147	Phytochemical drug candidates for the modulation of peroxisome proliferatorâ€activated receptor γ in inflammatory bowel diseases. Phytotherapy Research, 2020, 34, 1530-1549.	2.8	18
148	Antimicrobial Peptides and Inflammatory Bowel Disease. , 2013, , 255-273.		1
149	Soraphen A enhances macrophage cholesterol efflux via indirect LXR activation and ABCA1 upregulation. Biochemical Pharmacology, 2020, 177, 114022.	2.0	11
150	UPR modulation of host immunity by <i>Pseudomonas aeruginosa</i> in cystic fibrosis. Clinical Science, 2020, 134, 1911-1934.	1.8	8

#	Article	IF	CITATIONS
151	Peroxisome Proliferator-Activated Receptors Features, Functions, and Future. Nuclear Receptor Research, 2015, 2, .	2.5	10
152	Association between the Pro12Ala Polymorphism of Peroxisome Proliferator-Activated Receptor Gamma 2 and Inflammatory Bowel Disease: A Meta-Analysis. PLoS ONE, 2012, 7, e30551.	1.1	18
153	Histone Deacetylase (HDAC) 1 Controls the Expression of Beta Defensin 1 in Human Lung Epithelial Cells. PLoS ONE, 2012, 7, e50000.	1.1	32
154	Defective expression of the peroxisome regulators PPARα receptors and lysogenesis with increased cellular senescence in the venous wall of chronic venous disorder. Histology and Histopathology, 2021, 36, 547-558.	0.5	9
155	Gut Inflammation: Current Update on Pathophysiology, Molecular Mechanism and Pharmacological Treatment Modalities. Current Pharmaceutical Design, 2014, 20, 1063-1081.	0.9	45
156	Antimicrobial Peptides and Colitis. Current Pharmaceutical Design, 2012, 19, 40-47.	0.9	75
157	Defensins couple dysbiosis to primary immunodeficiency in Crohn's disease. World Journal of Gastroenterology, 2011, 17, 567.	1.4	16
158	Antimicrobial Proteins in Intestine and Inflammatory Bowel Diseases. Intestinal Research, 2014, 12, 20.	1.0	44
159	Manning the Barricades: Role of the Gut Epithelium in Crohnâ \in ${}^{\mathrm{Ms}}$ s Disease. , 0, , .		0
162	IBD Subtype-Regulators IFNG and GBP5 Identified by Causal Inference Drive More Intense Innate Immunity and Inflammatory Responses in CD Than Those in UC. Frontiers in Pharmacology, 2022, 13, 869200.	1.6	2
170	PPARGC1A affects inflammatory responses in photodynamic therapy (PDT)-treated inflammatory bowel disease (IBD). Biochemical Pharmacology, 2022, 202, 115119.	2.0	3
172	Small nucleolar RNAs and SNHGs in the intestinal mucosal barrier: Emerging insights and current roles. Journal of Advanced Research, 2023, 46, 75-85.	4.4	3
173	Changes in the Mucosa-Associated Microbiome and Transcriptome across Gut Segments Are Associated with Obesity in a Metabolic Syndrome Porcine Model. Microbiology Spectrum, 2022, 10, .	1.2	11
174	Current and future aspects of IBD research and treatment: The 2022 perspective. , 0, 1, .		4
175	Impact of Obesity on the Course of Management of Inflammatory Bowel Disease—A Review. Nutrients, 2022, 14, 3983.	1.7	9
176	FABP4 in Paneth cells regulates antimicrobial protein expression to reprogram gut microbiota. Gut Microbes, 2022, 14, .	4.3	3
177	The PPARα Regulation of the Gut Physiology in Regard to Interaction with Microbiota, Intestinal Immunity, Metabolism, and Permeability. International Journal of Molecular Sciences, 2022, 23, 14156.	1.8	3
179	Vegetable oils and oilseeds. , 2023, , 215-237.		0

ARTICLE

IF CITATIONS